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A b s t r a c t 

Immersed fibres are a very useful tool for modeling moving, elastic interfaces that interact with a 

surrounding fluid. The Immersed Boundary Method is a computational tool based on the immersed 

fibre model which has been used successfully to study a wide range of applications including blood 

flow in the heart and arteries and motion of suspended particles. 

This work centres around a linear analysis of an isolated fibre in two dimensions, which pin­

points a discrete set of solution modes associated solely with the fibre. We investigate the stability 

and stiffness characteristics of the fibre modes and then relate the results to the severe time step 

restrictions experienced in explicit and semi-implicit immersed boundary computations. A subset 

of the modes corresponding to tangential oscillations of the fibre are the main source of stiffness, 

which intensifies when the fibre force is increased or fluid viscosity is decreased — this explains 

why computations are limited to unrealistically small Reynolds numbers. 

We also investigate the effects of smoothing the fibre over a given thickness, which corresponds 

to the delta function approximation that is central to the discrete scheme. The results can be 

applied to explore the accuracy of various interpolation methods in an idealised setting. 

The analysis is next extended to predict time step restrictions and convergence rates for various 

explicit and semi-implicit discretisations. The results are verified in numerical experiments. 

Finally, we introduce a novel application of the Immersed Boundary Method to the motion of 

pulp fibres in a two-dimensional shear flow. The method is shown to reproduce both theoretical 

results and experimentally observed behaviour over a wide range of parameter values. 
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C h a p t e r 1 

I n t r o d u c t i o n 

In modern times the belief that the ultimate 

explanation of all things was to be found in 

Newtonian mechanics was an adumbration of the 

truth that all science, as it grows towards perfection, 

becomes mathematical in its ideas. 

— ALFRED NORTH WHITEHEAD. 

The physical world is replete with examples of free surfaces, material interfaces and moving 

boundaries that interact with a surrounding fluid. There are interfaces that separate air and water 

(in the case of bubbles or free surface flows) and boundaries between two materials of differing 

physical properties (in porous media flow or mixing layers). Alternatively, the interface may be 

a rigid wall that moves with some specified time-dependent motion, or an elastic membrane that 

deforms and stretches in response to the fluid motion. 

One of the most challenging problems facing both modelers and computational scientists alike 

is how to handle the two-way hydrodynamic coupling between a fluid and an elastic interface or 

membrane that transmits forces to the fluid. Such problems are particularly common in living 

systems, with examples including the interaction of muscle tissue with blood in the heart and 

arteries; swimming motion of marine worms, fish and microorganisms; and locomotion of amoebae 

through inter-cellular fluid, to name a few. Peskin & McQueen remark [PM95]: 

It is appropriate to ask whether there is any common theme that unites the diverse 

problems that arise in the study of living systems interacting with fluids. The answer 

that immediately comes to mind is this: biological fluid dynamics invariably involves 

1 



Chapter 1. Introduction 2 

the interaction of elastic flexible tissue with viscous incompressible fluid. 

While the mathematical modeling of the interaction is a difficult problem in itself, another formidable 

task is developing a numerical method that solves these problems effectively and efficiently. In an 

excellent review article [Hou95], Hou identifies the salient issues that face investigators trying to 

compute solutions to free and moving boundary problems: 

• sensitivity to small perturbations, which leads to instabilities when naive discretisation 

schemes are applied; 

• singularity formation and topological changes; and 

• severe time-stepping constraints due to stiffness introduced by high order regularisation 

effects. 

Furthermore, he points out that a common feature in many fluid interface problems is an underlying 

physical instability that generates rapid growth in high frequency solution components in the 

absence of regularising forces such as surface tension or viscosity. 

Fortunately, topological changes can be ruled out for the elastic boundaries we are considering 

here: the fluid is incompressible and the boundaries are solid, and so there is no separation of 

boundary components or leakage that could cause a singularity to form. However, the magnitude 

and highly localised nature of forces generated by the elastic fibres also introduce a high level 

of stiffness in the problem. Consequently, the main difficulty in developing a numerical method 

for this class of problem is coupling the fibre motion with that of the fluid in a way that avoids 

spurious numerical instabilities and allows reasonable time steps to be taken. 

A diverse range of numerical methods have been developed for dealing with these and other 

difficulties. Among the schemes that have been applied to moving interface problems, the most 

common approach used has been a moving or adaptive Eulerian mesh technique in which the 

fluid grid is evolved during each time step to conform with the moving boundary. One common 

technique is local mesh refinement, where a finer rectangular mesh is used near the interface, while 
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a more efficient coarse grid is used in regions of the flow where the high level of refinement is not 

necessary for an equivalent level of accuracy. An example of this technique is the Adaptive Mesh 

Refinement algorithm, originally developed by Berger [Ber82] for hyperbolic problems and recently 

extended to handle incompressible flows [HB97, Rom96]. 

In contrast with this local strategy, there are also "global" techniques which adapt the entire 

grid to conform with the interface. Ohring and Lugt [OL89], for example, use a finite difference 

discretisation based on an orthogonal coordinate transformation to solve free surface flows — 

this technique has the advantage that a complex irregular domain is solved on an equally-spaced 

rectangular grid in "computational space." Skalak & Tozeren [ST82], on the other hand, apply a 

moving finite element technique to solve biofluid mechanics problems, wherein the finite element 

mesh is advanced within each time step to conform with a moving, deformable boundary. The 

main drawback of these moving mesh approaches is the extra expense and complexity of regridding 

all or part of the fluid domain in every time step. 

A method which avoids the issue of regridding altogether is the Level Set Method, developed 

by Osher & Sethian [OS88]. This scheme propagates the interface along with the solution by 

introducing an additional dependent function that is convected with the fluid: the interface is 

simply the zero level set of this function. This method handles the difficult problems of singularity 

formation and changes in topology in a natural way. However, the level set formulation lacks any 

knowledge of the location of individual material points on the interface and hence is unable to 

capture the stretched state of the interface, which is needed to compute an elastic force. 

The Immersed Boundary Method is a mixed Eulerian-Lagrangian scheme that combines the 

simplicity and efficiency inherent in using a fixed Cartesian grid to compute the fluid motion, along 

with the geometric flexibility of tracking the interface at a set of moving Lagrangian points. The 

key idea in this method is to replace the fluid-material interface with appropriate contributions to 

a force density term in the fluid equations. The internal boundaries are thereby eliminated and a 

simple, finite difference scheme can be used to solve the fluid equations, with the influence of the 
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interface relegated to an inhomogeneous forcing term that is distributed onto fluid points near the 

interface. 

The Immersed Boundary Method was originally developed by Peskin [Pes72] to simulate the 

motion of a heart valve in a two-dimensional fluid. The method has since been extended to three-

dimensional heart valve simulations [PM89, PM92] and has been applied to a wide variety of other 

biological problems including swimming motions of marine worms [FP88a], sperm [FF93, FM95] 

and biflagellated algal cells [Fau93]; aggregation of blood platelets [Fog84, FF93]; wave propaga­

tion in the fluid-filled cavity of the inner ear [Bey92]; blood flow in arteries [VY92, Ros94, Art96]; 

bacterial motion and chemotaxis in biofilms [DFG95, DFFG96]; and amoeboid locomotion [Bot96]. 

It has also been applied to non-biological situations, such as the flow of particulate suspen­

sions [SB91, FP88b]; interaction of particles in turbulent flows [Yus96]; and plasma simula­

tions [LIB95] where a solid body is treated as an immersed boundary. 

The method's main advantages are its simplicity and geometric flexibility, which account for 

its widespread use. The Immersed Boundary Method is very efficient due to its use of the Fast 

Fourier Transform in combination with an "alternating direction implicit" (or ADI) approach to 

solve the fluid equations, and it is easily vectorisable [PM89, FP88b], which makes 3D calculations 

feasible. The interface is modeled very simply using a data structure composed of "spring-like" 

links between adjacent points, which facilitates the handling of immersed boundaries of nearly 

arbitrary shape, size and configuration. 

On the other hand, the method suffers from some major deficiencies. Computational evi­

dence [LL97, Rom96] suggests that the method is only first order accurate in space due to the 

choice of interpolation scheme used to transfer quantities between fluid and fibre grid points [BL92]. 

Roma [Rom96] recently developed a two-dimensional implementation of the Immersed Boundary 

Method that uses a multi-level adaptive mesh algorithm to refine the fluid grid near the immersed 

interface. He achieved the same level of accuracy on a non-uniform mesh that was previously 

obtainable only with a uniformly fine mesh. LeVeque &; Li [LL94, LL97] developed an alternative 
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(but related) scheme, called the Immersed Interface Method, which attains second-order accuracy 

in space by replacing the interpolation between fluid and fibre points with modified difference sten­

cils across the boundary. It has been tested on a variety of stationary flows in two dimensions and 

recently extended by Li to 3D elliptic problems [Li97b] and time-dependent (Stefan-like) prob­

lems in one dimension [Li97a]. However, the Immersed Interface Method has yet to be extended 

to time-dependent problems in two or three dimensions. 

The Immersed Boundary Method does not avoid the numerical stiffness issue, and requires 

that extremely small time steps be taken for explicit (and also many semi-implicit) calculations. 

Even in two dimensions, the method is restricted to relatively viscous flows (with TZe on the order of 

several hundred) and three-dimensional simulations are only practical on supercomputers [PM93a, 

PM93b]. We will see later on that there is an analytical justification for the stiffness observed in 

computations, based on how the solution behaves when viscosity is small and fibre stiffness is 

large. These limitations are not a consequence of any particular choice of spatial discretisation 

in the Immersed Boundary Method, and would manifest themselves regardless of whether a finite 

element or spectral approach was used. Considerable effort has gone into developing versions of 

the method that better couple the fibre force to the motion of the fluid [TP92, MP93, FF93]. 

Nevertheless, an effective semi-implicit method with a corresponding efficient solver has yet to be 

developed, and many computations are still being done using a simple time discretisation that is 

explicit in the fibre force [DFFG96, Ros94, PM92]. 

Despite its shortcomings, the Immersed Boundary Method is still an extremely useful modeling 

tool. Its utility has been demonstrated by its unparalleled ability to simulate a wide range of 

complex physical phenomena. The power of the method is perhaps best demonstrated by its 

central role in the design of an artificial heart valve, which has led to the granting of several 

patents [MP90, MP91]. 

Because of the widespread use of the Immersed Boundary Method, it therefore comes as a 

surprise that there has been little analysis performed to date on either the model equations or 
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the numerical method. The limitations on the accuracy and efficiency of the scheme are well-

documented, and yet no satisfactory explanation has appeared in the literature. Our main goal in 

this work is to gain a better understanding of the behaviour of solutions to the underlying equations 

of motion for immersed boundaries. We will identify the stiffness inherent in the problem and use 

our insight into the mathematical structure of the solution to suggest improvements to the method 

that will counteract the stiffness and increase efficiency. 

We begin in Chapter 2 with a summary of the mathematical background on immersed fibres 

that has appeared in the literature. We provide an overview of the integro-differential equations 

governing their motion. Two mathematically equivalent formulations of the problem are given: 

one on which the Immersed Boundary Method is based; and the other in terms of jumps in 

fluid quantities across the fibre, which yields more easily to analysis. We present the Immersed 

Boundary Method algorithm and outline the vital role of the interpolating functions that transfer 

fluid quantities to fibre grid points and vice versa. 

Chapter 3 contains a linear analysis of a two-dimensional model problem which has appeared 

in [SW95]. We identify the effect of a single fibre on the motion of a fluid by singling out a set 

of discrete modes that are excited by the presence of the fibre. The results are used to make 

conclusions about the stiffness of the problem. We also investigate the effect of smoothing the 

fibre force, which is inherent in any discretisation of the problem, and relate this to the stiffness 

and spatial accuracy of the Immersed Boundary Method. The results and conclusions are verified 

in numerical experiments. 

The analytical results for the continuous problem are extended to time discretisations in Chap­

ter 4. We investigate the stability of explicit time-stepping, as well as the convergence of iterative 

methods based on two semi-implicit time discretisations. Computations are employed to illus­

trate our conclusions and to demonstrate the power of the analytical technique in developing and 

investigating modifications and improvements to the Immersed Boundary Method. 

In Chapter 5, we digress from the more theoretical treatment of immersed fibres in the previous 
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two chapters and introduce a new application of the Immersed Boundary Method to the motion 

of paper pulp fibres. The relevant physics governing pulp fibres is reviewed, and we identify the 

importance of understanding the motion of individual pulp fibres in the paper-making process. 

We then present a series of numerical simulations that demonstrate the ability of the Immersed 

Boundary Method to reproduce fibre behaviour observed in experiments. 

We conclude in Chapter 6 with a summary of the major results in this work, and the potential 

areas for future research. 



C h a p t e r 2 

I m m e r s e d F i b r e s 

It's good to express a matter in two ways 

simultaneously so as to give it both a right foot and a 

left. Truth can stand on one leg, but with two it can 

walk and get about. 

— FRIEDRICH N IETZSCHE. 

2.1 What is an "Immersed Fibre"? 

The original motivation for the development of the Immersed Boundary Method was to simulate 

the motion of heart muscle immersed in blood. With this in mind, we will summarise the basic 

assumptions of the model in terms of the application to cardiac fluid dynamics. However, it is 

important to remember that many of the assumptions we make can also be justified for other 

biological and non-biological flows where an elastic or contractile fibre or surface interacts with a 

surrounding fluid. 

In Peskin and McQueen's three-dimensional heart model [PM89], the muscle walls and valves 

are composed of an interwoven mesh of fibres, as is the arterial wall model of Rosar [Ros94]. 

Figure 2.1 shows a schematic representation of an immersed surface in three dimensions and its 

representation as a fibre mesh. The fibres are suspended within a Newtonian, incompressible 

fluid (the blood) and assumed to be neutrally buoyant, massless, and to occupy zero volume. 

Consequently, the fibres are also incompressible, and the fluid-fibre system can be regarded as a 

8 
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Figure 2.1: A three-dimensional immersed surface modeled as an interwoven mesh of im­

mersed fibres, with only five fibres shown. 

composite viscoelastic mater ia l . 3 . The main advantage to this model, as we wil l soon see, is that 

the fluid and fibre can be described by a single system of equations. Immersed fibres by themselves 

are not accurate physical representations of heart muscle fibres (or arterial wall fibres), since they 

have no mass or volume. It is only in combinat ion with its massive fluid component that the 

force-bear ing fibres can be thought of as actual physical fibres. 

It st i l l remains to describe how the immersed boundary interacts wi th the surrounding fluid. 

The fibres exert on neighbouring fluid particles a force whose direction and magnitude depend on 

the configuration of the boundary. One can think of successive points on a fibre as being connected 

by "spr ings" which t ransmit a force to the fluid that depends on the stretched state of the springs. 

To summarise, an immersed fibre is a massless, neutral ly-buoyant fibre that exerts an elastic 

The treatment of the fibres as an incompressible material has a further physical justification in the work of 
Ebin and Saxton [ES86, ES87], who showed that the equations describing an incompressible elastic body 
resemble those of an incompressible fluid. 
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force on the surrounding fluid. The force can be either a simple elastic function depending only 

on the configuration of the fibres; or more generally an active, time-dependent "contractile" force 

(which is certainly the case for heart muscle fibres). Immersed elastic structures of almost any shape 

and function can be constructed by interweaving and joining together fibres with varying elastic 

force properties, thereby allowing such diverse biological structures as heart muscle, flagellated 

cells, and amoebae to be encompassed by the same model. 

2.2 Mathematical Formulation for Immersed Fibres 

The main focus of this chapter is a study of the behaviour of solutions to the equations underlying 

the motion of immersed boundaries. Since any immersed elastic boundary is modeled as a collection 

of one-dimensional fibres, we will restrict ourselves to the study of a single fibre immersed in a 

two-dimensional fluid. 

For our two-dimensional model problem, let us consider a square domain Q = [0,1] X [0,1], 

periodic in both the x- and y-directions, that is filled with an incompressible, viscous fluid. 

Suspended within the fluid is a fibre, which can be described by a continuous curve T, as pictured 

in Figure 2.2. The motion of the fluid-fibre composite is governed by the incompressible Navier-

Stokes equations 

= -pu-Vu + i^Au- V p + F , (2.1) 

V-it = 0, (2.2) 

where u(x,t) = (u(x,t),v(x,t)) is the fluid velocity, p(x,t) the pressure, F(x,t) is the external 

force, and p and p, are the (constant) fluid density and viscosity. Let x — X(s,t) represent the 

position of the fibre, where s is a parameterisation of the fibre in some reference configuration.1* 

The fibre moves at the same velocity as neighbouring fluid particles, and so we can write 

CL- = u(X{s)t),t). (2.3) 

bTypically, s is taken to be the arclength of the fibre in an unstressed state, though as the fibre evolves in 
time s will not necessarily be a measure of arclength. 
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Figure 2.2: The two-dimensional model: a fluid domain, f2, which is divided into two parts, 

f2+ and f2~, by an isolated fibre F immersed in the fluid. 

One more element is needed to close the system: namely, an expression for the force F to 

couple the motion of the fluid and fibre in equations (2.1)-(2.3). Gravitational effects are assumed 

to be negligible since the fibre is neutrally buoyant, and so the external force F arises solely from 

the action of the elastic fibre. Let T(s,t) be the tension force in the fibre and assume that T is a 

function of the fibre strain 0: 

(2.4) 

It can be shown under further assumptions [PM89] that the local force density per unit length ds 

is given by the expression 

/(*,;) = A (Tr) (2.5) 

cNote that \dX\ = \dX/ds\ • \ds\, where \dX\ is the distance between two points on the fibre and \ds\ is 
the distance between the same two points in the reference configuration. If the reference configuration is 
unstressed, then (\dX/ds\ — 1) is a measure of the fibre strain. 

T = T 
d_X_ 
ds 
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where 
dX 

- = f i n ( 2 - 6 ) 
I ds I 

is the unit tangent vector to the fibre. For example, if we choose the tension to be T = o \dX/ds\, 

then the force density is simply 

Taking this form of the force is analogous to linking successive fibre points by linear springs with 

spring constant a and zero resting length — we will see a similar forcing function appearing in the 

linear stability analysis in Chapter 3. Since the force is zero everywhere except on the fibre, the 

fluid body force F can be regarded as a distribution and written compactly as the convolution of 

the fibre force density with a delta function: 

F(x,t) = J f(s,t)6(x- X(s,t))ds. (2.8) 

The two-dimensional delta function 8(x) = S(x) • 6(y) is the product of two Dirac delta functions. 

We can now write a coupled system of integro-differential equations for the motion of the fluid 

and fibre: 

Delta Function Formulation 

p-^- = -pu • V-u + pAu -Vp+ f(s, t) 5(x - X(s, t)) ds (2.9a) 
at Jr T 

V - t i = 0 (2.9b) 
3X_ 
m 

= u(x,t) 8(x - X(s,t))dx (2.9c) 
Jn 

Because of the central role of the delta function in coupling together equations (2.9a)-(2.9c), we 

will refer to these equations as the delta function formulation of the immersed fibre problem. The 

right hand side of the fibre evolution equation (2.3) has been rewritten in the equivalent form of a 

convolution of the velocity with a delta function, thereby introducing a symmetry between (2.9a) 
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and (2.9c) that will prove to be very useful in Section 2.3 from the standpoint of constructing a 

numerical scheme. It is also worth mentioning that even though the integrals in (2.9a) and (2.9c) 

look quite similar, they are fundamentally different — the first is a line integral that evaluates to a 

singular function, while the latter is integrated over a two-dimensional region and so is bounded. 

2 . 2 . 1 An alternate formulation 

The presence of the delta-function singularity in the formulation above leads us to recast the 

equations in an alternate form which is more amenable to analysis. Following the derivation 

in [PP93], we integrate equation (2.9a) across the fibre and assume the velocity is continuous, to 

obtain a series of "jump conditions" relating the solution on either side of the fibre: 

H = 0, (2.10) 

F ' I ™ ' V u ] = - ^ j , (2.11) 

f • n 
-M + ^-ln-VuJ = -fm, (2.12) 

I 8s I 
Here, [[•]] = (-)|r+ — (")lr- denotes the difference in a quantity on either side of the fibre, and n is 

the unit normal vector to the fibre defined by n • r = 0 (see Figure 2.3). The last jump condition 

reduces to 

-Ep] = - f e f ( 2 - 1 3 ) 

I ds I 
after using the fact that the velocity is incompressible and continuous across F. From (2.11) 

and (2.13), it is clear that both the pressure and the normal derivative of the velocity may be 

discontinuous across the fibre, even though the velocity itself is continuous. In fact, it is only 

possible for the tangential component of the normal derivative of velocity to be discontinuous, 

since incompressibility requires that the normal component be continuous. 

Since the fibre T divides fi into two subdomains, fi+ and fi-, on both of which the velocity 

is smooth, we may reformulate (2.9a)-(2.9c) as two separate Navier-Stokes problems with zero 

external force. Rather than handling the interaction between fluid and fibre using delta functions, 
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n 

T 

Figure 2.3: An illustration of the pressure jump across the interface, [[pJ = p\p+ — p|r-> 

including the unit normal and tangent vectors. 

we instead use the jump conditions and the original fibre evolution equation (2.3). The resulting 

system of equations will be referred to as the jump formulation of the immersed fibre problem: 

Jump Formulation 

mQ+un" (2.14a) 

i n f i + U f i - (2.14b) 

on r (2.14c) 

(2.14d) 

(2.14e) 

(2.14f) 

p—— = — pu • VIA + uAu — V » 
ot 

V u = 0 

^ = u(X(S)t),t) 

• H = o ' 

IXT • In • Vu]\ = -TQXT 
I ds I 
f n 
dX. - M = -
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2.3 The Immersed Boundary Method 

In this section, we will describe the basic form of the Immersed Boundary Method first proposed 

by Peskin [Pes72, Pes77] and which is still being used with minor modifications [PM92, DFFG96]. 

The details of more recent improvements, particularly those related to semi-implicit discretisations, 

will be postponed to Chapter 4 when they are needed. 

The Immersed Boundary Method (discussed briefly in the Introduction) is a mixed Eulerian-

Lagrangian finite difference scheme for computing the motion of immersed fibres. The fluid vari­

ables are defined on a fixed, Eulerian, N X N grid of points labeled Xij = (a;,-, yj) = (ih,jh), with 

spacing./i = jj in both directions. The fluid domain is doubly-periodic so that the points x0 and 

XN are identified with each other, and similarly with y0 and y^- The fibre position is a Lagrangian 

quantity which is discretised as a set of N\, moving points, so that the parameter s G [0,1] is taken 

at discrete locations S£ = £ • hb, where hb = j^. Both fluid and fibre quantities are sampled at 

equally-spaced times tn = n • k, where k is the time step. Figure 2.4 shows a typical fluid-fibre 

grid. 

We can now write discrete approximations of the fluid velocity, pressure and force 

U^j « u(xi,yj,tn) 

P^~p{xi,yj,tn) i,j = 0,1, . . . , TV- 1, 

F(xi,yj,tn) 

and the fibre position and force density 

X% ~ X(si, tn) 

f?~f(st,tn) e = o,i,...,Nb-i, 

for n = 0,1,.... In addition, the delta function appearing in (2.9a) and (2.9c) is replaced by a 

discrete approximation 8h (x), which is the product of two one-dimensional discrete delta functions 
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h(xuyj) = dh(xi) -dh(yj). 

The choice of dh typically used in immersed boundary computations is 

/ 7rr \ 
— 1 + cos— if r < 2h, 
4 ^ 2 /J 1 1

 ( 2 . 1 5 ) 
0 if |r| > 2h. 

which is pictured in its one- and two-dimensional incarnations in Figure 2.5. It will become clear 

in the algorithm to follow that Sh(x) acts to interpolate quantities between the fluid and fibre 

grid points. This particular choice of approximate delta function is motivated by a set of discrete 

Figure 2.5: The cosine approximation dh(x,y) to the delta function. 

compatibility properties which are discussed in Section 2.3.1. 

To simplify the notation when writing the scheme, we will make use of several finite difference 

operators on fluid grid quantities: 
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• first order one-sided difference approximations to the first derivative 

4>i+l,j - 4>i,j 
D + <P: 

D. 

, J ~~ h 
(f>i,j — <f>i-l,j 

x Y h J ~ h 

and the second-order centered formula 

D\ 

• similar definitions for the y-derivative Dyfaj, D~4>ij and Dy&j; 

• a centered difference formula for the gradient 

v f c ^ = ( i > S . ^ ) ^ , i . 

and the Laplacian 

Ah<f>itj = (D+D: + D+D;)<pij. 

Similarly, we can define one-sided difference approximations for the first derivative of fibre quan­

tities 

ipe+i - ipt 
h 

h 

We are now in a position to state the algorithm, which is a discrete version of equations 

(2.9a)-(2.9c). Assuming that the velocity C/"- and fibre position Xf - are known at time i n _ i , the 

procedure for updating these values to time tn is as follows: 
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IMMERSED BOUNDARY M E T H O D A L G O R I T H M (FE/ADI) 

STEP 1: Compute the fibre force density (assuming for simplicity that we have the linear force 

density function (2.7)): 

j ? = aDfDjX?-1 (2-16a) 

STEP 2: Distribute the fibre force to fluid grid points: 

= E ft • s ^ - ^J1) • h b (2-16b) 

e 

STEP 3: Solve the Navier-Stokes equations using a split-step projection scheme (based on that 

proposed by Chorin [Cho68]) 

STEP 3A: Apply the force, convection and diffusion terms using an alternating direction 

implicit (ADI) scheme [PT83, p. 66fi] 

{ jj11'1 — jjn<° 
- '•' + v?jl&M = / /Dj / r f ; ; ; 1 , (2.16,1) 

P { ^ t ^ S t + V^n°yU?f^J = pD+D;V?f, (2.16e) 

where velocity components in the convection terms are U = (U, V). Equation (2.16c) is 

an explicit formula for for £/™j°, while the next two equations are periodic tridiagonal 

systems for the intermediate velocities Un'1 and Un'2. 

STEP 3B : Solve for the pressure and the velocity at the next time step using 
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This simultaneous system of equations for [/"• and Pf- can be written in the more 

convenient form of a split-step projection procedure: 

A2hPTtj = | v f c • U?f, (2.16f) 

= ^ " ^ V ^ > ( 2 - 1 6 S ) 

in which 

• the Poisson equation (2.16f) is solved for the pressure î ™-, where A2h '•= V/j • V^, is 

a wide five-point difference stencil for the Laplacian operator; and 

• the computed pressure is used in (2!6g) to update the velocity field. The intermedi­

ate velocity U™f from the ADI step need not be incompressible, and so the pressure 

acts as a Lagrange multiplier to generate a velocity field £/"• that is divergence-free. 

This two-step process may be written more compactly as 

U^^VHiUff), 

where Vh represents the orthogonal projection operator onto the space of discretely 

divergence-free vector fields. Since the domain is doubly-periodic and the mesh is fixed 

and equally-spaced, the most efficient way to solve the pressure Poisson equation is by 

a Fast Fourier Transform (FFT) technique. 

S T E P 4: Evolve the fibre at the new local fluid velocity 

yn y« - l 

k 

L 

Since this algorithm applies an ADI step to diffusion terms and Forward Euler to the fibre force 

and position, we will refer to it from now on as the Forward Euler/'ADI or FE/'ADI method. 

This designation will also serve to distinguish it from other schemes that we will consider later in 

Chapter 4. 
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We complete this section with a summary of the main characteristics of the Immersed Bound­

ary Method: ' 

1. The fluid equations are solved on a regular grid, which makes coding the method relatively 

simple and permits fast solvers to be applied (namely, an ADI step for the convection and 

diffusion terms, in combination with an FFT solve for the pressure). Furthermore, the 

method is easily vectorizable [FP88b, PM89]. 

2. Delta functions are used to interpolate quantities between the fixed fluid grid and moving 

fibre points. In Step 2, the force generated at a single fibre point S£ is "spread out" to 

neighbouring fluid points that lie within a square of dimensions Ah x Ah centered on the fibre 

point (see Figure 2.6). Similarly, $h{x) is used in Step 4 to compute the velocity of a fibre 

point as a weighted average of the fluid velocities in a Ah x Ah neighbourhood. 

3. A careful choice of approximation 8^ is required to ensure volume conservation, but it is also 

tied to the order of the scheme. Even though the Immersed Boundary Method is formally 

second-order accurate in space, Beyer & LeVeque prove [BL92] that for a one-dimensional 

model, the cosine delta function (2.15) actually reduces the scheme to first order. There 

is computational evidence to suggest that the use of approximate delta functions limits the 

discrete scheme to first order accuracy in two dimensional fluid flow as well [PM89, DFFG96, 

Rom96, LL97]. 

4. Computational results show that the time step restriction for this semi-implicit scheme is 

quite severe [PM92, TP92]. This limitation is due to the fact that the fibre force is handled 

explicitly, and many variations of the method have been proposed that handle the force 

implicitly, several of which will be described in Chapter 4. 

To summarise, the main advantages of the scheme are its simplicity and geometric flexibility. 

While the fluid solver is definitely not state-of-the-art, the limitations on spatial accuracy and 

time step do not arise from any choice of solver but rather from the presence of the fibre and the 

use of approximate delta functions to smooth the fibre force. All things considered, the key role of 
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Figure 2.6: The approximate delta function is used to interpolate forces and velocities between 

fluid and fibre grid points in a neighbourhood of size Ah xAh: it "distributes" fibre forces to 

fluid points, and computes the velocity of fibre points as a "weighted average" of velocities 

at neighbouring fluid points. 
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the Immersed Boundary Method as a qualitative tool for exploring complex biological phenomena 

is still unmatched. 

2.3.1 Choice of discrete delta function 

The choice of an approximation to the delta function used to transfer quantities between the 

Eulerian and Lagrangian mesh points is an integral part of the Immersed Boundary Method. The 

particular choice of a cosine shape (2.15) is not unique, and we will see in Section 3.2, that the 

choice of smoothing function for 5(x) has considerable influence on the behaviour of the solution 

modes for the linearised equations of motion. It also has important consequences related to the 

accuracy to which the solution modes for the "smoothed" problem match those of the exact or 

"jump" problem in an asymptotic sense (also in Section 3.2). 

Peskin [Pes77, p. 230-232] presents a list of discrete compatibility conditions that should be 

satisfied by the approximation dh(x) in the Immersed Boundary Method. The function dh(x) is 

required to take the form 

where <f>[r) is a function that satisfies the following properties: 

I. <f>(r) is continuous : so that the coefficients of the interpolation between fluid and fibre 

points appearing in (2.16b) and (2.16h) vary continuously as the fibre moves across fluid 

mesh lines. 

II. cf>(r) = 0 for |r| > 2 : the support of the delta function must be finite in order that the cost 

of the Immersed Boundary Method be kept reasonable. Without this assumption, each fluid 

point would interact with every point on the fibre (and vice versa), and the computational 

cost would be prohibitive. The choice of two mesh points (that is, |r| < 2) for the width of 

support is the smallest integer that allows the remaining two properties to be satisfied. 

III. E i (even) Hr - * ) = £ < (odd) Hr ~ *) = \ for a 1 1 r : one consequence of this property is 

that <Kr — i) = 1 for all r, which guarantees that constant functions are interpolated 
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exactly by dh (this has the physical interpretation of conserving momentum when applied 

to force interpolation in (2.16b)). The motivation for the even/odd distinction is specific to 

the use of the wide stencil A2/1 for Chorin's projection scheme in (2.16f), and ensures that 

contributions from the disjoint even and odd sub-grids are equal. This avoids oscillations 

that would otherwise be generated when interpolating the force. 

IV. E ; [<f>(r - i)f = C for all r : where C is a constant. This property ensures that 4>(r\ — 

i) 4>{r2 — i) < C for all r\ and r2 (after applying the Schwarz inequality), which is analogous 

to the physically reasonable requirement that when two fibre points interact, the effect of 

one boundary point on the other is maximised when the points coincide. It can be shown, 

by setting r = 0 in II-IV, that C - §. 

The sums in the above are taken over all integers i. 

The cosine function (2.15) can be shown to satisfy all of these properties, with 

1 /- . /^ 7 r r N\N\ 
f r ) = < U V 1 +

 c o HTJJ ' i f i ^ 2 > 

0, if |r| > 2. 

However this choice is not unique, and Peskin and McQueen have derived an alternate approxi­

mation [PM95] which satisfies the additional property 

V. 2~2i(r ~ 0 <?Hr — i) — ® for all r : which ensures that linear functions are interpolated ex­

actly by 8h (with the physical implication that angular momentum is conserved when apply­

ing forces to fluid points). 

This last property, in combination with I-IV above, uniquely determines the following function 

^ (3 - 2|r| + V 1 + 4 l r l - 4 r 2 ) 1 if |r-| < 1, 

Mr) = { ^ ( 2 - |r|), i f l < | r | < 2 , ( 2- 1 7) 

0. i f 2 < l r l . 
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The function <p2(r) is plotted in Figure 2.7 alongside the cosine approximation, from which it 

is clear that the two are nearly indistinguishable. It is because of this that Peskin & McQueen 

remark [PM95, p. 273]: 

[the change in delta functions from 4>c(r) to 02(r)7 is n°t likely to have any practical 

effect on the computed results. We have gone ahead and made the change nonetheless, 

since it turns out that <f>2(r) is slightly cheaper to compute than (j)c{r)i and since it is 

satisfying to have &h uniquely determined by a reasonable list of axioms. 

1 
2 

0 

- 2 - 1 0 1 2 

r 

Figure 2.7: The cosine delta function 4>c plotted alongside the function <f>2 that satisfies the 

additional property V . 

Another form of <f> that satisfies a similar set of properties (with a reduced radius of support 

equal to 1.5, and no even/odd distinction in III) was derived by Roma [Rorn96]. The corresponding 

approximate delta function is applicable to computations on a staggered marker-and-cell (or MAC) 

grid, where the problem of decoupled pressure modes inherent in Chorin's projection scheme is 

not an issue. 

Something which has not been considered to date is the discrete second moment condition 

VI. Xw(r — ^)2 <Kr — i) = 0 for all r : which guarantees that quadratic functions are interpo­

lated exactly by the corresponding 8h- This is the discrete analogue of the continuous second 
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moment condition that we will encounter in Section 3.2.2, in relation to accuracy of the 

interpolation in the continuous setting. 

To find a discrete delta function that satisfies the additional property VI, we must increase the 

radius of support from 2h to Sh. We can show with the help of M A P L E [C+91] that properties 

I-VI uniquely determine the following function: 

r = < 

12' 
748r2 - 1560|r|3 + 500r4 + 336|r|5 - 112rc 6\ 2 

1. „ 7 2 7 . . 21 3 . . . . 
- H r H r H finew ( H - 1) , 
6 8 121 1 16 2 Y V l 1 ; ' 

1 , ,3 3 2 23. . 9 1 , . . . n . 
M + - r 2 r H h - 4>new (k - 2), 

121 1 4 121 1 8 2 V l 1 ; 

0, 

if |r| < 1, 

if 1 < |r| < 2, 

if 2 < |r| < 3, 

if 3 < 

(2.18) 

The graph of 4>new is displayed in Figure 2.8. It is clear from an order of operations standpoint 

0.75 

s 

0.5 

0.25 -

-1 0 1 

Figure 2.8: The delta function <j>new with smoothing radius 3, that satisfies the properties 

I-VI. 

alone that <^>new(r) is more expensive to compute than any of the above-mentioned delta functions. 

Moreover, a more significant cost increase is engendered by an increase in the number of points over 

which the interpolation is performed from 5 2 = 25 to 72 = 49. We will see later in Section 3.2.2 

that there may be an improvement in the accuracy of the scheme by using this more expensive 
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alternative. Whether or not the increase in accuracy is worth the extra computational effort is an 

issue that will be investigated in computations. 

There has been some work done by Beyer & LeVeque [BL92] to increase the spatial accuracy 

of a one-dimensional analog of the Immersed Boundary Method to second order. They show that 

the approximate delta function must satisfy one-sided discrete moment conditions. An extension 

of this approach to two dimensions leads to the Immersed Interface Method [LL94], which replaces 

the delta function interpolation by modified difference stencils, with coefficients that are carefully 

chosen to interpolate the jump conditions based on truncation error expansions. 

2.4 Choice of Parameters 

Since the Immersed Boundary Method is so closely tied to biological applications, a description of 

the scheme and the underlying mathematical model would not be complete without a summary 

of the typical values of physical parameters appearing in the model. Furthermore, there are very 

standard computational test problems which appear over and over again in the literature, and so 

we present characteristic values of the numerical parameters as well. 

The fluid within which the fibres are immersed is typically very similar to water. In studies 

of marine worms [FP88a] and flagellated cells [Fau93, FM95] in water, and blood flow in the 

heart [Pes77] and arteries [Ros94], the fluid is assumed to have density p = 1 g/cm3 and viscosity 

fj, = 1 g/cm • s. The fibre is taken to have a force with stress parameter o in the range 10,000-

250,000 g/cm-s2. The fluid domain is a square with sides of length 1-5 cm and periodic boundary 

conditions are applied in both directions.d 

The choice for the fluid viscosity requires some explanation. The viscosity of blood is approx­

imately 0.04 g/cm • s, which corresponds to a flow with Reynolds number Tie approximately equal 

to 300, when combined together with a characteristic length of 3.2 cm and velocity 3.7 cm/s. This 

'This particular choice of domain and boundary conditions is reasonable for many applications and allows 
the use of fast solvers for the fluid equations. 
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choice of parameters is justified by Peskin [Pes77] for the human mitral valve. He then states that 

at this Reynolds number the problem is computationally intractable, since the time step required 

for stability in the numerical scheme decreases as Tie increases.6 To avoid this problem, the pa­

rameters are modified so that the Reynolds number is scaled by a factor of 0.01 to Tie = 3. This 

change is justified physically by Peskin as follows: there is a wide variation in Reynolds numbers 

for mammalian hearts (in the range 1-1000) and yet many are approximately scale models of each 

other. Consequently, the flow fields should not be very sensitive to the Reynolds number, and 

one can expect qualitatively reasonable results even though the viscosity is outside of the physical 

range. 

We will now give a brief summary of the numerical parameters we will use in computations. 

The fluid grid spacing is typically taken to be of dimensions 64 x 64 with the fibre discretised at 

128-256 points (which varies depending on the fibre configuration). This choice of N = 64 and 

Nb = 128-256 ensures that there is adequate resolution of the fibre relative to the fluid grid for 

the interpolation stages; namely, that there are at least two fibre grid points for every fluid cell 

(i.e., hb < \h), while also not choosing hb so small that the fibre is over-resolved. The typical 

time step used for a calculation is k « 10 - 4 , but depends on the choice of N and the physical 

parameters. The physical and numerical parameters that will be used in computations in the 

remainder of this thesis are summarised in Table 2.1 below. 

eThe actual dependence of the time step restriction on the parameters will be discussed in detail in Chapters 3 
and 4. 
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Parameter Description Value or range 

— domain size 1 — 5 cm 

<7 fibre stress l - 250 x 103 g/cm-s2 

P fluid viscosity 1.0 g/cm • s 

P fluid density 1.0 g/cm3 

N # of fluid grid pts. 64 

Nb # of fibre pts. 128-256 

k time step 10~5 - 10~3 

Table 2.1: Typical values of physical parameters used in immersed boundary computations. 



C h a p t e r 3 

L i n e a r S t a b i l i t y A n a l y s i s 

An approximate answer to the right problem is worth 

a good deal more than an exact answer to an 

approximate problem. 

— JOHN TUKEY. 

As mentioned in the Introduction, a great deal of effort has gone into improving the Immersed 

Boundary Method and applying it to various physical problems. However, comparatively little 

work has been done on analysing the behaviour of solutions to the underlying equations of motion. 

LeVeque and others [LPL85, LPL88] applied a Fourier transform technique to find an explicit 

solution to a two-dimensional immersed boundary model of wave propagation in the basilar mem­

brane, which is suspended in the fluid-filled cavity of the inner ear. They used a variation of 

the immersed fibre equations that was simplified in two ways: the fibre position is described by a 

vertical displacement function y = h(x,t), so that tangential stretching of the fibre is neglected; 

and the pressure jump is taken to have a special functional form, justified by the physics of the 

problem. Fogelson [Fog92] has also applied a similar technique to determining the stability of the 

elastic links between platelets in a model of blood clotting. 

In this chapter we will use an approach akin to that used in [LPL85, LPL88] and [Fog92] to 

perform a linear modal analysis of the immersed fibre problem in a more general form. It is not 

possible to solve the full problem explicitly, but we are able to obtain useful information about the 

stability and conditioning of fluid flows containing immersed fibres, which relates to the stiffness 

observed in immersed boundary computations. We will proceed in two stages, first by considering 

the exact formulation of the problem, and then introducing smoothing effects with approximate 

30 
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delta functions. The analysis for the exact problem, which is based on the jump formulation, has 

already appeared in [SW95], though we have made several minor modifications and generalisations 

in the discussion to follow. 

3.1 Linear Stability of the Jump Problem 

Consider a portion of the fluid domain on which the immersed fibre is approximately flat, labeled 

as QQ in Figure 3.1. Suppose that the fibre lies at equilibrium along the horizontal line y = 0, 

x=0 x = l 

Figure 3.1: The two-dimensional fluid domain Q with a subdomain CIQ on which the fibre is 

approximately flat. 

and that the current fibre position is a small perturbation from this rest state. For the purpose of 

isolating the influence of the fibre on the flow, we extend the boundaries of Qo to infinity in the 

y-direction. We can justify this modification of the fluid domain in three ways: 

1. the important dynamics that distinguish fluids with immersed fibres from those without 

should occur in the region near the fibre; 

2. there are no non-trivial discrete modes of Stokes' equations without an immersed fibre on a 

domain of infinite extent, and so we expect to be able to pinpoint modes associated solely 

with the fibre; 

3. the solution modes that we are most concerned with (that is, which have the most effect on 
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stability) are those with the largest wavenumber, and these are precisely those modes that 

are least affected by the presence of boundaries. 

A common form of the fibre tension used in immersed boundary computations [TP92, PP93] 

is T — T(\dX/ds\ — 1) with T(0) = 0, corresponding to a fibre which is slack in the reference 

configuration \dX/ds\ = 1. In actual computations, however, the fibre is almost always under 

stress except for possibly isolated instants of time. Hence, we choose an equilibrium state defined 

by \dX/ds\ = 6 > 1, around which the solution is linearised by supposing a perturbation of the 

form 

(refer to Figure 3.2). We also make the linearity assumptions that £, rj, u and their derivatives 

X(s,t) = (6s + Z{s,t), V(s,t)) (3.1) 

equilibrium 
state x = (es,0) 

L 
O fibre points (equilibrium) fiber 

x = X(s,t) • fibre points (evolved) 

Figure 3.2: Fibre configuration for the linear stability analysis, 

are smal l , at least for some finite t ime. 
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The linear versions of equations (2.14a) and (2.14b) are simply Stokes' equations 

du 
P~dt = M ~ P 

V u = 0, 

while the fibre evolution equation (2.14c) becomes 

dX 
dt u(0s,Q,t). 

(3.2) 

(3.3) 

(3.4) 

Differentiating (3.1) with respect to s and dropping the nonlinear terms yields 

ds ~' + ds' ds)' 

dX 
ds 

+ 
+ 

ds 

ds + 
dn 

which may then be used to obtain the linearised tangent vector (2.6) 

de 
+ ds' ds 

ldrj 
eds 

Expand the tension T from (2.4) in a Taylor series about the equilibrium state \dX/ds\ = 6 to get 

dX T = T{e)+T'{6) 

« T ( * ) + T ' ( * ) g . 

ds 

The above expressions for T and r may be substituted into (2.5) to obtain the linear force density 

(3.5) f - \ a t d s ^ ' a n d ^ ) ' 

where an :=T(9)/9 and at :—T'(9). We make the physically reasonable assumption that the fibre 

tension is an increasing function of the fibre strain, which for the linear force function amounts to 

taking <7n > 0 and at > 0. The following physical interpretation may be given to the two tension 

parameter values: 
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• crn, the normal stress coefficient, represents a constant tension in the fibre which (because of 

its positive sign) acts to restore the fibre to the horizontal whenever any portion is displaced 

vertically from its equilibrium state. Taking an = 0 corresponds to a fibre which is slack in 

its reference state. 

• at, the tangential stress coefficient, measures the effect that changes in the length of the fibre 

have on the tension; this parameter is also positive, since stretching (|̂ f- > 0) or compressing 

(|^| < 0) the fibre amounts to increasing or decreasing the tension. 

The jump conditions (2.14d)-(2.14f) then reduce to 

M l = 0, 

M = 0, 
du o2i 

OS2 

d2n 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The linearised version of the immersed fibre problem is now given by equations (3.2)-(3.9). 

3.1.1 Derivation of the dispersion relation 

To isolate the solution modes associated with the immersed fibre, we look for two separable solu­

tions to the linearised problem of the form 

u 

v 

P 

v(y) 

p(y) (3.10) 
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one on each of the subdomains and Q0 . The wavenumber a is a real, positive number,a and 

i = v7—l" is the imaginary unit. By substituting (3.10) into (3.2)-(3.3) we obtain 

d2 

pXu = [i ̂  — a2j u — iap, (3-11) 

d2

 2 \ ^ dp 
p x d = » w - a ( 3 - 1 2 ) 

C a « + ^ = 0. (3.13) 
dy 

We can then form the linear combination ia • (3.11) + ^(3.12) to get 

X + t i a V a U + d y ) = a p - ^ 

the left hand side of which is zero by (3.13), leaving a Poisson equation for the pressure 

P^-a2p = 0. (3.14) 

After imposing the requirement that p be bounded as y —> ±oo, the solution is determined on 

either side ("±") of the fibre to be 

£±(y) = A^e^y (3.15) 

where A^1 are as yet undetermined constants. We then substitute this expression for the pressure 

into the velocity equations (3.11) and (3.12) to get 

tr^y) = B±e^ - ^•A±e^ay, (3.16) 

v±{y) =C±eTPy ±~A±e^ay, (3.17) 

where we have introduced the additional parameter /3 defined by 

aThe a = 0 case can be ruled out as it leads to the trivial solution. Furthermore, a symmetry argument can 
be used to show that a < 0 leads to the same dispersion relation as for positive wavenumbers. 
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for convenience of notation. We assume that Re((3) > 0 and (3 / a in the above derivation.13 The 

fibre unknowns £ and fj can then be found by substituting (3.16) and (3.17) into the expressions 

for the interface position 

f = l B + - J ^ A + , (3.19) 

;A+. (3.20) 

A " pX2 

We are now in a position to find an explicit form of the solution, provided that the coefficients 

A±, B± and C± can be determined. After applying the incompressibility condition (3.3) to the 

velocities on either side of the fibre, as well as the four jump conditions (3.6)-(3.9), we obtain a 

homogeneous system of six linear equations in the six unknown coefficients: 

-ia. 
pX 
a 

ipa." iator 
pX ' pX2 

_ i _ 0 n ( y i 

pX2 . 

ia 
p~X 
a 

ipa 

7 A " 

i 

0 

0 

-p/3 <rta 

ia 

0 

- 1 

0 

-p(3 

0 

0 

ia 

0 

1 

0 

A 

-P 

0 

0 

- 1 

0 

0 

0 

p 

A+ 0 

A~ 0 

B+ 0 

B~ 0 

C+ 0 

c~ 0 

(3.21) 

To ensure that there exists a non-trivial solution, we require that the determinant of the system 

is zero, which after some manipulation reduces to the following expression 

0. (3.22) 

Sn (/?) — normal modes St (/?) — tangential modes 

This is a dispersion relation, that gives values of the exponential time constant X (via (3.18)) in 

terms of the wavenumber a and the other parameters. 

An important consequence of the linearisation process is that the modes corresponding to the 

normal and tangential motion of the fibre are decoupled. Of the two factors in equation (3.22), 

b W e exclude the case /? = a (that is, A = 0) because then 5 * = C± — 0 and we are left with the trivial 
solution. 
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the first, Sn((3), depends on on only and thus encompasses the normal motion of the fibre; St{(3) 

on the other hand corresponds to tangential motion. To illustrate this decoupling, we can fix the 

parameter values and solve explicitly for the coefficients A±, 5 ± and C * . We choose p = p = 1, 

a = 2n and an = at = 20n, for which there are four admissible roots of the dispersion relation0: 

that is, four roots with Re{(3) > 0, corresponding to two complex conjugate pairs. The four 

solution modes are pictured at time t = 0 in Figures 3.3 and 3.4, which include for each mode a 

vector plot of velocity and a surface plot of the pressure. Based on the mode plots, we can make 

the following observations: 

• The velocity vector plots of the two normal modes clearly illustrate a tendency for the fluid 

near y = 0 to move in the vertical (or normal) direction. Furthermore, the velocity appears to 

be smooth, while the corresponding pressure plots have a discontinuity at the fibre location 

y ~ 0. This is physically reasonable, as it is the pressure jump across the fibre which 

generates the normal motion. 

• The second set of mode plots exhibit a velocity that moves tangentially to the fibre near 

y = 0. The pressure for these two modes is continuous, whereas the velocity appears to be 

non-smooth near the fibre. Hence, these are the tangential modes which arise from the jump 

in the tangential component of the normal derivative. 

3.1.2 Stability results 

To investigate the stability of the solution modes, we need to solve the dispersion relation for /? 

given the wavenumber and the other parameters. We can then easily compute the corresponding 

values of the exponential time constant A = p/p([32 ~ a2)t which embodies the behaviour of the 

solution in time. The growth or decay character of solutions is given by the real part of A: if 

Re(X) < 0 for all fibre modes, then the modes decay in time and are stable; otherwise, solutions 

are unstable. The oscillatory behaviour of the modes, on the other hand, is governed by the 

cWe will see in Section 3.1.4 that these parameter values are typical for physical problems, and so the four 
solution mode plots are representative of what is seen in actual computations. 
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5 

(c) Velocity (normal mode 2) (d) Pressure (normal mode 2) 

Figure 3.3: Plots of normal solution modes for the parameter values p = p = 1, <rn = 207r, 

o = 2TT, t = 0. 
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5 

(a) Velocity (tangential mode 1) 

5 

(c) Velocity (tangential mode 2) (d) Pressure (tangential mode 2) 

Figure 3.4: Plots of tangential solution modes for the parameter values p = p — 1, <7T = 207T, 

a = 2TT, t = 0. 
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imaginary part of A. The question of whether or not the fibre modes are stable is equivalent to 

showing that all roots of the dispersion relation satisfy Re(X) < 0. 

Before moving on to a discussion of stability, it will prove helpful to write the dispersion 

relation in non-dimensional form. We define the dimensionless parameters 

3 = "/(T?) 
_ 

and substitute into (3.22) to get 

($4 + ~ p3 _ ~2p2 _ ~3p + 1~3^ . ^ 3 + ~g2 _ ~2p _ ~3 + ±~2^ = Q 

From (3.18), it is easy to show that A = /32 - a2. The use of dimensionless variables will make it 

easier for us to present the solution modes in terms of the wavenumber and the single dimensionless 

parameter j. 

We now present the following proposition, which is a stability proof for the fibre modes arising 

from the linearised problem. 

Proposition 1. If a > 0 and j > 0 are real and positive, then all f3 6 C satisfying the dispersion 

relation (3.23) with Re((3) > 0 have the property 

Re(J32 - a2) < 0. 

Proof. The proof gives a geometric representation of the roots of the dispersion relation and 

stresses that the result holds for any positive values of the parameters a and j. 
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Let us first denote the two polynomial factors in (3.23) by 

f(z) = z4 + z 3 - z 2 z + —L, and 
2OJ' 

g(z) = z3 + z 2 - z - l + 1 
25 ' 

where we have used the substitution (3 = otz, z = x + iy 6 C, and x — Re(z) > 0. We need to 

show that all roots of / and g satisfy the condition 

Re(a2 (x + iy)2 — a2) < 0 or simply x2 < y2 + 1. 

We proceed with the proof in two cases, first for the quartic factor f(z). 

(3.24) 

Quartic factor: Any root of / must satisfy Re(f) = 0 and Im(f) = 0. We show that for y = 

Im(z) > 0, we have Im(f(z)) > 0 on the region V := {z = x + iy | x2 > y 2 + 1 and a;, y > 0}, 

which is plotted in Figure 3.5. The situations y = 0 and y < 0 are discussed below. 

y = Im(z) 

x = Re(z) 

Figure 3.5: The domain D from Proposition 1, corresponding to the unstable solutions 

Re(\) > 0. . 
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We proceed by simplifying Im(f) on the region V where — y2 > 1 — x2 and y > 0: 

Im(f) = y (Ax3 + 3x 2 - 2x - 1 - y2 (Ax + 1)) 

> y (Ax3 + 3x 2 - 2x - 1 + (1 - x2) (Ax + 1)) 

= 2xy(x + 1) 

> 0 when x, y > 0. 

Therefore, there are no roots of / on the region V and hence Re(X) < 0 for all roots z = x+iy, 

j />0 ,o f / ( z ) . 

When J/ < 0, the argument proceeds in an identical fashion (for the reflection of the region 

V across the x-axis) except that 

Im(f) = y (4x3 + 3x2 - 2x - 1 - y2 (Ax + 1)) 

<2xy(x + l) 

< 0 when x > 0 and y < 0. 

If y = 0, then Im(f) = 0 and we instead consider Re(f(z)) on P where we now have 

x 2 - 1 > 0, so that: 

#e(/) = x 2 ( x 2 - l ) + x(x 2 . - 1) + ^ 

> 0 since 7 , 5 > 0. 

Again there are no roots of / when Re(X) > 0. This completes the proof for the quartic 

polynomial. 

Cubic factor: Using a similar argument, we can show that Re(X) < 0 for all roots of g: 

Im(g) = y (3x2 + 2x - 1 - y2) 

> y (3x2 + 2 x - l + ( l - x 2 ) ) 

= 2xy(x + 1) 

> 0 for x,y > 0. 
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The results for y < 0 and y = 0 follow using a similar argument used for / above. 

• 

An immediate consequence of the proposition is that the discrete modes associated with the 

linear immersed fibre are stable for all physically reasonable parameter values. It does not prove, 

however, that the immersed fibre problem is stable, though we expect that this result is true. Such 

a statement would require a full non-linear analysis of the continuous spectrum of the problem, 

which is beyond the scope of this work. 

We can now demonstrate our theoretical result by plotting the exponential time constants. 

Since (3.23) is a polynomial equation in /3 with factors of degree 3 and 4, analytic expressions for 

the roots are easily derived using a symbolic algebra package such as M A P L E [ C + 9 1 ] . A contour 

plot of the largest growth/decay rate, i?e(A), is given in Figure 3.6 for a range of 5 and 7, with 

the region of stability (where Re(X) < 0) lying above and to the right of the zero contour. It is 

not surprising that this is precisely the region where 7 > 0 (corresponding to o~n > 0 and Ot > 0); 

that is, the fibre modes are stable when the tension force acts to oppose any stretching or normal 

displacement of the fibre. 

3.1.3 Asymptot ic expansions of decay rates 

Now that the modes associated with the fibre are known to be linearly stable, we will attack the 

question "How rapidly do perturbations in the fibre die out in time?" and the related issue "How 

stiff are the fibre modes?" The answer to both questions is embodied in the dependence of A on 

the wavenumber and the other physical parameters. 

Even though we have explicit formulas for the roots of the dispersion relation, the expressions 

are too complicated to exhibit any clear functional dependence. We will take an alternative ap­

proach, and derive asymptotic expansions of A for large and small non-dimensionalised wavenum-

bers. The small 5 case is the one we are actually interested in (since the physical parameters 

lie in this range), but we include the case of large and intermediate wavenumbers for the sake of 



Chapter 3. Linear Stability Analysis 44 

2 

1.8 - -

1.6 • -

1.4 - -

1.2 - -0.25 -

1 -
\ 
\ 
\ 

\ ^ 
0.8 -

\ 
\ 
\ 

"X 

0.6 • 0.5 

0.4 • 
X . 

— . 

0.2 

0 
+ - ° : ! . . ' 

, .0 

0.2 

0 
0 1 2 _ 3 4 5 

i.75 

a 

Figure 3.6: Contours of the maximum scaled growth/decay rate Re(X) plotted versus 7 and 

scaled wavenumber 5 . The contours are all negative and so the fibre modes are stable. 
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completeness. 

Small wavenumber 

Equation (3.23) was solved for 7 = 1 , and all admissible roots (that is, roots for which Re(/3) > 0) 

are plotted in Figures 3.7 for values of 5 € [0,0.6]. An explicit form for the dependence of 

0.6 

0 

-0.05 

-0.1 

-0.15 

$ -0-2 

-0.25 

-0.3 

0 0.2 0.4 0.6 
a 

Figure 3.7: Plots of the real parts of j3 and A versus wavenumber a ( 7 = 1 .0 ) in the small 

wavenumber regime. 

the exponential time constant on the wavenumber may be determined by computing a regular 

asymptotic expansion for each root in powers of the non-dimensionalised wavenumber 5, as 5 -» 0. 

There are in fact two complex conjugate pairs of roots, given in terms of dimensional variables as 

i 1 
vnl xn2 , lP (Pan \ * | ±l) (p<Tn\ * 1 

2 , — . . 1 
A°'A° Yp—ivJ a 3 3~p—VvJ a 8 + ° ( Q ! 8 ) ' 

which substantiates the results in Figure 3.7. Note that beyond a value of a w 0.42, two of the 

roots merge and split into a pair of real roots, and shortly thereafter (at a ~ 0.5), one of those 

roots (A*2) is inadmissible after Re(f3t2) becomes negative. These two complex conjugate pairs of 

roots are what give rise to the solution modes pictured earlier in Figures 3.3 and 3.4. 
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Intermediate wavenumber 

Plots of the roots (5 and exponential time constants A in the intermediate wavenumber range 

5 G [0,1.5] are given in Figure 3.8 We can see another bifurcation point at 5 ft; 0.8 where the 
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Figure 3.8: Plots of /? and A for intermediate values of the wavenumber. ( 7 = 1 . 0 ) . 

complex conjugate pair of normal roots merges and splits into two distinct real solutions. 

Large wavenumber 

Figure 3.9 contains a plot of the scaled A for values of a in the intermediate range [0,4]. For values 

of 5 ^ 0.8, there are three real roots, corresponding to two normal modes and one tangential 

mode. We can see investigate more closely the dependence of A on a for large a in this regime by 

once again performing an asymptotic expansion of the roots as 5 —» 00, from which we obtain the 

following expressions: 

0 0 p Ap3 Ap5 v 

Ap 64/i3 1024^5 

<H_ _ pa} 
Ap a 64/z3 1024/x5 

\tl ut „ H^} SP2*7} „-l . (r\(~-1\ 

A ^ ~ — — a — „ . „ — . ? a + U[a J 
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a 

Figure 3.9: Plots of the real parts of /? and the scaled decay rate versus wavenumber for each 

of the admissible roots in the large wavenumber regime. 

By comparing the plots of the solution modes in Figure 3.9 to the corresponding asymptotic 

formulas, it is easy to see that two of the three modes (A n 2 and A' 1) are nearly identical for large 

a (when an = at) and depend linearly on the wavenumber. 

The quadratic dependence of the remaining normal mode on a can also be seen on the graph 

— to lowest order in a this mode behaves like a Stokes mode. Similar to solutions of Stokes 

equations without an immersed fibre, the mode represented by A ^ gives rise to stiffness in the 

problem, for as the wavenumber varies, the exponential time constants take on widely disparate 

values. 

3 . 1 . 4 C o m p a r i s o n w i t h c o m p u t a t i o n s 

Many researchers have observed in the course of immersed boundary computations [PM89, Rom96, 

DFFG96] that a very small time step is required to achieve stability. This seems to suggest 

that the problem is stiff, and we'd like to find an explanation for this stiffness in terms of the 

analytical results above. Typical computations, such as those in [MP93], are performed on a 

domain fi = [0, l ] 2 with a grid spacing of h = 1/64 (all measurements being in cm). On this grid 
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M o d e N o r m a l / Interval of wavenum ber a (approximate) 

Tangential [0,0.42] [0.42,0.50] [0.50,0.80] [0.80, oo] 

A n l 

A™2 

normal 

normal 

C 

C 

R 

E 

A* 1 tangential C K I I 

A*2 tangential C R [JIJIIIIIIJII llllllllllllljlll 
A* 3 tangential illlllllllllllllllllllllll 

Xn3 normal IIHHHfltHBi 
A n 4 normal IIIIIIIlllIIIllllll̂BI 

Table 3.1: Summary of the character of A for various intervals of scaled wavenumber, with 

M representing a real root, and C a complex root. The shaded entries correspond to the 

inadmissible roots of the dispersion relation. 
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the method can resolve modes with a maximum wavenumber of amax — 2n/h — 1 2 8 7 T , commonly 

referred to as the Nyquist frequency. We can therefore assess the stiffness of the method by 

considering the decay of solution modes with wavenumbers a = 2irn, for n = 1,2,.. . , 64. 

As mentioned earlier, it is the small wavenumber regime which is of most interest, because 

this is where the scaled wavenumbers are found to lie, based on the parameters values used in 

typical computations. Using the information provided in [MP93], we select the parameters to be 

p = .1 g/cm • s, p = 1 g/cm3 and an = ot = 100,000 g/s2 (that is, 7 = 1). We then restrict 

ourselves to a discrete set of wavenumbers, a — 2ir • n, where n = 1,2,. . . , 64, which can be 

thought of as an idealised discretisation of the problem (since these are the wavenumbers that 

can be resolved in computations on a regular 64 X 64 grid of points). The non-dimensionalised 

wavenumber then lies in the range 5 6 [6.3 X 10 _ 5 ,4 .0 X 10 - 3 ] , which clearly places the numerical 

examples in the small wavenumber regime. 

Examining the asymptotic expressions for the decay rates as a —> 0, we find that for the 

parameters used in the previous paragraph, the fibre modes satisfy: 

-2.3 x 10 5 < i?e(Ao 1 , n 2) < -1.4 x 102 . 
} =̂ > -2.3 x 10 6 < Re{X0) < -1.4 x 10 2 

-2.3 x 10 6 < i?e(A* 1 , t 2) < -8.1 x 10 3 

3.4 x 10 3 < |/m(A 0)| < 3.0 X 10 6 
• 3.4 x 10 3 < | / m ( A o 1 , n 2 ) | < 1.6 x 10 6 

1.3 x 10 4 < | Jm(A 0

M 2 ) | < 3.0 x 10 6 

The modes for Stokes equations without an immersed fibre are simply Xs = -pa2/p, which lie in 

the range 

-1.6 x 105 < A s < -39 . 

The decay rates for the fibre modes vary over a range that is an order of magnitude larger, and 

hence the immersed fibre problem is considerably more stiff than Stokes flow without a fibre. 

Furthermore, it is the tangential modes which make the problem more stiff, since the normal 

growth rates are approximately the same size as the Stokes modes. 
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To help account for the severe limitation on the Reynolds number that can be handled by 

immersed boundary computations, we consider the decay rates arising from parameters that cor­

respond to a more realistic situation. By choosing p = 0.01 g/cm - s, which is more representative 

of the viscosity of blood in the human heart, we find 

-9.4 x 106 < Re(X0) < -13 and 3.5 x 103 < | im(A 0 ) | < 1.6 x 107 

and for Stokes modes 

-1.6 x 103 < Re(Xs) < -0.4. 

It is evident that the fibre modes are now more than three orders of magnitude larger than 

Stokes' modes, which clearly identifies one source of the problems encountered with the Immersed 

Boundary Method at high Reynolds numbers. Furthermore, from (3.25) we can see that the leading 

order terms in the decay rate expansions are 

Re(XQ1'n2) ~ O (o-*/4 • p~3/4 • p1/2^j , 

Re{xr2) ~ o (*r • P- I / 3 • P~ 1 / 3) • 

The normal modes depend less strongly on <jn and decrease in magnitude as the viscosity is reduced; 

hence, they can be characterised as perturbed Stokes modes. The tangential modes, on the other 

hand, are the major source of stiffness in the problem as they depend more strongly on the fibre 

forcing parameter and also grow with decreasing viscosity. Hence, the problems encountered with 

immersed boundary computations at high Reynolds numbers are due neither to the stiffness of 

Stokes modes nor the onset of turbulence. Rather it is the tangential modes of oscillation in the 

fibre that introduce stiffness through the combination of a large fibre force and small viscosity. 

In terms of numerical computations, the presence of stiff modes suggests the use of an implicit 

time-stepping scheme. The analytical justification given here backs up the conclusion of Tu & 

Peskin in [TP92] that by applying a fully implicit scheme, a considerable improvement in numerical 

stability can be realised. They also observe that "in its present form, the fully implicit scheme is 
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probably too expensive for practical application" [TP92, p. 1376], and suggest that a more efficient 

implementation be developed. 

To further test the analytical results we have implemented the Immersed Boundary Method 

algorithm as stated in Section 2.3, and compared decay rates of the computed solution to the 

predicted values. Since no exact solutions to the immersed fibre problem are known, our analytical 

expressions for the decay rate of the lowest wavenumber mode present the first opportunity for 

comparison to be made to an analytical solution. 

We have set up a test problem pictured in Figure 3.10, which is specially tailored to verify 

our analytical results and which has incidentally not appeared in the literature to date. The fluid 

domain is a unit square with periodic boundary conditions in the x and y directions. The initial 

fibre position is a sinusoidal curve with equation 

which is also required to satisfy periodic boundary conditions at x = 0 and 1. The constant A is 

set to 0.05 in the examples computed here. The force density is taken to be the linear function 

/ = ad2X/ds2 from (2.7), where a:=an = at. This form of the initial fibre position excites the 

normal mode of oscillation, which we will see is the dominant solution mode for this problem. 

To compare the analytical and computed results, we examine the solution mode with the 

smallest decay rate (for a = 2n), which corresponds to the mode of oscillation that will dominate 

the solution after a short time. The quantity which serves as the simplest basis for computing the 

decay rate is the maximum height of the immersed fibre. Figure 3.11 provides a sample plot of 

the computed maximum height of the immersed fibre as a function of time, which oscillates very 

regularly and has an amplitude that decays with time. There are two quantities that can easily 

be obtained from this information in order to draw comparisons with the analytical results: 

• the decay rate, Re(X), for the a = 2TV mode which can be determined by measuring the rate 

at which the maximum fibre height decays to zero (from the diagram, f \ t tn\H.ilHi]) ', and 
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1 cm 

1 cm 

Figure 3.10: The test problem for the linear stability results. 
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Figure 3.11: Plot of computed maximum fibre height versus time. 
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• the frequency im(A), which can be calculated from the period of the fibre oscillations (which 

is equal to 7r/Im(X) on the diagram). 

The results are summarised in Table 3.2 for a the spatial resolution N = 64 and Nf, = 192 (so 

that hb & \h) and values of the fibre stress parameter er € {1, 20,100,1000,10000,100000}.d The 

u 

Smallest Decay Rate Re(X) Frequency iro(A) 

u Analytical Computed Analytical Computed 

1 -1.6 -1.5 0 0 

20 -26 -24 28 30 

100 -33 -32 86 85 

1,000 -51 -46 310 310 

10,000 -84 -75 1039 1030 

100,000 -142 -131 3390 3360 

Table 3.2: Analytical and computed values of A for the solution mode with the smallest 

wavenumber, a = 2n (N = 64, Nb = 192). 

"analytical" values are found by taking the root of the dispersion relation whose decay rate Re(X) is 

smallest in magnitude; the frequency of this dominant mode is then given by Im(X). The precision 

of the "computed" results is limited to only two significant digits because of the size of the time 

step. The computed frequency shows extremely good agreement with the analytical results, and 

the decay rate likewise matches quite well. 

The correspondence between analytical and computed results seems reasonably close, with 

the relative difference being within 10% for all values of a. To measure the effect of the spatial 

discretisation on the solution, we have computed the fiat fibre problem on successively finer grids, 

choosing h as small as ^gg. Table 3.3 lists a series of computations for a = 100, 000, at which the 

dIt might seem odd to choose the second stress value to be 20 instead of 10 in this sequence of a. The 
reason for this choice is that there are bifurcations of the roots of the dispersion relation near the value 10 
(actually at <r « 15,13 and 8). To avoid problems with the numerical root finding routine, we will avoid 
the bifurcation points and choose a = 20 instead. 
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largest discrepancy between predicted and computed decay rates occurred in Table 3.2. The error, 

N Re{\) iro(A) Error Rate 

16 -73 2960 69 — 

32 -100 3260 42 0.7 

64 -131 3360 11 1.9 

128 -147 3370 5 1.1 

256 -140 3370 2 1.3 

Table 3.3: Convergence of A to the analytical value (A « —142 -t- 3390 S) as the computational 

grid is refined. The max norm errors and convergence rates are based on the comparison 

between Re(\) and the predicted decay rate of-142 (k = 2.5 x l O " 6 , a = 100, 000). First 

order convergence is indicated by a convergence rate of 1.0. 

eN, is defined to be the magnitude of the difference between the decay rate predicted from the 

jump dispersion relation (which can be thought of as the "exact" result) and the computed decay 

rate. The difference between the "jump" and "computed" results decreases with N, and while the 

convergence rate, log2 {eN/e2N), does not settle down to any clearly-defined value, it does appear 

to be reasonably close to the value 1.0 consistent with first order spatial accuracy.6 The decay 

rates thus provide a measure of the convergence rate of the numerical scheme to the solution of 

the original delta function (or jump) problem. 

Remark 3.1. By cutting off the fluid domain and imposing periodic boundary conditions at y — 0 

and 1, we have introduced some error between the computed and analytical results. We can identify 

the significance of this error by increasing the extent of the fluid domain in the y-direction. By 

computing on domains of size 1 x 2 , 1 x 4 and 1 x 8 , we found that the results were practically 

identical, with the values of A varying only by a few percent. This gives credence to our earlier 

assumption on page 31 that it is appropriate to concentrate on the region near the fibre and that 

Computational evidence in the literature (in [LL97], for example) suggests that the Immersed Boundary 
Method is first order accurate in space. 



Chapter 3. Linear Stability Analysis 55 

our use of periodic boundary conditions has minimal effect on the solution, even for the dominant 

(or lowest wavenumber) modes. 

Let us return once more to the distinction made earlier between the normal and tangential 

motions of the fibre. The linear analysis clearly shows a decoupling between the normal and 

tangential modes of oscillation. Though we can't expect this to hold exactly in the fully non-linear 

problem, we can still expect a reasonable agreement with the theory when the displacement and 

velocity of the fibre are small. In fact, computations based on our "flat fibre" test problem show this 

decoupling quite clearly. Figure 3.12 contains velocity vector plots which demonstrate that both 

the normal and tangential motions are present at various points in the cycle of oscillations of the 

fibre. These pictures should be compared to the analytical solution plots from Figures 3.3 and 3.4. 

The normal mode of oscillation shown in Figure 3.12(a) dominates the flow for most times, except 

near instants when the maximum amplitude is reached (in Figure 3.12(b)) and the tangential mode 

expresses itself. We have also provided a plot of the transitional phase in Figure 3.13, where the 

flow is a combination of the two modes. 

The one thing we have not mentioned is the smoothing effects arising from replacing the delta 

functions (or jumps) in the exact problem with approximate delta function forces. This is the 

subject of the following section. 

3.2 Linear Stability of the Smoothed Problem 

The results of the preceding section are based on the jump formulation of the immersed fibre 

problem, and so neglect the influence of smoothing from approximating the delta function. From 

the point of view of formal spatial accuracy, this is not an issue as we can simply let the resolution 

become arbitrarily fine by letting TV —V oo, and the solution will converge. However, this is not 

practical in computations, and when we select a spatial mesh of dimensions N X N, the stiffness 

characteristics of the numerical method should be quite different from the original jump problem. 

In this section we extend our previous results to an approximation of the delta function 
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(a) Normal mode 
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Figure 3.12: The normal (a) and tangential (b) modes of oscillation at two instants of time. 



Chapter 3. Linear Stability Analysis 57 

Immersed F iber C o m p u t a t i o n [t = 0 .030000 ] 
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Figure 3.13: The transitional phase between the normal and tangential modes of oscillation. 
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formulation of the problem, where the force is smoothed over a finite interval. Since the choice of 

dh is so important to the Immersed Boundary Method, we will be able to make even more accurate 

predictions regarding the stiffness and decay characteristics of immersed fibres. We expect that 

the behaviour of the solution to the discrete problem should be much closer to what is predicted 

by this smoothed version of the problem. 

We use an approach very similar to that in Section 3.1 with the major modification being to 

introduce a strip — called the smoothing region — of width e on either side of the fibre, where e 

represents the radius of support of the approximate delta function. The region of interest is now 

divided into three subregions, fig and fi0, as pictured in Figure 3.14. 

y = - e 

y = 0 

y = £ 

Figure 3.14: The fibre at equilibrium along y = 0, with a smoothing region, fig, of width 2e. 

3.2.1 Der iva t ion of the dispersion relation 

The form of the linearised force density function / is identical to that for the jump problem given 

in (3.5). Furthermore, on the subdomains fig and fig the fibre force is zero, and hence the fluid 

obeys the same linearised equations as in the previous section. Consequently, we can write the 
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solution on these regions immediately as 

p±(y) = A±e*ay, (3.26) 

£±(y) = B±e^y - ^-A±e^ay, (3.27) 

v±(y) = C±e^f}y ±j^A±e^ay, (3.28) 

which are identical to (3.15)-(3.17). However, rather than linking these two solutions with jump 

conditions at the fibre (y = 0), we must first find the solution on fi0 and then perform matching 

at the boundaries y = ±e of the smoothing region. 

On fi0, the linearised fluid and fibre obey Stokes' equations with a non-zero forcing function 

p-£- = pAu - Vp + / f(s,t) -dc(x - X{s,t))ds, (3.29) 
<jt Jr 

V - u = 0, (3.30) 

and the fibre evolution equation 

3X f 

— = / u(x,t)-de{x- X(s,t))dx. (3.31) 

The exact delta function S(x) in (2.9a) and (2.9c) has been replaced by the smoothed version 

de(x) = de(x) • de(y), which for the time being we choose to be the cosine approximation 

^- ( l + cos —) , if |x| < e, 
2e V e / d\{x) = { 2e v e / • • • (3.32) 
0, if |a;| > e. 

We now proceed to linearise the additional integral terms in the equations of motion, beginning 

with the forcing term on the right hand side of (3.29). After substituting the expressions (3.1) and 

(3.5) for the fibre position and force density, the fluid force may be written as 

f ( d2£ d2n\ 
F(x,y,t)& Jryatd^'~an'fc5j d A x ~ ®S ~ Z^i1)) de(V ~ V{s,t)) d s , 

r(*+e)/e ( d2£ d2n\ 

J(x-e)/e \ d s d s J 
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since the £ and r\ terms inside the approximate delta functions contribute only to higher order 

terms. We then substitute the separable form for the fibre position from (3.10) to get 

F(x, y, t) « - I' ' eXt+ia6s Uo?i vna2rj) de(x - 0s) de(y) ds, 
J{x-t)/e v 7 

= -a2eXt de(y) (atl a n 7 ? ) 0 eia^d£(r) dr, 

= -ea

2eXt+'tax de(y) (at£ anfj) J* e~iarde(r) dr, (3.33) 

where we have performed the change of variables r = x — 0s. The right hand side of the fibre 

evolution equation is linearised in a similar manner 

^ « / (%), %)) eM+ia*de(x - 6s) de(y) dydx 

« ext fS+t f (u(y), v(y)) eiax d,{x - 0s) d£(y) dydx 
JOs-t J - t 

= ext [°S+£ eiax dt{x - 0s) dx f (u(y),d(y)) dt{y) dy 
Jds-e J-e 

= eXt+ia6s eiar de(r) dr f (u(y), v(y)) dc(y) dy. (3.34) 

Notice the presence in both (3.33) and (3.34) of the Fourier transform of the approximate delta 

function which we define as 

D*:= f e±iardt{r)dr. (3.35) 

For the cosine delta function, this transform evaluates to 

ft =

 7 1 - 2 s i n iae) 
a ae (n2 - a2e2)' 

The "±" forms of the transform are equivalent because of the symmetry properties of d€(r). Using 
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this definition, we can write the system of integro-differential equations on the strip QQ as follows: 

p\ue = p - cv2J uc - iaf - ot6a2D^d£(y), (3.36) 

p\V = p ^ - a 2 ^ - ^ - e n 6 a 2 D ^ d e ( y ) , (3.37) 

dv£ 

iaue + — = 0, (3.38) 
dy 

\Z = D*J€u<(y)de(y)dy, (3.39) 

\fj=D^ d%y)dt(y)dy. (3.40) 

At first glance, it would appear that this coupled system of equations is difficult to solve 

analytically, since the fibre positions are integrals of the velocity components, while ue and vc are 

in turn found by solving a differential equation with £ and rj on the right hand side. Fortunately, 

cf and rj are constants and therefore (3.36)-(3.38) may be solved for the velocity and pressure first, 

without knowing the fibre positions a priori. The resulting u£ and ve can then be used in (3.39) 

and (3.40) to find expressions for £ and rj, which are substituted back into the velocity solutions. 

This procedure involves extensive algebraic manipulations, and is tractable only through the use 

of MAPLE/ The final expressions for ue, ve, fr, £ and rj are so large that they are not presented 

here. 

At this point, we have expressions for the solutions on three regions, each involving several 

unknown constants of integration. On Q,Q we have (3.26)-(3.28), which involve the six coefficients 

A ± , B± and C * . The solution on the strip QQ introduces an additional six constants of integration: 

two from the pressure Poisson equation, and another four from the solution of the velocity equa­

tions. Consequently, we must come up with a total of 12 equations in order to uniquely determine 

the values of the 12 constants. We proceed as we did for the jump formulation of the problem and 

apply the incompressibility condition along with matching conditions at the interfaces y = ±e: 

MAPLE requires approximately two hours of computing time on a HP Apollo 9 0 0 0 / 7 3 5 (99 MHz 
PA-RISC 7100) with 80 Megabytes of RAM to solve the integro-differential equations and compute the 
determinant, using the cosine approximation to the delta function. 
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• enforcing the incompressibility condition leads to one equation on each of , and two on 

fi0 (one each for the real and imaginary parts of the equation), for a total of four equations; 

• another four conditions arise from the requirement that the pressure, velocity and normal 

derivative, du/dy, be continuous at the interface y = e; 

• the final four matching conditions come from enforcing continuity at y = —e. 

The resulting system of equations is homogeneous, and so there is a non-trivial solution only 

if the determinant is zero. The dispersion relation is too large to include here, but we can write it 

symbolically as 

S£

n(f3).SI(P) = 0 (3.41) 

where 

• St(/3) and Se

a((3) are functions of the parameters a, p and p in addition to (3. The parameter 

an appears only in 5^(/3) and at only in 5f (/?). 

• The structure of the dispersion relation is very similar to that from the jump formulation 

(3.22) in that there is a decoupling between the normal and tangential fibre modes. 

• On the other hand, the dispersion relation is no longer a polynomial (since it now involves 

trigonometric and exponential functions of the parameters) and we have been unable to 

generate an analytical expression for the solutions (5. Consequently, our only recourse is to 

apply a numerical root-finding technique such as Newton's method (modified for complex 

functions). This is facilitated by MAPLE'S C() and fortranO functions for generating code 

from the analytical expression for the determinant. 

• We have also found that the presence of the exponential terms in (3.41) make the equation 

very ill-conditioned, and requires the use of quadruple precision arithmetic in the Newton 

solver. Even then, very delicate calculations are necessary to find some, let alone all of the 

roots of the dispersion relation. As a result, we have been unable to reproduce contour plots 
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of the exponential time constants (for ranges of the parameter values) as we did for the jump 

problem. 

3.2.2 Accuracy and the choice of approximate delta function 

Before discussing the stability of the smoothed delta function problem in terms of solutions to the 

dispersion relation (3.41), we would first like to verify that this expression is compatible with our 

results from the jump formulation. A simple check for consistency is to see that the results for 

the smoothed problem match with those from the jump problem in the limit as e approaches zero. 

This corresponds to the physically reasonable assumption that as the smoothing radius shrinks to 

zero, the matching conditions across the smoothed region fi0 should reduce to jump conditions. 

To perform this comparison, we expand D£ and the exponential terms appearing in (3.41) as 

Taylor series in e. Omitting the details, we find that the factors S£(/?) and 5t

e(/?) are series in e 

whose two leading order coefficients can be written in terms of Sn{(3) and St{(3) (the factors of the 

jump dispersion relation): 

S'n(P) = Sn(f3) + eSn(P) + 0(e2), (3.42a) 

St(P) = St(P) + eSt(P)-Ke(^p0^+O(e2), (3.42b) 

where K = | — ^j. It is clear that any root (3 that satisfies either of the jump dispersion relations 

Sn(f3) = 0 or St((3) = 0 must also satisfy the corresponding smoothed version of the formula 

above to first order in e. Notice also that the normal modes match to second order in e, while the 

tangential factor (which incidentally corresponds to the stiffest modes in typical computations) 

only matches to first order. We can thus conclude for the fibre modes, that the use of a smoothed 

approximation to the delta function leads to a solution which is consistent with the jumps in 

pressure and normal derivative of velocity in the exact delta function formulation of the problem. 

At this point it is worthwhile mentioning how these results apply to a discrete version of 

the immersed fibre problem. One can think of the smoothing radius e in terms of an idealised 

discretisation which holds when the grid spacing h <C e. The accuracy with which the dispersion 
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relation for the smoothed problem approximates the modes from the jump problem is embodied 

in the asymptotic formulas (3.42a) and (3.42b). We use the term "idealised" since in practice e is 

typically never chosen larger than 2h. 

There is nothing in the derivation above that restricts us to the use of any particular choice 

of de (except, perhaps, limitations on the size of expressions that MAPLE can handle). Thinking 

back to the discussion in Section 2.3.1 of moment conditions, it may prove enlightening from a 

theoretical standpoint to compare the asymptotic results in e for various choices of delta function 

approximation. The results will of course not be directly applicable to the discrete problem, 

since they hold only in the limiting case h <C e; however, it will still prove useful to draw some 

comparisons to the motivation of delta function choice using discrete compatibility conditions. 

We have derived a series of dispersion relations for various polynomial (and piecewise polyno­

mial) approximations de(r) that satisfy one or more of the following continuous analogues of the 

discrete moment conditions: 

We consider the following approximations, which are summarised in Table 3.4 along with the 

continuous moment conditions that they satisfy: 

• a piecewise constant function, d?e, which is the simplest that satisfies the zeroth order moment 

condition. 

• the cosine approximation, dc

t, currently the most commonly used function in immersed bound­

ary computations, which satisfies the zeroth and first order continuous moment conditions 

(as well as the discrete compatibility conditions described in Section 2.3.1). 

• a piecewise linear approximation, d\, which was the original delta function used by Pe-
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skin [Pes72]. 

• a quadratic polynomial, d2, which satisfies the zeroth and first order moment conditions. 

This approximation is motivated by the work of Beyer & LeVeque [BL92], who derived a 

piecewise quadratic delta function approximation that increased the spatial accuracy of a 

one-dimensional version of the scheme to second order.5 

• finally, a sixth degree polynomial, d?, which is the simplest smooth function we have found 

that satisfies in addition the second order moment condition given above. The inclusion of 

the higher order moment was motivated in Section 2.3.1. Even though we can show that 

the delta function based on 4>new(r) from equation (2.18) satisfies the first three continuous 

moment conditions as well as their discrete analogues, we have chosen to use this simpler 

polynomial function, here in the continuous setting, so that there is some hope of deriving 

the dispersion relation. 

The approximations d2 and d\ have not appeared in the literature in reference to the Immersed 

Boundary Method. This is not surprising, since these delta functions do not satisfy the discrete 

moment conditions which computational evidence suggest are required in the method. Neverthe­

less, they do satisfy the corresponding continuous moment conditions and have a simple enough 

functional form that the dispersion relations can realistically be derived. Hence, it will prove useful 

for us to consider all of the above functions so that we can compare the formal accuracy of the 

various approximations. 

For each of the approximations listed in Table 3.4 (except for d£), the dispersion relation can be 

derived and written in the same form (3.41)-(3.42) we had for the cosine approximation. The sixth 

degree polynomial leads to a determinant that is too large for MAPLE to compute (see Remark 3.2 

below). The last column contains the "order constant" n from the asymptotic expansions of the 

s To date, this one-dimensional convergence result has not been extended to higher dimensions. Further­
more, all the computational evidence that has appeared in the literature to date suggests that the delta 
function interpolation limits the Immersed Boundary Method to first order spatial accuracy in two or three 
dimensions. 
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Delta function approximation Continuous O(e) constant K 

moments 

J 
d°e (piecewise constant) 0 - | « -0.167 

df (quadratic) 0, 1 ^ « 0.129 

/ d\ (piecewise linear) 0, 1 0.117 

<7f (cosine) 0, 1 1 - 8 ^ ^ 0 . 1 0 3 

•- y 

d&

t (sixth degree 

polynomial) 
0, 1, 2 see Remark 3.2 

Table 3.4: Comparison of the constants K in the 0(e) term of the dispersion relation for 

various approximate delta functions (in order of decreasing K) . 
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dispersion relation for each of the approximate delta functions, K may be considered as a measure 

of how accurately the scheme for a given delta function will approximate the original problem. 

The results in the table seem to indicate that satisfying the higher moment conditions leads to an 

improvement in the formal accuracy of the scheme. Furthermore, the cosine approximation leads 

to the best asymptotic results for all of the approximations that we were able to compute results 

for. 

Remark 3.2. Our inability to push through the dispersion relation calculation for d® stems from 

a limitation in MAPLE on the number of terms in expressions. According to the technical staff 

at Waterloo Maple Inc., versions of the program for machines that have 16- or 32-bit addressing 

(which are the only machines that we can run MAPLE on at the moment) have a limit of 65,535 

terms. However, on 6^-bit address machines, the limit goes up to 2 x 109 terms. We are currently 

attempting to obtain an 64-bit binary version of MAPLE, which we expect will allow us to compute 

the dispersion relation for the sixth order polynomial in order to show that K = 0. 

Unfortunately, it is the delta function d£ that satisfies the second moment condition for which 

we have been unable to derive a dispersion relation. We expect that this approximation will have 

K = 0, which corresponds to a smoothing that is formally second order accurate. In the absence 

of any further analytical evidence to support this claim, we perform a computational investigation 

of the delta function d^ew (introduced in Section 2.3.1) that satisfies the discrete second moment 

condition. We follow the approach of LeVeque & Li [LL97] who considered an elliptical-shaped 

interface, such as that pictured in Figure 4.9 with semi-axes 0.4 cm and 0.2 cm, which is immersed 

in a 1 cm x 1 cm periodic box. We compute the solution on a sequence of successively finer grids 

with {N,Nb} = {32,96}, {64,192}, {128,384}, {256,768}, {512,1536}, and {1024,3072}, using 

parameters p = p = 1, a = 1, 000 and take 20 time steps of size k = 1.0 X 10 - 5 using the Immersed 

Boundary Method described in Section 2.3. We modify LeVeque & Li's error measure slightly, and 

compute convergence rates based on an L2-norm difference, eN , between interface positions on 



Chapter 3. Linear Stability Analysis 68 

successive grids 

Nb-1 

X? - X. 2£ 

where (X^b,Y^b) is the interface position at the end of the computation, using Nb boundary 

points. The convergence rate can then be estimated using the formula 

Convergence rate m log2 

The errors and computed rates for the two delta functions are listed in Table 3.5, from which it 

is clear that our "new" delta function performs better than the cosine approximation. It is not 

N,Nb dc

h (cosine) a"%ew (second moment) N,Nb 

Conv. rate Conv. rate 

32,96 • — — — — 

64,192 7.19 X 10~4 
— 9.45 X 10 - 4 

— 

128,384 8.52 x IO" 4 -0.24 8.43 x 10~4 0.16 

256,768 6.71 X 10 - 4 0.34 4.68 X 10~4 0.85 

512,1536 3.86 X 10"4 0.80 1.85 x 10~4 1.34 

1024,3072 1.72 X IO" 4 1.17 5.60 x 10~5 1.72 

Table 3.5: Comparison of convergence rates for the cosine and "new" delta functions. 

clear that the new approximation leads to second order spatial convergence, and in the absence 

of further analytical backing we can only say that there is evidence to suggest that this might be 

true. 

We can expect the calculation of d^ew to be considerably more expensive than dc£s, due to 

the complexity of the expression in (2.18) and more significantly, the wider stencil of points. To 

see whether the extra cost is worthwhile, we have listed in Table 3.6 the CPU time required for 

the two delta functions used in the previous calculation. The use of the d^ew clearly increases the 

cost of the interpolation routines by up to 200%. However, when compared to the total cost of 
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N,Nb CPU time required % 

increase 

N,Nb 

a h 
jnew 

a h 

% 

increase 

32,96 0.18 (0.55) 0.53 (0.88) 190 (60) 

64,192 0.33 (1.85) 1.03 (2.52) 210 (36) 

128,384 0.78 (7.68) 2.12 (9.10) 170 (18) 

256,768 2.11 (36.5) 4.85 (39.2) 130 (7) 

512,1536 6.12 (159.0) 11.5 (164.3) 90 (3) 

1024,3072 18.9 (1047) 29.9 (1058) 60 (1) 

Table 3.6: Comparison of CPU times required by the delta function interpolation routines 

using the two approximations, with the total CPU time for the entire calculation given 

in parentheses. Timings were performed on an SGI Origin 2000 (4 x 195 MHz R10000 

processors, 512 Mb RAM). 1 

the immersed boundary computation (the values given in parentheses), this increase is much less 

significant. For grids of size 64 X 64, which are typically used in computations, the total CPU time 

increases by only 36%, with the percentage decreasing as the grid is refined. We have made very 

little effort to optimise the calculation of d^ew, and so it is our opinion that with some additional 

work, the cost can be reduced even further. Consequently, we believe that this new delta function 

may be a useful improvement to immersed boundary computations. Clearly more study is required, 

and the utility of the new interpolation scheme will be proven in three-dimensional calculations. 

3.2.3 Effects of smoothing on stiffness of solution modes 

We now investigate two aspects of the smoothing process: the consistency of the smoothed problem 

with the original delta function or jump formulation; and more importantly, how approximations 

to the delta function affect the stiffness of the problem. 

'One is reminded at this point of the immortal words of Bill Gates (1981): "6^0 K ought to be enough for 
anybody." 
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We begin by examining the the decay rate and frequency of oscillation for the lowest wavenum­

ber mode, which is the dominant solution mode. We have solved the dispersion relation for various 

o~ values and summarised the results in Table 3.7, with the "jump" results from Table 3.2 repeated 

for easy comparison. The effect of smoothing on the analytical solution modes is negligible for 

Smallest decay rate Re(X) Frequency /TO(A) 

Analytical Analytical Computed Analytical Analytical Computed 

(jump) (smooth) (jump) (smooth) 

1 -1.6 -1.3 -1.5 0 0 0 

20 -26 -26 -24 28 29 30 

100 -33 -33 -32 86 85 85 

1,000 -51 -5.0 -46 310 307 310 

10,000 -84 -76 -75 1039 1025 1030 

100,000 -142 -108 -131 3390 3321 3360 

Table 3.7: A comparison of the decay rates and frequencies for the lowest wavenumber modes 

(a = 27r) for the jump and smoothed delta function formulations, and the computed results 

small a. However it is clear that smoothing has a significant effect on the decay rates for values of 

a in the physical range of 10,000-100,000. The frequency of the dominant solution mode, on the 

other hand, remains comparatively unaffected over the entire range of fibre stress coefficient. 

The "computed" results from Table 3.7 show reasonable agreement with the analytical results 

for both the jump and smoothed problems when a < 10, 000. However, there is a considerable 

difference when a is taken any larger. If we refer back to the convergence results of Table 3.3, it 

is clear that the computed decay rates do differ from those of the original jump problem when the 

grid is not fine enough. 

If we think of the smoothed problem as an idealised discretisation of the delta function formu-
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lation of the immersed fibre problem, then we should observe convergence of the smoothed solution 

to the jump solution as the smoothing radius goes to zero. As we saw earlier in Table 3.7, the 

computed decay rate converged to the analytical value as the computational grid was refined. We 

would expect the same behaviour from our smoothed delta-function problem: that is, the domi­

nant decay rate for the smoothed problem should converge to that of the original jump problem 

as the smoothing radius goes to zero. This is consistent with our asymptotic matching of the 

dispersion relations from the jump and smoothed problems in Section 3.2.2. Table 3.8 lists the 

largest decay rate for various values of e, from which is it evident that the results do correspond 

as e is reduced (as before, the correspondence worsens as the fibre force parameter o increases). 

This table provides us with a "consistency check" which verifies that the dominant mode in our 

Smallest Decay Rate 

Jumps 64 64 64 e = h 
64 

^ 6 4 <=& 
1 -1.6 -1.5 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 

20 -26 -26 -26 -26 -26 -25 -25 -25 

100 -33 -33 -33 -33 -32 -32 -31 -31 

1,000 -51 -51 -50 -48 -46 -44 -42 -40 

10,000 -84 -81 -76 -69 -62 -57 -52 -48 

100,000 -142 -129 -108 -89 -75 -64 -57 -51 

Table 3.8: A comparison of the analytical decay rates for the lowest wavenumber mode (a — 

2n) for varying smoothing radius (N = 64). 

idealised e-discretisation matches the delta function solution. 

Nonetheless, our main interest is not the accuracy of the delta function approximation but 

rather how the smoothing of the delta function affects the stiffness of the problem. Up to this 

point, we have considered only the influence of smoothing on the lowest wavenumber solution 

modes, which appear as the dominant solution features (after the higher frequency components 

have been damped out). We will now consider the impact of smoothing on the small scale features 
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of the solution by looking at the entire range of discrete wavenumbers a = 2ir-n, for n = 1,2,..., N. 

Plots of the decay rate Re(X) and frequency Im{\) for wavenumbers 2ir < a < 2TT • 21 are 

given in Figure 3.15 for the following values of the parameters: an = at = 1000, p = p — 1.0 

and e = The ill-conditioned nature of the smoothed dispersion relation limits the range of 

a; 

Figure 3.15: A comparison of .Re (A) and Im(X) for the jump and smoothed dispersion relations 

with 
6 4 ' 

Here we take p = p = 1.0 and an = crt = 1000, but restrict ourselves to 

a < 42TT. 

wavenumbers for which roots can be computed. However, by reducing the viscosity to p = 0.01, 

we were able to compute solutions over nearly the entire range of a G [27r, 1287r], which we present 

in Figure 3.16. The jump problem modes are cut off so that the detail of the smooth modes can 

be seen; however, if the vertical axis were extended, these modes would increase monotonically 

over the range of a, with -5249 < Re(X) < -4 and 5080 < |im(A)| < 146,622. It is clear from 

the plots, that the jump modes for a > 2ir are not captured well at all in the smoothed problem. 

However, the good news for the method is that the solution modes are considerably less stiff. This 

can be interpreted as a "regularising effect" on the higher wave number modes. However, there 

is still a wide range of sizes in the exponential time constants, and hence a considerable degree of 

stiffness. It is important to note that it is the imaginary part of A that is the dominant source of 

stiffness — this point will come up again in Section 4.1 in the context of choosing an appropriate 
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Figure 3.16: A comparison of Re(\) and Im(A) for the jump and smoothed dispersion relations 

with a S [2n, 1287r] and e = We have had choose u = 0.01, p = 1 and crn = at = 1000 

to obtain roots for the whole range of wavenumbers. 

explicit time-stepping scheme for the Immersed Boundary Method. 

The main conclusion we can draw from this discussion is that the smoothed problem, while 

still suffering from a significant degree of stiffness, is much less stiff than what is suggested by the 

dispersion relation from the jump problem. We will see in the next chapter, by comparing time 

step restrictions, that the smoothed analysis is much better at predicting the behaviour of the 

computed solution. 



Chapter 4 
Analys is of T i m e Discrete Schemes 

/ have tried to avoid long numerical computations, 

thereby following Riemann's postulate that proofs 

should be given through ideas and not voluminous 

computations. 

— DAVID HILBERT. 

In this chapter, the analytical solution technique we have just described is extended to a 

semi-discrete formulation of the immersed fibre problem. We will discretise in time only and 

leave the fluid force and fibre velocity written in terms of smoothed delta functions, as we did 

in Section 3.2. By restricting the wavenumber cv to a range of integers [1, N] and selecting an 

appropriate smoothing radius e, we will be able to make further conclusions about idealised spatial 

discretisations of the problem. Our purpose is to determine the convergence properties of iterative 

schemes that attempt to handle the force implicitly. 

We will consider two time-stepping schemes that lead to a non-linear fixed point iteration 

on the fibre position within each time step. One scheme is a Crank-Nicholson type splitting in 

time (with diffusion coupled implicitly with the force, and explicit convection), and the other is a 

method proposed by Mayo & Peskin [MP93], which uses an ADI step for convection and diffusion 

and the force is coupled only with the interface position. We will see that for both of these 

schemes, the pressure and velocity can be eliminated from the semi-discrete equations and the 

method rewritten as an iteration on the fibre position alone. The behaviour of the two methods 

is discussed in terms of the stability and convergence of the iteration, which is then verified in 

computations. 

74 
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However, before investigating implicit discretisations, we will begin with a more thorough ex­

amination of the linear modal results of the previous chapter and their application to time-stepping 

schemes where the force is handled explicitly. We will often refer to these schemes as "explicit," 

even though computations will sometimes include the ADI step in the usual Immersed Boundary 

Method algorithm. These results are of particular interest since many immersed boundary compu­

tations involve a non-linear force for which no effective implicit solvers are available at the current 

time. 

4.1 Explicit Schemes 

In Section 3.1.4 we found that for a typical choice of parameters, the linearised fibre modes have 

magnitudes that differ over a very wide range. This disparity is especially pronounced when the 

fibre force is large, and can be further compounded by small viscosity in high Reynolds number 

flows. The analytical results of Section 3.2.3 showed that smoothing the force with an approximate 

delta function reduces the stiffness considerably, and yet numerical evidence testifies that the 

method still suffers from severe time step restrictions. We will now investigate the stiff nature 

of solution modes and how it relates to the behaviour of various explicit time-stepping schemes. 

Initially, we consider a Forward Euler discretisation of the problem, which differs from the FE/ADI 

scheme (from Section 2.3) in that there is no ADI step and convection and diffusion are handled 

explicitly. 

It is essential in the following discussion that we distinguish clearly between the solution modes 

arising from the fibre, and those from Stokes flow without an immersed boundary, since the time 

step in a discretisation of the immersed fibre problem is limited by both. One thing to keep in 

mind is that Stokes modes (which satisfy A = -pa2/p) lie entirely on the real axis, while the fibre 

modes have an imaginary part that is typically large in comparison to the real part (as we saw in 

Section 3.1.4). To understand whether diffusive effects or the fibre forces are the limiting factor in 

computations, we begin by plotting the two sets of modes together in the AA;-plane along with the 

region of absolute stability for the Forward Euler scheme. Figure 4.1 depicts the stability region, 
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which is the interior of the circle |1 + A&| = 1, along wi th the two sets of modes (smoothed fibre 

modes are marked "o " and Stokes modes " * " ) . We have used the same set of parameters f rom the 

example pictured in F igure 3.15: namely, a — 1, 000, p = p = 1 and smoothing radius e = ^ . It is 
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Figure 4 .1 : Region of absolute stability for the Forward Euler scheme, along with the smoothed 

fibre modes (plotted as o) and Stokes (with *). The plot on the right is a blow-up of the 

region containing the fibre modes. The time step is taken to be k = 6.1 x 1 0 - 5 , which is 

the largest afforded by the method (a = 1, 000). 

clear that in this si tuat ion the Stokes modes determine the t ime step restr ict ion. The max imum 

allowable k is determined by the circled point on the far left, which gives rise to the stability 

condition for an explicit Forward Euler discretisation of diffusion, using centered differences in 

space: 

oh2 

k < '— « 6.1 x 10~ 5 . (4.1) 
4p 

The FE/ADI scheme, on the other hand, avoids the l imi tat ion that arises from Stokes modes 
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in the straight Forward Euler scheme by treating diffusion implicitly, but we would still expect this 

method to be limited by its explicit handling of the fibre force. The right hand plot in Figure 4.1 

shows that the fibre modes are already very close to the stability limit, and so we can take the 

time step only 1.5 times larger than that allowed for explicit diffusion: kmax « 6.6 X 10 - 5 . This is 

at odds with the actual maximum time step kmax = 5 X 10 - 4 that we observe in computations. It 

thus appears that the ADI step confers some additional advantage with regard to the stiffness of 

fibre modes. Recall that the fibre modes embody the interaction of the fibre force with a viscous 

fluid. Thus, handling even just the viscous terms implicitly can help deal with the stiffness of the 

fibre modes. 

The forcing parameter a = 1,000 is actually somewhat small from a physical standpoint, but 

we have been unable to solve the smooth dispersion relation (over the entire range of a) for values 

of a any larger because of the ill-conditioned nature of the equations.8. However, we do know 

from the previous chapter that as a increases, the smoothed fibre modes increase in magnitude; 

consequently, we expect that if a is taken large enough, then the stiffness from the fibre modes will 

become the limiting factor in the time step. Not only does the magnitude of A increase as the force 

is strengthened, but so does the ratio \Im{\)/Re(X)\: we can see this effect in Figure 4.2 which 

depicts this ratio for the lowest wavenumber mode as a varies. The same behaviour is observed 

for other values of a,h and so we see that the as the force increases, the fibre modes tend to cluster 

near the imaginary axis further out from the origin. In terms of the stability of the Forward Euler 

scheme, this is the worst case scenario: k must be taken extremely small to deform the circular 

region enough to encompass these eigenvalues. This leads us to believe that the stiffness of the 

fibre modes will eventually begin to dominate the Forward Euler scheme as a is increased. We will 

investigate the effects of varying the force parameter shortly. 

aFor the same reason, we cannot solve the dispersion relation with a smaller viscosity, which would also have 
reduced the effect of the Stokes modes. 

bThe a = 2 7 T mode is not the one that limits the time step in calculations, but reliable solutions for A could 
not be computed for large a when a > 27r. Nonetheless, this mode is representative of how the ratio varies 
with cr. 
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Figure 4.2: Plot of the ratio Im{\)/Re(\) versus <r for the dominant wavenumber mode 

(a = 2ir). There is a clear tendency for the modes to approach the imaginary axis (that 

is, Im(\) >̂ Re(\)) as the force parameter increases (fi = 1.0). 

An obvious question to ask at this point is: Is there another explicit time-stepping scheme 

that does a better job of covering the imaginary Xk-axis? There are actually many possibilities, 

but the simplest and most obvious choice is the Runge-Kutta (RK) family of schemes, for which 

the Forward Euler method is the first order member (and so we denote this scheme by "RK1"). 

We also consider three other schemes: a second order Runge-Kutta method, RK2, also known as 

the midpoint scheme; the third order RK3 scheme, which is a method attributed to Heun; and the 

standard fourth order formula RKJ, (all of which are described in [But96]). The stability region 

for each of the four methods is plotted in Figure 4.3, from which it is clear that better coverage 

is obtained at points near the imaginary axis as the order of the scheme is increased to 4. If we 

ignore Stokes modes for the moment, then for the particular choice of parameters in the example 

considered earlier, we may take k « 6.0 X 10 - 4 for the fourth order scheme, which is approximately 

10 times larger than the time step allowed by Forward Euler. This is a considerable improvement, 

which we would expect gets even better as the force parameter a is increased (again, we can only 

compare with the analytical results at this smaller value of o, for which the dispersion relation 
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Figure 4.3: Region of absolute stability for the Runge-Kutta schemes of order 1, 2, 3, and 

4. A selection of representative eigenvalues for the example problem are plotted on the 

same axes (using o), with the value of k = 6.0 x 1 0 - 4 chosen to be the best afforded by 

the fourth order scheme (cr — 1,000). 
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can be solved). The results for all four explicit methods are summarised in Table 4.1. The Stokes 

Scheme Time step restrictions 

Stokes prediction Smooth prediction Computed 

(diffusion) (fibre modes) 

RK1 6.1 X i t r 5 6.6 X IO" 5 6 x 10~5 

RK2 6.1 x 1(T5 2.7 x 1(T4 6 x IO" 5 

RK3 7.7 x i t r 5 4.8 x 1(T4 7 x IO" 5 

RK4 8.5 X IO" 5 6.0 x IO" 4 8 x I O - 5 

FE/ADI — — 5 x 10~4 

Table 4.1: Comparison of the predicted and computed time step restrictions for four fully 

explicit schemes, based on forcing alone (<J = 1,000, ji = 1). 

prediction is slightly different for RK3 and RK4 because of a modification in the constant 4 lying 

in the denominator of the stability condition (4.1) for each of these methods. The maximum 

time step observed in computations matches almost exactly with the Stokes prediction for each of 

the RK schemes. Therefore, in this parameter regime, it is diffusion and not the fibre force that 

governs the time step, which is what we observed earlier for the Forward Euler {RK1) scheme. 

While the analytical dispersion relation can only be solved for small CT, we may still use 

computations to compare the effect of increasing the force parameter. In Figure 4.4, the maximum 

allowable time step kmax is plotted against a for each scheme. The flat nature of the RK curves at 

lower a values corresponds to the parameter regime where Stokes modes dominate and the stability 

restriction (4.1) holds. Here, there is nothing to be gained by using RK4 because the negative real 

parts of the eigenvalues (arising from diffusion) are the limiting factor in explicit computations. 

As the force is increased, the comparatively large imaginary parts of the fibre modes begin to 

dominate the computations and the advantage of the higher order RK methods over the Forward 

Euler scheme becomes evident. At a = 100, 000, the time step allowed for RK4 is approximately 
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Figure 4.4: Comparison of computed time step restrictions for the Runge-Kutta schemes and 

the ADI implementation of the Immersed Boundary Method (p = 1.0). 

15 times that for RK1. We have also plotted kmax for the Forward Euler/ADI implementation of 

the Immersed Boundary Method. The RK4 method allows a time step only slightly larger, which 

is not enough to justify the added expense of the three extra stages. 

Since implicit discretisation of diffusion seems to benefit the FE/ADI scheme so much, it 

seems worthwhile to investigate the use of semi-implicit Runge-Kutta methods, such as those 

described by Ascher, Ruuth & Spiteri [ARS97]. These methods combine implicit handling of 

diffusion along with all of the advantages of explicit Runge-Kutta stability regions, and we are 

currently investigating their application to immersed boundary computations. 

Owing to the results of Section 3.1.4 where the dominance of fibre modes over Stokes modes 

asserts itself at higher Reynolds numbers, we performed the same set of computations with u. = 

0.01, which are plotted in Figure 4.5. As we might expect from our previous discussion, the 

advantage of the higher order Runge-Kutta methods becomes more pronounced as the Reynolds 
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Figure 4.5: Comparison of computed time step restrictions for the Runge-Kutta schemes and 

the ADI implementation of the Immersed Boundary Method (fi = 0.01). 

number increases and the fibre modes dominate. The fourth order RK4 scheme allows a time step 

25 times larger than Forward Euler when a > 10, 000. A further comparison with the FE/'ADI 

scheme demonstrates that the time step may be taken three times larger with the fully explicit 

RK4 method: in this situation, the fourth order scheme is now much more competitive. The cost 

of the various schemes is compared in Table 4.2 in terms of the CPU time required for a time step 

just within the stability boundary. 

While the time step requirements shown in Figures 4.4 and 4.5 for the fully explicit RKl 

and RK4 schemes are consistent with the behaviour of the fibre modes with increasing force (see 

Figure 4.2), the FE/ADI scheme (which treats the fibre force in an explicit fashion) performs 

much better than we would expect. It is clear that the implicit treatment of viscous terms in the 

ADI approach offers some advantage, but further analysis is required to determine exactly how 

the scheme avoids the time step limitations present in fully explicit methods. 
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Scheme CPU Time Required (sec) Scheme 

er = 250,000, fi = 1.0 a = 250,000, fi = 0.01 

RK1 370.59 1658.21 

RK2 138.12 143.02 

RK3 110.87 99.44 

RK4 109.76 52.64 

FE/ADI 53.96 54.12 

Table 4.2: Comparison of the CPU times required for the various RK schemes when the time 

step is chosen just within the stability region. Timings were performed on an SGI Origin 

2000 (4 x 195 MHz R10000 processors, 512 Mb RAM). 

In conclusion, explicit Runge-Kutta methods provide no advantage over the FE/ADI method 

at low Reynolds numbers, since the Stokes modes and fibre modes are the same order of magnitude. 

However, semi-implicit Runge-Kutta schemes may offer a significant benefit, by allowing us to 

combine implicit discretisation of diffusion with the better treatment of stiff fibre modes afforded by 

higher order Runge-Kutta schemes. As Tie is increased and the fibre modes begin to dominate the 

problem, the fourth order Runge-Kutta method is far superior to the RK1 scheme. Furthermore, 

it is on an equal footing with the implicit FE/ADI scheme in terms of computational cost. 

4.2 Implicit and Semi—Implicit Schemes 

Before presenting the two semi-implicit schemes that we will investigate in the remainder of this 

chapter, we will first write a fully implicit version of the Immersed Boundary Method given in 

Section 2.3. Since the ensuing analysis deals only with solutions that are discrete in time and 

continuous in space, we will drop the subscripts (-)ij referring to the spatial discretisation and 

think of the solutions as depending on x. Furthermore, the analysis is linear and so we will also 

leave out the convection terms from the momentum equations and consider the solution of Stokes 

equations instead. 
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A fully implicit Backward Euler discretisation of the problem can be written as the following 

system of equations to be solved simultaneously for Fn, Un and Xn within each time step: 

f d2Xn(<s\ 
Fn(x) = jv° dg2 ' -Sh{x- Xn(s)) ds (4.2a) 

lln(x) = Un-l{x) + ̂ v\jiMJn{x) + Fn(cc)} (4.2b) 

Xn(s) = I " " 1 + k I Un(x)-Sh(x-Xn(s))dx (4.2c) 
Jfi 

where V is the projection operator defined in Section 2.3. In the fully discrete method, the 

integrals are replaced by sums as was done in (2.16b) and (2.16h). An implementation of the 

fully implicit scheme using a Newton iteration based on a Green's function solution for Stokes 

flow was proposed by Tu & Peskin [TP92], but was shown to be far too expensive to be of any 

practical use. Nonetheless, some form of semi-implicit discretisation is needed to couple the fibre 

force calculation with the fluid equations to overcome the stiffness recognised in the mathematical 

problem and in computations. 

There have been many efforts to design a version of the scheme that handles the force implic­

itly, which can be distinguished from each other by identifying which terms in (4.2) are coupled 

implicitly with the force. The first attempt was the approximate implicit method [Pes77], which 

operates in two steps, like a predictor-corrector scheme: 

• First, a prediction of the fibre position is computed by neglecting the coupling between fluid 

and fibre (by dropping the projection step and diffusion terms in (4.2b)) and applying the 

following fixed point iteration for X*: 

- - k2 r f d2X* 
X* = Xn~1 + kUn-1 + — a Sh{x-X(r,t))Sh(y-X(s:t))drdy. (4.3) 

P JsiJr ds2 

The resulting fibre configuration X* is used to compute the force. 

• The fluid velocity and fibre position are then computed using the standard ADI step (for 

convection and diffusion) followed by a projection step for the pressure. 

In this version of the method, only the force and interface position have been coupled together 

using a fixed point iteration, and so it is not truly implicit. Though this approach has been taken 
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in many simulations [PM89, FF93], it has been shown [MP93] to suffer from a degree of stiffness 

comparable to the fully explicit method. 

We now present two semi-implicit schemes which lead to iterations that couple the fluid and 

fibre together. The major distinction between the methods (and the approximate implicit scheme, 

for that matter) is the choice of terms in (4.2) to treat explicitly. We begin with a simple fixed 

point iteration which uses a Crank-Nicholson-type discretisation in time and a Stokes solver rather 

than the split-step projection scheme. This approach has not appeared in the literature and is 

considered here for comparison purposes because of its simple structure. 

Remark 4.1. A fully coupled Stokes solver is identical to the split-step projection scheme in the 

discrete setting when the computational domain has periodic boundary conditions. 

This first scheme is formulated as an iteration embedded within each time step, with the 

solution at the rath iteration written with a second superscript (-)'m- Assuming that the values 

of the pressure, velocity and fibre position are known at time level n — 1, the solution at time tn 

is computed using the following algorithm. 

C R A N K - N I C H O L S O N ( C N ) S C H E M E 

STEP CN1: Set the iteration counter m = 0 and the initial guesses 

fjnfi = fjn-l^ pnfi^pn-l jfnfi = £ 

where V • Un~l = 0. 

STEP CN2: Compute the fibre force using 
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STEP CN3: Solve for the pressure and velocity simultaneously using Stokes equations with Fm'' 

in the right hand side: 

V • Un'm = 0 

STEP CN4: Update the fibre position for the next iteration 

X 
k f (un-m + Un~A . 6h{x - X"-1) dx 

STEP CN5: If the iteration has converged (that is, if ||XN'M - Xn>m 1\\ < TOL) then increment 

n and go to the next time step (Step 1). 

STEP CN6: Otherwise, increment m and iterate again starting from Step 2. 

The next algorithm, proposed in [MP93], proceeds through the same main steps as the CN 

scheme, but is closer in spirit to the Immersed Boundary Method (2.16). The major differences 

from the CN method are: 

• we revert to Backward Euler time discretisation; 

• the diffusion terms are handled implicitly with an ADI step as in (2.16). However, there is 

one major point of departure from the original scheme in that the force is taken out of the 

step (2.16c); 

• a preconditioner is used to accelerate convergence. 

Before stating the algorithm, we introduce some additional notation to simplify the presen­

tation of the iterative scheme. Let the delta function interpolation be written in terms of the 

operators Sn and Sn, where 

(4.4) 
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which interpolates fluid quantities V onto fibre points and 

= J W{s) -5h(x- X"(s)) ds (4.5) 

interpolates fibre quantities W onto fluid points. 

M A Y O - P E S K I N ( M P ) S C H E M E 

STEP M P 1 : Compute the intermediate velocity Un'* using the ADI procedure described in (2.16c)-

(2.16e), except that the fibre force in the right hand side of (2.16c) is zero. Here, Un'2 has 

been relabeled Un'* to avoid confusion with the iteration subscript m. 

STEP MP2: Set the iteration counter m = 0 and the initial guesses 

Tjnfl = Jjn-l Q r jjn,* a n d ^ n f l = X n ~ \ 

where V • U71'1 = 0. 

STEP MP3: Compute the force using 

72 

Jr ds2 

- d2 -
c _ \"n,m — 1 

= Sad^X 

where we drop the superscript (•)n~1 on S. 

STEP MP4: Perform the projection step 
( - k -

fjn,m — J}) JJn>* _| pn,m 

I P 

STEP MP5: Update the fibre position for the next iteration. This step requires some additional 

explanation, since it is here that the preconditioner is introduced. If we substitute the 
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expressions from Steps 3 and 4 into the backward Euler formula for X n , m + 1 , we obtain 

X n ' m = X n ~ l + ks( VUn>* + - V S a ^ r X 7 1 ' 7 7 1 - 1 

\ p ds2 

= (Xn~l + kSVUn<*) +SVS—-^ I " ' ™ - 1 

,V /_ p as2 

which can be written more compactly as 

As it stands, this iteration also converges very slowly. The convergence can be speeded 

considerably by writing an modified iteration which has the same solution: 

(/ - A.4) [Xn'm - A ? n ' m _ 1 ) = Z71'1 - (I- SVSA) Xn<m~l 

s v ' v ' 
tridiagonal dense 

In the fully discrete setting, A = SS is a diagonal matrix, and so the preconditioning matrix 

(I — AA) is a block tridiagonal matrix, and consequently very easy to invert. 

STEP M P 6 : If the iteration has converged (that is, if \\Xn'm - Xn>m~l\\ < TOL) then increment 

n and go to the next time step (Step 1). 

STEP M P 7 : Otherwise, increment TO and iterate again starting from Step 2. 

I I 

4.3 Linear Analysis of the Two Iterative Schemes 

The main objective in this section is to determine the conditions under which the two iterative 

schemes described in the previous section converge. We are still in the semi-discrete setting (that 

is, continuous in space) and so we may use a similar approach to that employed for the continuous 
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problem in Section 3.2. We will look for solutions of the linearised problem that take the form 

U 
n,m 

' U{y) ' 

V v(y) 

< p = e

i a x < P(y) 

X X 

Y 
V / 

Y 

on each of the subdomains £1$ and fig. The delta function is replaced by the cosine approximation, 

and the equations of motion can be solved as before. 

For both schemes described above, the iteration can be reduced to one on E n ' m = (Xn'm, Yn'm) 

only, and written as 

where B and C are 2 x 2 matrices and Rn~l is a 2-vector with entries evaluated at the previous 

time step. We are only interested in the convergence of the iteration, and so we consider the 

difference between successive iterates 

which satisfies the equation 

£m,m _ jyj-̂ 71,771-1 

where M = B _ 1 C is the iteration matrix. In the analysis to follow, the linearisation process 

decouples the normal and tangential motions of the fibre and so one eigenvalue of M depends on 

ot only, and the second on an only. The convergence properties of each scheme are manifested in 

the eigenvalues of M , which are easy to compute. The magnitude of the largest eigenvalue of M , 

which we denote by Q m a x , is a measure of the rate of convergence of the iteration. In particular, 

if Qmax < 1, then the scheme converges; otherwise it diverges. 

Another consequence of the linearisation process and reformulation of the solution as an iter­

ation on the fibre position only is that the effects of the ADI step are neglected. The CN scheme 



Chapter 4. Analysis of Time Discrete Schemes 90 

does not use ADI at all, and in the Mayo-Peskin scheme, the split-step nature of the method 

leaves the ADI step for diffusion outside of the iteration. 

4.3.1 Crank-Nicholson convergence rates 

The solution procedure parallels that for the smoothed delta function problem in Section 3.2. The 

solutions on the regions £2Q are given by 

^ ( y ) = A±e^, 

u±(y) = B±e^y -—A^e^, 2p 

v±(y) = C±e^y ±—A±e*ay, 2p 

where we have defined 

pk 

and dropped the superscripts (-)n>m for ease of notation. These expressions are identical to (3.26)-

(3.28), except that the continuous time parameter A is replaced by jr. 

The solution on the smoothing region fi0 is derived in a similar manner, and the equations 

are unwieldy so we leave out the details. However, it is important to realise that there is one 

very significant difference in the dependence of the solution on the fibre unknowns X and Y 

from the continuous problem. Rather than the fluid force being defined implicitly in terms of 

the fibre position, we have in Step 2 of the algorithm that the force is computed based on the 

fibre position from the previous iteration. Consequently, the semi-discrete analogues of the fibre 

evolution equations (3.39) and (3.40), are explicit formulas for En'm in terms of ~ n ' m _ 1 . 

The system of integro-partial differential equations is solved using MAPLE, after which we can 

apply the same matching conditions at the interfaces y = ±e to obtain a system of linear equations 

relating the unknown solution coefficients (the constants of integration on £20, along with A^, B± 

C^). Here, our approach diverges somewhat from that of the continuous problem, in that we need 

to solve this system of equations to obtain the iteration matrix. Fortunately, the simplification 
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mentioned above (namely, that in the discrete case the fibre positions are no longer coupled to the 

fluid unknowns) makes it possible to solve explicitly for the coefficients. The system of equations 

now has a non-zero right hand side (corresponding to the entries from the previous iteration that 

appear in the expressions for the fibre positions). The coefficient matrix this time has determinant 

which is never zero, provided (3 ^ a, thus guaranteeing that the system is always solvable. 

After a lengthy MAPLE computation, we can derive the iteration matrix for the fibre position, 

which has the very special form 

M = 
Qt 0 

0 Qn 
(4.7) 

where gt depends on at only, and gn depends on an only (the explicit forms are long and complicated 

expressions involving the problem parameters, and so they are not given here). We can make two 

important observations regarding the convergence of the scheme: 

• there is a decoupling between the tangential and normal fibre motions, and the convergence 

for each of the two modes of oscillation is governed by a rate; 

• the convergence rates of the scheme, gn and gt, depend linearly on the fibre stress parameters 

an and Of. 

A contour plot of the convergence rate Qmax = max(\gt\,\°n\) is given in Figure 4.6, with 

parameter values a = 10,000 and N = 64, e = ^ and over a range of k and a £ [2n, 1287r]. 

From these results, it is clear that the CN scheme is only conditionally convergent. Furthermore, 

the contours decay quite rapidly to zero from the boundary of the shaded region — this indicates 

that if the time step is chosen so that the iterations are convergent, then they should converge 

quite rapidly (in practice, within a couple of iterations). These predictions will be compared with 

computations in Section 4.4. 
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Figure 4.6: Convergence rate contours for the CN scheme with the region of divergence 

£max > 1 shaded. Here, all plotted points derive from the tangential mode, which always 

has the largest convergence rate (CT = 10,000, N = 64). 
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4.3.2 Mayo-Peskin convergence rates 

The i terat ion mat r ix for the second scheme is not diagonal (it is a ful l 2 x 2 matr ix) but the 

structure is quite similar to that of the first scheme. Th is t ime, the expressions for the eigenvalues 

of the mat r ix are much simpler, and so we given them below: 

Tr4o-tk2 s in 2 (ae) (-TT 4 + 7 r 4 e - 2 a £ + 5e 3 7r 2a 3 + 3 e 5 a 5 + 27r 4ea) 
Qt 

ae (a2e2 + TT 2) 2 ( - 4 e 7 a 4 + 8e 5 a 2 7r 2 - 4e37r4 + 3n4atk2
 s i n 2 ( a e ) ) 

7T6ank2
 s in 2 (o;€) ( -7r 2 e- 2 a e + e 3 a 3 + 7r2ea + TT2) 

(4.8a) 

(4.8b) 
ae (a2e2 + TT 2) 2 (-4e 7a 4 + 8e5a27r2 - 4e37r4 + Z^ank2 sin2(ae)) 

A contour plot of the convergence rate Qmax = max (|̂ t|, \on\) is given in Figure 4.7, with parameter 

values ji = p = 1, a = 10, 000 and N = 64 and over a range of k and a € [27r, 1287r]. Based on the 

a/27r 

Figure 4.7: Convergence rate contours for the MP scheme. The vertical dotted line separates 

the parameter space into regions where the convergence rate for the normal mode (left) or 

the tangential mode (right) dominate (a = 10, 000, N = 64). 

convergence rates for the linearised problem, we can make the following observations: 

• The iteration is unconditionally convergent. This is to be expected, since Mayo & Peskin 

prove this result in [MP93]. 
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• There is a critical value of a given by 

ac « (0.09057685940 -N)-2n 

at which gn = gt (we have found this expression by equating the two eigenvalues in (4.8), 

setting crn = at and e = ^ , and solving for a). For the example given in the contour plot, 

we have ac 5.7969 • 27T, which is indicated in Figure 4.7 as a dashed vertical line. For 

a < ac, the normal convergence rate gn is the largest, while for a > ac the convergence of 

the tangential modes (gt) dominates the calculation. 

Remark 4.2. There are actually two versions of the MP iterative scheme, one which bases the 

delta function interpolation on the fibre position from the previous time step (using <Sn _ 1 and 1) 

while the other uses Xn>m for the interpolation (that is, Sn'm and S™'™'). This second version of the 

scheme (also proposed in [MP93]) is a more stable alternative to the first, since the interpolation 

is implicit in the fibre position as well. However, it is also considerably more expensive than the 

first, since the preconditioner must be evaluated at every iteration rather than just once every time 

step. As it turns out, the preconditioner is an extremely expensive part of the calculation, and can 

even outstrip the cost of the fluid solver if it is recomputed many times in each time step. 

The linear analysis is unable to distinguish between these two alternatives, since any terms in 

the interpolation that involve the interface position appear at a higher order and are thus dropped 

in the linearisation process. However, this is not a serious limitation, since the computational 

results in the following section are not affected appreciably whether we base the interpolation on 

£ 7 1 - 1 orsn'm. 

4.4 Computational Results 

To test the accuracy of the predicted convergence region for the first method (CN), we performed 

several numerical experiments on the "flat fibre" test problem depicted in Figure 3.10. The results 

are summarised in Table 4.3. The requirement on k in computations is very sharp, which matches 

with the steep contours in Figure 4.6 — that is, either the scheme diverges, or it converges within 
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Maximum k 

o Predicted Computed Computed 

(CN) {FE/ADI) 

100 0.0018 0.0010 0.008 

1,000 0.00039 0.0003 0.0006 

10,000 0.000098 0.00009 0.0001 

100,000 0.000028 0.00002 0.00003 

Table 4.3: Predicted and computed stability boundaries for k using the CN scheme on the 

"flat fibre" problem (TV = 64). 

one or two iterations. The predicted and computed stability boundaries match quite closely in the 

range a = 102-105 (corresponding to "physical" values). 

The third column gives the maximum time step allowed for the Forward Euler/ADI scheme 

for comparison. It is clear that there is no advantage to using the CN scheme over the original 

algorithm. Since the force is not handled in a truly implicit fashion, but rather using a fixed point 

iteration, these results suggest that we must look for another approach which has a better implicit 

treatment of the stiff forcing term. We will see next that the MP scheme does a good job in this 

respect. 

We can capture the individual solution modes that cause the onset of instability by calculating 

with a time step only slightly inside the divergence boundary and observing the shape of the fibre 

as the iteration diverges. Figure 4.8 depicts the fibre configuration (for two values of o) at an 

intermediate stage in a divergent iteration, where it is easy to see the instability that develops. 

There is a clearly defined mode that is excited in each case: a — 11 • 27T for o = 1,000, and 

a = 13 • 27r for a = 10, 000. These wavenumbers are exactly those that are predicted by the 

analysis — namely, the tangential modes having the largest convergence rate, or in other words, 

the a that has Qmax ^ 1 as we approach the convergence boundary. Referring to Figure 4.6 (for 
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a = 10, 000), we see that the wavenumber that intersects the kmax boundary is in fact very close 

to 13. 

,7 = 1,000 => a = l l - 2 7 r 

CT = 10,000 a = 13-2n 

Figure 4.8: Snapshots of the instabilities arising in divergent iterations for the CW scheme. 

The wavenumber of the excited unstable mode matches exactly with the mode having the 

largest convergence rate for simulations with <r = 1,000 and 10,000. 

We believe that these unstable tangential modes have also been observed in immersed boundary 

computations involving two-dimensional heart simulations performed by McCracken & Peskin 

using a vortex method [MP80]. At high Reynolds numbers (Tie « 300), they observed instabilities 

in their computations which appear as "wiggles" in the fibres comprising valve leaflets and the 

heart wall, accompanied by small vortices in the adjacent fluid. These features appear to be 

very similar to the medium wavenumber tangential modes excited in our model computations 

when the time step is taken very close to the convergence limit. McCracken & Peskin explain 

the instability as follows [MP80, p. 203]: " . . . because of the very large forces generated at the 

boundary during ventricular systole, we are unable to complete the runs that we have made at higher 

Reynolds numbers." We can provide a more satisfactory explanation using our understanding of 

the behaviour of the solution modes. It is the combination of a large forcing parameter and small 

viscosity that limits the time step in their high Reynolds number computations. 
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We also performed several computations to verify the convergence rates for the MP scheme 

from Figure 4.7, and the results are summarised in Table 4.4. The convergence rate was computed 

k 

(7 = 1,000 a = 10,000 a = 100,000 

k Pred. Comp. Pred. Comp. Pred. Comp. 

0.0001 0.01 0.01 0.08 0.08 0.43 0.43 

0.0025 0.05 0.05 0.33 0.33 0.75 0.76 

0.0005 0.17 0.18 0.62 0.62 0.84 — 

0.001 0.43 0.43 0.79 0.79 0.87 — 

0.0025 0.75 0.73 0.86 — 0.88 — 

0.005 0.84 0.84 0.88 — 0.88 — 

Table 4.4: Predicted and computed convergence rates for the MP scheme applied to the "flat 

fibre" problem (TV = 64). The "—" entries correspond to instances where the scheme went 

unstable. 

from the numerical results using the formula 

Rate 
Resm+1 

Resm ' 

where Resm is the residual at iteration level m computed as follows: 

1/2 

Resr 

Nb-1 
1 II - X m—l 

and where || • ||2 is the standard L2-norm on vectors. The predicted convergence rates were 

found by reading off gmax for the a = 2w mode from the contour plot in Figure 4.7, for which 

we always have gmax = Qn (that is, the normal mode dominates the calculation at the lowest 

wavenumber), even though gt is always the largest convergence rate when the full range of a is 

considered. While intermediate wavenumber modes have the largest g in a given computation, and 

hence will dominate the convergence rate after a large number of iterations, they are also modes 

whose amplitude decays much more rapidly in time. Within every time step, however, only ten 
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or so iterations were typically required to satisfy the residual tolerance, and so we expect that the 

lowest wavenumber modes will dominate the actual convergence rate observed in computations. 

This is verified by the results of Table 4.4 which compare the a = 2n prediction to the computed 

convergence rates. 

The blank entries in the table correspond to instances where the iteration failed to converge, 

which seems to go against our analytical predictions of unconditional convergence. However, we 

believe that this arises from a time instability which affects the numerical scheme when the time 

step is taken too large, perhaps due to the fibre crossing multiple mesh lines. In fact, Mayo & 

Peskin identify [MP93, p. 269] that even though the iteration scheme is convergent and is more 

stable in time than the fully explicit method, it is not always stable. 

We now consider another test problem, which is more typical of that seen in the literature 

to date. By considering this second example, we hope to be able to test the applicability of our 

analysis to problems that are more strongly nonlinear. In [TP92], [MP93] and [LL97] for example, 

an elliptical fibre such as that pictured in Figure 4.9 is used to test various aspects of their numerical 

methods. We take the semi-axes of the ellipse to have length 0.2 cm and 0.4 cm, and use the same 

linear force density function with stiffness constant a. The ellipse will tend toward an equilibrium 

state that is a circle with the same area as the original ellipse, because the fluid is incompressible 

— the radius of this final circle is approximately equal to 0.2828 cm. 

The time step restrictions for the CN scheme are compared to the values predicted by our 

analysis in Table 4.5. We can justify applying the results for a sinusoidally-perturbed flat fibre 

to the ellipse using the same physical parameters as follows. The modes which govern the con­

vergence behaviour of the scheme lie at medium wavenumbers. We expect that all but the lowest 

wavenumber modes will be essentially unchanged whether they are located on a flat fibre or on a 

curved ellipse. 

There is, in fact, very little difference between the time restrictions for the elliptical interface 

and those for the "flat fibre" example given in Table 4.3, particularly for the more representative 
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1 cm 

1 cm 

Figure 4.9: The "ellipse" test problem: the initial fibre position is an ellipse with semi-axes 

0.4 cm and 0.2 cm. The equilibrium state is a circle with radius approximately 0.2828 cm. 

G 

Maximum k 

G Predicted Computed (C'N) 

100 0.0018 0.0006 

1,000 0.00039 0.00020 

10,000 0.000098 0.000060 

100,000 0.000028 0.000020 

Table 4.5: Predicted and computed stability boundaries for k using the CN scheme on the 

"ellipse" problem (N = 64). 
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forcing parameters in the range 10,000-100,000. Consequently, we are encouraged that our ana­

lytical predictions can be applied to a wider range of non-linear problems, rather than simply the 

specialised flat fibre test problem tailored to the linear analysis. 

Before completing our discussion of time discretisations, we will draw a comparison between 

the explicit schemes studied in Section 4.1 and the two semi-implicit iterative approaches just 

considered. For the ellipse test problem, we applied the RKl, RKJh and FE/ADI schemes that 

are explicit in the force, and the CN and MP methods that couple the force to the fluid within 

a fixed point iteration. Table 4.6 lists the maximum time steps and CPU times required for each 

method for two sets of computations with o = 104 and 105, p = p = 1, N = 64 and Nb = 192. 

Notice that the CN scheme offers no advantage over the fully explicit RKJh particularly in terms of 

Scheme cr = 10,000, tend = 0.020 a = 100,000, tmd = 0.005 Scheme 

h 
""max 

Vol. loss CPU k 
"'max 

Vol. loss CPU 

RKl 1.3 x 10- 5 0.028 114.31 1.0 x 10~6 0.044 372.49 

RK4 8.0 x 10~5 0.024 66.51 3.0 x 10- 5 0.044 44.16 

FE/ADI 7.0 x 10~5 0.044 28.45 1.0 x 10~5 0.052 49.00 

CN 6.0 x 10- 5 0.076 65.99 1.0 x 10~5 0.068 98.30 

MP 8.0 x 10- 5 

1.6 x 10- 4 

0.084 

0.131 

56.62 

29.99 

2.5 x l O - 5 

5.0 x l O - 5 

0.068 

0.119 

44.00 

26.72 

Table 4.6: Comparison of computational cost for several explicit and semi-implicit schemes. 

The time step kmax was chosen to be the largest allowed by the method for stability, except 

for the MP scheme (which always converged), for which we chose two representative time 

steps to compare the volume leakage. The "Vol. loss" is computed relative to the equilib­

rium value of 0.251 cm 2 . CPU timings were taken on an SGI Origin 2000 (4 x 195 MHz 

R10000 processors, 512 Mb RAM). 

C P U time, which is not surprising from our previous comparisons of the CN and explicit stability 

restrictions. Furthermore, the RK4 method is almost 10 times more efficient than the Forward 
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Euler (RK1) scheme. 

Before discussing the relation of the Mayo-Peskin scheme to the others, we must introduce the 

very important issue of volume loss: immersed boundary computations are known to experience 

loss of volume which becomes significant during more extreme flow conditions (large fibre force, 

pressure or velocity) such as those we are considering here. In our 2D ellipse example, this manifests 

itself as a steady loss of area enclosed within the immersed fibre. The volume loss problem was 

identified by Peskin & Printz in [PP93]C and shown to arise not from fluid passing physically 

through the immersed boundary (since the fibre points move along streamlines), but rather to 

the fact that the interpolated velocity field through which the immersed boundary moves is not 

discretely divergence-free. LeVeque & Li showed in [LL97] that the volume loss in the Immersed 

Boundary Method for a problem nearly identical to our ellipse example grows linearly in time. 

Peskin & Printz proposed a modified divergence stencil which reduces the volume loss significantly 

at the expense of an increase in the cost of delta function interpolation. 

We have not implemented this modified stencil in our code, since the main point we wish to 

make is that the effect of volume loss is significant for the semi-implicit schemes (in particular, the 

MP scheme) when the time step is taken relatively large. While the iterative method does allow 

a much larger time step to be taken than for explicit schemes, there is a corresponding increase in 

the rate of volume loss. This is clearly indicated in the "Vol. loss" column from Table 4.6, which 

gives the change in area enclosed by the fibre between the beginning and end of the run, relative to 

the initial area of 0.251 cm2. Two different time steps are used for the MP scheme, which shows 

that while a larger time step may be taken to reduce the computational cost, it also leads to a 

much greater loss of volume. 

cThe flow conditions under which the volume loss occurs again lie in a more extreme range of parameters, 
about which they remark [PP93, p. 33]: " . . . [the volume loss effect] was small enough to be tolerable in 
the applications described above. In the cardiac research, however, this was only because the computational 
experiments were primarily concerned with diastole, during which the heart walls are relaxed and the pressure 
in the cardiac chambers is low. In more recent work concerning ventricular systole, we have found that the 
volume loss is too large to ignore." 
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The explicit methods (RK1, RK4 and FE/ADI) have a significantly lower rate of volume 

loss. Moreover, the RK4 method is actually quite competitive with the FE/ADI and MP in 

terms of computational cost while at the same time experiencing smaller volume errors. We can 

conclude from these results that while the MP iteration may be unconditionally convergent and 

allow significantly larger time steps to be taken, the time step is still limited by the spatial error 

in the incompressibility condition. Clearly, there is a need for more work to be done on developing 

new time-stepping strategies to treat the force implicitly in some type of iteration, while at the 

same time controlling the volume error. 



Chapter 5 
Appl i ca t ion : P u l p Fibres 

A theory has only the alternative of being right or 

wrong. A model has a third possibility: it may be 

right, but irrelevant. 

— MANFRED EIGEN. 

We will now depart somewhat from the mathematical and numerical analyses of the previous 

two chapters and concentrate on a novel application of the Immersed Boundary Method to motion 

of pulp fibres. The main purpose in this chapter is to demonstrate the applicability of the method 

through comparison with experiments, theory and other computations. Our eventual goal is to 

use the pulp fibre problem as a benchmark for testing modifications to the numerical scheme that 

are suggested by our previous analytical work. 

We begin with a brief introduction to the experimental, analytical and computational research 

that has been done on pulp fibres to date. In no way is this intended to be an exhaustive review of 

the literature; instead, we highlight the main properties of pulp fibres and motivate the importance 

of numerical simulations. Since the behaviour of fibres depends on so many parameters, we derive 

a non-dimensional measure of flexibility that can be used to classify fibre motion. Following that, 

we will illustrate why the immersed fibre framework is so well suited to modeling the dynamics 

of pulp suspensions. The modifications to the Immersed Boundary Method that are necessary in 

order to incorporate the geometry and physics particular to this problem are also outlined. 

Finally, a series of simulations is performed to validate the immersed boundary model. While 

the 2D simulations are unable to capture some of the 3D aspects of fibre motion, we will show 

103 
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that qualitative features of planar motions are correctly reproduced. Comparisons made on the 

basis of our dimensionless flexibility parameter will allow us to compare fibre motions over a large 

range of physical parameters. 

5.1 Physical Background: Pulp Fibres in Shear Flow 

A basic understanding of the behaviour of pulp fibres in suspension is extremely important to the 

pulp and paper industry in many stages of the paper-making process. Of particular interest is the 

study of fibres of varying length and flexibility, suspended in a shear flow. Take for example the 

filtering process, where there is a need to separate fibres based on physical properties. Moderately 

flexible fibres are more desirable than rigid fibres because they have a higher relative bonding area 

and thus form paper with higher tensile stress [DK82] and better printability; hence, the ability to 

control the separation process based on flexibility is a prime factor in forming high quality paper. 

It is also important from the standpoint of quality to obtain pulp consisting of fairly uniform 

length fibres. Consequently, a knowledge of the hydrodynamic behaviour of fibres with different 

length is equally essential. 

Pulp consists of roughly cylindrical fibres of length 0.1-0.3 cm and aspect ratios ranging from 

60 up to 400. A considerable amount of theoretical work has been done on modeling fibres, since 

fibre suspensions appear in many applications other than paper formation. Much of the theory 

centres around the motion of rigid cylindrical rods immersed in low Reynolds number or Stokes 

flows. Attempts have been made to add a small degree of flexibility, but these results are usually 

fairly limited in their application. Accordingly, much of the work on flexible fibres has been 

experimental, though more recently numerical simulations have begun to be used. 

In the following two sections, we will describe all three approaches — analytical, experimental, 

and computational. The paper of Wherrett et al. [WGS097] provides an excellent review of the 

literature on the subject, and we have drawn much of the material in the following sections from 

that paper and the references therein. 
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5.1.1 Theory and experiments 

A s early as 1922, Jeffery studied the motion of a r igid, neutra l ly-buoyant , el l ipt ical part icle in a 

homogeneous Stokes flow [Jef22]. He proved that the centre of the part icle follows streamlines, 

and that when subjected to a Couette flow, it rotates about its centre according to 

Gret 
ip(t) = tan - l re tan (5.1) 

where cf> is the angle the major axis of the ellipse makes wi th the vert ical , G is the shear rate, and 

re is the rat io of the lengths of the major and minor axes of the ell ipsoid (refer to F igure 5.1). T w o 

u = Gy 

TT/2 

9-

-TT/2 
100 200 300 400 

G-t 

(a) Jeffery's ellipsoidal particle im­

mersed in a linear shear flow. 

(b) A plot of the angular displacement of the rotating 

ellipsoid in the x — y plane versus non-dimensionalised 

time (for re = 60). 

Figure 5.1: An ellipsoidal particle in a shear flow, moving according to Jeffery's equation. 

things can be deduced from this formula: first, the particle has a non-un i form angular velocity 

which is largest at <p = 0° and slows to a min imum near cp = 90°; and second, the period of motion 

is a constant, given by 
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which is approximately T « 2nre/G for long, thin ellipsoids (when r e 1). 

Anczurowski & Mason [AM67] showed that Jeffery's equation (5.2) could be used to describe 

the motion of rigid, cylindrical fibres by replacing re with an equivalent ellipsoidal axis ratio r*, that 

is chosen by matching periods from experiments. While Jeffery's equation is a good approximation 

for rigid fibres, experiments establish that it cannot be applied to fibres that experience significant 

bending [Mas54]. As a consequence, much of the work on flexible fibres has focused on experimental 

observations of the periods and types of motion. 

Forgacs et al. observed [FRM58] in experiments involving very dilute suspensions (with con­

centrations <̂  0.01%) that fibres are essentially isolated. When subjected to laminar shear, fibres 

tend to orient themselves in the direction of the shear flow, and when in motion they either rotate 

in very well-defined orbits, or bend. Experiments by Mason and co-workers [Mas54, AFM58] iden­

tified a wide range of fibre behaviours, which they separated into distinct orbit classes based on 

the flexibility of the fibre. We have summarised the orbits in Table 5.1 which are two-dimensional 

in nature, since these are the ones that relate to our 2D fibre model.a 

Rigid fibres (class I) rotate as solid cylinders, with an angular velocity that reaches a maximum 

when the fibre is aligned at right angles to the direction of the flow. Flexible fibres have several 

possible modes of rotation, the simplest of which is called a springy rotation (class II), where 

there fibre still revolves but deforms into the shape of an arc during the spin. In the loop or S-

turn (IIIA) and snake turn (IIIB), the fibre is deformed into a more intricate curved intermediate 

shape, after which it straightens out once again.b The final class IV orbit indicates a fibre that 

performs a snake-like turn but never straightens out, continuing to loop over itself; this is called a 

complex rotation. Forgacs et al. [FRM58] used measurements of fibre flexibility to show that the 

various orbit classes occurred for different fibre stiffness values, with the stiffness decreasing as we 

aThere are several other types of orbit involving non-planar motions (such as spinning in the axial direction) 
that we haven't included here. 

bThe S-turn (class IIIA) is rarely observed in experiments except for very carefully chosen initial configura­
tions and a fibre with a high degree of symmetry [AFM58]. 
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Orbit Class 

I Rigid rotation 

II Springy rotation 

IIIA Loop or S turn 

IIIB Snake turn 

I V 
Complex rota­

tion 

Table 5.1: Typical orbit classes for rigid and flexible fibres immersed in a two-dimensional 

shear flow. Adapted from [FRM58, p. 124]. 
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move down in the table. Differences also arise in orbital motion of fibres having the same physical 

properties when the shear rate and the length of the fibres is varied [FM59b]. 

Flexibility is thus a function of shear rate, bending stiffness and length. The effect of varying 

flexibility on orbits is easily compared (for moderately flexible fibres) by plotting the endpoints of 

a fibre on a polar plot, as illustrated in Figure 5.2. This plot is taken from experiments where the 

shear rate was varied, though the same behaviour has been observed in computations as bending 

stiffness is reduced [YM93] . Fibres that rotate as rigid cylinders generate a circular locus of points, 

while flexible fibres have orbits that are deformed. 

y 

G<Gcrjt 

I 
^^^^^ ^^^^^ 

X 

Figure 5.2: Polar plot of the endpoints of a fibre taken from experiments with varying shear 

rates. The outer circle corresponds to a rigid rod; the dotted line to a rod undergoing 

"springy" rotation; and the inner dotted curve to an even more flexible fibre. The deviation 

from the rigid rotation does not agree exactly with the predicted critical angle of 45°. 

Adapted from [FM59a]. 

A theoretical justification for this behaviour is provided by Forgacs & Mason [FM59a], who 

used Burger's theory for small disturbances in thin, slightly flexible rods to study the buckling of 
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fibres. They showed that there is a critical shear rate, 

G c n t = ( M 2 r c ) - i ) ' 
where rc — j=j is the ratio of length L to diameter D of the cylinder, E is Young's modulus for the 

material, and p is the fluid viscosity. From this, it is possible to derive an expression for the axial 

force on the rod as a function of the orientation angle <p: 

_ irGpL2sin<pcosy 

" p (£n(2rc) - |) ' ^ 

The compressive force on the fibre is a maximum at cp = —45°, which is where the onset of 

buckling can be expected to occur as G —> Gcru. Figure 5.2 shows that the predicted angle may be 

a reasonable approximation for shear rates near the critical value, but worsens as G is increased. 

5.1.2 Computational approaches 

The motion of flexible fibres in shear can be quite complicated, and the analytical results cannot 

capture the full range of complexity of observed orbits. Furthermore, due to the small size of the 

fibres and the difficult and time-consuming process of accumulating accurate flow measurements, 

there are considerable restrictions placed on the information that can be culled from experiments. 

Hence, numerical simulations present an ideal opportunity to gain a deeper understanding of 

flexible fibre motion by studying the fine structure of the fluid and fibre behaviour. 

There have been several recent efforts to simulate fibre motion numerically. Yamamoto & 

Matsuoka [YM93] model a fibre as a chain of bonded spheres that are free to stretch, bend and 

twist relative to each other. In this model, there is no hydrodynamic coupling between fluid and 

fibre: the fluid undergoes a given linear shear, and the motion of the fibre is determined by solving 

a set of dynamic equations with a given applied fluid force. Links between the spherical elements 

are governed by three stiffness constants (for stretching, bending and twisting motions) whose 

values depend on the radii of the spheres and Young's modulus for the material. This work has 

since been extended to simulate large systems of particles [YM94] and also incorporates forces of 

attraction and repulsion between individual fibres. 
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Wherrett et al. [WGS097] implemented a slightly modified version of the Yamamoto-Matsuoka 

model, which uses cylindrical elements instead of spheres. The stretching and bending stiffnesses 

are modified to include the aspect ratio of the elements, and the simulations are two-dimensional 

so that torsional motions are ignored. They derive a dimensionless bending number, related to 

the critical shearing force from (5.3), which is used to relate the changes in computed periods of 

revolution to fibre flexibility. 

The work of Ross & Klingenberg [RK97] introduced another similar mechanical model, con­

sisting of linked prolate spheroids. They eliminate axial stretching by linking the elements with 

ball and socket joints — real fibres do not stretch appreciably, even in highly sheared flows, and 

so this aspect of the model seems particularly advantageous. 

In all of the work previously mentioned, the influence of the fibres on the fluid has been 

neglected. Another approach has been to treat the fibres as simple rigid rods and concentrate 

instead on the hydrodynamic coupling. Fibres have been treated using a rheological model for 

non-dilute fibre suspensions in [RA93] and [RDK90]. These models are able to compute changes 

in the velocity field and relative viscosity of the fluid due to the presence of many fibres. However, 

this approach captures only the averaged properties of the suspended particles, whereas the focus 

of our work is simulating the motion of individual fibres. 

Our main purpose in reviewing the theoretical and experimental results above was to introduce 

several bases for comparison with our immersed boundary simulations of pulp fibres. Let us now 

summarise the results that are particularly useful to us. Rigid pulp fibres orbit as cylindrical rods 

with period given by (5.2), where re is replaced with an r* calibrated with experiments. Flexible 

fibres do not obey Jeffery's equation, and have a lower period than their rigid counterparts. Orbits 

and periods of rotation vary depending on flexibility, which is a function of the fibre length a,nd 

bending stiffness, and the fluid shear rate. Because there are three independent parameters param­

eters involved in determining fibre flexibility, we next derive a single dimensionless measuring of 

fibre flexibility, which permits meaningful comparisons to be made between the various behaviours 
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of flexible fibres. 

5.2 A Non-dimensional Measure of Fibre Flexibility 

Consider a flexible, cylindrical fibre immersed in a shear flow, which causes the fibre to deform 

because of a gradient in the shear force, Fs, applied by the fluid along the fibre. The strength of 

the force gradient determines the fibre deflection, d (refer to Figure 5.3). The extent of bending 

Figure 5.3: Deflection of fibre by a shearing force. 

is also affected by the length of the fibre, L, since the applied bending moment is proportional to 

Fs • L. Deflection and fibre length are therefore central to the flexibility of the fibre, and so we 

consider the following dimensionless quantity to compare the behaviour of flexible fibres under 

various conditions: 

deflection of fibre d 
length of fibre L 

This choice of parameter seems reasonable since fibres with the same flexibility should also have 

similar geometry (that is, the same deflection to length ratio). 

We now need to express the deflection of the fibre in terms of quantities that can be measured 

in simulations. In the previous section, we saw that flexibility is dependent on fibre length and 

stiffness, and shear rate, which we may write as x = f(L,EI,G): In order to determine the 

functional dependence of x o n these parameters, we appeal to basic structural mechanics [Hea77] 

in which the deflection of a rod of length L, clamped at one end and subjected to a force Fs at 
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the free end, is given by 

FSL3 

d oc 
EI ' 

where E is Young's modulus for the material (units g/cm • s2) and / is the moment of area (units 

cm 4) in the plane of bending. The product EI (with units g cm2/s2) has appeared in the pulp 

and paper literature [DK81] as the quantity S, and is called the stiffness of the material. 0 We can 

now write 

FSL2 

since it is the shear force gradient (which we denote V F S ) that gives rise to the bending moment 

in the fibre, we rewrite this expression as 

V f i • L3 

X « — — — . (5.5) 

The above formula now contains all the information that is required about the elastic properties 

of the fibre material; we now need to determine the dependence on the hydrodynamic parameters 

through VFS. To do so, we appeal to the derivation in Batchelor [Bat70] of the drag force on a 

solid sphere (or infinite cylinder) immersed in fluid. The geometry is clearly not the same, but 

since we are only interested in the dependence of Fs on the parameters and not the constants 

of proportionality, this will prove sufficient for our purposes. The drag force on a body with 

cross-sectional area D2 is given by the equation 

Fs<xpU2D2CD, 

where CD is the drag coefficient and U is the fluid velocity. The drag coefficient behaves very 

differently depending on whether flow is at high or low Reynolds number. If Tie <̂  1 then CD oc 

Tie"1, while for large Reynolds number (Tie ^ 100) CD is effectively constant (see Figure 5.4). If 

we consider parameters that are typical of the paper-making process, we can compute a maximum 

Reynolds number of approximately 2.0, which places pulp within this low Reynolds number regime. 

=The fibre force parameter cr appearing in the Immersed Boundary Method has the same interpretation as 
Young's modulus. 
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Figure 5.4: The dependence of the drag coefficient on Reynolds number for low (TZe <J 1) and 

large (Tie £ 100). 

W h e n the Reynolds number is smal l , the fluid undergoes what is known as a creeping flow 

(see [Whi74]), in which the drag coefficient varies inversely wi th TZe: 

oc fiDU. 

We are only interested in the force gradient, and so we divide this expression by L to obtain 

VFS oc u.DG, 

where G = U/L is the velocity shear rate (units s~1). F inal ly , we substi tute the expression for 

VFS into (5.5) to get 

The moment of area used above is a three-dimensional quant i ty; we can derive an expression for 

X that is relevant to our two-dimensional fibre by using the 2D equivalent of the moment of area, 

I2 (which absorbs the factor of TJ from the numerator), giving 

LIDGL3 

EI 
low TZe, 3D (5.6a) 

X oc 
LIGL3 

EI2 

low TZe, 2D (5.6b) 
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We can apply a similar argument for the high Reynolds number case, where a boundary layer 

forms on the forward side of the body and the drag coefficient subsequently drops off to a constant 

value. In this flow regime, 

Fs oc pU'zD2 and V F S oc pD2LG2, 

which after substituting into (5.5) yields 

X^—^ highfte, 3D (5.6c) 

and 

oG2L5 

X a P—— high Tie, 2D 
JH1I2 

(5.6d) 

The quantity (5.6b) has appeared before as a dimensionless shear rate in [RK97], and its 

reciprocal as a bending number in [WGS097]. The latter utilised the bending number to compare 

qualitative behaviour of fibres, and we will draw a similar comparison for the situation where 

hydrodynamic interactions between fluid and fibre are included. The two-dimensional versions of 

X will be utilised in the pulp fibre simulations later in this chapter to separate between the various 

regimes of fibre motion. 

5.3 The Immersed Boundary Method Applied to Pulp Fibres 

From the discussion of Section 5.1.2, there is an obvious gap in the computational work on pulp 

fibres; namely, in the simulation of the hydrodynamic interaction between individual pulp fibres 

with the surrounding fluid. There is good agreement between theory and experiment for rigid 

fibres, and so it is unlikely that hydrodynamic coupling has a significant effect. However, the same 

cannot be said of flexible fibres, and it is here that the Immersed Boundary Method can make a 

significant contribution. 

The method seems particularly well-suited to the simulation of flexible pulp fibres. The 

typical assumptions made in analytical and numerical investigations of pulp fibres are that the 



Chapter 5. Application: Pulp Fibres 115 

fluid is Newtonian and incompressible, and that the fibres are massless and neutrally-buoyant. 

The flow conditions under which individual fibres are considered typically correspond to very 

low Reynolds number. Furthermore, aspect ratios are very large, so that fibres are nearly one-

dimensional structures. Taken together, these are precisely the assumptions we made in Chapter 2 

for immersed boundaries. 

The Immersed Boundary Method has several advantages over the other approaches described 

in Section 5.1. The action of the fibre through the fluid force term is actually quite simple in 

comparison to some of the mechanical models of flexible fibres. In addition, the method handles 

the coupling of fluid and fibre interactions very efficiently using a fast solver. 

While the remainder of this chapter will concentrate on two-dimensional simulations of isolated 

pulp fibres, the Immersed Boundary Method also presents great potential for future applications 

in many other aspects of fibre motion. The extension of the fluid solver to three dimensions is 

straightforward. Many three-dimensional immersed boundaries (such as heart valves, arteries, 

etc.) require elaborate constructions of interwoven fibres. In our application, we have the advan­

tage that in three dimensions, pulp fibres can be described very naturally as isolated immersed 

fibres, and no such complicated fibre constructions are necessary. Extensive immersed boundary 

computations of multi-particle systems have already been performed by Peskin & Fogelson, who 

remarked that they could perform simulations of 1000 or so particles, with the advantage of the 

Immersed Boundary Method being that the computational work increases only linearly with the 

number of particles [FP88b]. It should be possible to apply a similar technique to dilute suspensions 

of pulp fibres. 

We now move on to a description of some of the details of implementing pulp fibres in the 

immersed boundary framework. There are essentially three main differences specific to the pulp 

fibre model from what we have seen in previous chapters: 

1. the simple linear force considered earlier is modified to handle stretchingd and bending stiff-

dWhile actual pulp fibres do not stretch appreciably, the Immersed Boundary Method does not easily gen-
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n e s s ; 

2. the non-linearity subsequently introduced into the forcing function precludes the use of 

existing implicit solvers (such as the Mayo-Peskin scheme), and so limits us for the moment 

to explicit time stepping; and 

3. the new geometry particular to a shear flow requires modifications to the fluid solver. 

We will model the fibre force using a framework that has already been employed by Fauci and 

others [FP88a, FF93, DFG95] to simulate the motion of biological structures, such as cell walls, 

that resist bending. The force density function that we have seen so far resists axial stretching 

and compression, and now must be modified to take into account bending-resistant forces. An 

alternate way of specifying the force density at a particular fibre point fi is to write it as the 

gradient of a potential function &(..., Xe, Xe+i,...) 

Contributions to the force arising from stretching-resistant links between successive fibre points 

can be considered as arising from the following potential: 
Nb-1 

2 

1 Nb~1 2 
- ^ ( | p Y / + i - ^ | | - r 0 ) , (5.7) 

where os is the stretching stiffness, and rQ is the resting length of the link joining each pair of 

points (we have chosen r0 equal to the fibre mesh spacing, hb). Each term in the sum represents a 

spring-like "link" between two neighbouring points on the fibre. This can be seen by differentiating 

the sum at Xi, which leads to two contributions to the force at point I of the form: 

{Xe+i - Xi) 
es (\\Xe+1 - Xe\\ - r0) 

\\Xe+1.-Xe\\ 

Written in this manner, the force is clearly like that of a spring with resting length r0 and stiffness 

crs, directed along the vector joining Xi and Xe+i- Figure 5.5(a) pictures a link of this type and 

the forces arising at each of the two points involved. 

eralise to allow fibres to have a fixed distance between points. We have instead employed an approach that 
has been used in modeling biological filaments [FP88a] where fixed length structures are allowed to stretch, 
but the axial deformation is kept to a minimum by specifying a relatively large stretching stiffness constant. 
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(a) Stretching link. 
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(b) Bending link. 

Figure 5.5: Two types of links are used to model flexible fibres: stretching/compression-

resistant links between pairs of points; and bending-resistant links between triplets of 

points. 

The bending-resistant links, on the other hand, can be incorporated using a force that drives 

the angle between successive triplets of points to a given equilibrium angle 6Q. An energy function 

that accomplishes this is the following 
Nh-1 

Xe-Xe-i) x IXe+i-Xe) -r^sinfl , (5i 

where z — (0,0,1), and r 2sin0 o is related to the equilibrium curvature of the fibree. To model a 

rigid rod, we select 60 = 0 for each link. The cross product term labeled "*" in the equation above 

may be rewritten as 

\\Xt - Xt-i II • l l ^+ i - Xe\\ sin B - r 2 sin 0O, 

which is approximately r 2
0(9 — 60) when the fibre is close to equilibrium; hence, this contribution 

to the energy function serves to drive the angles between neighbouring links to 60. The stretching 

and bending forces given in (5.7) and (5.8) are very similar to that used in the mechanical models 

mentioned in the previous section. 

The energy function describing a flexible fibre is now given by 

eIt is actually the quantity sin# 0/r 0 that has the interpretation of curvature (see [FP88a, p. 90-92] for a full 
discussion). 
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The force densities that are needed in the Immersed Boundary Method are programmed within 

the numerical code as derivatives of the above expressions. Calculating the force at a given fibre 

point requires that the contributions from each link involving that point be added together. The 

number of links contributing to the force density at a particular fibre point X(, £ = 0 , 1 , 2 , . . . , Nb, 

depends on whether the point is in the middle of the fibre or near the endpoints (see Figure 5.6): 

• the force at an endpoint (£ = 0 or Nb) receives contributions from only one stretching link 

and one bending link; 

• the points next to endpoints {£ = 1 or £ — Nb — 1) each belong to two stretching links and 

two bending links; 

• all remaining points have the force computed from two stretching links and three bending 

links. 

Figure 5.6: Labeling of discrete fibre points along with the total number of links at each point 

(circled). 

An important consequence of this choice of energy function is that the force is now a non-linear 

function of the fibre positions Xt. As a result, the Mayo-Peskin iterative scheme cannot be applied 

to these problems, since it is built around the assumption that the force takes on the simple linear 

form (2.7). Unfortunately, this means that we are reduced to handling the force explicitly, or at 

the very best, we can use the approximate implicit approach, wherein only the fibre position and 

force are coupled together in a fixed point iteration, as described on page 84. 

The final aspect of the immersed boundary implementation for pulp fibres is the modification 

of the fluid solver to handle a shear flow. We modify the domain and boundary conditions for the 
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u 

u 

Figure 5.7: The periodic channel domain for the pulp fibre simulations, with shearing motion 

induced by moving top and bottom walls. 

doubly-periodic box to the channel pictured in Figure 5.7. The channel has dimensions Lx X Ly, 

and is periodic in the z-direction. Lx is chosen larger than Ly so that the effects of periodic 

boundaries can be minimised. The top and bottom walls are moved with constant velocities U 

in opposite directions, so that the shear rate is G = 2U/Ly. We discretise the domain as before, 

choosing Lx and Ly so that the fluid mesh spacing h = jf- = in each direction, and hb = for 

the fibre. If we further restrict the dimensions of the domain so that Nx is an integer power of 2, 

then an FFT algorithm may still be applied to solve the pressure Poisson equation. The method 

must be modified somewhat to account for the change in aspect ratio and non-zero boundary 

conditions at the top and bottom of the domain. Essentially, the modified method involves an 

FFT in the ^-direction only, which gives rise to a banded system of equations to be solved for the 

transformed variables in the y-direction. The pressure is then found by transforming back to real 

variables by an inverse FFT. The details are described in Appendix A. 

5.4 Numerical Simulations 

Our main purpose in this chapter is to demonstrate that the Immersed Boundary Method is a 

useful tool for simulating the motion of pulp fibres. To this end, we present comparisons with 
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experimental and theoretical results — both qualitative and quantitative — to illustrate that 

the computed results are physically reasonable. We also use the non-dimensional fibre flexibility 

measure x to show that the qualitative behaviour of fibres for low Tie is captured well over a large 

range of parameters. 

Experiments are often performed on synthetic fibres made of rayon or dacron, immersed in 

highly viscous fluids such as corn syrup or castor oil [FM59b]. Representative values of parameters 

in experiments are listed in Table 5.2, with references to the literature where appropriate. While the 

Parameter Values Units References 

p (density) 1.0 g/cm3 

p (viscosity) 10-90 (castor oil/corn syrup) 

0.01 (water) 

g / cm • s [FM59a], [FM59b] 

G (shear rate) 1-100 (experiment) s-1 [FM59a], [FM59b] 

EI (bending stiffness) 0.001 - 0.07 (paper pulp) 

0.6 (nylon) 

g cm 1 s [DK81], [DK82], [Sam63] 

L (fibre length) 0.1-0.3 cm [DK81], [WGS097], [FM59a] 

rc (aspect ratio) 10-60 (natural) 

40-400 (synthetic) 

[WGS097] 

[FM59a],[FM59b] 

TZe (Reynolds number) 0.01-50 — 

Table 5.2: Parameter values used in simulations, derived from a range of sources both exper­

imental and computational. 

physical parameters corresponding to some experiments differ significantly from those for actual 

pulp fibres, the observed behaviour is very similar. Therefore, we will perform simulations on 

parameters for both situations whenever possible in order to cover as wide a range of physics as we 

can, within the stability constraints set by the numerical scheme. The Immersed Boundary Method 

is limited to low Reynolds numbers {He ̂  100), and so we will perform most simulations for highly 
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viscous fluids and moderate shear rates, which are typical of the experiments just mentioned. 

Our computational test chamber was taken in almost all cases to be a rectangle of dimensions 

2 x TJ cm, within which was suspended a fiber of length 0.1 — 0.2 cm. We concentrate mainly 

on the effects of shear rate (which has typically been the variable quantity in experiments) and 

bending stiffness, since both can be changed easily without modifying the computational domain. 

The problem was discretised with a mesh spacing of h = cm (that is, 128 X 32 fluid grid points) 

and either 40 or 80 fibre points (depending on whether the fibre is 0.1 or 0.2 cm long)f. The time 

step k required for stability, using the fourth order Runge-Kutta time-stepping scheme, lies in the 

range 2.0 — 5.0 X 10~5. The bending stress parameter a& has the same interpretation as Young's 

modulus E; this quantity is chosen so that when scaled by an appropriate moment of area, the 

resulting product o\, • I lies in the range 0.001-1.0 gem 3/s2. There is no physical equivalent for 

the stretching stiffness os, since pulp fibres do not stretch appreciably; consequently, we chose a 

value large enough (typically from 5,000-10,000) so that the fibre length was held to within 2% of 

its initial value throughout most simulations. 

We begin by comparing the qualitative behaviour of solutions for four choices of bending 

stiffness that reproduce the orbit classes pictured earlier in Table 5.1. Time sequences from the 

simulations are given in Figure 5.8 for EI lying between 0.006 and 0.5. The other parameters 

were chosen to be G = 10, L = 0.1, and k = 5 X 10 - 5 , except for the first set of images where 

the stretching stiffness restricted the time step to half that size. The fibre position was initially 

specified as an arc of a circle — we started with a slight curvature so that the various orbits would 

develop within a reasonable amount of time (though this was not necessary, if we were willing to 

wait long enough). 

By comparing the images up to time t = 0.09 s, we can see that the flexible fibres complete 

fThe mesh spacing and domain size were chosen so as to minimise the effect of boundaries on the solution 
while at the same time keeping computational cost to a minimum. We performed various tests that showed 
for h — the domain could be taken as small as 2 x | without appreciably changing the qualitative 
behaviour of the computed solution for a fibre of length 0.1 — 0.2 cm. 
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Figure 5.8: Time sequences of orbits at times 0.01, 0.03, 0.05, 0.07, 0.09 and 0.15. 
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their first half-rotation in a significantly shorter time than the rigid fibre. This is something that 

has been observed in experiments [AFM58]. 

Something which is not apparent from these images is that after completing the loop, the fibres 

in the first three orbits spend a great deal of time near the horizontal. This is consistent with the 

theoretical orbits for rigid fibres given by Jeffery's equation (5.1); plots of the orientation angle 

(the angle between the endpoints) versus time look very similar to that pictured in Figure 5.1 for 

rigid ellipsoids. The fourth fibre never straightens out, and hence its classification as a "complex 

rotation" — the period of rotation is significantly smaller and the fibre begins another turn very 

shortly after t = 0.15 s. The other fibres eventually pass through if = 90° as well, and begin a 

second loop that is essentially a mirror image of the first, with the period of rotation decreasing 

as the fibre stiffness decreases. 

A very useful way to compare orbits is to plot the endpoints of the fibre in a reference frame 

where the centre of the fibre is fixed; Figure 5.9 compares the four orbits we just discussed. The 

shape of the orbits appears very similar to that observed in experiments, where varying shear rate 

was used to change the fibre flexibility (refer to the plot in Figure 5.2). Just as was observed in 

experiments, the fibre begins to buckle before the theoretically-predicted critical bending angle of 

<p = 45°. 

We can draw a more quantitative comparison with the theoretical predictions in terms of the 

amount of time the fibre spends at each angle if. We ran another series of computations with 

bending stiffness fixed at Uf, • I = 0.01 and the shear rate taken between 50 and 80. All fibres 

underwent snake turns, and we computed for a period of time comprising at least four complete 

rotations. The probability distribution of if is plotted in Figure 5.11 at open points. We used the 

average computed period of rotation, along with the formula in (5.2), to come up with an equivalent 

ellipsoidal axis ratio, r*, for each of the four cases. We then calculated the corresponding predicted 

distributions of if from (5.1), which are plotted as solid curves on the same set of axes. From this, 

we can draw the following comparisons: 
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Figure 5.9: Comparison of the curves traced by the endpoints of the fibre for the various 

orbits classes. Rigid fibres trace a circular orbit, with the curves deforming more as the 

fibre flexibility is increased. These are the same orbits as pictured in Figure 5.8. 
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• The fibre spends the majority of its time near the horizontal, with the proportion of time 

increasing as the shear rate is decreased (that is, for more rigid fibres). 

• Unlike the theoretical distributions and simulations which ignore hydrodynamic interactions 

(such as [YM93, Fig. 10]), the distribution is not symmetrical about cp = 90°. Rather, there is 

a tendency for the fibre to remain at an angle slightly above the horizontal plane; we believe 

that this is due to the interaction between fibre and fluid which is not included in either 

previous computations or the analytical formulae. Though the fibre remains approximately 

flat when stalled in the stream-wise direction, it continually undergoes very small flexing 

motions which cause the streamlines to curve slightly upward into the upper half of the 

channel before the fibre reaches ip = 90° (see Figure 5.10). This appears to be enough 

to cause the slight skewness in angle distribution observed here, and is something that we 

observe in all simulations over a wide range of parameter values. 

Figure 5.10: Flow streamlines for a fibre stalled at an angle <p > 0. The streamlines are 

deformed near the fibre, and there are narrow zones of recirculation to the front and rear. 

Note that even though the instantaneous streamlines cross the fibre, no fluid flows passes 

through since the fibre is moving with the fluid. 

• Disregarding the slight offset of the curve near the peak, the actual size and shape of the 

distribution is very similar between the computed and predicted curves. 

We have run a large number of simulations with varying fibre length, bending stiffness, shear 

rate and viscosity. The resulting orbit classifications have been plotted in Figure 5.12 in terms 

\ 
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Figure 5.11: Distribution of time spent at various angles throughout the motion of a fibre 

undergoing springy rotation. The shear rate is varied from 50 to 80. The points represent 

the computed angle distributions, while the solid lines are the corresponding theoretical 

predictions from Jeffery's equation (5.1) (with an axis ratio r* chosen to match the observed 

average period). 
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of the non-dimensional flexibility measure x a n d the bending stiffness EI. We have classified 
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Figure 5.12: Comparison of the orbit class with bending stiffness and x- The fibre length, 

shear rate and viscosity are also varied, which accounts for the spread of the data from a 

straight line. The computed orbits are plotted with open points; experiments from [FM59b, 

Table III] are plotted as solid points for comparison. 

each computed orbit as belonging to either class I, II, IIIB or IV, using a different shape of open 

point for each (class IIIA was never observed in computations). Our criteria for judging the orbit 

class was based on the exterior angle, a, between the tangents at the endpoints of the fibre (see 

Figure 5.13): 

I: If 175° < a < 180°, then the fibre was essentially rigid. 

II: For 90° < a < 175°, the ends of the fibre always deformed in unison to induce a springy 

rotation. 
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IIIB: When a < 90°, the ends of the fibre tended to begin moving independently of each other, 

leading to a snake turn. This independence of the motion of fibre ends was the same criterion 

used in [FM59b] to identify snake turns, although the observation that the division occurred 

at an angle of approximately 90° was not. 

IV: When the fibre never straightened out, the orbit was classified as a complex rotation. 

snake 

a 

Figure 5.13: Definition of the exterior angle a, measured between the ends of a flexible fibre. 

There is a clear division of the orbit classes, which have been drawn as vertical lines at values of 

X ~ 0.2, 1.0 and 8. This is very strong evidence of our premise that x is a useful measure of fibre 

flexibility. 

To push the comparison even further, we have included on the same set of axes a sequence 

of solid points which were taken from experiments by Forgacs & Mason [FM59b], performed with 

dacron and rayon filaments suspended in corn syrup or castor oil. In order to ensure that the scaling 

between experimental and computational results is the same, we have adjusted the parameter x 

based on a single experimental data point (circled in Figure 5.12) which was classified as lying on 

the borderline between a springy rotation and a snake turn: the value of x w a s set to equal 1.0 

for this experiment, and all other experimental points were scaled by the same factor. The line 

X = 0.25 captures the division of experimental values between rigid and springy orbits very well, 

and so it appears that the computational model predicts quite well the qualitative behaviour of 

fibre orbits observed in experiments. 

These results verify that the Immersed Boundary Method can indeed be used to simulate 

the motion of flexible fibres at low Reynolds number. The qualitative behaviour of fibre orbits is 

very similar to what is observed in experiments, both in terms of the orbit classification and the 
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distribution of angular displacement throughout the orbital period. 



Chapter 6 
Conclusions and Future Research 

The outcome of any serious research can only be to 

make two questions grow where only one grew before. 

— T H O R S T E I N V E B L E N . 

While the focus of much of the first part of this work was analytical, the results were always 

interpreted in terms of their application to the Immersed Boundary Method. In the process, we 

gained a deeper understanding of the behaviour of solutions to the equations of motion governing 

immersed fibres, while at the same time making suggestions for improvements to the numerical 

method that handle stiffness and increase spatial and temporal accuracy. In the end, we contend 

that we have an analytical tool that can be used to develop improved iterative solution schemes 

and test their convergence behaviour a priori. 

We will first summarise the main conclusions that were drawn from our linearised analysis. 

The highlights of the two-dimensional pulp fibre simulations will then be given, which demonstrate 

great potential as a starting point for computations of three-dimensional pulp suspensions. Finally, 

we conclude with a description of several avenues of future research that have been opened up by 

this work. 

6.1 C o n c l u s i o n s 

We began with a linear modal analysis of two systems of equations for the motion for an immersed 

fibre: first, for the jump formulation of the original problem; and second, for a smoothed version 

130 
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of the delta function formulation, in which the delta functions are replaced by suitable approxima­

tions. The dispersion relation derived from both problems exhibited a set of discrete fibre modes, 

which arise due to the presence of the fibre. Furthermore, there is a clear separation in both cases 

between normal and tangential modes of oscillation; numerical experiments were performed to 

verify the presence of these decoupled modes in immersed boundary computations. 

For the jump problem, we were able to push the analysis further and prove that the fibre modes 

are stable in time for all physically reasonable values of the parameters. We also showed that the 

decay rates and frequencies corresponding to these modes vary in magnitude over a much greater 

range of values than the modes of Stokes' equations without an immersed fibre. An asymptotic 

analysis of the decay rates identified precisely how the decay rates depend on the parameters, 

thereby recognising the tangential modes as the principal source of stiffness, while the normal 

modes are actually "perturbed" Stokes modes. 

To see how well the smoothed problem approximates the original one, we compared the modes 

from the two problems, and found that while the range of decays rates is much smaller, the 

problem is still stiff. Furthermore, the lowest wavenumber mode (corresponding to the dominant 

solution features) matches quite well between the two problems, except when the force or the 

smoothing radius, e, are very large. We employed careful numerical experiments on an example 

specially-tailored to the linear problem to verify the predicted solution behaviour. 

For large forces, the smoothed problem exhibits oscillations with a frequency that is very large 

in relation to the decay rate — this corresponds to eigenvalues that cluster near the imaginary 

axis. We used stability diagrams to show analytically that the Runge-Kutta method of order four 

is a much better alternative among the class of fully explicit schemes, and leads to significant 

improvements in efficiency for explicit calculations at a high Reynolds number. Furthermore, the 

RK4 method is also very competitive with all of the implicit schemes that have been proposed to 

date. 

The smoothed problem yielded one more piece of information of particular significance for the 
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Immersed Boundary Method. By looking at an asymptotic expansion of the dispersion relation as 

e —> 0, we evaluated the formal accuracy of various approximations to the delta function. In the 

setting of this "idealised discretisation," we investigated the link between satisfaction of moment 

conditions and the formal accuracy of the resulting interpolation. We derived a new delta function 

that satisfies the discrete second moment condition, for which a proof of formal second order 

accuracy has eluded us, but which exhibits improved accuracy in finely-resolved computations. 

The high degree of stiffness inherent in immersed fibres severely limits the allowable time step, 

and so implicit methods must be considered if there is any hope of increasing the time step to a level 

that will allow finely resolved calculations. We extended our analysis to semi-discretisations of 

the immersed fibre problem, and examined two implicit schemes. One is a Crank-Nicholson-type 

scheme, which differs from the typical Immersed Boundary Method in that diffusion effects are 

coupled implicitly to the force within a fixed point iteration. The second is a method introduced 

by Mayo & Peskin, which uses an ADI step for diffusion, followed by a fixed point iteration on the 

fibre position, with a judicious choice of preconditioner. 

In the time-discrete case, the analysis leads to predictions of the convergence rate of the fixed 

point iteration embedded within each time step. The theoretical predictions match extremely well 

with the convergence behaviour observed in calculations. Numerical experiments verify that the 

Crank-Nicholson scheme offers no advantage over a method that treats the force explicitly; this 

is not surprising, as all of our work to this point has shown that it is the fibre force that gives 

rise to the stiffness in the problem rather than the diffusive effects which are dominant in Stokes 

flow. The predicted convergence rates for the Mayo-Peskin scheme are virtually identical to those 

observed in computations over the entire physical range of forces. 

One issue that has remained in the background throughout this thesis is the use of symbolic 

computation. MAPLE has proven to be an indispensable tool in the derivation of most of the results 

beyond Section 3.1. We have used it in its more mundane capacity as an algebraic manipulator, but 

also for generating C and FORTRAN code. Hence, our approach has really been a three-pronged 
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one, combining mathematical analysis, symbolic computation and numerical experiments in an 

effort to deepen our understanding of the immersed fibre problem and the behaviour of numerical 

methods based on it. 

The final chapter introduced a new application of the Immersed Boundary Method to simu­

lating the flow of pulp fibres in two dimensions. This work is of particular interest to the paper-

making industry as it is one of the first attempts to compute the hydrodynamic coupling between 

a flexible fibre and an incompressible fluid. We demonstrate that the method reproduces the tum­

bling motions of fibres observed experimentally in shear flows for reasonable physical parameters. 

Comparisons of rotation rates with theoretical predictions and experimental observations are also 

in very close agreement. The Immersed Boundary Method shows great promise as a quantitative 

tool in pulp fibre modeling. 

6.2 Future Work 

We hope to make a contribution to the development of more efficient iterative schemes that do a 

better job of combating the stiffness inherent in the problem. A fully non-linear Newton solver is 

far too expensive to implement (as demonstrated by Tu & Peskin [TP92]), while the most common 

approach of building a semi-implicit scheme around a fixed point iteration for the force does not 

go far enough in handling the stiffness effectively. 

Our analysis clearly indicates a decoupling between normal and tangential modes of oscillation, 

with the primary contribution to the stiffness coming from the tangential modes. We believe that a 

"local linearisation" of the problem that singles out the stiff interfacial modes will lead to a better 

iterative technique, with a more effective preconditioning strategy. Once a fast and effective solver 

has been devised for coupling the fibre and fluid, we hope to incorporate it into a semi-implicit 

Runge-Kutta scheme (such as those described in [ARS97]), which will give us all the advantages 

of the better stability properties of Runge-Kutta schemes near the imaginary axis. 

Further analysis can be performed on the Forward Euler/ADI scheme, since the results in 
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Section 4.1 show that the time step restrictions cannot be determined in a straightforward way 

from the effects of Stokes modes and fibre modes. This might be addressed, at least in part, by 

incorporating the effect of the ADI step into the analysis. Also, a further investigation of the 

split-step time discretisation underlying the Mayo-Peskin iterative scheme would show whether 

the failure of the iteration to converge is due to time-instability of the discretisation or spatially 

discrete effects, such as fibre mesh crossings. 

Another interesting result in this thesis is the suggestion that the accuracy of the Immersed 

Boundary Method may be increased by a suitable choice of delta function. This is not a new 

idea, but the search for a better approximate smoothing function was seemingly abandoned after 

the one-dimensional analysis of Beyer & LeVeque [BL92]. We plan to continue our attempts to 

derive a dispersion relation for our "new" delta function that would lead to a formal proof of 

the accuracy of the interpolation. This improved delta function would also have application to 

many other numerical schemes that use delta function smoothing to handle immersed interfaces, 

including the level set method for incompressible flows [Hou95]; the particle-in-cell method [SB91, 

LIB95]; spectral and pseudo-spectral methods applied to particle suspensions [Yus96] and arterial 

flow [Art96]; and finite element simulations of fluid droplets [Tor96, TMSB97]. 

Our work on pulp fibres was really only a first step in modeling pulp suspensions, since the 

motion of fibres in shear flow is fundamentally three-dimensional. We plan to extend our immersed 

boundary code to 3D and include torsional stiffness in the fibre in order to capture a wider range 

of complex fibre motions. 

Our pulp fibre simulations to this point have neglected fibre inertia, which in some situations 

is considered an important factor. The mass of particles that are not neutrally-buoyant can be 

accounted for in the immersed boundary model by including a variable density in the momentum 

equations [PM93a]. Each fibre contributes a singular mass distribution to the fluid of the following 

form 

p(x, t) = p0 + J m(s) • S(x — X(s,t)) ds, 
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where m(s) is the additional mass per unit length of the fibre (which can be negative), and p0 is 

the constant fluid density in the absence of the fibres. A variable density precludes the use of an 

FFT solver, and so this extension will require development of an alternate fast fluid solver. 

The Immersed Boundary Method has proven very effective in modeling the flow of suspensions 

that contain on the order of 100-1000 particles in the platelet aggregation studies of Fogelson & 

Peskin [FP88b]. These authors also incorporate particle-particle interactions using appropriate 

modifications to the force in the fluid equations. By modifying the inter-particle force to conform 

with the physics of pulp fibre interaction using the previous work of Doi & Chen [DC89] and 

Yamamoto & Matsuoka [YM94], we plan to investigate "semi-dilute" suspensions where aggrega­

tion of fibres (known as "flocculation") is an important factor. This will significantly increase the 

range of flow regimes in the paper-making process that can be investigated using the Immersed 

Boundary Method. 
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Appendix A 
F F T Solver for Pressure on a Per iodic 
Channe l 

In this Appendix, we outline the Fast Fourier Transform (FFT) technique used to solve the discrete 

pressure Poisson equation 

Dh • Gh Pij = Ri,j) 

on the domain [0, Lx] X [0, Ly], where Lx and Ly are chosen so that we can take an N X M grid 

with spacing h = = jft that is identical in both directions. We must also ensure that M is an 

integer power of 2 so that an FFT can be used to solved the problem. 

The pressure is periodic in the x-direction. Updating the velocity requires values of the 

pressure gradient at all interior points (i = 0,1, . . . , N — 1 and j = 1, 2 , . . . , M — 1) and so the 

pressure must be computed at all points including j = 0 and j = M. 

Since the pressure is periodic in x, the basic solution procedure involves performing a discrete 

Fourier transform in the x-direction, and then solving the remaining coupled equations in the 

j/-direction. Before describing the actual procedure, we will formulate the discrete equations. 

A . l The discrete equations 

We have written the discrete Laplacian as the product Dh • Gh, where 

142 
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• Gh is the standard centered difference approximation to the gradient operator: 

Pi+l,j - Pi-l,j Pi,j+1 - Pi,j+1 
GhPiJ — 2h 2h 

• D*h is an approximation to the divergence operator, based on the technique proposed by 

Chorin [Cho68] and described more fully by Wetton [Wet97]. The "reduced divergence 

operator" D£ is based on simple centered differences at least two grid points away from the 

boundary (that is, j = 2, 3, . . . , M — 2): 

° h ' U ^ ~ 2h + 2h • 

The stencils at the remaining points are derived using second order one-sided differences at 

points next to the boundary along with homogeneous boundary conditions: 

4V-,i - V - 2 D*h • Uit0 = 

D*h • Ui,i = 

F>*h • UitM-i = 

D*h "
 U i , M = 

2h 
+1.1 " Ui-!,! , V% i,2 

2h 2h 
Ui+i,M-l - U i - i t M - l Vi,M-2 

2h 
- 4 V j , M - l + Vj,M-2 

2h 

2h 

This ensures that the computed pressure will result in a velocity that satisfies the discrete 

divergence-free condition with second order accuracy. 

If we substitute the expression for GhPi,j into the divergence formulae above, we obtain 

^ (-4^,0 + P,i + 4fi , 2 - Pifl) , if J = 0, 

•fa (-4^+2,1 + Pi-2,1 + Pi,3 - 3Pi,i), if J = 1, 

D*h • GhPi,j = { fa (p . + 2 f i + P i _ 2 t j + p i J + 2 + P i i j _ 2 - 4Pi!3) , if 2 < j < M - 2, (AT) 

4X2 (Pi+l,M-i + Pi-2,M-1 + P i , M - 3 ~ 3F i , M - l ) , if J = M — 1, 

fa {-Pi,M-3 + 4 F T > M - 2 + Pi,M-i - 4P i > M ) , if j — M. 
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A . 2 The discrete Fourier transform 

We now proceed to apply the discrete Fourier transform to equations (A.l), which amounts to 

substituting P;j = ^nm/M p^. m £ 0 £ n e discrete equations D*h • GhPij = Ri,j If we do so, we 

obtain 

for j = 0: -APafl + Pa,l + 4P«,2 — Pa,3 = Ah2 Ra,o, 

for j = 1: (2cos{^) - 3 ) P a , i + P a , 3 = 4h2 R a A , 

for 2 < j < M - 2: (2 cos ( ^ ) - 4) Paij + PatJ+2 + Pa,j-2 = Ah Raj, 

for j = M - 1: (2COS ( ^ ) - 3) P G , M - 1 + Pa,M-3 = Ah2 RaiM-i 

for j = M: ~Pa,M-3 + 4 P « , M - 2 + Pa,M-l ~ ^Pa,M = Ah2 Ra,M-

For each ce, these equations form a banded system of M + 1 equations in M + 1 unknowns which 

can be written in matrix form as 

-4 1 

0 1 + ma 

0 

1 

4 

0 

TO„ 

-1 0 

1 

0 

w 

0 iha 0 

0 

0 

0 

0 

0 ma 0 

1 0 rha 

here ma :=2cos( 4 ^) - 4. 

A.3 The solution procedure 

0 1 0 l + m c 

0 - 1 4 1 

Pa,0 Ra,0 

Pa,l Ra,l 

Pa,2 Ra,2 

Pa,3 Ra,3 Pa,3 
= Ah2 

Pa,M-2 Ra,M-2 

Pa,M-l Ra,M-l 

Pa,M Ra,M 

The basic outline of the solution procedure is given below. Subroutine names are identified in 

typewriter font, and are adapted from the Numerical Recipes code in [PTVF92]. 



Appendix A. FFT Solver for Pressure on a Periodic Channel 145 

1. Set up the matrix coefficients and perform the LU decomposition using bandec (need only 

be done once). 

2. Transform the data: R{j —> Ra,j, using realf t ( . . . , + 1). 

3. Solve the banded system for each a, using bandsol. 

4. Apply the inverse transform: Pa<j —> Pij, using realf t ( . . . ,-1) for each a. 

The quantities Pij and Rij are complex, while the entries of the matrix are real, and so the 

system above is a set of two coupled banded systems involving the same real-valued matrix for the 

real and imaginary parts. The matrix is non-singular for a = 1,2,..., y — 1, but has two null 

modes for each of the sets of equations corresponding to a = 0 and a = y . The null modes can be 

eliminated by setting the four transform coefficients Po,M-i> Po,M, PN/2,M-I a n < ^ PN/2,M t ° z e r o 

before performing the inverse transform. 


