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ABSTRACT

A new proof is given of Newman and Taussky'!s result: if A
is a unimodular integral n X n matrix such that A’A is a circulant, then
A = QC where § is a generalized permutation matrix and C is a circulant.

A similar result is proved for unimodular integral skew circulants.

Certain additionsl new results are obtained, the most interesting
of which are: 1) Givenvany nonsingular group matrix A there exist
unique real group matrices U and H such that U is orthogonal and His

UH; 2) if A 1s any unimodular integral

[}

positive definite and A
circulant, then integers k and s exist stch that A’ = P4 and P°A

-1s symmetric, where P is the companion matrix of the polynomial x-1.

"Finally, all the n X n positive definite infegral and unimodular
skew circulants are determined for values of n < 6: they are shown to

be trivial for n = 1,2,5 and are explicitly described for n = 4,5,6.

I heréby certify that this abstract is satisfactory.
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1. Group Rings

'>Let G be a finite group of order n ‘with elements BysreesB
and let K be an inﬁegral domain and let F be a field containing K as
a subring. Let R(G,F) denote a vector space over F which admits the

elements gl,...,gn: of G &s a basis and in Which, additionally,

n n . n

productg are Qeflged by"E:aigi E:bjgj'= E: aibjgi,j where ai’bj
i=1 J=1 1, =1

are in F and g j ='gigj.i Tt is well knownVthat»theseloperations make

R(G,F) into an associative algebra. Let RG K‘denote the set of all
< )

o n ‘

elements of the form Ejaigi in R(G,F) where the scalars a, are in K.
i=1

Let lG and ;K be the identities of G and X respectively; and let

1 =‘lK . lG denote the identity of R and of G and of K as well except

G,K
under anomalous situations. It is clear that RCT K is a subring of R(G,F).
: s ‘
Since gl,...,gn is a basis for R(G,F)g every element of RG K 1s uniquely

determined by the scalars in K. We shall refer to R .as a group ring of

G,K

G over K;

2. | Matrix Representations and Group Matrices.

A fatrix representation of degfee nof G is a homdmbrphism of G into

the full linear group Ln(F), the n X n honsingular matrices over F.

We introduce the left regular répresentation of G as follows. If
g € G, then _
: : n ; :
g, =Z aij(g)‘gj. ’ 1<i<n (L)
4=
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where each aij(g) is 0 or 1. ILet
Lg)’ = (a;(e)) , (2)
J
the prime denoting transpose. L(g) is a permutation matrix. Mofeover,

L(hg) = L(h)L(g), for h,g in G, as the following computation shows. Pre-

multiply eq. 1 Dby h to get

n(gg, ) = Zaij(g)»hgj
3=
= ) agy(e) ) e (n)e
J. k |
= Z <Z ?ij’(g)ajkgh)ggk o
k=l j=l | S
- (re)e,
Z ail;(hg)gk .
| k=1
Thus aik(hg):ﬁ 'E: aij(g)ajk(h), hence .L(hg)’ = L{g)'L(n)’, and so
| o1 ‘

L(ng) = L(n)L(g)

If L(g) = I, then aij(g) =0, if i + j, and aij(g). = 1, if

i = j; and so, gg; = &, hence g is the identity. Thus

Lemma 1. G 1s isomorphic to the group of permutation matrices L(g),
g in G, where L(g) is defined relative to the ordering gl,..;,gn of the

elements of G.



e

W We shali'gall L(g) the left regular matrix representation of G
(relative to a particular ordering of the elements of G). We may

extend‘L(g)'to a répreéentation of the grouplring RCT K for every
T s

n

u = E: akgk, ak in K, set
k=1 '

L(u) = Z akL(gk): . - . (3).

k=1

This gives us, by Lemma 1 and the rule for multiplication in RG K2
. . . i 2

Lemma 2. For elements u,v in R, p and & and b in F
—_= s »
- L{uv) = L(u)}u(v),

‘aL(u) + bL(v) .

1l

L{aut+bv)

For each g in'G the right representation of G is given by
n

gig = z biJ(g)gj’ 1= l)"',n_ . (J‘l')
. j:l .

and this corresponds to the mapping
Rig »R(gl = (b;,(e)); 1<%, 3<m,

of G onto n distinct permutation matrices of degree n. Eqg. 4 implies .
that G is isomorphic to the matrices R(g), g in G; they form the right

regular matrix representation of G.
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Theorem,l. Any linear combination of the matrices of the left regulaf .

matrix representation commutes with any linear combination of the matrices

of the right regular matrix representation.

- Proof. By eg.'s 1 and 4 respectively we have for elements g and h in G

"

*VLI(g)z(gl:'vr')gn), | . i (5)

R(n}ey,mem0g,) (6)

" (egyse--s88)

1

(glh"ff’gnh)l'

Post;multiplication of eq. 5 by h gives us

o

(eg b,.-. 88 )’ = L'(g)(g b,- -8 h)".

I

L/ ()R(E) ey - v s, )"

where the latter result follows from eq.‘6.< Premultiplying this by g

and using eq. 5 produces

. ‘ ‘ o -1 -1
’ ‘(glh""’gnh):, L,(g)?R(h)E(g ,81:'”:%' gn):"

il

L/ ()R(HL (& Ky s re,) -
A‘Comparing this with eq. 6 we gét R(h) = L'(g)ﬁ(h)L'(g_li. Since
.L(g)-‘l'-‘(g'l)fr= I=I(g)(g)’, we get L(g)R(h) = R(n)L(g), &s required.

Any linear combination of the left regular matrix representation

" of G over K is called a group matrix of G over K. This of course
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Presupposes. an ofdering'of the elements of G. Consider thé permutation
matrix-L(g) in eq. 2 iﬁ view of eq. 1. We have a one at the (j,i)

positiqﬁ'df L(g)' precisely when ggj = gi, _hence precisely-when

g = gigj_;. ~Thus a one appears at the (i,j) position of L(g) precisely

when gf;Igigj-l. Thus in L(u)ﬁ: E: agvﬂ(gk), we have ag appear-
v ,i.’ . B | gkin c k : =k
ing exacﬁly at thbse'positions (iy3) for which.gk = gigj-l. In other

'Words, a group matrix of G relative to gl,...;gh of G is of the form |

)= (s, s1)y 124, 3<8. (D)
183 L |

'TheoremVE." Any matrix over F which commutes with all matrices of the
right regular matrix representation of ‘G is a group matrix of G; that is,
it is a linear combination of the matrices of the left regular matrix

representation of G.

Proof. Let C = (cij), 1<i, j<m, S 4 in K, be such that

C = R(gk)CR(gk)', k = l,eee9n, Where R(gk) = (bij(gk)) ras defined in

eq..4 1is the right regular matrix representation of G. Let uj be the
n-tuple row vector in which a one occurs in column Jj and O's elsewhere.

Then for fixed i,j, 1 £ i, j < n, and each k, we have,
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uiCuj = uiR(gk)CR(gk) uj

c.. =
i3
. n . - ,v -
5,t=1

This sum may be simplified. For3>by eq. 4, bij(gk) =1, if
A1 . ) N
giv'gj =g, and bij(gk) = O,‘-}f & g + g Hence 55 = gy

q Tl

where s,t are such that gi- gg = & = &; t

gye Thus g; = g8
-1 -1 -1 -1 )
andv gj = gkgt. , 80 that gigj, = gsgt . Hence, by eq. 7, C 1is

a group matrix.

Since the matrices L(g)fbrnla group isomorphié tb.G; and sinée,
the matrices are also linearly independent over ¥, we have Theorem 3.

Theorem 3. R(G,F) is isomorphic4the algebra over F generated by the
I(g), g in G. R, g is isomorphic to the ring generated over K by the
. . > .

L(g), g in C.
Corollary l. The inverse and the transpose of a group matrix is a group
matrix.
Proof. The inverse of any matrix is a polynomial in that matrix. Hence
by,Theorem 3 the inverse of a group matrix is a group matrix.

Since L(gfl) = L{g)’, g in G, the transpose of a linear combination
of L(gl),.{;,L(gn) over F is again a linear combination of L(gl),...,L(gn)
although in a different order. This proves that the transpose of a grbup

matrix is a group matrix.
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3. Units and Unimodular Group Matrices.

Elements u and v in RG K satlisfying uv = 1 are called left and
R v === v 2ud

right units of R, ., respectively. An element which is both a left
: > } .

and right unit of R “is eglled a unit of R . Any square matrix
G,K — G,K : i
defined over K is said to be unimodular if its determinant is a unit

: the .
in K.  Given the elements w,v above, Lemma 2 andAdefinition given in

eq. 3 implips L{u)L(v) = {L(uv) = L(1) = I. Therefore,L{u) is
unimodulaf. Conversely, let L(u)ybe unimpdular over K. Then L(u)_l
existé and by Corollary 1 it is a group matrix with elements in F.
In fact; L(u)f%_has elements in K'since_any element of L(u)-:L is of

s ’ : 4_1‘ . Lo ] , . .
the form 8(det L(u)) ~ in K where § is a cofactor of L(u) and

(det L(u))_l is in' K. Thus an element v in R
-1 )
).

G.K exlsts such that
2

L(u = L(v),;L(uV)Iz L(u)L(V)‘= Iﬁ;.and so, by Theorem 3 uv = 1,
This proves"Thedfem i”, |

Theorem L. . An element is a léft unit of R if and only if the

| G,K
corresponding group matrix is unimodular.

Corollary 2. EVery'left.(right) unit is a unit.

Proof. L(u)L(v) = I = L(V)L(u);'..

Theorem 5. The set of all units of RG K under multiplication forms a
2
group isomorphic to the multiplication group of all unimodular group ..

matrices of G over K.
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4. Circulants and Skew Circulants.
When G is'a cyclic group with an element‘g of order n, the group

matrix of G'0V¢r K relative to the elements,l,g,...,gn_l is called a

circulant over K. Let g; = gl_l,vi = l,...,h. Then'gigj_l =

gl_l_(a—l) = gl—J. Thus, CV . :i =C i-j and so the elements of the
. 858 g

vgroupvmatrix are constant along each diagonal parallel to the main
diagonal.
Let P be the companion matrix of the polynomial xn-l. Then

P =1 and
n

i+l
0 0 10 0
i 0 .0 01
P = (9)
Copeitl T00... 0 )
00...1 0 0

where 1< 1 f n - 1. Tt follows that any éirculant C 1s a polynomial

in P. Moreover, Theorem 2 in the special case of circulants becomes

Lemma 3. The matrices of the left and right regular representations

pf G relative to thé elements 1,g,...,g ~ are circulants. Any matrix
‘commuting with P is a circulant.

If the first row of the circulant C is given by (cl,...,cﬁ) we write

jC‘:‘[Cl’°"’Can‘-’;' - | . (;O)
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for brevity. Let the conjugate transpose of a matrix A be denoted
. o . .

by A ..

Theorem 5. Let C = [81;;..,cn]n be a circulant of order n defined

over the complex nimber field. Let T =,n-l/2(p(l-l)(j_l>), i<i, j<n
where p;.is a primitive nth root of unity. Then

* : . ] VI...

T C?.f dlag(el,...,en) _ (11).

" where the eigenvalues. ¢ ".;5€n'pf C. are given by the vector matrix

1’
equation

(el,.,.,en)' = nl/gT(cl,...,cn)' . (12)

Proof. Since x -1 = (x-l)g(x)iwhere gx) =14+ x4+ + xn-l, g(pk)~= 0,
if n does not divide k. Thus T is unitary; that is, T T = In' For,

* ' .
the (j,1i) term of T T is given by

Y e ple ) = oY et

k=1 k=1

The RHS equals 1, if i = j and equals g(p~ 9) = 0, if 1 & j.

Now, since P is the companion matrix of polynomial xn—l, the
. ‘ , - o .0 2 n-1
eigenvalues of P are the roots of x -1; namely, l,P,p yeesspP . Thus

if xjAequals the Jth column of'T we get
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7, = n-l/z(pj-1> p2(j-1),.._,p(n-l)(j—l>;l>,

so that, the jth column of T is an eigenvector corresponding to the

5= . * ' -
eigenvalue oY 1 or P, §=1,.e0,n. Thus, T PT = diag(l,p,e..,p" l)

n

Consequently C = EZCJPJ_l implies
J=1 '

yveey

* . A ._ ) ...— )
T CT = ZCJ diag(l,p(‘] l), DE(J l).

j:

o(a-1)(3-1)y

Therefore; if- we set

e = (1-23(3-1)
& = E:cjp ' (13).
3=1
we get eq. 11 and 12 as desired;
The polynomials'over K in the n X n matrix
0L0...0
P = | 0 (14)
on 1 -
-L0. ... 0

are called skew circulants of degree n over K. Skew circulants are not
group matrices because in any group matrix the elements in row i are

permutations of the elements in row one, 1 < i < n. However, the powérs



. P

-11-

of'B_ constitute a matrix representation for the cyclic group of

order 2n.
Since P_ ~is the companion matrix of the polynomial f(x) = N 1,
its eigenvalues are p,p3,...,pgml where p is.the 2nth primitive root
v',of unity.  If h(x) =’X2n—l, then h(x) = (x-1)(x+1)g(x) wherev.g(x) =
1T+ x5+ «or + x°B72 Therefore _g(pk) = 0, if n does not divide k;

dtherwise g(pk) = n. Therefore, if T ='n_l/2(p(;_l)(23—l)),'l <1i, J<n,

the (i,j) element of T¥T being

! VL (211) (61) (8-1) (23-1) ol ) 2(k-1)(3-1)
“ ‘E%i S N gii P
- nlg(p?h),

implies T'T

1l

In.- Moreover, the product of P_ and inthe Jth column

of T, yields

_ Coal1 . ) 1y )
'B;Xj_ n ;/?(9 ? P 02(23 l),...,p(n 1) (23 l),_l)
. - j .

oy
since P = -1 implies pn(EJ-l) = (-]_)2‘]-l = -1. 1In other words, the
Jth cdlumm}df T is éﬁteigenveétor of P_ cdrresponding to its eigenvalue

gJil, j=1,...,n. Therefore, T PT = diag(p,p3,..;,p2n_l).
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Theorem 6. =~ If A = GEI ajP_J-l is a skew'cireglant over X, fthen
3=1 |

T AT dlag (el,...,e ) ' . R "(15)s~
where (€1senese, )’ = nl/ET’(al,.'..?an)’ I - (16)

5;. Existenee of NontririathnimOduler Integral Circulaﬁfs end
' Skew Clrculants. o ,f”?. v | .

A unlmodular 1ntegral (skew) c1rculant 1s eslled tr1v1al 1f all
elements. in any TrOW are zero except for a srngle +.1; otherw1se, 1t is
ealled~nontr1v1al.;fWe know~tr;y1al uqlmodular (skew) c1rculants‘always
| éxiste'see (eq.ilh) eq:%9;”:it is}shewn in [7j that noetriVial unimedular
c1rculants exist if n + 2,3,k; 6 - . ‘

What about nontr1v1al unlmodular integral - skew 01rculants; This
problem{is not settled. waever, if A were.such a'matrixxthen‘so woﬁld
1be;the matrir AA(. For;;a diagenal element in AA’ is the-sumvdf‘the:'
squares of the elements 1n)any row of A and so, off dlagonal elements mﬁst
“:occur in AA since it is unlmodular. Therefore, the. solutlon is in the
answer to another'questroﬂ;. For‘which Values.of4n do nontrivial uﬁimodular
__skew eircﬁiants'exisf when ﬁhey“are posisive definite? This question will

gsbe taken up in %he sequel forﬁvalues‘of n<T.

6. A New Proof of a’ Theorem on Positive befinite Circulants and
. - Skew Circulants.

In this section G is elways a cyclic groupyof order n and ell nXn
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matriééé are assumed to‘belintégral}and unimodular. An mnXn métrix
is called a-geﬁeralized pgr@utation matrix.if it has exactly one non
zero element, +1 or -1, occuring in each row and column.

Theorem 7. - If G 1s a cyclic group ofJOrder n and AA is a uhimodular
integral groﬁp matrix of G, wherg_A is an n X n matrix of rational
infegers, then A = QC wheré Q is a generalized permutation matrix and

C is a ﬁnimodulér:group matfix of G. |

The proof proceeds by way of Lemmas. For n > 1, let [O,l,O,...,b];

denote the matrix in eq. 1k.

. Lemma L. Let P and A be n X n unimodular matrices of rational integers
such that
P/A’AP = A'A. ' (17)

Then a generalized permutation matrix R exists such that
RAPATIR = a18g(Physe e o Pag) (18).

where n =n

+ sse 4+ n and for each 1 = 1,...,5, P 1s n. X n,
1 ] . n i i

' i
and is a one rowed submatrix of the form (1) or (-1) if n, = l, or if
n. > 1, of the form [O,l,O,...,O]h: or [O,l,O,...,O]g -
i . i i
1

Proof. The matrix B = APA™T is ‘orthogonal since (APA-;)fAPA- =T .5

it is also an integral matrix since A is unimodular. Therefore,

B = (bij), 1<1i, j<n is a generalized permutation matrix.
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Let T be a linear transformation of an n-dimensional space

R  whose matrix is B relative to a basis ei,...,e' of R. Then,
n : n

T(ei)i = Bi‘,ﬂ(i):elﬂ(i)»’. l= ;_’ Y.v‘..,n | ': : (19)

where 1 1is a sultablé permutation on 1,...,n and bi (i)'= + 1., Let
. . ! T N

(€D Sl O PRI CN O Gl CR EICAT ERERICoN oL

- -(j,(rs-__l+1.)~j (rg_q+2)ee-3(r )y  (e0)

‘be a decomposition Intoms disjoint cyclic products of;lengths, say,:

nl,...,ns‘respectively where r, = 0, n, = r =1l,...,8 and

0 A T P R
This gives us another basis of R :

,(fl}...,fn) = (el’ej(E)"°"ej(n)) _ (21):

| o= S(el,....,en)»' _ (22)
where S 1s some permutation matrix. Moreover by eq. 21, 19 and 20
‘consecutively for k = 1,...,8 we get

- T(F o )=T(f ) =D, . £
( rk—l-l-pk) ( I ) J(rk)}J (rk)‘ rk.
whén‘ nk = 1; and when n, >1,

(e, ) = Ps(1), 3(a+1)Fie17 oo € TS T T e
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with
_T(frk)-= ‘j(fk)’j<fk-1+l)frk—l+l *

In other'words except»for changenin signs T permutes
‘frk;l+l,?fk_l+é,...,frkAvcyclically. In matrix notation this amounts
to : o S

| (T(fl)i,...,T(fn).) Y= H(f .., ) ‘ (23)

where H = diag (Bl,...,Bs) is a direct sum of o X o matrices Bk

whose typical form is the following: Bk'= (+1) when n, =1 and

when n, > 1,

k
0 bl
B = .
k . ‘
| b1
0 "
b O LI ] O
Pk
' b § ) ‘ . — + - - .
where of course the ?i s are equal to + 1.. Let Z = diag (l,bl,blbs,...,bl...bnk).

Then, since bi =+ 1 we get
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ZBkZ’:: . ' : (if n > 1).
o )
0 1
Db 0 ... O

This we may construct a matrix W, a direct sum of s blocks analogous

in form to Z, such that

WHW /

W diag (Bl, veesB ),w'.

"

diag (Pn seees® ) . ' (2h).
‘ 1 s

where Pn are the matrices defined in eq. 1. But

(202, 5o e 22D} = 8(2(ey yevns e )}
ST

SBS(£500+,T, )

|

as a result of eq.’s 22, 19, and 22 respectively. Comparing this to
eq. 23 we get H = SBS’. Therefore, by eq. 2k, WSBS'W’ = diag (Pn',...,Pn )y

_ 1 s
and the lemma is proved since R = #WS 1s a generalized permutation matrix

and B = APA™L,
If, in Lemma L: l) the matrix A satisfies the hyﬁothésis_in Theorem T;
 2) P is a matrix of the left regular matrix representation of G where n is’

the order of P; i.e. P* = In5 %) the right hand sidec of eq. 18 équals -

[O,l,O,...,O]n, then Theorem 7 is true. For, let L(h), h in G, be the left
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regular matrix representation which define the group matrix A‘A
relative, say, to the ordering gl,...,gn'bf the elements of G; let
Lo(h), h in G be the left regular matric representation’ relative

: -1 , . o , : :
to 1, g, ...,g# where g in G 15’ of order n. Then,

L,(g) = [0,1,0,...,0]  and L(h) = SL_(n)s’, “ (25)
h in G,.where S is a permgmatiégf matrixfsuch that (gl"f"gn), =
S(l,g,...,gn )R But]conditionéﬂ2) and 3) imply RAL(g)Aflﬁ‘ =
[O,l,O,;..,O]n; whence, by egq.'s 25 SRAL(g)Aflﬁisi = L(g) and so,
SRA commutes with L(h}, hin G. From Theorem 2, observing that thé
- left and right regular matrix representations éfe identical when G is
abelian, we infer that SRA is group matrix C of G relative'fo Byreees8 e
Put -Q = (SR).’. This proves Theorem 7 given assumptions 1), 2) and 3)

above which are Jjustified as the next lemma.shows.

Lemma ‘5. Let G,A,n bé dlefi'n"édra in Theor;em 7. Let A’A be a group
matrix, a linear.combinatién of the left régular representation matrices
I(n), n in G, of G. Then a generalized permutation matrix R exists such
that

RAL(g)ATE = [0,1,0,.. +501_ | (26)

where g in G is of order n.

Proof. Since G is abelian Lemma 1 and 2 imply A’A and L(g) commute.
Therefore, in particular. PYA’AP = A’A, where P = L(g). This permits

us to use eq. 18 in Lermma 43 that is, condiﬁion l) is satisfied. Also
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note that Pl =TI andP 4 I if r<n.
- . o :
To show condition 3) holds, let D = RA in eq. 18. Then by taking
sums of powers from 1 to n and noting that P* = L(gl), i=1,...,n and
(1) + L(g) + === + L(gnil) i'[l,l;..;,l]n we Bget the similarity relation

$

DIL,...,1] pt - iag (B seesBg) (27)

_—

where B, = E:Pn d,41=1,...,5. Using eq. 18, again. P" = I implies
, i ,

=] ' )

=1 , so that, for some integer m., n = n.m.. In fact, when P_ 1is
N n, i’ ii n, :
a skew circulant, 2ni is the smallest positive integer such that

n

, : - on- 2ny
P M _ T g0 thmb, if m. = 2q., then B, = }: p J= E:P I o
n, n, > Ay ek 5 n, 4 L, TV
i i . ‘ o oy L 1

. n n4 . » . o
When P_ is a circulant, B, = E:P Jam, E:P d=m [1,...,11 .
n i n, i n. i n
=1 * =1 - '

i i

Thus rank Bi is 1l or O according as Pn is a circulant or a skew. circulant.
However, the rank of the left side of eq. 27 is 1 so that on the right

r

side one and only one non zero component exists; say, m [1,000,1]

arising from a circulant P_ . Thus n, divides each element on the right
side. But D is a unimodular matrix of rational integers and so mk\difides

. each element of DT diag_(Bl,..;,BS)D, hence m_ divides 1. Therefore

m =1, n_=n and eq. 27 implies RAPA 7 - Pnk= [o,l,o,;..,o]n .
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Corollary 2. If A is a unimodular integral matrix and A‘A is a circulant,
then | | |
A = qC - (28).

where Q is a generalized permutation matrix and C 1s a unimodular integral
" clreculant.
Theorem 8. If A is a unimodular integral matrix and AfA is a skew
circulant, then A = QC.where Q is a genéralized permutation matrix and
..C is a uﬁimodulér integral skew circulant. .
~ Proof. Lét P = [O;l,O;.;.,O]fn. :Theh,FSince A'A is by definition a
linear combination of powers of P, P’A’AP = A’A, . Thus, eq. 18 in Lemma L

can be used. . We shall show s = 1 ahd therefore Pn = P and this would
. » 1 ‘

establish Theorem 8 since a matrix whichucommutes with a nonderogatory
matrix is a polynomial in it.
Observe that, if Pn is é skew circulaht, then by adding_the first

i
column of the matrix sum

P +1>‘2+...+_Pnni = . ) .
oy 1 : 1
-1l . ... =1E

to every other column we get a triangular matrix with -1 as the first

diagonal element and -2 for the remaining diagonal elements. Thus -
. o o ‘ A
det ZPn.j = (-1)Raghitl ' ('29).
3=l T :
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2ny ) v

* Also, Z P J =0, so that if m is odd
= i .

J=1

mnj ng ‘
J_ J _ '
DS | (30
s =1 1 ‘ .

Returning toveq. 18, we see that p" = --In implies Pn R s
1 i

i=1,...,8 80 that each Pn is a skew circulant and n equals an
i

0dd multiple of n,. Therefore, by eq. 18, again
n n .
“det 2?‘] = det Z diag (Pnl""’Pn )
j=1 J:l 5
< n
= Tl det E:P J
i=1 ~
J=1
5 =T
= I det P J
i=1 ]
JEd
- (_l)pgnfs

where the lastAtWo equations follow directly from eq.'s 30 and 29
respectively. But eq. 29 also implies above that the left hand side

ngn-l

equals (¥l) « Therefore s = 1L and Theorem‘8 is proved.

T. New Resﬁlﬁsfon Group.Matfices and Symmetric Circulants.

In what féllqws, the letters i, u, p, d, s stand for integral,
' unimodular, positiVe,'definité; éyﬁméffic, réspectively. With this
notational convention Theorem‘8(Theorem 7)states that an pdiu (skew)

circulant of the form A’A where A is iu equals C’'C where C 'is an iu
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(SKew) circuiantf In vieﬁ éf this.it ﬁguld be inféresting to note for
what values of n dre pdiuv(skéw) circulapts of the form C'C where C .
is an iu (skew): circulant.

So far, very little is known about this for circulants of degree
n > 13. In an unpublishéd work E.C.Dade@ has shown it_to be true for
circulants df Pprime order>less than lOO,_with one exception; in [6] it
is Shown‘to be false for n = 5 where eQuationé 11 and 12 are used to
demonstrate that the pdiu cireulant [2,1,0,-1,-1,-1,0,1]g is not of the
form C‘C ﬁhere ¢ is an iu.circulant. A result of Minkowski in [5]
settles the question, in general, for n < T; that is, if A is a pdiu
n X n matrix, then A = BB where B is an iu n X n matrix, n <7. A
study in t?] on the gniqueneés of the normal,basis_fqr normal cyclic
fields pfoduced the fesult that aii"u;; circulants érevtnivial‘for
‘n = 2,3,4,6. This of course ié consiétent with>Minkow§ki’$ rgsﬁ%ﬁ.
" Also for n =.5, an incomplete'gr56f7appears in [11] wifh‘ébrréctions in
[11. Recently in 8 paper presently in press [12] R.C.Thompson solved .
the questlon for all wvalues of n up to 13 1nclus1ve by con51der1ng a -
more general problem which we shall deflne 1n'sectlon 8.

As for skew circu}ants nothiﬁé:haé_been'writtenion them. In fact
I am indebtéd to Dr. R.C.Thompson for hié.conjecéures on skew cirgulants,
'especialiy>for proposingATheoremiS, the parallel:to Corollary 2, aﬁd the
questilon of the existence of nontriviél‘pdiu‘skeﬁ circulants; We shall »
discuss several cases in the next section. |

Instead, we consider‘ﬁheﬁher every npntrivial 4l circulant is of

the form P°C where 1 <k<mn, P= [O,l,O,...,O]n and C is a pdiu
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circuiant; and-additionally, if PkC is symmetric, then either k =1 or
n = 2k, This is only a conjecture on my part. However, in consonance
with it the following facts are obtained. Let G bé a group of order n.
Let-(cl;.;;,cn) be the first row of a group matrix .C of G defined over

the ring of rational integers. Then, without ambiguity we maf write
C = [Cl""’cn]d'

- Lemma 6. Let C = [Cl"°°’cn]G be a symmetric real nonsingular group

matrix with principal idempotent decomposition

C = 5By +oo0e + 8B | - (31)

and le£ e denoﬁe the row sum of the first row of’ Ei..'Then, forb
i= l,....,t:
;) Ei is a symmetfic real group‘matrix;
2). : the_diééoﬁal eiemegt of E; 1is a positive rétional number‘equal
. to.rin"l where Ty is the rank of Ei’ the number of,eiggnvalues
of C equal FO~$i3
5 .

3) e, =e; and eiej = 0, if i + Js

L)  4f e}genvalue %l.f cp t eee tCs then e‘:j = 0 for j + 1 and.el = 1.

Note: eyt is always an eigenvalue of C,

Proof. (E’i)2 = E’i, i=1,...,n and E’iE’j =0, i % j. Hence, since
¢’ = C and the ppinéipalnidempoteﬁt decomposition of C 1s unique, eq.3l

implies E’i = E,. It is known, e.g. see [8], that for principal idempotent
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decompositibns a matrix which coﬁmutes with C commutes.with every Ei.
Therefore, sinée by definition, C'is a left regular representation, Theorem
1 implies all matrices in the riéht regular'represehtationslcommuﬁé wifh
the Ei and so, by Theorem 2, ﬁhe Ei are grouﬁ matrices of G. This prqves
l) since thevEi are real by definition of the decémposition.

The principal ideﬁpbtent decomposition requires that Ei are similar

to a diagonal matrix of L's and possibly Of's. By taking the trace of Ei

and the corresponding diagonal matrix and taking cognizance of l), that is,

the main diagonal of Ei is constant, 2) follows immediately.  Let

= eol (1,...,1)
be an n- tuple colum vector all of whose elements equal 1. Then, since
the Ei s are 1dempotents, 5) follows directly from l) and the fact that

2 _mx a _ o : B} ;o
B, % —_Eix and Eiﬁjx = 0. (Note: Fér any i, E;x = (el,...,el) = eX,

e.g. These results

2 I T N ’ ’
hence E,'x = Ei(eix)-— ei(Eix) = e é,X, whence e, i

are a consequence:of’ the fact that the row sum of any group matrix is
independent of the row.)

From eq. 31, Cx = lelx + 'f' + stEtX 80, €yt ccc +C = slel+--—+stet

By 3): 1t is pos31ble for only one of the el 5 to be non zero, say &5

whence the preceding equatlon reduces to
T*Cl +_ff"+.cn = 8189 .
But, since C is nOHSlngular the left side is non zero, S0, €, + 0. Since

e 1s a row sum of the real matrix El’ el = el2 >-0, and this implies ey = 1.
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Therefore + ** 4+ cn = s

1 S
The next‘feéﬁlt is én integral»circulan£ analogue of the‘

polar factorization theorem.
Theorem 9. " IfA is ann X n nonsingular real group matrix then there
are unique realimatrices Hand U such.that'A = UH where ¥ H is a pd
group matrix and U is an orthogoﬁal group matrix.
- Proof. Let C_=vA’A, be fhe gréup.matrix in eqg. 31 and let
H =./%1El + oo ;-J%tEt where we note that the elgenvalues s, of C
are positive'sihce C is pd. Theréforé,,by 1) in Lemma 6, H is a real
positive definitée group matrix. Mbreover,

AWM = - (33)
‘where H is the only positive definite matrix for which this is true |
by virtue of the uniqueness of equafion 31, In [8] it is shown that
for nonsingulaf A there are unique real matrices U and Hb such that U is
orthogonal and Ho is positive definite with A = UHO.' But this implies
A'A = H.O2 = H?A which by uniqueness of H in eq. 33, in turn implies,
H = HO; and therefore U is a group matrix by Corollary 1 and:multiplicative

closure. TFollowing this, the terms AgH,U in Corollaries 4,5,6 are

assumed to be the group matrices in Theoremi9.

Corollary 5; If det A=+ 1, then det H = 1 and det U = det A. (A,H,U
are real) .
Pfoof; By eq. 33 (det H)g = l,ihence det H = i'l, so, it equals + 1 since

H is positive definite. Therefore det UH = det U = det A.
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Corollary k. A is normal iff A = HU = UH.
. Proof. Consider the commutativity property with regard to the idemﬁotent
décomposition and the equality of H?U and UHE,

Corollary 5. If in Theorem 9, A = [al,...,an]G-ié'én integral unimodular

]

group matrix and U = [ul,...,un]G and H Fhlf""hn]G’ thep

Ll

h=h + o+ > 1 and’ul toerrtu o =a, bt ba =4 1.

Proof. Let u = ui oo tu and a = aq + e 4 a - The equation Ax = UHx

where x is an n-tuple column vector all of whose elements equal 1, implies

a = uh. Since A is unimodular and integral its row sum equals + 1;

for, XAA?%X’ = naa_l ;~xinx’ = n. Since U is orthogonal, u2 = 1, because
nu” = xU'Ux = x’Iﬁx = n. Consequently, h = + 1 which perforce equals

+1 since +i1H{is positive definite.

Theoremilo;v If A is a unimodular integral‘éirculant then there is an

integer s such that P°A is symmetric where P = [0,1,0,...,0] .

. Proof. . Let K bélthe n X n matrix

Then KK = I_and KPK = P/, Hence KA'AK = (A'A)’ = A’A so that AKA™
is an integral orthogonal maﬁrix,hence a generalized permutation matrix.

In fact, if Q = AKA™L then

1

KQ = kaka™ = a/a”t : (34)
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so that KQlis a circﬂlant;.ana béing trivial implieé thefe is an integer
k'such that 1<k <n and?K@ =li P, Thﬁslby eq. 3k |
 ar-xfa. (35)
But since fhe ToW sum éf A and A’ are equal, |
A = PkA. V | (56)
~ Suppose n is odd. lé;.r be ah-ihteger suéh that Er;; 2n-k or
2r = n-k according as'k,ié even or odd. Let.s be thebnonnegative>integer
" S sewer, (57)
This means r + k = n + s or r’f k=s according as k is even or odd.
Tﬁerefore by eq. 36 | |
| P'Al = P = P,
and so by eq. 37

A’ = PR,

(P°A)" = AP = AP =P
which proves that"PsA is symmetric.

- = KPk is zero on

Now suppose n is even. Since the trace of AKA™
the left, it follows that -the number of elements in’ the nontrivial diagonal(s)
of P* is zero, or what is the same k is even. Hence, letting r = (n-x)/2

and s'= n-r, we get from eq. 36

r+k - r+n-2r s

CPAY = PTTRA = P A = P,
whence
o (@A)t = AP = APt

and so, P°A is symmetric. .
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. Corollary 6. If A is a unimodular integral circulant then there is an

integer k such that Al = PkAV (where k is even if n is even).

TheorémJil.f‘>Let A be a unimoduiar-ihtégral_ci?culant. Thén the
eigeﬁvalues of the symmetric matrix KA'are the Square roots. of The

eigénvalues of the positive defifiite circulant A'AT,

Proof. Observe.fhat KP is obviously symmetric for each i = 1,e00,n.
Hence KA is symmetrlc. Then consider the principal idempotent

decomp051tlon of KA and A’A = (KA)‘KA; and the proof follows.

- 8. Positive Definite Skew Circulants.
In this section Bn always dehoteé an n X n symmetric unimodular
integral skew circulant.

By definition of Bn,-We‘may write, for k> 1,

B = [b bl, STRRRPL NP L PR PP N (38)
ifn=2k+ 1, and
Bn = [b bl’ ,...,'bk,O bk’ k-l"”-’—bl]n (39)
if n'= 2k + 2. Then, by eq. 16 if B_ = A, we get for the ith eigenvalue
of B , , _
n - : .
- n . ..
€y = E: ajp(gl_l)(J-l) ' L (o)
=1 |

- which, by substitutions of the aj’s with the b's in eq. 38.or 39, yields

for any n >3,



N k V . .
A N - RO K Z o(21-1)(n-3) K
€, =b_ + E: b 3P b (k1)
J=1 J=1
Lemma 7.  If B is the symmetric n X n‘skew circulant given by eq.'s 38

or 39, where n = 2k+l or .2k +2 then it's elgenvalues are given by

e.l =+ Zb ({81 _ p(gl‘ )‘(n'ﬁ): (42).
_ 4
i=1,...,n and
e, =€ . (43).

i n-i+1

for 1 = 1,2,...,k+l.

. Proof.  Eg. 42, of course, follows directly from eq. 41. . Eq. 43 follows

from eq. 59‘and the fact that the eigenvalues of a symmetric real matrix

2(n~i4+1)-1 1-2i
P =0

are all real. For, and so, by substituting

n-31i+21for iin eq. 4O we get,

n.
_ (1-21)(4-1)
*n-isl = EE #3P o
J=1
and so, by comparing this with eq. 40, e, = ¢. = e_ . for i = l,.;,,k+l,

i i. n-1i+1

whether n is odd or even. This evidently implies

Lemma 8, . For n> 3

o o
det B = (eleg-j-ek) e(n) =+ 1
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- Where
62 ifn = 2k+2
kbl 2 T REE
e(n) =
€k+l ., 1f n = 2k+1 .

Given a square matrix A we denote its trace by tr(A). From eg. 15

where A=Bn and eq. 43 we have

Lemma 9. For n> 3~

k
tr(Bn) = nbo =2 ) e + s(n):
i=1
: '2€k+l’ ifn= 2k + 2
where s(n) = 4
L €1l ifn=2k+1 .
Lemma 10. If n = 2k+l and- An'= [al,,..,an];' is a uﬁiﬁoduiar integral

skew circulant with eigenvalues defined ésﬁin eq. 15, then

n -

) VT

o1 = o1 +), (1) R
J=e

n

Proof. By eq. 16, keepihg‘inhmind that p = -1, we get



. nos T ,
_ L (e )(dL)
“l T *1 * E: &5 P
3 o §=2

“n )

- o ~a)d-

= a; +“§; (-a) éj .
=2

Therefore, ¢ Kl

the

Kl is a rational integer; similarly with ¢

k+l eigenvalue of the inverse of An, which.aé with An is a unimodular

integral skew circulant. Therefore, since ¢ 1 divides 1 = ., 1

K+ Crr1” £

. {
as desired.

y P Wn = " i . :
Corollary 7. If ¥n 2k+l,‘Bn is as in eq. 38 then

..k '
) = - j '=
€1i1 bQ + 2 }: ( 1).bj + 1.
. Proof. Since Bn by definition is symmetric fhe‘corollary follows directly
from Lemma 10.

We now prbceed to show for which values of n is Bn trivial or nontrivial.

Obviously it is trivial for n = 1,2.

Case 3: . BB = 15 .
. Proof. Let 35 = [a,b,—b]B_ . By Lemma 7 and
2
e, =a+ D (p-p7)

€. = & -_2b = 1

' : 2
and so, since -1 + p - p = O, € =8+ b, whence, by Lemma 8



-
det B, = €, ¢, = (a + b)?(a - 2b): =

Therefore, & = 1 + 2b implies a + b = 1 + 3b = + 1; which holds only

ifb= Q and a = + 1. Since B5 is pd, a = 1.

Case k. B) = [a,b,0, -“b])+ is nontr1v1al for integral solutions of

. the equation a2 - 2b° = l when b + 0, a> l. For example [5,2 0, 2]u
Proof. By Lemma 7, eq. 42,

= 2.+ b (p-p)

T T
]

®
!

=a+Db (95-99) =a+b (p7-p)
;‘. 5 2 .
and so, 'since - (p-p” )" = 2, by Lemma.2,
et By = (e ) - (a2 - 22)°
we_haveﬁva2 ~ 20" = + 1 which equals +1 since €185 > 0.

ConVefseiy'if,a and. b ane_sblutiohstsuCh that a > O, b + 0. ‘Then
8 > op° implies a > + /2b so that a +y2b > O and hence €1s€, > O,

- Therefore BA is a pdsiu skew circulant and npntriviai.

Case 5. B5-= [a,b,c,-c,-b];‘ is nontrivial iff a,b,c are solutions to
| 2 . : ;
a” - Ube =1 | . (Lh )
(b—c)(l+b—c)1$ be - ' (L5):

. where a > 1. TFor example [3;2,1,—1,-2];.
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Probf. By Lemma 7 and Corollary T

€, =a+ bkl - Chp
€p =8+ DAy - hy (46)
e,=a=-2b+ 2 =1
5 ©
Iy 3 2 . N
where xl = p~-p and x2 = p”=-p and p is the 10th primitive root

3

of unity. Using'the fact that -1 + p = p2 + p7 - plL = 0 a straight

forward computation will show that e,¢ is an integer and hence from

172
Lemma 8 € €, = 1; indeed,
€. € =’a2-b2-c2 + ab-ac-3bec = 1.
12 .
But
2 2 |
Mele2 + €5 = 5a -20bc = 5 (h7)’
o 2 2 . }
€5 = €16, = 5(b“+c” - abtac - be) = O.

The latter equation gives

| " (b-c)(b=c-a) = =be

which.reducés té '
(b—c)(l%b—c)‘: be

by eq. 46.  Eq. 47 implies that if B,

is nontrivial then a > 1.

Conversely if a,b,c are integral solutions to eg.'s Lh and 45 such

that a > 1, then B

5 is a:.nontrivial pd unimodular skew circulant. For,
R 2 2
| 46162 + €5 .= S5a - 20be
which by equation L4 equals 5. »Thus solving for the integer €€, e
getv,elee = 1. .Hence by.CorollaryFT, 65 = + 1 and so by Lemma 8 B5 is
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5-6162 = ;5-1,

= 1; which is eq. 46. To show that all the eigenvalues of BS

unimodular; moreover, since 5 divides the difference ¢
€

3
,,areVPOSitiye we note that kl and Xz are the roots of the polyﬁomial

Ax) = : —x-l which means

172 2. Mo 5
So that
b bte
€ —'a 5 - 5 /5
b-c. : bt+e
e, =a+ 3 + 3 J5 .
| , “b-c b+c : R .
We must show " a + —Er-> + 5 /5 « By eqg. 4h, since a > 1, be >0
and s0 by edq.” 45 b-c > 0. Hence we only need to show a + b2c bgc./E

is faise when b,c > 0. . By squaring both sides and transposing terms we
get

a® + a(b-c) < (b-c)2 - be .

But the right hand side is negative according to eg. 45. This is a

contradiction. Hence .el,eé > 0 and so, By is pd.

=5
Case 6. B6 = [a,b,c,O,—c,—b]é is nontrivial iff a,b,c are integral
solutions of the equations

(48)
- (ko)

a—2c‘

i
=

DN

where a > 1. TFor example'[5,4,2,0,-2,¥4]% .

i
[
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Proof. We haﬁe by Lemma 7

atb(p-0”) + c(p=p")

€, = a~2c
N . . ' 2
&5 = a-b(p-p”) + c(p%=p*).

But by Lemma-9 and eq.ihB in Lemms, T
£x(Bg) = €a = Warc(p™=p")

.)f+‘2(a-2c)
Implies . » ,

2 b
c=-c(p™p) .

To show c +~O. Let Hy = [1,0,%1,0;1,018 . Then

-1 -1l
BgligBg = (BgHg)Bs

' ! -1 .
(a-2c)H636
. =_,H6'.
Since B6-l is an integral matrix &-2c divides one, and so,

€y = a-2¢c = 1 -
§incé B6 is pd. Thereforé, if ¢ =0, B6 = I6. It follows that‘pg—ph =1,

-and so,

€

165 = (a+c)2 - 3b°. " 4 (50)‘

By Lemma'8,_-165.= }.
Conversély, suppose a,b,c satisfy equations U8 and 49 such that

a> 1. Then a-2c = 1l-implies c¢ % O so that



_55-

L2 - -
p-pm+1l=0. . (51)

Therefore, 6163 equals one by eq. 49 so that by Lemma 8, B6 is
unimodular.

A solution to eq.. 51 1s p = /5 which is a 12th primitive root

2
of unity. Thus p5 = iglz implies
e, = ak/3b + ¢
-95 = a~/3b + c.

By eq. M8; c>0 andlhencé by eq. 50 it follows that

a+ c>+/3b

so that 61,65 > O, This pfoves that B6 is pd.

-

. Case 7. For A,7 = [a,b,c_,d,—d,—c,—d]% the only facts knowniare:

€l=a+bn1fcn2+dn5
cp =8 kBl - ol o+ dl,
c. =8 + BTy = Tl + af

“where ﬂl = p-§6, ﬂg = p?-pg)‘HB ='p5—pu,b‘are solutions of the equation
‘xz -fx2,- 2x + 1

and ' Ty - Ny + ﬂ =1 whén p is the lhthfpfimitive root of unity. JTQ@

solution of the cublc equatlon is

—%(ﬂ)m@wﬁ(mD
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ReSult:‘ We:hgve showﬁ'£hat [5,2,0,;2]h, [5{2,1,-1,—2]5, and
‘[5,4,2,0;—2,—4]6 are positiﬁe‘definite wnimoduler skew circulants.

The diagonal elements 353,5 1n these métrices are minimal for this

class of pontfivial matrices. Hénée it is impossible>for these matrices
to be of the‘fofm C’C -where C ig a nontrivial unimodular pdsitive
definite integral skew‘circulant since the diagonal elements of CfC

would otherwiSe‘exceed 35355

9. Aggendix.
et C = <:? $;>>‘whére?m and n are integers. Then m 4+ n and m -‘n

are square ihtegeré if and Onlj‘if there'ig a unique matrix A of rational
integers ;f the form <:Z"i:> Such.tha%.¢é=qAﬁA. This comes as direct
consequence»qf;the fagt; The:rélépively ﬁrime solutions of the equation
XE + y? = Z?.'With y,'eﬁen.ére-x'=‘rg - 82; y = 2rs, z‘= r2 + 52, where
T } s > O; (r,s)A% 1. | | |

| - The above propositiop~can be violated; if'the conditioﬁs on m and n

are relaxéd. For example
(65 60N _ 8N 871
<6o 65 > _'“ 7","4) q::.'..lr :

The case for 2 X 2 skew .circulants turns out to be trivial.
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