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1.

PLANE GOORDIE&TES
‘ Ghapter I

The primary purpose of this thesiS'is to develop the

 pfford1nary relatlons of solld analytlc geometry by the use of

,“plane-codrdinatea. The significance of various equatlons i
of the Gartesxan system Wlth reference to this neW'system
will also be discusged. |

| As far as possxhle, the treaﬁment parallels the treat~ 
g ment of llne-eoBrdlnaﬁes, as conbtained in the theses sub-
mitted by Valgardssan.of ManltobaAanﬁ Heasllp and James of
British Columhig for the aegree_oi,master,of Arta. f

2. ‘Eundamental ﬁefinitions-»

, We use the reetangular réference system, i;e. three
" mutua1ly perpendlcular Planes intersectlng in three mutually
7:5perpendicular straight lines X' ‘ox, Y‘0Y, 2’0z, which are
f galled‘the4X5 ¥, Z‘axes,respectively.‘ The X sxis is formed
by the intersectidn of the ZX an&de’planes:'the'Y'axisfby
the intersectlon ot the XY and YZ DPlanes; and the Z axis by
‘ the intersectlon of the YZ ana Zx planes. The poinﬁ o,

,common.to all three planes, is oallei the orlgln. The'cus~'

2 tomary conventlons w1th.regard to sign are observed. For

~example, the directions X,QX, Y‘GY, 2’ 0Z are con31dered‘



2

“jpositive,pand‘the,qifections'xaxf, YOI', ZOZ{'are considered
 ‘negat1ve. | | ' | ; |
| The eo&rdin&tes of a plane are defined 0 be the re-
; clprocals.of its intereepts on the eoordinate axes. Thus

the plane ABG in,finure (l) has coordlnates (a, b, c),

'~‘ ;31nce

@ 0k =is:» 0B =%, 0C =3

Wz

. | rig. (1)
o Conversely, any plane (a, b, ¢) makes intercepts
" é}‘ﬁ’ ‘on the X, Y‘ Z axes,~respectively. ’
| | In Cartesian cogrdinates the point (a, b, c) is such
f :that it& directed perpendicular alstanees from the Y%, Z2X,
“ 'XY planes are a, b, c, respectively. Lhe plane

‘ax + by + ez -l = 0



e'3,‘

f*heslinterceptsqé;L%,¢_~on ?he cogrdinate axes.

ol

j.;3ei Gogrdlnates of Planes:=

o &ny plane whose 1ntercepts on the cobrdlnate axes

~l are all flnlte and dlfferent from Zero. ‘is seen %o be repre-

llgsented uniquely by (a, b, e). flhe followlng~1s a~summarye \
ffof ‘some special cases: . | |

(1) Goordlnate'Planes. The XYy plane is denoted by

i (a, b uo), where a and b are both flnlte.

il) A plane through 2 coordlnate axis and euttlng

l'the other axes obliquelz.7 Suoh a.plane through the A.axie

' lhas the eogrdlnatee (a,uo 60), where a is finite.

(ili) The eoordinates of a plane parallel to that

glven in (ii) are (o, b, e), Where b and e are flnite.

(iv) The co&rdlnates of @fglane parallel to that

;glven in (i) are (o, o, e), where e is flnite.

(v) The "plane at inflni@x" has thefGQSrdlnates

;(llcoolosko)'k"‘;

(v1) A plane through the origin and oblique t0 all'\‘

‘lthree axes ‘has the eoBrdlnatee (oo 00, a@).
| It is to. be noted that the coBrdlnates in (ii) and
(vi) ‘4o not represent one plane unlquely, and that the

eelplaneS~1n.(1) and (11) do mnot possess wiigue coordlnatee.

f:74 Parallel Elanes-~: ,

~_;Theorem‘ The neeeseary and sufficlent condition&




' Jlfor the parallellsm of two planes (X,, Y,. z, ) and
. (2) o . “i xt = Ty o= zl ~,

X, yz o Zi’l

/4

- Fig. (2)

© The conditions are‘neeeSSary. Ebr suppose.that,fhe

_j planesA _'B ’a'f.', i’.oe; ’(X ’,y. ’ z )’ a,nd_ A B (H ioeo

z:.z.’

‘ (xl, Y. z. ), are parallel.‘ fhen they cut the coBrdinate

(1)

: planes in parallel lines,‘ that is, 4,B, and 4 B, are

parallel. Hence

- - "

i'(l) Wllson “Solid Geometry'and Gonle Sections”, pe 12

4.
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In the same Way~”/

&g
o
N

- Therefore -

e ‘ x. =”?Z;:‘ w By

o @hekcdnditions are also suffiéiént;:’Suppose rela-

+tions (é)‘hdld. Then A, B, is parallel to 4£,B,, and B G,
is parallel to B, Gi. Henee plane ﬂqB,G, iS~parallel to
mamease. | Loy
| ‘ Thls theorem is equlvalent to the statement that the
planes (a, b, ¢} and (ka, kb, kc) are parallel. |

In the Gartesian system, £wo points whose eogrdlnates

‘satisfy equations (2) are colllnear w;th the orlgin, and

conversely. If two planes
| | 4, x4+ B y o+ 0 z - l
A‘x + B y +—G zZ - l

are parallel then

<

4 = B,
rodi

B
b

|

S v
R

- and conversely.

\f, (1) Wiléon@'loc;cita, p; 13



"w 1;pect1ve1y,V 1d /f (2)

(@)

  ;5.gku1rection,Gos1nes of 8 Llne'-‘v

, Let,f be any dlrected line in space, “and let L’ be
,’ ,the llne through the orlgln with the same dlrection as-nﬁ
"LetCK ”4 X ~be the angles between the X, Y, Z axes, res-

5 By deflnltion these are the angles which Aﬁ makes
* ¥with the axeso,;”hey are ealled the "directlon angles" of
‘V'the llne A ’ and thelr cos;nes are called.its "direction.
i cos1nesW The dlrection eosines Wlll be denoted by A %/z,

‘~respect1vely.

. :Z

‘f{(l) As in Snyder and Slsam "An&lytic Geometry of Space”

‘1;(2) See bnyder‘and Sisam, p. 36




l  f{&ireetion 0031nes /\:,/u,, 7 ana ‘ﬂ,,

'e~iteiseeasilygproved thatithe‘relation?

‘ : A AR |
“holdse . ' ; s
"e 6s;gAng1e between Two'Directed‘LineSs_~ s

o Suppose that.f and /fx are two directed lines with
2/

2L

5 8

’ respeetlvelye

 1;In solld geometry the angle between two alreeted lines is

"ff\deflned to be the angle between the two sxmllarly dlrected

;{flhwsthmmm1meoﬁgnhg rfll iy
| | A e

“a €1)<1snyderiandesisam,Wp.f6.7

~ {2) As in Snyder and Sisams



“;fflgure. How

In figure (4) / and Z are parallel to £ and 4,

"'respectively. It OP is any segmenu taken along the p051tive .

° :direet1on:of A{ EQ,ls peryendlcular to.l,, and PR is
f:perpendlcular to the plane XOY'at Ro Perpendlculars RT, BS,‘
_fSU are drawn to OQ, OS OT, respectlvely, as shown in the

 gTd1agram. The angle hetween,fi and fL is the angle ¢ in the f

'eoseg;‘:%%, O_U*gg*m
. therefore ) | AU RN e .
N 008 & = B5'or SRoP*PReE’
. and hence e | ;"f | L g
G cmes ﬂw //«V e A

“75“ Polar>608rdlnates of a Plane--
e Let the polar coordinates of a,plane (x, ¥ z) be

V:\(/ﬂ, d ,/3 X), where /ﬂ 1s the length of the perpendicular

|    from the origxn o the plane, and ¢K /3 3‘ are the direc-
‘C   tion angles of this perpendlcular. . o - | if
’  | ABG is any plane (x, y; z) and oP is the perpendieular | :
"from the orlgin,to the plane. GP is produeed to meet ABiat
Q and O and  are JOlned. ;  , | S i

3 ,' ’i'”he plane QOG is perpendleular o each of the planes
‘ XDY and ABG. Henee it is perpenalcular to AB their line

‘“[of 1nuersect10n.; Therefore GQ and 0Q are both perpendicular

f 5ft°'AB‘ Slnce the triangles GQB and AQB are 31m11ar, it



90

y

follows that

80 that

0q = ===

, In_the triangle QOC ,

vﬂi;  “l ‘ x +vy k+ z2” |
: = } ',-ﬁ.,_ .
GQ' g*Y z*(x* +y) o

7,Again the triangles OPQ, GOQ are similar' therefore

therefore.

o o¢ |
g = Ty




]?0“'

i
f %‘“}  fﬁ;from which we obtaim

j  Since OP‘iS'pefpéndicular 0 the plane ARG
| [ S GP‘ o g R -
ygosfx,f TE < e e

-A 7_ Tyt
1/::"+yr + 72

 similarly

~Therefore

ckogo(’k = . SLE. SR

  ,(4) gos/g’== S i¥. J

‘cog ) =  ~:f;t~ﬁ~,} — o

5 )(1) The perpendieular from $he origln to a plane is
SRR T always conszdered positive. IR .
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 The inverse transformations are

f‘u;;»p(5”~

cos & .

e
B
& -

8. ROtaﬁionHOf £xe3:4 ~

y,

Fig.(é)

- Let the orig:.nal reference system be ro‘oated about
; the origin to 2 new pos:.tion so that the new X axis hes

. d.irec‘tion cosines }l, ,/a, . Vo , the new Y axis has direction




12,

’c'osiﬁés ,/\i,’ e s 4, , and :tne' row % ‘axis has direction cosines
As,/p&, ‘”, all with respecu $0. the old axes. ,ﬁe shall

‘[denote the new axes by prlmed 1etters.‘ | :

| ~ Suppose the X’ axis cuts any plane (x, y, z) at A’ ’

‘ ,;as 1n.f1gure (6),n’Den9te the angle PGA. by 6 By equa- :

f »@;033,(4),,the/direétion.eosines‘of~GPyare

cos<x f=,_'*i“ .  ‘ ""“59

- From equation (3) we obtain

eos O = A X+/u,‘y~";+-~4/;‘z S

1/; x y + z a

k But from flgure (6), it follows that

x

 cos @f = 'a‘-"= /
x f~y +z*

,' By equating these two values for cos O > We‘get

i | ‘=/\x+/u_y+ai
 “;; 2f -’ ey Mk A X +/ud/+ V'z,
S : ;Z/ ,,;‘/’\37‘)( +/,43\ +'142‘ '.
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The;inversektransformaﬁiong are
AT x = /\,X" + A;_‘/'f/\;l";‘
(Do T SR g !

k I : k
2 -‘-1/1?‘3- + "/*y 4 4/32

.

‘VWe can express results (6) and (7) in tabulated form :

 zas follows‘

L ' |y | a
€8) > | v | | o

These relations are exactly the same as those obn

,tained for Gart331an,cogrdlnates.};

‘9;; Standard Ebrm of the Equation.of a,POLnt‘-

; mhe standard equation.of a point will be that rela— |
" tion whloh 1nvolves the dlreeted perpendieular dlstances from
“'the three eoordlnate planes to the point. Tet P be the :
' po1nt whose directed perpendicular distanees from the YZ
' ,ZX, and XY planes are r, 8, and t respectivelyo

‘ f In.flwure (7), QR = r, nQ’m 8, QP = t., Rotate the
“:axﬁs so “that the X. ax1s passea throuvh.P. mheh.a%F is the

“xf coBrdlnaterpf'all planes;whieh pass:through B [ﬂherefore'

f/(él + 8" &+t




But, trom (6), we have

- where

G

"' 7/4u~éi

14

Fig. (1)

xl :A,X"L/"_yf’t/,z. k’;

r

e ] :

| ;4/‘1‘1',;1»'3‘?'.' + 57

dg

Se)

rx + 8y + tz = 1 = 0,
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b : We must now show that all planes Whose coordinates
 ‘fSat1Sfy'(l0) pass through the glven pointe |
‘ “ ' Let (a, $ c) be a plane. whlch does not pass. through
cP but whose coordinates satlsfy (10). mhenf |
f,(ll) k;jw‘  ra + sb + tc = 1=0
' ¥?nrom sect10n.4 the coordlnates of a plane through P and

'«'parallel $0 (a, b, ¢) are (k34 kb ke)s Since these codrdl- 1

'fcfnates must satlsfy (10), 1t follows that

’ﬁ(lE) S , k(ra + sb +»tc) - 1

 nThe equations (11) and. (12) are “both true only if k = l in
‘;'which case the plane (ka, b, kc) is coincident with the
'::plane (a, b, 'c). Therefore the plane (a, b, c) must pa.ss

‘c'through the poxnt.'

10, hquations of Points (Gontlnued)'— |
e The standar& equatlonvof a point P is glven by (10).
'“The airection.0031nes of 0P are given in €9}°,'
4 . If we d.enote the length of OP by P equation (19)
c'may be written.“‘ N ‘k o '

cﬂﬁ) ) Ax'+_/g/ *VZ_"P = O,

°,We ahall call (13) the "G.J.:r.nac’ced.'t ‘equation of the point.,
Ir (/9,<x ,/3 R y) are the polar coﬂrdinates of &
f ip1ahe, whose intercept coBralnates are (x, 7 z), passing
“7 through the point | | ' i
k TX + sy + tz -1 =0

. them
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o 1'  rx,",_ ‘gy BEPCIN, - SRR

,{/;: + y + z /x -e y *+ z //x * y -a» z" 4/;'+y"+z"

f_gherefore : e rnae : ,“’ E n
”;:'_(.14) T ' /0 é'i"cc')sa( + &’ coaﬂ + % cos ¢

: We shall call (14) the "polar“ eq_uatlon of the pointe
The equatlon of the orlgin :Ls
= 'ox-t-oy-t»oz-l - 0,
‘ffhe equatlon of the Wpoint at inflnity“ 18
ﬂ¥+ﬂJ+Vi-9r."“
The equatlon of a po:Lnt on the X axis is
; | I:X -1 = 0 :
a,nc'i the eque.tn.on of & po:s.nt in the XY pla.ne is f :

‘ rx,t-sy =1 =06

In Gartesian colrdinates the plane
R io"x-t#oy-kéz-laﬂ

(1)<

]15 known as the "Dlane at infinity", The plane
| ; /\x +p Y +'I/2.== 0
" passes tnrough the origin and A\ ,/a., yfl/are the d.irection

cosinea of the normal to 'bhe plane. s

o “,‘(llhe plane

X - L =

ey V ',_'is;;pal'&ilel 0 fbhe‘ Yz pl:'a.yne..k '

J : (l) S‘-nyder and. SlS&m, Do 34
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5.;11; u1stance betweenAng P01nts-—

Iet two po;nts E, and P be denoted by the eqnatlons :’
Gl Lz *"SIYJ f,trzﬁ",l = 0
~and

X +isiyr+,tpz -1 =0

|z

x/  me®

7 . Tet the 1éngths of P, P,_, ,QP eP be a P > ﬁ rese
f‘pectively, and let angle P QP be 8 o Tie have |
| = A A -«Z/’ﬂcoae,
"and hence, from (3) and (9), it follows that |
(r fvs;” +;t; )f(r; ‘¢fs:' + t )~2(r r, +8,8 +%),

. pso that | S B R
an - G ETe G taTe Gl




‘ 18,0

12, 31v1s1onAof a Segment in g leen natlo-a

Let the segment be defined by the two pOLnts glven
f ,1n section ll and let the given ratlo of division be h :;kby ;

“fSu@pose that P the d1v1s1on.p01nt has the equation

rx,*~sy + tz - 1 = 0.

x/ s (9)
£ A 2 pes V are the direction cosines of the line
BB, then 1
BB:A =Il=x-r,
Hence

ha_PP, : P"P /\ ' ;, e

2 S

PR On solv1ng for r we obtain

Ekr', -bhr;




. (16) Similariy

.~ where

| ;519 .

13. Plane through Three P01nt3°-,

S Let the equatlons of the three dlstinct p01nts P,
;P . P be

L
©
@

S Tx s y+tz -1

CEE siykg’t;z - 1 :

i
o
™

e BT +eyitzeol=0,

‘, respeétivélyQ If‘thQSe eq&ations~are solved for x, Vs év we‘
fobﬁaln.the eoordlnates of a.plane passing through the three
'poxnts.‘

,Einiteﬁ501n£iqné are possible provided thab

'_‘3 = k ,I; 353 t"$ﬁ'Cl

fﬁfzﬁ<a O ’then each elementfef any one rqw is'a lihear GOme=
; Zblnatlon,of the correspondlng elements éf the oﬁher twc rOWSe
| ?suppose that | | SR
r, =kr sk,

833 =

k, S. + fk’zsm"
: | t3 = ‘k;n’tt o+ kzt 2¢
»;3et ug consider the point P whose equation is

rx+sy + 4z -1=0,
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Rl
H
+
b
v

4
k, + k, 4
“ ‘kl SI ', * kzéx
8 = o s %
ok vk,
R N L
ok + X,

g‘_From (lﬁé)‘vve see that 'the point P is colllnear Wlth B, ancl
i Pz_g. Therefore any plane through P, and ZE must pass ‘chrough

From (9) we see that ﬁhe vectors OP and OP; are one
‘f;and the same straight line. ~Therefore~the orlgln,»P, and

‘;ﬁPs'are collinearunyence, any“planespaSSing‘thrOugh‘? and
:elg must pass through the origln, and one, at least, of x, ¥y,
:‘z must be inflnltea N | | | ‘

e In Cartesian coardinates three planes determine a

‘llp01nt except when one plane is parallel to the llne of inter-:

sectlon of the other two. ‘The condltlon for thls exception

isA = .0. ,

~:,k~li4;’ The Expression fx - it )" + (y,_ -7, ) + (2, - z, )
| Let e be the angle between the perpendlculars from‘
; the orlgln 1;0 two’ planes (x‘ y V. ,fz ) and (xz, Y., 2,) and
2 let d be the distance between the feet of these perpendi-
,’.culars.{ Then

d -F ﬂt -—Qﬁ/,, cose,

where 70 an(l /o)_‘ are the lengths of the polar normals as
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glven in . (4) and cos 6 15 determ:.ned. by the relation
“x X, +~y;y; + Z z

/x R

<i7>?“‘\éos i

that is |
(X,:ic_ -x»‘;’y',';yt + z,'zl)ﬂ

e 2

ate L .Y

.

PRE T AR A SR AR C R AR [C I AT 2

29 e k%

,_¢; n+y;*a+x syl 2l 2% %, v vy, ¢ 7,2)

3

L e )& ey e e )

T~ffwhich reduces to

 ((@>;. d“/ﬁﬂX-X)+(y~y)+@ .

ﬂ]15‘ Dlstance between Parallel Elanes'-,

The dlstance between the parallel planes (=, y,,z)

'7,ffand'(kx,,ky, kz) is equal to the dlstance between the feet

 of their polar normals. From equation (18) we obﬁain

Jie(193-~e S fd - k - l

irelég' Dlstance o a P01nt from a Plane‘—

Let the p01nt be defined by the equation S

o , rx + sy + tz = 1= O , ;
’ éndethe planeeby the coordlnateS'(xl, Y. s 2, Ve Through the -
. yoint draw a plane with eobrdinates, say, (kx,, kg $ kz ),

‘iparallel to_the given plane.' Then the distance to the
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, point from the plane is equal to the distance between these
two planes. Since the new plane passes through the given
- point, we have |
k(rx, + sy, + tz,)-1 = 0;
that is

k= _ 1

rx, + 8y, =+ 1z

~ On substituting this value for k in (19), we obtain

rx, + 8y, + tz, -1

:

T3 2 o,
Y X°+75 5 *5Z

(26) =~

Theorem: TIwo points P, , P, whose equations are

rx+sgy+tz-1-= b,

rx + 8,y +%2z~-1=0,
respectively, are on the same side or on opposite sides of
the pleane (x,, ¥, , 2,) according as its coordinates give
the first members of the eguations of the péints 1ike or
unlike signs. For, let the point of intersection of the
line P, P, and the plane be P whose equation is

rx + sy + tza = 1 = 0,

where
r=mzr +mr,
s =ms +mns, ,
t=m 5, +m b,
and

m +m, =1 (Section 12),
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The refore ’ i

(mz,+ mz )x + (ms +ms )y =+ (% +nt )z -1=0;
that 1is, - 5 . i
| m (r,x,+ sy +%z-1) +m(gx~+sy-+tz-1)x be
If v, %, + 8,5y, + %5 =1and rx + 8,y + 5,2, = 1 have unlike
slgns, them m, and m, have the same sign, and the point P
lies between P, and P, If r,x,+ 8,7, + t,2, - 1 and
CT,X, 4 s;g‘+ t;z, ~ 1 have the same sign, then the numbers
m,, m, have opposite signs, hence the point P is not between
P, and P.s

A poinﬁ whose equation is
rz + 8y + tz -1 = Q

will be considered to be on the positive or negative side of
the plane (x,, ¥, , %, ) according as the expression

rx, + 8y, + tz, -1

! ’

is positive or negative réspectively0

From (2b) and the theorem just proved we can say
that the distance to a point from a plane is positive or
negative according as the point and the origin are on the

same side or on opposite sides of the plane.

17. Angles between Line and Plane; Plane and Plane:-

The angle between a line and a plane is the comple-~
ment of the angle between the line and the polar normal to
the plane. If Ayu"'u’ are the direction cosines of & line

which makes an angle €@ with the plane (x, y, z), then from
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(3) anil (4) we get

(21) sin @ = Ax et A vz .

The angle between two planes is equal to the angle

between their polar normals and is givezn by (17).

18, Two-Point FEquations of a Line:-

Two distinet points willydetermine a gtraight 1ine
sineekthe'totality of planes, Which pass through the two
points simultaneously, define a line. Hence the simulfaneous.
‘equations
(22) X + 8,7 + t,z - 1 i ﬁ,

| rx + 8,y ¢+ t,a-1-= C,
glve the equations}of the line. We shail refer to (22) as

the "Two-Pointh equations of a line.

19, Equations of Lines (Continued):-
The most general equations of & line sare given by

, ‘ (1

(22), The following is & summary of special cases: )

(1) A coordinate sxis. The X axis has the

equa tions
rx - 1 =0,

ox + oy + oz - 1 = Q.

(1) It is understood that r, s, and t are not zero In the
following works.
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(ii) A line parallel to (i) and pzssing through

the Y axis has the eguations
x = 0,

sy=1 = Q.

(i1ii) 4 line parallel to (i) and cutting the YZ
plane has the egquations '
| X = 0,
sy+tz=1 = 0.
(1v) & line“throﬁgh the origin and lying in s

coordinate plane. Such a line in the XY plane has the equa-~
tions |
rx+sy~-1 = 0,

ox+oy+0z-1 = Q.

(v) 4 line through the origin oblique to all

three axes has the equations

rx+gy+tz-1 = 0,
ox+oy+oz-1 = 0,

(vi) A line %hfdugh the X and Y axes but not through

the origin has the egquations

rx=1 = 0,

Sy“‘l = O

(vii) A line through the X axls and parallel to the
"YZ plane hzas the equations
- rx=1l = 0,

rx+gy+tz~1 = 0.
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20, Two-Plane Form of the Equations of a Line:-

Let the line be defined by the planes (x,, Fi s z,)
and (x,, ¥,, %,)s If the line passes through the origin
then one or more of the cogrdinates of each plane will be
infinite. If it does not pass through the origin, all the
members of at least one set of cobrdinates will be Ffinite.

Suppose the p01nts |

rx + 8y + t,z -1 =0,

r,x + 8 5 + t Zz = 1 = 04
lie on the line. The point in which the llne cuts the XY
plane can be found by eliminating 2 from the two equatlons,
and the point where it cuts the 97 plane can be found by

eliminating x. TLet these_ﬁwo points be denoted by tha eguna-

tions

nE sy =120,
(23) 5,7 + t,z -1 =0, respectively
Then ' “

rx + s,y~-1=0,
r.x, + 8,5, ~1=0,
X, 875 - 1 = 0.
If these equations in r , s are to be consistent we must

have
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whence
rix . ovev,
z, =X, Y = Y.
In the same way,‘from the second of equations (23)
we obtain
y-Y¥, = %= z‘
¥y, = V. z, -z,
The refore

(24) X-~-x, _¥-UV, Z o= 7

{ o= !

X, =%, ¥, =¥, & -3z,

REquations (24) are called the "Two-Plane" equations
of akstraight line. Obviously these have no meaning_if one
‘of the denominators is zero. Suppose x, = x, is zero. Then
x must be equal to x, and instead of (24) we write

X =x,,

y“y, nz-zl

_yl »yz Z,'éz‘
In Cartesian coordinates (24) give the "two-point®

equations of a straight line.

21, Direction Cosines of a Line:-

If the line is defined by the two points whose
equationskare (22), the direction eosines are found to be
r, -r .
A= _ , ,
J(, =~ )+ (s, =8 )+ (F, =1t )




g fr - I' )1,+ (S _ S‘j );,, + (‘t"— 'ﬁ")’-

‘b¢/ T ,':y ‘ t;*- t, S :
/Tr - r, )‘+ (s - S')”+ (t, -t )‘ )

Suppose the llne is deflned by (24) ~ Equate the

'first two fractlons. Then
(x -x,) (v, - 3, ) = (v -7, ) (x, = x,).
Thls equation is feducible to the form oy

"V«_’ which is the equatlon of a point on.the line. “In the same

~way the equations

'(27),: ‘;“f‘n"zxkf'zr' y'%, y'”-‘yF,*z 3 1'3.6;"kk
B G LT T AL e
aﬁa |
(28  FaTE g R TE a_q.qp
- xB,-x.Z, X7 -X7,
‘réprésent points on’the line. WE~can’theféfore‘select ﬁwo
of ‘these p01nts and f£ind the dlrectlon cosines of the 1ine

goinlng them by means of (25).

If the ﬁenomlnator x Y. - x, 7, has the valuekzero,

_\jito’eo,, lf o

xl gyy

28,
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,;k;from sectlon 3 we know that X,Z, - Xz, and y, 2, - y z

cannot also be zero.‘ In. thls case we can use the two p01nts

‘ 7 whose equaticns are (27) and (28)

22,  ?1ane Parallel“tofawzinezb

Theorem: The plane

(29) (kx&kx,ky s ky,, kg +kz)

is parallel t0 the line determined by the planes CK,, y,, g ); E |

;1'and (xl, y;, z, )

If H is the angle beﬁween the line and plane ffom

' equation (21) we’ obtain

simé)m‘)\X“T“//ay"’ﬂ/Z

Tet (27) and’ (28) be the equatlons of the llne. Then, from 'kﬁf
‘ S ~ . |

(25) we have _'"

P o x z - x z

ﬂzL fi”?y;/ T ~7 =% I
AT E = x Zﬁ/ﬁy z,~ y zl B:z - x zZ, - y'zi-.x_z,) o

1T i e B
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= XL Lo y,“ ;y\.

y‘ ZL""—‘ ‘3.’;_2’

L i A e +

) [ ECEe o ST T
¥ T .- ‘
\X, %, - X_ z, y,’g‘_- .2, :

The subsﬁltution of (30) in the expression for sin 0 glves

 ;us‘/ b | ; )
" where
poe Be B

AL am X z

(kx + kaL') , \

. g Z; - a “
Q= (k ¥, * k;y
‘R*g< b - - ty;.‘y. ‘/<k,zi+ kLz),‘,;
; X,2,- X2,  ¥2,-V%/ o

‘.S::[kx-;kx)a»(ky ky)«x-(szkz),

T j/(*zt-f Z' : J:(z'—- ZL }:’(X"‘ XL = - y";.,yt ),_ .
. R X' z'\.-‘- XLZ, : kyl ZL" ’y‘g.zl *f XIZL— Xlzl : yl Z‘L_,._yle

'Thé numeratorvreauces to zero and hence.
| ‘ i sin g = 6, '
andithe‘plane is/parallel to«the'1ine,
“ Conversely;‘if‘ﬁhe plan@ (x3, y}, z ) is parallel
“;ffto the llne of intersection of (x,, Yys % ) and (xl, Y., ),
 I1ts coordmn&tes must be of the form (29). We have

7\;{ + k/o:_‘y,+~ /1/‘2'. = 0
‘ ’

J =T+ y ez

'{sin @ =




',31;7'

kefaﬁdftherefore,

_ThiSeequation~reduces to
ranT g = ¥ 3|
,e‘:(zl)e S fv(ZF- z, )| %, F. 2z, =0.

x3 y3 h ZB|V

i(éinf zj cannot always be zero,‘sinee we dovnot have =
17%‘to restrlct ‘the 11ne in this maner. Therefore we must have
'i the relatlon_ | ‘ ‘

| , ;\i,f y,.'g
'(32)" 1 o   " ”  Xi;7Yi~'¢zv S

x; ¥ 2

',,satisfiea'ﬁndér all conditions. If (32) holdss then‘xg, v
",23 must be a linear combination of the eorresponding ele-

ments of the other two rcws, and. hence must be of the form

In Oartesian coordinates a point (29) is co-planar

ffkwith the pOlnuS (%,, F.» z, ) (xl, yL, & ) anﬁ the origin.

':e23., Penell of Planes‘~
| Suppose the plane (29) passes ﬁhrough the llne of




32,

intersection of the planes (x,, ¥,, 2,) and (x,, ¥, 2_).
‘Then 1t passes through all points on the line and its eobrdi-
nates must satisfy the equation of any point on the line.
Let a point on the line be defined by the equation

| rx + 8y + tz -1 = C.
We must have

rX, + sy,+ktz,~ 1l =20,

(33) | rx, + sy, + tz -1 = 6;
(k,x, + &, x ) +‘s(k,yf§ ky )+ t(kz+Xkz)~-1= 6,
that is ’ o T |
(34) k,(rx€+ sy, + tz,) + k (rx + sy + tz.) -1 = b@
Eguatlions (53) and (%4) hold simultaneously only if
(35) Ck,+k_=1. o |
This relation ié the necéésary and sufficieﬁt condition that
a plane, whose coBrdinates are,given by (29), will pass
through the 1line of inbtersection of the planes (x,, v, , z,)
and (x,, L,zJ.'

In (29), if we let

h +k
h
k = 9
N

we have the system of planes'whose cobrdinates are givem by

!

h +k

kx + hx
x = ' %




' Xy, + h
(36) y= 7N
h + k
kz  + hz,
G S eee————
no+k
which is a pencil of planes, since relation (35) still
holdse ‘
In Cartesian coordinates all points (36) are colli~-
‘near, and divide the segment joining (x,, Y, s z,.) and

X,, Y., 2, ) in the ratio h : k.
P Ys Sp

24 o Three-—i?lane Bguation of & Point:-

Tet (%,, 7, 2) (x,, v, 2.), and (x,5 7, z_)
be the cobrdinates of three planes such that no plane‘is‘
parallel 1;0 the line of intersection of the other two.
’ The conditions that these three planes pass through
the 1:;01.1&1:4;r
rx + sy + tz -1 =0,
are
rz:.; + 8y, + tz, -

'“"L

= 0,

1
rx,+ sy, + tz,~ 1 = 0,
rx,+ 8y, + tz,- 1

t

The condition that r, s, t exist so as to satisfy
these four simultaneous equations is that
X ¥ z 1

(37) X' yl Zl = Oe

SR

>
i

N

[




; This is the requlred equatlon, since it is of the
‘ flrst degree in x, ¥y, z, and is obviously satlsfled by the
; coordlnates of the three planes. .

If

;w-gkf 5. yL Z,_:f: 0’,

1 =, ¥, e

| the point is flnlte.'nIf:Q3= 0, (37) gives an equation of the

;nform
1 rx + sy + tz = 0

*whlch has already been deflned as a point at inflnityo If

| a),:;o, the elements of any’qneﬁrow~of @ must be & linear

combination of the corresponding elements of the other twy

rows, and hence the plane must be parallel to the line of

'1ntersection.of the other two.

_25{~ Translatlon of Axes'~
| Suppose the orlgln is translated to the point
S TX + 8y + tz - l = 0

Without any rotatiOn of axes.,~Let~any plane be‘represented

,k by the polar coérdinates (}0 «, ﬁ) Y ) and (19,0( ﬂ 3/ "y

2 with respect to the originsl and new systems respectivelyo

ﬁfn Then

& e o
A
vo= 7,




From (20) we have

The refore
’p
(38) | <
/5’
Xl
and hence |
f
x
!

=

il

~(rx+sy+tz~l)
X +y + 2

o (mx v sy s bz~ 1)P

The inverse transformations are

X

(46) ¥

26, The Degree of an Equation is Unchanged by Transforma-

<,
3,
Y.
rx + 8y + tz - 1 ’
4
rx + sy + tz - 1
[ Z—
rx + 8y + tz ~ 1'
B 4
)
rx!+ sy'+ tz'+ 1
y}
rx'+ sy'+ tg' + 1 !
5!

X!+ sy + bz'+ 1

(1)

tiong:-

(1) Tanner and Allen "Analytic Geomebry™, p. 127.
Wentworth "Analytic Geomeiry®, p. 10§o

35




Let the degree of the equation be n. A general term

vould be

(41) AxPylz",
where p, ¢, m are not negative and
P+q+m $ n.
If we rotate axes by equations (7), in.place of (41) we
obtain ' | ?;
BAT Ay s Aw P px s o gty &) Ax's hy e sz
Since each term in each bracket is of the first degree, we
cannot obtain terms of degree highervthaﬁvn.
If we translate axes according to equations (46),
(41) becomes | . ~ i
| | Ax'P oyt gm ’

(rx'+ gy’ + ﬁz')Pl+ g+ m w

If every term in the‘néwﬂequaﬁion be multiplied by

'(rx'+ sy'+ tz'+ l)n,

the term (41) finslly becomes

(42) A x? yid z‘m(rx'+rsy'+ tzt+ 1) 7 (p +a~ m)
Any term in (42) cannot be of degree higher than‘ne ”Hence
~ the degree of an equation is not raised by translation or
rotation of axes.
Suppose the degree were lowered by a transformation

of coBrainates. Then, by applying the inverse transformation,



we should be raising the degree of the eguation. This has

been proved impogsible.

Therefore the degree is unchanged

by retation and translation.
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CHAPTER TT

The General Second Degree Equation

The most general second degree equation inx, y, =
is |
(1) ax + by + ¢z + 2fyz + 2gzx + 2hxz + 2ux + 2Vy
) - v+ 2wz + .= 0,
where gt leésﬁ one of a, b, e, £, g, h is different from

zero¢ We shall show that (l) always represents a conicoid

in the planar system of coBrdinates.

1. Bquation of the Tangent Poinbi~

The line of intersection of the planes (x,, v, , 3,)
cand (x,, 7,, 2,) is given (Section 20, Chap. I) by the equa-
tionsg |

(2) X-% _¥~Jy _%Z-z,

= e

X,"' X Sr = Ja ‘ZI- Z‘_

The cobrdinates of any plane through (2) are

x = x,+ plx~-x),
(3) vy o= v+ oy, - T

z = z,%'p(% - 2Z,)e
If s plane (3) touches the surface (L), its cobrdinates must
satisfy equation (1). Substituting (3) in (1) we obtain a
quadratic equation in p, which shows that, in general,

: through any line two planes can be drawn to touch the surface

().




Suppose bhab one of tbese is tne plane (x,, Vs %, )

n:It follows that one root of the quadratlo 1n p must be zZero,

’7‘and,hence_the~constant term must be zero. We therefore
'~f(4) ‘ax?v} by;”+ c2,'#i2fy,z‘+ 287, X, + 2hx,y, + 2ux + 2vy,
| . o +2qu+&;~0¢ )
Suppose (3) determlnes one plane only. In this casé}
k“the plane is the tangent plane (x ’ y., z,), and both roots S fﬁ
5 of tne quadratie are zero., Both the constant term and ﬁhe !

”coefflclent of P must be Zero, so that

L  ax (x,= x o)+ vy, (y, - y.) + cz, (z -7z ) + f{jﬂ Z,~ 2 )
. :.(5) otz (y;~ bA )} + glrz (x,- x ) +x, (2, =3 2;
; '+h{X(y-y)+y(x-X)]+u(X~X) |

o
k" 3 o

'.+V(y.-sf1)+W(z~z>
It follows from (2) that '

R SRNCEEON (z4z>ac:cex> RERED

:’(Z“Z)s—

and from (5) we get

XX, + byy, + czz, + f(y z o+ Z, y) + g(z x + X, z)
6y +n(F ¢ 3,E) +ux vy +uz = ax,®+ by,*e oz,
| + Efy,‘z + 2gz x>+ 2hx, y, +u}c * VY, WE e

;As a eonsequence of (4) the right number of (6) is equal to '

-(ux+vy‘+wz+ﬁ.)

ilThefefofe,(6) reduces tof~
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(7) axx,+ byy, + czz,+ £(y,z + z,7) + g(z,x + %, z)
| s oy s y,x) ru(z+x) + vy +vy,) iz +z)
+ d = 0. . : i - . '
Formula (7) is the equation of the point of tangency of the

plane (%,, y,, 3,) to the surface (1)

(1)

2. Condibtion that a Point ILies on the Surface:-

Let the equatlon of the polnt on the surface be
(8) re + 8y + tz - 1 = 0,
Comparing equations (7) and (8) we have

ax,+ hy, + gz ,+ u hx,+ by, + fz,+ v

=

b : -

= gx + Ly, + ¢z, + W /—ch% vy, + WE, * d),,
b . -

Put each frazction equal to '-)\ - Then

ax,+ hy, + gz,+ a + )\r = 0,

+ t

hxz, + by, + fz,+ v +')\s =0,

gx, + £y, + ez, w s N\t =0,

S

‘mc?kvgr'%VJZ,%d;A = 0,
We also have”
| rx, + sy, + btz ~ 1 = 0,
Eliminating %, , ¥, , Z,, A\ from the above equations, we

obtain the reguired condition, namely

(1) C. Smith "Solid Geometry", p. 4l.
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& h g u r
h b £ v s
g& I ¢ w %] =0,
u v ow 4 -1
r s t-1 0

- Which is the same as
(9) Ar™s Bs™+ O™+ 2Fst + 26tr + 2Hrs + 2Ur + 2Vs + 2Wt + D=0,
where A, B, C, etc., are the co-factors of a, b, ¢, etc.,

respectively, in the determinant

a h g u
h b £ v
EES g I ¢ w
uovow d

The relation (9) is a condition that the point (8) lies on
 the surface (l)o(l) ,
| Incidentally, (9) represenﬁs:a conicoid in the
Cartesian system. Hence, for é point to 1lie on the surface
(1), it must lie on a conicoidy that is, (l) represents a
~conicoid in the planar system of co%rdinatesa
A proof that (1) representé‘a conicoid will be glven
‘in section 3, where no reference is made, as above, to

. . i o
Cartesian coordinates.

(1) For a similar discussion see Snyder and Sissm, pp. 130,
: 121, :




I
o
*

3. Locus of Middle Points of a System of Parallel Chords:-~

Let the equation of the surface be (1), and let (8)
be the equation of any point on this conicoid; », s, t must
satisfy (9). Let
(10) Az 4 my +nz -1 =0
be the equation of & point on a line whose direetién cogines
are /1,/A,, +/» The point (8) will lie on this line and
be distant p from (10) if

r-AL=1p A,
s—mmp/u,',,‘

B

that is, if

I"““"/e"‘P/\a

8 =m+ P s
‘ t=nm + pa o

i

If we substitute (11) in (9) we obtain & quadratic i
equation in p, which shows that any given line cuts the ¥
gurface in two points. It follows that all straight lines
in & plene cut the surface in two pointg, and therefore all
plane sections of the surface are conic sections. This is
the definition of & conicoid.

We have
(12) - |
pv(.&}[mah B/»“’»f cv + ZF/uV + 26/ A+ 2H2\/~) + Zp(Afﬂ ,

&B@wiCnV%F@u%EmV+GIV+G&A+H{A4HmA%UA
+ Y}u+’W4/) + (A87+ Bn’+ Cn*+ 2Fmn + 26nd + 2Edm + 2U.2

3+ 2Vm + 2Wn + D) = O,
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 where a, B, C, EER have the same values as in section 2,

nQ;IL (10) is the. equation of the mlddle point of uhe llne

J'f”ﬁthe values of jol obtalned from (12) mus’® be equal numerically

l"bu’c oppos1te in sign. The condition for this is that the
. ,coefflelent of P equals zefo°~ Hence |
"(15) Z(A)\‘ * Hp o+ Go) +m(EA + Bu +F4/)
J#IKGA.*E/.fC/)fFUA +@ﬂ.+Ww/=Oo
Therefore the plane whose polar coérélnates are

given by

/ﬂ = o ,
o Q>+ R~ =+ 8~
cos ol = ___ & Ly
ao o - T :
eps i B
/E;+R°+SL
‘where e AT )

= TN = Y)u.+"W4/;
A/\; H/"‘- ‘;"; G/'/a
= H)(;B/"‘"’Ef/}

il

§ = GAIF i 0,

~ passes through the point (lo)gl)'yBuﬁ (14) represents a

© (1) C.f. equation (14), Chapter I.
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“”*fffixedfplane Whmmk)\*~/k g areefixedo_ Therefore the mid-

fp01nts of all parallel chords who se dlreculon 0051nes are
‘f~,\ ,/a. 4/ lie in the plane (14)
A plane which passes through the mi&-p01nts of o
system of parallel chords of.a con1001d is known as &

diametral plane. If a dlametral plane 1is perpendleular to

*7e~,the chords it bisects, it is called a prlnelpal plane.

4. The Prlncipal Plane--\e

If the plane (14) is perpendicular to the ehords
~whosee@1rectlon e051nes are )\,//L, m/, the dlrectlon :
cogines of,its~polarenorma1\mustﬂbeeeﬂx,/pg, /o Therefore

AN s H/a;} G// CHA ¢ B o+ B A+ E}a. + G/

Putff,'fdr the eemmon.vaiuekofeeach of‘these frecﬁions;
et | | e

(4 ~f))\ + H/u_+(}4/ =0,
@6 EA (B -y -

vt

GA FFacs (O f)4/= o.; .
’Ellmlnating ,A %/L . b/we get |

A-F H e |
H o B“f F "8' 0,
o o) F C~§

Wthﬂ, when expanded becomes the cubie

(17) | f 9§ }f - D -
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" ;whéfe S ,

9 s o0, 9 = AB + BC + CAfs - 1§,
and J@ 4BC + 2 FGH ~ A7 - B¢~ 05" |

i When f is de»ermlned any. two of uhe three relatlons (16)

m.ll give the eorrespondlng values of A 3 pu ,1/, Slnce

' fone root of a cubic equa'blon 1s always real, it follows

thaﬁ there is always at least one nr1n01pal planee

5o Tne Roots of (17)._( )

| Let f be any root of (17) and let Ao . /u.o ,  V,
(not all zero) be values of /\ 2 fa s 4/ that satlsfy (16)
when f = f} . - If f’ is a:‘complex number, Af’,’/"‘v . JJ, mey
Dbe complex. Tet et - | |
i | i 7(,9 =fﬂ,+iﬂ‘w
e = p kL,

Vo =l o+ 1,

o

where 1 =<7 aml 2,y Ay gy g % a4 aTE Té2l.
| ) Substiﬁuk‘be f ,and.“bhese values of /1,5 ,/ao’ ,)/o‘ for
, f ' 4,\1 ,/; s/ In (16), multlply the resulting equations
by A, = 1AL ,/u , Vv, = A . respectlvely, and
add. The result is U | o
AT AT e elT s = (AT DA

+ (™ -a»/b. )B ¥ (4/ + 4, )C +'2‘.(/.1/ »+/14,,4/,_)F‘

r2( YA, +V))G+KA/“+A/)m |

The coefflclen’c of {; is real and dif ferent from zero, and

(1) snyder and Sisam, D. 79




 "thekright member of the equation is also real. Hence ¥,

~ is real. Since ‘f is any root of (17), all thé roots of

\'33_(17) are. real.

- The - conditlons that all the £00ts of (17) are zero
| aré | .

 ABG + 2FGH - AF - BG" - CH™

"o
.‘ o"
-]

(18) 4B +'BC + CA-F -G -g"

"
Q.
A4 L

’ : : | A+ B +C = 0o e
|  fstmaref(lsf?‘3),'~i.e; 'tﬁé-~ thiragqizatio‘n of (18), and sub-
tract’ tnice (18, 2).from it. The result is

| "Av + B + C * ZF + EGV"—{ZHL Oo

: Since A B C etc., are assumed to be real ~1t;fdllows

Cthat L i
(@9 AL=B=C=F=-0=H-=0.
o 1e (19) is true, (9)'féduées to

: 2Ur+2Vs+2Wt+tD=o.,“

Bﬁt thls iskthe condltlon,that the plane whose polar cobr-

dlnates are N
‘ , , D iy

Ut e T W

: \B

o)
Q
o
X
0
L3

o) cospe e,
S | R /I/E'*V.y*w}
: W
cos )y = :
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'passes through the point whose equation ié

L + 8y + tz -1 = Q,
Therefore the fixed plane (20) will pass through all +he
polnts on the conicoid, and hence the conicoid reduces to
a plane. This degenerate case is obtained by letting all
the roots of the cubic be zero. Henceforth we Shall gssume

that at least one root of the cubic is different from ZEeT0 e

6o Elimination of the yz, zx, z terms:-

Since at least one of the principal planes ls not
at infinitj, Wé can translate and rotate the system of
reference so that’the new XY plane 1s a principal plane of
the surface.

~ Let the equation of the conicoid referred to the
new axes be (1), Since the surface is symmetrical with
respect to the XY plane, the two parts into which the XY
plane divides the surface must be exactly alike. If theré

igs = tangent planme (x, , ¥, , 2,) at & point on one side

)
of the XY plane, there mus?t be a corresponding btangent
plane (x','y;, -z') at a point on the other side. Sub-
stituting each set of coBrdinates in (1), we obtain

A - x>
ax,~+ by, + ez,

¥ ny;zl + 2geg x, + 2hx y, + 2ux,
+ 2\)’;,7; +“'2WZ' +d =0 : V
and
ax; + by,  + ez - 2fy z, - 2gz x + 2hx y + 2ux =

+ 2vy, = 2wz, + d = 0.




Sinee these relations are true for all téngent planes, it
follows that 4
=g =w = 0.
These results may bé derived in a second way as
- follows. Consider the three points
rx + 8,y + 5,z ~1 =0,

(21) k‘ rx+8y+tz~-1=0,

(i

rx + 8y +tz=1

3 0,

on' the surface and on one side of the XY plsne. ILet these

‘pointg be considered as distinet. Tater we shall require
that they approach coincidence. On the other side of the
XY plane we mus?t have the eorresponding points
rx+8y=-%z-1=0,
(22) rx+sy-t,2-1=0,
gx+%y-WQZQ1mOo
The colrdinates (x,, T, zl) of the plane through

the three points (21) are given (Section 13, Chap. I) by

I s, 1
1L s, %,
x, = 1 osy B0 = g;',
r, s, %,
r,s_t,
r, s, %t
r, 1 %
r, 1 1.
— r, L %] _ é;’
1 A, Q,
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and the coBrdinates of the plane (x,, y,, 2,) through the

three poinﬁs (22) are given hy" 

Therefore

‘5 (23)

X
‘y,_ ;

Z, =

z; J
. O
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In the case where A,= 0, results similar to (23)
can be obtalned by using polar colrdinates.,

Let the points (21) approach coincidence; then the
points (22) will do likewise. A%t all steps in this process
relation (23) holds for the coBrdinates of the planes
through the respective sets of.pointso In the limit, i1e2e
where tangency occurs, the relation must still be true.
Therefore, for every tangent plane (x', 3, s z,) at a point
on one side of the ZY plane there must be a corregponding
tangent plane (x,, y, , -z,) at a point on the other side.

kIf f=gs=w= b, equation (1) becomes
(24) ax™+ by + ezt 2hxy + 2ux + 2vy + 4 = Ce

T« Reductlion when d#0:~

If we translate the origin to the point whoss equa=-

tion is
“gac“-g;y“hm
(24) becomes

| (a - u‘}x” +<b - vf)yy s ez+ 2(n - g%/xy + d = 0e
a _ a ) , )

The term in xy can be eliminated by rotating the X, Y axes
through an angle O determined by

2(h = vy
tan 20 = - d R

(o-g)-b- 1)




according to the rotation fomulae

x = x'cosé - y'sine ,
¥y =x'sinp + y'cos 6 ,
z =z,

Dropping primes, we get an equation of +the f.orm
a,x¥+ b, y"+ ¢, 2"+ & = 0.
Since d#0, we can divide by -4 and the resulting equation
~has the form
(25) 8, + b,y + ¢,z = 1.
Hence for @ #0, under all conditions we can re-ﬁduce

equation (1) to the form (25).

8. Reduction when d = Q:=

The equatioxiqto be considered is
ax + byv'-s» ez + 2hxy + 2ux +fv2vy = 0O,
(1) If uw = v = 0, by rotating the"X.,. Y axes through
an angle O given by |

tan 260 = 2h .
a =-h

we eliminate the jcy term. The resulting equation has the
form
(26) , a,X + b,y + ¢,z = 0o

(i1) If v is not zero we eliminate the y term by
rotating the X, Y axes according to the transformations

ux’'- vy’

K =
yu s v
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vz« uy
yurs v

.
Z =2z ,

y‘:

and we obtain an equation of the form
a,x™ b,y +ec z 2h xy + 2u,x = 0,
If u,= 0 we have case (i). If u,+ 0, by trans-

lating the origin to the point whose egquation is

- a .~ h -1 =290
L. x -y ?
2u, u,
we obbain
(27) b,y + ¢ 2"+ 2u,x = O,

Therefors equation (1) can be reduced to one of the

forms (25), (25), or (27).

9. GCenter of Conicoid:~

Consider equation (25), namely
CaxT+ by* s ez” = 1,

The center lies on the’plané midway between parallel
tangents to the surface. If (x, y, 2) is tangent to the
surface, (=x, =y, =z) is also tangent. Therefore the
origin is the center of this {type of conicoid.

Consider equation (2@),Vnamely

ax + by + ¢z = be
As before, the origin is the center.
Suppose the counicoid reduces to

by + ez’ + 2ux = 0.




Let the parallel planes (x,, ¥, z') and (kx,, ky kzj)
touch this surface; that is
Ve 2ux, = 0,

by,” + ez,

vkK'y, s ek z ¥+ 2ukx, = 0,

!
If w = 0 this conicoid is a degenerate of (26). Ifus# 0
then k = 1, or else the parallel tangent planes are gll at

infinity. Therefore the surface has no finite center.

10, Polar Plane:~-

We shall show that the points of contact of all
tangent plaﬁes through a given point to a conicoid lie on a
plane. This plane is called the polar plane of the point
With respect to the conicold. Conversely, the point'is
called the polar point of the plane with respect to the coni-
coid. |

(i) Let the equation of the conicoid be

ax"+ by™+ ez = 1. ‘
The equation of the tangent point of the plane (x,, y,, z, ) i
is given (Section 1, Chap. 2) by '
(28) | axx, + byy, f;czz, - 1 = 0,
Suppose the plane (xl; I, z,) passes through the point
(29) V r$ + 8y + tz = 1 = 0;
then

rx,+ 8y, * tz - 1 = 0.

The point (28) lies on the plane (:.r'_ » S _’g_) sinece its
a b ¢/,



1
coordinates satisfy the equation. Hence the points of tan-

gency all lie on the plane-

(50> <£9s’;ﬁ.)9
, a Db ¢

which must therefore be the polar plane of the point (29)
with respect to the conicoid,

(i1) Tet the equation of the conicoid be

ax + byv+ cz 00

The equatlon of the tangeqt point is
(z1) axx, + byy, + czz, = ba
The point (51)'lies on the plane (o, o, o), and therefore
all tangent points are at infinity. Thisvtype of conicoid
will be discussed later. |

(iii) Let the equauion of the conicoid be ' |

by + ¢z + Zux = Q.

The equation of the tangent point is

(32) byy, + czz, + u(x + x,) = 0.

If the plane (x, , Y s z,) also passes through the point
whose equation is (29), the point (32) lies on the plane

(33) ' <l,2§_,1_1_‘§_

cT
since its colrdinates satisfy (32). Therefore (33) is the

polar plane of the point (29) with respect to this conicoid.

1le Rectilinear Generators:=—

Let the equation of the surface be

(34) ax s by ~e'z =1,



~wWhich may be writiten in the form

(ax + ez)(ax - ez) =(1 + by)(L - by),

or
(35) B ax_+ oz 1 - by
: T+ by ~&x =cz = » sav.
Then
ax + ¢z =‘ﬂ(l'+ by),
(36) (ax - cz)?lm 1= by .

For every wvalue of 71', these equations define a line.
Every point lying on the surface (34) must satisfy the

relation (Section 2, Chap. 2).

(37) SO L
8> b’l— cv

If the point whose equation.is o ' ~¥
| | T + 8y + bz ~-1=0, gF
lies on the line (56),“itvfoilows (Section 12, Chap. 1)
that - | ’

_ . 8 &

| ?| = m,x» + m arl) é

(38) , s" = = "b + m b , ‘ :
' - ¢ . ,
t, = m,.-’.l m ern)

m + m = 0,
Relation (37) holds when we replace'r, s, t by Tos S s t,
respectively. Thereforebany point on the line (36) also
lies on the surface (34), and (36) is a system of recti-

linear generators of (34).

Equation (34) may be wri tien



(39) ax r ¢z _ 1 by _ ¢

1l - by 8x - ¢z s S&¥.

Then
N ax + cz = § (1 - by),
(40) - (ax - cez)§ =1 + by,
which 1s a second system of rectilinear generators of (34)
We can find in & similaf mamner the equations of

the generating lines of the surface
(41) ‘ | by - ¢’z = 2ux.
o The equations of the generators of one system are

by - ez = 20°x, |

by + cz ¥?§é H
and of the other system

’ by + ez = 27 x,
_u

by = ez = 2,

T

12, Ianvariants:-—

Let the eqguation of the surface be ‘ i
ax’+ by + czv_u 1o
If the axes are rotated to new positions according to equa-
tions (8) of Chapter I, the resulting equation is of the

form

a‘xv+ by + ez + 2f yz + 2g, zx + 2h,xy = 1,

where

v

a, = a Av s b/A,V*-c s
b, =a )+ b ey,
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e =a ) v Y s e,
£ s el bk ko ks,
g =ahA v bhp boys,
By =aA At D+ e,
Maklng use of the relatlon S
| R
R S
: S ; ;’44 ‘-k/v ‘é |
we obtain o

a“ﬁ\ 8, , ~" e O, 0
D={h b £| =abe= [0b 0
g £ e | o oo e

Therefore D is unchangeé by rotation.
| In the same way it can be shown that
I“'—ft—_’;a+b+e,‘

'555 be + ca + ab = £ - g - n

"are unchanged by rotation.

It can reaﬁlly be shown that these exnressions are

fnot 1nvar1ant under translaulon.

The condltion that a‘p01nt‘

rx + sy + tz = 1 = 0

,~1les on the. c"elru%:caal conicoid is (Section,l Chap. 2)
(42) Ar” + BS” 4+ Ot 4 eeveernienn. = o, ”
where A, B, G, ,...... are the co—factors 0f a, By €, eevse

',,1n uhe determlnant
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| a h g w
nob £ ov|
 g'ff c w
W w a

/ : Let the axes be rotaﬁed to new p031tions accordlnb
 fkto the formulae (8) of Ghapter T, namely
,)\,x.+/\,,y+/\,5g

v ;/@[ x5 o y‘;)p,‘ g
z =9 x +a y’+ WA SN

5

,,The p01nt whose equatlon referred to the old SJstem 1s\

rx + Sy + btz - 1 =0,

~ becomes

(rﬂ,+ @A,+ tm/)x +(rthw-§ﬁyﬁ»tﬂ’)y-k(rﬂ + gﬂg
L S ww,)z-1=o ‘
in the new SJSbeF'“that is
| ,r’-—= TN+ Su, + 't«// ;
; 3’= r}1,% s/u,+”t 01
| t'= 1Ay 3 S ey + b 4
The inverse relations are readlly found to be
o | ro= rﬁ%;+ 8 A A s
(43) . s =T sl thas,
= b =Ty A VA
,kThe‘degree of eqﬁation“(42) Will'be uﬁaltered, aé
proved in Ghapter’I,fSeétion Eé,fby the substitutiOns‘(43)o

If, by a change of'rectangular axes through the same origin,




ArT + BT+ Ot 4 2Fst 4 20tr + 2Hrs

G ;beeomes changed 1nt0

A'rF * E s” + ¢! t *+ EF st + 26 tr & Zh rs;

'f,then, since r Yy s + t is unaltered by this change of axes,

 TATYs Bs™  CtY+ EFst + ZGﬁL + Zﬂrs ~:f(r + 8" t“)

‘Wlll he transformed 1nto

(45) S e o ‘
A'rT s B'sT 20 s 2F'st + ZG'tv + 2H'rsg ~‘f(r * 8T )

o

o The evnressions (44) and (45) will therefors be the

'product of linear factors for the same values of ‘f

The eondltlon that (44) ig the product of linear

 factors is ‘,;

s-f 5 eleo
H B-f T
¢ F -t

thls

:,f~§(A+B+c)+f(BC+GA+AB~F~G ")
'~(ABC+2FGH~AF—BG CE") = 0.

The conditlon that (45) is the product of 1inear factors is
sxmllarly | o B
f—f(A+B+c)+;(BC+CA A7 - F’-‘G';H'l)
O -('BO s R E-NTFSRE-CH) =
‘ Since the roots of the abovekcﬁbic equatiohs in ;F are thek

same, the coefficients must be equal.
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Hence

9==A+B+C,

7

L]

BC + CA + AB = F = G = =

?

A H G
L=|1 8B F
¢ F ocl,

gre unaltered by rotation.
Translation of axes to the point whose equation is
XX+ Ay + ¥z=-1=0

can be accomplished (Section 25, Chap. I) by means of the

formulae
X = v - 4 ‘
fxx%veyw gz '+ 1 x
; , |
¥ o= . Y - v ?
O(XI+ /Jy'l+ JZI'} 1 ) i
3
— e — 7/ - j
z° ' ;
Z = ) : - o J
Lx's Ay's yz'+ 1 ;

The point, whose equation referred to the old axes is
| ’ ¥ + 8y + tz - 1 = O,
has the equation
rr’ + sy’+ tz'- (X x'+ /3y'+ Yz +1) =0
‘referred to the new axes; that 1s - '
r' =r -« ’
s' =85~ @8 ,

= - )

“ws

therefore



3 A : T I‘"-’=‘I’/+ « ,'
s | t =43y .

The substltutlon,of (46) in (42) does not change
, any of the coefllclents of the second degree terms@ Therefore
JQ é} oéz are unaltered by translatlon of axes. Thus
;)2 49 gé) are unaltered by translatlon.or ro»atlon9 and

are therefore 1nvar1ants. | '

S The proaf that ,43 is 1nvar1an$ is similar to that |
| given for QZQ. The condltlon that & point lies on g eonicoid‘
(47) ' iy |
AI' + Bs' '+ Ct + ZFS‘['. + ZG‘EI' + EHJ;‘S + 2Ur + 2Vs + ZWt + D-O.
Let thls equatlon be transformed by a rotatlon into

A/r + B’§’+ C £ + 2F' st + EG’tr + 2H! rs + ZU r+ 2V's

i '+aW't+13==o.'

‘fThls rotatlon transforms the expression

o Bs“s O+ 2Fst + 2Gtr + ‘2Hrs + 2Ur + 2Vs + Wt + D

48 T ix(rme 7 1) .

lnf;o | | | ; o o

| ,‘A'riw B g™+ C'tp+~2F'st’+,2G'tr + 2H'rs + 2U'r + 2Ws

(49) : SR s QW’t'+‘D4—“k(f”+ s*+~£L+ri)' |

| The ﬁiscrlmlnants of. (48) and (49) are, respectlvely

‘ - xE ¢ U |
E B-kXT¥ T |and
¢ F C-k W |
T Vv W D-X
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d-x 5 ¢ g
‘H'{B-—ky" : v
¢ F d-x W’
v oW p-x

| The expr6531ons (48) and (49) are factorable into

' llnear expr8331ons fOr the same values of k. The condltlon

that eaeh is factorable is that its diserimlnant equals ZETO0o

‘Hence, since the coeff1c1ent of ¥* in eaeh case 1is unlty,

the constanﬁ terms of these discrimlnants must be equal; that
is (} = Ll’ Hence, ~43 is invariant under rotation.

'In orﬁer to prove that A is 1nvarlant ‘ander trans~

o latlon let the axes be translated to the p01nt'whose equa=

tion is

< x * /3 y+ ¥ z-1=0.

| The condition that ﬁhe”point'iies on the conicoid becomes

Ar+Bs+et+2Fst+2Gtx-+aﬁrs-&2(Ao<‘+H/s +G)’+U)r

'(50) e EEx +B/5+Fa%+v)s +2(Go<-bFﬂ+C‘3’ +W)ﬁ

¥ D = 0

“Where D' is the 1eft member of (47) when r, 8, t are replaced

by o« ,,/3 , ¥ o fThe discrlmlnant of (50) is
A E G  AXHHBGy 4T
E B . F | H&IB giFr AU
G e F ¢ GasFsiCrw|
A HA Gy +U, HEx+BA+Fr+T, Gu+FA+CysW, ~ B’




[
4
.

Multiply the first column by ' , the second by 4 , the

third by ¥ , and subtract their sum fro& the last column,
In the resulting determinant, multiply the first row by
the second by A3 , the third-by T énd subtract their

sum from the last row. The resulting determinant is A .

1

mence A’ = A | so that A\ is invariant under both

translation and rotation.




CHAPTER IIT

Clasgification of Surfaces

l. Review of Previous Work:-

In Chapter II we have seen that the condition that

a point whose equation is

(1) rX 4+ 8y + tz -1 =0

lies on the surface whose equation is given Db
, ¥

(2) ax¥+ by + of + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz +d=0,

is

(3) Ar"s Bs”+ Ct"+ 2Fst + 2Gtr + 2Hrs + 2Ur + 2Vs + 2Wt +D=0,

where A, B, C, «... , are the co~-factors of a, b, G, eevs ,

in the determinant

a2 h
h b
Szg}f
o v

For brevity we shall refer to (3)
équation. We have also seen that

;‘; (4B + BC + CA -F -G"= HY),

A H G|
D@,_ H B F and
= AE
G F C), .

g u
£ v
o ow
w 4
as the "point-condition® i
~9’E (A + B + C), )
A H G U
H B ¥ ¥V
G ® C W
T v W D,

are invariant under translation and rotation,.



2. The Sphere:-

The sphere is defined to be the locus of a point
which moves so as to remain at a constant distance from a
'fiﬁed points, This distence is known as the radius and the
fixed point 1s the center of the sphere. ILet the equation
of the center be ,
~ Lx + 3 ¥ Yy z -1 = C,

and let the radius be R; then we have

J(x =)+ (s =)+ (t -¥) =R,
or | . ' |
(r =a)7s (s =)+ (+ -¥) =R
Therefore the general point-condition equation of s sphere is
CAP™H As¥+ AtTF 2Ur + 2Vs + 2Wh + D = b,

where A is different from zero. Conversely, any point

rx + 8y + tz = 1, where », s, % safisnythe condition equa~
tion, lies on a sphere.
The point-condition equatidn of é sphere whose
’éenter Is the origin, is seen ﬁo be
¥ g™+ tT= R
The spheré may also be defined as the envelope of
planes which move so as always to remain at a constant dis-

tance from a fixed point. Thus

4/};:"+ ¥+ oz _ 1

-
H

X %/:Iy'-x—b’z-*l R
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 that is
(4) 'Rt(xv—z»yﬁ'-f z) = (dxa-ﬂy'syz-l)ﬁ',

The equation of a sphere, center at the origin, is seen o

be

R(x™ y+ 27 =1,
or i B
(5) axl¥’ay”% az™+ 4 = Cg

(If a and 4 have the same sign the sphere is imaginary.)
| The point-condition equation of the sphere (5) is
Ar™s B+ Ct"+ 2Fst + 2Gtr + 2Hrs + 2Ur + 2Vs
| .+ 20Ut + D = 0;
where A = a'd, B = a*a, C ='a'd, B = a3,‘and _
. F=G=H=U=V=%=o0.
Therefore | |

Y
= 379, d?

= 38.%6. ‘-’. ’ '

€, 3
=a 47,

> &5\\5 o

W

a7c1 3@

3o The Ellipsoid:—

Gonsider the s@rface whose equation is
(6) 2 x % by ™y ezt = L.
The point-condition eguation of this surface is found to be
1 Be'r + ¢*2 s+ &bt =a"b e,

For a, b, ¢ are all different from zerc, and a, b, ¢ in



descending order of magnitude, we have

T T S
r - R :# 1
. 9
av _ a¥ _ g
. and
Lt 3 2
r s 4
S M MR
e
e c™ ec”

Hence a point on the gurface can not be at & distance from
the origin greater tham a nor less than'e. The surface 1s
thefefore limited in every direction;kand, sih@e all plane
sectlions of. a conicold a‘re’conics9 it follows that all plane
sections of (E) are ellipses. This 1s the usual definition
of an ellipsoido | |

The surface_isvclearly symmetrical with respect to
the three cobrdinate planesy the three cogrdiﬁate axes, and
the origin. The points in which it cuts fhe axes are found
by letting s = t = 6, t =r =0, =35 =0, respectively, in

equation (7). Thesa~points are determined by the relations

r = + *rax - 1

i
(=]

&
s = * b *by -1 =0,

t

B
|+
(e]

fez -1 =0,
respectively.
| Consider the system of tangent planes through the
point / .
(8) ‘ mz - 1 = 0,

on the 7 axise. The codrdinates of all planes through this




point and bouching the surface are (%, v, 1 ) where
m

a x + by + [
m’\—-
The polar plane of the point (8) is (0, 0, m )  Translate

the origin to the p01nt
AP | = 03
m
the new XY plane will be the polar of the point (8). The

equation of (8) becomes

m - ¢ ’
—ee T = 1 =0

we

that is, the coordinates of all planes through (8) will be

(x, ¥,

- égo Let these planes touch the surface whose new

equation is _ v , ‘r
; _ o . -
a s bvy 4 A (.El._. A l) :

so that s . ' , ' L

- .
(9) a\—K ‘l—+ -bvy-z,z m = ’ 1 ;
m - e 1 - S

m‘—
Therefore we have an ellipseo(l) For m)» ¢ the ellipse is
real, and for m¢¢ 1t is imaginary. The ratio of the semi-

axes remains constant, namely a ¢ b, The major semi-axis

is equal to ay/l - & , Which is seen to be zero for m = ¢
mL

(1) Valgardsson ®Line CoOrdinates¥.



and equal to a for m infiniteiy large. As m becomes indefi-

nitely large the polar plane (0, 0, m_ )
e

approaches coinci-
dence with the XY plane.

In the same way we could show that the section of
the surface made by the YZ plane is an ellipse of semi axes
b and ¢ and that the section made by the ZX plane is am
ellipse of semi-axes ¢, a. We call a, b, ¢ the “semi-axeg"

of the ellipsoid. If a = b, the sections parallel o the

XY plane are circles and the surface is a surface of revolu—

tions If a =b = cﬁwe have a sphere.
For the ellipsoid
,9’ == (a"b7+ pe¢ + e"a")
| } (a"p%¢ )(a7+ b7+ )
~£@ = - a*b“éi
[} = - a‘b‘c‘»,

If ¢ = 0, (6) becomes

i

& x*+ by =1,
‘and the point-condition equation (7) becomes
a"b %" = 0.
If a, b are different from zero, then t = 0. Hence for
¢ = 0, the surface must lie wholly in the XY plane. In thi

case

D e o

s
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If b =¢ =0, (6) becomes
a’x = 1,
Hence the surface has degenerated into the two points

ax i.l = 0,
Teta=a, A ,b=bN ,c=cA ., Equation

(6) then becomes
(10) a,x + by +cdg =

>
¢

Let )\ increase indefinitely but let a,, b,, ¢, remain
fixed, 1In the limit we have

g x™ + By + ez = 0,
Hence this equation is the limiting case of an.elliysoid as
the semi-axes a, b, ¢ become infinitely large. It is to be
nbtieed that translation does not affect the latter equa-
“bion, The only plane which is tangent té the surface is the
plane (0, 0, 0)s

The point-condition equation of (10) is

2z [
b " . e al . a’b, . o v
R « + -t S & —_ Lt =27"b e .

In the limit, when ,\ becomes infinitely large, this equa-

tion becomes

A W *~

or”+ 08" + 0t =a,b, ¢,

which can be satisfied only by points at infinitye

In this caseﬂ =}= L = A= 0.
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4. The Hyperboloid of One Sheet:-

Consider the surface whose equation is
(11) g"x"+ by~ ez = 1,
The point~condition equation of this surface is found o be
(12) e r s ¢¥avs =~ a*b £t = a" bV el

Let a, b, ¢ be all different from zero. The sur-
face ls clearly symmetrical with respect o the coBrdinate
planes, cobrdinate axes, and the origin, By the sémé method
as employed in Section 3, we can show that the plane sections
of the surfaée parallel to  the Xﬁ'plane are ellipses whose
‘exes have minimum values in the XY plane section, and
increase indefinitely as the section 1s moved further away

from the XY plane. Thus

mb

R T
ax+ by =

m + ¢-

is the equation of the ellipse when the plane passes through

the point

The semi-~axes are in the ratio a : b and the semi-major

) T e v
axis has the value av/mv+ ¢ , which becomes infinitely

e

m
large as m approaches zero.

In the same way we find that sections parallel to

the YZ plane are hyperbolas. In particular, if we consider

m .
the section made by the plane(-—; » O, 0) , Wwe obtain the
8
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equation

b%f’—cbi'n n
m - a

This curve ls well-defined except for m = &, and this is ssen
to be the case where the plane is at akdistance from the YZ
plane equal %o the semi-axis a of the ellipse which is
formed by the intersection of the surface by the XY plans.
We cén discuss this case eagier with reference to the point-
condition equation which is
c’as” - &bt =a"b " - ber

When r = g we have

e

5. - 17
b'l— c‘t—”
that is
5 =42
b e
The system of polnts whose equations are
(13) | b ty + tz =1 =0
¢
and
(14) -0 ty +tz-1=0
3 .

dan be shown to define two lines. For the dirsction cosines
of the line joining (13) to the origin (Section 2L, Chap. I)

are

cog X = 0,



cos/e = b .

q/b’+'c"
cos ¥ = ¢ ,
| b+ e

which are constant. In the same way we can show that (14)
defines a line. Therefore when m = a, we have & pair of
straight lines through the origin.

For thigs surface

3
/
L
A

v~ T -

= be +ca ~ab,

i

> T T
2 5 (o™ &= b,

cf
- a b¢ep,

it

3 ,
8 tfc‘e

i

Suppose ¢ = 0. This case has already been discussed
under the ellipsoid, | |
If b =0 and a and‘c are differenﬁ from zero, the
equation becomes
(14) | a’x -e'z" =1
(which is Valgardsson's hyperbola in line cogrdinatés)o When
b =0 | |
9=,
§-0 - A = o.
If & = b = 0, the surface is imaginary. If
b =¢ = 0 we have the case
a’x" =1,

which represenbs a pair of points, as we have already seen.




T4,

If we let a =a A , b = b,;\ y C = G,-A » then it

follows that

> v

= ps

Ii—‘

LA R
ax + by -ec

>
‘l

The section of this surface made by a plane parallel to the
XY plane has the equation
v T v .
a,x #by" = =

where k depends only on the position of the cutting plane.

This ig an €llipse whose semi-axes are Aa and ADb, ,
k k

both of which become infinite as A becomes infinite.

In the same way we can show that the ma jor axes of
the hyperbolic sections paréllel to the other coordinate
planes become infinite as A becoﬁes infiniﬁeo‘

| In the 1limit we have
8% + by -¢’z" =0,
for this iast equation

;}m; =B - =o.

5. The Hyperboloid of Two Sheéts:-

Consider the equation ;
(15) "% - by -zt = 1.
The point-condition equation for (15) is

(16) ber -dds -gbt =abe .
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This surface is symmetrical with respect to the
codrdinate planes, coordinate axes, and the originer As Dbefore
we can fihﬁ the gsections made by planes parallel o the
cobrdinate planes. The sections parallsl to the XY and ZX
plénes are found to be hyperbolas, and the sections by planes
parallel to”ﬁhe YZ plane are ellipses. Suppose the plane
parallel to the YZ plane passes through the point

| rx - 1 = Oa
It 1s readily seen that the ellipses are imaginary unless
r" > a .
If(r = g , the ellipses degenérate inte points on the X axisg,
| For this surface |
I =(c"a" + & - b e ) :
}f==‘a”b”cf(a?» b= c") 3
D = - a'pret

p :
D =~ab‘@‘a

Whern b or ¢ is zero, cases are obtained which have

been discussed already. Let us consider the case when the

semi-axes become infinite; suppose the equation is
1—"_1
/']‘\.

2.

ax =-by =-¢

]

Then there is no part of the surface between the planes

parallel to the YZ plane and passing through the points
talx = 1 = 0.

If 7\ approaches infinity the distance between these points

becomes infinite. In the limit we have the hyperboloid of
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two sheets at infinity. We have }7 = ;7 === 0.

6. The Paraboloid:-

Consider the surface defined by the equation
a7 B y” 4+ ¢z ¢ 2ux = O,
The point-con@ition equation of (17) is
(18) cuts” + b utt¥ + 2bc¢Tur = Ca

If b, e, u are all different from zero, we may write,instead

of (18), .
| 8T Lt e gl
P e . u

The surface (17) is symmetrical with respeet to the
XY and ZX planes and the X axis. The polar of the point

(19) ‘mx -1 =0

w—

is (Section 10, Chap. II) the plane</~l , 0, O)e Translate |
o . m j

the origin to the point

- mx = 1 = 0.

Then the polar plane will be the new XY plane. Equations
(19) anda (17), refefred to the new axes, are respectively
| 2mx - 1 = O,
b’y ¢+ ¢"2Y - 2unx” + 2ux = O,

Let all the tangent planes pass through the point (19); that

is «  Therefore we have
; ' u

x =1
zm P = T —
b y + C & £ - ZIH ¢

Hence plane sections parallel to the YZ plane are ellipses



of semi-sxes b¢/“ 2m and ez/~ 2m o . This ellipse degenerates
4] a

to a point when m = 0; that is, the YZ plane touches +he
surface at the origin. The ellipse igereases in size a&s the
éatting plane is moved further from the origin. It is to be
noted that m and u must be opposite in sign for real ellipses.
If u is positive the surface lies Wholly on the positive side
ofvthe YZ plane. 7

Consider any plane parallel to the X% plane, (0, m,
0), saye. Translate the origin %o the point

Ly-1-=o0;
m

that is the new ZZ plane is this plane. Equation (18) becomes
(Chapter II)

>

; S4% Q‘JL
‘ m
b c

-&E—-"&_ZE."‘:OOV

u
For any point in the new XZ plane S = 0. Therefore the
point-condition equation of the plane bection by the new XZ
plane becomes
(ao)_ o, er 1 .o

c w o om b~

It can easily be shown the line-condition equation

for a parabola has the same form &s (20)0(l> Therefore the

(1) This can be dome by & method similar to that employed
in Chapter II, Section 2. BSee Snyder and Sisam,

Do 91.
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séction by this plane is & parabola. In the same way we can
ghow that sections parallel to the XY plane yield parabolase.
We call the surface whose equation is (17) an ellip-'
tic paraboloid, because the sections parallel to one colrdi-
nate plane are ellipses and the sections parallel to thé
other two colrdinate planes are parabolas.
In the same way we can investigate the surface
whose equation is
(21) by - ¢*Z2" + 2ux = Q.
Sections parallel to the YZ plane yield hyperbolas and sec-
tions parallel %o the other two cobrdina te planes yield
parabolas. Therefofe (21) represeﬁts an hyperbolic paras-
boloids

For (17) = = u (b¥+ e¥),

= b}ehu“‘ ;
= 0,

LA
betut.
Tor (21) ==-u(b~c),
= = b e u’,

P 'O,

D b~ o D e So
il

4
= = B G‘U.b o
If u = 0, we have
| by  + e zv =0

or

T L -

Py - ¢z = 0.
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The first is a special ‘case of the 1nf1n1te elllp501d and
' 1
 fthe second. represents a pair of inflnltely alstant p013us°(J)k’
‘For these two cases ,ﬁ ; £D 45
When ¢ =0, we have /
: By v+ 2ux aQOO ;
Thls is a parabola in +he XY‘plane - In this case S =

W -~b u,, ;< - D - A = Oa The pomnt-eonditlon equation

<o reduces to

vru t = 03

m r‘that is, t =0, and the points all lie in the X¥ planea

§ 7;f Invarlants for the Varloas ?quatlons'~

Equation 7, ;,_   ‘;{;ﬁ  49' Q9'ti<9
_aéx”+;bfy?+ c;z” =1 ,’ ;f ‘ ;  ' ‘-k,“ ; |  +‘; “
éﬁx?~,b%yv~ c‘if‘='lf1 ~"; : i 1 ~i : g 2] o9
'bﬁgvgf¢v2¥+'gux -0  ] B B R A

'fﬁf%cﬁf{&m =0 o S T T B

) Valgardsson."Line Co%rdlnates“, Ch.‘III, ;
(2) valgardsson, Ch. II, Sect. 4e N

' (35 It igs understood that all coefflclents appearin& in the
L following table are dlfferent from Zero.
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ax"’ %by” +ez¥ =0 " Ry 10 | 0  0 0
ax; + by‘;ﬁa*.“o 0 0 0 0
\‘ a¥xbs+ h"y"/':l " L o | o o -

| | gf’x"’—- b“y’/ - 1 ,‘ O | 0 | 0 +
ak%:,’{L ,__‘ylk"" o : “;O » g - z

Since these are all-the possible equatlons ‘we can : \
| say. that when. A¢ g, .9 # 0 we have an ellipsoid or an hyper-
; ‘bolom of one or ‘cwo sheetso I:f:‘ VA ;é O o@ = 0 we musﬁ nave
ﬁ:‘either an elllptic or hyper'bolic paraboloici. I:E‘ D w»@

= 9 = O and.ﬂ 7L 0 we have a plane curve, wnlch can be an
elllpse, parabola, or hypex'bola.° rH -@ } .9 = 0,
the equation represen’cs two points, or else may ’be satisfied
only by points at infinity. | | | | '

| The origlnal equatlon represents ’swo po:m’os when it
| has two linear factors in Xy ¥, z, for which a necessary

condition is that the diseriminant § vanish.




CHAPTER IV

Reduetion of the General Equation

l. General Statement:—

In this chapter we shall consider the reduction of
the general equation when A # 0, that ig, when the equation

represents an ellipsoid, hyperboloid, or paraboloid.

2 Reduction of the Point~-Condltion Equation:-

Let the equation
| AT+ Bs“s O™+ 2Fst + 26tr + 2Hrs + 2Ur + 2Vs
(1) S ' + 20t + D = o '
be the point-conditionm equation of the surface

ax’+ by + ez + 2fyz + 2gzx + 2hxy + 2ux + 2vy

(2) 7 iowz o+ d = 0.

. Ye have seen (Section 4, Chap. II) that there is at
‘leasf one principal plane. Take this plaﬁé for the XY plans
in a new system of colrdinates. The degree of (1) will be
unalbered by the tranéformation,

By supposition,the XY plane bisects all chords
parallel to the Z axis; therefore if
X+ Sy o+ t,2~-1=20
be any point on the surface, the point
rx+ 8y -tz -1=0

will also be on the surface, From this we see that in the



transformed equation
F=G=%W=0,
The reduced équation therefore is
Ar*+ Bs“+ Ct + 2Hrs + 2Ur + 2Vs + D = O,
Now rotate the X, ¥ axes through an angle © given by the
relation

tan 26 = 2H ,
A=B

sccording to the transformations (43) of Chapter II, namely

#

r =1r'cos® + g'siné ,

s ==1r'sind + s'cosd ,
’ t =4,
Drop}ping primes, we ge’c’ an equation of the form
(3) ArT+ Bs¥+ Ct"+ 20r + 2Vs + D = 0.
| (1) Let 4, B, C be ail finite and different from
zero. We can them write equation (3) in the form

A (r + U)L+ Bfs + V‘)L-» Ct'=T"+ ¥~ D=D',
K B/ £ 5

Hence, by changing the origin to the point

L -

by means of formulae (46) of Chapter II, we obtain

iy + BT + Gt7 =D,
If D' be not zero we have
2 s.._ _bz_
S + = 1”
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“which we can write in the form

(4) ‘Z':‘: + _si: + E_: =1,
a’ - bY¥ c”

or
R ™

(5) o, 080 . 80 o,
a¥ b* ¢ ’

or _

(6) R A .

‘ av b~ (e

according as gg, %?, g{ are gll positive, two positivé and
A C

one negative, or one positive and two negative, respectively.
(If 211 three are negative the surface is clearly imaginéry“)

If D' be mero, we have
(7 | Ar* + Bs* + Gt = 0.

| (ii) Let A, any one of the coefficients, be zero.
Write the equation in the form
2Ur + B g + V’)+ 0t" + D=~ V¥ = bo
: N B/ 1
If U be not zero, by changing the origin to the point
' Qx + Uy =1 =0,
B

whe re _
Q=1 [p-1v",

20 B

we can reduce the equation to ‘

(8 Bs” + Ct¥ + 2Ur = 0.



84

If T = 0, we have the form
(9) BSL+GtL+D'=(A3b,
br; if D'= 0, the form |
(10) Bs™ + Ot = 0.
(iii) Let B, C, two of the three coefficients, Dbe
zero. We then have |
Lilr + %)ﬁb 2Vs + D' -TU~ = Co

A

If we translate the origin to the point

U 1 ' U“) e
=+ w(P-F)y-1-0,

the equation reduces to the form
(11) r" = 2ks.
If, however, V = 0, the equation is equivalent to

(12) | Crr=x.

%o, To Find the Equations of the Center of a Conicold:-

If the origin is the center of the sarfaqe; it is
the middle point of all chords passing through it; if
“ 7 rx+s,y+tz-1=20
be any point on the surface, the point

-rx -8y~ tz-1=20

will also be on ths surfaces

Hence we have

Ar~ + BsY + O + 2Fs, t, + 2G%, », + 2Hr s, + 2Ur, + 2Vs,
- ’ T+ 2W%, + D =0,
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end | |

| Ar'+BSIP+G’c,+2ﬂst+2Gtr+2Hrs-2Ur
| ~2Vs-2?lt+})==0°

| at’h'ekréforek :

| o Ur+Vs+Wt = 0,

Slnce this relatlon holds Por all p01nts on the
surface we must have U‘ V, W‘all zeﬂoe Henoe when.the
orlgin is the center of a con1<301d the coefflclents of Ty

s, t are\all ZeTro. |
et
x x +/G y o+ X’z - 1 = O
be the equatlon,of the center of the surface° then if we .
“take the cen‘ber Por orlo‘ln the coefflclents of r, s, t in
':the transformed equatlon Wlll all be ZeTrOs L[‘he ‘cransvformedi
k;“‘:equa‘clon will be (Sectlon 46 Chape II) | | |
= A(I‘+o()+B(S+/5)+C(’G+)')+2I‘(s+/3)(f;+,r)
" +2G(t+y)(r+a<) +2H(r +,<)(s +a)
+2U(r +,,() +2V(s +ﬁ) + 2W(t + y) +Bw0.‘

Hence “the equatlons glving the center arre

Ae¢. +Hp +GY +Uz=0

(13) - ’ : ;B/g; ‘+Fb’ ;r'\TmO,
| 'Gx ;‘F:/;f;cr';wa
Comemtee g oy
(132) |H ¢ U| |A- G U| |4 H U| (A H G
e 5 F V| | F Y| | B V] |E B
|lr ¢ w jc ¢cw [¢F w |6 F C




The ;poinﬁ-‘-con&iti‘cn egquation of the conicoid when
the center is at the origin is |
- (14)  Ar™s Bs“s C'B + 2Fst + 2Gtr + ZHI'S + D' =0,

| Where D’ is ob’cained from (3) by putting r = , S =ﬂ
iy ¢ Y. i ‘
| Multlply equ.atlons (15) in order by o< /;' T,

| ami subtract the sum from I) H then we have

"(15) o ~ ”D‘ ==Ua<+1rﬂ+wx+no |
From (15) and (15) we have -
1A H @ T
E B F V |=0;
le 7 ¢ w
UV W D-D'
 therefore | v e
(16) " D4 H &) . 1A H vl
Sy ¥ B F : - « HBF v
¢ T .C 5 ¢ FoCwW
T v oW oDl

‘which méy be written SR
" an | Sl 20 = A e
| Ii; is s'een that 'Vt‘he ‘eyqua’tion of the kc‘en’c'e‘:t‘ ié glven
(18) | W x+ UV y&ch)_z -0 =0,

g'whert'e X, 9/11, etc., ‘afe the co-factors of U, v, ete., in A,




4o The Discriminating Cubic:-

We have seen (Section 2) that by a proper choice of
rectangular axes

Ar*s Bs™+ Ct7+ 2Fst + 2Gtr + 2Hrs
can always be reduced to the Torm |

« Iﬁ‘%-p s+ ¥ 73
and this reduction can be effected without changing the
origin, for the terms of second degree are not altered by
transforming to any parallel axes.

Now r*+ s"+ t™igs unaltered by = change of rectangu- -
lar axes through the same origin. Hence, when the axes are
g0 changed that

Ar"+ Bs™+ CtT+ 2Fst + 2Gtr + 2Hrs
becomes LT B D | I

T psTe “(“i:“,
(19)  Ar™s Bs™s Ct™+ 2Fst + 26Gtr + 2Hrs =F(rT §7 )
will become - k R .
(20) ol T ¥ e S orY - f(r"—a» s + 1 ).
Both these expressions will therefore be the pro=

duct of linear factors for the same values of ‘f s The

condition that (19) is the produect of linear factors is

(21) A—f H )
' T B-—f T | =0,
¢ F  ¢-f

But (20) is the product of linear factors when F is
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. equal to o /5 s Or "b’ ° Hence“a( . /s ¥  are ,’ﬁhe three
rbotsvof (21) : The equatfoﬁ when eXPanded,isf’T , | |
f‘ = f(A + B +C) + F(AB + BC + CA‘—-FLA(’_‘;.‘;SH")
- (ABC + ZFGH-AF—BG Y-gH ) = o0,

‘Thls equatlon is called the "dlserlmlnatlng cublc" BN

* B . E =

5 Dlscusswn for 229 ,z.‘ O*-;
. From equation (18) Ve see tqat there is a definite

center at a flnite dlstance unless .@ = 0, If ,,@ = O and R

'fone of%‘— Ql/ q,d is Qifferent from zero (i.e. A# 0) there'

- is Y deflnlte center at an inflnlte i stanee.

If ,@be not zero, change to parallel axes ‘chroubh )
: ’che cen’ser, ancx tne equ.a’clon becomes

Ar+Bs+Ct+2Fst+2Gtr«12Hrs+D O,

~'where D s found as 1n Seetlon 2o Now keemng the omgLn

) f}.xed change the axes in such a manner that the equatlon k

is reduced to the form e | ERTEY LA ,
| o<r+/ss+b’t = 0. DIt

Then by Sectlon 3 ,o( B 3’ will be the three roo’cs of

‘the dlscmmlnatlng cubic. . k :

S:ane D 1n'= A ; the; last equation may“bye‘ Written

'f in tne form. * SV e e

| L« rk"’—s’/i* s+ B Y’c"@ A = o0,

If ’che’ three Quan‘ﬁ i%i,es L R L3 , 49_3_/ are



21l negative, the surface is an ellipsoid; 1f two of them

are negative, the surface is an hyperboloid of one sheet;

if one 1s negative, the surface is an hyperboloid of two

- sheets; and if they are all positive, the surface is an

lmaginary ellipsoid.

We have shown in Ghapter IT that the genersal equation

can be reduced o one of the three forms

(23) ax™* by * ez” -1 = 0,
(24) , Cax + by s ez = 0,
(25) : by™r o2 ¥ 2ux®= 0.

We see from Section_?wof Chapter IIT thaﬁig-i 0

always reQuires AR 0, whieh is true only for {25)9

6. Discussion of the Case L - 0:-

fmen £ = 0, one root of the diseriminating cublo
must;be Zero. From Sectidn 4, Chapter II, wéusee that one
principal plane must be the plane (0, 0, 0). If%p;sd, we
must have two finite principal planes, and therefore the
center ig at infinity and must lie on the line of inter-
. section of the two finite principal planese. ’

1t O = 0ani A # 0, equation (18) shows that the
center is at infinity. Since one root of the discerimina ting
cubic is zZero, the equation can easily be solved; let the
roots be 0, o, & . Find the direction cosines of the
principal axis by mesns of equatious (16), Chapter II, and

take the X axis parallel to the prineipal axzis. The
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equation will then become
2 .
os™ 3%+ 2U'r + 2V/s + 2% + D = 0,
or, by & change of origin, )
> .y
<8+ Bt + 2Ur =0,
Hence we have the surface, which, expressed in plane
4 > .
cobrdinates, is

ay*s bz™+ Zux = 05(1)
since A % 0. )

7o ‘Summary:f

Let us investigate the genéral equation of & comicoido
ITA# 0 and & #0, it follows that & # 0 and we have an
elliipsecld or h,yperboloide If A is positive we have the
hyperboloid of cne sheet. vagj is negative we discover the,
nature of the surface by solving the discfiminating cubicy
three'roots with the same sign denote an ellipsoid and roots
which differ in sign denote an hyperboloid of two sheets,

If A# 0 but d = o,i-{: follows that B = 0.,(2) This
gives us an elliptic or hyperbolicrparaboloid,according as
A is negative or positive, respectively.

The plane curveé are found to be those surfaces for
which gall the invariants except ~9 vanish. If d = C the

plane curve 1s a parabola. If d#0 the plane curve is an

(1) Snyder and Sisam, p. 130,

(2) sSection 7, Chapger III.




ellipse c¢r hyperbola according as —9 is negative or positive,
regspectively. :

A pair of points is given when _9 = ;L =8 =N =0
'prdvi&ed that the equation is factorable.

Otherwise the equation represents an infinite coni-

c¢oid or an infinite conics
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