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" ABSTRACT

The study of certain series of groups has greatly aided
the development and understanding of group theory. Normal
series and central series are particularly important. This
paper attempts to define analogous concepts in the theory
of rings and to study what interrelationships exist between
them.

Baer and Freidman have alréady studied chain ideals, the
ring theory equivalent of accessible subgroups. Also, Kegel
has studied weakly nilpotent rings, the ring theory equivalent
of groups possessing upper central series. Some of the more
important results of these authors are given in the first
three sections of this paper.

Power nilpotent rings, the ring thepry equivalent of
groups possessing lower central series, are defined in
section.h. AThe class of power nilpotent rings is not homomor-
phically closéd. Howéver, it does possess many of the other
properties that the class of weakly nilpotent rings has.

In section 5 meta¥* ideal and U¥-ring are defined in

terms of descending chains of subrings of the given ring.

Not every power nilpotent ring is a U¥-ring. This is cont-
rary to the result for semigroups. It is also shown that
an intersection of meta* ideals is always a meta* ideal. It

follows that not every meta¥* ideal is a meta ideal since the

intersection of meta ideals is not always a meta ideal.



iii

Section 6 is concerned with rings in which only certain
kinds of multiplicative decomposition take place. The rings
studied here are called prime products rings and it is proved
that all weakly nilpotent and power nilpotent rings are prime
products rings. A result given in the section on U-rings
suggests that all U-rings may 5e prime products rings. The
class of prime products rings is very large but does not
include any rings with a non-zero idempotent.

Tﬁe last section studies ring types which are defined
analogously to group types. The study of which ring types
actually occur is nearly completed here. Finally, it is
shown that every weakly nilpotent ring has a ring type similar
to that'of some ring which is power nilpotent.- This suggests
(but does not prove) the conjecture that all weakly nil-

potent rings are power nilpotent.
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INTRODUCTION

The understanding of the structure of rings has been greatly
advanced by the study and results of radical theory. Radical
theory has focused attention on the "radical-free" part of
rings and great attempts have been made to give an explicit
description of rings which are semi-simple with respect to
. various radical properties. While these efforts have been
moderately successful, very little serious work has been
done on radical rings. This paper attempts to explore some
classes of rings that contain most of the radical rings for
the commonly studied radical properties. While the results
~given here do not give complete information on radical rings,
they do give some indications of the nature of such rings.
There is every reason to believe that further research in
this area will provide even more information.

Much of the inspiration behind the ring theory concepts
introduced here comes from the study of generalizations of
nilpotencé in group theory. It is surprising how many
parallel results are obtained in the two theories. An
indication of the equivalent group theory concept 1s given

at the beginning of each appropriate section in this paper.



NOTATION

The following symbols and notations are used in this
paper to mean exclusively the following things. They are

not defined later on when they appear in the text.

C 1s any index set.

N is the set of natural numbers‘{l,2,3, L)

-2 1s the set of all integers.

w is the first non-finite ordinal number.

the integer (p,q) is the least common multiple of the
integers p and q.

the set (a,b) is the open interval of the real number line
with endpoints a and b.

[g,h] is the set of all integers between g and h including
both g and h.

[x]  is the largest integer < x.

I(8) is the ideal of a ring R generated by the subset S of R.

<A> is the subring of a ring R generated by the subset A of R.

(:) is used to denote the direct sum of groups, riangs, etc.

iff means "if and only if".

5 1is used to denote the end of the proof of a theorem or

the end of an example following a remark.



1. I-CHAINS

There is a close enough relationship between a ring and
its i1deals to make it possible to infer some properties of
a ring from the nature of its ideals. This suggests that in
some cases it might even be useful to know something about
the ideals of the ideals of a ring or, more generally, about
certain subrings which are related to the ideals of a ring.
A promising class of such subrings 1s the set of meta-
ideals of a riné. Meta ideals were originally defined by

Baer (1).

DEFINITION: An I-chain of a ring R is a chain of subrings

of R, I, €I, C ... C Iy =R, where I ~is an ideal of I .,
for every o and if o is a limit ordinal, I =U 1.
o y<o Ty

DEFINITION: A subring of S of a ring R is a meta ideal of R

i1f there exists an I-chain in R which begins with S.

DEFINITION: A subring S of a ring R is a chain ideal of R

if there exists a finite I-chain in R which begins with S.

DEFINITION: The index of a chain ideal S ig the smallest
natural number j such that there exists an I-chain in R

which begins with S and reaches R after j steps, i1.e. R = Ij+1'
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I-chains are principally tools used to analyse the ring
structure associated with meta ideals. Meta ideals appear
to have been first studied by R. Baer (1). Later and apparently
independently, Freidman (2), (3), (%) studied them in connection
with rings in which every subring is a meta ideal. Although
the results below are interesting in themselves, they are
mainly introduced to aid in proving more complicated results

which will appear later in the paper.

Theorem 1. (Freidman) S is a chain ideal of index n in R

implies that RS" + s"RC s.

PROOF :
Let s C I,c I.3 €...<£I,, =R DbeanI-chain. Since

IP is an ideal'in Ip+1 and S Q;Ip for all p in [2,n],

rs™ =l(I.n+lS)Sﬁ-l C (Ins)sn'2 C...cI,8cs. Similarily,

s"R C s g

Theorem 2. {(Baer) If S is a chain ideal of index n in a
ring R and if I(S) is the ideal in R generated by S, then

1()13 ¢ s ¢ 1(8).

PROOCF:

It is easy to see that I(s)3 CRSR. Let S<CI,cI,cC

3._

.+~ < I .1 = R Dbe an I-chain. For every integer p in [2,n],

2
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IS8T = (I_SI
( D P) { P D

n
seen that [I(S)]3 §.12SI

Theorem 3. {(Baer)

an ideal of R such

2)

Dy

S(I
( P

Hence it can be

C s.

(1]

2

If 8 is a subring of R, a ring, and I is

that I® €8 € I, then S is a chain ideal

of R of index m < p.

PROOF:

The following

C s+I = I C R.

beginning with S.

m < p.

Theorem L4, If 8§ is

then Sk is a chain

any natural number.

PROOF:

Suppose that the following is an

R.
T<chain in R.

natural number.

Theorem 5.

a nilpotent ideal.

Then S* € I

Hence Sk

A nilpotent chain ideal

is an I-chain in R: -8 g:s+1p'l g;S+Ip_2 C
This chain has p steps and is an I-chain

Hence the index of S in R is some integer

(1

a chain ideal of index n in a ring R,

ideal of index m < n in R where k is

S clI

I-chain in R: 5 C

R is also an
n+l

c I

5 S e

has index m < n where k is any

(11

is always contained in



PROOF':
Suppose that S is a chain ideal and that Sk = 0.

n
)13

By theorem 2,'[I(S € S where n is the:.index of S in

ke 37 K
the ring R. Hence [I(S)]™ € 8 =0 and I(S) is there-

fore nilpotent itself. =2

Chain ideals have considerably different properties
from the more general meta ideals as a comparison between

theorem 5 and the following remark indicates.,.

Remark A. (Baer) A nilpotent meta ideal need not be contained

in a nilpotent ideal.

EXAMPLE:

Let V = ()I V., where each Vi is the one dimensional
ieN T '

- vector space generated by the vector v, over the field of

integers modulo 2. Let Rn denote the ring of all linear

transformations on V with tThe property that f(Vi) g;vi+l<:)vi+2<)

..® vV, if i < 3n and £(V,) = 0 if i > 3n for all feR . Let
3n i - n

. . = 3 ) » - < .
f €R be defined by: fn(vi) Vi4p if i is even and i 3n;

otherwise f (v.) = 0. Then f = 0 and 8 = {0,f } is a sub-
n' i n n n
.2 .
ring of R.. Hence S = 0. Let I_ be the ideal of R
- n n n n

~generated by S . There exists f in R such that f(v2i—i) = V5

for i = 1,2,..., [3n/2]. Given an integer t > 1 such that

) = v and

2i+t < 3n, there exists geR such that_g(v2 01+t

i+l



6.

'g(vk) = 0 if k # 2i+l. The functions f and g are defined so

Voi-1) T Vot
It is also true that g-fn'(

that_g°fn-f( and g-fnff(vk) = 0 if k # 2i-1.

) = and‘g-fn(vk) =0

Voi Voi+t
if k # 2i. Since In must contain all elements of the form
_g-fn-f and_g-fn, In contains all elements £ of R which have

. the property that f'(vji) §V_i+3@Vi+h@... @VBn' Hence

R 3 I and since R 3n-1
n — "n n

40, In?‘l # 0. Now let R be
the discrete direct sum of the rings Rn’ let S be the dis-
crete direct sum of the rings Sn’ and let I be the discrete
direct sum of the rings In'where n ranges over the natural
numbers. Then 8 1is a subring of R and 82 = 0, while I is
an ideal of R which is not nilpotent, since " is the dis-
crete direct sum of the rings Ij and Ijn # 0 if j > n. The
1deal generated by S in R is I and therefore S is not contained
in a nilpotent ideal. Each Rn is a nilpotent ring and there-
fore is weakly nilpotent (a ring is weakly nilpotent if every
non-zero homomorphic image of the ring contains a two-sided
annihilator different from 0). It is proved.bélbw that all
sums of weakly nilpotent rings are weakly nilpotent and that
all subrings of weakly nilpotent rings are meta ideals. =
It is a fact that most of the unresolved problems in

the theory of meta ideals apply to locally nilpotent rings.

The following theorem is particularly interesting since it



suggests why the study of meta ideals might be closely

related to the studies of generalized types of nilpotence.

Theorem 6. (Baer) Every idempotent meta ideal is an ideal.

PROOF:
Let 5 be an idempotent meta ideal. Suppose that the

- following is an I-chain: 8 g12 cIil.c...cCT1I = R.

3 B
Let o be the largest ordinal number such that S is an ideal

of I . ©Since I is an ideal of I and S I , SI C I
a (v} o - o+l = Ta

+1
2

and therefore i1t follows that SIa = 87T = g8(81

+1 ‘ a+l a+l

Similarly., I S < 8. This shows that S is an ideal of Id+

a+l 1

and hence Ia = R and S5 is an ideal of R. )

It is easy to show that the intersection of a finite
number of meta ideals is a meta ideal. It is also true
that a meta ideal of a meta ideal of R is itself a meta
ideal of R. However, unlike the result for ideals, the
intersection of an infinite number of meta ideals need not

be a meta ideal.

Remark B. The intersection of chain ideals need not be a
meta ideal.
EXAMPLE:

Let S be the semigroup generated by the set‘{gn: nel}

with the following defining relations:

|) €81 cs.



(1) & is commutative

(2) x.“ =0

L
(3) X, x, for all neN.

Let R be the algebra over the field of integers modulo 2
with basis S. Let T be the subring,ﬁ{xpk: p is o0dd and
k < pl> + x,R. The following is an I-chain in R beginning
: P p p-1
with T + T"R: T + TR T + T RC ... £ T+ TR C R. Hence

T + TPR is a chain ideal of R. -However, T = [ﬁ\(T + TPR),

pelN

which is an intersection of chain ideals. But if yeRVT,
. my. m

then y is a sum of terms of the form x ... x k¥ where
"1 "k

m, < mn; for all i in [1,k], and for at least one such
term some n. is even. Let h be an odd natural number
different from all the subscripts which appear in the sum
of terms which eguals y. Then yxh¢T since one of the terms

still has an even subscript. ©So y is not in the idealizer

of T. Due to the arbitrary nature of y, T is its own

3

idealizer and hence is not a meta ideal.

The following theorem has far reaching implications.
It also raises a problem which is stili open. Namely, if S
is a meta ideal of R, does R necessarily have a proper ideal
I which contains S? Many additional results could be proved

if this stronger version of the theorem were true.



Theorem 7. (Leviec) If a ring R has a proper, non-zero meta

ideal S, then R is not simple.

PROOF:

Let 8 €;12 < ... g;IB = R be an I-chain. If B is not a

limit ordinal, then IB-l is an ideal_of R which is proper and
non-zero. Therefore suppose B is a limit ordinal. Select

any non-zero element xeR. If xR + Rx = 0, then S, the sub-
ring of R generated by x, annihilates R on both sides. How-
ever XEI& for some o < B and hence 85 C Ia # R. Therefore S

is a proper, non-zero ideal of R. If RxR = 0 and xR + Rx # O,

then R2 # 0 and hence Rx # R and xR # R. It follows that

either Rx or xR 1s a proper, non-zero ideal of R. Hence from

n
now on it will be assumed that RxR # 0. Let K = {-Z aixbi = nelN
i=1

and ai,bieR for every i in [1,nl]}. If K = R, then xeK and

m
therefore x =;Z,cixdi for some elements ci,dieR. Let y be
i=1

the smallest ordinal number such that X’ci’di€IY for all i in
[1,m]. Then IY is a proper meta ideal of R since y cannot

be a limit ordinal. Now it can be shown that KC IY. To

. n
do this it is sufficient to show that ) a;xb.el  for all
i=1 0
a.,b.eR. If a.,b.eI for all i in [1l,n], then -z a.xb.el .
i?71 i’ 71Ty 21 1107y,

Suppose that o is an ordinal number v and suppose that all
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n
the elements in the set '{-Z a Xbi:“vneN and ai’biela for

all i in [l,n]} lie in IY. Then if neN and ai’bi81a+l for

n
all i in [1,n], a.xb, lies in I_ since - ) a, xb,
iv i Y . i i

1 i=1

Il ~118

i
n

m
=) ) (a,ec,)x(d,b.) and since all the elements a,c, and
i=1 j=1 * Y J ot t

djbi lie in Ia.v Hence by transfinite induction (the step
at limit ordinal numbers is obvious) the ideal K lies in I

This negates the possibility that K = R and hence R is

n

not simple.



11.

2. J-CHAINS

Weakly nilpotent rings have been studied before,
especially by Kegel (8), (9). Theorem 8 below gives an
equivalent definition of weakly nilpotent rings based on
a chain condition. Actually, J-chains are the ring theory
equivalent of upper central séries in group theory. More-
over, weakly nilpotent rings are the ring theory equivalent
of ZA groups (see Kurosh (1) for definition). An important
relationship between weakly nilpotent rings and meta ideals

is proved in section 3 on U-rings.

DEFINITION: A ring R is weakly nilpotent i1f every non-zero

homomorphtc image of R contains a two-sided annihilator
different from 0.

From this definition it is easy to see that all homomor-
phic images of weakly nilpotent rings are weakly nolpotent

rings.,

DEFINITION: The J-chain of a ring R is the chain of ideals

of R, JJC: Jol ..o & g = Jgyq9 where J, is the ideal con-

sisting of all the two-sided annihilators in R, J , ., ts the

largest ideal of R with the property that J ,.R + RJ ., g;Jd,
and if o is a limit ordinal, then J = I -

y<o



i2..

DEFINITION: The J-chain of a ring R terminates (or ends)

at Jg 1 Jg = Jgyg

DEFINITION: 4 ring R has a trivial J-chain if its J-chain

consists of 0.

Theorem 8. (Kegel) A ring R is weakly nilpotent iff R's

J-chain terminates at J, = R.

B

PROOF:

Suppose that R is weakly nilpotent. BSuppose also that
JB ocecurs in R's J-chain and that JB # R. Then R/JB’ a
homomorphic image of R, must contain an annihilator of R/JB
different from 0. However the set of all annihilators of
R/JB forms an ideal, K¥*, of R/JB' Moreover, K¥ is isomorphic

to K/J6 where K is an ideal of R. But K satisfies the

relation KR + RK C J, which shows that J

g g # JB+1' Therefore

R's J-chain does not terminate until it reaches R.

Suppose R's J-chain terminates at JB = R. Let R/K be
a non-zero homomorphic image of R and let y be the maximal
ordinal number such that JY C K. Then there exists an x in
JY"'lC K which must satisfy the relation: xR + Rx C JY C K.

Hence x¥%, the image of x under the homomorphism R - R/K, .

has the property that x*¥(R/K) + (R/K)x¥*¥ = 0. Hence R/K does
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contain a non-zero annihilator. This shows that R is

3]

weakly nilpotent.

Theorem 9. A weakly nilpotent ring with ACC on two-sided

ideals is nilpotent.

PROOF:

Consider R's J-chain: O cJ,C ... CJB = R. By ACC

this chain must terminate at Jp = R for some natural number

+
p. Since J °CJ R+ RI. <J_ ., it follows that J °T% = o
n =— 'n n — n-1 n

{n

for every natural number n and therefore Rp+l = 0.

Theorem 10. A subring S of a weakly nilpotent ring R is

- weakly nilpotent.

PROOF:

Let R have the J-chain J: 0 C J,E I, ... &, = R,

And let S have the J-~chain H: 0 C.Hl CH. Cc...<cH =H

2 Y Y+1°

If xeJ,, then xR + Rx = 0 and hence x5 + Sx = 0. It follows

that s N J, € H,. Suppose that S N J, CH,. Then if xeS M et

xR + Rx € J and hence x5 + Sx £8/)J CH . It follows

that S /]Ja+l Q;Ha . By transfinite induction (the step at

+1
limit ordinals is obvious) it follows that S f)JB ngB,
i.e. HB DS/ R =85. Hence S is weakly nilpotent. g
Theorem 11. A complete direct sum of weakly nilpotent rings

is weakly nilpotent.
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PROOF:

Suppose R = (:) AY where each AY is weakly nilpotent.
C

YE
Let R have the J-chain J: O(:_JlC: J2 C:f.° C:JB =‘JB+1'
Let A have the J-chain H : 0 c (H C (H c ... C (H

. . (5), € (), Cary

Note that Ja = (:) (H-)a since AHAX # 0 implies that n = A.

yeC ¥
Hence if & = max{B :yeCl}, J. = (:) A = R and R is weakly
Y 6 R
Ye
nilpotent. =
Corollary. A discrete direct sum of weakly nilpotent rings

is weakly nilpotent and a subdirect sum of weakly nilpotent

rings is weakly nilpotent.

PROOF:

This follows from theorems 10 and 11 and from the fact
that such sums can be represented as subrings of a complete
direct sum of weakly nilpotent rings. : =

Of all of the extensions of nilpotence studied in this
paper weakly nilpotent rings have the greatest number of
pleasant properties. In addition to the general properties

proved above, the following results are also useful.

Theorem 12. (Kegel) If I is a weakly nilpotent ideal of a

ring R and rP C I, then R is weakly nilpotent.
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PROOF:
It is sufficient to prove the case when p = 2. Since

I 1is wéakly nilpotent it has a non-zero ideal J such that

JI + IJ = 0. Consider the ideal RJR of R. It annihilates

R: (RJR)R + R(RJR) € RJI + IJR = 0. Suppose that RJR = 0.

Then either JR # 0 or RJ # 0 or JR + RJ = 0. In the first

case JR is a non-zero annihilator of R; in the second case

RJ is a non-zero annihilator of R; in the last case J is a

non-zero annihilator of R. Hence R has a non-zero annihilator.

Now let f: R > R/K be a homomorphic image of R where K is

a proper ideal of R. If I g;I(,‘%hen R/K is nilpotent and

therefore has a non-zero annihilator. Otherwise the image

£(I) of I under the homomorphism f has a non-zero annihilator

J*¥ which is an ideal of R/K. Again (R/K)J*(R/K) is an anni-

)2

hilator .. of R/K since (R/K < £(I) and J¥ annihilates f(I).

Suppose (R/K)J*(R/K) = 0. As abéve, then either J*(R/K) # O
or (R/K)J*¥ # 0 or J¥ .annihilates R/K. In any event R/K has
a non-zero annihilator and since this is true for every non-
- zero homomorphic image of R, R is weakly nilﬁotent. =

In Kegel's terminology (9) the following théorem_says
that being weakly nilpotent 1s a left conservative property.

It is easy to see that being weakly nilpotent is also a

right conservative property.
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Theorem 13. (Kegel) If L is a weakly nilpotent left ideal

of R, then LR is a weakly nilpotent ideal.

PROOF:

Let LR have the J-chain H: 0C H, CH. < ...C H =H .
1 2 Y Y+1

Note that it can be proved easily by transfinite induction
that every Ha is an ideal of R as well as of LR. Now suppose
LR is not weakly nilpotent. Then HY # LR. Let f be the
homomorphism of R given by f: R = R/HY = R¥., Let L¥ = f(L)

and note that L¥R¥ = f(L)f(R) = f(LR) = LR/Hy. Hence L¥R¥*

has a trivial J-chain and L¥ is a weakly nilpotent left ideal

of R¥, Let L*¥ have the J-chain J: 0 C JlC ch CJB = L¥,

Since L¥*¥R¥* cannot be nilpotent, L*JBR* cannot be 0 for other-

wise (L*R*)2 C L*¥L¥R¥ = L*JBR* = 0. Let n be the smallest

ordinal number such that L*JnR* # 0. Then n cannot be a
limit ordinal since if L*JaR* = 0 for all ordinal nﬁmbers o < n
and n is a limit ordinal, then L*JnR* = 0. Note that L*JnR*

"is an ideal of L¥R¥ and L*JnR*(L*R*) g;:L*Jn_lR* = 0 and

(L*R*)L*JnR* gﬁL*Jn lR* = 0. Hence L*JnR* is a non-zero two-

sided annihilator of L¥*¥R¥* which contradicts the fact that
L*¥R¥ must have a trivial J-chain. o)
A left J-chain may be defined in the same way as a J-chain

exchanging only the requirement that Ja annihilate the ring

+1

R on both sides modulo Ju with the requirement that Ja+l
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annihilate R on the left modulo I, (let J

o be the O subring).

If a ring R has a non-trivial left J-chain, does R have a
non-trivial J-chain? The answer is no, even in the case
when R has both a non-trivial left J-chain and a non-trivial
right J-chain, as a study of the ring given in the example
below will verify. Whether all possible examples can be
written as a direct sum of two rings as in the given example

below 1s an intriguing question.

Remark C. It is possible for a ring R to have a trivial
J-chain and also to have non-zero ideals I and J such that

IR = RJ = O.

EXAMPLE:

Let A be the ring of all wxw square matrices with
integer entries and the restrictions that all of the entries
on the main diagonal and to the left of the main diagonal
are 0, and all but a finite number of the entries are 0. Let
B be the anti-automorphic copy of A under the identity mapping
and consider the ring R = A()]B. Let I be the one-sided ideal
of R consisting of all elements of R of the form (y,0) where
y 1is a wxw square matrix with every row except the first
filled with zeros. Let J be the one-sided ideal of R consisting
of all elements of R of the form {0,z) where z is a wXw square

matrix with every row except the first row filled with zeros.
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Then RI = JR = 0. However, R has a trivial J-chain since

if (u,v) is an arbitrary element from R and (u,v)R = (u,v)(A(®)B)
= uA(® vB = 0, then u must be 0. Similarly, if R(u,v) = 0, |
then v must be 0. So (0,0) is the only two-sided annihilator

of R. Moreover, IR and RJ are two-sided ideals of R and

R(IR) = (RJ)R = 0. Since IR and RJ are non-zero ideals, they

satisfy the conditions in the statement of the remark. g

The ring A in the example above is the union of the
ideals I(n) of A where I(n) consists of those matrices in A
where all the non-zero entries occur in the first n rows and
the first n columns. Since I(n) is nilpotent and therefore
weakly nilpotent, A is the union of weakly nilpotent ideals.
However A has a trivial J-chain. The following result shows
that a union of a special kind of weakly nilpotent ideals is

weakly nilpotent.

DEFINITION: The J(R)-chain of an ideal K C R, a ring, %8

the cehain: 0 CLJJ C .. C:JB =-J8+1 where JZ = {xeK: xR + Rx = 0},
Iyt = {xeK: zR + Rxg;_Ja} » and 1f o 18 a limit ordinal,
7, = U I -

y<o

DEFINITION: A4An Zideal K of a ring R is nilpotently embedded

in Rif K's J(R)-chain ends at K.
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Theorem 1k, (Kegel) If R is the union of ideals nilpotently

embedded in itself, then R is weakly nilpotent.

PROOF:

Suppose R = k,) Ia where each Id is nilpotently embedded

aeC
in R. Let I  have the J(R)-chain (J ) : 0C (J ), ...C
(Ju)B = I, for each o in A. Then R has the J-chain J:
o
bc I, ... CZJY.=AR where J, 2 J (Jd)d for every ordinal
0EC
number 8§ and hence if vy =_mak{6a:aec}, JY must be R. g
Theorem 15. If R is a non-zero weakly nilpotent ring, then
R® 4 R.
PROOF:

Suppose that R is weakly nilpotent and has the J-chain

J: 0C Jl C ... C'.JB = R. BSuppose also that R2 = R. Then
J2 = {xeR: xR - Rx gZJi} = {xeR: (xR + Rx)R + R(xXxR + Rx) = 0}.
That is, J, = {xeR: XR° + xRx + R2X = 0}. A similar

' . , 3 2 2 3
computation shows that J3 = {xeR: xR~ + RxR” + R"xR + R”x = 0}.
However, since R2'=‘R, J2 = J3 and hence J2 must equal R.
But then R3 = 0, R is nilpotent, and therefore R2 # R. This

(1]

is a contradiction.
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3. U-RINGS

U-rings have been studied extensively by Freidman {(2)
(3) (4) (5) (6). 1In (2) Freidman proves that the nil radical
of a U~ring is equal to the Jacobson radical, the Brown-McCoy
radical, and the Levitzky radical. It follows that every nil
U-ring 1s locally nilpotent. Since Freidman has characterized
the radical-free part of U-rings, the remaining problem is to
characterize locally nilpotent U-rings. It has been con-
jJectured that all locally nilpotent U-rings are weakly nil- -
potent. Freidman (6) states as a corollory the result that

every locally nilpotent U,-ring is weakly nilpotent. Un-

2
fortunately, Freidman does not prove this corollory and it

is not obviously true. However, 1t is proved below that the
result is true for U2-rings which satisfy certain additional

conditions. Some general results on U-rings are given first.

DEFINITION: A ring R is a U-ring i1f each subring S of R is

a meta ideal of R.

Theorem 16. (Freidman) Every weakly nilpotent ring R is

a U-ring.
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PROOF:

Let R have the J-chain J: O0C Jl(: J2§: cee & JB = R.
Let 8 be any proper subring of R. Let y be the minimal ordinal
number such that JY & S. Note that y cannot be a limit ordinal.
There exists x in JY " S which satisfies the relation:

x5 + 5x g;JYR + RJY g;J& < S. Hence S is not its own ideal-

-1
lzer in R. Now suppose R is not a U-ring. Then R has a sub-
ring T which is not a meta ideal. This means that any I-chain

in R starting at T must end at some proper subring S of R

which is its own idealizer. This is a contradiction. =

Theorem 17. (Freidman) Every homomorphic image of R, a U-ring,

is a U-ring. Also every subring of R is a U-ring.

PROOF:

Let R/K be a homomorphic image of R where K is an ideal
of R. Let S* be any subring of R/K. Then S* is isomorphic
to S/K for some subring S of R. There exists an I-chain in

R beginning with S: S C 12 CI,.C ... cCR. The following is

3
an I-chain in R/K beginning with S%*: gS*¥ QIQ/K - IB/Kg

... < R/K. Hence S*¥ is a meta ideal of R/K. It follows that
R/K is a U-ring since S* is arbitrary.

Let T be a subring of R and S any subring of T. There

C ... CR.

exists an I-chain in R beginning with S5: S glle g;I3 C
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The following is an I-chain in T: 8§ C TNI, C TNI, C

... €TAR=T. Hence S is a meta ideal of T and T is a

[

U-ring.

The following theorem narrows the search for a U-ring

which is not weakly nilpotent.

Theorem 18. There exists a locally nilpotent U-ring which is

not weakly nilpotent iff there exists a locally nilpotent

U-ring with a trivial J-chain,

PROOF:
Suppose R is a locally nilpotent U-ring which is not
weakly nilpotent. Let R have the J-chain J: 0 Cdy CZJ2<:

e C J, =

8 JB+l' Then R/JB is a homomorphic image of R and

therefore a locally nilpotent U-ring. However R/JB has a

trivial J-chain.

1)

The converse is clear.

DEFINITION: Let S = {$8:188(0,1) and s is a rational number}.

De fine multiplication im S by the ruZe:vxSxt =%, T f

s + t < 1; otherwise x %, = 0. Letp be any prime number.

t

The Zassenhaus Example modulo p is the algebra over the field

of integers modulo p with basis S. More generally, any algebra

with basis S will be called a Zassenhaus Example.
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The class of locally nilpotent rings is not a very good
upper bound on the class of nil U-rings. Although a- Zassen-
haus Example is not a U-ring, it is both locally nilpotent
and a Baer Lower Radical ring. The folloﬁing theorem places
a different upper bound on U-rings which excludes this example
and many others like it. It also suggests that all nil U~-rings
may have multiplicably indecomposable elements. In the section
of this paper on prime products rings it is proved that all
weakly nilpotent rings are generated by the multiplicably
indecomposable elements they contain. It seems quite possible

that this result may hold for nil U-rings as well.

Theorem 19. Suppose a ring R has a sequence of elements,

A n;

{x.: 1ieN}, such that x, + = X, where n, > 2 for all ieN and
i i i-1 i —

X # 0 while X, = 0. Then R is not a U-ring.

PROOF:

It is sufficient to show that a subring of R is not a
U-ring. Let S be the subring of R generated byl{xi: ieN}.
Then S is commutative since any two elements in the seguence
'{Xi: ieN} are powers of an element in the sequence and there-
fore commute. It would be pleasant if the elements in S had
subscripts with the property that when two elements were

multiplied together the result would be either 0 or an element
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with subscript equal to the sum of the subscripts of the

two multipliers. If X, 1is renamed y(l/ K s then
I 0.
i=1
_ Pk
[y(l/ K )]. = y(1£§“ = Y(n / ) - Consequently
: -1 ) k
I “n,. moon i} n.
=1 * i=1 i=1
P .
(Xk) can be renamed y(p/ k ) for eyery pelN. Since any
I n,
i=1 ¢

two elements of the form v and Yy in 8 are both powers of

some Xi in the sequence generating S, Y ¥y < y(s+t) (which
may be 0 if s + t > (nl—l/ni). This gives a subscript
stgucture very much like that found in a Zassenhaus Example.
BEvery s such that ySeS is a rational number which lies in
the interval (0,1). Ekactly‘which rational numbers s appear
as y~subscripts for elements in S depends on the sequence of

integers‘{ni: ieN}.

Lemma 19A. Suppose Yy and Y eSS and s, < s, < 1 and Li is

1 5 1 2
the characteristic of v for i = 1, 2. Then L2 divides Ll
i
PROOF:
Note that L.y = 0 implies that (L.y )y = L.y
Vs, 17s, (sg—sl) 17s,
Since L,y = 0, L3, the greatest common divisor of L, and L,,

2
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must be a solution of the equation Xys = 0. Since L2 is
' 2

the smallest positive integral solution of this eguation,

Lo must be L. and therefore L2 does divide L

3 1°

DEFINITION: A point in S will be an element of the form Y-

If the additive characteristic of every or all but one
non-zero element in the ring S is O, define G = 0. Other-
wise let G* = min{characteristic (yé): ySéS and

characteristic (ys) > 1}. Let y_  eS be any element with
0 .

characteristic G¥. Either

(1) ¥, 1is the only point in 8 which has characteristic G¥
0 .

or

(2) there exists a maximum‘open interval (a ,az) < (0,1)

1
such that te(al,ag) implies that y, has characteristic G¥.

In case (1) let G = min{characteristic (yé): ySSS and

characteristic (Yg) > G¥1 and let Y be a point in S which

1
has characteristic G. Then every point Vi where sl.< t < SO
must have characteristic G by lemma 19A. Hence there exists

a maximum open (al,aé) < (0,1) such that te( ) implies

a8,
that y, has characteristic G. In case (2) let G = G*,

Note also that if G = 0, then there is a maximum open interval

(a ) < (0,1) such that ts(al,a

2) implies that Yy has

1°%2

characteristic 0.
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DEFINITION: G is called the primary characteristic of S;

(@1:02) is8 called the primary interval of S.

DEFINITION: A formal additive relationship in S is an equation

h
of the form - ) L.y = 0 where 8. = s. implies that 1 = J,
jog t7s; T g

L.ez, and Ly, # 0 for every 7 in [1,h].

7
Lemma 19B. There exists no formal additive relationships in
S in which every term has subscripts which lie in the primary

interval (al,ag).

PROOF:
Let h be the fewest positive number of terms that a
formal additive relationship has, when every term has sub-

h
scripts in (al,ag). Suppose z LiyS = 0 is a formal
i=1 i

additive relationship where sie(al,aé) for every i in [1,h].
15 e sh}. Given

any. u > 0 there exists a rational number s < u such that .

Let s_ = max{s .., 8.} and s, = min{s
m h

1 L

ySES. Due to this fact there exists ytSS such that t + S 2,
h h

<t + s . Since Ly +t) O>”22 LiY(s, +t) = (-Z
m i=1 L

|
(@]

L.y ]y
i=1 i si t

can be rewritten as a formal additive relationship in (al,aé)

with fewer than h terms. This is a contradiction.
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Lemma 19C. There exists no formal additive relationships in
S in which any term has the form HyJC where G does not divide

H and t < g/2 where g is the length of the primary interval,

).

(a13a2

PROOF:
m
Suppose Hyt + 'z Ljys = 0 is a formal gdditive relation-
J=1 J
ship where G does not divide H and t < g/2. Suppose also that

S < .. < Sy < t < Spa1 < .. < St Ther; exists yﬁes such
that a, + g/2 <t + u< 2y Then .(Hyt + jZiLjysj)yu =0

is an additive relationship in which every term lies in
(al,aQ) but not every term is 0 since Hy(t+u) # 0. Consequently
this can be rewritten as a formal additive relationship in

the primary interval which contradicts lemma 19B.

DEFINITION: A point y s i8 an M-endpoint <If Moy, # 0 but

My, = 0 for every t > s where M is an integer.

DEFINITION: If Yg is an M-endpoint for some integer M and L
18 the smallest positive integer such that Y 18 an L-endpoint,

then L is the near characteristic of Yg-

Lemma 19D. Every dense subset of an open interval (Db bg) < (0,1)

l’

contains points s such that Y is not an M-endpoint for any MeZ

or there is no point Vg in 8.
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PROOF:

If the M-endpoints in S are ordered according to their
near characteristics then no two M-endpoints have the same
near characteristics and as the near characteristics of the
M-endpoints increase towards infinity, the y-subscripts de-
crease towards 0. Since the positive integers have only one
limit point (plus infinity), the y—subsgripts of the M-end-
points in S have at most one limit point. But every dense

subset of the interval (b..b

2) < (0,1) has infinitely many

l’
limit points. Hence some of the points in the dense subset

of (bl’bé) either are not the y-subscripts of any M-endpoints

in S or are not the y-subscripts of any points in S at all.

The proof of theorem 19 will now be finished.

Let E = {yl/k€S: keN} and let P(S) = {primes p: p divides

k for some keN such that yl/ksE}.

Case (1): Suppose P(S) is an infinite set. Then choose
h v
p.eP(S) and let T=1{) Ly + )M,y + ) Hy, eS:
0" N S Y 38 j's. [P A v
i=1 1771 J w=1 W

LieZ, (zi,k,)

i 1, and (po,ki) = 1 for all i in [1,n];

MjeZ, and yg is an Mj—endpoint for all j in [1,m];
: J

HWEZ, and either tﬁ > g/2 or G divides HW for every

w in [1,v]}.
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Note that the set'{z/k: k,2eN and po divides k} is dense in
(0,g/2). From the proof of lemma 19D there exists some yteS
such that te(0,g/2), t = 2/k where P divides k, and ¥y, is not
an M-endpoint for any integer M. By lemma 19C there exists
no formal additive relationships involving elements of the
form Hwytw where tw < g/2 and G does not divide HW. Hence
yteS%T > and therefore T # S. Note that the product of an
M-endpoint with any other element in S is O and that (Hwyt')°
W

‘(Lyu) = LHwytvfg where either G divides LHW or tw +u > g/2 .

for every w in [1,v]. If p divides neither k. nor k then
O .

1 22

po,does not divide k_k,.,. Consequently,

192 ( L‘lyll/k.:']:) Ty /i)

2

= L Loyegy ¥ 2.k1) /k1k,

lies in T if Liyx eT for
172 271 i

[ki

i =1, 2. Hence T is a subring of S since it is closed

under addition and multiplication. It Lyz/keS&T,Uy and (2,k)

then P, divides k, 2/k<_g/2, L, does not divide G, and there
exists t > %£/k such that Lyt # 0. Since P(S8S) is an infinite

set there exists Y1 /% eT such that l/k1 + /k < mih{g/2,t}.
1

Consequently, (Lyz/k)(yl/k:) = Ly(ﬂk +k) /kk is not 0 and is
1 1 1 .

not in T since p_ divides ko, (po, lkl+k) = 1 and by lemma
19C this element cannot be expressed as a sum of terms
which lie in T. HéncegLkais not in the idealizer of T and T

is its own idealizer in S due to the arbitrary nature of this

element.
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Case (2): Suppose P(S) is a finite set. Then choose
pleP(S) such that 13 divides an infinite number of terms in

the sequence'{ni:isN}. Note that every power of Py divides

h
some k such that ylth. Let @ = { LY, /x5 Lyel,
, +/k i=1 /%5

(Qi,ki) = 1, and k, = pln for some neN for all i in [1,h]}..
Let g be a prime such that g ¢P(S) and let
h n v

o = { } L.y + Y M,y + ) H_ y, o eq:
j=1 Faky/ky j=1 9785 w=1 Yy by

Liyli/kieQ for all i in [1,h];

MjeZ, and y_ is an Mj—endpoint for all j in [1,m];
J

HWSZ, and either tw > g/2 or G divides HW for all w in [1,v]}.

Note that the set'{l/pln: 2,neN and (K,plq) = 1} is dense in

(0,g/2). From the proof of lemma 19D it follows that there
exists a point ytes such that ts(O,g/Q), Yy is not an M-endpoint
for any integer M, and t = Q/pln, where (l,plq) = 1. By

lemma 19C there exists no formal additive relationships involving
elements of the form Hwytwvwhere tw < g/2 and G does not divide

Hw' Hence yteQ v Q¥ and therefore Q # Q¥. Now, note that if
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and L are elements in Q¥*, their product,

L.y y
1 qz&/kl 2 ng/kg_

L. L.y . . . .. . ¢ " is an element in Q¥. Since the
1 2g(%. k. + 2 . k. ke
a(hik, k1) /K ks

statements found in case (1) onijAendpoints and elements of

the form Hwyt where either tw > g/2 or G divides HW abply in
w

this case also, Q¥ is a subring of Q. If Ly £Q &'Q* and
L/k

(2,k) = 1, then (g,2) = 1,'G_does not divide L, &/k < g/2,

and there exists a rational number t > 2%/k such that L £ 0.
' t

Note that miﬁ{t,g/é} < (8/k + q/plp) for some natural number
n and there exists a point ¥y eE such that p % givides k..
l/kl 1 1

Consequently,-(Lyz/k)(y ) = L which is

n v
1/py (lpin+qk)/kpln

not 0 and does not lie in Q¥ since (g,%p." + gk) = 1 and by
P, *+a

lemma 19C this element cannot be expressed as a sum of terms
which lie in Q*. Hence ly%/k is not in the idealizer of Q¥
and Q¥ is its own idealizer in Q due to the arbitrary nature

of this element. Gl

DEFINITION: A ring R is a U,-ring 1if every subring of R is

yi

a chain i1deal.

It appears that very few results have been obtained which
define the boundaries of the class of Ul-rings. The example

given below shows that not every weakly nilpotent ring is

a Uj-ring.
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Remark D. ©Not every U-ring is a U.-ring.

1

EXAMPLE:

Let S be the semigroup consisting of the set of elements
({O}L]{xn: n has less than k prime factors where k is the
smallest prime dividing n and n is square-free}. Let
multiplication in S be defined by the rule: X X =_xﬁm if
nm has less than k prime factors where k is the smallest prime
dividing nm and nm is square-free; otherwise x X = 0. Let
the primes be ordered according to size in the usual way.

Let R be the algebra over the integers modulo 2 with basis

S &'{O}; Let Q be the subring of R generated by the set of
elements'{xp: p is a prime with an even index in the ordering
of the primeé}. Any I-chain in R beginning with Q has an
infinite number of steps since if p is the 2n+l-st prime in
the ordering of the primes, then Xp does not occur in any
subring in the I-chain until after I, . Hence R is not a

2n

Ul—ring. Let R have the J-chain J and note that x ~occurs in

Jp k if n has k prime factors and the smallest prime factor

of n is p. Hence L_) Jn = R and R 1s weakly nilpotent and

{11

therefore R is a U-ring.
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DEFINITION: A ring R is a U,-ring if every subring of R is

2

a chain of index n_< M, for some integer M.

DEFINITION: M <s an index bound for a Ugjring i1f every chain

ideal of the ring has index n < M.

The following theorems from Freidman (6) together
Y

with the example for remark F give a fairly good picture of

what nil U2—rings are like.

Theorem 20. (Freidman) Every nilpotent ring is a U,-ting.

2

PROOF:

Suppose R® = 0. Then 0 = R £ 8 ¢ R for every subring
S of R. By theorem 3, 5 is a chain ideal of index n < p.
Hence R has index bound p. g

It is also true that a homomorphic image of a U2—ring

of index bound M is a U2—ring of index bound n < M and that

a subring of a U2—ring of index M is a U, -ring of index

2
bound n < M. The proof of these statements is the same as
that given for the corresponding statements for U-rings in

theorem 17. However, unlike the result for weakly nilpotent

rings, a direct sum of U-rings need not be a U-ring.

Remark E. (Freidman) A direct sum of U2—rings need not be

a U~ring.
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- EXAMPLE:

Let R = 2/(2) + 2Z2/(2). Let e be the identity of the
first ring Z/(2) and let f be the identity of the second ring
in the summand. Then e + f generates a subring proper in R

which is not an ideal of R.

3]

The following series of lemmas lead directly to the

proof of the main theorem on Ug—rings which are locally

nilpotent.
Lemma 21A. (Freidman) If R is a locally nilpotent U

pTriNE

and has index bound M and the additive group structure in R

is either torsion free or every non-zero element has additive

: + -
order p where p is a prime, then X2M e 0 for every xeR.

PROOF:

Let x be any element in R and observe that.§x>ﬁ<x2>M7CZ<x2>

follows from theorem 1 and the fact that a subring of a U
2M+1 ’

. : 21 .
-ring. Hence x = ) cyx where c; is an
' i=1

,-ring

is again a U2

235+2

. 3 - . -1 +
integer and X2J'# 0 while x = 0. Suppose x2J'l # 0. Then

let k = 2j+1. Otherwise let k = 2j. The equations obtained
.'j‘. .
+
by multiplying both sides of the equation: X2M 1. :Z cix21
i=1

by Xk—2n for n = 1,2, ..., M show successively that4cn = 0
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for n = 1,2, ..., M. The equation finally obtained has the

2M+1 _2M+1 2M+1
x T =x X

form: y where yeR. If # 0, then the only

element y which can satisfy such an equation in a locally
. . . . 2M+1 - . .
nilpotent ring is O itself. Hence x = 0 which is the

desired result.

Lemma 21B. (Freidman) If R is a locally nilpotent U -ring

2
with index bound M such that every non-zero x in R has
additive order p where p is a prime and if S is a subring

of R which is generated by exactly H elements, then St = 0 .

where t = H(2M+l)3M - H + 1.

PROOF:

Let S be the ring generated by the elements XysXpgseeesX
:)2M+l

H

taken from R. According to lemma 214, (x = O.for every
3M
i in [1,H]. By theorem 2, I(<xi>)

M

- <xi> < I( <x'i'>) . Hence

2M+1)

I(<xi>ﬁ = 0 for all i in [1,H]. Due to the facts that

>)

S g;:L(<xl>) + I(<x2>) + ... + 1(<xH>)_and that [I(<x.>) + 1.(<x2

1
t

+ ... + I{<x >)]t = 0, S = 0 where t is the number given in

H
the statement of the lemma.

.Lemma 21C. (Freidman) If R is a locally nilpotent U,-ring with

2

index bound M such that every xeR v {0} has additive order D
where p is a prime and S is any subring of R generated by

exactly H elements, then |S| < pu where u+l

H(2M+1)3M—H+l

H(H -1)/(H-1).
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PROOF:

Let 5 be the subring of R generated by the elements

Xl’XE""’XH' Then St = 0 and consequently the semigroup
S* generated by xl,...,xH contains no more than
Ho+ 852 + HO + ... +uc"t =_H(Ht_l-1)/(H—l) elements. Let

N i
H(2M+1)3 ~H+1 0y

u+ 1= H(H /(H-1). The ring S therefore

u
consists of sums of the form fz Liyi where each Li is a

i=1

positive integer <p and each v i1s a non-zero member of the
semigroup S¥* and v; = yj implies that i = j. However the

. ' u
number of such sums is no more than p .

Lemma 21D. (Freidman) If R is a locally nilpotent U,-ring
with index bound M such that every xeR v{0} has additive order

p where p is a prime, then R is nilpotent.

PROOF:

Select by choice any M+'pv elements from the ring R

(2M+1)3MeM+l)_

where v+1 =‘M(MM 1)/(M-1). Let these elements

be denoted by Xl’xe? s Xy yl,yg, .oy ypv. Let 5 be the
subring of R generated by the elements XysXgsee e s Xy Let

a =

o 'X14X2.‘. « X for

M* Define ai recursively by ai =-ai—lyi

all i in [1,p']. Then it follows from theorem 1 that each

aieS and therefore two of the pv+l elements a,»a ,...,apv nust

1

be equal. Suppose a;, = aj where 1 < J. Then a; =vaiz. where
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-z 1is an element of R. ©Since R is a locally nilpotent ring

: M+p .
a; must be 0O and hence apv = 0. R = 0 since every element
in this subring of R can be written in the form of apv by a

proger cholice of the elements x

l’.'.’XM;yl"..’ypv

Theorem 21.: ¥(Freidman) If R is a locally nilpotent Uz—ring
and F(R), the periodic part of R, has characteristic ¢ > 0,

|
then R is nilpotent.

PROOF:

First consider F(R), the periodic part of R. Since
F(R) has characteristic g > 0, F(R) may be represented as a
direct sum of a finite number of rings whose additive group
structure is a primary p group for distinct primes p. To
show that F(R) is nilpotent it is sufficient to show that
each of these subrings is nilpotent since a finite direct
sum of nilpotent rings is nilpotent. Suppose SC R is a
ring which has a primary p group as its additive group
structure. Then S is a U2—ring and there exists n N such
that p“S = 0, but p° 'S # 0. Then by lemma 21D pn_lS.is.
a nilpotent ring. Thé:rihg pnT%STié;alsoﬁniipotent since
'p(pn_zs/pn_ls) = 0 and therefore the factor ring (pn‘gs/pn'ls)
is a nilpotent ring. Continuing to argue in this fashion it
ié easy to see after a finite number of steps that S itself

is a nilpotent ring.
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Now consider R/F(R) which has a torsion free group as
its additive group structure. According to lemma 21A there
exists w > 0 such that XW = 0 for all x in R/F(R). M. Nagata
proves in (13) that a torsion free ring with the property

that x" = 0 for all x in the ring must be nilpotent. Hence

I

R is nilpotent since both R/F(R) and F(R) are nilpotent. &

The following remark and example also appear in Freidman
(6). The fact that every subring in the given example is

an ideal of the ring makes it all the more startling.

Remark F. A U2-ring need not be nilpotent if the periodic part

of the ring has characteristic O.

EXAMPLE:
Let’{xpﬁ p is a prime number} be a set of distinct
elements and for each prime number p define Ap = {nX

0<n < pP}. Make A a ring by defining addition and

multiplication by the rules: nxp + mxp = [(m+n)mod pp]xp;
P p+1l
nx_+mx_ = [(nmp)mod ]x . Hence (A ) =0, i.e. A
P P (nmp Py P ’ P
is nilpotent. Let R = C) A . Then yeR implies that
p prime
;
y = ) m X where p. is a prime and OO <m_ . < p. ~, m_ €N
i=1 Pi Pj * Py * Pi

for all i in [1l,n]. The subring Sy,_generated in R by y, is



39.

really an.ideal of R since y*x = [(p.m_: )mod pJ]XP if p = p

J P, J
J
where j lies in [1,n]; otherWiSe_y-Xp = 0. Since the set of
primes,‘{pi: i=1,2,...,n}, are all distinct, y-x ;Sy. Hence

every subring of R 1s an ideal of R and therefore R is a
U,-ring. However R is not nilpotent since (xp)p # 0 for every

prime number p. ' 2

DEFINITION: A ring is periodic if the additive order of

every non-zero element of R is a natural number.

DEFINITION: A ring is primary if the additive order of every

non-zero element of the ring is a power of some prime number p.

DEFINITION: An element xeR, a primary ring, has infinite
height <if the equation mz = x has a solution z for every

mel,

Lemma 22A. TIf R is a primary ring and xeR is an element of

infinite height in the additive group of R, then xR + Rx = 0.

PROOF:

Suppose that xeR is an element of infinite height in the-
additive group of R. Let pm be the additive order of x. Then
there exists a sequence of elements in R,'{xn: neN}, such

: 2 n .
that x = PXy TP X, T ... =D xn_for every_neN. If y is an
element in R, then there 1s a non-negative integer k such that

pky = 0. However xy = (kak)y = Xk(pky) = x.0 = 0. It

follows that xR = 0.. For similar reasons Rx = O.
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DEFINITION: The basic subring of a primary ring R is the

subring B which has for its additive group structure the
bastc subgroup of R's additive group. (See Kurosh (10) for

a definition of basic subgroup).

It follows from lemma 22A that a basic subring is always
an ideal of the ring, since R/B has a complete group for its

additive group structure. Hence every element other than

0 in R/B has infinite height and therefore (R/B)2‘='o. It

follows that Rgcf B.

Theorem 22. Let R be a locally nilpotent U2

be the periodic part of R. Let F(R) = C);IF where F is a
ien  Pi Py

-ring and let: F(R)

pi-primary ring and'{pi: ieN} is the seguence of primes in
their usual ordering. Let Ai be the ideal of Fp consisting
i
of all elements of infinite height in Fp . Then R is weakly
' i
nilpotent if for all ieN the basic subring of Fp /Ai is a direct

i
sum of rings of finite positive characteristic.

PROOF:
Let F be the set of all elements in F(R) which have
i .
additive order any power of p,. Then F(R) = ® F_ . Hence
1eN i

F(R) is weakly nilpotent if each Fp is weakly nilpotent.
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Let Ai =’{xst : ¥ has infinite height in the additive group
i : .
of Fp }. The group Fp /Ai =_Fi is an Ulm.factor (see Kurosh
i i
(10) for definition) of the group Fp and hence the ring F,
. . i
is a primary ring which contains no elements of infinite

neight. Let B, be the basic subgroup of' E. Since: F12 < By

it follows from theorem 12 that Fi is weakly nilpotent if Bi
is. By assumption, the ring Bi is a direct sum of rings of
finite positive characteristic., It follows from theorem 21
that Bi is weakly nilpotent. Therefore Fp is weakly nil-
i
potent since Fi is weakly nilpotent and since Ai is a sub-
ring of the first term of Fp 's J-chain. By theorem 21,
ST
R/F(R) is nilpotent, and therefore R is weakly nilpotent

since F(R) is weakly nilpotent. _ g
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Yy, K-CHAINS

K-chains are the ring theory.equivalent of lower central
series in group theory. Power nilpotent rings are the ring
theory equivalent of ZD groups. By comparing the theorems in
this section with those in the section on J-Ehains, it can be
seen that power nilpotent rings have many of the same properties
that weakly nilpotent rings do. The statement for weakly nil-
potent rings corresponding to theorem 28 below is also true.

For many classes of rings J-chains and K-chains have useful
relations to one another. Some of these relations are presented

in section 7 below on ring types.

DEFINITION: The K-chain of a ring R is the following descending

chain of ideals of R: RDK 2K, D ... DK where R = K

1 g = Kpp1 0°

K,,,=RK + KR for every ordinal number o, and 1f o is a

limit ordinal, K =‘//W K .
o v<a Y

+
Remark G. Since for every natural number n, Kn =_Rn l, it is

true that KaR = RKu whenever a is finite. However, KaR #'RKd

in the general case.

EXAMPLE:
Let R be the set of all 2x2 matrices of the forﬁ (8 g}
where a is of the form 2m/(2n+1) where m and n are integers

and b is any rational number. Then R is a ring with the usual
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matrix addition and multiplication. Let R have the K-chain

K: RDK DK, ... DK, = Ko . Then K 'Q?Q R" = the set

of all 2x2 matrices where the only non-zero entry occurs in the
first row, second column and any rational number may .occur

there. A simple calculation shows that KwR = 0 while

€
=4
$3]

DEFINITION: A ring R is power nilpotent if R's K-chain ends
at 0.
The following theorem provides an alternative definition

of power nilpotent rings.

Theorem 23. A ring R 1s power nilpotent iff IR + RI # I for

every non-zero ideal I of R.

PROOF:
Suppose.R is power nilpotent and I is a non-zero ideal

of R. Let R have the K-chain K: R :>Kl D... :>KB = 0..

Since I d:KB = 0, I ¢:Ka for some smallest ordinal o with

this property. The number o cannot be a limit ordinal. Hence

I ';Kou and therefore IR + RI C KOL

R + RK C K . It
a-1 = "o

-1
follows that I # IR + RI.

-1

Now suppose that R's K-chain ends at KB # 0. Then KB is
a non-zero ideal of R for which the relation KBR + RKB = KB

holds. Hence if R is not power nilpotent, then there is sone

ideal I of R for which IR + RI = I. ' =
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Theorem 2L4. A power nilpotent ring R with DCC on two-sided

ideals is nilpotent.

PROOF:

D... :)KB = 0.

By DCC this chain must end after a finite number of steps at

Consider R's K-chain: R':>Klf3 K2

= ] = p+l P+l = - . .
Kp Kp+l' Since Kp R s R 0 if R is power nllpotent.:

Remark H. A power nilpotent ring with ACC on two-sided
ideals need not contain any nilpotent elements different

from O.

EXAMPLE:
Let R = 2Z, the ring of even integers.” Then if R has

the K-chain K, Kw = //) R" = 0. This is true since every even
nelN

integer is the product of at most a bounded finite number of
even integers. Hence R is a power nilpotent ring and has
ACC on two-sided ideals. However R contains no non-zero nil-

potent elements since no even integer other than 0 is nilpotent.

=

Theorem 25. A subring S of a power nilpotent ring R is

power nilpotent.

PROOF:

Let S be a subring of R and let R have the K-~chain K:

RDK, ... DKB 0. Suppose that S has the K-chain H:

5D Hl D B DHY Hy+l' Then SQR. Suppos‘e that Ha - Ku'
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+1 +1

H0L+l = Koa+l )

Then H = H S + SH , while K = KR + RK'. Therefore

o o o o o o
By transfinite induction (the step at limit
ordinals is obvious) Ha Q;Ka for every ordinal number a.
Hence HB C K, = 0. Therefore HY = 0 and v. < B. This shows

B
that S is power nilpotent.

3]

Theorem 26. A complete direct sum of power nilpotent rings

is power nilpotent.

PROOF:

Suppose R = (:) AY where each AY is power nilpotent.
vyeC

Let R have the K-chain K: R D Kl:) ng cee D K(S = -K6+l'

Let A h the K-chain K : A K: K . K = 0.
e y ave e i . ’Y:D ( Y)liD ( Y)2:> .?)( Y)By

Note that for every ordinal number a,Ku = C) (K “since

)
yeC L

A - A # 0 implies that vy, = y.. There exists an ordinal
Yq Yo : 1 2

number B which is greater than all of the ordinal numbers

{8 ,yeC}. Hence XK,6 = (:) (K ) ==,C) 0. = 0 where 0 . represents
Y B YEC Yy B YeC Y Y

the O-subring of the ring AY. Hence R is power nilpotent. E

Corollary. A discrete direct sum of power nilpotent rings is
power nilpotent and a subdirect sum of power nilpotent rings

is power nilpotent.
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PROOF:
This follows from theorems 25 and 26 and the fact that
such sums can be represented as subrings of a complete direct

sum of power nilpotent rings,.

{n

Theorem 27. If I, a power nilpotent ring, is an ideal of s

ring R and Rpc: I for some natural number p, then R is power

"nilpotent.

PROOF:
Let I have the K-chain H: IDH, DH,D ...D HY = 0.

Let R have the K-chain K: RD KlDKED ‘_)KB = 'KB+1'

. _ L2 _ 2p¥l 2p 2.
Then K2p Q;Hl since Hl = 1, sz R , and R CI™:
Suppose that n is a natural number and that o is either O .
or a limit ordinal and that K C H . Then if Rr? means

o+2np — ~o+n
p S 2p~-s
that R does not appear, Ka+ 2nP+2P»='g£o Ka+2np . It
T b

follows that K .o 0y CRK o+ K o B CIH  +H IC

Hu+n+l' By using transfinite induction (the step at limit

ordinals presents no problem) it can be concluded that

K C H for all natural numbers n and all cases when o
a+2np = a+n

is 0 or a limit ordinal. Hence if y = a+n where o is 0 or a

[
(@

limit ordinal and n is a natural number, then K C H
at+ 2np = 'y

and this shows that R is power nilpotent. G
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It is also easy to see that power nilpotent rings
contain no non-zero idempotents. More generally, every
idempotent of a ring R is an element of every term of R's
K~chain. For if e is an idempotent in the ring R and e
lies in Ka,.the a-th term of R's K-~chain, then e = e-.e

and hence e lies in Ku Transfinite induction completes

+1°
the proof.

DEFINITION: If I is an ideal of the ring R, then the

123K2;D

---D Ky =’KB+1 where K1l=>IR + RI, K,,1 = K,B + EK for

every ordinal number a, and if o is a limit ordinal, then

k. =) k..
o : Y

Y<o

K(R)-chain of subrings of I is the following: IDK

DEFINITION: An <ideal I of a ring R is power nilpotently

embedded in R 21f I's K(R)-chain ends at 0.

Theorem 28. If a ring R has a homomorphic image T which is

power nilpotent and if the kernel 1 of the homomorphism is

power nilpotently embedded in R, then R 1s power nilpotent

PROOF:

Let f be the homomorphism from R onto T, a power nil-

potent ring.

Let R have the K-chain K: I%:)'KljDﬁKQ:) -e- D Kg =K

B+1°

Let T have the K-chain H: T D HlD H, D ... DH = 0. Since

y
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f(R) C T, f(KfO) € H,. Suppose f(Kd) CH,. Then r(K ) =

a+1

f(K'u)f(-R) + f(R)f(K,) € H T + TH, CH By transfinite

+1°
induction (the step at limit ordinals is due to a set
theoretic property of functions) f(Kd) C H, for all ordinal
numbers o. Hence f(KY) g;HY = 0. It follows that K cCrI.
Moreover K++n is contained in the n-th term in I's K(R)-chain,

Hence if I's K(R)-chain reaches 0 on the T-th term, KY+T = 0.
Hence R is power nilpotent if I is power nilpotently embedded

in R. . =

The next example shows that the conditions used in the

theorem are necessary to obtain the general result.

Remark I. The condition in theorem 28 that the kernel I of
the homomorphism be power nilpotently embedded in the ring R
rather than merely a power nilpotent ring itself is strictly

necessary.

EXAMPLE:

Let S be the semigroup consisting of the set {0}U{ACTN:
A is any non-empty subset of N, the set of natural numbers}.
Define multiplication in S be the rule: A:B = AUB if
ANB = ¢ and either A or B is é finite set; otherwise A:B = 0.
Let B be the algebra over the integers mod p with basis S.

Then R has the K-chain K: R D Kl:) K2 2 ... D Kw' Actually
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K, = < {cA: ceZ, AeS, and A has at least n+l elements} >

and Kw = < {cA: ceZ, AeS, and A has an infinite number of
elements}>. R is not power nilpotent since Kw+l = Kw'
However Kw2'=v0 and hence Kw is nilpotent as well as power

nilpotent. Moreover R/Kw is isomorphic to T, the integral
algebra over the subsemigroup of S consisting of the set
{0}(J{ACN: AeS and A has a finite number of elements}. If

v
K¥ is the K-chain for R/Kw’ then K*n = anWT for every nelN.

[11

Hence K*w g_wa)T = 0 and R/Kw is power nilpotent.

The next example shows that unlike the case for weakly
nilpotent rings, the very desireable property of being homo-
morphically closed does not hold for the class of power nil-

potent rings.

Remark J. A homomorphic image of a power nilpotent ring need

not be a power nilpotent ring.

EXAMPLE:
Let S be the free semigroup generated by the set'{xn: nel }.
Let R be the algebra over the field of integers modulo 2 with

basis S. Then R is a power nilpotent ring since /P\ R" = 0.
nelN

Define a function F from the generators of R into Q, the
- Zassenhaus Example modulo 2, by the rule: F(Xh) = yl/n for

all neN. Note that F(Xl) = 0, Since the function F is defined
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on the generators of R, F can be extended to all of R so that

c1

it has ring homomorphic properties. Namely, define

F(XK TR A PRI ) ) ='F(XK:) © . e F(xKv) +
1 P 1 qa 1 P
F(xlﬁ) o i e F(xgr) = Vi, C ot Vik + Yi7g. " vt Y1y
1 q 1 P 1 o}
q
(= 0 if - l/Ki = :z l/Zj). F is a homomorphism since both
i=1 j=1

Q@ and R are algebras over the field of. integers modulo 2.
Moreover, F(R) = Q since the set/{yl/k: ksN} generates the
ring Q. However, Q2'= Q since every element in Q has a square

root in Q. Therefore Q@ is not power nilpotent. g

Actually, every free ring is a power nilpotent ring.
Since every ring is a homomorphic image of a free ring it is
easy to see that the class of power nilpotent rings cannot

be a subset of the radical class of any proper radical property.
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- 5. U¥-RINGS

U#*-rings are defined below. It follows from their

-rings and U,-=rings are also U¥-rings.

1

definition that 811 U 5

This means that some results on Ugfripgs carry over to U¥-rings..
For example, the direct sum of two U¥-rings need not be a
U¥-ring. U¥-rings dé not have very many pleasant properties
although they seem to be a considerably larger class of rings

than the class of U-rings. The results below provide only

an introduction to these rings.

DEFINITION: A D-chazn of a ring R is a chain of subrings

of B, R =D, DDy D... :PDB where D_

ar] LS an ideal of D

1

for every ordinal number o, and 1f o 28 a limit ordinal,

p =()p.

a  y<a vy

DEFINITION: A subring S of a ring R is a meta* ideal of R

1f there exists a D-chain im R which ends at’DB = S..

The definition of a meta* ideal makes it clear
that chain ideals are meta¥ ideals and that meta* ideals
of meta¥* ideals of a ring R are meta¥* ideals of R.
Whether every meta ideal is also a meta* ideal is

equivalent to the stronger version of theorem T -
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mentioned above which has not been decided. The following
result (compared with remark B) makes it clear that not

every meta* ideal is a meta ideal.

Theorem 29. An intersection of meta¥ .ideals is always a meta¥

ideal.

PROOF:
Suppose L and M are meta¥ ideals of R. Suppose the
2... D, = L
32 20 = 5
2 .. T_)EY = M. Then the following is also a

following are D-chains in R: R ;}DQ Y
R2E, 2 &g

D-chain in R: R DD, D ... 2D, =L DL/E

2 - 8 2
QLﬂEY = L) M. Hence LMNM is a meta* ideal of R. If

...

({MY: yeC} is a set of meta¥ ideals of R, and C is a subset
of the ordinal numbers, then there is a D-chain in R which

passes through Ml’ Ml/W M2, . oo /fj MY in that order of
vyeC

sucession. (There may be other subrings of R between these
intersections as there are in the case of the intersection of

two meta¥* ideals given above.) Gl

DEFINITION: A4 ring R is a UX-ring <f each subring S of R

18 a meta* ideal of R.

Theorem 30. Every subring of a U¥-ring R is a U¥*-ring.
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PROOF:
Suppose that R is a U¥-ring and that S is a subring of
R. If T is any subring of 8, then T is a meta* ideal of R.

Suppose the following is a D-chain in R: R DD, D... 2D, = T.

2 B

Then there is also a D-chain in S which ends at T, namely:

SQDQHSQ...QDBHS=T. g

Theorem 31. A ring R is not a U¥-ring iff R has a subring

S which has a proper, non-zero subring Q with the property

that Q@ 1s contained in no proper ideal of S.

PROOF:

Suppose R is not a U¥-ring. Then R must have some sub-
ring Q which is not a meta¥* ideal of R. Consider all the
ideals of R which contain Q. The intersection of all these

ideals, I is an ideal of R which contains Q. For the same

l)

reason there exists a smallest ideal of Il’ 12, which contains

Q. Define I3, Ih’ etc. in a similar fashion. If o is a 1limit

ordinal, let I = /ﬁ\ I . Eventually, I, = 1 for some
o y<a ¥ B B+1
ordinal number B. Since Q is not a meta¥* ideal, IB # Q.

Hence IB is a subring of R in which Q is a proper, non-zero

subring with the property that Q is contained in no proper

ideal of I .
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Suppose Q is a non-zero subring of R and Q is contained
in a subring S of R but Q is contained in no ideal of S.
Then Q is not a meta* ideal of 8 and therefore 8 is not a

U¥-ring. It follows from theorem 30 that R is not a U¥-ring.

Theorem 32. A homomorphic image of a U¥-ring is a U¥-ring.

PROOF:

Let R/K be an arbitrary homomorphic image of a U¥-ring R.
Then if S* is any subring of R/K, S¥ is isomorphic to S/K
for some subring S of the ring R. Since R is a U¥-ring
there exists a D-chain in R which ends at S. Suppose that
R D D, D cee D Dg = 8 is such a D-chain. Then the following
is a‘D—chain in R/K which ends at S8¥: R/K :)Dl/K:D ...:)DB/K 2
Hence S*¥ is a meta* ideal of R/K. It follows that R/K is a

U¥-ring. E
Remark K. A power nilpotent ring need not be a U¥-ring.

EXAMPLE:

The ring R defined in the example after remark J is a
power nilpotent ring. However it has Q, the Zassenhaus
Example modulo 2, as a homombrphic image. The ring Q is not
a U¥-ring since the subring of Q generated by the following
set is not contained in any proper ideal of Q: {x : n,qeN}.

q/2®
Theorem 32 shows that R cannot be a U¥-ring. 2

S*.



55+

Remark K is somewhat surprising since every weakly nil-
potent ring is a U-ring. 8Since the ring R in example K is
also an algebra it can be seen that not every power nil-
potent algebra is a U¥-algebra. However it is true that every

power nilpotent semigroup is a U¥-semigroup.

Remark L. A power nilpotent semigroup is a U¥-semigroup.

PROOF:

Suppose that R is a power nilpotent semigroup and that S
is a subsemigroup of R. Let R have the K-chain K:
R DKlDKgD DKB = 0. Then the following is a D-chain
of subsemigroups in R: R 28 UKlQSUKg;)... 28 UKB = 8.
Note that if o is a limit ordinal, then S UJ Ka =_(\.(SL}Kﬁ),

y<a ¥
Hence S is a meta¥* ideal of R and R is a U¥-semigroup. B
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6. PRIME PRODUCTS RINGS

The definition given below of prime products rings
excludes all rings which have any idempotents other than 0.
Consequently, the class of unique factorization domains is
not a subset of the class of prime products rings. However,
if the definition of prime element given below is modified
to read "y is a prime in R if whenever u, VveER and y = uv, u
or v is a unit in R", then a slightly modified definition
of prime products ring can be given which includes all
unigue factorization domains as well as the rings defined
to be prime products rings in this paper. Although the
class of prime products rings does not include unigqgue factor-
ization domains, it is very large and includes rings of many
types. In particular, the class of prime products rings
includes all power nilpotent rings and all weakly nilpotent

rings, but not all locally nilpotent rings.

DEFINITION: An element yeR is a prime element i1f y cannot

be written as a product of two elements in the ring R. (The

two elements need not be distinct.)

DEFINITION: An element x in a ring R has a prime factorization

if x may be written as the product of a finite number of prime

elements in R.
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DEFINITION: If x = YqYgt -ty ek is a factorization of x

in the ring R and i1f Y; = ziz2.(where'z1 and'zg are elements
in R but neither is a unit in R), then yl-...°yj;1g132yj+l'
of

ceety, 18 a refinement of the factorization Ygteety

n

the element x.

DEFINITION: A series of factorizations of an element

xeR, a ring, begins with the trivial factorization x = x,
and has the property that every other factorization in the

series i1s a refinement of the previous factorization.

DEFINITION: A series of factorizations ends 1f a factorization
of the form x =Ygy, 18 obtained where Yqs +--s Y, are

all primes in the ring R.

DEFINITION: An element xeR has (the property) FF if every
series of factorizations of x ends after a finite number

of steps.

Remark M. A non-zero idempotent may be a finite product of

primes. However, an idempotent cannot have FF.

EXAMPLE:
Let S5 be the semigroup consisting of two elements s and t
where all products are s. Let R be the algebra over the field

of integers modulo 2 which has S5 for a basis. Then t is a
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prime in R since it cannot be written as a product of two
elements in R. Also, s = t-t and hence s is a product of
primes. However, s also equals s-+s and hence the series of
factorizations of s of the form s = s" does not end after

a finite number of steps. g

Note that in the ring R defined in the example above
s = t-t and s = t.-t.t also. However, the second factorization

is not a refinement of the first since t # t.t .

DEFINITION: A prime products ring is a ring in which every

non-zero element has FF.

The following theorems give some indication of the
structure of the class of prime products rings. It is interesting
to note that these are nearly the same results as were obtalned

for power nilpotent rings.

Theorem 33. Every subring S of a prime products ring R is

a prime products ring.

PROOF:

Let x be a non-zero element of S, a subring of R. Then
every series of factorizations in R of x ends after a finite
number of steps since R is a prime products ring. But every
series of factorizations in S of x is also part of a series of
factorizations in R of x. Consequently, every series of factor-

izations in S of x is finite and S is a prime products ring. =
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Theorem 3L4. A complete direct sum of prime products rings

is a prime products ring.

PROOF:

Suppose R = (E) A where each AY is a prime products
yeC-

ring. If x is any non-zero element of R and x = vz b'd

YyeF Y

where XY is a non-zero element of AY for all yeF and F is
a subset of C, then every series of factorizations in R of

X consists of the products of the sums of corresponding terus

in the series of factorizations in AY of XY. That is, if
x_ =y z_ for all yeF, then x = () vy )( ) 2z.) is a
Y Yy ver ¥ yer Y

refinement of the trivial factorization of x and every refine-
ment of the trivial factorization of x has this form. Since
the series of factorizations of x ends when any one of

the series of factorizations of xy(yeF) ends, x must have

FF. Hence R is a prime products ring. =
Corollary. A discrete direct sum of prime products rings is

a prime products ring and a subdirect sum of prime products

rings is a prime products ring.

PROOF:

This follows from theorems 33 and 3L.

[n)
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Remark N. A prime products ring may be a subring of a ring

which has no prime elements.

EXAMPLE:

The ring of rational numbers, Q, has no prime elements
since Q has an identity. The subring R consisting of the
set of even integers is a prime products ring in which every
integer not divisible by four is a prime. )

Remark N shows that a ring R which is not a prime
products ring may have a subring which is a prime products
ring. The following theorem indicates that such subrings

cannot be too closely related to the ring R itself.

Theorem 35. If I is a subring of R, if I is a prime products

ring, and if RY C I for some integer p, then R is a prime

products ring.

PROOF:

Due to the fact that a subring of a prime products ring
is a prime products ring 1t is sufficient to prove the case
when R2 = I. ©Suppose that xeR does not have FF in R. Then
X is not a prime in R and hence xeR2'= I. Let‘{sn: nell} be
an infinite series of refinements of x ian where 5,
Xn,lxn,éf':xn,n = Xx. An infinite series of refinements of x

in I,x{tn: neN} where tor oy = x, can be

n,lyn,éf'syn,n
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constructed by defining the v 3 in terms of suitable
)i

2
! = = =
X, s. Let yl,l 'Xl,l and let y2,l 'Xh,lxh,QgR I

>

while y2’2.= Xh,3xh,hsl' Then t X 1s a

2' Yo, 1Yp 0 7

refinement of tl. In general, the y .'s can be defined

n+l,j

in the following special way (where the gi's are,ghosén

so that yn+l,l"'yn+l,n+l is a refinement of yn,l"fyn,n)'

let yn+l,l = zhn,i":xhn,gl’ yn+l',~~2‘ = th,gl+f":xhn,gl+g2,
el - n h N
“cr 3 Yhn4d n+l th: Zlg;+17"' *hns, i”gﬂ; waere g;¢€
i:ih"l . il
1 e

n
for all i in [1,n] and fz_gi = 4n. It has already been shown
i=1

that the Yo+1 j's can be chosen in this way when n = 1.
2

Suppose that they can be so chosen when n = n. Then

Shpel’ xhn+h,f":xhn+h,hn+h has the property that there exist

numbers hi’ i=1,...sa0+1, such that yn+l,l = xhn+h,f":xhn+hhl’
¥y = X se . oX s see 3 ¥V = X . ¢
n+l,2 unfﬁ,hl+1 hn+u,hl+h2_ n+l,n+1 hn+h,_z ho+1
. i
i=1
ST o4 n+l
Loexy where h,eN for all i in [1,n+1] and ) h, = bn+lk,
“ln+l, ) b, i e
i=1 * i=1

> b,

Hence hj > 4 for at least one j in [1l,n]. Suppose h,

Then by letting y ., ; = ¥, if i < k, by letting y_ ., , ~
Y b

1,i
k-1 k-1 k-1

Xhnel, § no+1"Fhn+h, ) no+2 %% Ypuo kel T Fhned, § 43
. 1 . 1 . 1
i=1 i=1 i=1

k . . .

.« " ., = . +

. th+h,;z hi’ and by letting Yne2,i Vpel,i-1 if 1 > k+1,
i=1
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' . .
the yn+2,j s are chosen the given special way so that tn+2

Hence, by induction on n, t_ can

is a refinement of t .
n+l n

be chosen for all neN and therefore x does not have FF in I. &

The following theorems and remarks compare the class of
prime products rings with some of the other classes of rings

defined above.

Theorem 36. If R is a weakly nilpotent ring, then R is a

prime products ring.

PROOF:
Suppose thatvyo is a non-zero element of R which has a
series of refinements of the tiivial factorization which does

not end after a finite number of steps. Suppose that Yo = ¥XqZg

where either X, or z, does not have FF. Letvyl =gzi'1f X

has FF; otherwise let vy, = X A sequencej{yn} of elements,

1°
each of which does not have FF, can be defined recursively.

In general, let Vo1 ° Xhzn where either X, or z. does not have

FF and let Yy, =vzﬁ if X, has FF; otherwise let vy, ° xn. Let

G = {neN: Y, = xﬁ} and let H = {neN: Yy =-z£}u Then at least

one of the two sets G and H has an infinite number of elements.
Suppose that G does. Let Vo T Y, and define v in the

following way: if neG, L = (x,,x X where

. L eee,X., )Y

9

1 12’ > ln; n
1

i< i < .. < ini, <1 and'{il,i2,v...,ini} = (NvG)Y Y[1,n];
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otherwise L Then w =_whzﬂ for every neG. To

n-1" n-1

eliminate repetitions let F:N = G be an order preserving mapping

onto G and define u, = WF(n) and v ='ZF(n) for every nelN,

Then yo = ulvl and u,oF U9V for every nelN, Let R have

the J-chain J: 0 C JlC J2C CJB = 'JB+l' Then any

ordered product of the form vnvn_i..fvl ¢ Jl since un(vnvn_i..svi

Y, # 0. Suppose that.vnv ceeVy ¢ Ja for every neN. Then since

n-1

vn+l(vnvn_i..xvi) ¢ Ja , (vnvn_l..lvl) ¢.Ju+1' Hence by

transfinite induction (the step at limit ordinals is obwvious)

vnvn_i..xvl ¢ JB for every nelN. Hence R is not weakly nilpotent.

The case when H has an infinite number of elements can be

=)

handled in an analogous way.

Theorem 37. If R is a power nilpotent ring, then R is a prime

products ring.

PROOF:.

Let R have the K-chain K: R DKlD ng cee D KB = 0.

If x £ Kl =_R2; then x is a prime and therefore has only the

trivial factorization. Suppose that x ¢ KY implies that x

has FF. If y ¢ KY then either y is a prime or y has

+1°?
factorizations of the form y = VERPE In every factorization

of this form neither y, or y, are elements in KY, since other-

wise y lies in KYR + RKY ='KY+1 which is a contradiction.

)
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Hence ¥q and Y5 have FF by assumption and therefore every

series of refinements of the factorization y = Y195 must end
after a finite number of steps. It follows that every series
of refinements of the trivial factorization y = y must end

after a finite number of steps. Hence every element x ¢ K

y+l
has FF. By transfinite induction (the step at limit ordinals
is obvious) every element x ¢ KB’ i.e. every non-zero element
in R, has FF. 2

Remark 0. A homomorphic image of a prime products ring need

not contain any primes.

EXAMPLE:

The ring R defined in the examplé for remark J is. power
nilpétent and therefore a prime products ring. The Zassenhaus
Example modulo 2, Q, is a homomorphic image of R and Q contains
no primes since every element in Q may be written as the product

of its square root times its square root. )

The ring R defined in the example for remark J is power
nilpotent and therefore a prime products ring. The fact that
the Zassenhaus Example 1s a homomorphic image of R shows that
R i1s not a U-ring. Hence not every prime products ring is a

U-ring.

Remark P. A prime products ring need not be power nilpotent.
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EXAMPLE:
Let R be the commutative ring generated by the set
'{xn: neN} with the following set of generating relations:

b4 for all neN. Then R is not power

n T FhnFln+r T Fun+o®hn+s

nilpotent since every element in the generating set for R lies

in R2'and hence R = Rg. However, R is a prime products ring
h ki
since if z is a non-zero element in R and z = ’z (mx ),

i=1 g=1 "i,j

then every series of factorizations of z ends in < k steps
where k =,mak{ki: i in [l,h]}; This is true since each of
the three basic type of substitutions made possible by the
~generating relations also has this property. Examples of

these basic types of substitutions are: X +

= Xun®hn+1

X = X

uhn+2X¥hn+32 FunFhn+1 T F*n T Fhn+2%Un+3° Fhn+2%Ln+3 n = *un¥ln+1-

Remark Q. A prime products ring need not be a U¥*-~ring.

EXAMPLE:
The ring R defined in the exdmple_for remark P is a prime
products ring. The subring S of R generated by the set

: ; s s . X = +
{X2n neN} is a proper subring of R However X XynFhn+1

th+2¥hp+3 e SR + SR. Hence for all neN, x ¢ SR I(sS), the

ideal of R generated by S. It follows that R is not a U¥-ring

since S is not contained in any proper ideal of R. =
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' T. RING TYPES

Meldrum (12) has recently completed the study of group
types. An analogous definition of ring type is given below
and the theory of ring types is nearly completed in this
paper except for the determination of the class of possible

ring types for weakly nilpotent rings.

DEFINITION: 4 ring R has type (j,k) if its J-chain

terminates after j steps and its K-chain terminates after

k steps.

Theorem 38. If R is the direct sum of the rings A and B

and A has ring type (Jj,k) while B has ring type (%,m),

then R has ring type (max{j,%},max{k,m}).

PROOF:
Let A have the J-chain JA and the K-chain KA and let
B have the J-~chain JB and the K-chain KB. Then if R's
. , _ . _ : _
J-chain is J and R's K-chain is X, J (JA)uCD (JB)u and
= : : 3 t
Ku -(KA)uCD (KB)a for every ordinal number o. Hence R's

J-chain must have length h = max{j,%} and R's K-chain must

have length n = max{k,m}. =
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Theorem 38 shows that the direct sum of rings with
~given ring types may be a ring with a quite different ring
type. Furthermore, it makes it easy to see how rings of all
possible ring types may be constructed from the examples of

rings of various types given below.

The next theorem characterizes the class of possible

ring types for nilpotent rings.

Theorem 39. Suppose R is a nilpotent ring and r" # 0

+
while R®FL = 0. Then R has ring type (n,n).

PROOF:
The K~chain for R has length n since it is the following:
RD RED v D RY > 0. On the other hand, there exists

xl,...,xnsR.such that x TeeetX # 0. It follows that

1

X . *ve..*x does not lie in J_., that x_,*...°x does not 1lie
2 n 1 3 n

in J2, «+. 5, and that X, does not lie in Jn-l’ where R has the
J-chain J. However, R" Q;Jl, RnﬁlQ; Jps «»» » and R glJn .

So Rls J-chain must end at Jn and have length n. E

Since there are nilpotent rings of every index, it follows
from theorem 39 that there are rings of type (n,n) for every

natural number n.
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Remark R. For every ordinal number B > w, there are rings of

type (B,w) which are both weakly nilpotent and power nilpotent.

EXAMPLE:

Let B = y+n where y is a limit ordinal number and n is
a non-negative integer. Let R be the commutative ring generated
by the set S =:{xa: o is an ordinal number, but not a limit

ordinal and o < B}, with the relations:

(1) xa2'='0 for all XaeS where a < B 3 if B is not a limit ordinal,

then xBn # 0 while x8n+l = 0.
(2) Suppose that xg €8 for all i in [1,m]. Then the product
i
X e e X = 0 if o is the smallest of the ordinal numbers
1 m

'{61,...,6m} , 1f a = n+k where n is a limit ordinal number
and keN, and if k < m. (Hence a product of elements frém S
is- 0 if the number of factors exceeds the "finite" part of
any of the subscripts of elements in the product).

Let R have the K-chain K and the J-chain J. Then K = 0 since

w
if Xa stands for an arbitrary element in S, if 2z is a non-
i,] q 'Q'i '
- zero element in R, and if z = ') ( T x, ©), then z has only

i=1 j=1 i,J

prime factorizations with fewer than h+l prime factors where

: +
,...,Rq}. It follows that z ¢ Rh 1. K. and hence

h = max{g h

1

-z ¢ K . Now let n+k be any non-limit ordinal number smaller
w .

than B where n is a limit ordinal or zero and k is a natural
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number. Then it can be shown by induction on n+k that Jn+k

is generated by J and the following set of elements:

n+k-1
| X

5 where & > n+k+1l; ... ce "X

m

RS S ¢J
+0+6
n+w h

En+k? Fn+r+1’ 3 Xn+k+mxdl'

where § 6m > n+k+m; ... }. Note that x

120703 n+w+61°" n+k

since if p > k+h, then x : It

n+p.xn+w+61. Xn+w+6h¢Jn+kfl'

follows from this that xd first.occuré in R's J-chain at Jd
for all ordinal numbers o < B. Hence R's J-chain ends at

JB = R and the ring R does have: type (B,w). E

Remark 8. There exist power nilpotent rings of type (n,y+n)
where n is any non-negative integer and y is any limit ordinal

number.

EXAMPLE:
Let R be the ring of all (y+n) by (y+n) matrices with
only a finite number of non-zero integer entries and with
only zeros on the main diagonal and to the left of the main
diagonal. Addition and multiplication in R are the usual
matrix addition and multiplication: if X = (Xa,B) and Y = (ya’B)

y+n¥l

are matrices in R, then X + Y = (xa,8+yd,8) and XY = (QZO Xu,nyn,B

).

Let R have the K-chain K: R D Kl:D ...:)ﬁKY+n = 0. Computation
shows that Ka is the ring of all matrices in R in which all

the entries are zeros on the a diagonals parallel to the main
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diagonal and just to the right of the main diagonal. Since
there are exactly y+n such diagonals, Ky+n = 0, while KY+n-l # 0.
Let. R have the J-chain J. <Computation shows that whenever

m < n, Jm is the subring of R consisting of all matrices in

R in which all the entries are zeros on the last m diagonals
parallel to the main diagonal and to the right of it. The
subring Jn of R is the end of R's J-chain since in every matrix
in R there are no last n+l diagonals parallel to the main

diagonal and to the right of it. Hence R is power nilpotent

and has type (n,y+n). g

It follows from remarks R and S and theorem 38 that there
are power nilpotent rings of type (a,B8) for any non-finite
ordinai numbers o and B since every non-finite ordinal
number B has the form y+n where n in a non-negative integer

and v is a limit ordinal number.

Theorem 40. A power nilpotent ring must have one of the

following ring types: (n,n) where n is a non~negative
integer; or (m, y+n) where n is a non-negative integer, m is

an ordinal number > n, and y is a limit ordinal number.

PROOF:

Suppose that R is a power nilpotent ring. If R has a
finite K-chain, then R is nilpotent and therefore has type

(n,n) for some non-negative integer n. Suppose that R's
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K-chain has length y+n where n is a non-negative integer and

Yy is a limit ordinal number. Then KY the first

1€

term of R's J-chain. Hence Jl # 0. It is easy to see that

+n

K CJ . However, if K CJ
Y — n Y —

which is a contradiction. Hence_Jn # Jn

n-1® then Ky—l g:Jn_g, co e Ky+n—l

-1 and R's J-=chain has
length at least n. It follows that R has type (m,y+n) where

m is an ordinal number > n. )

It is easy to see from Remarks R and S and from theorems
38 and 39 and from the fact that a direcﬁ,sum of power nil-
potent rings is a power nilpotent ring that there are power
nilpotent rings of all the types given in the statement of

theorem L4O.

Remark T. There exist rings of type (0,8) for every ordinal

number B.

EXAMPLE:

Let Ao.be the class of all ordinal numbers. Letbko =1,
define A = A w, and if o is a 1limit ordinal, 1let

o+l o

-Aa = inf{ésAO: § >'KY”forkall,¥<d}. Let Aa be the smallest
subclass of AO with the properties:

('l), AO{,eAOL’ .

(2) if §,neA , then §+neh , and

(3) if B C Aa and B is a set, then the inf{éeAO: § > n

for all neB}eAu.
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Note that Aoj) Al DR :>'Aa :)Aa+ljj ce. » and that if a is
a limit ordinal, then A = /'W A since A = inf{6eA.: A . < &
o Y<o Ty o : 0 vy

for all Y < o} is an element in AY for all y. < a.

Lemma T1l. Suppose that Q is a commutative ring and that Q

has the K-chain K: Q':)Klj) SN :)KB = KB+1' Then KuKch Ka+y
for all ordinal pairs (o,y) where o is a limit ordinal.

PROOF:

Let o be any fixed 1imit ordinal. Suppose that y = 1.

Then KaKl.Q;KaQ = Ku+1' Suppose that KaKY nga+Y. Then
KaKY+l = KQKYQ g;Ka+YQ = Ku+y+ 1 it KaKYg:Ka+Y for all
Yy < v, and g is a limit ordinal, then K M x C A K = K

a y<u Ty = y<u oty o+

Hence by transfinite induction the lemma is true.

Lemma T2. Suppose that Q 1s a commutative ring with K-chain

K. Then g:} (x, )" Cx, .
LT - (a+l)

PROOF:
By lemma T1, (XK R K, .- for every neN. Since
A = "(Aj)n
"o M
A = (A Jw, it follows that /ﬁ\ (K C: ‘ ‘ K = K. . .
o+l T M neN () )n A ge1

Let y be any non-zero ordinal number. Let al be the

largest ordinal number such thatvxa, < 8§, and let Gl be the
1



- 713,

largest ordinal number in Aa such that 61 < 8. Let a, be
1
the largest ordinal number such that ¢ +Au' < §, and let 62

ooy

be the largest ordinal number in A such that 61+ 62 < 8,
5 :

In general let o, be the largest ordinal number such that

dJ
S +... 48, _+2A < 8§, and let §, be the largest ordinal
1 j=1"a, — J
d
number in Au such that 61+...+6j < 6. Eventually, for some
J
natural number n, 61+...+6n =‘6.since BpsBpnyeeesl is a

strictly decreasing set of ordinal numbers.

DEFINITION: The representation ¢ =~61+"‘+6n of an ordinal

number given immediately above is 1ts 1limit form.

Lemma T3. The 1limit form of every non-zero ordinal number

is unigue.

PROOF:

Given an ordinal number 6, the ordinal number 61, the
first term in §'s limit form, is uniquely determined. The
ordinal number Gj is uniquely determined once the ordinals

C.weewyl, have been determined. Hence the sum 6 = §_+...+6

1’ j-1 1 n

is composed of uniquely determined terms.
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There exists an ordinal number p such that'kp > B.
Let G be the set of all ordinal numbers less thanlxp. Let R
be the ring generated by the set'{xéz §¢G} with the defining
relations:
(1) R is commutative.

(2) Let 6 have the limit form 6 = 6.+...+8 where § eA Vv A
1 m m am am+l

Then ém must be the n-th ordinal in the usual ordering of the

ordinals in Aa where n is a natural number. The generator X,
m

+
satisfies the relationship: (xs)n 1

Lemma Th. Let R have the K-chain XK. Let o be an ordinal

number. Then XGEKA if 5€G/~)A&.
: o

PROOF:

If o = 1, then 8eG/ ) A, implies that & is a limit ordinal

+
number. Since x. = (x )2 1

5 for every nelN, it follows that

§+n
XGEKw = le. Suppose that x

also that 0eG ﬂAa

GEKQ for all d8eG f\Aa. Suppose

1 Then © must be the y-th ordinal in Aa'

where vy is a limit ordinal. Let Wy be the (y+n)-th ordinal

+
)t 1 x . and hence x_.¢

in 4 , namely, O+ (A&)n. Then (xuf 0 o

n

(K :)n+l

N for all neN. By lemma T2, x_. K . If o is a

o © -Aa+l

limit ordinal, then Au = €:L AY. Hence GeG/ﬁ)Aa implies that

§eG/ YA for all Y < a, and therefore x_ ¢ N K = K, . By
Y §7 y<a _AY »Ka

transfinite induction on o the lemma follows.
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Note that if yeR, then y can be expressed in terms of

'{XG: §eGl, the generators of R, by an equation of the form

b
y = 'z L.y. where Lj«is a non-~zero integer for all j in [1,p]
J=1

and where the,yj are all distinct elements of R of the form

Im
y. = X where 8. _eG for all j in [1l,p] and all m in
J g I ,m
n=1l " j,m

[l,jm]. If K, lies in R's K-chain and if y2¢K for at least

one & in [1,p], then y¢KO. For yeK,_ implies that a sum of

i
distinct terms, each of which lies in R ﬁ-Ke and has the
Jm
form L, 0T x , must equal a sum of distinct terms of the
dJ — 0.
n=1 J.m

same general form in K This is impossible since there are

0"

no additive relations given in the definition of the ring R.

1
~

Let L, = R, and let Ln = K

for all neN. Let L
1 ; o

n-1

for all non-finite ordinal numbers o.

. n —
Lemma T5. Suppose that L(A:)n (an) . Then L(Xf)nLO =
A - "a M
. _ yntl

L(x:)n+O if o < Aa. Hence L(A:)(n+1) = (LA )

*Ma M o
PROOF:

Ir o0 =1, L(Af)nLl ='L(kf)nR = L(A:)n+l . Suppose that
o ~ o T
L(Af)nLn B L(%a)n+n and n.<_Xa - Then L(Kd)nLn+l - L(Ad)nLnR

L(Ka)n+nR = L(Au)n+n+l' Let 0 be a limit ordinal number A,
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Suppose that L for all ordinal numbers

On Py T B e

n < 0. It will be shown that () Ly ynly = m Ly ynsn =
n<e " a n " n<o T n

+1
L(A¢)n+®' If ye(LA:)n , then yelL
LAy .

o (Aﬁ)(n+lj < L(A&)n+@ :

Ity ¢ (LAf)n+l, then y expressed in terms of the generators,

o

{x_: 6EG}, equals ff Ljy, where each yj is distinct, where sone
J=1

y. = x"..:x X *..8X where x. el for all i in [1l,n] and
J 61 n ¢l ¢s <Si ‘Aa

X, %, . 8% ¢ L. . Suppose that y. also equals X ., * osX ., %X , °*

¢l ¢s ‘Aa : J 8 1 sbn'¢ 1
..*x , where x., €L, = for all i in [1,n] and x, ,*..0x, ¢ L, .

y 8T A ' A T A P
Then §.' = §_ (1) for all i in [1,n] (where o is a symmetric
+
permutation on n letters) since Yy ¢ (LX)n l, and
- Ta

x¢~..:x¢ = x¢,-..:x¢, since R has no divisors of zero. Hence

1 + 'S 1 t

M 1 = s
yJEL(Xd)n.n<O‘En = E(Ad)nLO . Every vy is elither an element

+
in (L,X)n l-;?L(x:) L or y, has the same properties as ¥y

n-0°’
o
and therefore yisL(A~)nLe for all i in [1l,pl. Hence y = :E Yy
Ta i=1
eL(A-)nLG and L(A-)n+@ = L(A-)nLO . By lemma T1, L(A-)nLO
o T Sl a Sa
éEL(ld)n+O' Hence by transfinite induction, L(A&)nLO L(Ad)n+®

if © is an ordinal number i_xa
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Lemma T6. L,. = [T({x.: 6eA 3)1" for all ordinal numbers o
—_ (Ad)n $ a

and all nelN.

PROOTF:

L(Xi)l =L = I({XS: GeAl}). Suppose that L(ke)l =

I({XG: GeAé}) for all ordinal numbers © < a. Suppose also that

L‘*a>n = [T({x,: GEA&})]H = [;xu]n Then by lemma T5,

n+1

]n+1 = [I({xﬁz GeAa})] . Hence by induction

[L

P ) (nr1) T MR

o
on n, L( n = [I({XG: GQA&})]H for all neN. Hence lefl é
MYy otl
—_ —_ { . n — f - . .
L(}\a)w = m L(Xa)n = m [I({Xs. GEAOL})] = I({XG. 6€AOL+1).

nelN nelN

Hence by transfinite induction on a, (the step at limit

ordinals is obvious), L( = I({x SEA&}) for all ordinals a.

(r )1

Hence R's K-chain does not end until after Kp and

therefore K6 # KB+1

Let S be the ring generated by the set'{xaz §eG} with
the defining relations (1) and (2) given for the ring R above,

and (3) 1let KB be the B-th term in R's K-chain, let n be a

natural number and let d.eAai VoA

1 for all i in [1l,n] where

Gi+l
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@, > dy > .0 2 . If x.o x.t..o0x, eK)ooand If X, X *..0X, = X
-2 n 8% % B %1 % by
where ¢t€AOAm Al’ then the relation xs’...‘x6 =
1 n
X %o dX ‘X .. X - (x x +Xx x ) holds
61 S . 1 N €r_1 y+inTy+Un+l Ty+bn+2 7 y+hn+3

the set of limit ordinals.

where ¢t = y+n, and y = 0 or YEAl,

It is easy to see that elements in the ring R of the form

. . . . . : . . . '

(Xa Ce IR ) TEG e X Xy+hnxy+hn+1) lie in KB+1 in R's
1 1 t-1 :

K-chain. Hence if S has the K-chain H, then Hd = Ku if

a < B. However H = H_ due to the additive relations in S

B+1 B
defined by relations (3). Hence the ring S has type (0,8)
since S also has a trivial J-chain. S is a prime products

ring since x_, has FF due to the fact that every decreasing

0
chain of ordinal numbers is finite. Also, every Xgo §eG, has
FF since Xd occurs as a factor in a series of factorizations
of x.. =
0" A

Remark U. There are prime products rings of type (n,n-1) for

every natural number n.

EXAMPLE:
Let R(k) be the commutative ring_generated by the set
’{yn: neN} with the relations:

_ k+1 _
(1) ¥y = 0,
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(2) vy.y. =% 2 for all seN
1 1 . ‘

(3) if n. > n ""nk—l’ then Y, "V, L.y =y y_ -

1 2 k 12

oty y t Yy oy .oy v .
bpyThn, o+l nyony "t ko +27hn, +3

1
. - L k+1
Due to relations of type (3), R(k) = R(k) . However
L k=1 .
¢R(k) and hence R(k)'s K-chain has exactly

To¥3r kel
k-1 steps. Let R(k) have the J-chain J:-OC:Jl(;JZC:...C:Jk=J
This J-chain ends at J, since Keg k-leg eJ

k Y1 8912 V1 o2 3 VFdy o
The next theorem shows that R(k)'s J-chain cannot have length
~greater than k since its K'chain has length k-1. Hence the
ring R(k) has type (k,k-1) and is a prime products ring

for the same reasons that the ring R given in the example for

remark P is a prime products ring. g

The following theorem together with remarks R, 8, T, U
~gives complete information for determining the possible ring

types of all commutative rings.

Theorem L41. There are no commutative rings of type (m,n)

where n is a natural number and m is any ordinal number

> n+1l.
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PROOF:

Let R be a commutative ring. If R's K-chain ends after

n+
n steps, then Rn+l =_Rn 2; Let R have the J-chain J and

n+l

' 2
suppose XeJ Then xR £ J_ XR™ CJ 5 ... 5 %R g;Jl

+2° +1°
+2 + : '
and xR" = 0. Hence xR" 1 = 0 and this implies that XEJn+l'

= 1 - 1 =
Hence Jn+2, 'Jn+l and R's J-chain has less than n+2 steps. Z

Theorem 42. There are no rings of type (m,n) where n is a

natural number and m is any ordinal number > 2n+2.

PROOF:

Let R be any ring such that R°TT = R%¥2. Let R have the

J-chain J and note that xeJ iff ,§ R5xRP™S = 0 where R° means

s=o
that R does not appear on that side. If X€J2n+3’ then
2n+3
2n+3-
-z RS xr“™ 3-8 . 0. But in each case for s = 0,1,...,20n+3
s=o0
either s > n+2 or 2n+3-s > n+2. Hence the equation above may
2L+2 5 on+2-s n+2 n+1
be “‘rewritten z R xR = 0 since R = R . Fronm
s=0
this it follows that X€J2n+2 and hence R's J-chain can be no
longer than 2n+2 steps. 2}
Corollary. Every weakly nilpotent ring has a ring type similar
to a power nilpotent ring. Hence the theory of fing types can-

not decide whether or not every weakly nilpotent ring is power

nilpotent.
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There are no weakly nilpotent rings of type (n,B8) where

n is a natural number and B is any ordinal number other than

n, For suppose the R has the J-chain: 0

+
RS I _ps +»+ » and gi*l

2
Then R~ _ Jn—l’ _

nilpotent and has type (n,n). Theorem k4O

power nilpotent rings of all types of the

and B are both non-finite ordinal numbers.

that there are no rings of the type (o,k)

shows that there

Jl J2 ‘e Jn = R.

= 0. Hence R is
are
form (a,B) where a

Theorem L2 shows

where kK is a non-

negative integer and o 1s an non-finite ordinal number. Z
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CONCLUSION

This paper establishes some important relationships
between the different generalizations of nilpotence defined
above. In particular, every weakly nilpotent ring is a
U-ring and a prime products ring. Also, every power nilpoteﬁt
ring is a prime products ring, but not necessarily a U¥-ring,
and not every meta* ideal is a meta ideal.

A few conjectures are suggested by the results in the
paper. The section on ring types provides information that
suggests that every weakly nilpotent ring may be power nil-
potent. Theorem 19 suggests that every nil ring which is a
U-ring may also be a prime products ring. Also, thecrem 22
resulted from an attempt to prove that every nil Ue-ring
is weakly nilpotent. Finally, theorem 29 makes it seem
probable that not every U¥-ring is a U-ring. These are
challenging conjectures that hopefully will be resolved by

further research.
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