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ABSTRACT

Let Qn denote the convex polyhedron of all nxn d.s.
(doubly stochastic) matrices. The main purpose of this thesis is to study

some combinatorial properties of the diagonal sums of matrices in Qn .

In Chapter I, we determine, for all d.s. matrices unequal
to Jn ; the maximum number of diagonals that can have a common diagonal
sum. Thé key will be a Decomposition Theorem that enables us to
characterize completely the structure of a d.s. matrix when this maximum
number is attained, provided that the common sum is not one. When the
common sum is one, the question is more difficult and remains open.

Several applications of the Decomposition Theorem are also given.

In Chapter II, we concentrate on the diagonals with
maximum diagonal sum h and the diagonal; with minimum diagonal sum k .
We obtain the best possible bounds for entries on these diagonals and for
various kinds of functions of h and k . The key will be a Covering

Theorem that enables us to analyze the cases when those bounds are

attained. A conjecture is given.

In Chapter III, we study the properties of the h-function
and the k-function, the functions that associate with each d.s. matrix
its maximum and minimum diagonal sums respectively., In particular, we
investigate the behavior of these functions on the Kronecker product of

d.s. matrices. Furthermore, we show that the h-function is very similar
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to the rank function p in many respects. We also prove that for

h(A) }%’

A e Qn » h(A) < p(A) and per(a) < { -

which improves a result by

M. Marcus and H. Minc. A conjecture is given.
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INTRODUCTION

Let Sn denote the full symmetric group of degree n .
If A is any nxn matrix and ge¢ Sn , then the sequence of elements
ald(l)’ a20(2)’ ey anO(n) is called the diagonal of A corresponding
to 0 . Following the usual convention, we shall use ¢ to denote
both the permutation ¢ and the diagonal corresponding to it. If o
is the identity permutation, then the diagonal corresponding to it is
called the main diagonal of A . If for some o ¢ Sn s
aiO(i) =1,41i=1, 2, ..., n, and aij = 0 otherwise, then A is
called a permutation matrix. If ¢ is a diagonal of A , then the sum

n
2 a, is called the diagonal sum of ¢ . Diagonal product is
1 io (1)

defined in a similar way.

An n-square real matrix A = (aij) , where 0 i-aij <1
for all i,j =1, 2, ..., n 1is called row stochastic if each row sum
is one, column stochastic if each column sum is one, stochastic if it is
either row stochastic or column stochastic and doubly stochastic if it
is both row stochastic and column stochastic. The fundamental theorem
in the theory of doubly stochastic matrices is the theorem of Birkhoff
[1] which statés that the set Qn of all n-square doubly stochastic
matrices is a convex poiyhedron with permutation matrices as vertices.

(For more about this theorem, see [15, 181).

Much of the study of doubly stochastic matrices is

motivated by the well-known, long-standing and challenging



van der Waerden conjecture [22] which states that for A ¢ Qn ,
per (A) _>_'n!/nn with equality if and only if A = Jn , the doubly
stochastic matrix with all entries equal to 1/n . Here, per denotes

the permanent function.

Desipte a great deal of effort, this conjecture is still
unsolved though it is generally believed to be true [13]. The conjecture
has been verified to be true for n < 5 [4, 5, 16], and many partial
results, mainly due to Marcus, Minc and Newman have also been obtained

[4, 5, 13, 16].

It has been pointed out by P. Erdos that the following

two statements are consequences of the van der Waerden conjecture:

n
(1) There exists a diagonal ¢ of A such that | | a. ;.\ > 1/ .
i=1 ig(i)

n
(2) There exists a diagonal ¢ of A such that z
i=1

aic(i) > 1 and

aio(i) >0 for i=1, 2, ..., n .
In 1958, Marcus and Ree [18] verified (2) by proving
n n
that for A e @, there is a diagonal ¢ such that z a LN > 2 a2,
n 121 10(1)—-i =1 ij
b

and aio(i) >0 for i=1, 2, ..., n . Then in 1962, Marcus and Minc

n
[10] verified (1) by proving that for A e Q_ , max a, ,.\ > 1/o"
n o i=1 io(i) —

with equality if and only if A = Jn .

Erdos' observation and the proofs furnished by Marcus,
Minc, and Ree suggested that local properties such as diagonal sum (as

well as diagonal product) are closely related to the structure of doubly



stochastic matrices. As an extreme case, notice that if any diagonal
sum is n , then the doubly stochastic matrix must be a permutation
matrix. A less trivial proposition, which will be used frequently in

this work, also illustrates this point.

Proposition: If A e Qn , then

n
(i) max .Z 35 5(4) > 1 with equality if and only if A = Jn .
geS_ i=1
n
n
(ii) min .Z aio(i) < 1 with equality if and only if A = Jn .
geS_ i=1
n
n
Since for A e Q_ , Z a2 > 1 with equality if and
Bog,i=1 YT
9

only if aij =1/n for all i,j =1, 2, ¢«+«, n , i.e., if and only if

A= Jn , (1) 1is an immediate consequence of Marcus and Ree's result.
(ii) follows by applying (i) to the doubly stochastic matrix

B = (an -A)/(n-1) .

As we will see later, the above proposition can also be

obtained independently as a corollary of one of our theorems (Theorem 1.3).

With this picture in mind, the main purpose of this
work is to study some combinatorial properties of the diagonal sums of
doubly stochastic matrices. The starting point will be the theorem of
Marcus and Minc [10] which states that if A ¢ Qn has more than

(n-1) (n-1)! diagonals with a common non-zero diagonal product, then



In Chapter I, we first show that the above theorem still
holds if we replace "mon-zero diagonal product" by "diagonal sum". Then
we pose this question; "For A ¢ Qs what is the maximum number of
diagonals with sum greater than one and what is the maximum number of
diagonals with sum less than one?" To answer this question, we obtain
a decomposition theorem (Theorem 1.11) which shows that this common
maximum number is again (n-1)(n-1)! , a somewhat surprising, if not
significant, result. This theorem also enables us to characterize
completely the structure of a doubly stochastic matrix when it has
precisely (n-1)(n-1)! diagonals with a common sum o # 1 . The
decomposition theorem gives no information for d = 1 1in which case the
question becomes more difficult and we are only able to obtain partial

answer. Several consequences of this theorem are also derived.

In Chapter II, we confine ourselves to the diagonals with
maximﬁm diagonal sum h and the diagonals with minimum diagonal sum k.
The key will be a covering theorem (Theorem 2.3) which enables us to
obtain the best possible bounds for entries on these diagonals and for
various kinds of functions of h and k , and to analyze the cases when
‘these bounds are attained. When investigating the lower bound for

h + k , a conjecture (Conjecture 2.21) naturally presents itself.

In Chapter III, we study the properties of the h-function
and the k-function, the functions that associate with each doubly
stochastic matrix its maximum and minimum diagonal sum respectively.

In particular, we show that the h-function is convex and is very similar



‘to the rank function p 1n many respects. We also investigate the
behavior of these functions on the Kronecker product of doubly stochastic
matrices. Furthermore, we prove that for A e Q , h(A) < p(A) and
per(A) ig{h(A)/n}% which improves a result of Marcus and Minc [ll].

We also make the conjecture that the h~function defined on Qn obeys
Sylvester's law for the rank function, if.e., h(A) + h(B) -~ h(AB) < n

for A,B e Q .
n

On the whole; our study will be of a combinatorial
nature. In particular, we will apply twice in this work (cf. Theorem 2.13
and Proposition 3.18) the well-known theorem of P. Hall [20] on systems
of distinct representatives which states that the subsets
Sl’ SZ’ RN Sn of a set § .have a system of distinct representatives
if and only if for each k =1, 2, -+, n and for all sequences w of

k terms such that 1 Swg fwy < ees <w o <n, it is true that



CHAPTER 1

DIADONAL SUMS OF d.s. MATRICES

In this chapter, we show that for d.s. matrices unequal
to Jn , the maximum number of diagonals that can have a common sum is
(n-1)(n-1)! . We then pose the questions, "For A ¢ Q> what is the
maximum number of diagonals with sum greater than one and what is the
maximum number of diagonals with sum less than one?" To answer these
questions, we obtain a decomposition theorem which shows that the
answers to both questions are again (n-1)(n-1)! . This theorem also
enables us to characterize completely the structure of a d.s. matrix
when there are precisely (n-1)(n-1)! diagonals with a common sum

a#1. For o =1, the question is more difficult and remains open.

In [10], Marcus and Minc proved the following results:

Lemma 1.1: Let A be an nxn matrix such that more than

(n-1) (n-1)! diagonals have a common non-zero product. Then p(A) =1 .

Theorem 1.2: Let A ¢ Q. be such that more than (n-1)(n 1)! diagonals

have a common non-zero product. Then A = Jn .

We begin this chapter by obtaining, using Lemma 1.1, an

analogue of Theorem 1.2 concerning the diagonal sums of d.s. matrices.

Theorem 1.3: Let A ¢ Qn be such that more than (n-1)(n-1)! diagonals

have a common sum. Then A = Jn .



Proof: Let o denote the common diagonal sum. Define the matrix

B = (bij) as: bij ='exp(aij) . Then bij >0 and gn bij = aij for
n n

all i,j =1, 2, «++, n . Hence gn Jl bio(i) = izl a; 4y =@ of

[ bic(i) = exp(a) # 0 for more than (n-1)(n-1)! diagonals o . By

Lemma 1.1, ,(B) = 1 and hence there is one row of B , the lst row

say, such that every other row is a scalar multiple of it,

%4
i=2,3, .«-, n. Hence exp(a;,)/exp(a;;) = exp(a;,)/exp(a;,) = +-+ =

= eXp(ain)/exp(aln) =a; >0 or a-aj;;=a,-a,= =
=a;, -a_ =1n (di) = Bi for each i =2, 3, -+, n . Therefore,
n n

z a,. =n g, + z a., Since each row sum of A is one, we get
b ij i . 13

j=1 j=1

Bi =0 or ail =351 ai2 = alZ’ N ain = a1n for all

i=2, 3, «+, n . Since each column sum of A is also one, we get,

i = o e a = = = ces = =
for all j 1, 2, » 1, N 13 1 or aj; = 2y, aj. 1/n .
Hence A =J_ .
n
n .
Corollary 1.4: Let A ¢ Qn . Then ‘l .Z aio(i) <1, with equality
geS_ i=1
n
iff A=J
n
Proof: By the elementary arithmetic-geometric inequality, we
n n . n
1 n! 1 n!
have WT z a, .y < {—T z z a, ,. } = {—T (n-1)! z a..} =
G i1 ic(d) n! &0 ic (i) n! i,3=1 ij|
n

1
= (a!/n)™ =1 . We have equality iff z

L aio(i) are equal for all



diagonals ¢ , and hence 1iff A = Jn

The next corollary will be used frequently.

Corollary 1.5: Let A ¢ Qn . Then
n
(i)  max .Z 3 5(1) > 1 with equality iff A = Jn s
ceS_ i=1
n
n
(ii) min L 35031) <1 with equality iff A = 3
oeS_ i=1
n
n n
Proof: (i) Since n! - max. a, ,.\ > a, ,.\ <
— ) e izl io (1) —-g izl ig(i)
n n
= (n-1)! 2 a,, =n! , we get max a, ,.v >1 . Equality holds
i,5=1 o 3=1 )
n
iff z a, .. are equal for all diagonals ¢ and hence iff A =J
i=1 io(1) n

The proof of (ii) is similar.

The next theorem is an analogue to a result of Sinkhorn

and Knopp [21, corollary 4].

Theorem 1.6: Let A,B ¢ Qn be such that more than (n-1)(n-1)!

corresponding diagonals of A and B have equal sums. Then A = B .

Proof: Put C =

=N

(A-B+n Jn) . Then C ¢ Qn and more than
(n-1)(n-1)! diagonals of C have the common sum one. Hence C = Jn

by Theorem 1.3. Therefore A =B .

Remark 1.7:4 (i) The number (n-1)(n-1)! in Theorem 1.2 and 1.3

above is best possible in the sense that it is attainable for all n .



For consider the matrix

N <
N <

N oo«

W oeee M

N e

where 0 < x,y,z <1 are such that x + (n-1)y =y + (n-1)z = 1 . Then
clearly A ¢ Qn . Since this particular matrix will be considered
frequently in the sequel, we call it a (x,y,z)-matrix, and denote it
by A(x, y, z) . 1If we choose x, y, and 2z such that yzznn2 # in_l
(i.e., y2 # xz) , then A # Jn and there are (n-1)! diagonals passing

through x with the common non-zero product xzn—1 and (n-1)(n-1)!

diagonals missing x with the common non-zero product yzzn—2 .
Similarly, if we choose x, y, and 2z such that

x+ (n-1)z # 2y + (n-2)z (i.e., 2y # x + z) , then A # Jn and A

has precisely (n-1)(n-1)! diagonals with the common sum 2y + (n-2)z .
In fact, we shall prove later on that if A é Qn has precisely

(n-1)(n-1)! diagonals with a common sum o # 1 , then A = A(x, y, z)

for some suitable choices of x, y, and =z .

(ii) Later on we shall show via a decomposition theorem that

Theorem 1.3 and Theorem 1.6 are in fact equivalent.

(iii) In Theorem 1.6, the assumption "corresponding" is clearly
indispensable for we can always permute the rows and columns of A ¢ Qn
to get B # A . Obviously, A and B have all the diagonal sums equal
(not corresponding diagonals). Furthermore, the number (n-1)(n-1)!

in Theorem 1.6 is attained for n = 3 . For example, let A = J3 s
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B=1}1/2 1/3 1/6 . Then A # B, and there are precisely 4

1/6 1/2  1/3

1/3 1/6 1/2
corresponding diagonals with equal sums. However, we are unable to show
that the number (n-1)(n-1)! is attained for all n or for any n > 4.
The next proposition shows that this question is equivalent to the
existence of a d.s. matrix having precisely (n-1)(n-1)! diagonals with

the common sum one.

Proposition 1.8: The following two statements are equivalent.

(i) There exist A,B ¢ Qn , A# B such that precisely (n-1)(n-1)!

corresponding diagonals of A and B have equal sums.

(ii) There exists C ¢ Qn with precisely (n-1)(n-1)! diagonals having

sum one.

Proof: (i) => (d1i) . Put C =

o |

(A-B+nJ). Then Ce Q
n n
and, since A # B, C # Jn . Since C has at least (n-1)(n-1)!
diagonals with sum one, it has precisely (n-1)(n-1)! diagonals with
sum one by Theorem 1.3.
(ii) => (1) . Since C has precisely (n-1)(n-1)!
diagonals with sum one, C # Jn by Theorem 1.3. Now, C and Jn have

precisely (n-1)(n-1)! corresponding diagonals with equal sums.

Since for a d.s. matrix A , each row sum and column sum
is identically one, it is natural to ask the following questions, 'How

many diagonals of A can have sums greater than one, and how many
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'diagonals of A can have sums smaller than one?" In the following,
we shall obtain a decomposition theorem from which the answers to both
questions follow immediately. Since this theorem is a combinatorial
theorem concerning the positions in a matrix without reference to the
actual entries, we find it convenient to ektend the notion of diagonal

as follows:

Definition 1.9: Let ¢ ¢ Sn . By a g-diagonal or simply a diagonal

we mean the set of ordered pairs {(i, ¢(i)); i =1, 2, +++, n} .

Two diagonals ¢ and 1t are said to be disjoint if for all

i=1,2, ««., n, o(i) # 7(1) . A collection E of diagonals is a
mutually disjoint collection if for all o,1 ¢ E, o # T , ¢ and 1t

are disjoint.

Definition 1.10: A collection E of diagonals is said to cover a

matrix A 1if each entry of A appears in at least one of the diagonals
of E . If, in addition, E is a mutually disjoint collection, then

we say the covering is exact. It is clear that a mutually disjoint

collection E of diagonals covers A exactly iff |E| =n .
Theorem 1.,11: (Decomposition Theorem for the set of all diagonals.)
Let D be the set of all diagonals of order n . Then

there exists a decomposition of D into (n-1)! mutually disjoint

subsets each containing n mutually disjoint diagonals.
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Proof: Let o, € Sn be any full cycle permutation, and let
G = <do> be the cyclic subgroup of order n generated by 9
Consider the class of all (left) cosets oG of G, o ¢ Sn . Since

|6G| = |6] =n for all o eS_ and § |oG| = |[S_| = n! , where the
n c n

summation is taken over a complete set of coset representatives ¢ , it
is clear that there are (n-1)! such (disjoint) cosets. Furthermore,
since o is a full cycle, we have, for each 1 =1, 2, .-+, n , that

i = i = i = 3 = = i = = - =2
(081) (1) = (08,) (1) => o(g (1)) = o(g,(1)) => g, (1) = g,(1) => g, = g5
=> ogy = 08, for all 81:8, € G, oe¢ Sn . Therefore, the diagonals

in each coset are mutually disjoint. This completes the proof.

As an immediate application, we have the following:

Theorem 1.12: Let m be an integer, 1 <m <n . Let Km be the
smallest positive integer with the property that any collection of Km

diagonals would contain m disjoint ones, Then Km = (m-1)(n-1)! + 1.

Proof: Let E be a collection of diagonals such that

[E| > (+-1)(a-1)t +1 . Let D =D, U D, U be a

U D1yt
decomposition of the set D of all diagonals as described in Theorem 1.11.
By the pigeon-hole principle, |E N Dil > m for some i ,

1<1i< (n-1)t, for otherwise |E| < (m-1)(n-1)! , a contradiction.

Since Di is a mutually disjoint collection, Km-i (m-D(-1! +1
follows. On the other hand, let_ F be the collection of all diagonals

passing through any one of a i=1, 2, «++, m-1 . Then

i °?

|F| = (m~1)(n-1)! . Clearly, F does not contain m mutually disjoint



13

diagonals for otherwise the pigeon-hole principle would imply that some
two of these disjoint diagonals must pass through the smae aj, for

" some 1 , which is obviously absurd. Hence Km > (m-1)(n-1)! + 1 .

Therefore, Km = (m-1)(n-1)! + 1 .

Corollary 1.13: Let A ¢ Qn . Let An(A) and an(A) be the maximum

number of diagonals of A with sums greater than one, and smaller than

one, respectively. Let An = max An(A) and dn = max an(A) . ‘Then
AeQn AeQn

A, = Gn = (n-1)(n-1)! . This bound is always attainable.

Proof: If An(A) > (n-1)(n-1)! + 1 for some A ¢ Qn , then by
Theorem 1.12, we can select n mutually disjoint diagonals each having
sum > 1 . Since they cover A exactly, we get E aij >n, a

i,i=1
contradiction. Hence An < (n-1)(n-1)! . Similarly, 6n-i (n-1)(n-1)1!.

To see that this bound is always attainable, consider the d.s. matrices
A0, 1/(n-1), (n-2)/(n-1)2) and A(1, O, l/(ﬁ—l)) respectively (cf.
Remark 1.7.(i)). 1In both cases, there are precisely (n-1)(n-1)!
diagonals with sum 2y + (n-2)z , which is equal to [(n-1)2 + 1]}/(n-1)2

in the first case and (n-2)/(n-1) in the second. This completes the

proof.
In [10], it was shown that for any d.s. matrix A ,
n
n .
max H aic(i) > 1/n . The next corollary is now clear from the
oeS_ i=1 .
n

elementary arithmetic-geometric inequality and Corollary 1.13 above.
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Corollary 1.14: Let A e Qn . Then at most (n-1)(n-1)! diagonals

can have diagonal product > 1/n" .

We mention that Corollaries 1.13 and 1.14 are in fact true
for the class of stochastic matrices. As another immediate application
of the.Decomposition Theorem, we show that Theorem 1.3 and Theorem 1.6

are indeed equivalent. (Remark 1.7.(ii).)

Theotem 1.15: The following two statements for d.s. matrices are

equivalent.
(i) If Ace Qn has more than (n-1)(n-1)! diagonals with a common
sum, then A = Jn .
(ii) If A,B ¢ Qn have more than (n-1)(n-1)! corresponding diagonals

with equal sum, then A =3B ,

Proof: (i) => (i) . This is just Theorem 1.6.

(i) = ({) . Let A« Qn be such that more than
(n~1) (n~1)! diagonals have the common sum o . Then by Corollary 1.13,
it is impossible that o > 1 or a < 1 . Hence ¢ =1 and so A and
Jn have more than (n-1)(n-1)! corresponding diagonals with equal sum.

Therefore A = Jn by (ii) . This completes the proof.

For A ¢ Qn , we have seen (Corollary 1.5) that

n n
max z a, ,.y > 1 and min Z a, ,.y <1 with either (and hence
OeSﬁ i=1 10(1) oeSn i=1 io (1)

both) equality iff A = Jn . Regarding Corollary 1.13, the following
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question naturally presents itself. "If A ¢ Qn , A# Jn , what is the
n
maximum number A (A) of diagonals ¢ such that 2 a. ,.. > 1, and
n 121 iog (1) —

what is the maximum number g;(A) of diagonals t such that

n
a, ,., < 172" Let A = max K‘(A) and § = max g-(A)
=1 T aeq n{J 3 " "ok n{i} "

It can be easily seen that for n = 2 , K& = Eé =1 . In general,

however, the question seems to be quite difficult. When n = 3, for

example, the following matrices show that Zé = Eé =5 .
/2 1/3 1/6 1/2 1/4 1/4
A = |1/6 1/2 /3], B =11/4 1/2 1/4

1/3 1/6 1/2 /4 1/4- 1/2.

In the next proposition, we show that K; = 35 and

-obtain an upper bound for this wvalue in general.

- - - -1
Proposition 1.16: A =8 < (m-1)(n-1)! + [Sﬂ;llﬁE_ll;] where

[ 1 denotes the greatest integral part function. This bound is

attained for n=2 and n= 3 .

nJ - A
Proof: For any A e Q_ , it is clear that e and that
I n n-1 n
an - A n A
A# Jn iff -1 # Jn . Since 'Z aic(i) > 1 iff
i=1
n
n- 1£1aia(i) _ _
<1, it follows that A_ =6 . Now, let Aeg Q , A# J_.
n-1 — n n n n
n
Let E = {o; 'zl 355 (1) = } . Since A # Jn , we have, by Theorem 1.3
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that |E| < (n~1)(n-1)! . Let D = D, U D, U be a

U Deo1y

decomposition of the set D of all diagonals as stated in Theorem 1.11.

Let m be the number of Di’s such that DiC:}E. Then

m <

- -1
< [(n l)gn l)-] . For each D, such that D, € E , there is at least

one diagonal with sum < 1 . Hence there are at least

(n-1) (n-1)!
n

(n-1)! - [

] diagonals with sum < 1 . Therefore,

i<t - {(n—l)! - [—(—“—‘—l)—fln"—l)—’]} = (a-) (-1t + (R g,

n=2 and n = 3, we get A2 = Eé =1 and Ks = ES = 5 respectively.

Remark 1.17: We are unable to determine if the bound given in the above
proposition is attainable in general. For n = 4 ,

- ~1)! " —
(n~1)(n-1)! + [iE_lléﬁ_ll;] = 22 . The best we can get for A4(A) and

gg(A) so far is 20 as shown by the matrix below:

~

X

< M <
ER I
< K<
X < X <

where x +y =1/2, x> 1/4 , y< 1/4 . Then Ace a_ > A# Jn and

there are 16 diagonals with sum 2x + 2y 1, 4 diagonals with sum

4x > 1 and 4 diagonals with sum 4y < 1 . Hence KQ(A) = EZ(A) = 20 .

In what follows, we will derive more consequences of the

Decomposition Theorem.
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Proposition 1.18: Let Ac¢ Qn . If An(A) = (n-1)(n-1)! , then the
remaining (n-1)! diagonals must have sums strictly less than one and if
5n(A) = (n-1)(n-1)! , then the remaining (n-1)! diagonals must have

sums strictly greater than one. (For notations, cf. Corollary 1.13.)

(n-1) (n-1)!.

]

n
Proof: Let E = {o; 121 a1y l} - Then | E|

Let D=D, U D, U -+ U

1 2 D(n-l)! be a decomposition as stated in

Theorem 1.11. If Di(: E for any i , then since Di covers A
exactly, we get a contradiction., Hence for all i =1, 2, -+-, (n-1)! ,

Di<ZZE or |E N Dil < n-1 . Furthermore, since the Di's are disjoint,

so are the E N Di's . Hence (n-1) (n-1)! = ]E[ = |E N D| =
(n-1)! (n-1)! (n-1)!

=|lEn U D) =| U (ENnDY|= ] [ENDJ < (n-1)(n-1)!. Thus
i=1 i=1 * i=1 *

[E N Di| = n-1 for all i=1, 2, *++, (n-1)! . Therefore, for each 1i,
there is exactly one diagonal o € Di n E . Since each Di covers A
exactly, these oi's must have sum strictly less than one. The other

assertion follows by a parallel argument. This completes the proof.

We are now in a position to characterize all nxn d.s.
matrices that have precisely (n-1)(n-l1)! diagonals with the common sum

o # 1.

Lemma 1.19: If Ac¢ Qn has precisely (n-1)(n-1)! diagonals with the
common sum o # 1 , then the remaining (n-1)! diagonals also have a

common sum which is B = n - (n-1)o # o
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. = 13 = = —_ — 1
Proof: Let E {0, izl aio(i) a} . Then IEI (n-1) (n-1)!

Following the notations and arguments given in Proposition 1.18, we get

|E N Dj| =n-1 for all j =1, 2, +++, (n-1)! , and hence for each j ,

there is exactly one Gj € Dj & E . Since Dj covers A exactly,
n
= - - i = PP - ! 1
121 aioj(i) n - (n~1)o for all j =1, 2, , (n-1)! . Since o # 1,

it is clear that B # a

Theorem 1.20: If A ¢ Qn has precisely (n-1)(n-1)! diagonals with the

common sum ¢ # 1 , then there exist permutation matrices P and Q
such that for some suitable choices of x, vy and z , PAQ = A(x, y, z).

(cf. Remark 1.7.(i).)

Proof: Since by Lemma 1.19, A has only 2 distinct values a and
g for diagonal sums, a theorem by J. Kapoor ([7], Theorem 2.15) implies
that there exist permutation matrices P and Q and a positive integer

k,1l<k<n such that PAQ or (PAQ)T has the following form:

B oo ‘ 7
(B—a)+kn+61 AHs g A8y
(B—)h s, A, R AP

B=o) WA Fp 3 AgFy g 7 Apatia

Aoy Aoy o Aoty

n
Since A e Qn , nx, + z §, =1 forall j=1, 2, ***, n-1 . Hence
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Ay = Ag = 200 = An—l = X for some X . Similarly,
n .
(6—u)+(z>\i)+n6.=1 for all j =1, 2, +++, k=1 . (1)
i=1 ]
Hence 61 = Gi = ese = 6k—l =§ for some § . (2)
n
Also n Gj + Z Ai =1 forall j =k, ktl, ««-, n . (3)
i=1

From (1), (2) and (3), n Gj -n§ - Bw) =0 or Gj =6 + %(B'a) =g'
for some ¢§' for all j = k, k+l, --+» 1 = Consequently, PAQ or

(PAQ)t takes the form:

[B)h 4 At oo A
(=)t _H8 At o A4S
@-)t # A+ vee A+ > (k-1)th row

AT AR e ART
n

A+ A+ .. A*ﬁ'J
n :

For convenience, put x = (B—u0) + An +8§ , y=rx+68 ,y' = An +6' ,

and z =X +8§' . Then PAQ or (PAQ)t becomes

- -
X y e e y
X y s vy —> (k-1)th row
y|

Lyt oz 2 |

Clearly, this matrix has two distinct diagonal sums values: there are
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(k-1)(n-1)! diagonals passing ﬁhrough some x with sum

x + (k-2)y + (n-k+tl)z and (n~kt+l)(n-1)! diagonals passing through some
y' with sum y' + (n-k)z + (k-1)y . Since, by assumption, there are
precisely (n-1)(n-1)! diagonals with the same sum, we have either
k-1 = n-1 or n-k+l =n-1 . Hence k=n or k=2 . For k=n,

PAQ or (PAQ)T becomes

Fx y 'y * e y_
X y y . y
X y y °e y

| y' z oz <z

Since A ¢ Qn , we have x = z and hence after permuting the rows, the

matrix becomes

y x o e x
x y e o0 y
_x y ) yJ .

Since this matrix is symmetric, we can conclude that for some permutation

matrices P' and Q' , P'AQ' = A(y', x, y) . For k=2, PAQ = (PAQ)"

becpmes
~X y . y—
‘y' Z . e z
_y' 7 e z| .

1

Since A ¢ Q » we have y =y' . Therefore, PAQ = A(x, y, 2z) .
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As an application of the above theorem, we have:

Corollary 1.21: If Ae Qn has precisely (n-1)(n-1)! diagonals
. 1 1
with the common sum o # 1 , then 1 - TS 571 + oDZ
. ' . 1 1
Conversely, given any o # 1 , with 1 - promy A <1+ ?EiIYT , there

exists a matrix A ¢ Qn that has precisely (n-1)(n-1)! diagonals with
the common sum o . This matrix is unique up to permutation of rows

and columns.

Proof: If Ace Qn has precisely (n-1)(n-1)! diagonals with the
common sum o ¥ 1 , then by Theorem 1.20, there exist permutation matrices

P and Q such that

PAQ = A(x, v, z) = y

y z SN z |

for some x, y, and z . Since .x + (n-1)y =y + (n-1)z = 1 , we have

_1-x - 1=y _ n+x—-2 - _ _
Y=41 ° %% o0 zg:ijg- . Hence o« 2y + (n-2)z
- —1 {2(1-x) (n-1) + (n-2) (n+x-2)} = L (n2-2nt2-nx} = 1 + =B%
(n-1) (n-1) (n-1)
Consequently, o attains its maximum 1 + YEgiYT and its minimum
1- ;%1- when x =0 and x =1 respectively. Conversely, let o # 1
be givenAwith 1 - L a <1 +-——!;7f . A matrix Ae Q that has
n-1 - - (n-1) n

precisely (n-1)(n-1)! diagonals with a common sum o must be, in view

of Theorem 1.20, equivalent to A(x, y, z) for some x, y, and =z via
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permutation matrices. Hence

x+ (n-y =1 , (4)

y+ (n-1)z =1 |, (3)

2y + (n-2)z = a . (6)
From (5) and (6), we get =z = 2 ; ® 5 0 since a < 2 . Substitute this

into (5), weiget y =*% {(2-n) + (n~1)a} > 0 since (n-1l)a > n-2 .
2(n-1)2 - g (n~1)2 5

n i

Substitute this into (4), we get x =1~ (n-1) +

-1)2 -
n + (n-1) 1

> 2 -
- n

= 0 since a(n-1)2 5_(n—l)2 + 1 . Hence the matrix

(L

@) + @D2EY , y =

- {(2-n) + (n-1)a} ,

A(x, y, z) where x

j=]

2 - o

and z = is d.s. and has precisely (n-1)(n-1)! diagonals with
the common sum o . This proves both the existence and uniqueness up to

permutation of rows and columns.

Remark 1,22: (1) Corollary 1.21 above shows that the bound given in
Theorem 1.3, though best possible in general, is not uniform in the sense
that if the value o # 1 of the common diagonal sum does not belong to
the interval [§5%~, 1+ ?Ef%jzﬂ , then the bound (n-1)(n-1)! can not
be attained. Consequently, a better (smaller) bound depending on the
value of o should be expected. To get an explicit formula for such a
bound, however, seems to be difficult. For instance, it is intuively
clear (though a simple and rigorous proof using the Konig-Frobenius
theorem [6, 8] can be given) that for A ¢ Qn , the maximum number of
zero diagonals is Dn - the number of derangements of n object. (cf.
e.g. [20], p; 22). An explicit formula, if it exists, must then give the

value Dn for o =0 .
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(ii) Theorem 1.20 and Corollary 1.21 above do not hold for o =1 .
In fact, the example given in Remark 1.7.(i) is not valid for o =1
since 2y + (n-2)z = 1 together with y + (n-1)z = 1 = x + (n-1)y

implies x =y =2 or A=J . TFor A= Jn , clearly all diagonal sums

n
are equal to one. Hence, excluding Jn , we can ask the question: 'What
is the maximum number of diagonals with sum one?"  The bound (n-1)(n-1)!

still holds in general, but we are unable to construct examples to show
that this bound is attained for all n . (cf. Proposition 1.8) For

n =3, the matrix B given in Remark 1.7.(iii) shows that this bound is
attained. For n = 4 , the best example we can get is the one given in

Remark 1.17 which gives 16, rather than 18, diagonals with sum one.

We close this chapter by giving a proposition that answers

partially the problem mentioned in Remark 1.22.(i) above.

Proposition 1.23: Let A e Qn and let o be a given real number
such that 1 < o < n . Then at most (m~1)(n-1)! diagonals of A can

have diagonal sums > o , where m = [5] + 1.

Proof: Suppose more than (m=-1)(n-1)! diagonals of A have
sums > o . Then by Theorem 1.12, we can select from them m mutually
disjoint ones with total sum > mx = a([gj + 1) > a(g) =n, a

contradiction.
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CHAPTER II

MAXTMUM AND MINIMUM DIAGONAL SUM OF d.s. MATRICES

The purpose of this chapter is to carry out a combinatorial
investigation of the diagonals with maximum diagonal sum h and the
diagonals with minimum diagonal sum k . First, we obtain the best
possible upper and lower bounds for entries on these diagonals. Secondly,
we obtain the best possible upper and lower bounds for various kinds of
functions of h and k . The key will be a covering theorem that enables
us to analyze the cases when these bounds are attained. When studying the
lower bound for h+k , an interesting combinatorial question presents
itself. Concerning this question, a conjecture and partial solutions are
given, Finally, we obtain the bounds for h and k when the d.s.
matrices under consideration have properties discussed in Chapter I.
Throughout, we shall use A > 0 to mean that all the entries of the
matrix A are non-negative, and we shall assume that n > 2 , since the

case for n =1 1is always a triviality.

Definition 2.1: Let A ¢ Qn . A diagonal ¢ of A 1is called a

maximum diagonal if its sum is a maximum among all diagonal sums of A ,
and a minimum diagonal if its sum is a minimum among all diagonal sums

of A .

The first result gives the upper bound for entries on a

minimum diagonal.
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Proposition 2.2: Let Ace f,» D > 3 and let ¢ be a minimum
diagonal. Then mix aio(i) i—E%I with equality iff aic(i) = E%I for
some 1 and 55 (9) =0 for all j # i .

Proof: Since permuting the rows and columns of A does not

affect the set of diagonal sums, we may assume, without lose of generality,

that ¢ 1is the main diagonal, and that max a,., = a By assumption,

{7 il 11 -

aj + a;; S ayy + a;q for all i=1, 2, *++, n . Suming over 1 , we
n n 9

get (n+l)a1l + .Z a, s i_‘z (ali + ail) = 2 . Hence a1 ST with
i=2 i=1

equality iff a . a =0 and a,, + a . for all

q v 11~ o+l %4 1i © %41 T ol a

i=2, 3, , It

Remark 2.3:
(i) If n =2, the upper bound is 1/2 and is attained iff A = J2 .

(ii) For all n > 3 , the upper bound is the best possible. Consider

(2 1 U
n+l n+l n+l
1 0 e e o
n+l (nt+l) (n-2)
A = € Qn
1 n 0
| n+l (n+1) (n-2) i
where a -2 a = a I a =0 foralli= 2,3, ..., n,
11  ntl° 1i il n+l ° ii > ?
and aij = 15115%5:57 otherwise. Clearly, the main diagonal is a
minimum diagonal, and its maximum entry is 2 . Incidentally, this

n+l
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example also shows that in general the maximum entry of a d.s. matrix can

lie on a minimum diagonal.

If we were to apply the argument used in the proof of

Proposition 2.2 to a maximum diagonal ¢ , we should get the lower bound
n

mix a5 (4) > 1/n which is trivial since izl 350 (1) > 1 by Corollary 1.5.

However, the upper bound for max a, ig (1) and the lower bound for
min aio(i) can be obtained in terms of the diagonal sum h and the
i
bounds are non-trivial when h < 2 . Since h > 1 by Corollary 1.5, we

have n-max aic(i) >h>2-h and n- mln a, io (1 )-l < h-1 < (n-1) (h-1) ,

i
i.e., max a, ,.,, > 2-h and min a, ,., < (n-1)(h-1) + 1 . However,
i 1o(i) — n i io(d) — n
the following stronger results hold.
Proposition 2.4: Let A ¢ Qn and let ¢ be a maximum diagonal with
; 2-h
sum h . Then (i) mln a, (1) =
(ii) max a, . (n-1) (h-1) + 1 .
i ig (i) — n :
Proof: As before, assume that ¢ 1is the main diagonal.
(i) Suppose all = min a;; - By assumption, ayq + ay i-ali + a:,
for all i=1, 2, *-*, n . Summing over i , we get
' n
_ 2-h
noaj,y + h z_'z (ali ail) =2, or aj; > -
i=1
(ii) Suppose a,, = max a_,, . By assumption, for each fixed
11 i ii

i=2,3, ***, n, we have a,, +a,, <a,, +a,, for all
: ij ji— it ij
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j=1, 2, *++, n . Summing over all j # 1, i , we get

) (a,, + aji) 5_(n—2)ai. + } a,, ,or

j#1,i by,
2-a_.-a. -2 < (2a,,+ } a,,; or
1i 1 — . ,
i ii ii §31,1 ij
2 - a; Ty 5_(n—l)aii + .Z ajj . Summing over all i # 1 ,
j#1
n
we get 2(n-1) - 2 (ali + all) < 2(n-1) z a., , or

i=2
2(n-1) - (2 - 2a);) < 2(a-1)(h - a

jA

ll) . Simplifying, we get

a;, < = {(n-1)(h-1) + 1} . This completes the proof.

1
11 n

If we consider a minimum diagonal ¢ instead, the same

argument as above yields:

Proposition 2.5: Let A e Qn , and let ¢ be a minimum diagonal with

1 - (n-1)(1-k)
(1) = n

sum k . Then (4i) mln a,

2-k

(ii) max a o (1) _—n— . .

Since 1 and O are the upper and lower bound,

> 0 iff

respectively, for any entry of a d.s. matrix, and since

(n-1)(h-1) + 1

h < 2 iff m < 1 , Proposition 2.4 can be restated as
follows:
Proposition 2.6: Let A ¢ Qn , and let ¢ be a maximum diagonal

with sum h . Then
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(i) min aio(i) >
0 4if h> 2

(n-1)(h-1) + 1

= if h<2
ii a, .. < :
(ii) m?x io (1) <
1 if h> 2
. . . 1 , n-2
Similarly, since Py {1l - (n-1)@-k)} >0 1iff k >0
and ZX <2 irf -2 < K, Propositions 2.2 and 2.4 b
paih e 41 < k » Propositions 2.2 an .4 can be put
together and restated in:
Proposition 2.7: Let Ae Qn , and let ¢ be a minimum diagonal with
sum k . Then
1 - (n-1)(1-k) RN n-2
. . n — n-1
(i) min a, ,, >
i io(1) —- n-2
0 if k < —=
— n-1
2=k . 2
if k z~n+l
(ii) mix aio(i) < { )
mi M kg

Clearly, (ii) above is a refinement of Proposition 2.2.
In the following examples, we discuss the case of equality for the bounds
given in Propositions 2.6 and 2.7 for arbitrarily preassigned values of

h and k .
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Example 2.8: Let h be a given number such that 1< h< 2,

(n-1)(h-1) + 1

Consider the d.s. matrix A = A(x, y, 2z) with x = o ,
~2-h 4 -n*th-2 .
y n(n—l) ’ ey
[(n-1) (h-1)+1  2-h e 2-h ]
n n n
2-h n+h-2 e n+h-2
n n(n-1) n(n-1)
A =
2~-h n+h~2 ces n+h-2
B n n(n—l) n(n_l)J
n
Then izl a;; = h , and any diagonal missing a1 has sum

2(2-h) + (n-2) (n+h-2) _ n-h <
n n(n-1) T n-1l =

1l < h . Hence the main diagonal is a

(n-1) (h-1) + 1 _
" -

maximum diagonal with sum h . Finally,

_ (0-1)2(h-1) + (n-1) _ (h-1) + (n~1) _n+h - 2
B n(n-1) — n(n-1) n(n-1)

_ (n=1)(h-1) + 1

implies that

max a.. = a . If h> 2, then the permutation
i ii 11 n
matrices are examples for which max aio(i) = 1 . Hence the upper bound
i
in Proposition 2.6 is always attainable.
Remark 2.9: If we consider the lower bound in Proposition 2.7 we have
two cases: (i) 0 < k E-EZi In this case, permutation matrices
provide examples for which min a, ,,, =0 . (ii) n-2 <k<1l. In
i do(i) n-1 -

this case, Example 2.8 above with h replaced by k suffices since a

change from h > 1 to k < 1 merely reverses all the inequalities



30

therein and consequently the main diagonal becomes a minimum diagonal and

m%n a.. = a = 1 - (n-1)(1-k)

ii 11 a Hence the lower bound in Proposition 2.7
i

is always attainable.

Example 2.10: Let n> 3 and let k be a given number such that
'_3__< k < 1 . Consider the d.s. matrix
ntl - —
[ 2-k n+k-2 n+k-2
n n(n-1) cot n(n-1)
n+k~2 (n+1) k-2 (n?-2n+4) - (n+2)k
n(n-1) n(n-1) T n(n-1) (n-2)
A=
n+k-2 (n2-2h+4)-(n+2)k (n+1)k-2
_n(n—l) n(n-1) (n-2). e n(n-1) 1
_2 -k _ (ntDk - 2 - _n+k-2
where 811 7 Ta > 344 n(n-1) > 33 7 % n(n-1) for all
. _ (n2-2n+4) - (n+2)k , ,
i=2, 3, , n , and aij B (n=1) (n=2) otherwise. Since

(ntl)k - 2 > 0 , and since n2 - 3n + 2 = (n-1)(n-2) > 0 implies that

n? - 2n + 4 >n+ 2> (n+t2)k , we have A > 0 . Straightforward

n
computations show that indeed A ¢ Qn . Furthermore, 2 a;; =
i=1
_2-k + (n+tDk - 2 _ K, 2 -k + (ntl)k - 2 _ 2(ntk-2) , and
n n n n(n-1) n(n-1)
(n2-2n+4) - (ot2)k _ (n+tl)k - 2 _ _ n(l-k) o
n(a-1) (n-2) n(n-1) (n-1) (n=2) > 0 . Hence the main diagonal
. . . . , 2 -k (n+1)k - 2 _ 2(1-k)
is a minimum diagonal. Finally, since n a(n-1) iy >0,
2 -k . ,
we have max a,, = a = . The case for n = 2 1is easy since
i ii 11
2-k . .. ’ _2-k _ _k '
a;q = 2 implies that 8y, = 3 and a1, = 4y 5 If
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2 ; k i.%’ , them k> 1 . Hence k=1 or A= J2 . Therefore, the

equality holds iff k = 1 . Hence the upper bound in Proposition 2.7 is
. . 2

always attainable for all n , provided that k i-n+l . If k< 1

however, the fact that max a, ,., < k < 2 clearly shows that the upper
i io (i) — n+l

bound is not attainable.

The equality case for the lower bound in Proposition 2.6
is somewhat complicated. Before making a complete analysis, we need a
lemma which gives a non-trivial lower bound for any entry on a diagonal

with "comparatively large" diagonal sum o .

Lemma 2.11: let Ace Qn and let ¢ be a diagonal with sum o > n-2 .

a s, 4 -n + 2
ig (1) — 2

there exist permutation matrices P and Q such that PAQ takes the

Then for all i = 1, 2, =+, n, with equality iff

form:
al a2 .o an
a2 l—a2
. 0
0
a 1-a
| n n | s

where Z a. =1.
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Proof: Permuting the rows and columns of A , if necessary, we

may assume that ¢ 1is the main diagonal and a is the entry being

11
considered. Let Ri and Ci denote the dith row sum and column sum
n n
respectively. Then 2n - 2 = .2 (Ri + Ci) = 2(.2 aii) +
i=2 i=2
n n

+ 'Z (ali + ail) + 2 . Z— aij = 2(y - all) + (n-q) +8 where
i=2 i,3=2

i#]
n .
B = Z_ a5 > 0 . Therefore 2a;;, =a -n+2+p , and thus
i,j=2
i#]
a,, > =BT 2 it equality iff g =0 ; i.e., iff a,, = 0 for all
ll_ 2 q y B > e Sy ij
i+3j, i,j=2, 3, ***, n . Since A is d.s., ay; = 341 for all
i=2, 3, ***, n . Therefore, if we write a; for ajy o A takes the
n
described form where 2 a; = 1 . This completes the proof.
i=1

Now we are in a position to analyze the equality case for

the lower bound in Proposition 2.6. There are two cases to be considered:

Case I: 1< h< 2. In this case, Example 2.10 with k replaced
by h suffices provided that n > 4 since then

(M -2n+4) - (n+ 2)h> (¥ - 2n+4) - 2(n +2) = - 4n > 0 and
hence A > O . Furthermore, a change from k < 1 ‘to h > 1 merely
reverses all the inequalities t%erein. Consequently, the main diagonal
becomes a minimum entry thereon.
The case for n = 2 is again easy since ajy < 2 ;_h
h = 1 and hence equality is attained iff h =1, i.e., iff A =J

becomes a maximum diagonal and a1

implies that

5 ¢

The case for n = 3 calls for separate consideration. Since



(@ -2n+4) - (n+2h=7-50 for n =
replaced by h)

claim that the equality can not hold.

still stands for h <

If h >

(GIEN

2
5 b

h
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3 , Example 2.10 (with k

owever, we

Assume the contrary, and let

A ¢ Q3 be such that the main diagonal is a maximum diagonal with sum h,

7 : . _2~h -
5 < h < 2, and that ajq m]}_n a;; =73 Examining the proof of
P iti NG = .
roposition 2.4.(i), we see that 3y + a0 = 231, + a1 Hence A
takes the form:
i 2-h « 1+h
3 3~ %
A = g-}-l-—x+y y x—2y+ﬁ
3 3
2h-1 1-2h
L-x y+ 3 l-x-y 2y + 3
3 2h-1
But Z a;; = h implies that 3y +1 =h or y = 3 Substituting
i=1
this into the matrix, we find that A takes the form:
[ 2-h < Lth_
3 3
1+h 2h-1
A= 3 ~ X 3 1+x-h
4-2h _ x 2h-1
|- 3 3
Since 1+ x-h> 0, we get x> h -1> %— On the other hand,
é——;—Zh—— x> 0= x<__-13- (4 - 2h) < %— 4 - 2'*;— =% , a contradiction. In
' . h-1
this case, however, Lemma 2.1l gives the lower bound a5y 2" .
Since h > %=} b ; L > 2 ; h , this bound is a better one. (Note that
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since there is a "gap'" between h%l- and Z%E.’ the lower bound Z%E

is not even approachable.) Furthermore, this new lower bound is

attainable. Consider the d.s. matrix:

(h-1 3-h 3=h’]
2 4 4
_ | 3~h h+1
A= % W 0
3-h 0 h+1
Then 3 s ap Bzl h*1_3h-1_  ,3h .. o7
.2 ii ? 2 4 4 4 ’ 57?2
i=1
and h ; 1 < h Z 1 ("." h< 2) . Hence the main diégonal is a maximum
. , . . h -1
diagonal on which the minimum entry is 3 .
Case II: h> 2 . In this case, we claim that the lower bound O
in Proposition 2.6.(i) is attainable iff h < n-2 . (Hence in particular,

it is not attainable for n =1, 2, 3, 4.) Suppose h > n-2 . Then by

5 h-n+ 2 5
ig (1) = 2

diagonal and hence the lower bound 0 is not attainable. For h < n-2 ,

Lemma 2.11,; a 0 for all entries on this maximum

consider the d.s. matrix:

_ 1 1 ~
0 1 -1
1 h n-h-2
n-1 n-1 ' (n-1) (n-2)
A =
1 n-h-2 _h
| n-1 (n-1) (n-2) U n-1 i
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B} U | __h -
where aj = 0, aj; <A T %44 T a1 for all 1i =2, 3, , I
and a = -nth-2 otherwise Since n-h-2 > 0 A‘> 0 and
ij (n~-1) (n-2) : Z s 2!
straightforward computations show that Ae £ . Since h > 2 and
n n-1 n~-1

h n-h-2 - h(n-1) - (n-2) . . . .
o1 (n=1) (n=2) (n-1) (a-2) > 0 , the main diagonal is a maximum

diagonal with minimum entry O .

Now we can summarize and state the equality case for the

lower bound given in Proposition 2.6 in the following:

Proposition 2.12: Let h be a given number such that 1< h<n .,

(I) If 1 < h < 2, then there exists a d.s. matrix with maximum
diagonal sum h and such that the minimum entry on the diagonal
is 2;_h iff (i) n=2 and h=1 or (ii) n =3 and
h < %— or (iii) n> 4 .

(II1) If 2 < h < n, then there exists a d.s. matrix with maximum

diagonal sum h and such that the minimum entry on the diagonal

is 0 1iff h < n-2.

In what follows, we shall obtain the best possible'upper
and lower bounds for various kinds of functions of h and k and
discuss the cases for equality. When the bounds are attained, examples
will be constructed. The key will be Theorem 2.13 referred to as the
"Covering Theorem', the proof of which depends on a well-known
combinatorial theorem of P. Hall on SDR (systems of distinct representa-

tives). A conjecture is given.
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Theorem 2.13: (The Covering Theorem)

Let A be a given nxn matrix, and let 015 0gs **s op

be p given mutually disjoint diagonals of A, 1 < p < n . Then one

can select n-p mutually disjoint diagonals gp+l’ 0p+2, “tts oo such
that '{Gi; i=1, 2, ***, n} cover A exactly. (Definition 1.10.)
Proof: If p = n , the given diagonals already cover A exactly

and there is nothing to prove. Hence assume that 1< p < n-1 . Since
each diagonal of A cérresponds to a permutation on the set

S = {1, 2, *++, n} , the assertion is equivalent to saying that given p
mutually disjoint permutations G15 Tps "' 0 on S, l<pgcn-l,

P

one can always exhibit another permutation -0 on S such that

P
c No,=¢ forall i=1, 2, «++, p. Let S, =S~ U {c.Q)} ,
i : 1 . i
i=1

P P
82 =S U{c.(2} , ==+, S_ =8~ Ufo.(n)} . Let m be an integer

. i n . i

i=1 i=1
- such that 1< m< n . We claim that |S (I U sse ) S > m
- b | ) Umo

for all sequences {w} such that 1 Swy<w, < et < wo < n . Since

for all i# 3, i,j=1, 2, +++> P> o ; N oj'=¢ ,» we have

ijl = n-p for all j =1, 2, «-+, n , and hence (I) the number of

elements, counting repetitions, in the set S W S U "ty S is
w w w
1 2 m
m(n-p) . On the other hand, each index from §S appears exactly p

n o p n
times in U U {o,(i)} ,hence appears exactly n-p times in U S. ,
i=1 j=1 J i=1 *

and hence (II) each index from S appears at most n-p times in
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S U S U s+ Uy S . The two statements (I) and (II) imply that
w W w
1 2 m
|s v S y ***y S | >m. Byawell-known theorem of P. Hall on
w w w bo—
1 2 m
SDR [20, p. 48], there exists an SDR for Sl’ 82, e, Sn ; i.e., there

exist di e S, ,1i=1, 2, «+««, n that form an SDR. Define the

permutation g on S by o (i) di for all i=1, 2, «++, n . It is
clear from the construction of S; that ¢ (l.cj = ¢ for all

j=1, 2, *++, p . This completes the proof.

As an immediate consequence, we get:

Corollary 2.14: Let A Qn . Then

(1) h + (n-1)k < n with equality iff for any set of n diagonals

that cover A exactly where o is a maximum

01’02’...’0n L

n

diagonal, we have 2

a, .. =k for all j=2, 3, ***, n .
=1 105 (1)

(ii) (n-1)h + k > n with equality iff for any set of n diagonals

Tl’ Tos LN Tn that cover A exactly where Tl is a minimum
n
diagonal, we have .2 air.(i) =h, forall j=2,3, ***, n .
i=1 3j .
Proof: (i) Let oy be any maximum diagonal. By the Covering

Theorem, let Ggs Ogs “*%5 O be n-1 diagonals such that

‘{oi; i=1,2, -+, n} cover A exactly. Then h + (n-1)k <

n n : n
<h+ § ) 80 (1) =0 with equality iff ) a
J

= k for all
j=2 i=1 i=1 .

ioj(i)

j=2,3, «++, n . The proof of (ii) is similar.
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Remark 2.15:
(i) The equalities in the above corollary are always attainable. For
example, if A 1is a permutation matrix or A = Jn , then
— + 3 —1 _—__l -
h+ (n-1)k = n, and if A = Jn or A n_l(an I) , then

(n-1)h + k = n .

(ii) The above corollary is, in fact, true for any nxn matrix B

n
with Z bi' <n, e.g., substochastic matrices.
i,j=1
Proposition 2.16: Let A ¢ Qn . Then h+k < n with equality iff

n=2 or A 1is a permutation matrix.

Proof: For n =2, htk =2 always holds. We assume that

n> 3. By Corollary 2.14, htk < h+t(n-1)k < n . If h+k = n , then

7
~
1]

h+(n-1)k = n . Hence k = (n-1)k and so k = 0 . Therefore

h=n and A 1is a permutation matrix. The converse is obvious.,

Proposition 2.17: Let A ¢ Qn . Then htk z-nfl with equality iff

n = 2 or there exist permutation matrices P and Q such that

1 1
0 -1 " )
1 1
. ) 0 PN )
PAQ = ﬁ(an -1I) = .
1 1
[n-1 n-1 °° 0 4 -




39

Proof: For n=2, htk = 2  always holds. We assume that

n > 3 . By Corollary 2.14, (n-1)(ht+k) > (n-1)h + k > n . Hence

htk > n‘_‘I . If h+k = ;r_‘—l , then (n-1)k = k , from which k = 0 .
Hence h = H%I-. Furthermore, let Tt be any minimum (zero) diagonal and
g be any diagonal disjoint from <t . Then the Covering Theorem implies
the existence of n-2 diagonals Ogs Tys *ots O such that
{1, o3 1= 2, 3, *++, n} cover A exactly. Since (n-1)h +k = n ,
we get from Corollary 2.14.(ii) that .g a5 @) T h = E%I for all
i=1 3
j=2, 3, ***y, n ., In other words, if htk = E%I , then there is a zero

diagonal <1 such that any diagonal disjoint from <t is a maximum diagonal

_n
n-1°

tion matrices P and Q such that PAQ = ;%I(an - I); i.e., A has

with sum h = We claim that this implies the existence of permuta-

a zero diagonal <t and all entries off 1T are equal to E%I . The
proof of this which turns out to be an interesting combinatorial argument

must be split into several steps and will follow from the subsidiary

results contained in Lemma 2.18, Theorem 2.19, and Theorem 2.20.

Lemma 2.18: If an nxn matrix A has the property that there is a
certain diagonal T such that every diagonal disjoint from =t has a
constant sum, then every 2x2 submatrix that does not contain any entry

from t must have both diagonal sums equal.

Proof: Without loss of generality, we may assume that 1t is the
main diagonal. For n =2 or n =3, there is no 2x2 submatrix that

does not contain any entry from the main diagonal. We assume that =n > 4.
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Consider any 2x2 submatrix A[i,j I i',j'] that does not contain any
entry from the main diagonal. Interchanging the lst row with the ifh
row, the 2nd row with the i'th row, the lst column with the jth column,
and the 2nd column with the j'th column, we can bring A[i,]j | i',j']

to the upper left corner. On the lst and 2nd row, there is an entry from
the original main diagonal at the (1, k) and (2, &) positions, say,
k>2, %> 2. Interchanging the 3rd column with the kth column, the

4th column with the g¢th column, we can bring . and a5, into the
submatrix A[l,2 | 3,4 . Similarly, we can bring the two main diagonal
entries on the lst and 2nd column into the submatrix A[3,4 I 1,21 .

Consequently, the matrix takes the form:

ij %13 *
a . a,
ity iy %*
* o
® B
B
b

where a * denotes an entry form the original main diagonal of A . Now,
in the (n-4)x(n-4) submatrix B = A(1,2,3,4 | 1,2,3,4) , we can chose
any diagonal ¢ such that ¢ "and 1 (to be precise, 1 Trestricted to

B) are disjoint. Consider the diagonals ¢ U {a, B, aij’ ai'j'} and
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o U {a, B, aij" ai'j} . By assumption, they have the same sum, and

hence aij +a,,.,=a,., ta,,. .

Theorem 2.19: If an nxn matrix A has the property that there is a

certain diagonal 1 such that every 2x2 submatrix that does not contain
any entry from T has both diagonal sums equal, then for some permutation

matrices P and - Q , PAQ takes the form:

' —
* 8, By .- By
az%l % ai$3 cee aiﬁn
B = PAQ =
agty aghy, & ... agiBy
:xn+81 0‘n+82 O‘n.+83 Tt * 4 -
Here, bij =a, + Bj for all i#3j, i,j =1, 2, *+*, n and for

convenience a; = 0O, and a % denotes an entry from T .

Proof: We prove this by inductionon n . For n =2 or n =3,
there is no 2x2 submatrix satisfying the assumed condition and hence
the assertion is "vacuously true'. We start with the case n = 4 .
Withouf loss of generality, we may assume that 1t is the main diagonal.

If we put a, =0 , a, = 324 - a14 s

1 2 0., = a - a + a - a

3 31 21 24 14 °

- a + a

21 - a

26 T 314 0 By T3y T3y, ta, By =3, ,B83= 3,

and 84 = ay, then from the assumption, one can verify easily that

aij = oL + Bj for all i # j . Now assume that the assertion is true

for n> 4 . Let A be an (n-1)x{(n-1) matrix with the described
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property. As usual, assume that v 1is the main diagonal. Since the
nxn submatrix A(n+l | nt+l) also has the described property, the

induction hypothesis implies that A takes the form:

* 32 B3 o Bn %1 n+l
@98y * o tBs Coe e WBal 22 ne1
o 5%8 agtB, * IR 3By | 23 nel
A =
* o n—2+Bn—l o n-2+Bn a,-2 ntl
* 0Ln—l-ﬂsn an—l n+l
oLn-lhsl 0tn.+82 0‘n-'-BB ot 0‘n-I-Bn--l * 2, ntl
811 %12 %+l 3 " %nln-1 Zntl n *
. —

For each a; i=2,3, ***, n~1 , consider

Let Batl = 21 ntl - ntl °

the 2x2 submatrix A[l,i | n,n+l] . By assumptioﬁ,

Bn + i n+l ~ 2L ntl + &y + Bn » and hence ai n+l %4 + 4 o+l

= oy + Bn+l . For a, ntl ? consider the 2x2 submatrix

A[n-2,n | n-1,n+l] . By assumption, o, tTB ;g ta .=

© %h-2 ntl + %n + Bn—l » and hence qan+l  %n-2 o4l + ®n T %n-2 T

_ - + .. .
oo + Bn+l + o o o B Similarly, define

n- n n-2 n n+1

Gl C 3411 " By 3 =2, 3 7l

For each an+l,j s

consider the 2x2 submatrix Aln,n+l | 1,5} . By assumption,

) = = + -
o + Bl + an+l j a + Bj + a , and hence a Bj an+l 1 Bl

ntl 1 n+l j

= q + Bj . Finally, for a , consider the 2x2 submatrix

n+l n+l n



43

A[n-2,ntl | n-1,n] . By assumption, o o tB o ta ., =

= + + = + - =
a ., tB, 841 n-1 ? and hence a4+l n a1 n-1 Bn sn—l

= a4 te, - Therefore a5 =y + Bj for all i # 3 ,

i,j =1, 2, +«+, nt] if we set g, =0 for notational convenience.

1
This completes the proof of Theorem 2.19.

‘Theorem 2.20: If A¢ Qn has a zero diagonal T éuch that every
diagonal diéjoint from 1 has a constant sum, then all entries off ¢

-1
are equal to )

‘Proof: For n =2 and n = 3, this is clear. We assume n > 4.
As usual, assume that 1 1s the main diagonal. By Lemma 2.18 and

Theorem 2.19, A takes the form:

0 B, B 5 ces B
agiey 0 a3y ..o apiy
P R B N 0 e agiBy
:xn+81 0‘n+62 0‘n+63 0 i
n
Clearly, any diagonal disjoint from <t has the constant sum z (ai + Bi)
' n n i=1
where we set o, = 0 as before. Let a = Z a, 5, B = z 8. . Since
1 i=1 * j=1

by the Covering Theorem, we can always select n-1 diagonals such that

together with 1 , they cover A exactly, we have a +8 = — or

(n-1)a + (n-1)B = n . (1)
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Since the lst row sum and the lst column sum are one, we have

6 -8, =1 (2)
and o + (n-1)g, = 1 (3
From (2) and (3), we get
a + (n-1)8 =n (4)
From (1) and (4), we get (n-2)a = 0 from which d =0 . Hence B = E%I
and from (2), Bl =g - 1= E%I- . Since the ith row sum and the ith

column sum are one, i =2, 3, «.-, n, we get (n-l)ui +B - Bi =1 and

@ -y + (n—l)Bi = 1 . Hence

(n-l)oti - B, = 1-8-= 1 (5)

(6)

1]
Q

I
[

]

[
un

and a; - (n—l)si

[
=
S
e}

]

From (5) and (6), we get [(n-1)2 0 or n(n—Z)ai =0, from
which a; = 0 forall i=2, 3, <+, n . Therefore, from (5),

B =<H%I for all i =2, 3, -+, n . This completes the proof.

The proof of Proposition 2.17 is thus also completed.

Theorem 2.20 has a generalized from which we shall state

as a conjecture since we have not been able to prove it completely.

Conjecture 2.21: Let A e Qn , and let Ty Tos *o0s T be m

mutually disjoint zero diagonals of A, 1 <m< n-1. If every diagonal
disjoint from each TS s i=1, 2, ***, m has a constant sum (this

constant sum is E%;- by the Covering Theorem), then all entries off the

1

m zero diagonals are equal to o
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We remark that this conjecture is clearly true for
m = n-1 since A is then a permutation matrix. Also, Theorem 2.20 is
the special case where m = 1 . Furthermore, the arguments used in the
proof of Lemma 2.18 and Theorem 2.19 do not yield an answer for Conjecture
2,21 since for arbitrary n and m , there may not be any 2x2 submatrix
that does not contain any entry from the given m 2zero diagonals. The

next proposition shows that Conjecture 2.21 is true for m = n - 2 also,

Tys Tys "7% Tn_2 be n-2

mutually disjoint zero diagonmals of A . If every diagonal disjoint

Proposition 2.22: Let A Qn and let

from each T s i=1, 2, ***, n-2 , has a constant sum, then all entries

off the n-2 zero diagonals are equal to 1/2 .

Proof: It is clear that in each row and each column, there are
exactly two entries off every T, s i=11 2, ***, n-2 ., For convenience,
~ we call any such entry a "star". By the Covering Theorem, the constant
sum in the hypothesis must be %> . Permuting the rows and columns, we
can assume ‘that there are stars at thg (1, L)th, (1, 2)th, and the

(2, 2)th positions. If the other star on the 2nd row is at the (2, 1)th
position, then we get a direct sum. Otherwise, by permuting the columns,
Qe can assume that it is at the (2,. 3)th position, and by permuting the
rows, we can assume that the other star on the 3rd column is at the

(3, 3)th position. Repeat this process. Eventually, we can write A as

T T
a direct sum, A = & 2 A, , where A, ¢ Q ’ z n, =n , each n, > 2;
. i i n, . i i—
i=1 i i=1

and each Ai as two diagonals consisting of stars only - the main

diagonal and the diagonal corresponding to the permutation (1,2,---,ni).
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Since each Ai is d.s., we can write X, for all entries on the main
diagonal and l—xi for all entries on the other diagonal. For each
i=1, 2, ***, r , we have, by assumption, that
_n
X +n,x, + ccc Fn.x, + e + ==
1% T M¥2 %4 "X T2 and

© _n 1
n;x, + nyX, + s + ni(l-xi) + + nx. =5 . Hence Xy 1 x; or

X, =-% . This completes the proof.

In view of Theorem 2.20 and Proposition 2.22, Conjecture

2.21 is true for n = 2, 3, 4.

Since htk < n by Proposition 2.16, we get

h+k 2 _ n? .
hk 5_(-—5— )y = 5 Hence there exists a smallest constant g(n) such

that hk 5;% g(n)-n?2 . We claim that g(n) = E%I

2
. . n . .
Proposition 2,23: Let A e Q . Then hk < Tn1) with equality

iff h = %- and any diagonal disjoint from a maximum diagonal is a

. . . . _ n
minimum diagonal with sum k = T(n-1)
Proof: Since n? - 4nh + 4h? = (n-2h)2 >0 , we get
n2
h(n-h) = hn - h2 iT . (7)

Also, from Corollary 2.14.(i), we get

(n=1)k < n-h . (8)

2 2
From (7) and (8), we get (n-1l)hk 5_%?- or hk E-ZTE:IT . If equality

holds, it must hold in both (7) and (8). Hence h = %‘ and the equality
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case in Corollary 2.14.(i) implies that any diagonal from a maximum

diagonal is a minimum diagonal with sum The converse is

_n__
2(n-1)

obvious. This completes the proof.

The next examples show that the above bound is always

attainable and is not unique for n > 3 .

Example 2.24:

(i) Let A be the d.s. matrix:

— -

1 _1 _1
2 2(n-1) ot 2(n-1)
1 1 _1
2(n-1) 2 2(n-1)
A= .
1 1 1
| 2(n-1) 2(n-1) 2]
where a,, = 1 for 211 i=1, 2, ***, n and a,, = 1 therwise
ii =2 > %o ’ ij ~ 2@-1) ° :
n
Clearly, h = z a, =-% and any diagonal disjoint from the main
i=1
. . s , . _ 1
diagonal is a minimum diagonal with sum k = 2(o-1) °

(ii) For n > 3, let A be the d.s. matrix:

n+l 1 1 ]
2n 2n e 2n
1 n2-n-1 n2-2n+2
A=[2n 2n(n-1) T 2n(n-1) (n-2)
1 n2-2n+2 n2-n-1
| 2n . 2n(n-1) (n-2) T 2n(n-1) 4
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11 2n ’ 1i il 2n ° ii  2n(n-1)
_ _m?-2nt2
ij 2n(n-1) (n-2)
1 _ _n®=2n#2 _ n’-n-1 _ ntl
2n  2n(n-1) (n-2) 2n(n-1) 2n
s n+l n2 -n-1

- = = I
Hence h = izl aii 7 + 7 9

where for all

i=2,3 «+,n, and a otherwise. It is readily

verified that A is d.s. and

and any diagonal disjoint from

the main diagonal is a minimum diagonal with sum

2 n-2nt2 _ n

k=t D - 2a-D)

For any A e Q> since h>1 and k < 1 with either
equality iff A = Jn (Corollary 1.5), we have (h-1)(1-k) > 0 or
h+k-hk > 1 with equality iff A = Jn . The next proposition gives the
upper bound for the corresponding quantity h+kt+hk .

Proposition 2.25: Let A e Qn . Then h+k+hk < n + E%I with

equality iff h = n-1 and any diagonal disjoint from a maximum diagonal

. - . . 1
is a2 minimum diagonal with sum k = 1

Proof: Let B =-%(A + Jn) . Then B ¢ Qn and the maximum

diagonals and minimum diagonals of A and B correspond to each other.

h+1, k+1 n2

An épplication of Proposition 2.23 to B gives

2
or h+k+hk 5_;%1 -1 n + E%I . If equality holds, then by Proposition

2.23, h%l =-% or h = n-1 and any diagonal disjoint from a maximum
. . . . . k+1 n
diagonal is a minimum diagonal with sum k such that 5 = 2(o-1) or

k = The converse is obvious. This completes the proof.

1
n-1 °
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We close this chapter by obtaining bounds for h, k and
h+k when the d.s. matrices under consideration have properties discussed

in Chapter I.

Proposition 2.26: If Ac Qn has precisely (n-1)(n-1)! diagonals

with common sum o # 1 , thenh< 2, k i;%f%-'and

2 ;;ijijr < htk < 2+ n-2 . These bounds are always attainable.
(n-1)- - = n-1

‘Proof: By Theorem 1.20, there exist permutation matrices P and

Q such that PAQ is a (x, y, 2)-matrix. Examining the proof of

1l-nx

Corollary 1.21 shows that o =1 + WDz - Hence B8 = x + (n-1l)z =
= n- (1) = 1- %E%E» and o +8 = 2 - (lzgfi§n_2) where B

denotes the only other diagonal sum (Lemma 1.19). Clearly, o attains

1 n-2

its maximum 1 + TE:ESE- when x = 0 and its minimum when x = 1;

n-1
and g attains its maximum 2 when x =1 and its minimum %E%— when
x =0 . Finally, o + 8 attains its maximum 2 + EE%- when x =1 and
R I n-2 _ n—
its mlnlmuv 2 2;:I7§~ when x = 0 . Therefore, h< 2, k > o1 and
2 - —B:g——-< h+tk < 2 + n-2 It is clear from the proof that these
(@-1)2 == n-1 P
bounds are always attainable.
Proposition 2.27: If A 2, (n > 3) has precisely (n-1)(n~-1)!

diagonals with sum (i) greater than one, then h + k< 2,

(ii) smaller than one, than h + k > 2 .

This bound is not attainable but best possible in the sense that htk

can become arbitrarily close to 2 in either case.
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4 . n . '
. T o= . | = - - 1
Proof: Let E {0, iél aio(i) > 1} : Then IE[ (-1 (-1)! .
(n-1)! ' R |
Let D = k} D, be a decomposition of the set D of all diagonals as
j=1

described in Theorem 1.11. Then we have seen (cf. Proposition 1.18) that
E (\.Djl =n-1 forall j=1, 2, +++, (n-1)! . 1In case (i), let 9,
be a maximum diagonal with sum h where o, € Dl , say. Let

h, Ggy Ggs *°%5 @ 45 B be the diagonal sum of each diagonal in D

1
where B < 1 and ay >1,1i=2, 3, ---, n-1 . Since Dl covers A
n-1
exactly, n=h+ 8 + Z ol >h+8 + n-2 and hence ht+k < h+§ < 2 .
i=2

Similarly, in case (ii), let To be a minimum diagonal with sum k

where T, € D, , say. Let k , 82, 83, sy, Bn—l’ o be the diagonal sum

1

of each diagonal in D. where a > 1 and Bi <1, 1i=2, 3, ¢+, n-1 .

1
n-1
Since Dl covers A exactly, n=k +a + z Bi <k+o +n-2 and
i=2

hence h+k > a+k > 2 ., Furthermore, it is clear from the proof that this
bound is not attainable. Finally, to see that this bound is approachable,
consider a d.s. (x, y, z)-matrix A with x # %- (so that A # Jn) . As
seen before, A has only 2 distinct diagonal sums o and B with

_ (1-nx) (n-2)

o +B = 2 (n-1)

(cf. Proposition 2.26.) It is clear that

l-o0

) - +o 1+o
0L+B—+20 as x——>—; ,and o +8 — 2 as x—*;
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CHAPTER IIIX

PROPERTIES OF THE h-FUNCTION AND THE k-FUNCTION OF d.s. MATRICES

The main prupose of this chapter is to study the properties
of the h~function and the k-function, the functions that associate with
each d.s. matrix its maximum and minimum diagonal sums, respectively. 1In
particular, we investigate the behaviour of these functions on the
Kronecker product of d.s. matrices. We will show that the h-function is
very similar to the rank function p in many respects. Furthermore, we

%
shall prove that, for A« Qn , h(A) < p(A) and per(A) i{h:lA)}z ,

which improves a result of Marcus and Minc [11]. A conjecture is given.

We mention first that the functions h and k are, in
fact, defined for any nxn matrices. It is when restricted to d.s.

matrices that they have interesting properties.

We shall denote the set of all nxn matrices with

non-negative entries by Hn .

Lemma 3.1: Let A,B be in Hn . Then (i) h(A+B) < h(A) + h(B)
with equality iff A and B have a corresponding maximum diagonal.
(i1) k(A + B) > k(A) + k(B) with equality iff A and B have a

corresponding minimum diagonal.

Proof: (1) Let o,t and p be any maximum diagonals of A, B
n
and A + B respectively. Then h(A + B) = izl(aiu(i) + biu(i)) =
n

n
- iZ__laiu(i) * izlbiu(i) = iglaio(i) * iZlbir(i)

=}

n
= h(A) + h(B) . If



52

n n n n
equality holds, then Z a, ,. =.‘z a, ,. and '2 b, .y = _Z b, ..

i:l. iy (]‘) i=l o (l) i“l BT (l) i=1 it (l)
Hence ﬁ is a maximum diagonal for both A and B . The converse is

obvious. The proof of (ii) is similar.
The above lemma can be generalized immediately to:

Corollary 3.2: Let Ai € Hn , where 1 =1, 2, ***, m . Then

m m
(1) h(} A) < } h(a;) with equality iff all A;'s have a
i=1 i=1 ‘

corresponding maximum diagonal.

m m
(ii) k( 2 Ai) 3__2 k(Ai) with equality iff all Ai's have a
i=1 i=1

corresponding minimum diagonal.

Proof: By Lemma 3.1 and induction on m .

Corollary 3.3: The function h is convex on Hn , and the function

k 1is concave on Hn .

Proof: u Let A,B be in Hn and A ¢ [0, 1] . Then

h{XA + (1-A)B} < h(AA) + h((1-1)B)

Ah(A) + (1-A)h(B) and

k{XA + (1-A)B} > k(AA) + k((1-A)B) = Ak(A) + (1-A)k(B)

Theorem 3.4: Let A,B be in Qn . Then

(1) h(aB) < min {h(A), h(B)}

(i1) k(AB) > max {k(a), k(B)} .
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Proof: (i) By the well-known theorem of Birkhoff [1], every

d.s. matrix can be expressed as a convex combination of permutation

m m
matrices. Hence B = Z A.P. , where A, > 0 such that Z A, =1, and
R A 1 S R R |
i=1 i=1
Pi is a permutation matrix, i =1, 2, .«-, m . Since h(APi) = h(A)
m m
for all 1 , Corollary 3.3 gives that h(AB) = h( ) AAPL) < )y A h(ap) =
i=1 i=1

m
= ( z Ai)(h(A)) = h(A) . Similarly, h(AB) < h(B) . Therefore,
i=1

h(AB) < min {h(A), h(B)} . The proof of (ii) is similar.

The next two corollaries are immediate consequences of

Theorem 3.4.

Corollary 3.5: Let A,B be in Qn . Then AB is a permutation

matrix iff both A and B are permutation matrices.

Proof: If AB is a permutation matrix, then h(AB) = n , and
hence h(A) > n and h(B) > n by Theorem 3.4. Therefore h(A) = h(B) =n,

and A and B are both permutation matrices. The converse is obvious.

Corollary 3.6: Let A ¢ Qn . Then for all m, (i) h(Am) < h(a) ;

and (ii) k(™ > k(A)

Proof: Since A g Qn implies that A" ¢ Qn for all
m=1, 2, ¢**, it suffices to put B = Am_1 in Theorem 3.4.
Remark 3.7: To determine when equality holds in Theorem 3.4 seems

to be quite difficult. For example, h(AB) = h(A) will hold if B 1is a

r
permutation matrix or if PAQ=J &3 & ... & J , where Z n, =n
1 ™ Uy i=1 *
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and P and Q are permutation matrices.  The equality can hold, however,

when both A and B are fully indecomposable. For example,

(0 L 1] (1 1 1]
2 2 2 4 . 4
a1 1 | 1 1
let A =23B 5 0 2 Then AB 4 > L
11, 111
2 2 ] 4 4 2 |
Hence h(AB) = g~= h(A) = h(B) . We also observe another condition for

equality as follows. Let B(B) denote the minimum number of permutation
matrices necessary to represent B as a convex combination [15]. Then,
in view of Corollary 3.2 and the proof of Theorem 3.4, A must have at
least B(B) maximum diagonals in order that h(AB) = h(B) can possibly
hold. This condition, however, is rather weak since RB(B) is small

compared with n! , the number of diagonals of a matrix.

Corollary 3.8: Let A,B be in Qn . Then
(i) h(AB) i_h(A)h(B) with equality iff A =B = Jn
(ii) k(AB) > k(A)k(B) with equality iff A =B = Jn
Proof: (i) For any d.s. matrix X , we have, by Corollary 1.5,

that h(X) > 1 with equality iff X = Jn . Hence Theorem 3.4 implies
that h(AB) < min {h(A), h(B)} < h(A)h(B) with equality only if
h(A) = h(B) =1 or A=3B-= Jn . The converse is obvious. The proof

of (ii) is similar.
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Let A,B be in @ . Since "h(A) > 1 and h(AB) < h(B),
it follows that 1 < h(A) + h(B) - h(AB) with'equélity iff A =B = Jn .
The problem of determining the corresponding best possible upper bound
for h(A) + h(B) - h(AB) seems to be a difficult one. Clearly, 2n is
an upper bound. The following conjecture which seems plausible is exactly

the analogue of Sylvester's law for rank of two matrices:

p(A) +p(B) —p(AB) < n [14, p. 28].

Conjecture 3.9: Let A,B be in Qn . Then h(A) + h(B) - h(AB) < n.

Remark 3.10: With little computation, Conjecture 3.9 can be verified to
be true for n = 2 . However, even for n = 3 , the manipulations get
too involved to give any answer. The difficulty of this problem can
perhaps be seen from the fact that the equality will not be attained
uniquely. It is clear that h(A) + h(B) - h(AB) = n if either A or B
is a permutation matrix. This is, however, not the only case when

equality can hold; e.g., consider the 4x4 d.s. matrices:

Flz 0 0 J

Then h(A) = h(B) = 3 , and
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Hence h(AB) = 2 and h(A) + h(B) -~ h(AB) = 4 = n .

For arbitrary A,B in Hn , 1t is easy to see that
h(A) + h(B) - h(A + B) and k(A + B) - k(A) - k(B) have no upper bound
though’zero is the lower bound in both cases by Lemma 3.1. If, however,
A and B are d.s. matrices,'then'it is readily seen that the upper

bounds exist as indicated in the next proposition.

Proposition 3.11: Let A,B be in Qn . Then
(i) h(A) + h(B) - h(A + B) < n with equality iff A and B are

permutation matrices corresponding to disjoint permutations.

(ii) k(A + B) - k(A) - k(B) < 2 with equality iff both A and B have

a zero diagonal and aij.+ b, %- for all i,j =1, 2, *«*+, n .

1]

Proof:
(i) Since h(A) < n, h(B) < h(A + B) , it is clear that
h(A) + h(B) - h(A + B) < n . If equality holds, then
n = h(A) = h(B) = h(A + B) and hence A and B are permutation
matrices corresponding to disjoint permutations. The converse is
obvious.

(ii) Since -%(A + B) ¢ Qn , we have, %-k(A + B) = k(égg) <1l or

k(A + B) < 2 , and hence k(A + B) - k(A) - k(B) < 2 . If equality

holds, then k(A) = k(B) = 0 and k(égg) = 1 . Hence both A and
B have a zero diagonal and é%§»= Jn » which implies that
a,, +b,, = 2 for all i,j =1, 2, ***, n . The converse is

ij ij n

obvious. This completes the proof.



57

Next, we study the behaviour of the h-function and the
k-function on the Kronecker product (or direct product) [9] of d.s.
matrices. The fact that A,B e Qn implies that A x B & an makes the

consideration of h(A x B) and k(A x B) quite natural.

Lemma 3.12: For any n~-square matrices A and B ,
(1) h(A x B) = h(B x A) and k(A x B) = k(B x A)
(ii) h(PAQ x PlBQl) = h(A x B) and k(PAQ x PlBQl) = k(A x B)

for any permutation matrices P, Q, Pl, and Ql .

(i) Since it is known [2] that there exists a permutation matrix P
such that Pt(A x B)P = B x A, the assertions are clear.

(ii) Since the Kronecker product satisfies the property that
AC x BD = (A x B)(C x D) , we have
(P x Pl)(A x B)(Q x Ql) = (PAQ) x (PlBQl) ; i.e., permuting the

rows and columns of A and B only permutes the rows and columns

of A x B . Hence the assertions follows. This completes the proof.

We remark that the above lemma can be of practical use
sometimes when one of the matrices A X B or B x A has a form easily

handled (e.g. Proposition 3.18 below).

The next proposition presents a strong contrast between
the Kronecker product and the ordinary product of d.s. matrices (cf.

Corollary 3.8).
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Proposition 3.13: Let A,B be in Qn . Then (i) h(A x B) > h(A)h(B)

and (ii) k(A x B) < k(A)k(B)

Proof: (1) Let ¢ be a maximum diagonal of A with sum h(A)
In A x B , consider the blocks at the (i, o(i))th position, where
i=1, 2, +++, n . In each of these blocks, there is a diagonal (of that

block) with sum s +h(B) , i=1, 2, ***, n . The union of these

1)
diagonals clearly forms a diagonal for A x B with sum h(A)-h(B)

Hence h(A x B) > h(A)h(B) . The proof of (ii) is similar.

As an immediate consequence, we have:

Corollary 3.14: Let A,B be in Qn . Then A x B = an iff
A=B=J

n
Proof: If Ax B = an » then h(A x B) = 1 and hence

h(A)h(B) < 1 by Proposition 3.13. But h(A) > 1, and h(B) > 1 by

Corollary 1.5. Hence h(A) h(B) =1 or A=B-= Jn . The sufficiency

is clear.

Remark 3.15: The case for equality in Proposition 3.13 is of some
interest. It can be verified directly that for n = 2 , equality always
holds in both cases. In general, we are unable to determine the conditions
for equality. For n > 3 , however, there exist matrices such that the

inequality is strict as shown by the next example.
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Example 3.16: Let

0 2. 2
- p= %
A=3B-= 4 2 1 l]e 93
2 1 1
_ 5 25,
Then h(A) = h(B) = 7 and h(A)h(B) = 16 Now,
[0 0 0 0 4 4 0 4 4]
0 0 0 4 2 2 4 2 2
000 L 2 2 4 2 2
1|0 & & 0 2 2 0 2 2
AB =g |4 2 2 2 1 1 2 1 1| e g

b 2 2 2 1 1 2 1
0 4 4 0 2 2 0 2.2
4 2 2 211 2 11
(4 2.2 2.1 1 2.1 1]

If we consider the diagonal of A x B consisting of the underlined

entries, we see that h(A x B) z_i%(24 + 3) = %%—> h(A)Yh(B)

The next two propositions show that we have equality in
both cases in Proposition 3.13 if one of A and B is some special d.s.

matrix.

Proposition 3.17: Let A ¢ Qn and let P be any permutation matrix.

it
]
[]

Then (1) h(A x P) h(P x A) h(P)h(A) nh(A)

(ii) k(A xP) k(® x A) k(P)k(A)

0

I
]

Proof: In view of Lemma 3.12.(i), it suffices to consider P X A,
Let o be the permutation corresponding to P . Then P X A has a copy
of A in the (i, o(i))th block, where i =1, 2, -++, n , and all the

other blocks are 0 . Hence h(P x A) = nh(A) and k(P x A) =0 .
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Proposition 3.18: Let’” Ae Qn . Then
(i) h(A x Jn) = h(Jn x A) = h(A) .
(ii) k(A x Jn) = k(Jn x A) = k(A)
Proof: (1) In view of Lemma 3.12.(i) and Proposition 3.13, it

suffices to show that h(Jn x A) < h(A) . We have

prem.

A A ... A
A A ... A

=Ry

Let ¢ be any diagonal of Jn x A . Consider the following sets of

indices (mod n) taken from the set {1, 2, *-<+, n}

T, ={o(kn+1), (mdn) ; k=0, 1, ¢+, n-1}

TZ = {o(kn + 2) , (modn) ; k=0, 1, *+-, n-1} ,

T ={g(kn +1n) , (mod n) ; k

#

0, 1, +++, n-1}

In other words, Ti consists of the 2nd indices (mod n) of all entries
of o which lie on the ith row of each block, where i =1, 2, +, 0.

Note that the elements in each Ti are not necessarily distinct. We

claim that there is an SDR for the sets Tl, T2’ seey Tn . Let m. be

an integer such that 1 <m< n . Let @ be an increasing sequence of

m terms, 1 < Wy <ttt <wo <M We claim that

IT U T U o U T [ > m . Since each T , where
Wy W,y W Wy
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i=1, 2, . ***, m , has ‘n elements counting repetition,

T uT U e uT has mn elements counting repetition.
Wy W, T W

Furthermore, it is clear from the definition of diagonal that each index
n
(mod n) occurs precisely n times in

Tj and hence occurs at most
J=4L

1

m
n times in \J T . Therefore, [T U T U +++ U T | >m. Now,
. w, w W w ! =
i=1 i 1 2 m

the theorem of P. Hall [20, p. 48] implies the existence of an SDR for

the sets T,, T N Tn H c(kin + 1i) ¢ Ti say, where i=1, 2, -++, n,

1 2

0 i_ki §~n—l . Consider the set S = {akin+i,g(kin+i); i

=l’ 2’ seey, n}.
We identify the rows of Jn x A that are the same rows of A ,and the

columns of Jn x A that are the same columns of A . Since

kin+i # kjn+j (mod n) , and d(kin + i) # c(kjn + j) (mod n) for i # j,

i,j =1, 2, «++, n , the elements of S lie on distinct rows and columns
even under the identification. Hence they constitute a diagonal for A .
Now we permute the (kin + i)th row with the ith row, where

i=1,2, ***, n . Since these two rows are the same row under the
identification, this permutation will not affect the block structure of

Jn x A . Furthermore, since V{o(kin + i), (modn); 1 =1, 2, *++, n} =

= {1, 2, ---» M} , there exists, for each i , a unique j (depending

on i) such that c(kjn +j)=1i (modn) , i=1, 2, -+, n . Hence
permuting the ith column with the o(kjn + j)th (mod n) column, where
i=1, 2, +++, n , will not affect the block structure of Jn x A . In

this manner, we can bring the above found diagonal into the (1, 1)th

block of Jn x A . Since there are no entries of ¢ left on the first
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n rows and columns, we can consider the (n?-n)-square matrix H obtained
by deleting the first n rows and columns of Jn x A ; and the remaining
n2 - n entries of ¢ will form a diagonal for H . Now, we can repeat
the above process and eventually bring the entries of ¢ into the (1,1)th,
(2, 2)th, ***, and (n, n)th block such that each block has n entries
from ¢ that form a diagonal for that block (namely, A), and such that
the block structure of Jn x A remains unchanged. Hence

h(Jn x A) i_%{nh(A)} = h(A) . The proof of (ii) is similar.

The Birkhoff theorem can be used to yield an upper bound

for h(A x B) in terms of h(A) and h(B)

Proposition 3.19: Let A,B be in Qn . Then h(A x B) <
< min {nh(4), nh(B)} with equality if either A or B 1is a permutation
matrix.

m
Proof: By Birkhoff's theorem, let B = ) X .P. , where A 20
i=1

m
such that Z Ai =1 , and each Pi is a permutation matrix,
i=1 '
i=1, 2, *+, m . Since the Kronecker product is distributive over the

summation [9, p. 82], we get, by Corollary 3.2.(i) and Proposition 3.17.(i),

m m m
that h(A x B) = h(Ax J A,P) =h(}A,(AxP))< ] Ah(AxP) =
i=1 i=1 i=1

m
= nh(4) z Ai = nh(A) . Similarly, h(A x B) < nh(B) . The assertion for
i=1

equality is obvious from Proposition 3.17.(1).

In the rest of this chapter, we shall study the relation

between h(A) and per(A) , the permanent function of A , where A ¢ Qn.
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First, however, in order to increase understanding of the function

h(A) , we list the similarities between h(A) and the rank function p(A).

@) If A#0, then 1<p(A) <n .

(L' If Ace Qn » then 1 < h(A) < n . (Corollary 1.5)

]

(2) o) = o5

(2)' h(a) = h(AY) . (Trivial)

(3) p(A+B) <p(A) +p(®B
(3)' h(A + B) < h(A) + h(B) for A,B in Dn . (Lemma 3.1.(i))
(4) p(AB) < min {p (A), p(B)}

(4)' h(AB) 5_min'{h(A), h(B)} for A,B in Qn . (Theorem 3.4.(i))

m m
(5) If A=8} A , then p(A) = } p(a)
i=1 i1

m m .
(5)' If A=0] A , then h(A) = } h(a) . (Trivial)
i=1 i=1

(6) If P and Q are non-singular, then p (A) = p (PAQ)
(6)' If P and Q are permutation matrices, then

h(A) = h(PAQ) . (Trivial)

The similarities would be even more striking if Conjecture
3.9 and its generalization (Conjecture 3.20 below) are true since they
are exactly the analogue of Sylvester's law and Frobenius' inequality for

the rank function, respectively [1l4, pp. 27-28].

Conjecture 3.20: Let A,B, and C be in Qn . Then

h(AB) + h(BC) < h(B) + h(ABC) . (Conjecture 3.9 is a special case of this
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In fact, it was the above listed similarities together
with some observations and experiments that tempted us to make the

Conjectures 3.9 and 3.20.

In [11}, Marcus and Mine proved the following theorem.

Theorem 3.21: If A ¢ Qn , then per(A) 5_{Q§%%}% and in addition, if

(&)

A 1is normal, then per(A) E_Q?;—> with equality iff A is a permutation

matrix or n =2 and A = J2 .

Our main result concerning this will be to show that this
theorem still holds if we replace p(A) by h(A) and that the new upper
bound is an improvement on the old one., But first of all, a simple

inequality between per(A) and h(A) :

1
Proposition 3.22: If A Qn s, then per(A) E_Bﬁ-{h(A)}n with,
n .

equality iff A = Jn .

Proof: This is immediate from the definition of per(A) and the

arithmetic - geometric mean inequality.

%
Theorem 3.23: If Ace a_ s then per(A) 5_{E§$Q}2 with equality iff
A 1is a permutation matrix. If A 1is also normal, then per(A) 5_Eﬁél

with equality iff A dis a permutation matrix or n =2 and A = J2 .

Proof: Assume first that A 1is normal. Then Marcus and Minc

proved [11, Theorem 1] that per(A) <

g
Zl|xi|“ , where Ap, Ay, vty A

B
e

denote the eigenvalues of A . Since it is well known that each
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eigenvalue of a d.s. matrix does not exceed one in modulus, we have
n

|A,|n.< |x.|? for all i , and hence per(A) s L IA.]2 . Since A is
SE Tt - I A
n n :
normal, the classical Schur's inequality gives Z 1212 = 2 la,.|? =
LT L& ij
i=1 i,j=1
n 1 b
= z a,.2 " and hence per(A) < = 2 a, 2 . Furthermore, by a
AR & - n ij
i,j=1 i,j=1
result of Marcus and Ree [18], there exists a diagonal ¢ such that
n n n
z ai,2 < z 350 (1) and consequently, per(A) 5_%- Z a0 (1) i_h(A)'
id=1 M Ti=1 0 i=1 o

If equality holds, then, for all i=1, 2, -=s, n, [A;]" = |2 |2 . 1f
n> 3, this implies that |[A.| =1 for all i=1,2, ***, n . Hence
by a result of Mirsky and Perfect [19, Theorem 5}, we conclude that A

is a permutation matrix. If n = 2 , then

A= X 1-x
1-x X

h(A) would imply that %2 + (1-x)2 = x or 1l-x

" Hence per(A) =

depending on whether x 3_1- or X < If %2 + (1-x)2 = x , we get

2 2 .
1 5 > _ _ _ 1
x =1 or x =5 - If x¢ + (1-x)¢ = 1-x , we get x =0 or x = 2
Hence A =1J or A 1is a permutation matrix. The converse is obvious.

2
For general A , we apply the inequality (per(AB))2 5_per(AAt)per(BtB)

of Marcus and Newman [17, Theorem 5] to get, by putting B = In ,

(per(A))? i_per(AAt) . Since AAt £ Qn is normal, the above result
h(aA") _ h(a)
n — n

and Theorem 3.4.(i) together imply that (per(A))z_i or

h(A) | % . . .
per(A) < —— . If equality holds, it must also hold in the

inequality (per(AB))2 i_per(AAt)per(BtB) . Equality implies that either
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(i) a row of A or a column of B consists of zeros or (dii) At = BDP

where D 1is a diagonal matrix and P 1is a permutation matrix. In our

case, since B = In and since (i) is impossible, we get A" = DP or
t,t t t

D= AP ¢ Qn and hence D = In . Therefore A" =P or A=P is a

permutation matrix. The converse is again obvious.

As an immediate consequence, we obtain the following well

known upper bound for per(A) [16, Lemma 1].

Corollary 3.24: If Ac Qn , then per(A) < 1 with equality iff A

is a permutation matrix.

Proof: This follows from Theorem 3.23 since h(A) < n , with

equality iff A is a permutation matrix.

Theorem 3.25: If Ae Qn » then h(A) <p(a) .

Proof: Let Al, Xz, tevy Ar be the non-zero eigenvalues of A .
Then p(A) > r . Since A is d.s., -lkil <1 forall i=1, 2, *+++, r.

Hence trace(A) = A, + A, + *** +x_= A, +2, + >+ | <
’ A SR R ort —

1 2 2

g_[All + A, + e 4 Ikrl < r <p(A) . Now choose permutation matrices

A

P and Q such that B = PAQ has the main diagonal as one of its

li

maximum diagonals. Then, since B ¢ Qn , we have h(A) = h(B)

= trace(B) < p(B) = p(A) .

In view of Theorem 3.25 and the fact that p (4) n for

all non~singular nxn matrices whence Theorem 3.21 yields the trivial
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bound per(A) < 1 , we see that the bounds obtained in Theorem 3.23 are

indeed improvements on those in Theorem 3.21.

Concerning Theorem 3.23, we do not know whether the square
root can be removed in general. The following propositions answer this

question partially.

Proposition 3.26: Let Acg Qn . If for some permutation matrices P
r
and Q , PAQ = 9.2 Ai , where r> 1, Ai € Qn. , i=1,2, ", r,
i=]1 i
T ' h,
and Z n, =mn, and if per(Ai) 33—5 for all i=1, 2, ***, r , where
i=1 et
hi = h(Ai) , then per(A) i.%' with equality iff A is a permutation
matrix,
T
z oy r T
Proof: Since 1:1 = Z ————-l—————i_ Z 1 =
i=l n_+**n,-+°n_ i=1 h,-++h_ -**h
|| n, 1 i r 1 i r
. i
r i=1
z h
i=1 "
= - , Where denotes the deletion of that factor, we have
llhi r
i=_l z h
r A
per(A) = per(PAQ) = [ Iper(Ai) < : ;—-5_——;f———-= I If equality
i=1 i=1 i Z
oy
i=1
holds, then for a1l i =1, 2, *°*, r , nyocceomg o nr==hl oo hi «se h

r r
Hence J lni = Jllhi . Since hi < mn, , we get hi =n, for all
l= 1:

i=1, 2, «-+-, r . Hence each Ai is a permutation matrix and therefore

so is A . The converse is obvious.
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Proposition-3.27: . Let A ¢ Qn . If there is a normal matrix B € Qn
such that per(A) < per(B) and h(B) < h(A) , then per(A) j_hgf) with
equality iff A 1is a permutation matrix or n =2 and A = J2 .

Proof: Since per(A) s per(B) <

‘h(B) 'Eééi_ by Theorem 3.23, the

<
inequality is clear. If equality holds, then either (i) B 1is a

permutation matrix or (ii) n =2, and B =J In case (i), h(B) = n

9 -
implies that h(A) = n and hence A 1is a permutation matrix. 1In case
(ii), per(B) = %- and hence per(a) 5_%~. Since the van de Waerden

conjecture is true for n = 2 , per(A) = %~, and therefore A = J2 .

The converse is obvious.

It was once conjectured that for A e Qn s
per(A) i_max'{per(AAt), per(AtA)} (e.g. [12], Conjecture 2). Newman has
given examples to show that this is false in general. It turns out that
if A e Qn is such that the above inequality is reversed, then the square

root can be removed from Theorem 3.23.

Corollary 3.28: If Ace Qn satisfies per(A) i_maxl{per(AAt), per(AtA)},

then per(A) < —= , with equality iff A is a permutation matrix or

n=2 and A = J2 .

Proof: We may assume that per(AAt) 3_per(AtA) . Since AA" is

normal, and since h(AAt) < h(A) by Theorem 3.4.(i), the assertion

follows from Proposition 3.27.
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Corollary 3.29: If Ac Qn satisfies per(A) i\per’é;%?é;g , then

h(A) . X . . . ] .
per(A) < s with equality iff A is a symmetric permutation matrix
or n=2 and A= J2 .

A+ At
Proof: Since 5 is symmetric and hence normal, and since
t

hATRY = 2 hea + 4% < 2 (h) + h(A"} = h(a) by Lemma 3.1.(1), the

assertion except "symmetric" follows from Proposition 3.27. But if

t
A+ A . . .
————— 1s a permutation matrix, then a, ,., +a ,., . =2 for some o ,
2 io (1) o(i) 1
- where i =1, 2, ***, n. Hence A is a symmetric permutation matrix.

The converse is obvious.

We close this chapter by giving some upper bounds for
per(A x B) in terms of h(A) and h(B) , where A and B are in Qn.

In [2], the upper bound for per(A x B) was studied by Brualdi.

Proposition 3.30: Let A,B be in Qn . Then per(A x B) <

1
< min {(D—(r—fi)%, (&;3)_)/2}_ If A and B are also normal, then
per(A x B) < min {E§?23 Eé?l} with equality iff A and B are both

permutation matrices.

Proof: Since A x B g an , Theorem 3.23 and Proposition 3.19

imply that per(A x B) 5_{B£é;§—gl}% 5_{£§~min[nh(A), nh(B)]}% =

= min {[h(A)]% , [Eiglq%} . If A and B are also normal, then so is

n n

A x B , and hence, by the same argument, we get
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< < i
per(A x B) < min ==

Eﬁéﬁ;—gl- {h(A) h(B)} LIf equality holds, then

since n® # 2, Ax B must be a permutation matrix. Hence A and B

are both permutation matrices. The converse is obvious.

Remark 3.31: In [2], Brualdi proved that for A e Hn and B € Hm s

per(A x B) i_Kmn(per A)n(per B)m where .Kmn is a certain constant

1
depending on m and n . He conjectured that K = _ (o)t . If

mn (m!)n(n!)m
we restrict A and B to be d.s. matrices and put n = m , then it is
natural to compare the bound given by this conjecture and that given in
Proposition 3.30. We remark that in general, they are not comparable.
For example, if A and B are permutation matrices, then Proposition 3.30
yields per(A x B) < 1 while Brualdi's conjecture yields

2y1 2y
D! , and it is known that (7)) > 1 with equality iff
2n 2n —

(a!) (n!)

per(A x B) <

n=17I[2, §3.7}]. On the other hand, if A =B = Jn , then Proposition 3.30

yields per(A x B) 5_%~ while Brualdi's conjecture yields
2y1 1 1 2y : 2y
(n!) ‘n n (n) (n?)
2y 231 1
n<)! n<)!
per(A x B) = per(J x J ) = per(J 5) = *j——lq- , clearly ( 1 <=

(a2)" (@)
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