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ABSTRACT

We are éoncerned with constructing examples of
maximal abelian von Neumann subalgebras (MA subalgebras) in
hyperfinité factors of type IIT. Our results will show.
that certain phenomena known to hold for the hyperfinite L

factor of type IIl also hold for typé iII factors.

Let M and N ve subalgebras of the factor G
We call T and ’7L equivalént ir M 1s the image of T
by some automorphism of G .5' Let N(M) denote the sub-
algebra of G génerated by all those unitary 6perators in
G which induce automorphisms of M ». and iet NQGM) s
NB(ﬂU,... be defined in the'obv%ous inductive fashion.
" Following J. Dixmier and 8. Anasﬁasib, we call a MA sub-
“algebra T of G singular if N(W) =N , regular if
N(M) =G ,‘semiﬁregular if Nﬂn) is a factor di§tinct from
G, and n-semi-regular (m > 2) if N, .. .8 (m) are
not factors but N'(M) is a factor. |

-The MA subalgebras of'the‘hyperfinité IIl,factor
G have received much attention in the literaturé, in'the
papers of J. Dixmier, L. Pukinszky, Sister R. J. Tauer, and
S. Anastasio. It isAknown that ®8 contains a MA'subalgebra.
of each type. Further, 8  contains pairwise iheduivalent
sequences of singular, semi-regular, 2-semi-regular, and 3;~

semi-regular MA subalgebras. | ’ )
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The only hitherto known example of .a MA.subalgébra
in a type III factor is regular. In 1956 Pukédnszky gave a
generai method fdr constructing MA subalgebras‘in a class of
(probably non-hyperfinite) type III factors. Because of an
efrof in a calculation, the types'qf these subalgebfas.is not.

- known.

" The main result éf this thesis is the construétion,.‘
in each of the uncountably many mutually non;isomo}phié
_hyperfinite type III factors of R. Powers, of:
| (1) a Semi;reguiar'MA subalgebra
‘(ii) two seqﬁences ofvmutuaily inequivalent 2-

| sémi—régular MA Subalgebras }
‘(iii) two sequences of mﬁtually inequivalent 3-
semi-régular‘MA subalgebrag. ‘
-_}Leﬁi‘au denote onelof thesé type III;factors and let 8
,ééﬁggémgﬁéwﬁyﬁérfiﬁiﬁé”ffimfégfdffﬁéwROughlj speaking, when-'
ever é ndn—singular.MAréubalgebra of ﬁ_ is constructed by

means of'groupoperatoralgebras,_our method will produce a

' - MA subalgebra of G of the same type.

H. Araki and J. Woods have shown that G ® # G , _
aﬁd'it\is'therefore only necessary to construét-MA subalgebras
~of GOR of~th¢ desired type. Wé obtain MA subalgebras
of G &6f by ﬁensoring‘a MA'subalgebra in G .with'one in
R . in order to determiﬁe the typé of such a‘MA‘subaigebra,’
we realize: B as a constrﬁctibleralgebra and then regard

G®R as a constructible algebra; this allows us to consider
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operators in G ® 8 as functions from a group into an

abelian von Neumann algebra.

bAs a corollary to our calculations, we are able to
construct mutually inequivalent sequences of 2-semi-regular
'and 3-semi-regular MA subalgebras of the hyperfinite IIl '

' factor which differ from those of Anastasio.
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1 REVIEW OF VON NEUMANN ALGEBRAS

In general, our notation and terminology is that

of Dixmier's book [6].

A Hilbert space ¥ 1is a non-zero vector space over

vthe_complex numbers € together with an inner product

‘_x,y - (x,y) such that ¥ is complete with respect.tokthe
. : i v
“norm x - || x| = (x,x)® . By an operator on ¥ we mean

" a bounded (equivalently: norm-continuous) linear trans-

formation of ¥ into ¥ . We use S&(¥) to denote the
‘algebra of all épefators on ¥ , I, (or I, when H is
underétood) to denote the identity operator on ¥ ,‘ and CH
to denote the scalar multiples of Iy - 1P Y ¥, [

is the smallest closed linear subspace of H .containing 17 3

“and . prﬁﬁﬂ"is the (orthogonal) projection onto this subspace:

If Gc< &(¥) , G’ 1is the set of all those - B e £(¥) such

that AB = BA for all A ¢ G ; G’ is called the commutant

_'ofA G . A von Neumann algebra (or ring of operators) on

¥ is a '*-algebra of operators on ¥ satisfying :G” =G

If G c £(H) is arbitrary, R(G) , the smallest von Neumann _

algebra on H - containing G, is eésily seen to be

’7(0 U G*)" . This algebraic definition of a von Neumann

algebra (which is used by Dixmier in his book [6]) is equiv?
alent to the topological one originally employed by
von Neumann: G < £(¥) is a von Neumann algebra if G is a

weakly closed *-algebra containing Iy . " The equivélence

. N
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of these two definitions is a part of the following more ‘
general result, kﬁoWnIas the Double Commutant Theorem

(see [65 p.44], [7; p.885], or [14; §2]): if G is a
&félgebra,of”opefators on ¥ which contains Iu , then
R(Gj<= " is the ciosure of G in each of the four_tdpol-
ogies: . weak, strong, ultraweak, and ultrastrong - on

(%),

Let G and ® be von Neumann élgebras{on‘the

Hilbert spaces ¥ and X , respectively. .An iso-
morphism of G onto # 1is a linear and multiplicative
map - b of G onto & which satisfies (A*) = (¢(A))* for
‘ R

all AeG . If there is an isomorphism of G onto 8

we say that G and 8 are isomorphic, and we write

G =8/ . Tt turns out that an isomorphism of G onto @

is necessarily ultraweakly and ultrastrongly bicontinuous
[6j p.57].. ' An isomorphism ¢ of G onto 8 is called

spatial if there is a linear isometry ¥ of ¥ onto X

‘such that ¢(A) = ¥a¥' for all A e .

‘Let G Dbe a von Neumann algebra on H . A trace

on Gt =fAcecG: A > 0} 1is a mapping w : Gf - [0,°)yf{=}

.which satisfies the following:

(1) for all §,T e at, w(s + T).=-w(s) + w(T)
(1) for all S e G¥ and all A > 0, w(AS) = Aw(S)

(where the convention 0.0 = 0 1is used) |
(iii)' for all S e c* ang ali unitary U e G ;

w(USU#*) = w(8S)



The trace ® on G+_-is called .

(a) finite, if w(I) <o° _
" (b) semi-finite, if, given T e 6t - {0} 3othefe is an
SeC" with 0< S < T and w(S) <o
(¢) faithful, if S ¢ G and w(S) = 0 imply
S=0 |
(d) normal, if: whenever 3 is an upwardly-directed
set in- at ﬁiﬁh least upper bouhd T ; at

then ®(T) = sup {w(S) : S e F)

1 AAfactor on. H# is'd von Neumann algebra G on 'H
: w1th on a’ Gu‘, It is the factors that have received the
most atuenolon in. the llterature A Thelr extreme non—

7_commutatlv1ty actually makes them relatlvely easy to study,

S moreover, every “von Neumann algebra looks locally llke a factor;

‘and 1n fact is bullt up-’ from factors by means of the direct

‘E’lntegral [17] "The comparison theorem ([6; p. 338] or [1l2;
- Theorem VI}) 1mplles that 1f w~’is‘a normal trace“onl'a+, where

G 1s a factor, then one of the follow1ng must be the case:

0 for all A e a’

E .
=S
I

L (d) i‘ . |
(1) w(A) =% for a1l A e ¢* - {0 | R
(4ii) w is faithful and semi-finite.

- Moreover, to within a positive multiple, there is at most one

‘non—trivial normal trace on -G+ . A factor G such that
uheve 1u no normal non-zero semi-finite trace on ol is said

to be of type III. If a factor G 'is not of type III
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. there is a normal faithful semi-finite trace w on - G+

which, in some normalization, must satisfy one of:

(i)- w(c®) = {0,1,...,n] fof some integer n'z_l
(i1) w(6P) = {0,1,... o) |
(111) w(e®) = [0;1]
(1v) o(eP) = [0,)u}
Where aP is thenéet of.pfcjections'in“ﬁ . Iﬁfcase (i),
a 4ie said to be of *ype‘I s in this case G 1is isomorphic

: to *he al@ebra of all nxn matrlces with complex entries.
"In_case (11)J G. 1is sald to be of tvpe ijf there is a )
- unique infinite cardinal o such that G 1is isomorphic totb‘
?the'algebraaof allbbounded linear operators on an ca-dimensional
Hiibert space. . If'(iii) holde,l G  dis of type IIl’ and if
(iv) holds, of type TI.,. It is clear that the notion of a
factor and its type are 1nvar1ant under 1somorbh1sms Given"
"that factors’ of each type exist on sepafable Hllbert spaces, -

-the tepsor br0ducc enables one to constfuct factors of each

',‘type on arbitrary infinite-dimensional Hilbert spaces.

&
Let # Dbe separable.1nf1n1te~d1meneaonal Hllbert
”'space.l At present, three [two] non—lsomorphlc factorseon -
¥ of type I1, [II,] are known ([23; p. 3.85], [24]]). In
'f-tﬁis thesis,ithe'only factor-of type IIl .which is‘of:interest
’is the hyperfinite one. In general'a'factof G on H is
' called hycelflnlte if-it is generated by an 1ncreas1ng sequence
(a with each O a factor of type 12n . - Murray and

o)

; von Weumann showed that all hycerllnlte factors of type IIl X



on ¥ are isomorphic [13; Theoreﬁ XIV] (see also [6; p.291]);
hence one can speak of the hyperfinité IIl factor on .E .
Recently, Powers [19] announced the existenée of an uncount-
able number of pairwise non—isomorphicohyperfinite factors

of type.III on ¥ (for the proof; see{18]; in [2] Araki

and Woods give a different proof of this result). It is
these factors that:we shall be priﬁarily concerned with‘in
this thesis. Twolnon—isomorphic hqn—hyperfinite factors of
type III have been constructed oni ¥ , one by Pukdnszky

[20] and one by Schwartz [25].

The remainder of this section discusses the three
methods which we employ to obtain von Neumann élgebras.
These constructions - the group operatorvalgebra, the con-
.structible algebra, and the infinite tensor product‘—ﬁare

all due to Murray and von Neumann.

Let‘ G be a group with identity e . We use ‘é
to denote the Hilbert space wiﬁh-orthqgormal basis (é)geG 3
notice that & is separable whenever G_ is at most count-
able. For each g ¢ G there is a unique unitary operator_‘

Vg on & satisfying

(L.1) vgﬁ = (gn)™ - . for all he G .

This defines a unitary representation g - Vg of Rd “on é .
The group operator algebra over the group G 1is the von
g8 e’G) on © (f&r a complete
disoussion of the group operator algebra, see either [6;

Neumann algebra. C, = &(V

pp. 301-303] or [13; §5.3]). Alternatively, @G can be
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described as the set of all those operafors T on ¢ with
(T @, ﬁ) = (T g, (hg—l)A) for all g,h e G . The algebra

is a factor if and only if G has the infinite con-

Jugate class property, i.e., whenever
5 -1 . e ot e s
(1.2) {hgh™ : h € G} .is infinite whenever g # e;

in this case; GG is necessarily of type IIl . It é is
separable and if GG is a factor, then'éBG 1s hyperfinite

whenever G i1s hyperfinite, i.e.
2 -

G = U Gn , Where Gl o G2 <+ and

each Gh is a finite subgroup: of G .

Before proceeding to the constructible algebra, we
will briefly consider the tensor product of two Hilbert
spaces. Let # and ¥ Dbe Hilbert spaces with orthonormal
‘basis (@i)iel and (yj)jeJ » respectively. Then

| /, co. 3 . - -
(04 ®4%j)(i,j)eIxJ is an orthonormal basis for ¥®X . For

each J e'J we denote by éj the canénical,embedding

X - x® Y; of ¥ into ¥ex - Given A e S(¥®X) , the

é;_A ék (which are operators on ¥) are called the matrix.'-
eléments of A relative to the orthonormal basis (yﬁ)jeJ -
an operator on HOK  is cémpletely determined by its matrix

elements.

Lemma 1.1 With the notation of the preceding paragraph:



(1) for each J,k € J and A,B e £(UOX) ,

* _ e .
07 4B b = T ($5 A 6,)(4] B &)
the.sum converging in the strong topology on.

£(u)

(11). Ir (Aa)aeD is a net in &(M®M) which converges
weakly to an A e S(3®Y) , then for each J,k € J o,

K - ’ . 3 * » .
(éj A, ék)aeD cogverges weakly to éj A ¢{ .

Proof: Simplehcalculations (see [6; pp. 2%-247 or
[1e; %2.41) .

Constructible algeﬁras weré‘first considéred by
Murrdyland.von Neumann in [12] and {16], and further deveioped .
by Dixmier in [6; pp. 127-137]; our notation and terminology
is taken from Bures [3]. : The system [M,¥,G,g - Ug] is
called a C-system if m is a maximal abelian von Neunann

algebra on the Hilbert space ¥ , if G 1is a groﬁp, and if

g » U, 1s a unitary representation of G on ¥ with
Ug'm Ué =M for all gec G .  Let [M,¥,G,g - Ug] be a
C-systemn. Finite linear combinations of the operators |

(M@i@)(Ug®Vg) , MeM™M and g e G, form a x-algebra on

e (Vg as in (1.,1)); .we use G[{M,.¥,G,g - Ug]‘ to denote
ﬁhe von Neumann algebra on Heh generated by this x-algebra. -
If A elG[YH,M,G,g - Ug] , the matrix elements of A

relative to the orthonormal basis (é)geG fof/ & are such.

that for all g,h e G, ¢§A¢h;¢gh_lA¢e and



by A b Ug €M . Setting M, = b3 A ¢, UZ , we obtain a

&
fomily (Mﬁ)geG in M which completely determines A ,

and we write A ~ (M g e G] . Alternatively, the algebra

g _
am,¥,G,g - Ug] can be described as the set of all those

in M,

. A a ’ a2 0 P ol " '\
T ¢ £(¥®G) such that for some family (Mg)geG

frd =M _qU for all g,h e G .
Lemma, 1.2 Let [M,¥,G,g - U] be a C-system and

let A and B be operators in G[M ,¥,G,g - Ug] with

A ~ [Mg : g€ G] and B~ [Ng: g e G . For all g,h e G

and M e M

. . i j

(1) ¢ AB o U¥ = T M _3U _3 N U* _1, where the

g © 8 xeq gk T gk T K gk

sum converges in the . strong topology on ™

. ¥ % 3* *® *

A U* = U_M U

(11) g A% b5 Uy = Ug M3 Uy
(iii) éé(M@I)(Uh®Vh) ¢e Ué = 6g’hM ) N

(L) by A(UETL) b U; - Mghflv
X% Lo : B
_(v) ¢g (U,87,) & ¢ Uy = Uy thlg Uy

Proof. Simplé calculations.‘

‘Definition 1.3 The C-system [M,¥,G,g ~ U] is called:

(i) free, if M n Uéﬂl= {0} for all g e G - {e}
(ii) ergodic, if M N {U_ : g e G}’ = €y -
A von Neumann algebra is called constructible if it is
spatially isomorphic to G[W?,H;G,g - Ug] for sdme free C-

system [m;:t{JG:g - Ug]



Proposition 1.4  ([%; §4] and [4; §71). The C-system

[T ,%,¢,8 ~ U] is free if and only if, for each g ¢ G - {e},

)ieI

. ST _ . - n * " .
that iéIEi = 1 and E; Ug By Ug = 0 fox gll iel.

there exists a family (Ei of projections in M such

Proposition 1.5 ([6]1). Let [M,%,G,g - Ug] be a

free C-system, and let G = G[?ﬂ,H?G,g - UgJ . _ Then
7n®®é is a maximal abelian subalgebra.-of G , and G is
a factor if and only if [M,¥,G,g - Ug] is ergodic. - If

i 1s a factor, then:

(1) G 4is of type I if and only if M contains a
- minimal projection; 1if n 1is the cérdinality of
a maximal family of palrwise qrthogonal minimal
projections in M, +then G is of type I,

(i1) @ is finite (i.e., of type II; or I_ , n <o)

if and only if there is a normal finite faithful
trace w on M7 with ,w(Ug M U;) = w(M) for
all 2¢G andall Mec M*

o (iii) G is of type III if and only if there does not

exist a normal semi-finite faithful trace w on

m+ witn w(U

all M e M5 .

MU.) = w(M) for all g e G and

Proposition 1.6  ([8], [13; Lemma 5.2.3]). Let
[m,,G,g - Ug1 be a free C-system, and suppose that
aIM,¥,C,e » U] is a factor of type II

o

1 II,-G ‘is

abelian, then G[M .¥,G,g - Ug]'is hyperfinite.
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In [15] a complete discussion of the infinite
tensor product of von Neumann algebras can be found. Let
I be an infinite indexing set, and let (3-{-1)ieI

)ieI will be called

be a
family of Hilbert spaces. A family (f,
a C_-sequence if each £, ¢ M, and if T | 1 - || £,]] | <.
o i i . i
iel
are called equivalent

\
Two C_-sequences (f

)i and (gy)

lel
if £ | 1 - (f,,g.)] <= ; this is an equivalence relation
iel 177 . :

on the set of all Co-sequences.

- 20
Let (f 5 )

denote the equivalence class determined'by (fg)ieI . For

ieT be a fixed Co—sgquence, and let €<>

€ @O , let @ fi denote the map

each (f.)
+ ieT

iel

(85)1c7 =TT (£5.8,) of & into € . Defining finite

linear combinations of the ® f. in the obvious manner,

‘ lel : .

we obtain a vector space V . The map (f.). - &® f. of
E i/iel ieT *

@(3 into V is clearly multi-linear.” The form

( @ fl J. gi) —)-n—

(fi,gi) extends to a sesqui-linear
lel iel o

form on V  which can be shown to be an inner product. We

will refer to the completion of V relative to this inner

product, which we denote by ® (hi,fg) , as the infinite
iel o :
-0

tensor product of the Hi relative to (Li)ﬁeI 5 von Neumann,

reserving the phrase infinite tensor (direct) product for a-
much larger Hilbert. space, called this space the @C;adic

.incomplete direct product. | Note that @ (ﬂi,ff) really
iel , ‘
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‘ e
jepend n € and Nno- G i 3 £y). c @

depends on C3O , and not on the particular ( 1>1eI o
selected. The following result facilitates working with

the infinite tensor product space.’

Proposition 1.7 ([15; Lemma %4.1.4 and Theorem VII]).

Let I Dbe an-infinite indexing set, let (Hi)ieI be a
. ~ o -. : o N B Ja - O
family of Hilbert spaces, and for each 1 ¢ I , let fi

e a unit vector in Hi

(i) TFor each i € I , choose an orthonormal basis

Y with 0 e J. for H. . Let J be
1 o+ L '

JGJi ‘

the set of all those J eIl J, with j(i) =0
iel Ia

for all but fihitely many -1 € I , and for each

. (i) - .

jed,let £, =9 ed(1) 7 mmen (£.). is

, 2 ser * J’jed
an orthonormal basis for ® (Hi,fi)

C iel

(1) Let I =U I_ be a disjoint union. Then there

1.-
keK *
is a unique linear isometry (called the associa-

¢t e e o : e .
tivitylsomorphism) of ® (ﬁi,zi) onto

lel
o 0y . o) . e
® (@ (¥;,07), ® £;) which carries ® £,
- keK iel. iel,. . -iel B
k : K ‘ \
into. ® (:® \fi) for each Co-sequence ‘(Li)iel
keK iel .
k
. ¢ O
C“‘ e - £ L
equivalent to <fl)l€L
H 3 #O 3 s 3 ; siti
| Let (hi)LeI and (li}LCI be as 19 PfopooL01on_l.7,
R _ v
and let ¥ =© (Mijfi) . If T e £(ﬂi ) , there is a unigque

iel , o)
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a. (T) e £(¥) which satisfies .
O .
[, (D)l @ f.]1=(® £.) @ (T £; )
o iel .ieI~{io} o
< . o
for each ~-3equence fo)s equivalent to 7)) .
for each C_-sequence (fl)lel equiva Ll)lGI
. ’ . . . o
It is easily seen tzqt a;, 1is a. w»-~Llsomorphism; follow-
. : o o : .
ing the usual no ca'ion, we write T for e (T) . If
e
G, is a von Neumann algebra on ¥, , then
i : i
o o)
G, = (T : Te Gi } is a von Neumann algebra on ¥# . If,
o O
for each i e I , Gi is a von Neumann on ¥, , then

1

o =
@ (G,,f;) denotes the von Neumann algebra R(G; = 1eI).
€ :

on ¥ ; we call @ (Gl,Li) the infinite tensor product of
: iel - _ ' '

, . ) o
LY . relative © £, .
the Gy I e to (£i)ier

| broposition 1.8 ([3; §3]). TLet (M )i€I . (£9);
(Gy); .7 Dbe as above,'and.let e = ® (ni,fi

Then:
(1) @ is maximal abelien on ¥ it cach G, ig
maximal abelian on Mi |

(i1) @ is a factor if and only if each G, is a factor

)

(iii) G = £(¥) 4if each G, = £(¥;
Let I be an infinite indexing set.  TFor each

. 1 v s el i :
iel, let G be a group with identity e~ , let

'1 Lol , . C. . .
G c[ﬂl JEN,GT,g - UZ] , where [MY,ut.at,g - Ul] is a
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free C—system,‘and let fi be a unit vector in uh o, Set
We=0 (¥,e) , M=o (M 0), a =,®I<al,f§:®<el)“> )
: ie

eI iel

and let G be the weak direct product of the Gt . ~For

cach g = (g')y,q € G, et U, =:ﬂ; Uzi (a finite product
: ' ie 2 A '

‘ ‘4 s
in which the factors commute). From Proposition 1.7 it

follows that there is a linear isometry Y of

o (W e (¢H)N, 2ehH)
iel ‘ -

onto ¥ ® & with

¥(o (5 @ (e)M) = (& r)e((6h); )"

whenever . ). . ).
o ( 1)1eI i/iel

Cis a,Cé—sequenceequivalenﬁ to  (£9)

and - (gl)ieI € G .

Proposition 1.9  ([3; Propositionv4.l]. and Proposition-

1.4). " With the notation of the previous paragraph,
[7n,M,G,g - UF] is_éffree C—sysfem which is ergodic if and
only if each [M*,¥t,¢t,g - Ué] is ergodic.  The map

A-YFAY T is an isomorphism of G onto alMm,%,G,g = Vel -



2 MAXIMAT, ABELIAN SUBALGEBRAS:

DEFINITIONS AND SOME KNOWN RESULTS

Only separable Hilbert spaces will be considered

in the remainder of this thesis.

The first part of this section consists éf the basic
- definitions which, to some extent, serve to classify the
‘maximal abelian (MA) subalgebras of a factor. Next, é
summary of the known results éoncerniné’MA subalgebras of the
hyperfinite IL; factor i1s given. We conclude this section
with_a'éomplete ¢lassification of the MA subalgebras of &(H)
aithdugh this result was‘knowﬁ to von Neumann, its proof does

not seem tovappear explicitly in the literature.

If'7n_vand T are subalgebraslof a von Neumann -~
algebra G ,jwe say thaﬁ m and__71 are equivalept in G
(or simply equivalent, if G is'uﬁderstood),if there is an
auﬁomorphism>of G which carries M .onto M . This defines
an equivalence relation on thé collection of ail subalgebras
k of G . . One problem in the sﬁructure theory of von Neumann
algebras is to classily up to equivalence all of tﬁe sub-
algebras O0f a given von' Neumann algebra, i.e., the determination
of all equivalence classes of subalgebras. This problem is,
6f course, extremely difficult. - fhe multiplicity theories-
of‘Halmos’tlo] and of Segal [27] givé solutions to the

classification up to equivalence of_the abelian subalgebras
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q_f a_.facto:r of type I acting on aiHilbert space of arbitrary =
dimension. = For factors of type IIJ_’ the analogous problem has

been examined 'and some results have been obtained by Bures [4].

Recall that a subalgébra M or a'von Neumann algebr.é. )

G is MA in G if and only it M'N o = .

Definition 2.1 . Let m ~be a subalgebra of the von

'.Neumann algebra G .  For each integer m > O , we
| inductively define subalgebras N%M) of G by:
Nem = M

- R(U € G : U unitary and
o™t my u* = Nl 1 m> 1

=
/\S.
=
n

We will write N(M) dinstead of Nl(m) , and we call this the

normalizer of M (in @)

Notice that (N™(M)) is an expanding

m=0,1,...
sequence of subalgebras of G

Definition 2.2 If M is a MA subalgebra of factor G s

‘we call M:

(1) regular ir NM) = _G‘ -
(ii) semi-regular, if - N(M) is a factor distinct frém a
(iii) singular, if N = M |
(iv) m -semi-regular (m> 1 and an integer), if |

’m‘, N(?h),.;..’,Nm‘l(ﬁDare not _factdrs but NYm)  is

a factor
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,'Definition 2.3 TLet ™M be a MA subalgebra of a von

- Neumann algebra G >, and let m > l be an integer. We say

, 'that 'm has:

(i) proper' length m , if Nm-lCWD £G but N =a

'(ii)_.improper length mn ,-if
Lo G ) = ¥ S a

- The definitions of regular, semi-regular and singular
MA subalgebras were first given by Dixmier [5], while the
 _not1on of m-semi- regularlty is due to Anastasio [1].
'1Def1n1tlon 2.5 1s a reflnement ‘of Tauer's length of a MA sub-

‘algebra [28]. | ' .

‘It is easy to see that if M and N are equivalent
‘subalgebras of a von Neumann algebra G ,'then so are N(M)
and NCﬂ)'.v Consequently, each of the properties of

Definitions 2.2 and 2.3 is an invariant of the équivalence

¢lass determined by a MA subalgebra.

The study of MA subalgebras of the hyperfinite 1T,
:' factor.washinitiated by Dixmier in his seminal paper [5].
.Let lG ‘be a group, énd consider the group operator algebra:
(o ‘on _é ;" If Gé ‘is a subgroup of G , let N(GO)' be
the nofmalizer of G, in G , and let *
7K(G ) = Q(V : g e‘GO) c @b . Dixmier showed that, under
certain CODdlblOﬂS on G and G 7n(GO) is a MA sub-
algebra of_feG and N(WKGb)) =7n(N(GO)) . ‘Using these
results and éhoosing sultable groups 4G and sgbgroups Go 5

he constructed examples of a regular, a semi-regular and a
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éingﬁlar MA subalgebra of the hyperfinite IIl factor.

The groups.ﬁsed by Dixmier in these constructions

' may bé described as follows. Let F Dbe a countably infinite
:field which is thg increasing ﬁnion of a sequence of finite
subfields. (in particular, we may take for F the algebraic
‘ﬁcompleﬁion of a finite field), and let KX be the multiplicative

.grdup,of'non—zero elements of F .- The set K x F Dbecomes

'a‘grbup ﬁnder.the operation
_(a,b)(c,q) = (ac:ad + b)

" The group  K Xx F 1is hyperfinite aﬁd has the infinite con-
jugate class property (see the proéf of Theorem 4.1). The
usubgroup K x {0} of K x F is its own normalizer and
:7n(K x'{O}). is a singular MA subalgebra of C?KXF ,_ﬂhile
{1} x F iéla normal subgroup  and Mm({1} x F) is.a' .
‘.”;regular MA subalgebra. . It is a bit more difficﬁlt to obtain

'S'a‘semi-regular MA subalgebra. - Let H .be the group of all

'_;nbﬁQsingular i2 X 2 matrices over F and let L be the

_ nofmal subgroup of H . consisting of all scalar multiples of
the identity matrix. Let G = H/L , let H_ and H be thé
jfsubgroups‘ofJAH with typical elements

1 a\ | b ¢
1 and . s b #£EO0
\O 1 , -\0- 1

| respectively, and let Go = Hb/L . Then the normalizer of -

S,
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o
subalgebra of €G .

" Let F and K Dbe as above. Pukénszky has shown
that for some subgroups K_ of X , 7H(Ko x {0}) is a
singular MA.sﬁbalgebra of eK;xF [21]. By varying F and
| Ko' appropriately, he construczed a sequence of pairwise
inequivaient singular MA subalgebras of the hyperfinite Ir,-

factor. The mutual inequivalence of these subalgebras was

established by means of the multiplicity theory of Segal.

Using group operator_algebras over groups of
matrices,'Anasﬁasio constructed infinite sequences of pair-
wise inequivalent 2~semi—regﬁlar and B—Qemi—regular MA sub-
algebras of the hyperfinite II, factor [1].  The invariant
of proper length was used to estaglish the mutual inequivalence
of these:subalgebras. In the proofs of Theorems 4.2 énd'4.3 .

the groups used will be described.

Tauer's constructions of MA subalgebras of the
hyperfinite IIl_factor are based on a different method.

For éach integer p > 1 , let Mp' denote the algebra of all
P, P

2 matrices with complex entries. Eﬁbedding Mp in i
Mp+l in a suitable manner and using the normalized trace on

each Mp B M = ﬁ; M becomes a pre-Hilbert space; let
. p =

¥ denote its completion. We can regard M as a set of

G, in G is HI/L , and ﬂt(Go) is a semi-regular MA T
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“'G»prerators on Y by letting each element of M act on H
’*3f§fby left multiplication.  The von Néumann~algebra G on ¥
h iigenefated by: M 1is the hyperfinite II, factor. Tauer

“iéqﬁgtru¢tsvexamples to show that:
;'”fog(i).-for each integer m > 2, G bonfains m

"pairwise inequivalent semi-regular MA subalgebras

of proper length m ([28], .[29])
:(ii\) . for ‘eaf:ch' integer m > 2 , G contaihs an m-semi- .

reguiar MA subalgebra [30];

.The.remainder of this section is taken up with the

':,classificafion of the MA subalgebras of £(¥). |

7 ;;fvLemmaw2;4w~"Let"mﬁwmbewawﬂilbért-space'of‘dimension at

‘:{‘léast.two, and let M be a MA subalgebra of £(¥) sﬁch that

 §ithere is a family (Ei)iéI of minimal projecﬁions in m

" with I E;=I.. Then M is regular. ;
Gt Tiel .
',kéfi' " Proof. As M is MA on ¥ , each E; must be of rank

)

... one. - Hence we can select an orthonormal basis (mi ieT

;*ﬁjfor. ¥ such that Ejo, =0y for éach i€ I . In particular,

I must contain at least two elemehts.

7

Suppose that an A ¢ £(¥) commutes with each E, .

As each Ei is a minimal projection, a simple calculation

~“shows éhat each E; AE, e M . . And as

A=% E.A = £ E AE.
der * ieI 0t : i
[ .
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.........

- For distinct elements i and j of I , define
funitaryfépefators Uyy end Viﬁ on ¥ by setting
N T A

Cpl ~-‘=' < ©. - k=1

Cp ‘..."’k:_‘-j‘ .

”}er'all' k efIf.iitGiven an A€ m, it is easy td verify that

g?agé,‘Uij;A(Uij) and each V, A(Vij) commute with every

T mer S

The?efo?e__«
R(U e’m,s:(ﬁ)‘}:.. U uniffax"y_! and UMt M) =
| ;R(Ui;, ’Vi'j"_:.i,v‘,j'e.:[ and 1 4 J) ,' . gi
‘;’f;g7gnq §o it.suffices'to éhow that if an .Aje’S(H) ¢ommutes

i

and each tvij”’ then A e €

:'fﬁWl?? ea?h.-Uij ¥

.. and -each ‘vij .- For each X ¢ I we can write = - -
PR .. . . ' ’ . | R . .

. ljSuppose that A e £(¥) . commutés with each ‘Ui
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Ap = I «Q , Where the « are complex numbers.

e S Lk
" Fix i,J e I with 1 £ J . Then
S oa., ® =Ap, =U, Ao, = £ a . U, ®
kel ki "k i 13773 keT kJ "iJ Tk
T a .. @ =Ap. =-V..Ap. =-% a . V..o
kel ki k i ij J keI kKj 1iJ "k

On comparing coefficients in these two expansions, we see

‘ L. o= O G, . = a,. and d,. = -Q.. and therefore
that ayy ij ° "ij ji . ij ji ° v
A e G

Lemma 2.5 Let (X,Z,u) be a finite measure space,
where 2 is a o-algebra of subsets of X . For each

© ¢ L™ (X,Z,u) , the relation

(Mmf)(x) = o(x) £(x) ‘ f e LQ(X,Z,M) and x e X

defines an My, € £(L2(
*-isomorphiésm of L¥(X,Z,u) onto a von Neumann algebra which

2(

X,Z,u)) , and © - Mcp is an isometric

'is MA in S(L(X,Z,u))

Proof. Easy calculations (see e.g. [6; pp. 117-118] or
(11; pp. 6-14]). |

Lemma 2.6 Let X = [0,1] , let £ be the Borel sub-

sets of X , and let X' be Lebesgue measure on T . Let
2
(

¥ = L°(X,Z,x) and let M = {Mwh; ® ¢ IL®(X,Z,A)} . Then

M.is a regular MA subalgebra of £(¥)..

Proof. By Lemma 2.5, T is a MA subalgebra of £(¥) .

Let r e (0,1) be a fixed irrational number, and let

P
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zfﬁT’:'X'A'X' be addition by r modulo 1 . It is clear that.
”%ffﬁthe map of £ = fo T is a unitary transformatlon, say U s
};flof _H Moreover,‘ U7nU = Tﬂv,‘for if £ e ¥ and

j7¢ € L (X 2 X) are arbltrary,

U Mw U f =U Mm(féT_'?l") = U(mo(foT—l)) =

(9o T) f = Mtp p T

To':s}'iow that 'm is fegula.r, it will suf‘flce to show that if |
an A€ £(¥) ‘commutes with U and with each unitary operator
-:;f'ihe?n then A e Gu |

2mrinX,

| o ‘:For each n e 2, let ’wn(X) = iy x € X ;
<.l 1t is well-known that (¢, ),cy 1s an orthonormal basis for
‘?QH‘ . . A simple calculation shows that Umn %‘e?vlnr-mn for

}3each integer n . Now suppose that. an operator A'eAS(H)

"commutes w1th U and w1th each unltary in- Wﬁ 'For each
.'}n:e,z .we can'w?lee Amn;; miﬂdemn P, > where the_ Q@ :are
‘complex numbers. - Then - Lo ]
= " . ~27inr
z QP = Ap_ = UA®
Mm—es - MO T n B n
; ¥ | ~ominr =
= : z Uo
o _z;m=—w1m? m -
v - “l;:lw;w-Qﬂi(m—n)r
= z @ e N ‘mm .
=—0 ..:
" As r is irrational, 2™ (m-n)r £Z1 unless m =n ;

"-,compéring'coefficients and using this'remark we see that

amn O unless ms=n . Consequently, there is a family -

11%£Z ;9f complex numbers such ﬁhat Ao, = %, mn__for eech
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nez. Now for each integer n , Mrp is a unitary

operator in.7n, and therefore

Thus a, = a =Q o = "+ .and so A e T,

- Lemma, 2.7 Let M be a MA von Neumann algebra on ¥

which possesses no minimal projections. Then m is regular.

Proof. As ¥ is separablé, there is a unit vector
x ¢ ¥ which is separating for m , i.e., M e M and M x =0

imply M = 0 [27; Lemma 2.5]. A simple calculation

i
fis o4

[6; p.6] shows that x is cyclic for M =M, i.e. [Mx]
Applying now [27; Lemma 1.2], there is a compact Hausdorff
space X , a regular measure M -on thé 'c—field_ Z generated
by the compact subsets of X with uw(X) =1, and ; linéar

isometry of ¥ onto LE(X,Z,uJ carrying M onto

(M, : ® e B°(X,Z,u)}
| As M doces not‘poséess minimal pfdjections, the
measure algebra of (X,Z,u) is non-atomic. Let’ (fﬁ) be ah:
everywhere-dense sequence in 'L2<X,Z,u) 5 and_fdrﬂeaéh an,.7"”
let Eﬁ = {xeX :'lfn(k)'— i[ 5_%}v,'-»cér€ainly eagh;;
E, € L. Given E €T and € > 0 ; therelis.an'intégeri-h,f:

such that
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el - xll 2

? n_

> [ 10 - 212 a x)+j £,(x)12 au(x)

E—En ]

23 u(Es E)

:ﬁE:'Where 'A denotes symmetric difference. Hence the measure
" algebra of (X,Z,u) 1s separable. By a classification
1;l£heorem oleélmos and von*Neumann (cf. [9; p. 173]),
h‘J} e;there is én-iéomorphism ¢ of the measure algebra of
FI;\:(X,Z,u) onto that of ([0,1],4, \) , where 4 is the
f'Borél.subéets of [0,1] and A is Lebesgue megsure on 4 .
i;In an‘obvibus mahner; we can regard ¢ as a maﬁping from I
vjinté £ ; as such, @& is not onto A » - but every member
:; or S is equivalent to a member of -4 in the range of & .

‘?ffIt is routine to check that modulo the equivalence relation

s

"equal almost everywhere", the map
'n n Lo g
2 a, X= - Z a, X “a, €€ and E, € T
301 17By oy 1 §(Ei). i is
7 “is well-defined, linear, and is an Lg—isometry of the set of

:f simple functions on (X,Z,u) onto the set of simple functions

n'i(ngllztﬂzmk)m;mmhgqqukhﬁmmaﬁ;?xtendS‘t@ a linear

“ifisometry of L2(X,Z,u) “onto L2([O,l];-{,,k) . It is
/readily. seen that this isometry carries |

B  {M¢‘$ ® e'E’(XfZ,u)}~ onto {M¢ " e:L°([o,1],-J,X)}lf

_ Therefore TN acting on ¥ is spatiall& isomorphic
to’ (M, ® € L? [o 1] d’ x)} a'cting on 12([0,11,9, 1)

€ -



‘As the latter is regular (Lemma. 2.6), so is the former.

Remarks
(1) Our proof of Lemma 2.4 does not make use of the
assumption that ¥ is a separable Hilbert space.

(2) Segal has shown that Lemma 2.5 holds provided only
that the measure space is semi-finite (in the sense
that every set of infinite measure contains sets of
arbitrarily large finite measure) and localizable
(i.e. the measure algebra is complete as a partially
. ordered set) [26]. . _
(3) Lemma 2.7 consists essentially in showing that a
' MA wvon Neumann algebra without minimal projections
on a separable Hilbert space is spatially isomorphic to
{M@ : e L2([0,11,4, 2 . This is esséntially | |
due to von Neumann, and is well-known, although an"‘
explicit proof does not seem to appear in the ;uﬁii;f-
" literature. It éah be'dedu¢ed'from'the gehefal
Maharam classification theory of measure“algebréél
¢cf. [206; Corollary 5.1]). Our-prooflavoids.this;:ﬂi

deep theorem, using instead a weaker classification ..

theorem.

Let M bve a MA subalgebra of £(H) . If . m

satisfies the hypothesis of Lemma 2.4, set c(M) =0 ;

otherwise, set c(M) =1 . Let n(M) bve the méximal numbgr *; ;:
of pairwise ofthogonal minimaivprojecﬁionslin m -
(0 < n(M <o) . The combination c(M) =0 , n) =0
is impossible, while ekamples ofxéll other coﬁbinations can

. . _ 2(

be realized as L¥(X,Z,u) acting on L(X,Z,u) under point-

wise multiplication for some finite measure space (X,Z,u)



Theorem 2.8 Let ™ be a MA von Neumann_algebra on ¥

Mis regular if c(M) =0 or if cM) =1 and oM = 0 5
for all other possible combinations, does not fall into any -

of the classes of Deflnltlon 2. 2

Proof. Lemma 2.4 [Lemma 2, 7] shows that M is

regular if c(M) =0 [cM) =1 arid nM) = 0]. Now suppose
that c¢M) =1 and n(M) > 1 . Let (E;);.p De a maximal
'fa.mily of pairwise orthogonal minimal projections in T

and let

Then both E and F are non-zero projections in ™m
Notice that ME[WIF] is a MA von Neumann algebra on E(¥)
[F(M)] satisfying the hypothesis of Lemma 2.4 [Lemma 2.7]

and therefore -
M) = S(E(%) , W) = S(F(w)) .

The canonigal isomorphism of ¥ onto E(¥)® F(¥) induces
an isomorphism of M onto /mEefmF' [6; p.22], and so it
suffices 1o show that ’mEGB'mF is a semi-regular subalgebra

of S(E(H)® F())

| Let U and V De unitary operators on E(3) an:i
F(Ji) , respectively, such that U'mE U* =772E and
V.'mF v* =77ZF . Then U@V -is a unitary operatof on
E(H)®F(¥) with

(Ve V) Mo oM;) (Vev)™ = My eMy
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Therefore N(’mE)QN(MF) c N('MEe’mF) . Conversely, suppose
that W 1is a unitary operator on E(M) & F(¥) with

‘.% — - - 'cv ’ -
W(MEQ’IY\F)W ~7HE®%, . As automorphisms of a von Neumann

algebra map minimal projections into miniinal projections,
W(EQO)W* = E®O0 and W(OOF)W = 0&F .

Therefore W =U®V , where U and V are unitary operators

on E(¥) .and F(¥), respectively, such that U'mE u* =’mE
* e . ; ,
and VM, Vv =MF .  This shows that

NMgeMy) = N(Mg) & n(L)

S(E(H))® S(F())

which is not a factor.

Theorem 2.9  Two MA subalgébras M ana N on ¥

are equivalent in &(¥) 4if and only if cM) = c(N) and

n(M = n(l)

- t

Proof. The proof of this theorem is contained in the

proofs of the preceding results.



5> THE MAIN CONSTRUCTION

Throughout this section, p will denote a fixed

point in (0,%3) and G will denote‘a'fixed countably

Ainfinite group with identity e .

We begin with a summary of this section. . Our
first task is to construct a type III factor Gp containing

a regular MA subalgebra Wﬂp‘, & type II, factor R(p,G) ,

~and, for each subgroup G, .of G , a subalgebra 7n(p,G,Go)

of 8(p,G) . For a subgroﬁp G, of G, we will use
Tn(G,GO) to .denote the subalgebra of the group operator
algebra fG generated by {Vg‘: g e GO} . Recall that
N(GO) denotes the normalizer of a subgroup G, of G .

Our second task is‘to'prove the following six theorems, which

‘7éonstitute the main results of'ﬁhis section:

Theorem 3.1 Let G, be a subgroup of G . Then

qnp ® ﬂ(p,G,Go) is a MA subalgebra of Gp ® B(p,G) if and
only if | '
, e . RS :
(a) : G, "is abelian and {go & 8. & e GO} is
infinite whenever g e G =~ GO .

‘Theorem 3.2 Suppose that Go is a Subgroup of G

satisfying

(B) : given a finite subset F of G anda ge G,

there are infinitely many g, € G, such that:

-~
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. -1
(1) h,k e F and h gk "= gy

oy e -1
(ii) if g ¢ N(Go)'J then g8, 8 ¢ G, -

fmply h =k

Then

Il

N(M, ® Mp,6,6,)) = G, ® T (p,G,N(5,))

w(a, @f(p.e,6,)) =0, @ Np,0.N(c,))

P

Theorem 3.3  For a subgroup G, of G, Gp~®'n(p,G,Go)

is a factor if and only if Gé has the infinite conjugate

class property (see (1.2)).

Theorem 3.4 Let GO be a subgroup of G . Then

7np'®7ﬂ(G,Go) is a MA subalgebra of Gp ® er if and only if

G, satisfies condition (a¢) of Theorem 3.1.

Theorem 3.5 If Go is a subgroup of G satisfying

condition (B) of Theorem 3.2, then

N('mpé M(c,6,)) = ¢ @® M(G,N(Gé))'
® M(6,6,))

g(ap_ a, ® M(e,N(G,)) .

Theorem 3.6 For. a subgroup G, of G, Gp ® VR(G,GO)
is a factor if and only if Go has the infinite conjugate

“class property.
The algebra -Gp and its subalgebra 7np_ are
defined in the text preceding Lemma 3.10 while f(p,G) and

the 7l(p,G,GO) are defined after Lemma 3.13 and.in'Definition

3.15, respectively. The proofs of the six theorems are given

at the end of this section.



30.

Before proceeding to the actual constructions, we

first establish a technical result.

Lemma 3.7 Let [M,¥,G6,g - Ug] be a C-system, and
let G =G[M,¥,6,g - Ug] . Let 7“0. be a subalgebra of7hq

let. G, Dbe a subgroup of G , and suppose that Ug7noU; = 7no

for all g ¢ GO . Then

R( (MO Ip)(U, ®V.):Me M, and géG‘o)

consists of all those operators A e G with A ~ [Mg : g e G)

satisfying:

(1) Mg.e 7no whenever g e G

(ii) Mg =0 whenever g€ G - Gy .
23992. Let
‘ = J ® ) M ‘ \
(?O {zF (Mg@.Ié)(Ug Vg) each M, € Tno and
g ge .
o Fe G, finite }
Py =8( (M@ If)(U®V,) : Me M and g e.GO)
e, ={a € G : A satisfies (i) and (ii) )} .

Observe that & <@, (Lémma_l.é) and that, by the cént;nuity
of matrix elements (Lemma i.l); 02 is a von Neumahn algebfa.
A simple calculation together with an application dflthe
double commutant theorem shows that @o. is a weakly dense

sub~=%*-algebra of @l , and therefore that @l c @2 .- To



- show that @1~ = @2 , it will suffice to show that @é c @é

Suppose that T ¢ @é , i.e., T is an operator on
¥ ® & which commutes with each (M ® I)(U, @ V), Me T,

and ge G, . Forany keG  , gheG, and Me 7no s

MUK(bk 1g by = by @ I)(U, @ V) 1gd> _lgwh

¢§(M ® I)(U, ®V,) T ¢,

¢;:T(M ® I)(U, ® V) &,

T $yp Sen(M @ I)(Uy ® Vi) oy
T ¢kh MU ..

Let A ¢ 02 with A ~ [Mg : g e G] be given. For all

g,h e G,

¥ om o % )
b AT 00 = bg & ¢k g b 1, " b

- = B bab g Ty

keG g
keG Mk h
= I $X M-‘U

Big 1 ¥
kgG og T Sn Opp A Oy

N .

i
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where the sums all converge in the weak topology. As an
- operator is completely determined by its matrix elements,

T}e@é'.

Corollary 3.8 Let [M,¥%,G,g - Ug] be a C-system, let
G =G[M,¥,G,g ~ Ug] , and let G_ be a subgroup of G .

. Then

6~.’,(Ug ®V_ : g e GO)

g

consists of all those operators A € G with A‘~‘[Mg':‘g e G]

satisfying:

(1) M_e €

e ¥ whenever g ¢ Gb

(ii) Mg =0 whenever g e G- G_ .

For each g ¢ G, let ¥® be 2-dimensional Hilbert
[2W
)

n ne22 . The vectorg

. space with orthonormal basis = (o

YE=vp o + VT-7 of

-~
B

Ti=vy1-p 95 - /7 @

- form a second orthonormal basis for ¥e | Let

g _ g |
F> =pr [V 7] | neZy

mg—{a_F§+bF:‘%: a,b e &1 .

Define a ﬁnitary representation n - Ui of 22 on HE by’

: o g - '
~setting U% /ﬁ =% N for all n,m € Z, . Then
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= - . & w8 (uBY* _ p 8 o

(;,1»), us Fm_(Un) = me n,m e 2,
& MEUB\E _ WE |
us ME(UE)* = Mo neZ, .

Lemma 3.9 For each g ¢ G , [7Hg,ug,22,n - Ui] is

& free and ergodic C-system.

ﬂ , . o -
Proof. If A e (M%)’ , then AYE = Fﬁ A'}/fL , noeZ,,
which implies that 'nlg is MA on ¥% . Hence

[%\g3ug,22,n:~ U%] is a C-systen.

Proposition 1.4, the projections F% and Ff , and (3.1)

imply that the C-system (M8 %8 7z .n - Ug] is free. To

2’
show ergodicity, suppose that a F% +b Fy (a,b € €)

commutes with U% . Then

g. g _ 8 23 g gy*
a Fo +b Fy =Uy(a Fg +D FT)(Ul)

~ o WS g
= a Fl + Db Fo s

b

which implies that a

1

with FS + F§ = I, each G® = G[R%, U8,2,,

factor of type I, on the 4-dimensional Hilbert space

As F% and F® are minimal projections in 7ﬁg

n - Ui]’ is a

Let. &4 be the set of all functions from G into

Z which have finite support. Under component-wise addition,

2
A is an abelian group; we use O to denote the identity in A.
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FPor each g € G , let yg be the element of 4 defined by

| 1 ' h=g
‘Yg_(h) =
0 he G- {g}

Given a,B € A , Wwe define elements o A B and a'v B of A byA

setting

(¢ A B)(e) = min {a(g), B(s)) ge G

(av e)(g) = max fa(e), 8(g))  eec
(we consider 22 to be ordéred in the nétural way, i.e.,
0 gll). 'For a, € A , we will write .a < B whenever |

a AR =0 .

Let ¥ = ® (¥8, cpf) , M= o (ME, cpf), and
geG gelG ,

for each a e A , let © = ® @b and let U_. = ]] U® '

(a finite product in which the factors comﬁute). From
Propositions 1.7 and 1.9 we know that (ma)aeA_ is an ortho-
-normal basis for‘ # , that t7n,H,A,a - Ua] is a free and
ergodic C-system, and that ‘Gp = G[?W,M,A,a - U] is spatially

" -isomorphic to @ (Gg,m§ ® 6) .. Gp is therefore a hyper-
gel o

finite factor acting on a separable Hilbert space;ﬂ - moreover,
it follows from [3; Prop. 5.5] that Gp is of type III. As
the group' G has served merely as an indexiﬂg set in thié
cohstruction, Gp 1s actually independent of the particular.

choice 6f G . Let 'mp = Mo cp
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. Lemma 3.10 Tnp is a regular MA subalgebra_of: Gp .

Proof.  That TKP "is a MA subalgebra of Gp' is part of
\Propbsition 1.5. For ail unitary operators U e M and all
Caed ,.
. (e DM (ve D" =UMU* @ ¢p = M,
(v Vo) M, (U8 V)" = U, MU, @ ¢ = "mp
| As

G =R(U®I,U,®V

5 g P %€d , U aunitary e mH,

i
i

L 7n?‘ is regular.
' For each g € G , let

- 3 = 3
R =) - () H

and for each a e'A , let

Y
P = \ S
- T 'PY ' otherwise
d,( )=l, g : \

{a finite product in which the factors commute). Notice
that T
. ; “_‘ ) . . ) ’
(3.2) ° | PaPB = PaAﬁ+avBPaAB for all q,B €4

;Each ‘Pa is a self-adjoint_operator.oﬁ H satisfying
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P®, = v, - As M is MA on ¥, @ is boyh cyclic and
separating for ™M .
Let 'ﬁ, —H®Y¥ and let M = Mo M . Then m

‘isﬁa MA von Neumann algebra on ¥ , (cpa ® cpﬁ)a;BGA is an
' orthonormal basis for ¥ ," and .cpo' ® cpo is both c¢yclic and

separating for M .

Lemma, 3.11

(1) N g '={2_c'aPa:caeC and Q € A} is
: a<d. S

a strongly vden‘se sub-#-algebra of ™ containing Iu'

J
Lo

‘(‘ii‘)v :f = {ofﬁia ca,'g Pa ® Pﬁ : ca,B e € a.‘nd_' ae b}

[

. ié a strongly dense sub-x-algebra of m containing Iﬁ .

Proof. It is clear that Iy ey and that ¥ isa

-

| iinea_r space closed under the x-operator.. For each g e G,

| F“%e :f , -for

g.

oN\E = % _
| C R ) - ) -
o T | 1 . .
(3.3) | ,'Fg =, p(l - p) 4(PY + (1-%)“ Po) . | ~

To show that ‘f is closed under multiplication, let a,B € 4

be‘givién; from (3.2) and the observation that

(anB + avB) A (anB) =0

it is sufficient to show that for each vy ¢ 4 ,
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no

P = z c

Y a<y a ‘o
for some. Ca e C . If y =0 this is obvious, and if
Yy e a - {0},

p2 = [l P2

Yooy(g)=1 Yg

_ l-p =& 0
) Y(£S=i [ —53 o T ¥

- T rXx2_» +p 1,

v(g)=l Jo(1-p) Yg - °

which is of the required form (in this calculation we used

(3.3)). |

This shows that ‘f is a sub-x-algebra Qf ™M .
which contains I and generates TN.w By the double commutantlf
theorem, this proves (i). ' :

The proof of (i1) is similar..

Q b
acg &% a<d.

 Lemma 3.12 If S=5%.c¢P , T =25 ddPa‘é 4f,3é?é','

such that a < a , Cq # 0 and dd-% O imply o ?-Quiv,thenf  M‘__

(8T0g,0,) = (S0,50,) (Togs9,) -
- Proof. A simple calculation:

(ST@Q:@O) = Z 5 CBdG'(Pdwo’ PB@O)
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(895,05 (To0,)
.For each aed and ge G weA aefine an element
g& of A by sétting‘
(ga)(h) = a(g™tn) o h e G.
Notice that (gh)a = g(ha) for ali‘ g,h e G and a ¢ 4
| ‘F'Qr'eacl:.h g € G, the relation

.Ugcpa=cpga o e A

defines a unique unitary operator Ug on & ,' and the map

g - Ugv is a unitary representation of G on ¥ ; moreover,
| B S gh ‘ L .
UanUg = Fn gd_heG,aeA_
N :
U Ul = T G
g m g . &€ .

Lemma 3.13% . - e

* —
v o g
- g e Gy , where 'Go is an infinite subgroup of G , then

(i) If an M e M satisfies U, M UL =M for all

M.e Cy - I -
o M"(ll) ['M.,H,G,g - Ug] is a free and ergodic C-system.
Proof. (i) For such an M and for all g € Gy >
Moy = U, M Uz o, = U, Mo, -
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If Mp = T c_ . , then
0 " qep @ o
Z c . =1U T ¢ p, = X C_® = ¥ ¢ -1. ® >
aed ¢ % Bgen % gen ¢ 8 g g2 O
and thus c,  =c .7 forall aed . As aeb - {0
, a g —a
implies that f{go : g € Go} is infinite, we must have ¢, =0
unless @ =0 , and” therefore My =c, o, . As o  is

o "0 O

: " separating for m, M= o I.

(i1) From the preceding we know that [M,¥d,6,g - Ug]
is an ergodic C-system. | If the system is not free, there is
an Me M- {0} anda ge G- {e} such that Ug Me M.

Let € > O be fixed but arbitrary; as ¢ _ is separating

o
3 ell Mo Il - o
for M, 6 =——2 >0, and & =c(|[ M|l - 3) .
o 1+
. : 7 ‘ '
By Lemma 3.11, there is an S = Z_c P, ¢ f such that
o : ‘ aa T j .
| (s'- Mo Il <6 . .Hence || sp Il > I[Me Il - &>0, and
consequently "
(s - Mo ll <8 =c(llMo [l - 8) < ell soll

As & has finite support, we can find an

heG- {e} with a(h) = &(g"lh)_= o . ~ Now
Ss*=. % ¢ ,CoPP, =% 4 P
a,pa ¢ P %P T aG @

for some d_ € C . Applying Lemma 3.12 and (3.3) ,
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d (-' h 2
Il PE Uy, 89, - UgS F woll =
-1 :
- g “h - h 2
= [[Fo So, - S F mOH
g-lh * h * ‘
= (FO S S mo,mo).+ (Fo_s S mo,@o) -

— -1
h g ~h *
- 2(F, Fg S s @O,@O)

2(p.- p°) |l solI?

On the other hand,

14

ks Uy So, - U, s o |l <
< EE Uy, 8oy - 5& U, M’moH o
s U uFS oy - U, S5 Do |l
<l s = wogll + [l ey ~ o
<2 [ sl

' Combining these two .calculations yields

b e2|| sp 1 2 > 2(p - p2) |l soll 2

As p - p2 > 0 , this contradicts the arbitrariness of e ,

and the system [P, 4,6 g - Ug] - is. therefore. free.

Let 8(p,G) = G[m:HJG:g - Ug] . : CoT
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Lemma 3.1% @(p,¢) is a factor of type II, acting on .
a.separable_Hilbeft'space. 8(p,G) is hyperfinite whenever

¢ is either hyperfinite or abelian.

Proof. We use Proposition 1.5.. That 8(p,G) is a
factor follows from Lemma 3.13. As M = (Mmo,¢o) is a finite

normal faithful trace on M7 satisfying

% ~ +
(Ug M Ug mo,mo) = (Mwo,wo) for all M e M™ and
geG.,
8(p,G) is finite. And as 'cp is of type III, MM cannot
contain any minimal projections, which implies that 8(p,G)
is not of type I . Therefore B(p,G) is a factor of type

INE}

If G is .abelian, then #(p,G) is hyperfinite,

by Proposition 1.6. | Suppose now that G 1is hyperfinite, ~
o - . ,
vsay G =ngl Gn s Wwhere Gl c G2 Cf" , and eaqh Gn is a

finite subgroup of G . For each n , let

B, = (M ® Iﬁ)(Ug ® Vg) : geG, and

M € ‘7M11 for some h ¢ Gh) 5

each @n is finite-dimensional as a vector space, and more-

~over,
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Using [12; Theorenm XII] (or [6; p. 299]);vwe’cpnclude that_;,'

f(p,G) is hyperfinite.

'ILet G = x G ,-the group;thebrétic direcp1pfoducf§ﬁ;jﬁr

and for a = (c¢,g) let ﬁa = Ud ] Ug ‘There is‘a'uniQﬁeﬁ*

' ‘ = A L
linear isometry Y’ cof . H ® @_@ ¥ ® & onto He § with

'y((pd. ® Q ® Cps ® g) ‘=_cpa;® cps (o2 (Y,g). for all G}BJY e A
: | - “and g e G .

It is straightforward to prove (cf. Proposition 1.9) that

i

L8, § e - ﬁa] is a free and ergodic C-system, and that .

if G ='a{%n,i,9 ,a,»'ﬁa] %'then A - Y”Aff_l is‘an'isombrphiéﬁfhf
of G, ®&(p,G) onto G . Notice that for M,N e M  and

a _=.(a,g): € 9 s
Y ° 1)U _® v,) ® (N ®~‘1é><ué e v, )Yt -

(3.4) e
= ((Me 'N) ® -lé\)(Ua ®V,)

Definition %.15 For each subgroup. Go of G , define

‘a subalgebra N (p,G,G ) of 8(p,G) and subalgebras § (G)
and ;?(GO) of G as follows: .

?1(p,G,GO) = &(Ug ® Vg 1 g € GO)

3 (c) T, e 7l<p,G,GO)Y"lA*

1l

Ale,) =7 e, @ Mip,e,6)7 "

i y Notice that these subalgebras are all proper.



Lemma 3.16_ Let Gg beAa,subgroup of G The sub-

algebra ‘11(p,G,GO) is MA in  8(p,G) . if and only ir Gy o

satisfies
-. -1 -
(a) : Gy 1s'abellan and {go g8, By € GO} is
infinite whenever g e G - Go .
Proof. Suppose that the subgroup GO satisfies con-

dition (a). Then 'n(p,G,GO)' is an abelian algebra, and to

show that it is MA in R&(p,G) , we must verify that
8(p,G) A (M (p,G,6,))" = M(p,G,G ) .

Let B e 8(p,G) ('n(p,G,Go))’ with B~ [Mg : g e G] be

given. From Lemma 1.2 we have that for all g € G and

‘h € Gy »
G E B, e ) b, Y, =

_(3-.5‘) . bgn (Uy @ V) B dg ‘U‘;;h = Un M1 Uh

’(3‘-'7) (6% B B* b o, ,0,) ="(k§GMk M;%’%) = kEGH woll 2,
where.the expressions (3.5) and (3.6) are equal. if g€ G,

then Mg = Uh Mg U; for all h ¢ GO » which, by Lemma 3.13,

implies that Mg € CN o If ge G- GO » then for all

h € GO' :A‘ ) | ' . )

N Mgoon = o, Uhegll = D el s
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by (3.7) and condition (a) , this. means that Mg v, =0,

:-’and coné.equently that ‘Mg =0 . Corollary 3.8 now implies

that B € 7l(p,G,GO) )

Conversely, suppose that 7l(p,G,GO)‘ is a MA sub-

algebra of 8(p,G) . If condition (a) fails, then, as
| 'h,_(p,G,Go) ~abelian implies GO. - abelian, there is a
'g, e G - IGOV, 'such that

F = (g8 ;" 8 ¢C)

" is finite. Let
N - ,
B= £ U_ @V, )
_ heF h h . :
' then B e 8(p,G) and, as ge P, B¢ N(p,G,G) . For

any_‘he GO and k ¢ G,

. |
o ¢ B(U, ® V) ¢e;UK =

+* ¥
= .1 B U
,¢k 1B b xnt .
-{: ‘ - xh™t e F
- L0 . : .. potherwise
o AR Tk ' *
- and ¢ (U, @V, ) B, U = -
= U, ¢* U u¥
h d)h—lk. (be h"l h
ST nlk e F
Lo i ' otherwise ,
1

where we used Lemma 1.2. As h "k ¢ F 1is equivalent to-
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B

, "'khfl,e‘F- (h e Gy > k € G), B commutes with Uy, ® Vh for
" all heG,,i.e., Be (RN(p,G,G)) . This implies that
N (p,G,Gy) is not MA in 8(p,G) , which is a contradiction.

‘Hence condition (@) must hold..

Lemma 3.17 Let G, be a subgroup of G. An A e

 '* with' A~ [ﬁaf: ae€§] is an element of (i) ® (¢ ) ir

'iﬂ;and_(ii) '“J(Go) if and only if

7f;and;only if

M, e Mo ¢ |

& L a e {0} x Go '

i o=o0 - ~ otherwise ,
a _

Ma € Wl@ Cﬁ ‘ ‘a € A X Go
"% =0 otherwise .
, a
T Bgor.  Using [65 p. 571 and (3.4) ,

O B(e) =T [Me g e N(p,a0)17

=TRME Ip@U @V, : MeT, geGo)’Y'l

5

~ R((M ® I, é ;A)(ﬁ(o,g) ® v(o’g))iz MeM,
v ceoy

_gpé{l'-_l(c;o)‘ =ﬁ')’ap‘ é?’[(p?G,Go)y;l

e  =.,), é((M @ Ip) (U, ® &a) ® (U, ®v,) : Me M,

aed , ge¢ Go)y"l-
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= R((M® I, @ Ié\)(U('a’g) ® Vig )t Me m,

aed , ge G )

'1.The desired conclusions now follow from Lemma 3.7.

Lemma 3.18 Let TV be an abelian von Neumann algebra

)  on the Hilbert space _K , and let X Dbe a non-zero vector in

'fhx :  Let (Mi) and (Ni).€I be two families in N such

S iel i

“that M= I M, N, and N= I N, NI existin N in

S iel B ieIl ’ :
: the‘stréﬁg topology, and suppose that N<I. ‘Then

.l
!

' 2 2
T xl2< s I xll 2
iel
Proof. As N is a uniformly closed commutative B -

-ﬂ élgebra with identity, the Gelfand-Naimark representation
'-3 thédrem (see e.g. [7; p. 876]) gives an isometric

'¥~isomorphism A= f, of N onto C(X), X some compact

- Hausdorff quce. Let F be én-érﬁitréry finite subset of

I, andset M, = I M, N, and Ny = £ N, N¥ . As
L { - -~ F jep 1+ 1 ¢ P sep L L |

N

" I> N> Np ;'il > f. > & lfN 12 , and consequently
‘- F~ ieF i |

B LR N
el G 1) (E Il € E 17

Passing back to N, IMFI2 < = fiM.l2 , and therefore
. , S ' " ier L7 ,
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S Mg x]] = (M MG x,x) <20 My M, x,x) = I || M x|
I F . PR =yer 11 ,_ ~ ieF + )

.Taking thé supremum over all finite FclI s, We are done.

In order to simplify the notation, let 1 denote

the identity in § and for each a ¢ G , let ﬁa = ﬁa ®V, .

{: Lemma 3.19 (cf. [20; Lemma 15]). Let a_unitary

A£ _ operator U ¢ a with O~ [ﬁa :ae¢G] andan €> 0 be
 igiven;' - Then there is a finite subset F, of § such that:
- for aI.vlyvfini’ce subset ¥ of -+ § ‘containing &, , there is a
family (ﬁb)be& of elements of '? such that:, |

';f ii‘(3;§?’E,‘v(i)~4lfﬁbmo®®6 - ﬁbwo®m5IT g,%- for all b ¢ ¥ ~

!

(11) ir ¥ = 2.(ﬁb®1§)(ﬁh®vb) , then for all
I bed » -
‘ - c,d € {0} x G,

T . o I _ )
LG9 | ¢, [0 F, §* - VTq V4TS 0 @ vl <

M

c.and d in {0} x G. By Lemma 1.2,

:w;:where}the sum converges strongly. 'Hence there is a finite

subset F_ . of 9 such that"




® v, , v, ® @o? = = [lﬁa ®

(z H Mo
a a a¢3;0

o
aé?o

)

" Fix a finite subset ¥ of 9 containing ¥  and let

W= (M ©@1)(0.0V.).
et T bl

Again using Lemma 1.2, we find that

]
™
o~
0 *
©
]
[
R
=3
o,
-
c

]
™~
=
cit
=1
1
H
t
“

(3.11)

and similarly

- TR G, O

¥* = 3 T ..
(3.12) d)c WTyW ¢, U M, U Mc"lad U,

where the sum in (3.11) converges strongly and %' =3 c I a~t
(we use the'convention that the empty sum is zero). By means

of (3.10) and Lemma 3.18, we obtain

~x—~~~*<~'~ ~%q 1T S
H_d)c[UTdU _—WTdW]d)tUcch@icpo“ =

~ ~ o~ ~3% '
aig' M Ve Mi-1,q Ve %6 @ % |

=
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\ < H aig . Ma ﬁcﬁ:-lad Uc Py ?OOII +
_ + | 5 ft, T “:_1a'd 5 o, @ ol
< <a§3..3 18, 8 T 0y @ 0, 2)
+ (aiullMa 962 9l 2>2 |
= ai&‘-‘é«” “ﬁ 14 % ® cpo” 2>% + %
< <a§3” ¥ o, @ ol 2)% + 52
< f ’

. It follows from (3.10) that each ﬁa is in the unit
’<bdll of’ 7ﬁ . Hence, by Lemma %.11 and the Kaplansky density

‘theorem [6; p. 46], there is a. family (N )be3 of elements

T~

- in the unit ball of Y such that

_— . o 2 ,
| f, o, ® o) - T o, © o |l < min (5, 155) for all b e ¥ ,

“where n - is the number of elements in & . In particular,

“(3.8) is satisfied. Letting V = (F ® I)(T. ® V.) , we

~ have that (ef. (3.12))
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~T S et 3 * ¥
iy o 2 it 3 ot 3
< 2 M_U M . - N . U ®
I oM e (Mo-1, - N~ ) c %o ® % I+

, ~ ~ ~ o~ ~ %
wll oz, Gy - W) U W T e, @ o

A

o Cmx .y
agg,llMa U, (Mc-lad Nc—lad) U, v, © o, U +

. Lo~ ~ 3 ~% ~
b BT, B, TG, - ) 0, 0 o

In

D o || +
ae3,11 (W - ) eg e Il

+ agg,lKMa - N,) o, @ ol
) e2 : » .
= 3 - -

Combihing‘the last two inequalities by meanS'of_the

'f triangle inequality gives the estimate (3.9),;

Lerma 3.20  (cf. [20; Lemma 17]).  Suppose G, is a
' _subgfoup 6f G satisfying
(é) : given a finite subset F of. G and a g e G,
] there are infinitely many 8y € GO such that:

(1) hkeF and h g k™t g, imply h =k

Csey s ) _ =1
(11? if g ¢ N(Go? ,'Lhen & &,68 " ¢ Gy » -
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iT.’h'evn n@(e,) = N(«?(Go)) = J(N(GO)_)
. Proof. It is easy to see that

A, e n@e,)) . A(ey)) e nd(s,))

Conversely, suppose that we are given a unitary operator

T et satisfying one of

:(3.13) B 7§ (¢ )T

I
N
62
o}

(3.14) 7 3 (e )0 = J(a)
We will be done if we can show that U e 4 (v(G,)) .
Let U ~ [ﬁa : 2 €91, and for each. ae§ , let

Ma )

0o @0y = T 0(a; aB) oy ®wy

_‘O a,Bel

N

where the 8(a; a,8) are complex numbers. Suppose we knew

 that
(3.15) | L 8(a; a,B) = 0O .whenever B £ 0
(3.16) o 8(a; @,0) =0 _ whenever a é A X N(Go) .
~If a'¢ A x N(G) ; then N o @ mo.=fo 5 as 9 @ o is
. : L ~ ~
separating for M , M, =0 .  And if a €4 X N(GO) , then

»for.all a,B e & ,

My 9,895 = (P, @ Bg) H, %, @ 9,

=P, ®P; I 8(a; v,0) 0

® o
B yeb ©

y
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=(Z 68(a; v,0) P, o )O® o, ,
(YeA, L a Y> B

and therefore M, e M@ ¢ Lemma 3.17 now implies that

H
U e 1§(N(GO)) . Hence it is sufficient to show that (3.15)
and (3.16) hold. |
| ‘Fix an (a,g) € 3 and an (al,aé)
e > 0 be given. Applying Lemma 3.19 to U and ¢ , we get

€ & X4 , and let

a finite subset ~30 of 9 and, with ¥ = SO'U {(a,g)} , a
family '(Nb)beg of elements of satisfying (3.8) and (3.9).
" By the finiteness of & and.the definition of 7 (Lemma 3.11),

there are complex numbers o(b; B,y) and an @ € A such that

}

(3.17) - CoFo= = a(b; B,v) Py ® P, for all b € ¥ ;
: . : B,y<a T . .

without loss of generality, we may assume that a;,a, < a .

.vFrom'(3:8)a i | _ -
(3.28) 5> i, o, ® o, - b P @ @l
> |8(bs B,Y) - a(bs B,v)|

. Let

Ql

for all b e ¥ “and all B,y <

F=1f{heG: (B,h) € 3 for some B e Al,

a finite subset of G containing g . “Applying condition

1

() to the set g *F and the element g and using the fact

that & has finite support, we .can find a 'gb € Go such that

(3;19), . aAg g, gt @ =0
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(3.20) nkegt F and hg, kU= g imply h =k
(3.21) if g ¢ N(GO) , then g g gt ¢ G -
In order to simplify the notation, let h =g g g'l s
let ¢ = (O,go) , and let d = (0,g g g'l) Let V ve
as in (3.9) of Lemma 3.19 , let 3’ =3 A d % ¢ % , and let
— % T i J
S =¢3 VT, V¥ b Uy
Notice that (a,g) € ¥’ , alsothat 3’ is not empty. Now
(cf. (3.12))
S= ¢ & O,f%, O
= £ N_0U,&*u*
a,pex & 4 b d
b;d"lac
If a = (B,k) and b = (y,4) are elements of 3_,‘the
relation & lac =b implies th;t (B,g g;l g“l k go) = (y,4).
Hence B = vy and (g—lk) & (g'l &)'l =g, as k,L e F ,
(3.20) may be applied, giving. k = 2 . Therefore a =Db ,
and the double sum reduces to a single sum. "~ On substituting

(3.17) into this sum we get

~

Ny,

~

o s
S = b?&" Ya My Yg

= . £ o(b; B,Y)G(b; 5,m) (PB-® PY)

beF _ :
B,v,8,n<a
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]

z c(b B,Y)BTE'%;h)(P ®P,, 4 ) (Pyeu Pn ;);

be&
B,Y,5,n<a

I

z, c(b B,Y)o(b38,M) P P, ® P Phn

bed
5:‘(:637]5_0'
From (3.19) and the assumption that a, < a , it
follows that y,n < @ and a, + ha2 = Y + hn together imply
that~ y =M =0a, . Hence, for all B, Y 6,n < a:

(PP, ® P.P__ o

Y hn "o ®H¢o » T®Fy iha % ® mo) -

B~ o 272
{ 1 ' 6 = § and Y =n= ae

O otherwise,

and therefpre

(S@O ® ¢, > I® Pa2+ha2jwo ®,®o)' =

= lo(b; rs,a )2
b63
B<a

> lo((a,8); al,czg)l2

To show that (3.16) holds, suppose that

'_(a,g) &4 x N(G ) and that a, =0 . Let

T = ¢y T F, T b, T
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As U satisfies onme of (3.13), (%.14), T =0 (Lemma 3.17 and

(3.21)). . The inequality (3.9) now gives

(>4
7 2l Te, ® o - So_ & oll
> [(So, @0 5 o, @ )]
: 2
2 lc((a,g),‘al,O)l

Combining this estimate with (3.18), we get

[ ((@e); o,0)] < [8((2,8)s a1,0) - o((w:8); ay,0)] +

+ lc((a,g); alao)l }

.;;% . <e

As ¢> 0 was arbitrary, we conclude that 8((a,g); al,o) =0, .

and therefore that (3.16) holds. | -

| To'show‘that (3.15) holds, suppose that. a, A0 .
If g ¢ N(G ) , then,as before, T =0 ; and if g e N(G,)

then Te M ®'CH for similar reasons. In any case,
(T, ® Oy 5 O ® By g ) =05 -
2 2
.- and therefore (using (3.9))

T2 o, ® oy - S0, @ o |l

2 (T, ® 9, - Sy, ® o > v, @ ma2+hd2?l
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= |(Spo @0 , I ® P, @, ® mo)[

2+ha

2
> Jo((a,e); agra,)]?
z 2 2 192

As before, this implies that 8(a,g); al,ag) =0 .

This completes the proof of Lemma 3.20.

Lemmna %.21 There is an isomorphism @O of . @G .onto

7l(ng,Go) such that

2, (V,) =U, © for all g€ G

& g

@O("KG,GO)) = 12(p,G,Go) for, all subgroups
Go of G .

l Proof. Let mn be the unique unitary operator on

i ® é with n(ma ® é_) = mga_® @' for all aea , ge G.

3. (T) = n(I, ® )™t . It is trivial

ct

For any T € @G > le

that & _ 1is a normal x-isomorphism of CG into .&(® @ G)

with @Z(I) =I. If ge G, then fdr all aepA , heG,
»§O(Vg) Py ® ﬁ‘= n(IV® Vg) ﬁ_l Py, ® ﬁ
= n(e, -1, @ (gn)")
= 9, ©(en)"
= (Vg @ V) (o, ® f o) é '
and ﬁherefore §0<Vé)d=.Ug ® Vg . AUsipg‘[éé p.57],:W§ haié::f

that for any subgroup G, of G,
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Il
A

R(V, : g€ Go))

8, (M(C.6,)) o

i

sz(%ao(%rg)_ g e G)

i

'ﬂ(P,CuGO) H

in particular, this implies that
8 (C5) = 2,(M(c,¢)) = Ap,C,G)

Lemma 2.22  There is a *—iéomorphism & of Gp ® Ca

into Gp ® 8(p,G) such that for any subgroup G, of G,

}

LY

S ey, eM(e,6,)) = M, ® Np,G,G,)
8(a, ®7YL(G G, )) a, e N(p,c, G.) -

Proof. The result follows'easily from Lemma 3.21 and

| - [65 pp. 57 and 60].

~

Lemma. 3.23 For any subgroup G of G, CGO = M(G,GO).-

;.
Proof. As G < G, we may consider éo to be a sub-

space of & . If T e M(C,G) and ge G- G , then

(cf. Lemma 3.21) QO(T)~€7l(p,G,GO)~, and therefore, using

Corollary 3.8,
_ * ' ~1 : :
0= (b, (T ®T) 0~ ¢ 0, , @)

1

- A .
=(n(IeT)n "o, e, v, @8f)

A A
=(IeTo, ®€c, o, ®8)

A
=(T/e\:g)
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Now eo is invariant under 7n(G,GO) , for if T e M(G,G,)

and g € GO , then by the above calculation,

78 = ¢ (78, A= z'(f’é, (hg™ )R =
heG heG :

= £ (T8, &) (xe)" .
keGb
Hence the restriction &'(T) of a T ¢ 7H(G,Go) to éo‘ is
an operator on éo . It is easy to verify that &' is a

normal *-isomprphism of 7R(G,GO) into GG
o

Using [6; p. 571,

8 (T(G,6,)) gca))

o 8" (R(V

g :

I

R(@j(Vg) : g e G)

- e

o

Proof of Theorem 3.1.  As '7”p is MAin .G, , a
result of Saitd and Tomiyama [22] implies that ™, @ N(p,G,c,)
is MA in G ® 8(p,G) if and only if M(p,c,6,) isMA in
8(p,G) . But by Lemma 3.16, this is the case if any only if

" condition (a) holds. | -

Proof of Theorem 3.2. As A ~'YA3Y'1 is a normal
¥-1somorphism of Gp ® 8(p,G¢) onto G (cf. the text preceding
Definition 3.15), ')"N('IL)'}""]' = N(Y 7),?"1) for any subalgebra

- ® 8(p,G)., for

71 of Gp
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TN(?\.)Y-l; YU : U e G, ® 8(p,G) and unitary,

and UNU* =7 )Pt

R(PUP ™t :vue 6, ® 8(p,C) and wnitary,

and URU" = Nh)

n

R(0 : 0 ¢ G and unitary,
ana SYNYL§F - Py
ny nYh

1l

In particular, using Definition 3.15 and Lemma 3.20,

N, ® N(p,&,G,)) =7~ N(“/’mI; o N(p,e,c)Y )Y
- S N(F ()Y |
=YX w(e )T
= 6, 8N(p,G, N(G,))
and similarly,

(e, @N(p,6.6,)) = a, ®N(p,C, N(GO))' :

p

Proof of Theorem 3.3 As G is a factor,

. p -
G, ®’n(p,G,Go) is a factor if and only if ')’L(p,G,GO) is

a factor [6; p. 30]. As the property of being a factor is
preserved by is'omorphismé, Lemmas %.21 and 3.23 imply that’

ﬂ(p,G,Go) is a factor if and only if @G is a factor. "
e o) p
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.But.the group operator algebra GG is a factor if and only
' o
if GO has the infinite conjugate class property.

Proof of Theorem 3.4 (cf. [5; Lemma 1]). As in the

proof of Theorem 3.1, M, @M(C,G,) is MA In o) @ e, if
and only if (6,6 ) is MA in Cy o If (@) " holds, then,
by Lemmas 3.16 and 3.21, 'n(p,G,GO) = @o(M(G,GO)) is MA in

| N(p,a,6) = 3,(C;) , and so ’M(G-,GO) is MA in GG
Conversely, if 7%(G,GO) is MA in eG s a calcﬁiation similar
to that in the proof of the "only if" part of Lemma 3;lé'shows

that condition (a) must be-satisfied.

.

Proof of Theorem 3.5 First of all, it is clear that

o, ®M(e, n(G,)) = N, ®@M(6,G,))

6, ® MG, 1(¢,)) = N(a, ® M(c,G,))

~

To show that'the.opposite inclusions hold, let U be a unitary’

operator in Gp ®‘C?G satisfying one of

U mp @'M(G,GO) u*

I

mp ® M(G,G,)

Il

. N _
U Gp_®m(G:Go) U G, ® Ma,c )

By Lemma 3.22, @(U) is a unitary ope?ator,in Gp ® ®(p,G)

such that: either .
B0, © N(p,G,6,)8(0)" = s(UM, @M(G,q,) UT)

—'m ®,ﬂ- PG, G ) -
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Il

or @(U) ap ®T‘-(p»,G,G—O‘)§(U‘)* é(U.Gp ®7}1(G,GO)U*) '

= G, ®ﬂ(p,G,GO)

By Lemma 3.20, §(U) ¢ Gp

Uea,® ™m(e,N (G,)) -

@ N(p,aG, N(GO)) ,'and therefore

Proof of Theorem 3.6.  Similar to the proof of

Theorem 3. 3.



4 EXAMPLES OF MAXIMAL- ABELTAN SUBALGEBRAS

We begin by stating in four theorems the main
results of this thesis. AfTter a brief discussion of the
constructions of the previous section, we turn to the proofs

of the theorems.

Theorem 4.1  Each of the type III factors G, »

0 < p <%, contains a semi-regular MA subalgebra.

Theorem 4.2  For each integer m > 2 and each p € (0,%),

G, contains two 2—semi—régular MA subalgebras, one of improper

&

length m and one of proper length m .

Theorem 4.3 For each integer m > 3 and each

p e (0,%) , Gp contains two J-semi-regular MA subalgebras,

~

one of imprcper length m and one of proper length m .

Theorem 4.4  For each ihteger m>z2, the~hyperfinite

II:L factor contains

(i) a 2-semi-regular MA subalgebra of improper length
" _ E -
(ii1) a >-semi-regular MA subalgebra of improper length

m 4 L1

The factors Gp > P e (0,%) , were first studied by
Pukénszky, who obtainedthem by a measure-theoretic construction

[20]. In this paper Pukdnszky also constructs, for each’

p ¢ (0,4) and each countably infinite group G , a type III
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factor G(p,G) and, for each subgroup G, of G, a:sub—
algebra. <?(p;G,GO) of G(p,G) . That @(p,G,G ) is
MA in G(p,G) whehever GO sétisfies condition (d) of
Theorem 3.1 is not difficult to show. It is reasqnéble to

conjecture that
N(G) (P’G’GO)) =6>(p)G: N(Go))

under condition (B) of Theorem 3.2; however, Pukdnszky's
proof of this statement is not wvalid. Our algebra
Gp ® 2(p,G) is obtained by modifying the construction of

Pukénszky's G(p,G).

Powers has shown that if 0 < p < g < % , then

Gy and Gq are non-isomorphic; unfortunately, his proof"

 depends heavily on c*-algebra techniques ([18], [19]).

Araki and Woods have given a proof of‘this result which uses

ot

only methods. of von Neumaenn algebras [2]; in addition, they

show that

1

(4.1) ;88 =0, for each p e (0,%) ,
where @ 1is the hyperfinite IIl factor.

Proof of Theorem 4.1 Recall the conditions - (a) and

(B) - of Theorems 3.1 and 3.2, respectiveiy. We first show
that it will suffice to construct a counﬁably infinite hyper-
finite group G_ with the infinite conjugate class property
and a normel subgroup 'GO of G satisfying conditions (a)
and (B) . For then, by Theorems 3.1, 3.2, and 3.3,

L

o efn(p,G,Go) is a MA subalgebra of Gp ® 8(p,G) with
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“normalizer Gp ®N(p,G,G) , a factor distinct from
. G, ® 8(p,G) . Applying the isomorphism (4.1) and Lemma

23,14%, we are done.

We now turn to the construction of éuch a G and
”Go . Let I' be a countably infinite field which is the-
iﬁcreasing union of a sequence of finite subfields (in
particular, we may take for the F the algebraic'completion

' of a finite field). The set
G = {(a¢,B) : a,p ¢ F and a £ 0O}
. becomes a group under the operation

(0,8)(v,8) = (@ y, a6 +8) .

It is easy to see that G 1is countably infinite and hyper-
finite. To verify that G has,thé infinite conjugate
class proﬁerty, let a (a,B) € G -~ {(1,0)} be given. For "~
all (v,8) €,G , |

(v58)(a,8) (v,8) ™ = (y @, v B+ 8)(v7H, —v7T 5)
= (a, -a b +yB +8) .
If a =1 , then B £0 , and so -a 8 +yvy B +86 =y B runs
‘,through infinitely many elements as ¥ runs through .F - {0};

‘and if « £'1 , - 8 +y B + & 1uns through infinitely many

elements as &  runs through F .
It is easy to verify that

G, = {(1,B) : B e F}
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is 'a normal subgroup of G . The subgroup GO has property

 (a) ., for if (a,B) € G- G, , then o #1 , and so

(1,¥)(@:8)(1,y)™F = (@8 + v)(1,-v)

= (@, @y +8 +v)

‘lruhs through infinitely many elements aé Yy zruns through
'F .  Tinally, we show that G_ has property (B) . Let

» gl,..;,gﬂ e G be given, with, say,
g = (ai,Bi) _ Ai =1l,...,n .
~Let

H={(1: czi)"l('fsi - BJ) oy £1and 1< 1,5 < n},

‘.a finite subset of F . If g, = (l,ﬁo) for some
-1 :
J

=8y > then

"'."5'0 éiF_-" H and if g g_ &
. o .
.(1360) = (G;Jﬁi)(lpso)(ajsaj)

(03,058, + By ) (a7, -a3'B;)

-1 aa.ail
Jd

='(diaj 5 1 Bj + B+ Bi)

AHence‘ a, = aj , and so Bo = -Bj + aieo + By - If o, £,

‘then B, = (1 - ai)_l(ai - Bj) , a contradiction; therefore

-ai'=ll , and thus Bi = 53 > L.e., gy = gj
i . .
Proof of Theorem 4.2 Fix a p e (0,%4) and an integer

.m > 2 . - Suppose that we had a countably infinite hyperfinite

‘group G with the infinite conjugate class property and a
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.éﬁbgioup” Goif of G such that
C(%.2) (1) G, satisfies condition (a) of Theorem 3.1

o . c & L |
(h.3) (1) G, ZM(G) 7 +++ ZW(G,) = ¢, end each
| NK(GO) » 0<k<m=~1, satisfies condition

(B) of Theorem 3.2

(44 (ii1) N(GO) does not have the infinite. conjugate

class property while NQ(GO) does.

-~ Then, from Section 3, 7np ® 7\(p,G,Go) is a 2-semi-regular

" MA subalgebra of Gp ® B(p,G) of improper length m and

ﬂ[p ®7Q(G,GO) is a 2-semi-regular MA subalgebra of Gp ® GG

: of pfoper length m . As 8(p,G) and C?G are both hyper-
. 1_-  finite IIl factors, two applications of (4.1) completes the
,prbbf of the theorem. . Hence it suffices to construct such a

group "G "and subgroup Gy - '
Again, let 'I' be a countably infinite field which
is the-increasing union of a.séquencé‘of finite subfields.
Let“'kabe.the group of all . (m+2) x (m+2) matrices (gij)
“over F with | I

S5 ey A0
(4.6) . gq =1 1=2,...,m2
(b)) £y5 =0 i g,

-.and let 'GO ‘be the subgroup of G consisting of all those

matrices (g in G with

ij)
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g1 =1
€12 = Bp3
gy = o | Jo=4,...,m2
~ gy =0 31y

- The group G 1is clearly countably infinite and hyperfinite.
‘:AnastaSio:has shown that G. has the infinite conjugate class -

 property and that the subgroup G, satisfies (1), (ii), and
(i) [1].

g

- Proof of Theorem 4.3 The proof is similar to that of

Theorem 4.2. Let the field F Dbe as before, and let a
p e (0,3) and an integer m > 3. be fixed. Let G be the

vgréup of all (m+2) x (m+2) matrices (g..) over F satisfy-

ST 4 ' 1J
'iwh“ingf(g,S), (4.6), and (4.7), and let G, be the subgroup of

y v“"k}ff:G ﬁgonSisﬁing'of all those matrices. (gij)J in G with )
Tl ': \-> ’ L.

o

_ l : ) L - . _; -

€13 = &o4 .
gEJ gBJ = 0 j = 5, .,m+2

Then G is a countably infinite hyperfinite group with the

. infinite conjugate class property (see [1]); moreover,

'
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(i) G, satisfies condition (a) of Theorem 3.1

s c - c ' : K
(11) G, 7 N(Go) 2 vee Z Nm(Go) = G , and each N (90)_’
0 < k <m-1, satisfies condition (B) of

Theorem 3.2

(1i1) N(G,) and N°(G,) do not have the infinite

conjugate class property while N3(GO)"does.
- As before, this is sufficient to establish our theorem.

Before proceeding to the proof of Theorem 4.4, we

must first prove

. ) ’
- Lemma 4.5 TLet p be a point in (0,%) , let G be a
countably infinite group, and let G, Dbe a subgroup of G .

I GO satisfies condition (B) of Theorem 3.2, then

N(”L(p,G,GO))' = %(p,G,N(GO)) "

[

Proof.  That f(p,G,N(G )) < N(N(p,G,G )) is trivial.

For the cbnverse, let a unitary operator U in ﬁ(p,G), with

¥*

:_U’IL(p,G,GO) U" = N(p,G,G,) |

" be given. Then I ® U is a unitary operator in -

o, @ 8(p,C) such that

(I @ U)?(n.p ®’n-(p3G>Go) ‘(I ® U)* =7M,p ®_'n-(P:G,GO)

“*According to Theorem 3.2, this forces I ® U.c Gp

and therefore U.e7l(p,G,N(G6)) .

®71(P:G,'N(GO));
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Proof of Theorem 4.4. Let an integer m > 2 and a poiﬁt

p in (O,%)‘ be fixed. Let the field F , the group G of

(m+2)_x (m+2) matriées.over F and its subgroup G_ be as
in thé proofjof Théorem L.2. Then 8(p,G) is the hyper-

finite II, factor (Lemma 3.14-) and 'n,(p,CgGo) is a MA sub-
‘algebra of ﬁ(p,G) (Lemma 3.16 and (4.2)). - By Lemma 4.5 and
(4.3, ?1(P>G:Go) has improper length m . By.LemmaAB.Ql, |
.'Lemma 3.23%, and (4.3),- | '

R

N (9,6,6,)) = Ap,G(c,)) =. €

N(G,)

N(M(p,6,6,)) = T(p,E,N°(G,)) E‘CN}e(’GO)

"~ AS the notion of a factor is an invariant under isomorphisms,

(4.4) shows that qt(p,G,Go) is 2-semi-regular.

This proves (i).  The proof of -(ii) is similar,

~,

. the groups and subgroups from the proof of Theorem:4.3 being
employed. - -

,,,,,
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