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ABSTRACT

Recent results of Jacobson and Barnes indicate that Lie,
Jordan and alternative algebras may Have a common Cartan theory.
- In this thesis, we show»this is indeed the case. We also show
that for certain classes‘of non-éssqciativg_a}gebras;fcalled
E-classes, that pQSSessznlEngei‘funétion, a generallCartan theory

1s possible.

_ Inxghapter One, a generalization of nilpotence and:- -
solvability 1s introduced that permits our Cartan theory fbr\
E-classes. In Chapter Two, we construct Cartén:subalgebras'

‘for alternativé algebras based on a glven Eﬁgelffunction.

Jacobson's Cartan theory for Jordan glgebras‘islgiven'in‘Chapter :
Three along wiﬁh our extenslons bf.his results._! We point out.
'thgt the Engel function for alternative algebras;and~50rdan h

algebras coincides, and may be used to give the classical Cartan

theory for Lie algebrés

Commutafive"power associative algebraS”areAﬂiscuSSed in

Chapter Four, and some"reéults,are bbtained.
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INTRODUCTION

The concept of a Cartan subalgebra plays a key role in
the structure theory of Lie algebras. In 1966, Jacobson [16]
Introduced the notion of a Cartan subalgebra for Jordan algebras,
and showed that an analogous Cartan theory is valld for Jordan
algebras. His main results showed that in any finite dimensional
Jordan algebra J over an infinite field F there do exist
Cartan subalgebras. He also proved a conjugacy theorem for

Cartan subalgebras of J when F 1s algebraically closed and of

characteristic zero.

Because of the close relationship of Jordan, Lie and
alternative algebras, the following question arises:‘ does there
exist a common Cartan tbeory for Lie, Jordan, and alternative
algebras ? In this thesis, we give an affirmative answer to

this question.

"In Chapter One, we introduce a generalization of nil-
potence and solvability. We find that for finite dimensional
algebras, the generallzed solvability is a radical property.
We then define an Enge} function. Using these functlons and‘
some linear algebra arguments of Barnes [8], we obtain a general

Cartan theory. Finq;ly, we collect those results of Chevalley

[11] that are necessary for the conjugacy theorems.

In Chapter Two,'we develop the Cartan theory for alter-

native algebras, and show that it parallels the theory for Lie



" algebras. OCur Cartan subalgebras are characteriéed as minimal
Engel subalggbras. As a result, we show thatvif the ground
field F has "enough" elements and characteristic differ;nt than
2 , then alternative algebras will always have Cartan subalgebras.

Furthermore, if F 1s algebraically closed and of characteristic -

zero, any pair of Cartan subalgebras 1s conjugate.

Chapter Three contains a sketch of Jacobson's ?artan
theory for Jordan algebras. We add to his ;heory 6ur character—
ization of Cartan subalgebras as minimal Engel subalgebras, thus
extending hisxgxistencetheorem for Cartan subalgebras to Jordan
algebras over finlte flelds having "enough" elements. . We close

- Chapter Three with a discussion of assoclator solvable Jordan

algebras,'and introduce a class of nilpotent derivations.

-

Because of two recent results.[6] and [22], we try in
Chapter Four to extend the Cartan theory to commutative power
assoclative algebras. We prove that 1f X 'is\a commutative
power assqciative algebra with unity and stable in the sense bf
Albert [4], and R is an A-nilpotent subalgebra containing 1 -,
then R can be used to generate a nilpotent Lie algebra of linear
transformation of X . If X 1s not stable, then we tcan only‘
prove that this Lie algebra 1s solvable. An example shows théf
this result cannot be improved. There is also trouble in the
existence of Cartan subalgebras. For to prove this; we need to

know that nil algebras are nilpotent. This is a difficult

aunsolved problem.
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We remark that no study was made into forms of unique—‘
ness of Engel functions, or if different Engel functions could

result in different Cartan theory.



PRELIMINARIES

Suppose U 1s a vector space over a field F . We
will say that U 1s an algebra if and only if there is a multi-
plication defined on U , denoted by ab for a,b € U , such

that

a(b+c) = ab + ac (a4b)e = ac +bec  a,b,c € U

a(ab) = (aa)d = a(ab) aeF, abedl

N

The commutator [x,y] 1s defined [x,y] = xy - yx .

If [a,b] =0 for all a,b € U, then U is commutative. The

associator (%,y,z) 1s defined (x,y,z) = xy-z - X-yz . If

(a,b,c) =0 for all a,b,c € U, then U is associative.

We note that in any algebra U we have the following

identltles:

(2-1) (m3,2) - (nx7,2) + (wx,72) - w(,y,2)

- ‘(WJX:Y)Z = 0

(-2) L.zl - xly,2] - Doely - (6,2) - (2,%,7)

+ (x,z,y) =0 .

We also note that the standard concepts of subalgebra;
ideal; homomorphism; isomorphism, and antl-isomorphism carry over
from assoclative algebras to non-assoclatlve algebras. If A
is an ideal of U , we will write A4 U . Furthermore, the

fundamental lsomorphism theorems are valld.  When we speak of a



class WU of algebras, we will assume that U 1is homomorphically
closed. 'If K 1s an extension of F , by UK we mean U ®F K .
For a general introduction to non-assoclative algebras, the reader

is referred to Schafer [25].

An algebra L 1s a Lile algebra if and only if
[x,x] =0 and [[x,y],2] + [[y,z],x] + [[z,x],y] = O where
[x,y] denotes mulﬁipliéation in L . For a theory of Lie

algebras, the reader is referred to Jacobson [18].

A linear transformation D on U 'is called a

derivation if and only if for all x,y € U , xyD = xD-y + x.yD .

The set of derivations of U forms a Lie algebra, denoted by

D(U) , and D(U) is called the derivation algebra of U .

Mos?t of the notation in the thesis 1s standard.
4Definitions are Indicated by underlining the term being defined.
Theorems, lemmas,and corollariesvare'numbered with three integers

to denote the chapter, section and order in wﬁich'they appear.



CHAPTER ONE

GENERAL CARTAN THEORY

1.1 Generalized Solvable Radical Properties

SupposeA'P is a property that an algebra may posseés.
We say an algebra A 1s a P-algebra 1if it.possesées the property
P . An ideal of A 1is called a P-ideal 1f, as an algebra, it
is a P—algebrg. . We say that P 1is a radical property 1f the

following three conditions are satisfied:

(A) Any homomorphic Image of a P-algebra is a P-algebra.

(B) Every algebra A contains a P-ideal which contains
everonthér P-ideal of A . We denote thils ideal by
P(A) , and call P(A) the P-radical of A .

(C) For every algebra A , P(A/P(A)) =0 .

If P is a radical property and A 1is an algebra such that

P(A) =0 , then A 'is call P semi simple, whereas if P(A) = A,

A 1is called a P radical algebra.

We recall that for finite dimensional algebrés, solva-
bility is a radical property. We will refer to thié as the
classical radical. We begin our study by introducing several
new properties for finite dimensional algebrasfthat generalize

the concepts of solvable and nilpotence.



Throughout the rest of Chapter One, U will denote a

finite dimensional algebra over an arbitrary field F .

Suppose f(xl,...,xn) is a linear homogeneous element

of the free non-associative algebfa on the n generators

.U of U 5

xl,...,x over F . Then for n elements u n

n 12"

f(ul,.;.,un) is an element of U .

1,
 We set f (ul,...,un) = f(ul,.;.,un) for any set
{ul,...,un} of n elements from U , and for k > 1 and

k(n-1)+1 eléments UpseeeaUern 1) in U,

K
£ (UpseesUengya) =

fl<fk—l(

ul""’u(k—l)(n—l)+l)’u(knl)(n—l)+2"'"uk(h—l)+l)'

We will say ﬁ is f-nilpotent if there is a k > O such that for

all sets {ul""fuk(n—l)+l} of elements from U , we have

fk(ul""’uk(n—l)+l) =.O .

L | .
Next we set £l )(u .,un) = f(ul,.,.,un) for any

1°°°
set {ul,...,un} of n elements from U , and for k > 1 and

n®  elements UpseeesU . from U,

n
) | f,(k)(ul,...,unk) = ‘
e g et e ),

. ,f(k-l)(u(n_l)hk_i,. .,unk))

We will call U f-solvable if there is a k > O such that for




all sets Uuy,...,u . of elements from U , f(k?(ul,...,u k) = 0.

n- B ;. n

Henceforth, we will write the right hand side of (1) as
1), (k-1 k-1 (k-1 o
e eED) 0y pD) ey (D) )y

FIRIE)

is an element in the

We note that f(x x2) =X

1’ 1%2
free non-associative algebra on the two generators X and Xp

for any field F . . Hence, f-solvable and f-nilpotence with

respect to this element are just ordinary solvability and nil-

/
potence.

We begin our study of f—sol#ability with
4 _

Lemma 1.1.1 Let %k > 0 and {u, 3% be n elements from U .

i‘i-1

Then for any 1 , 1 <1<k,

f(k)‘(ul,...,u”k)=f(i)(f<k_i)( ),..'.,f<k‘??( )

Proof: The proof is by induction on k . - If k=1 or k =

there 1s nothing to prove. By definition, we have
k k-1)., . -
1) 2,y = e el (1))
n . ) .
Hence, if 1 =1, (1) 1s the desired result. Assuming 1 < i
then O < i-1 < k-1 , and by the iﬁduction hypothesis, |

f(k-l)< ) = f(i-l)(f((k-l)-(i-l))< )?.._,f((kil);gi-l))(

- (1) le2) )

5 e e o o

e(E-1) 0y

By (1), we have



3 e e s

(2 28 ) 2 ety L)y
(1) (o2) () pleen) )
Since 1+(i-1) =1 < k , we may apply the inductipn hypothesis

to the right hand side of (2) to obtain

()

PRI INY

0 = gD ()
2Dy ey

_ | -
which was to be proved. | , | | Q.E.D.

AN

As an immediate consequence, we have

N .

Lemma 1.1.2 If A is an ideal of U and both U/A and A

are f—solvablé, then U 1is f-solvable.

‘Proof: Since U/A 1s f-solvable, there is a_ k, > O such that

_k
1.
for all sets {ui}gzl of elements from U ,

But A 1s f-solvable, hence there is a k2 > 0 ‘such that for
k : . -
all sets {ui}gzi of elements from A , f(kQ)( ) =0 . Thus
oy -

for all sets {ui ?:l of elements from U ,

(k. +k,.) k,) (k) o k.
. 1f 2’y . e ( ( 10y (

which implies U is f-solvable. | Q.E.D.
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TLemma 1.1.3 Suppose U 1is f-solvable and V 1is another finite

dimensional algebra over F . If o 41is a homomorphism of U

onto V , thenm V 1s f-solvable.

Proof: Since U is f-solvable, there is a kX > O such that for
£(8)

k
all sets of n elements {ui}?=l from U ,

nk : ‘ Kk
Suppose {Vi 11 i1s an arbitrary set of n

Uspewasld ) = O,
1 nk»
elements from

V. Since o 1is onto V , there are elements Wy in U such
that vy = o(wi) for 1 = l,...,nk .

f(k)(v sV ) = f(k)(o(wl),...,o(whk)5_= cf(k?(w ;...;w k) =0
. _ - , o

Then,

\

which implies 'V is f-solvable. ' Q.E.D.

As a result of Lemma 1.1.3, we have

Lemma 1.1.4 The sum of two f-solvable ideals of U 1is an f-

solvable ideal.

Proof: Suppose A and B are f-solvable ideals of U . By
an isomorphism theorem, we have (A+B)/B = A/(ANB) . Applying
Lemme, 1.1.3, we see that A/(ANB) is f-solvable, thus (A+B)/B

is f-solvable. By Lemma 1.1.2, (A4B) is f-solvable. = Q.E.D.

We now prove

Theorem 1.1.5 For finite dimensional algebras over F , f-solvable

1s a radical property.

Proof: (A) is a consequence of Lemma 1.1.3%. Now write £(U)
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for the f-solvable ideal of U of maximum dimension. It follows
from Lemma 1.1.4 that f(U) ¢contains all f-solvable ideals of U,
and (B) follows: Now sﬁppose £(U/£(U)) 4is not zero. Then
there is a nonzero ideal I/£(U) of U/f(U) such that I/f(U)

is f-solvable. By Lemma 1.1.2; I is an f-solvable ideal of‘
U, hence I < £(U), and I/f(U) =0, a céntradiction. We
conclude that f(U/f(U)) = 0 , which proves (C). Q.E.D.

1.2 Properties of f-solvability .

AS
SN

It is known that 1f U 4is nilpotent, then U 1s solv-
able. An easy induction argument on X shows that
f(k)(U ) © fk(U ) , where fk(U) denotes the subspace of U

spanned by fk(u ""’uk(n—l)%l)’ and similarly for f?k?(U)
5

Consequently, if U is f-nilpotent, then f£~(U) = O for some

k , so f(k?(U) =0 and U is f-solvable. We have

Property 1.2.1 f—nilpotence-impiies f-solvablility..

The converse of Property 1.2.1 1s known to be falsé;

Indeed, let f(xl,xe) = X X, in the case of Lie algebras. . };

Property 1.2.2 f—solvability is a hereditary radicd1 in the

sense that ideals of f-solvable algebras are f-solvable.

Proof: The proof is Immediate, and notes.that‘subalgebras of

f-solvable algebras are f-solvable. - Q.E.D.
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Property 1.2.3 If K is an extension of F , then U 1s f-

solvable (f—nilpotent) if and only if Uy = K ® U 1s f-solvable

(f-nilpotent).

Proof: Now f(x ,...,xn) is an element in the free non-

assoclative algébra-on the n generators Xi,ve. X, oOver F.
Since K 1s an extension of F , certalnly f is an element in
the free non—associétivé algebra on ﬁhe generators XiseeesX,
over K . Therefore it makes sense to apply f. ﬁo elements of
Ug -
f-solvable (f;nilpotent).

Thus if Ug 1s f-solvable (f-nilpotent), clearly U is

' m . .
Conversely, if {ui 1.y 1s a basis for Uy , then
{1 ® Uy ?:1 is a basis for UK . Therefore, since f 1s multi-
linear, we see that UF f-solvable (f-nilpotent) implies UK is

. f-solvable (f-nilpotent). Q. E.D.

~ Property 1.2.4%4 If U 1s a direct sum of ideals U; 1=1,...,p,

then U 1s f-solvable (f-nilpotent) if and only if U, 1s f-
solvable (f-nilpotent) for all 1 . '
Proof: If U 41is f-solvable (f-nilpotent), clearly each U, 1is

f-solvable (f-nilpotent). The converse follows because f 1is

multilinear. 0.E.D.

Throughout the rest of this thesis, we will assume .the

degree n of f(xl,...,xn) 1s greater than one.

Property 1.2.5 If U 1s solvable, then U 4is f-solvable.
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Proef:;.-Supbose U2 =0 . . Then clearly“}Uf is f-solvable.

We now define U(l) =U , and for k > 1, _
U(k) U( ) (k- 1) Then, since U 1s solvable, the derived

series terminates after k steps, that is,

MERICOR W@y p(k-1)5 4(6) _

where U(K—l) +‘Q;; "~ Observe that"(U(k'l))Q - 0. Thus

v(E1) s ¢ solvable. Now ulk2)» ylk-1)
(U(k-E))e k-1)

‘and since

, we have (U(k 2)/U(k l))2 = §; Consequently'
k=2)

- vl

- 1s.

U(k-«?)/U(k*l)\' is f-solvable, and by Lemma 1-2'2-’ ‘-”U(
. ;

(k-2)°

3

f-solvable. - Repeating this process with U(k'j) "and U
_z) - N ‘ . . P

we see U(k 3) is f-solvable. Since this process must term-

inate after a finite number of steps, we conclude that a

is f-solvabler " Q.E.D.

Suppose L is'a semiesiﬁpie Lie algebra, and let -

£(xy5%, ) = X X, + x2x1 . Then L 1is an f-radical algebra.

This example shows that’ the converse of Property 1.2.5 1s false..

What Propertytl.2.5 shows is that if 'S(U) is the

solvable radical of U , then S(U) ¢ £(U) . This example above

- b4

"shows that this inclusion will in generaiibe'proper. _ However,
we can show
:i.xn) is a monomial, then S(U) = £(U).

Property 1.2.6  If f(xl,

Proof: Let f(xl,x ) = xl o+ If n'= 2, we may, without 1oss
;of generality, suppose g » and the result is immediate

[+]
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Suppose n = 3 . Then without loss of generality, we may let
f(xl,XE,XB) = xlxg-k3 - For elements uj,uy,uz,u, of U, we
' (

observe that g

2
)(ul,ug,uB,u4) = f(ul,ug,uE,u4) , and indeed

any 2k elements Upseeesd from U can be grouped into
2

three elements V1sY50Y3 from U such that g(k)(ul,...,u k) =
2 .

f(yl,yg,yB) . An easy induction argument shows this is true

vfor any n . Hende, suppose U 1s f-solvable. Then there 1s

a ky such that for all sets of k elements from U ,

1
(1, |

i ( ) =0 . The above argument shows that there 1s a K,
AN 2k2 © Ry |
such that any set {ui}i-l of 2 elements from U can be
, _
n 1 Ky

grouped into a set {yi}i=l of n elements from U such

) (k, )
2/, _ 1
g (ul,...,u2k2> = f (yl,---:ynkl) .

) . - :
2 ( ) =0, and we have

Since f =0 , thls shows g

(2k

U 2)

=0 . - L ' Q. E.D.

1.3 f-nil algebras

Suppose Ujseessly, 4 are n-1 arbitraryAelements'

from U . We will write S(Uj,...,u ;) for the map from U

to U defined by

xS(ul,. . ’un—l) = f(x,ul, ve e ,un-l) .

for all x in U .
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We observe that U 1s f-nilpotent 1If and only 1f
s(ul,...,un_l)-s(vl,...,vn_l}-...-S(wl,...,wn_ ) =0 for all
ug>Vis..e,W, in U .  In particular, if U is f-nilpotent,
then S(ui,...,un_l) is a nilpotent map on U . Therefore, we:
will call an elemenﬁ u of U f-nilpotent if and only if
S(u,...,u) ils a nilpotent map. U 1s sald to be f-nil if and

only if each element of U is f-nilpotent.

Lemma 1.3.1 If the dimension of U 1Is m , then u 1is f-nil-

potent if and only if S(U,...,u)" =0 .

\,
\ 1

Proof: If S(u,...,u)® =0, then u is f-nilpotent. Con-
versely, suppose S(u,;..,u)mj =0 . Then the Eharacteristic
polynomial ©(A,u) of S(u,...,u) must be A . If not, there
is an irreducible factor m(\) % A in the factorization over

F of o(\,u) , which implies.there is a v € U such that
vS(u,...,u)k £ 0 for all %k , which is impossible. Since
S(u,...,u) 1s a root of p(a,u) =A™, we have S(u,...,u)m = 0.

Q.E.D.

It is clear that if U 4is f-nilpotent, then U is
f-nil. We are interested in the converse, that is, when does
f-nil imply f-nilpotent. To study this problem, we need to
know that under suitable conditions on F , f-nil is preserved
under field extensions. As in Property 1.2.3, we see‘that if

K extends F , 1t makes sense to talk about ’UK being f-nil.

Lemma 1.3%.2 If the dimension of U is m and F 'has at least



nm+L elements, then U i1s f-nil if and only if UK i1s f-nil for

all extensions X of F .

is f-nil, it is clear that U 1is itself f-nil.

Proof: If UK

Conversely, suppose Uy e sWy is a basis of U over

F. We consider the map
S(dlul+...+amum,alul+...+ampm,...,alul+...+am@m>

where o, € F and u =a,u,+...4+0 1w . Since S 1is linear in
i 171 m m :

each of i1ts arguments, we have
0 = S(u,...,u)™

(% 5(
= : Ay ool Uy seeesU,
15eeesi =1 11 m 1 m.

-

Let T equal the sum of the terms of T where &, appears to

1
. ‘ 1 ‘ h
the 1, power. Set T, = (all)'I‘i . Then
1 - 71
mm 1
T= T alT
L, =0 1

However, T = S(ul,...,ul>m =0 and

m
T, = S(a2u2+..,+amum,...,a2u2+...+amum) =‘o .
, - nm-1 il :
Therefore T = & al Ti =0 . ~"Since F has at least nm+l
i. =1 1 : ]
1

elements, we choose nm-1 different non-zero values for -
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This yields a system of mnm-1 homogeneous equations in Ti s

1
il =1,...,nm-1 ; whose matrlx of coefficients is a Vandermonde
matrix. Thus we conclude Ti = 0 for il = 0y...,nm .
l .
Now let T/ . Dbe the sum of the terms of T, where
1,1 i .
172 1
. P i 2 -
a, appears to the i, power and set Ti { =95 Ti R Hence
: : 172 172
nm-il 12 ' . _
T. = T a,“ T, . =0. If i, £ 0 , we choose mnm-i.+l
i . 2 i-i : 1 : 1
1 12=O 172 4

different values for %y and conclude as in the previous case

N ' ) i
that Ti i =0. It i, = O , we have TO =0 , or
172 ,

' m ‘ .
S(a2u2+...+amgm,...,a2u2+...+amum) = Q . Repeating the above
process on this map, we conclude TO i = o .

2
Continuing this method, we have Ty ; =0 for all
: l:" m ’ .
m-tuples (il,...,im) such that i;+...+i =nm .
m . '. .
Now {l®ui 1.1 1s a basis of Up . | Thu§, if voe Up,
oom ( ) m _
we may write v = ¥ E,(l®u.) = ¥ E.,u, , where §. e€ K .
Ty E i jop id i
m m -
Then S(v,...,v) = S(glul+...+§mum,...,§lul+...+§mgm> :
i i
1 m
= Z go . » g T-
ila.. - + m ll"'im .
il+...+1m=nm
But T, . =0, Consequently, S(v,...,v)" = 0 for all- v
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in UK , and UK is f-nil. Q.E.D.

As a consequence of the method of proof of this lemma,

we have

Lemma 1.3.5 If V 4is a subalgebra of U , where U and F

satisfy the hypothesis of Lemma 1.3.2, and if S(v,...,v) is a

nilpotent transformation of U for all v in V ,'then for all

extensions K of F , S(v',...,v'). is a nilpotent trans-

formation of . Uy for all v’ in Ve -
N\

We now set B, o = {x e U : x5(u,...,u)™ = 0} where
> .
the dimension of U 1s m . When no amblgulty over the f
arises, we will simply write Bu . We see that w 4is f-nilpotent

if and only i1f Bu =0T .

. Lemma 1.3.4 Suppose every maximal subalgebrauof U 1is an

ideal of U and that Bu is a sgbalgebra of U containing u .

Thel’l Bu = U )

Proof: We note that the onlyAideal of U that contains Bu

is U itself. For S(u,...,u) =8 1s a transformation of U ,

hence by Fitting's lemma, U = UOS + UlS where

m : . . .
UOS ={xeU: x8 =0} = B, » Uiq> 1 = 0,1 , are invariant

under S , and 8 vrestricted to U;q 1s an isomorphism. Now,
supposg B, € I«U . Since u g B, Is<I. But U;48 < T

as uwuel. Consequently, U = Ups @ Uy g < I , which implies
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U=1I. Thus Bu -is a maxXimal subalgebra, and Bu =U . Q.E.D.

A class W of finite dimensional algebras 1s called

an E-class over F 1f and only if the following three conditions

are satisfied:

(A) If U eQL , then the ground field of U 1is either F

or an extension X of F .

(B) If Ue U, then U ed rfor a1l extensions K of F.

K -

(c) If\V is a subalgebra of an algebra in WU, then

v ezi .

We will say that f 1is an Engel function for the E-class 25 if

and only if for all algebras U eAZé,

(D) U is f-nilpotent if and only if U is f-nil.

(E) B, 1s a subalgebra of U containing u .

If f 1is an Engel function, the ‘Bu' are called Engel subalgebras.

We now glve a corollary to Lemma 1.3.4.

Corollary 1.3.5 If f is an Engel function for the E-class

1L, U e‘lﬁ, and every maximal subalgebra of U 1s an ideal,

then U is f-nilpotent.

Proof': By Lemma 1.3.4, Bu =U for all u e U. Consequently

U 4is f-nil. But f 1s an Engel function, éo U 1is f-nilpotent.
Q.E.D.
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1.4 Cartan Subalgebras

Suppose L 1is alnilpotent ILie algebra of linear trans-
formations of an m-dimensional vector space W over F . Then
we can write W = WO e>Wl where WO and Wl_ are respectivély
~the Fitting null and one component of W relative to L . We

have

N

=,
i

wew: wt =0 for all ¢ e L}
and
- %1
W, =N W(L*)

v\\' i . Y
where L* 1is the subalgebra generated by L ana the identity
in the enveloping associative algebra C(L) of L [18]. If X
is an extension of F , then Ly 1s a nilpotent Lie algebra of
linear transformations on W, . Since (Wo)(L*)m = 0 and
elements of Lﬁ are K linear combinations of elements of L* ,
we have ?hat (WO)K = <WK)O . Similarly, (Wl)K = (WK)l .

Furthermore, we have

Lemma 1.4.1 (Jacobson) Wi can be characterized as any compli-

mentary subspace of WO which is invariant under L .

Proof: Suppose N 1is such a compliment. Then W = WO ON .
However, L acté on N as a nilpotent Lie algebra of linear
transformations. Therefore N has a Fitting decomposition
N =N, ®N, relative to L restricted to N .  But NO must
be zero. For if n e Nb then nL%I = 0 where m’ is the

dimension of N. and LN is the restriction bo N of # €L .

i
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This implies that n e Wy N NO = 0 since NO N =W. Thus

N=N CW and N=W . » Q.E.D.

Let 2{ be an E-class of algebras over F , and

f = f(x .,xn) an Engel function for U, et vell anda

100
V Dbe a subalgebra of U . By LU(V) we will mean the Lie

algebra of linear transformations on the vector space U ”generated

by S(Vl""’vn—l) , vi eV, 1=1,...,n-1

We will be interested in subalgebras V bf U for
which LU(V)\\is nilpotent.  Indeed, if LU(V) is nilpotent;
we can decoﬁpése U into UO e;Ui where Uom énd Ul are the
Fitting null and one components of U relative to Ly(V) . We
would like to be able to say that under these’circumstahces,

vV C UO . What will happen 1n our theory is that if 'V is f-
nilpotenﬁ,'then LU(V) is nilpotent and V < U, . From the

remarks preceding Lemma 1.4.13'we see we will be able to study-

this problem by extending F to 1ts algebraic closure.

Motivated by these observations, we make the following

definition. We say a subalgebra H of U 1is & Cartan sub-

algebra if and only 1f:
(A) H is f—nilpotent.'
(B) LU(H> is nilpétent.
(C) H coincides with the Fitting null gomponent of U-

relative to ’LU(H) .
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In addition, if U contains a unity, then
(D) H contains the unity of U .

The class of finite dimensional Lie algebras is an
E-class for any F , and .f(xl,xz) = XX, 1s an Engel function
for all members of this class. As is well-known, (A), (B),
and (C) give the definition of Cartan subalgebras of ﬁie“aigebras.

Let w be an E-class over F and f an Engel function

for . . The subalgebra B, will be called minimal Fngel in U
if the diméns%on of Bu is minimal. Clearly if ‘Bu is minimal-

vEnge; in 'U. and BV c Bu s> then Bv = Bu .

In the Lie theory, Barnes [8] has shown that if .L- is
a Lle algebra Pf dimension m and F has at least m  elements,
then H 1s a Cartan subalgebra of L if and only 1f H 'is min-
imal Engel in L , where the Engel function for L 1s the one |

given above. We would like to develop a similar theory for our

Engel classffzi .

To study this problem, we need some more information on
extending F . If V 4is a subalgerba of U e U and 1f X 1is
an extension of F , then (Ly(V))g = Iy (VK) . Hence, if _

: - K : ‘

LU(V)‘ 1s nilpotent, then LUK(Vk) is nilpotent. Since_we

have (Uo)K = (UK)o and V f%nilpgtent ;mplies Vg is f-nil-.
potent, it follows that V 1s a Cartan subalgebra of U if and

only 1f Vg 1s a Cartan subalgebra of Ug -
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1.5 Construction of Cartan Subalgebras

As in the case with Lie algebras, a fundamental problem
is constructing Cartan subalgebras. We begin our investigation

as follows.

Let {u. If:l be a basls for an algebra U in the E-.
class Z{, over F .. For' u ; U, write U = aquyte..ta U .
Let ®(X,u) be the characteristic polynomial of S(u,...,u) ,

where S(u,...,u) 1s the map defined above for the Engel function

£ . An easy, but-tedious, computational argument shows
}\ . ,
Lemma 1.5.1 uiS(u,...,u) = % w§i> (al,...,am)uk where > 
_ k=1 | , -

wéi)(al,...,am) 1s a homogeneous polynomlal of total degree n-1

-

in al,..,.,am .

‘ We now consider the matrix of S(u;.:,,u) “acting on.
U . Since the matrix is determined by the action of S(Wyesnsu)

on.the basls elements U, s i = l,;..;m ,uWe have, letting

'w§j) = w§j)(al{...,am)
) |
o2) W) 2
‘ : = maqrix of S(u,...,u)
NON
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Lemma 1.5.2 o(h,u) = A% + Bl(u)k (u))\m-S where either

Bi(u) = Bi(al, .. am) is -a homogeneous polynomlal of total degree
(n- l)i or the zero polynomial. ‘ ' |

Proof': m(x,u) is the characteristic polynomial of the matrix
of S(u,...,u) . Hence Bj(u) are just products of the w§k)
Therefore, J(u) is eilther zero or homogeneous of total degree

(n-1)J 1in the Gysennsl ~ | Q.E.D.

For an algebra U € ZL, let s’ be the maximal integer
such that 55((u) £ 0 for somed uevu. An element v e U is

called f-regular if and only if B_s(v) 4 O .

- Lemma 1.5.3 Suppose U e.Z(. An element v € U 1is f-regular
if and only if B 1s minimal Engel in U .

1
)\m—- S

1l

Proof: o(i,u)

N4 py (WA B (W)

NSO B () .

If u 1s f-regular BS,(u) £ 0. Thus the multiplicity of the

root 0 in eo(i,u) 1s m-s’ , so the dimension of B, 1is m-s’,

where s’ < m-1 since u ¢ B, - If B, is not minimal Engel,
then there is a v ¢ U such that the dimension of Bv is less
than m-s’ , say dim B, = m-s” where s’ > s’ .  Then

o\, v) =" 4 Bl(v) L +eoit B ”(v) 15" here Br(v) 0
contradicting our choice of s’ . _Hence B, 1s minimal Engel

in U .

Conversely, suppose. B, is minimal Engel in U . )
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Then there is an s” < m-1 such that dim B, = m-s” and

o(hsu) = A"+ 5l(u)xm‘l douudt as”(u)xm‘s” where Bor(w) £0 .

{

’ , then we have a contradiction of our choice of s ,

If s’ > s

"

whereas if s” < s’ , then clearly Bu is not minimal Engel.

" 4

s’ , and u 1s f-regular. Q.E.D.

Consequently, s

We will now show that if our ground field 1s sﬁfficiéntly
large, then U contains f—regulaf elements. Recall that_?l is

an E-class over F where f 1s an Engel function for 21 .

Lemma 1.5.4 “Suppose U e Y and dim U =m . If F has at

least (n-1)(m-1l) elements, then U contains frreguiar elements.

Proof: We will prove first that 1if g(xl,...,xk) is a non-zero
homogeneous polynomial in XyseeesXy of total degree '(m—l)s'
over a field K of at least (m-1)s’ elements, then there are

elements gl)...,gk in KX such that -
g(gl"'.’gk) ’J: O- ’ [8]
_The pfoof is by induction on k .

If k =1, we may take -g(xl) = x; and clearly there
is a non-root of g . Suppose we'hévelverified the resulﬁ f&f
all Xk’ < k , and suppose next that g(xl"'f’xk—l’xk) 'is not
identically zero. Thus there are elements gl"“{gk—l in X
such that g(gl,...,gk_l,xk) has a non-zero coefficient. This
1s simply a polynomial in ik , and 1f the maximal power of 'xk

appearing 1s less than' s'(m—l) , then there 1ls a non-root 'gk
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in K . Hence g(gl,...,gk) £ 0. If the maximal power of
X, 1s s’ (m-1) , then we have

g(xl,...,xk) = Bxi Fm—l) + terms

where "terms" involves lower powers of X, » each term of "terms"

has at least one x,;, i 4k, in it, and O £ Be K. Then
g(0,...,0,1) =B £ 0 . In elther case, we see g has a non-

root, which was to be proved.

Now le(u) = Bs’(al""’am> 1s a homogeneous poly~
nomial of degree s'(m-1) , and is not identically zero by
assumption. Since s’(m-1) < (n-1)(m-1) , the above result
shows there are elements gl,...,gm in F such!that

Byr (8,

an f-regular element of U , where Upseeast, 18 a basis for

,...,gm) £ 0. Thus the element u = glul+...f€mum - is

U . Q.E.D.

Lemma 1.5.5 Suppose F' has at least m(n—l) elements and V

is a subalgebra of U . If B is minimal with respect to
dimension in the set {Bv T v eAV} and V& B, , then B < B,

for all v e€ V .

Proof': We will consider U , Bu , and U—Bu as vector spaces
over F . For a fixed element ¢ € V , we write uu = U + MHC ,

pebFr. Since Vc B, cU and u € B , we may consider

u

S(u .,uu) as a linear transformation on U , B, , and U-Bﬁ .

u , . @ / ’
Let B(X,uu) be the characterlstic polynomial of the linear
transformation induced by S(uu,...,u“)‘ on B, ,-,w(x,uu) be the

characteristic polynomial of the linear transformatién,induced
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by Sguu, * 0 ,uu) On U—Bu .
?ince v G(Bu » B, 1s invariant under S(uu,...,uu) .
M . ) .
Let {ui 121 be a basis for Bu and extend‘it to a basis

{uj}{_; for U . Relative to this basis, the matrix of

S(uu,...,uu) 1s block triangular.
A" =

where A may be regarded as the matrix of the linear trans-
formation S(u“,...,uu) induces on Bu .  Hence the charact-

. \ * ) .
eristic polynomial of the block A 1is e(x,uu) . We have

m’ -1

! - .
8(x,u, ) = R CTR DY 4...405,(u) where a¥(n) is a poly-
o 1 m L0 :

nomial in p of degree at most (n-1)i . Now

’ m . A .
{ui + Bu}i=m'+1 is a basis for U-B, , so C may be regarded

as the matrix of the transformation induced on U-Bu' by
S(uu,...,uu) . Hence the characteristic polynomial for C 1s

m-m’

4 14
POuu ) = AR g (T e (W)
where B;(u) is a polynomial of degree at most (n=1)i in u .

 Since the characteristic polynomial of A¥* is w(k,uu) it

) = 00h,u, )V 0u) . |

follows that cp(k,uu

We claim that aI(u) is identically zero for all i .

By construction, O 1s not a characteristic root of the linear
transformation induced on U-B, by . 8(4,...,u) . Therefore,

*

am_m,(O)'+ 0 . Since B;_m;(u) has degree at most (n—l)(m¥m'?,

6;-m’(“) has at most (n-1)(m-m’) roots in F . . Consequently
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there are p = m’(n-1) distinct elements §l,...,§p in F such

*
that Bm-m’(gj) £ 0 . Hence Bu+§jc-5 B, since O 1is not a

‘characterstic root of S(u+§jc,...,u+gjc) on U-B . By the

minimality of Bu', we have Bu = Bu+§jc .  Therefore,

4

4
A, or a;(gj) =0 for i=1,...,m" and

B(r,ugy) = A |
j=2ls.0.5p . But. a;(u) has at most 1(n-1) distinct roots
in F . Therefore, if 1 < m’ , then (n-1)L < p , and it
follows that az(u) is identically zero. .Since u + pe is in

N .
B, and Bu+uc s am/(u) must be identicglly zZero.

AN
\,
\

Now a;(u) identically zero for all 1 implies that

B, & Bu+uc for all c eV , 4 e F ., Hence for b € V , let

c=u=b . ~ Then B, € B y. =3B . | ~ Q.E.D.

[N

Barnes [8] shows the following. Let f(xl,xé) = XX,
. be the Engel function for the class of Lie algebraé, and‘suppose
L is a Lie algebra over F . If the dimension of L 1s m , |
then Lemma 1.5.4 says that if F has at'léast ‘m-1 elements,
then L has regular elements. Lemma 1.5.5 in this case says
"that 1if F has at least m elements and if Ly is a subalgebra
of L, B, isminimal in (B, : b e I,} and L; €B, , then-

a

Ba<E Bb for all b e L He then glves an example to show

l .
that for these lemmas, the restrictions on F . cannot be removed.

Now suppose Ba is minimal Engel in L . Then Ba
is certainly minimal in ({B : b € Ba} , and hence B ¢ B for
all b in B_ . Thus S(b) 4is nilpotent on B, for all b

in B, and it follows since £ 1% an Engel function that Ba'»

a
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is nilpotent. In this case,'it is clear that LL(Ba) is nilpotent
and Ba coincides with the Fitting null componeht#bf I, relative
to LL(Ba) . Consequently,-if F has at least m eléments and

By 1s minimal Engel in L , then “Ba is a Cartan subalgebra.

In chapter two and three, we will use Lemma 1.5.% and
Lemma 1.5.5 to construct Cartan subalgebras for élternative and
Jordan algebras usihg eésentially the same method described above

for the Lie case.

~,
hY

1.6 The Inner Automorphism Group of an Algebra

To show that Cartan subalgebras of U are conjugate
under & certai? class of automorphisms on U seems to be a
difficult problem. Chevalley [11] has solved the problem in the
case of Lile algebras over algebraically closed fields of characﬁ—
eristic zero. In this section, we construdt”a.method that
parallels Chevalley's that will allow us to solve the probleﬁ in
Chapters Two and Three when the ground field is algebraically
closed and of characteristic zero. Where proofs are.not given,

‘the reader is referred to Chevalley [11].

We begin by defining the Zariski topology on an m-

dimensional vector space V over F where the characteristic of

F is.zéro, Suppose Visee-sVy is~a basis for V . Then for.
each v € V , there 1s a unique set gl,..,5§m of elements in F
such that v = &;vi+...+E v - Now-suppose f(xl,...,xm) is an

element in the polynomial ring F[Xl"'"’xm] . Then
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f(kl,...,xm) and the basis vy,...,v, ~ determine a map from V

to F defined

f(v) = f(gl;...;gm )

We call f a polynomial function on V . If £ and g are

two polynomial function on V and o € F , we set

(f+g)(v) Af(v) + g(v)
(re) (v) £(v)g(v)

(af?(v) = a{f(v)>-.

Il

Thus the set > F[V] of polynomial functions on V is an F-

algebra. Moreover, since the characteristic of F is zero,

the map

*£(x

_l,...,xm) - f

is an isomorphism of F[kl,.l.,km] “onto F[V] . This map

sends xi into the polynomial function W1 where

vi(élvl+...+§ivi

+...+€mvm) = &,
Since Ty is a homomorphism from V to F , 1t follows that

v o= HomF(V,F) and the constant functions generate F[V] .

If W 1is a non-empty subset of V , the polynomial

functions on W , F[W] ,nare defined to be the restriction to

W of elements in F[V] .

Suppose E,,is‘a subset of V . We say E 1s an

algebraic set if and only if there is a subset B of F[V] such

that
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E=({xeV: b(x) =0 for all b e B}

The union of two algebraic sets is algebraic, and the inter-
section of a family of algebraic sets is algeb?aic [11; III;
pagevl69]. '~ Furthermore, V .and ¢ mgy.bezgqnsidérgdiaigebraic.
We wili call a subset of V closed_if and iny.;f it is
algebraic. The above properties‘on algebraig sets show”that_

these closed sets determine a topology on V . This topology

is called the Zariski topblogy.

“ o1
pee

If E 1is a subset of V , the closure of E , E , is

\,
s\,

defined N

E={xeV: p(x)=0 for all p € F[V] such that p(y)=0

for all y e E} .

-

"~ Now if vi,...,vé is another basis for V , then for
v € V , there are sets of elements gl,...,im,éi,{}.,gé in F

such that

Y 1t

mmnm °
But vi = My Vytee My Vi where MNygse- 2Ny € P Consequently,
if £(Ays...,M,) 1is an element in F[Ay,...,7;] , then there is

another element f’(xl,...,xm) in F[kl,...,xm] such that

£(Bqsevvsby) = £/ (8qseensl)

If F[V] and PF[V]’ are the polynomial functions on V relative
to Vesee sV and Vi,...,v& respectively, it follows for f an
. element in F[V] , there is an element £’ in F[V]’ such that

f(v) = £’(v) for all v in V. In this respect, polynomial
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functions are independent of the ba§i$ chosen for V , hence the

Zariski topology for V is independent of the basis.

If W is a subspace of V , it follows from the remarks
above that F[W] is the restriction to W of F[V]m. It is
clear that W' is algebraic, thus closed, and_théfiariski topology
on W is the topology on W 1nduced by the Zariskl topology on

V..

4

Suppose E 1s a non-empty subset of V . Then E 1is

irreducible if and only if F[E] is an integral domain. Under

the topology induced on E By %he Zariskl topology on V , we
observe that E is irreducible if and only if all ﬁon-empty

relatively open subsets of E are dense in E . [1l; III, page

1751. .

Since F 1s of characteristic zero, we claim that all
open subsets of  V are Zariski dense in V. . - To see this, we
begin with

Lemmg 1.6.1 Suppose f and g are elements in F[xl"f”xm]

with g non-zero. Let C = {(ql,...,am): a; € F and

gagseeesa ) 0} . If flay,...,a ) =0 for all (al,.;.,afn)ec ,

then f 1is identically equal to zero,

Proof': For m = 1 , the result is.clear, since g - has infinitely
many non-roots. For m > 1 , we may write f and g as poly-
nomials in A~ with coefficients from F[kl,...,xm_l] . We may

then proceed by induction on m to complete the proof. Q.E.D.



33.

Corollary 1.6.2 If E is a non-empty Zariski open subset of

V , then E 1is Zariski dense in V .

Proof': The compliment of E , cE , 1s closed. Conseduently,
there is a subset B of F[V] such that b(a) =0 for a e cE
and all Db € B . Since E 1is non-empty, B 'is non-empty.-
Let D be»a non-zero element in B . - Then El = {v € V:

b(v) £ 0} is an open sét of V contained in E . Sﬁppose.

p € F[V] and p(v) =0 for all v € E . By Lemma 1.6.1, it-

L
follows that p(v) =0 for all v e V. |Hence, E =V, and E

is Zariski densé'in V. ) | Q;E.D.

Corollary 1.56.3 CIf W is a non-zero subspace of V , then

W 1s irreducible.

Proof: Since the Zariski topology on W colncides with the
topology induced by the Zariski topology on V , the result
follows immedlately from Corollary 1.6.2 and the:ranarkspreceding ’

Lemma 1.6.1. ' ’ _ : . Q.E.D.

We will call a subset E of V epails if and only if
E is irreducible and contains a non-empty relatively open sub-

set of ite Zariskili closure. We have

Corollary 1.56.4  If W is a non-empty subspace of V then W

is epais.

Proof: W 1is closed and irreducible since W 1s a subspace.

Since W is non-empty, F[W] £ 0 , Thus if p 1is a non-zero
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element in F[W] , the set {v e W : p(v) £ 0} is open and the.

result follows.

We return for a moment to our algebra U over

Recall that an element u U is f-regular if and only L'f

BS,(u) £ 0 [Lemma 1.5.4]. But Bys € F[U] , and we have

Q. E. D.

E:

Corollary 1.6.5 The set of f-regular elements of- U form a

dense open subset of U .

We.will denote the set of f-regular elements of
N ,

!

Since subalgebras of U are subspaces, we have

-

Corollary 1.6.6 If H is a subalgebra of U , then H

in U .

To see how the Zariski topology will help us to
the conjﬁgacy problem, we must define what we mean by the

of inner automorphisms of U . We begin as folloﬁs.

Let C = Hom_(V,V) . Then F[C] is generated

VsV,
constant functions and 9* = HomF(C,F) . A group G of

morphisms of  V is called an algebraic group if and only

there is a subset B of F[Cc] such that

-G = {0 : 0 is an automorphism of V and b(oc) = O

all b e B} .

is epais

solve

group

by the
auto-

if

for
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We wish to define what is meant by the Lie algebra of
an algebraic group G [1l; II, page 125-136]. We observe that

F[C] can be made into a two-sided C 'module by.making the

following definitions: for e,x € C and p € F[C] ,
(pre)(x) = p(ex) . right translation
(e-p)(x) = p(xe) | left translation.

I

If Fl 'ls the set of constant functions, then Fl‘ﬂ c* {o} .

Thus, in F[C] , the sum F, + C* is direct. Consequently, the
linear map Dg , e € C, which is left translation by e on C*
can be extended to a linear map Dé on Fl + C* by setting |

Dé(k) =0 for all k e F Chevalley [11; II, page 21-26]

1
has shown this map can be uniquely extended to a derivation De

of F[C] . If e; and e, are elements of C , since
De te and De + De both map Fl onto 0O - and agree
172 v 1 2
* . g iy
on C° , it follows that Del+82 = Del -+ Deg" or the map e De

D . and [D_,D ] are
[epoep] e e

is linear. Similarly, since
derivations of F[C]  which coincide on C* and map‘ Fi onto 0,
we have D[el’eg] = [Del,Deg]

Now let G be an algebraic group and let @Q be the
subset of F[C] such that if q is an element of @, then q

restricted to G is zero. Clearly Q is an ideal of F[C] ,

and Q 1s called the ideal of polynomial functions associated

with G . If Q 4is a prime ideal, G is called irreducible.

It is easy‘td see that G is ifrreducible if and only if F[G]



is an integral domain.

If G 1is an algebraic group and Q 1is its associated

ideal of pblynomial functions, we see that the set

{e e C: De(Q)gQ}

is a Lie subalgebra of the Lie algebra CL, gf ”C'. This Lie

algebra, denoted GL , is called the Lie algebra of G .

Now let IL(U) denote the Lie_algebra over F generated

by Ru’ Lu for uedU. L(U) is called the Lie mulﬁiplication
algebra of U . A derivatién D of U 1s called an inner
derivation if and only if D e L(U) . It 'is known that the set

O/ (U) of inner derivations of U 1is an ideal in the derivation

algebra aé‘(U)~ of U [25].

Now let g(xl,...,xp) be a non-zero linear homogeneous
element in the free non-assoclative algébra over F in p-

generators XyseorsX o Suppose, for all elements ul,...;u

p p-1

in U , the map

xD(ul,...,pp_l) = g(x,ul,..t,up_l) xel

is a derivation of U . Then D(ul,...,uﬁ_l) € aﬁ'ﬁj) . . We
have | o
B ) > 2o, ult) W e v g
z ug »""’up—l)' uy € o

We set
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/g = {G : G is an algebralc group of automorphisms

on the vector space U such that Gy, > _ﬁ&' (u)l .

Chevalley [11; II, page 179] shows that if A is the group of
automorphisms of'the algebré U ; then %L :Ayﬁl) . of course;‘
AcH . Then I(U) = Nn{G : G‘€}4} is an.irrsdooible algebraic
group such thot i(ﬁ)ng ﬁ%(U)“ [11; II, page 165—172] and

A D I(U) . Conséouentiy elements in .i(U) are automorphisms

of the algebra U , and we call I(U) the .group of inner auto-

morphisms of U

We now return to our arbitrary vector space V.
Recall that F[V] and F[Xl,...,xm] are isomorphic. If

a = glvl4...+§mvm is an element in V where vl,.{.,vm is a

basis for V , and if f 1is an element in F[V] , we define a

-

linear function daf on V Dby

| | Jf 3F
daf(nlvl+...+nmvm) = (Eii)a nl+"'+(STh)anm
We call daf the differential of f at a . This map has the

following properties:
(A) da(f+g) =d,f +d.g
(B} da(af) = a)daf) o € F‘

(¢) da,(fe)

f(a)dag + g(a)daf .
Furthermore, for a € V , the map

y = 4 f(y)

is linear.
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Let E be an irreducible subset of V and x € E .

The tangent space to x at E 1s defined to be
T(E;x) = {y € V : dxf(y) =0 for all f e F[V] such
that f(a) = 0 for all a € E}

Since y - daf(y) is lineaf, T(E;x) is a subsapce of V..

Furthermore, we have

Lemma 1.6.7 If W 1is a subspace of V , then W < T(W;x) for

(S o

all XxeW .
\
Proof: Let vl,...,vm, be a basis for W , and extend it to
‘a basis vy,...,v, for V .  Relative to this basis, if
¢ F[V] and f(v) =0 for all v e W, it follows that
f = ) 4 _ ‘ .
S—i =0 for i1 =1,...,m If xeW,y= Ny Vyte e etV 2

| 3f ” 3F 3
dxf(y) = (Sxi)x Nyt - HEE )x My -
v m
If yeW ,'y = MgV oo AN eV , and if ’f(v) = 0 for all
s m’ ‘m )

vew, dxf(y) =0 . Thus W< T(W;x) for all x € W .. Q.E.D.

If G 41s an 1rreducible group of automorphisms Qf v
and E 1s a subset of V , then |

Q={yeV:y=x0 forsome xeE, oe G}

is called the orbit of E with respect to G . If E is

irreducible, then Q is irreducible [11; III, page 192-193].

In order to apply the theory given by Chevalley in what
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follows; we must assume F is algebfaically clésed. Suppose
H is a subalgebra of our:algebra U . Since H 1is epails, by
Lemma 1.6.7 and Chevalley [11; III, page l92—i95], the orbit 0
of H under I(U) is irreduéibié-and T(Q;x) contains

x & (U) + H for all x e H where x /& (V) - {xD: X e A/(U)} .
From Chevalley [11; IIT, Proposition 13, page 180 and the

Corollary, page'l92],'We have

Theorem 1.5.8 If H contains a non—empty relatively open sub-

set O such that T(Q;a) = U for all ae€ O, then Q contains

a non-empty apen subset of .U .

We now give

Theorem 1.6.9 Suppose minimal Engel subalgebras of U are

Cartan subalgebras. If Hl and H2 are two Cartan subalgebras

of U such that Hl and H2 satisfy the hypothesis of Theorem

1.6.8, then H, and H, are conjugate under I(U) in the

1 2
sense that there is an element o e I(U) such that H) = Ho

Proof: Let Ql and 02 be the orbits of Hi and H2 under

I(Uu) . By Theorem 1.6.8, Ql and 02 contain non-empty. open
subsets of U . It follows that U; N (QN0,) + 9. Let b

be a non-zero element in thils intersection. As D € Qi »

i=1,2, b e Ho, forsome o, in I(U) . But b is f-

regular, so B, 1s a Cartan subalgebra. Therefore B, < Hio; 5
- H, - = -1 ).
hence By = H;0; . Thus H = H,0 where o = 0,07 . I(Uz .

' Q.E.D.



 jo.

Consequently, when F 1is algebraically closed and of
"characteristic zero,_to‘shoW‘Cértain subalgebras are conjugate,
we must show that minimal Engel subalgebras are Cartan'subalgebras,

and that Cartan subalgebras satisfy the hypothesis of Theorem

1.6.8.

With respect to the conjugacy problem, we feel there
must be a self-contained approach. We feel this could be
developed following the methods given by Jacobson in [18;

Chapter IX]. However, to date we have been unsuccessfﬁl.



CHAPTER TWO

ALTERNATIVE ALGEBRAS

2.1 Introduction

An algebfa A over & field F 1s called an alter-

native algebra if and only if (x,x,y) = (y,x,x) = O for all
elements x and y of A . From this definitinn, it is clear
that homomorppic images of alternative'algebras are alternative
and that a direct sum of alfernative aléebras is alternative.
Since the associator is multilinear, wé'have tha% AK is alter-
native for all extensions X of Fo. Throughout Chapter Two,

we will assumé our alternative algebras are finite dimensional.

'In this section we will give the necessary theory to
develop a Cartan theory for alternative algebras. In what
foliows, where proofs are not provided, the reader is referred

to Schafer [25].

We begin by linearizing the defining identities of A ,

and obtain . ‘ C-

(l) (X:Y:z) = '(_X3_Zﬁy) = (z,x,y)‘

i

(2) (x7,%) =0

For right and left multiplication R and L L, X eh , of A,

these become
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(3) RRBy =Ry =Lyo - Ll =LR - RI,
=Ll - L =RL - LR =R -RR

and

We next give

Theorem 2.1.1 (Artin) The subalgebra generated by any two

elements of A 1is associative.

\ :
As a consequence of this result, we hgve

.Corollary 2.1.2 (i) Alternative algebras are power-associative

in the sense that the subalgebra generated by a single'element is

associative. (1i) For all x e A , R ;= (RX)i and
. ’ X . .

R i . ' )
in = LLX) for i = o,;,...

Now suppose e is-an idempotent of A . . By (4) and

the above corollary; R and Le are commuting idempotént

e
operators. It follows that A is a vector space direct sum

+ A .

+ Agy 11

A =~AOO + AlO

where Aij = {x.§ A exX; 4 = ixij X; 58 = inj} i, = 0,1 .

Hence 1f x € A > we write the decomposition of x :

~

x = exe + (ex - exe) + (xe ~ exe) + (x - ex - Xe + exe).
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where exe € All , €X - exe é AlO’ Xe - exe € AOl , and

X - eX - Xe - exe € AOO .
A set €y .- ~of idempotents is cglleg EairwiseJ

orthogonal in case eiej = eJ.ei =0 for 1 % Js i,j =1l,...,5

If A has a unity and el,;..,e

S ils a set of palirwise orthogonal

idempotents whose sum is the unity of A , we get a refined

decomposition of A as a vector space direct sum

S
(2.1.3) A= X @A, .
’ j—:j:l -
.
Arg= (Xgg € B ey = 0Ny Xy g0 = 85X, 48

kK =1,...,8}

. Where éij is the Xronecker delta.

This decomposition is called the Pierce decompoéition of A

relative to €15+ -58g and we have

5]

Theorem 2.1.4 Let (2.1.3) be the Pierce decomposition of A

relative to the paifwise'orthogonal idempotents e

' ERRRFL

S
Then:

(1) 'AijAjk‘E Aij i,J,k = 1,...,s

(ii) AiJAij_E Aji i, =1,...,8

(111) Ayghy =0 | Jj+ Kk (i;J) %'(k,L)~
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We now need some information on nilpotent alternative

‘algebras. We begin with

Theorem 2.1.5 The following are equivalent::

(i) A is nilpotent
(i1) A 1is solvable

(ii1) A is nil

An element zeA 1is called properly nilpotent if and

only if za is nilpotent for all a € A . If z is properly
nilpotent, by Theorem 2.1.1, we see éz is nilpotent for all
a € A . It 1s known that the radical of A can be characterized

as the set of properly nilpotent elements of A .

Suppose A 1is semi-simple in the classical sense.

Then A has a unity, and we have

Theorem 2.1.6 A non-zero alternative algebra is semi-simple if

and only if it is a'direct sum,of simple ideals.

Thus the study of semi-simple alternative algebras is reduced to

studying the simple ones.

We say an idempotent e € A 1is primitive . if and only
if e cannot be written e = e’ + e’ where e’ and e’ are
non-zero Qrphogonal'idempotentgi_. If_ A mpasla gnipy; ﬁhgn
this unity element cah be expresséd as a sum of pairwise orfhogonal

primitive idempotents. Let t be the maximal integer such that
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the unity of A 1is expressible as‘a“éum of t palrwise orthogonal
primitive ldempotents. Then the degree of A is defined to be

[

Now suppose F 1s algebraically closed and (2.1.3) is
the Plerce decompositioh of A relative to a set el,:..,ét.
of pairwise orthogonal primitive idempotenﬁsf Since ei' is the
unity of Aii and in fact is the only idempotent in Aii , wWe
have if X € Aii and x is not nilpotent .then the subalgebra
of A,y egenerated by x, F[x] , is commutative, associative,

and éontains\\e. By ngderburn's theorem, Flx] = Fl + N

i
where N 1is a nil algebra and Fl is semi-simple and, in this

case, simple. Then Fl 1s a matrix algebra over a division
algebra. Since ey is the only idempotent in Fl and F 1s
algebraically tlosed, it follows 'Fl-z “Fe:L . Consequently, if

X € Aii > We may write x = ae; + 1 where a € F and n is_
nilpotent. Now let n € Aii and n be nilpotent. We claim ',
if a € Aii , then na 1is nilpotent. If na 1is not nilpotent,
by the above remarks it follows that na has ah inverse (na)_l .
Let p be the integer such that nP = 0 i np‘l‘, ' Then |

0 & Pl o np-&[(na)(na)—l] = 171]93.(na)_:L ='O , a éontradiction.
~.Similarly an 1is nilpoﬁent, and thué the set of nilipotent . -
elements of Aii form an ideal. It follows that Aii = Fei + N

where N 1is nilpqtent.

Jacobson calls an arbitrary algebra U over a field KX

almost nil if and only if U has a unity 1 and U = FL + N

where N 1s a nil ideal.
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Lemma 2.1.7 _ If F is algebraical;y”clggeq”and (2.1.3) is the

Plierce decompoéitién of A relative_tq pairwise 5rthogonal

primitive idempotents €558 then the Aii are almost nil.

Now suppose A is simple. If the degree of A 1is

‘1, then A is a division algebra. If the ground field is
Aclosed then Lemma 2.1.7 says that A = FL . If the degree of
A is greater than two, then A 1s associative. If the degree

\,
\,

of A 1is two; then A is elither associative or a Cayley algebra

[25]

To define the inner automorphism group of an alternative
algebra, we require some information on inner derivations of
alternative algebras. We begin by defining the nucleus N(A)

of an alternative algebra as the set - -
{g e A: (g,x,y) =0 for all x,y € A} .-

If the characteristic of F 1is different from 3 ,-then Rg - Lg
is a derivation of A if and only if g e N(A) [25, page 76].

If we set : . _ -
(5) D(vse) = [L,,I.] + [Ly,R,] + [R,R_]

then D(b,c) is a derivation of A [25, page 77]. ~ Schafer
[25, pasge 78] shows that if the characteristic of F is different
than 2 and 34 and if A has a unity, then any innef derivation

D of A can be written
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2.2 The Universal Multiplication Envelope of an Alternative
Algebra. ' '

Suppose A 1s an alternative algebra over F and A"

7

is ité anti-isomorphic image. If a e A , We will write a
for the anti-isomorphic image of a . We set By =B = A@A’
and inductively B, = B, 1®, . Let T(B) be the associative

algebra defined by

T(B) =B1®B2®B3®...

-

where the vector space operations in T(B) are as usual and
multiplication in T(B) i1s denoted by ® , | Let S be the -

ideal of T(B) generated by elements of the form

! 4
(1) a; ® a, - a, ® aj - aja, +a @ a,

\v _ Ty 7 I. A
- a; @ a, (a2al) +a ®a]

(2) a, a,
’ 4 7 4 1 7
(3) (agal) -a; ®a; - a) ®al +al,®a

where ai € A .

The associative algebra U(A) = T(B)/S is called

the universal multiplication envelQpe>df A . If i’ is_the'

canonical homomorphism from T(B) into U(A) , then the
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1
U(A) . We call this map i , and if a e A , we will write

restriction of 1’ to B =B, defines a linear map from B into

ai =a , a’i = a’ where & , a’ are the cosets of a and a’

in U(A) . From (1), (2) and (3), we have the following .

relations in U(A) : !

it 4 - - ! -
(4) a; ® &, - a, ® & = aja, - a; ® a,
12 =7 4
= iagal? - ® a2
- -, —, -
= aq ® a2 - a, ® al .

Lemma 2.2.1 “Let p be a linear map from B into an assoclative

algebra' V such that

[aip;aép] = (ay8,)p - (a70) (app)

= (a2a1>lp - (a]’_p)(aép) = '[alp,aép] .

Then there is a unique homomorphism p* from -U(A) into V

such that ap* =ap and a‘p* =a’‘p .
Proof': Suppose {bi : 1 e I} is a basis for B .. Then the

distinct elements b, ® b, &...® b, forma basis for B where
11 12 i, n

’bi ®..8Db, =Db, ®..80 if and only if i, K = 1,...,0.

Jx
Consequently, the set of all these elements for a basis for T(B).
We now define the map p” . from T(B) into V where
(by ®..® b, )p’ = (b; p)...(b; p) . Clearly this is a homo-
1 n-: 1 - ~*n - :

morphism from T(B) dinto V such that ap’ = ap if a e B .
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By hypothesis, the generators of § are mapped into the
xernel of p” , consequently p” induces a homomorphism p* of
” '

U(A) into V. If a e A, then alp* = ap* = ap” = ap ;

similarly a’ip* ='a’p , and p = ip*¥ as desired.

Since T(B) is generated by B , U(A) is generated

by Bi , and it follows that p* is unique. Q.E.D.

Lemma 2.2.2 If K dis an i1deal of A and D is the ideal in

U(A) generated by (K @K')i , then there exists an isomorphism
*

of U(A/k) onto U(A)/D such that a ¥ (K @K') is mapped onto

2 +D and & +-(k'G)K’) 1s mapped onto &’ +D, aeh.

Proof: We define a map a*: B=»U(A)/D where, if b € B , then

-

ba* = bi + D . Since (K@K')L €D, a* maps K@K’ onto
0 . Thus o* induced a map o : B/K @ K’ - U(A)/D such that

(b + (K@K'))a =bl +D.

If 6 4is a linear map from B/K @ K’ . into an assoc-
iative algebra V where B/KZGDK" and & satisfy the conditions
of Lemma 2.2.1, it follows by examining hoﬁomorphism and using
Lemma 2.2.1 that there is a unique homomorphism 6’ from

U(A)/D into V . .

If is the natural map from B/K @K’ into

Tx
U(A/K) it now follows that the diagram
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U(A/K
(875
. R \\ a*
s 3% ~ \\
Ty Tk SIS
-~ ~
~ \»\

B/K + K’ o > U(A)/D

is commutative, and i; is the desired isomorphism. Q.E.D.

We will use the universal multiplication envelope of
A  to prove the following result. Suppose Al is a subalgebra

of A, and V 1s the subalgebra of HomF(A,A), generated by -

, . v / |
the maps ‘Ra,\La , & €A , acting on A . Then if J is a

, a € d , acting on A

solvable ideal of A, , the maps R, » Ly

generated a nilpotent ideal in - C . We claim that it is suffic-
ient to show that ‘(J'GDJ”)il generates a nilpotent ideal in
U(A;) , where 1, is the natural map from Al @ A] into U(A)
Indeed, by (3) in §2.1, the linear map p from A ESAi' iﬁté\

C where, 1f a € Al , ap = Ra- and .a'p =4La», and C satisfy
the conditions of Lemma 2.2.1. Thus there is.a hémdmorphisﬁ
from ﬁ(Al).-into C . Since C 1is generated by Ra and La’
it follows that this homomorphism is onto, and maps the ideal
generated by (J @ J')1 onto the ideal of C generatéd'by' ,

L

R a € J . Consequently if (J’QDJ”)il generates a

a’ 4 °

nilpotent ideal in U(Al), Ra’ L., é-e_J: generated a nilpotent

a
1deal in 'C .

We begin by showing
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Lemma 2.2.5 Suppose I is an ideal of A and I¥ is the sub-

algebra of U(A) generéted by (I@®I')1 . Then D = I* ® U(A)

is an ideal of U(A)

Proof: It is clear that D 1is a right ideal. Hencee suppose

a,b € A .» From (4), we obtain the following identities:

(5) a®b’ =b'" ®a-ba+b®a
{oj 5 ® 5' = (5&)’ + (b&) - b ® &
(75 a®b = (55) % (ba) —'E ® a
(Bj é"®5=b6.2>é'~+b%'®§,-(ba)

. . .. . *
Since (A @ A’)i 'generates U(A) and (I @ I')i generates I* ,

it follows from (5) - (8) that D is a two-sided ideal of

U(A) . . ' - : Q. E.D.

Corollary 2.2.4 If I* is nilpotent, D is nilpotent.

Proof: Since U(A)®I" < I* + I* ® U(A) , an easy -induction

argument shows that D7 < (I*) 4+ (I*)"su(a) .. The result is

now immediate. ‘ Q.E.D.

Lemma 2.2.5 If A is solvable and the dimension of A 1is 1 ,

then (U(A))° =0 .

2

Proof: If dim A , then A = Fe where e =0.. From (5) -

]
bt

(8), we obtain ee =¢e’e’ =0 and e’e = ee’ . Since (A.@)Af)i
generates - U(A) , & and &' generate U(A) in this case.

Consequently; (U(A))3 =0 . _ Q.E.D.
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Lemma 2.2.6 If A is solvable, then U(A) is nilpotent.

Proof: The proof is by induction on the dimension of A . By

Lemma 2.2.5, we assume dim A =n > 1 . Since A is solvable,

2

there is an n-1 dimensional subspace I such that A c I S A,

and in fact, I 1s an ideal of A . Consequently; as
dim A/I =1 and (A/I)® =0 , U(A/I) is nilpotent. Let I;

b§ the ideal in U(A) sgenerated by (I @I’)i . By Lemma 2.2.2,
U(A/I) is isomorphic to U(A)/I, . If I* is the subalgebra
of U(A) generated by (I Qpi')i , then I, = I* + I*¥ ® U(A)
Since dim I.<n, U(I) is nilﬁotent. It foliows'ffom'Lémﬁa
2,2.1 that I¥* is nilpotent since I* is a homomorphic image of
u(I) . Consequently, I; is nilpotént,_and since U(A)/Il is
too, U(A) 1is nilpotent. - © Q.E.D.

-

Theorem 2.2.7 Suppose I 1s a solvable ideal of A . Then

(I ®I’)L generates a nilpotent ideal in U(A) . =

Proof: Suppose I* is thelsubalgebra of U(A) éenerated by
(I@®1’)i. Since I is solvable, U(I) is nilpotent, thus I*
is nilpotent, and the result follows by Corollary 2.2.4. Q.E.D.

Corollary 2.2.8 Ir Al is a subalgebra of A , I:is'a solvable

ideal of A, , and C is the subalgebra of HomF(A,A) generated

1

by Ra’L

6 2 @ €-A1 , then Rb,L , be I, generatena nilpotent

ideal in C .

Proof': The proof is immediate by the remarks preceding Lemma

2.2.3%. | | 'A " Q.E.D.
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2.3 Existence of an Engel Function for Alternative Algebras.

We will now apply the theory developed in Chapter One

to altefnative algebras. In this sectlon we will show that, if
the ground field F of an élternative‘algebra A has énough
elements, then there is an Engel function for the algebra.  We
will assume throughout the rest of the chapter that A 1is finite
dimensional and coﬁtaiﬁs a unity element l , and that the charact-

erlstic of F 1is different than 2 .

We define

N\
N

(l) a(xl,xg,XB) = %{XB-XIXQ + XKy tXg = KpKgeXy - xl?x3x2}.

and observe that a(xl,xg,XE) is & linear homogeneous element in
the free non—associétive algebra on the generators X15 Xgs x3

-

over F .

We begin our étudy with a test for the a—nilpotence of

an alternatlve algebra. .

Lemma 2.3.1 If F. is algebraically closed, then ‘A 1is a-

nilpotent if and only if A is a direct sum of almost nil ideals.

Proof': Assume first that A 1s a-nilpotent and 2.1.3 is'théA
Plerce decomposition of A where the idempotents e; are primitive.

By Lemma 2.1.8, the Aii are almost nil, and from Theorem 2.1.4,

AiiAjj = Ajini = 0 ,.i.+ J »~  We claim A

Indeed if %y 4 § AiJ s 14+ J, then

19 = 0 when 1 £ J .
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- i(e.-x e . - .
a(xij,ei,ej) = ggej Xj48y * €yXgitey - €58 Xy - Xy ejei?

-k X ' :
Consequently, a (xij,eiej,.:.,ei,ej) =.§%) X4 - Since A is a-

nilpotent, for some k' , ak (xij,eie =0,

[
®
®

~
Il

-
4

SR A R S
hence Xig = o . Thgs Aij =0 , and 1t follows A = I C)Aii .

Conversely, suppose A =% O Bi where the Bi are
almost nil. By the linearity of a(xi,xg;xj) , 1t 1s sufficient
to consider a(xl,xg,xz} on one B, . Since B; = Ffy + N
where f; is‘a primitive ldempotent, for b, ,cy € Bi , We compute
a(fi,bi,ci} = a(bi,fi,ci) = a(bi,ci,fi) =0 . Again by the |
linearity of a(xl,xz,XB) , We see it is sufficient to consider
a(xl,xg,XB) ,acting on N, . Since N, is nilpotent by |
Theorem 2.1.5, it follows that ‘Ni 1s a-nilpotent, hence A 1s

a-nilpotent. ‘ ‘ Q.E.D.

~

For the alternative algebra, A , the maps- S intro-

duced in §1.3 become
xS(b,c) = a(x,b,c) for all b,c ¢ A .

We can now show that a(xl,x2,x3) satlsfies the first condition
. / .
to be an Engel function. [See 1.3. We also nbte that alter-

native algebras form an E-class over Fl.

Lemma 2.3.2 Suppose dim A =n and F has at least 2n+4l

elements. Then A 1s a-nilpotent if and only if A is a-nil.

AN
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Proof: Since F has at least 2n+l elements, by Lemma 1.3.2,
it is sufficient to prove the result when F 1is algebraically
closed. Clearly 1f A is a—nilpotent,.thén S(b,b)n =0

for all b e B and thus A 1is a-nil.

Cohversely, suppose A 1is a-nil and (2.1.3) is the
Pierce décomposition of A where the idempotenés e, are
primitive. Then the ‘Aii are almost nil, and we claim that

Aij =0, 14 J - Indeed, if Xy 5 § Aij » 1+ J , we compute
- (%
\ xijS(ei,ei) = -(Z)Xij
\ . .

k___;__k n _ }
Then xijs(ei,ei) = ( 2) Xyq s Since S(ei,ei? =0, it

follows thét xij =0 . Thus A 1s a direct sum of almost nil
algebras, and by Lemma 2.35.1, A 1s a-nllpotent. " Q.E.D.
Recall that if R 1is a subalgebra of A , by LA(R)

‘we mean the Lie algebra of linear transformations on A geﬁeréted,

by 8S(b,c) , b,c,e R .  Furthermore, B, = {xed: xS(b,b)* = 0}

where dim A =n . We have

.Theorem 2.3.5% Suppose R d1is an a-nilpotent subalgebra of A

containing 1 . Then LA(R)‘ is nilpotent, and if A = Aj @4
is the Fitting decomposition of A relative to L,(R) , then

(1) A, is a subalgebra of A containing R

‘4(1i') AA S A Ajhg S Ay

Moreover, 1if F 1s algebraically closed,
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(111) Ay = N{B, : b e R}

Proof: By the remarks in §1.4, we see that we may assume F 1is

algebraically closed. Since 1 e€ R, there is a set of pairwise
o S

orthogonal primitive idempotents ”el,...,es such that R = £ @R
: i=1
-
where R, = Fe, + N, . Then N = I @N, 1s the radical of
i 1 i 1 i
R L ]

Let C be . the subalgebra of HomF(A A) generated by

R,> Ly> b € R . By Corollary 2.2.8, R Lc’ c € N generate a

C’

i

nilpotent ideai in. C . Therefore, 1if z e N , b € R it follows

that S(z,b) = (R,I, +L R - L, - R ) 1is in this nilpotent
ideal. Similarly S(b,z) is in this ideal. Thus S(z,b) and

S(b,z) are in the radical N of C .

If (2 1. 3) is the Pierce decomp051tion of A relative

to €5 eS , we see that Ri c Aii.’ i=1, . Further—

more, by Theorem 2.1.4, we see that Aij is invariant relative
to Ry, Ly,»b € R . Therefore, to show LA(R) is nilpotent,
we claimvit 1s sufficient to show that for aill’i and J , the
‘restriction S(b, c)ij of S(b, c) b,c € R to Aij generates
a nilpotent Lie algebra of linear transformations on A 13 |
For (2.1.3) is a vector space direct sum of A , hence there ie
a basis for A relative to which the matrix for S(b,c) 1is
block diagonal with each block representing‘ S(b c) J for some
i and Jj . When the Lie product of S(b,c) and 5(d, e)
b,c,d,e € R , is considered, we see'tne ﬁrodnct is determined by

the Lie preduct on the individual blocks. Therefore, .-
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L,(R) = zeL, (R)

(
A. - _Alj,

where by LA (R) we mean the Lie algebra of linear trans-

13-
formations on Aij generated Dby S(b,e)™d , b,e € R . Con-
sequently, if L, (R) 1is nilpotenf for each i and j , it

1.

follows that LA(R), is nilpotent.

If b,c € R, we write

b = Z(Bkek + Zk) By Vi § F

e = Z(ykek + wk)u z, W € N .

Using the linearity of S(b,c), we compute
s(v,¢) =.s(z(5kek + zk), T (Y& + wk})

= ¥ B,.y,S(e,e,) + T B
oy CEYRS R |

where, by the previous remarks, T € N* L Thus

(2) S(b,c)lJ =4k2l 5kY1S(ek,el>lJ +.‘I‘iJ

2

Suppose Xij € Aij . Then we compute

' ij .
Xijs(ek’el? J =" 0% where p 1is a scalar.

From (2), we have S(b,c)ij = uijlij

I is the identity transformation of A . Since T+J e N¥ , it

‘+ T ywhere uij e F and

is clear that S(b,c)lj generate a nilpotent Lie aigebfa-of‘

linear transformations on Ai hence LA(R) is nilpotent.

J')
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From Theorem 2.1.4, we readily compute that
S(ek,el)ii‘= O for all i,k, and 1%. By (2) we have

S(b,c)iiv= i e N¥ .

Since N* is the radical of C , it follows that each element of

LA(R)' acts nilpotently on A;; .  Therefore

RCI Ay CAy -

If b e R, then S(b, b) 5 LA(R) By definition of

Ay > If x €A then xS(b, b)n O where dim A =n . Since

0

cess® are elements of R , we have

€1’ s

R C T A, A n { : be R} c n B
11 = Bb B R

s
Suppose x € N B . By (2.1.3), we write
Ci=1 ©1 _ e N

S
X = T X, + T Xi. o
1m1 1 qpy T

We compute
xS(ek,ek) % ? XiiS(ek?ek? + iij xijs(ek,ek? .

Now xiiS(ek,e ) =0 for all i . For 14 j , we compute -

1, £k




59.

Thus xS(ek,ek) = (-%) T X, .

) i=ktj L
iti=k
But x € B implies xS(ek,ek)n = (-3)" = X, =0 . Since
L % ) . o0 is=kdg
idj=k

(2.1.3) is direct, it follows that Xy = 0, k4 J and Xge = 05

i4+k. Since xe B, forall k , it follows that x =3 Xy,
: k
s ' ,
which implies n Be cx Aii . Consequently,
i=1 i

B
i=1 ©1

| Do -

RS Ay =% A, = ﬂ{Bb : b ; R} =

- .Since ¥ A.,. 1is invariant under LA(R) and since

A = AO ®© T A,. , we have, by Lemma 1.4.1, that Al = ‘i; Aij
. S

That A is a subalgebra of A and A A < Al and

0 0L =

AlAO-E Al 'follow immediately from the properties of the Pierce

decomposition. | , Q.E.D.
Recall that we wish to show that a(xl,x25x3) is an
Engel function for A . We have yet to show'that for b e A,
Bb< is a subalgebra of A containing b . Since a(b,b,b) =0
implies bS(b,b) = 0 , it is immediate that b ¢ B, . Using

Theorem 2.3%.35, wWe can now show

Lemma 2.3.4 For any b € A, Bb is a subalgebra of A .

-~

Proof': From (P-2) and (2) of §2.1 we have the following .

identity for ali X,¥,2 € A :
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(3) [xy,z] = x[y,z] + [x,z]y + B(X:Y:Z)

Interchanging the x and y , and subtracting gives

(#) 6(x,y,2) = [xy,2] - x[y,z] - [x,z]ly - [yx,z]

+ylx,z] + [y,zlx

i

[[x,y]1,2] + [[y,z],x] + [[z,x],y]
Now let x,b € A .- By Theorem 2.1.1, x ‘and b generate an

associative subalgebra of A , and hence, from (4) we compute

i i

(5) x8(bT,b9) = H(bIxbT + prxbd - pipIx - xIT)

= -3(-plxpd - vl + x4+ pipdx)
= —%[[X,bi],bJ]
From (4) we compute
[[x,091,0%] + [[09,0%],x] + [[v%,x1,09] = 6(x,b pd)
’ iy 4.3 o o1 . o
and hence [[x,b7],bY] = [[x,bY],b"] . Consequently
(6) s(*,pd) = s(pd,pl)
Now suppose 1 > 2 . Then
x8(bt,09) = ;l[[x,bi] bj]
- l[[bi -1 ,b,x1, 9]
= l{[bi Llp,x1,091 + T16EL,xo, bJ]} by (3)

= 3(pi- l[[b x] bJ] + [[bi l,x] bJ]b} by (3)
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i

pl- lux b, bJ] - 3lIx, pi-1q, b‘j]

- x{S(b b )Lbi ; + 8(p bJ)Rb}

We now have

(1) s(ot,pd) - 5(0,07 )Lbi L+ S(b el 122

We observe that when the exponent 1 1s lowered in (7) that J

remains unchanged. Also, since R ;= Rb)t and L t = Lb)t
b oY

we may apply (6) and (7) to obtain
\ ,

(8) (b bJ) 5(0,D)w( Rb Lb)
where o(u,v) 1s a polynomial in uw and Vv .
Next we compute

xR S(b*,09) (xb)s(bi,bj) o )

300,011,091 = -311x,071b,09]
- —%[[Q,bi],ﬁjjb = xs(b?;bj)Rb .
Consequently, | |
(9) B S(d,p9) = s(%,p9)R, B 7 f'

and similarly

(10) L, s(6%,09) = s(p, 0L, .

From (9) and (10) we see that S(bi,bJ) commutes with

any polynomial in Ry, and 1Ij, . From (8) 1t follows
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(1) 8(07,p7)% = 8(b,0)e’ (Ry,Iy)
‘where ¢’'(u,v) 1s a polynomial in u and Vv .

We now define BY = {x e A : xS(b",p9)* =0,

1,5 = 0,...,n} where dim A =n . From (11) we have immed-

iately'that B' = B, .
Now let 'F[b] be the subalgebra of A generated by

b and 1 . Since F[b] 1is commutative and assoclative, it is
a-nilpotent. Therefofe, by Theorem 2.3.3, LA(F[b]) is nil-
potent and tng Fitting null cbmponent AO of A:'réiative‘to
LA(F[b]) is a subalgebra containing F[b] . But elements of
‘LA(Ffb]) are sums of products of S(bi;bj) .  ﬁence it follows
that Ay = BY = B, and ‘B is a subalgebra of A . Q.E.D.

Summarizing our results, we have

-

Theorem 2.3.5 Let QU be the class of alternatiVe algebras such

that
(1) if A €0U, then A has a unity

(11) if A eQ, dim A =n and F 1s the ground field,

then F has at least 2n+l elements. A .

Then aﬂxl,xg,XB) is an Engel function for OC.
As a dorollarg we gilve

Corollary 2.3.50 If A 1is restricted as ianheorem 2.3.5 and

every maximal subalgebra of A 1s an 1deal, then A is



63.,

a-nilpotent.

Procf: The proof is immedia te from Corollary 1.3.5. " Q.E.D.

2.4 Cartan Subalgebras of Alternative Algebras

We will now assume A 1is an n-dimensional alternative
algebra with unity 1 where the ground fleld F has at least
N elements, where N is the maximum of Ehfl and 2°71
We note, therefore, that the results of 2.3 are valild. In this

section we wiil show that the class of alternative algebrés

described above have Cartan subalgebras [§1.4].

As an immediate corollary of Theorem 2.3.3, we give

-

~ Lemma 2.4.1. Suppose F 1s algebraically closed.-_ Then H is

~

a Cartan subalgebra of A 1f and only if there is a Set
€158 of pairwise orthogonal primitive ldempotents whose sum

S
is 1 and H= ¥ A .
1o1 ii

From Lemma 1l.5.4, we see that A contains a4regular
elements, hence by Lemma 175.3, A contains minimal Engel sub~
algebras. PFurthermore, by Lemma 1.5.5, if A’ is a subalgebra

: . R r
of A and By 1s minimal in {BC e § A’} where AT ¢ Bb_’

then B, € B, for all ce A’ .

We can now prove
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Theorem 2.4.2 H 1s a Cartan subalgebra of A 1f and only if

H is minimal Engel 1n A .

Proof': Suppose H = Bb is minimal Engel in A . Clearly

leB, . Now Bb' is minimal in {B_ : ¢ ¢ H} and since

c
HC B, , B S B, for all he H. ' Thus §(h,h) is nilpotent
on H for all he H. It follows from Lemma 2.3.2 that H

is a-nilpotent. By Theorem 2.3.3, L,(H) is nilpotent and if
A, 1s the Fitting ﬁull component of A relative to LA(H) s
then B = Hc A, . However, AO E-n{Bh : he H} © Bb méince
S(h,h) € LA(H)\ for he H. Thus AO-= By, and Bb_ is a

Cartan Subalgebra.
' i

Conversely, suppose H 1is a Cartan subalgebra of A
and B, 1s minimal with respect to dimension in {Bh~:,h e H} .
We clailm H ='Bb . Since H 1is a-~nilpotent, we have H c Bb s

consequently B, £ B, for all heH.

—_ ~

We now extend 'F to 1ts algebraic closure K and make

the following observations:

(1) B s (B
(1) He 1s a Cartan subalgebra of A, [§1.4]. i}
Consequently from Theorem 2.3.3, He = N{B/: h' e HK} .  Since

B, € B, forall heH, S(hh) dis nilpotent on B, for all

heH. By Lemma 1.3.3, we have that . S(h’,h’) acts nilpotently
¥4 i )

on (Bb?K for all h § He . Therefore (Bb?K-S HK , and by |

(i) Hy = (Bb?K . But dim Hp = dim(Bb)K implies dim H = dim B,.

Since HC B, , it follows H =B, as required. Q.E.D.
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We have as a corollary

Corollary 2.4.3 A contains Cartan subalgebras.

Proof: The proof 1s lmmedlate from the theorem and the remarks

preceding'Lemma 2.4.1. Q.E.D.

2.5 Propertlies of Cartan Subalgebras

The problem we wish to.study is the one concerning the
conjugacy 6f\bartan subalgebras. Barnes [8] gives a successful
proof for solvable Lie algebras. We feel”that a simil;r result
could be obtained for a—solVable alternative algebras, but we have
not been succ§ssful. In any event, such a proof appears to

require the followlng two lemmas.

Lemma 2.5.1 Suppose H 1s a Cartan subalgebra of A and I

1s an ideal of A . Then (H+I)/I 1is a'Cartan.sﬁbalgebfa of

A/T .

Proof': For extensions of K of F we have (A/I)K - AK/IK
and ((H+I)/I)K = (HK+IK)/IKf; Consequently (H+I)/I is a _
Cartan subalgebra of A/T if and only if ((H+I)/I)K is a

Cartan subalgebra of (A/I)K . It follows we may assume F is

algebraically closed.

Since (H+I)/I = H/ENI , we have that (H+I)/I is a-

nilpotent. Thus by Theorem 2.3.3, LA/I((H+L)/15A=jﬁ,.is -

t
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nilpotent and if _ﬁo is the Flitting null component of A/I

_relaﬁive to L , then (H+I)/i < ﬁ.o .

By Lemma 2.4.1 there is a set of primitive idempotents

i : t
LT such that H =i§l Aii where 1 = e +.. . F€L

. Arrange ‘the e; o that ej,...,e.s ¢ I and € i qsres€y € I .

It follows (ey+I)+...+(e;r+I) =%, wnere 1 1s the unity or

A/I . Since A , if e; eI, % A CI.
j=1 *J 7

Let éi =e+l , 1= 1,...,t" . Using the argument

given in Lambeck [20] , we see that we can 1ift the éi to

idempotents in A, and it follows that the ém are palrwise

' A
orthogonal primitive idempotents in A/I . Let A/I = % Aij-
. ’ . iuj

be the Blercedecomposition of A/I relative to the éi , and

write By = (R e A/T : &s(éi,éi)m - 0} . By Theorem 2.3.3,
1

. o
we have (H+I)/I <A cnBy . As in the proof of Theorem 2.3.3
. i : )

=

if we choose % e N By and write £ =T 4. + ¥ &.. we can
i ii . 1+J. 1j :

show Qij =0 for i4 j, and it follows that B = (BL)/I .

Therefore . (H+I)/I is a Cartan subalgebra of A/I . = Q. E.D.

Lemma 2.5.2 Suppose I dis an ideal of A ,. &4 41s a subalgebra

of A containing 1 and such that I € Jc A, and J/I is a
Cartan subalgebra of A/I . If H is a Cartan subalgebra of

+J 5, then H 1is a Cartan subaigebra of A .

Proof: Since H 1is a Cartan subalgebra of J , H 1is a-nilpotent
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and contains 1 . Let AO and AO be the Fitting null compon-

ents of A and A/I respectively relative ﬁo LA(H) ‘and

L ,r((B+I)/I) . Since (H+I)/I is a Cartan subalgebra of
J/I  and since J/I 1is itself a-nilpotent, it follows that’
(H+I)/I = J/I , hence H+I = 7 and ﬁo - J/I . If x4I ¢ A,
ﬁheh- xed . But H is a Cartan subalgébfa of J and it
follows fhat X € H .‘u Consequéntly, AO = H and ‘H is a

Cartan subalgebré bf A . | S - R.E.D.

With respect to the conjugécy problem, we must be

content with\\

{

Theorem 2.5.3 ° Suppose F is algebraically closed and of

characteristic zero. If Hi and H2 ‘are two Cartan sub-

algebras‘of A , then there is an inner automorphism s e I(A)

such that ' Hi = HQS' : ‘ o
Proof: In §1.6, we defined the group I(A) of innér auto-
morphisms of A . From (5) in §2.1, we see that D(b,c) =
[Ly,L. ] + [Lb,RC] +‘LRb,RC] 1s in the fdeal Df(A)  of inner
derivations of the derivation algebra D(A) of A . Hence,
to apply Theorem 1.6.9, we must show that H, and H, each -

contain relatively open subsets Ol andﬂ Oé such that ,

T(Q, ¢ a) =A for all a € 0, , 1 =1,2 , where Q- is the
orbit of’ H; under I(A)
| | B t
By Lemma 2.4.1, we write Hy = T A;; where
| | | i=1 ** |

€15.--5€; are primitive idempotents'in Aii = Fei + Ni . Let



0, = {a e H toa=73oe+z; o ; F, 2z e N, and 113(a -Q )%O}.
If f(xl,...,xt? = T (Xi—xj? , 1t follows f(xl,...,xt? -

1d3.

f e F[Hl] and O is an open subset of H .

Let (2.1. 3) be the Pierce decomp081tlon of A rel-

ative to el,...,et . For by, € Ak& , k & & , and
a = z(ae; + Zi) € Ol , we compute, using Theorem 2.1.4,

b - b, .z

Py = (a e )bk& M 0 VA AT A

aD( €o Py

Since D(ek,b££> e D’(A) aD(e k’bkL) e T( l,a,) by the remarks
preceding Lemma 1.6.8. Define

- a&)I + Lz « R

S, . = {a .
k L

ke = ‘%

-

where I is the identity transformation on A .  Then the
above computations show b, ,S g ¢ e T( l,a) Now Sk& maps

Akz into itself since AkkAk& Ak& and Ak& L&‘E Ak& .

From §2.2, L and R are nllpotent hence L - R_. 1is
Zk. _ Z‘& Zk. ZL

nilpotent, and since a - a, £ 0 , it follows that S, 1s
invertible. Therefore A, C T(Q ;a) for k 4+ 4. 'By

Lemma 1.6.7, we have Hy < T(Ql,a) hence T(Ql;a) = A . _Tﬁﬁs
H; and O, satisfy the hypothe51s of Lemma 1.6.8. Similafly'
there 1is a relatlvely open subset O2 of H2 vsatls?ying the

hypothesis of Lemma 1.6.8. The proof is now immediate by

Theorem 1.6.9. | " Q.E.D.



CHAPTER THREE

JORDAN ALGEBRAS

4.1 Introduction

An algebra J over a field F 1s called a (commutative)

Jordan algebra if and only if [x,y] = (xg,y,x) =0 for all

elements x and y of J. From the definiﬁion, it is alear
that homomorphic images of Jordan algebras are Jordan algebras
and a direct sum of Jordan élgebras is a Jordan-algebra. Since
the commutator and associator are multiliﬁear, it follows that
JK 1s a Jordan algebra for all extensions K of F . Through-
out Chaptér Three, we will éssume our JordanAalgebrés'are'finite

dimensional.

~

In this section, we will givé the necessary theory of
Jordan algébras to develop a Cartan theory for thése'algebras.
Tn what follows, where proofs are not provided, the reader 1s

referred to Albert [2].
We begin by linearizing (xg,y,x) = 0 and obtain -
(l) J(W9XJY:Z) = (wx,y,z) + (xz,y,w) + (ZW3Y3¥) =0

Then computing 0 = J(x,y,w,z) = J(X,y,z,w) , We have

(2) D(w,x,y,z) = (W,XY,Z) - X(W,y,Z) - (w:x:z)y =0 .

As a consequerce of (2), we have that the map
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(3) =xD(a,b) = (a,x,b) x e J for all a,b e J

is a deriVation of J . AIn terms of right multiplication RX s
(3) implies that [Ré’Rb] 'is a derivation of J , and further-
mofe, by (2), we have [ﬁy,LRW,RZ]] = R(w,y,z) . Hence, the
Lie multiplication algebra L(J) of J° is R(J) + [R(J),R(J)]
where R(J) = {Ra :aeJd} . If D is an arbitrary derivation
of J , then for x e J , [R,,D] =R . Suppose D is an

inner derivation-of J . Then D =R+ %R ,R ] . If J
_ | S DU £ R , A
1

has a unity, it follows that x = O , since 1D = O . - Therefore,
for Jordan aigebras with unity the ilnner derivations are'

expressible in the form I D(bi,ci) by (3) .
i . : o

We next give

-

Theorem 3.1.1 Jordan algebras are power assoclative in the sense

that single elements generate an associative subalgebra.

In the Course of the proof, we note

(4) R4R ;=R R, i, = 0,1,...

a aJ aJ al

Also, we have

Theorem 3.1.2 The following are equivalent in J :

(i) J 4is nil
(11) J 1is solvable

(i1i) J is nilpotent
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Now suppose .e is an idempoﬁent of J . We compute
0 = J(a,e,e, e) = 2(ae- e)e - 3ae-e + ae . Conséquently;

(2R3 3R +R,) =0 and the transformation R, satisfied the
polynomial 21> " 2 + % = A(2x-1)(A-1) .  Thus the character-
istic roots of R, are among  0,%, and 1 . Tt follows that
J can be written as a vector space direct sum ' '

d

JO( ) + Jl(e) +. Jl( )- where JX( ) {x € J : xe = \X}
A = O,%, and 1. If xeJ , then we write x = (cerex - ex)

+ (4ex - be.ex) + (x + 2e1ek - 3ex)

Ir \J has a unity and (@yse-.5€, are a set of pair-
wise orthogonal idempotents whose sum is the unity of J , we

get a refined decomposition of J as a vector space direct sum:

’ ' S
(3.1.3) J = % J. .
o SSE

Iy = (e ) JlJ = J%(ei)ﬂJ%(ej} it 3.

This decomposition is called the Pierce decomposition of J

-relative to ej,...,e . 'We have

Theorem 3.1.4 If (3.1.3) is the Plerce decomposition of J.

relative to el,...,eS s then : ' o

(i} I35 €944 JiiJjj.= 0 i+ 3

. 2 .
gll} JlJJll S5 Ji3 S04y + 955 1 +J
(1) I3 5750 € Taxc Taa9qe =0 Iy = O

if i,3,k,4 are distinct. ' N
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Suppose J 1s semi-simple. Then J contains a unity.

Furthermore, we have

Theorem 3.1.5 A non-zero Jordan algebra is semi-simple if and

only if J 1s a direct sum”of simple i1deals.

Thus_the study of semi-simple Jordan algebras is reduced to the
study‘of simple algebras. IFr J is‘simplé and contains a
unity, then-in..the case when the characteristi¢ of F 1is 0 ,
j-’ id j, have a égmmon‘dimenéinn,
necessarily éreater than zero.

the corresponding Ji

If F is algebraically closed and (3.1.3) is the Pierce

decbmposition of J relative to a set of paifwise orthogonal

primitive idempotents e 584 5, We may argue as in the alter-

120
native case that if x € Jii , then x = ae, +n where a € F and

n is nilpotent. By McKrimmon [21], we have -

Lemma %.1.6 If F dis algébraidally closed gnd (3;1.3) is the

Pierce decomposition of' J relative to a set of bfimitive idem-

potents, then the Jii are almost nil.

5.2 The Universal Multiplication Envelope of a Jordan Algebra

In [16], Jacobson proved the analogue for Jordan

algebras of Corollary 2.2.8. We will now sketch the proof.

Suppose J 1s a finite dimensional Jordan algebra
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over F . We define inducﬁively Jy = J and J = qn-l®Jl5 g>1 .

Let T(J) be the associative algebra defined by
T(J) = J; @;2@...

and let S be the ideal of T(J) generated by elements of the

form

(1) x@® x° - x° ® x

: 2 2

(2) xy +2x®y ®x -y ® x“ - 2Xx ® Xy
where x,y € J . The associative algebra U(J) = T(J)/S is
called the universal multiplication envelope of .J . If i’ 1is

the canonical homomorphism from T(J) into U(J)., then the

restriction of i’ to J = Jq

U(J) . We call this map 1 , and if a e J , write ai>; a

defines a lineéf(map from J dinto

where a 1s the coset of a in u(J) .
From (1) and (2) we have the following identies in U(J):
(3) x® x“ =x"“®x
() 2% @ 7O X =78 x2 + 2x 8% x°

The analogues of Lemmas 2.2.1 and 2.2.2 now follow,

'and we state

Lemma 5.2.1 If p is a linear map from J 1into an assoclative

algebra V such that

(5) (x0)(x%p) = (x%p)(xp)



-
(6) 2(xp)(yp)(xp) = <yp}<x9p) + 2(xp) (xy0) - (=5}

then there is a unique homomorphism p* from U(J) into V such

that xip* = xp for all x € J .

Lemma 5.2.2 If K is an ideal of J and D 1s the ideal 1n

U(J) generated by Xi , then there exists an isomorphism of

U(J/K) onto U(J)/D. such that X+K 1s mapped onto Xx+D .

Furthermore, it 1s known that U(J) is finite dimens-
ional [14, page 519]. -
N ,
We now gilve

Theorem %.2.3. If I 1s a solvable ideal of J , then Ii

generates a nilpotent ideal in U(J)

Proof: The proof i1s by induction on the dimension of I ; and
we assume I £ O . By Penico [23], we know that there is an )
ideal I’ of J such that IZc I’ S I.. By the induction
hypothesis, I’i generates a nilpotent ideal I’ in U(J) |
and by Lemma 3.2.2,. U(J/I’) =U(J)/I' . Now suppose the'image
of I/I' generates a nilpoﬁent ideal in U(J/I') . Then by
the isomorphism noted above, Ii will generate e nilpetent iaeal

in U(J) . Therefore, 1t is sufficient to prove the theorem

for the case when I = O', since (I/I )2 =0 .

From the identities (3) and (4) we can prove the

following results [lo]
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(A) U(I) is nilpotent

.s€ .,€

e
is a basis for J , and k 1s é‘positivelinteger,

(B? If €158 is g_pasis for I and e a

-

then any monomial in U(J) of the form éj e By
- 1 2

in which k+m of +the Jj's are in_the_range
Q = {1,2,...,m} 1is a linear combination of monomials

of the form éi cee By el where 1
1 k

l,‘.'..,ik € Q.

| From (A) it follows that if I¥ ‘1s the subalgebra of
u(J) genera@ed by Ii , then I* is nilpqtenp. Suppose

(r*)? =0 . From (B) we have that any product of elements a
U(J) which include' p+m elements of I is zero. . Consequently,

if I 1is the ideal in U(J) generated by I* , (T)P™ - 0 .

. - o Q.E.D.

Corollary 3.2.4 If Jl is a subalgebra Qf J 5, I 1s a solwvable
ideal of Jy, C 1s the subalgebra of HQmF(J,J) generated by

R a € J; and T is the ideal of C- generated by R, » bel,

a 3

then C is nilpotent.

Proof': The map p : a - Ra is a linear map from Jl into C .

' In deriving (1) of 3.1, we note that p satisfied the hypothésis

of Lemma 3.2.1. Consequently the diagram

).

<
. TS p¥*
ll/[ S

U(Jy
1

2 ¢
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-is commutative where il 1s the natural map fromu Jl. into

U(Jl) . It follows that p* 1s onto C, and-by Theorem 3.2;3,

as Ii; generates a nilpotent ideal in U(Jl) , C is nilpotent.
- Q.E.D.

3.3 Cartan Subalgebras of Jordan Algebras

We will now apply the theory developed in Chapter One
to Jordan algebras. Since the development is'virtua;ly identical
with the alteynative case, we will furnish proofs only when the |
method does not follow by an obvious modification of th; alter-

native proof.

In this section, J will denote an n-dimensional
Jordan algebra with unity 1 where the ground field F has at

least N ‘elements, where N 1s the maximum of Qn_l and 2n+l .

We define

(l} A(xl,xg,xj) = XqXytXg = Xy XXy

and observe that A(xl,xg,x3) 1s a linear homogeneous element
in the free non-associlative algebras on the generators X1 5 Xg
and X5 over I . We also note that the maps S introduced

in §1.3 Dbecome xS(b,c)t= A(x,b,c) for all b,c € J-.

We now give

Lemma 3.3.1 If F 1is algebraically closed, then J 1s A~

nilpotent if and only if J 1is a direct sum of almost nil
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algebras.

Lemma 3.3.2 (Engel) J is A-nilpotent if and only if J is

A-nil.

Theorem 5.5.3 Suppose R 1is an A nilpotent subalgebra of J

containing 1 . Then . LJ(R) is nilpotent, and if J = JO @‘Jl

is the Fitting decomposition of J relative to L;(R) ,

(1) Jo is a subalgebra of J containing R

(ii} Jgdy € I

Moreover, if F 1is algebraically'closed,

(iii) Jo = N{B, : b e R}

-

Corollary 3.3.4 If F 1is algebraically closed, then H is a

Cartan subalgebra of J 1if and only if there is a set ei,...;ét

of palrwise orthogonal priﬁitive idempotents whose sum is 1 and
t ‘ - ) .

H =iEl Uii .

We can now prove

Lemma 3.3.5 For all a e J , Ba i1s a subalgebra of J .

Proof: The proof is patterned after the proof of Lemma 2.3.4,

By (4) in §3.1, we have that R, and R 3 commute
.- a a

for all 1 and j , hence we have



(2) s(a*,ad) = S(ad,a™) 1,5 = 0,1,...

1-2° 3

Computing D(x,a” “,a,a’) for i > 2 gives

(3) S(ai,aj? = S(a,aj?Rai_i + S(al~l,aj>Ra .

From (P-1) in the Introduction, we compute

(a%x,aT,ad) - (a%,xat,ad) + (aF,x,aT19) - a¥(x,a’,ad)

- (ak,x,al)aJ =0 . From (4) in §3.1, we have
(ak,xal,aJ) = (ak,x,al+3) = (ak,x,al)aJ =0 . Hence
‘(xak,ai,aJ) -‘\(x,a.l,a‘])ak = 0 and we have

1

(4). R ks(al;aJ) = S(al;aJ)R k iyj;k.l 0.
S a . . . -a

By an easy‘induction proof on 1 , 1> 2 , we can prove

. a,a = S(a,a . where
5) s(a,a") = 5(a,a") o,  wn
i-2 . -
: i-3 i-1 - 50 :
v, = L R, _.R + 2R i>2,R, =1 and if
1 520 gi-da a ! g

From (2) we have that S(a,ak) = S(a,a)cpk . Therefore,
i k
(6) S(a P ) =_S(a:a)¢i@k .

By (%), v, and @ commute with s(aP,a%) , hence

(7? S(ai;ak)m = S(a;a)m(miwk?m~.

If B; = {x e J: xS(ai,aJ)n =0, 1i,3 = 0,...,n} then from

(7) we have B,

— B¥ .,
a a

78.
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The rest of the proof 1s the same as the conclusion of

the proof of Lemma 2.3.4. Q.E.D.

Summarizing the above results, we have

Theorem 3.3.6 Let ©J be the class. of Jordan algebras such that

(1) if J e‘I:, then J contains a unity

(11) if J €% ,dim J =n , and F is the ground field, then

F has at least 2n+l elements.

Then A(x is ‘an Engel function for 7 .

12%¥p0%

3)

1

Applying Lemmas 1.5.3, 1.5.4; 1.5.5 and following the

proof of Theorem 2.4.2, we have

Theorem 3.5.7, H 1s a Cartan subalgebra of J 1if and only if

H is minimal Engel in J .

Corollary 3.3.8 J contains Cartan subalgebras.

We remark that we have the counterparts of Lemmas 2.5.1
and 2.5.2 for Jordan algebras. As In the alternative case, our
attempt to follow Barnes [8] in obtaining conjugacy results was

not successful. Again, we must be content with

Theorem 3.35.9 Suppose F 1s algebraically closed and of

characteristic zero. Ifh Hy and 5 are two Cartan subalgebras
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of J , then there is an inner automorphism s € I(J) of J such

that HlS = H2

_Proof: Using D(b,c) = [Rb,RC] as our inner derivations, the

proof proceeds identically with the alternative case. - Q.E.D.

Remark: It should be noted that if A 1s an alteynative”algebra;
then we can make A into a Jordan algebra AT by defining a

new product aeb of A by the equation aeb =-%(db + ba) .

Using A(xl’x2’x3) in A%, wexﬂightexpect to develop a Ggrtan
theory fbr al&efnétive algebras. ' We compute <X1°Xé)?x3 - »-
Xlo(XEOXB) = 2a(xl,x2,x3)‘+ 2A(xl,x2,x3) . Théreforé{ there is
no ieasonhto exﬁect that-the Cartan thebry for A _develqped in
Chapter Two arises from ilterating the associator in At

Remérk: Using the defining identities, we find that the Engel
functions are used for alternative and Jordan algebras are
identical. In the case of Lie algebras, a(xl,x21x3? = -X XX,
By virtue of Property 1.2.6, it follows that %(Xl’XQ’XB)' is an
Engel function for Lie algebras and that the Caftan'theofy
developed from this function coincides with the Qlassigél theory.

Thus we have the one function that gives the Cartan theory for. Lie,

Jordan and alternative algebras.
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3.4 A-solvable Jordan Algebras

_ Suppose J’ is a finite dimensignal JgrdanAalgebra
over a field .F, whére F ig algebraically.cloéed gnd Qf chgrf
acteristic zero. If J' is semi;simple in the classical sense,
then J’ has a unity 1’ and is'expressible as a direct sum of
. simple Jordan algebras (see §3.1). Let J Dbe one of these

simple summands.

Let 1 be the unity of J , and let I Ji. be the
. i<Jg .

Pierce decompo§ition of J relative to a set €15+ €, Qf
pairwise orthogonal primiﬁive idempotents whose sum is 1

Albert [2] has éhpwn that if 1 4 j , then T3 3 t 0 .and in fact
all the gy s i+ J have a common dimension‘ 5 . Furthermore,
each Jyj » i £ j , has an orthonormal basis, that is, a basis
Xl""’xé such that’ kaa = 0 isA k + £ , and xi = ei_+ ej
[2]. Of course, if t =1 , then J = F1 .. Therefore, we will

let t > 1

Consider J.. , 1 £ J , and let Xy 5 " be an element in

1J
. . 27

an orthonormal basis for ;ij . Consequently, Xij = e; + ej
Let y = e; ~- ey - We compute h ‘ -

gxij,y,y? = gxij,ei—ej,ei-ej? = -Xy

(Xij’xij’y? = (Xij’xij’ei-ej) =y .
Suppose p 1is an arbitrary positive integer. From the above
computations we see we may construct a 3p—tuple (zl,...,z_ )

"
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where the z. are either x,. or y such that A(p)(z senesZ )
i id S S zP "

= Xi o Similarly, we may construct a 3°-typle (Wy,...,w _)
iy : tL %P

such that A(p_)(wl,.. ,) =¥ . It follows that J is not

A solvable, henée J’ is not A-solvable.‘ We have shown

C W

Lemma 3.4.1 Let .F be anh algebraically closed field of

characteristic zero and J a Jordan algebra over 'F'i ‘ Then J
is semi-simple with respeét to'A—solvability if and only if J
is a direct sum of simple Jordan algebras, each orde of which has

degree greater than one. ' :

33992:. If J 1s semi-simple wlth respect to A—solvability, by
Propérty'l.Q.S, J 1s semi-simple in the classicai sense.
Consequently"J is a direct sum of simple algebras, and the above
calculation shdwsbthat at least one of these must have degree
greater than one (since simple Jordan algebras-of degree 1 over

F are associatiVe). The converse is immediate. . Q.E.D.
As a corollary, we have

Corollary 3.4.2 Let F and J Dbe as in Lemma 3.%4.1. If -J

is A-solvable, and semi-simple in the classical sense, then J

is a direct sum of copies of F .

In what follows J will denote an n-dimensional Jordan
algebra wi#h unity 1 overla field F where F 1is of chafacter—

istic zero. From (3), 83.1, we know that D(b;c) = [Rb’Ré] is
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e derivation of J for all b,c e J . If D(b,c)’ =0 for
' 1 )k

T is an automorphism

. [=-<]
some p , then exp D(b,c) = ¢

, D(b,c
ST k=0 _

of J .[18].

Albert [2] has shown that if X is an extension of F,
since char F = O‘; JF’ is- semi-simple in the classicgl sense"if
and'only if JK is semi-simple in the classical senée.v'.Since
D(b,c)k is multilinear for all k , we see 1t is sufficignt“to
‘ihvesfigate the nilpotenée of D(b,c) when F is algebraically’

closed.

“

We now prove

Theorem 3.4.3 If J' 4is an A-solvable subalgebra of J , then

the derivatioms D(b,c) , b,c € ' , of J are nilpotent.

Proof: By the remarks preceding the theorem, we see it is
sufficient to prove the theorem when F 1s algebraically closed.

Let us denote the classical radical of J° by 8(J°).

‘Case 1: S(J’) = 0 . By Lemma 3.%.2, there is a set of pairwiée
orﬁhogonaliprimitive idémpotents €155 €y eJJA ;u;h tbat

J' = Fe; @ ... @ Fe, . From the identity J(w,x,y,z) =0 _
[(l?,>§(3.l?],‘we éompute J(ei,ei,x,ej) = (ei,x,ej) { 2(eiej,x?ej)
-0 .If 145, it follows that D(ei,ej)_= 0 ,A-AQf-course, |
D(e;se;) =0 .  Thus for all b,c e ', D(b,c) = O .

Case 2: S(J') A0 . By the Wedderburn principal theorem for

Jordan algebras [23], we have J' = Ji'GDS(J’) where
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g/ = J3'/s(3) . Consequently by Corollary 3.4.2, Ji_:_Eel o

/

l . ° . .
...@Fe, where the e, are palrwise orthogonal primitive idem-
potents whose sum is the unity of J’ [20; page T2]. Thus

J'= Fe, & ... @FeS@S(J')

Let C Dbe the subalgebra of HomF(J,J) generated by
R, » & € J’ . Then the maps R , b € S(J") generate a nil-
potent ideal N in ¢ , by Corollary-5.2.4; Consequently,
if a e J° and“ b € s(J’) > D(a,p) = [R,R)] € N* ._'_From ”
Case 1;'we_see that D(éi;ej) 0 forall i and j . There-

- fore if a,b\g J and we write,

a =% ;€5 +ag ai,Bi e F

b =% Biei + bl al,bl § Sg; ?

-

it follows that D(a,b) = T akﬁz D(ek,e&) +T=TceQN" .

Consequently, for some p , D(a,,b)p =0 , and the derivations

are nilpotent as desired. A ’ Q.E.D.

As a consequence of this theorem, we have that if J
is A-solvable, the for all b,c € § , D(b,c) is nilpotent.
Supposé we let I*(J) be the grbup of aﬁﬁomérphisms'off J )
generated by eprD(b,c)>, b,c € J .. We have not been able to

answer the followiné:
(i) What is the relationship between I(J) and I¥*(J) 2
(ii) Are Cartan subalgebras of J conjugate under I*(J) ?

If the answer to (ii) is yes , it may be possible to use the tech-

niques given in Barnes [8] to improve our conjugacy results.



CHAPTER FOUR .

COMMUTATIVE POWER ASSOCIATIVE ALGEBRAS

4.1 Introduction

A commuﬁati#e algebra X over a field F_.is”called

power associative if and only 1f the subalgebra generated byw

each element of X 1s associative. Examples of such algebras
are the Jordan algebras studies in the previous chapter. X

is called strictly power associlative if and only if XK is

power assoclative for all extensions K of Fo. In this
chapter, we will let X denote a finite dimensional power
assoclative dlgebra over a field F where F has at least four
elements and characteristic different than 2 .

We note that (x°,x,x) = O is an identity in X .

Since F has at least fbur elements, we may linearize this

identity and obtain

2 3

(1) Yux.x° = 2(wx.-x)x + (wx“.x) + wx

and

(2) Hlwx-yz + wy-Xxz + wz.xy] = (WX.y + Xy-W + yW.X)z

+ (Xy.Z + YZ-X + 2X-y)W + (yz-w + ZW.Y + Wy-2Z)X

+ (ZWeX + WX.Z + XZ'W)y .

We begin our discussion by showing that solvable -

commutative power associative algebras are nilpotent [6]. We



define X; = X , and inductively X =-Xn_i ® X, . Let 'T(X)

be the associative algebra .d‘efj_ne.d ’I‘(X) = Xl o X2® o -
where.the vector space operations aré-aé usual, and mu;tipl;cation
is denoted by ® . Let S be the ideal of T(X) generated by
elements of the form o '

2 2 3

(3) 4x ®x°“ - 2x®x®x - xX“®x - x

(4) 4[x®yz +y ® xz + z ® xy] - [x®y +xy +y®x] ®z
- [xyz + yz:x + zx'y] - [yz +y®z +2Q®y] ® x

- {z ® X + X ®z + xz] ®y X,¥,%Z € X

The associative algebra U(X) = T(X)/S is called the tUniversal

multiplication envelope of‘ X . If i’ 41is the canonical homo-

morphism from T(X) into U(X) then the restriction of 1’ to

defines & linear map from X dinto U(X) . We call this

X = Xl'} .
map 1 , and if x € X , we write xi = X where X 1is the coset
of x in U(X) . From (3) and (4), we have the following

identities in . U(X)

(5) 43 @ x° = 2R @ X ® X - X2 ® % « %0
(6) 4[Xx @ FJZ + T O XZ +20%xy] =[X®Y +Xy +F ® x] ® z
+ (K52 + y2-X + 2X-7] + [J2 + 7 ©@Z + 20 F] ® X

+[z®X +XZ +x®z] @y .

The analogue of Lemma 2.2.1 now follows, and we state

Temma 4.1.1 Let p be a linear map from X Into an assoclatlve

algebra V such that
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(L) B(xe)(xp) = 2(xp)° + (x%0)(xp) + (x7p)

(11) 40(xp)(yz)e + (yp)(xzp) + (zp)(xyp)] =
[(x0)(yp) + (xy)p + (yo)(xp)1(2zp) + [Xy-2 + yz-x + zX-¥]p
+ [(yz)p + (yvo)(zp) + (2p)(¥p)](xp) +

[(zp)(xp) + (zx)p + (xp)(zp)1(yp)

Then there is a unique homomorphism p* from U(X) into V such

that Xxp* = xp for all x e X .
We also observe that U(X) 1s generated by Xi .
We now prove

-

Lemma 4.1.2 Let P be an arbiltrary assoclative algebra over

F and M a subalgebra of P such that P° C M 4 PM + MP .

k A -
Then for each integer k > 1 , P3 < MX 4+ B & »¥p 4+ pu¥p .

Proof: - [6] The proof 1s by induction on k , the result being
obvious for k =1

kel k ok ok ok o ok
In general, we have p” - p p° P> < p” P3P3v

k
Applying the inductlon hypothesis to P3 , we obtain

c ¥ 4 MFPPMFP 4+ PMEPOME 4+ PM PP where a,b,c and 4

are integers greater than 2 . Since P" CM+PM+ MP for
Ke3
n> 3, the above relation implies B3- c MHhipyEHlafitlp pfSHlp,

which completes the 1nductlon proof. Q.E.D.
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Lemma 4.1.3 If X 1s solvable and the dimension of X 1s 1,

then U(X) 4is nilpotent.

2

Proof: Since X = Fx where x° =0 , from (5) we obtain
x®x®x=0. Since X generates U(X) in this case, we
have (U(X))° =0 . - Q.E.D.

Lemma 4.1.4 If X 1s solvable, then U(X) 1is nilpotent.

Proof': The proof i1s by induction on the dimension n of X.
By Lemma 4.1.%, we assume n > 1 and that U(X') is nilpotent

for all solvéble algebras X' of dimenslon less than n .

Since X2 i X , there 1s an n-1 dimensional subspace
B such that X2 C Bc X, consequently B<aX . Since ‘B 1s

solvable, U(B) 1is nilpotent.

Let B* be the subalgebra of U(X) generated by Bi ,
and D = B¥ + B* ® U(X) + U(X) ® B* . We claim

(7) U(X) ® U(X) ® U(X) € D

S ince U(X)V is generated by Xi and X =B + Fw for some
w ¢ B, to prove (7), it is sufficient to show X ® ¥ ® z ¢ D

where x,y,z = B U {w} .

If x or z isin B, then Xx® y® z < D . There-
fore we may assume X = 2 = W . From (6) and the fact that

X2 € B , we have

WOFOWE= -2 OWOW-2n®W®YF (mod D) . -
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If ye€B, then w® y® we D, and if y =w , from (5) we
have wW® w® weD. Consequently (7) is wvalid.
Consider the dlagram

U(B)

J

- > B*
B 3 B

where J is the map from B into U(B) and 1 : X - U(X) .
Since 1 satiéfies the hypothesis of Lemma 4.1.1, 1t follows
there is a homomorphism j* from U(B) into B* such that
(bj)d* = bl . Thus J* 1s onto, and it follows B* 1s nil-
potent.  From (7) and iemma 4.1.2, 1t follows that U(X) is

nilpotent. ‘ o Q.E.D.

Theorem 4¥.1.5 If X 1s solvable, then X i1s nilpotent.

Proof: Let M(X) be the subalgebra of HomF(X,X) generated

by R, > a€X. The linear map p : X = M(X) where op(a) = R >
a e X, 18 a linear map from X i1nto M(X) which, by (1) and
(2), satisfiles the conditions of Lemma 4.1.1. 'Consequently,
U(X)\ ] . -
BN
i V\.\ p*
i SN
X 5 2 M(X)

1s commutative, and p* 1s onto. Therefore M(X) 1s nilpotent,

and by Schafer [25; p. 18], X 1s nilpotent. : "Q.E.D.
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Corollary 4.1.6 If x 1s a nilpotent element of X , then

Rx 1s nilpotent.

Proof: Since the subalgebra F[x] of X generated by x 1s
nilpotent, U(F[x]) 1s nilpotent. Consequently M(F[x]) 4is

nilpotent, and it follows that R, 1s nilpotent. Q.E.D.

We have éeen'that nll Jordan algebras are solvable.
' However, for an arbltrary commutative power assoclative algebra

X , 1t 1s not knowvif X nil implies X nilpotent.

| Lef\ e be an idempotent of X . From (1) we see that
Re satisfles the equation QRz - jRi + Re =0 . As.with Jordan
algebras, we write X as a vector space direct sum |
X = Xo(e) + X%(e) + Xl(e) where Xi(e) = {x e X: xe = ik}
i=0,3,1. Albert [4#] shows the following multiplicative
relations: Xi(e)Xi(e) E'Xi(e) , 1 =0,1, Xl(e?Xd(e) =0,
X%(G)Xb(e) c X%(e) + Xl(e) , and X%(e)Xi(é) c X%(e) + Xo(e)
We see these relations are weaker than in the Jordan case. We
say the idempotent e 1s stable 1f and only if
X%(e)Xo(e) glx%(e) and X%(e)Xl(e) c X%(e) . X 1s called

stable 1f and only 1f every idempotent of X 1s stable.

If X has a unity 1 and €5--+58, are palrwise
orthogonal idempotents whose sum is 1 , we have a refined decomp-

osltion

Theorem 4.1.7 [Albert] X 1is a vector space direct sum

= X%(ei) n X%(GJ) i 1J= J o

X = i;;j @Xij where X, = Xl(ei), Xij
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and
(1) X3%54 € %4y X;3%55 =0 147
(i1) xijxjkg X,y i+ 3,k jtx
(111) XiJ-qu = 0 p o i,J q#fi,J
(iv) X 4% 5 X 4+ XJ.J. i3

The decomposition in 4.1.7 is called the Pierce decomposition

of X relative to el,...,eS .

Fof\our Cartan theory, we can expect difficulty in not
knowing whether nil commutative power assoclative algebras are
solvable and in the fact that idempotents in X need not be
stable. Finally, it 1s known that 1if X 1s power associative

X need not Dbe power associative. To circumvent this difficulty,

K
we will assume in the rest of the chapter that. X is strictly

power associlative.

4, 2 Cartan Theory of Commutative Power Associative Al gebras.

In this séction, X will denote an n < » dimensional
commutative, strictly power associative algebra with unity 1
over a field F of at least 4 elements, char F +12 .

Thus the results of §4.l_are valid.. Our study begins with
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TLemma 4.2.1 If F 1is algebraically'closed and 1 1is the only

idempotent in X , then X 1is almost nil.

Proof: Using a recent result of Oehmke [22], if X is simple,
‘then X = F-1 and we are done. Therefbfe we assume X 1s not
simple, hence n > 1 . Let N be a maximal ideal in X where
N X . Clearly 1 ¢ N , and since 1 is the only idempotent
in X , 1t follows ﬁhat. N is nil. Therefore N 1is the nil

radical of X , and X/N 1s simple.

Let 1 be the image of- 1 in X/N .  We claim L is
the only ideﬁbotent in X/N . For suppose é =& + N dis an
idempotent in X/N . By Lambek [20, p. 72], we may 1ift 2 to

an idempotent e in X such that the image of e in X/N' is

g . But e =1 , consequently ﬁ = é "as desired. . By Oehmke

-

X/N = 72 , and it follows X = F-1 + N , or X -is almost nil.
Q.E.D.
As in the Jordan case, we define
(1) A(Xl’XQ’XB) = X XXy = XXXy

. We can now prove

Lemma 4.2.2 If X 1is nil and A-nilpotent, then X is nil-

potent.

Proof: The proof is by induction cn the dimension of X . We
may assume X 1s not associative, hence n > 1 .  Let Nl =

{g e X: (g,x,y) =0 for all x,y € X} be the nucleus of X .
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We observe, since X is commutative, if g e N, , then (x,g,y)
‘= (x,y,8) = 0 for all x,y ¢ X . Since X 1is A-nilpotent,

Ny + {0} . As N, 1is associative, N, is solvable.

For u € Nl » We note that uX=<X . If WX =X,
~since X is commutative, oo (wx)? = ux® . But uw =0,

hence Xn = 0 as desired.

If uX =0 for all u e N, , then N, X = O -implies

1 1

N.< X . Since dim'X/Nl <n , X/N; 1is solvable by the induction

1 1
hypothesis, Taus X is solvable, and by Theorem 4.1.5, X is

\'\
nilpotent.

If O +uX £ X, we treat X/uX similarly to conclude

X 1is nilpotent. : Q.E.D.

-

Lemma 4.2.3 If F 1s algebraically closed and X d1s A-nilpotent,

then X 1s a direct sum of almost nil algebras. If N 1s the

nil radical of X , then N 1s nilpotent.

Proof: The proof 1is identical to the proof given in Lemma 3.3.1,.

since the X in the Pierce decomposition of X relative to

1i

pailrwise orthogonal primitive idempotents are almost nil. That

‘N is nilpotent is an immediate consequence of Lemma 4.2.2.

Q.E.D.

As in the case of Jordan algebras, we define maps

S(b,c) Dby

(2) xS(b,c) = A(x,b,c) for all b,c e X .
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We now give

TLemma 4.2.4 If X 4is nil, then X is A-nil.

Proof: For x € X , we wish to show that S(x,x) 1is nilpotent.
Since x is nilpotent, the subalgebra of X generated by x ,
denoted by F[x] , is nilpotent. If M(F[x]) is the subalgebra
of HomF(X,X) rgenérated by R, , b€ F[x] , we have seen from

Corollary 4.1.6 that

- U(F[xI)
N A~
~. -
i ~ - p*
‘[ ~
i = ~ _ ,
N:J
Flx] > M(F[x])
- ) p .
commutes, where p : b - R, > b e P[x] . Since S(x,x) =
RR - R, 1isin M(F[x]) , it follows S(x,x) is nilpotent.
X .
Thus X is A-nil. R.E.D

We would like to show that the analogue of Lemma 3.3.2,
(Engel) holds in X . If we assume F ﬁas at least. on+l |
elements, we know it is sufficilent to study the prbblem when F
is algebraically closed. - If X 1s A-nil, we can write
X =23z Xii where the Xii are‘almost nil. But to-say that X

is A-nilpotent, we need the converse of Lemma, 4,2.3.
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Next we wish to discuss whether A-nllpotent subalgebras
of X generate nilpotent Lie algebras of linear transformations
of- X . We wiil'suppose that F is algebraically closed, and
that R 1s an A-nilpotent subalgebra.of X containing 1 .

Let C be the subalgebra of }HomF(X,X) generated by Ra , a € R./
By Lemma 4.2.3, there:is a set el,...;et of pairwise orthogonél
primitive l1dempotents such that R = Z'Fei + Ni”’ and N =% Ni
is nilpotent. Coﬁsequently, by Theorem 4.1.5, the subalgebra

N of ¢ generatéd by Rb , b e N, is nilpotent. Thus

there is an integer p such that (N’)® =0 . We have

\\
\

Temma 4.2.5 N’ @generates a nilpotent ideal of - C .

Proof': Let X = I Xij be the Pierce decomposition of X
i<J :

-

relative to €15+ 5€¢ - Hence Fe:.L + Ni-E-Xii . If x e X,

we write x =% X9 + i?j Xy 5 o and 1f a € R {.a = X ag e + g
a; € F, a; ¢ N, . Since R, is linear in a , it follows that

i 3

1

C is generated by R,, b € N , and Re s, i=1,...,t .
' 1

Let b e N and write b = % b, , by €N, . We observe

that x;4R, = Xiini and X 4R = xiJ.(Rbi + R.bJ) , 1 &3

ret o). 0P e x wnere () - % b§*’> , and let

! ’ - : )
Tl = Rb(l)...Rb<p) e N° . Then xiiTl = 0. since le =0 .

X.., i+ 3. Then x; LR =

Suppose O &+ X4 € i3



+(x:.b<l)

1)y L. (1)
BRI ES IR ET

+ (x

(1) (1) (
Xij(bil) + 0377 = (%3 0377 55 +
<Xijb§ )4 Writing T, = Rb(g)...Rb<p) we clgim‘

(%, .p\)) T

13°17 ) 3570 b(l)) T, =0 . Indeed, we have

= (x332577)43 75

(% o) 5575 = ("'((Xijb§l))jjb§2))jjb§2))'"bgp))-' But

o = (...((xijb§l))b§2))...bgp)) e X, +X . +X.. . We observe

that the componentlin ij is exactly (x..b l))..T . Since
)

the Pierce deéomposition is direct, (x,.b

Similarly, (xijbg.l))ii'l’2 = 0 as desired.
If T3 = Rb<3)...Rb(p) , We may prove in a s;milar
b(2)> T

manner that ((x..b§l>)..5§2)). Ty = ¢ov = ((x..b(l)) 1173

ijti Jigti Jits — ij°3 ‘1373

= 0 , and this process continues.

Hence by induction, for any k > O , we have

x, T =35(---(x,.0 ) where the summation is over

. . .- sDb . LT
ij71 ij ml ij mk)lg k
all possible comblgatlons of mq =1 or j, and Tk = Rb(k),..Rb(p).

Suppose. next that T is a product of R (1)
b b

t =1,...,p , and some R, 's. Clearly, XijT =0 if k f v
k :

v or k = jJ,

1l

or kX 4+ J for some k . Therefore, assume X

and that

where T’ = R ...R. . * -
(1) b(4)_ and ? b(4+1)?, . From the
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computations above, we have

\z (1 R
xg T = (%) 2(...(xijbél))ij...béz))ijT

where the summation is over possible combinations of m_ = 1 or j.

, a
Repeating this process by splitting T”; and continuing, we

conclude xijT = o .

What we have shown 1s that if T ¢ C and each term of
T contains at least p elements Rb s D e N , then xT = Z XiiT

4+ Tx..T=0. Thsif ae¢R and b e N , 1t follows that
i<y 4 :
AN
D
(R Ry )
s

] (RbRa)p =0 . As the ideal generated by N is
N* = N° + CN’ + N‘C + CN'C , 1t now follows that (N*)P? =0 .

i

Q.E.D.

-

We now have

Theorem 4.2.6 If R is an A-nilpotent subalgebra of X con-

taining» 1 , then LX(R) is solvable.

Proof': By the remarks in §1.4, we may assume that F is
algebraically closed. Hence, let R, N, N', N*, and ' C be as

defined in Lemma 4%.2.5.

Now if b e N, a € R, we see that S(a,b) and
S(b,a) € N*¥ .  Furthermore, S(ei,ej)S(a,b) and S(a,b)S(ei,ej)
e N*¥ , for the ldempotents ey and ej . Since '
[S(ei;ej)?s(ek;eL)] =0 it‘follows that if. T, T, e LX(Ri s
then [T;,T,] e N* . 'A; (N*)P = 0 , it follows immediately

that (LX(R))(QP) =0 . Q.E.D. .
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Theorem 4.2.7 Suppose K 1s the algebraic closure of F ,

and XK is stable. If R is an A-nilpotent subalgebra of X
containing 1 , then LX(R) is nilpotent, and if X = X, © X,

is the Fitting decomposition of X relative to- LX(R) s then

(1) X, is a subalgebra of X containing R

Moreover, if 'F =K , .then

(111) Xy=N {B, :-p € R}
Proof: The ﬁrggf-is ldentical with that of Theorem 3.3.J.

i

Q.E.D.
The followling example shows that for A-nilpotence,
~the analogue of Theorem 3.3.5 for general commutative power

associative algebras is false. . ~

Example 4.2.8 Tet X’ Dbe the algebra with basis u,f,g,h over

a field F whose characteristic 1s prime to 36. Let .X' be
commutatiﬁe, and the mulﬁiplication téble determined by the
following: Wl = u ,uf =f ,ug =328 , fg =h , and ail other
products zero. Albett [4] shows that X’ 1s power associative.
Let X be the algebra obtained from x’ by adjoining a unity

1. Then X 1s commutative and power assoclative.- - Let

v = 1l-u . Then uw and Vv are pairwise orthogonal primitive
idempotents, and Xll = Xi(y)m='Fui+ Ff , X, = X%(g) n X%(v? = Fg,

and X,5 = Fv + Fh . Clear;y R = Xy7 + X5, 1s an A-nilpotent
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subalgebra of X containing 1 . Now LX(R) is generated by
S(b,c), b,c € R. Thus S(f,v) and S(ﬁ,v) € LX(R) . We
compute g8(f,v)S(u,v) = 0 and g(S(u,v)S(f,v)‘=-%h . Con-

sequenfly, g[S(f,v),S(u,v)ﬂ = Q%h . By induction, we show °
g[[..,[S(f,v),s(u,v)];;..,S(u;v)],S(u,v)] = (—%)ph .

Therefore, there does not exist a positive integer vk such that

[LX(R)]k =0 , SO LX(R) is not nilpotent.
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