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ABSTRACT

This thesis obtains information about Eoolean algebras by
means of the radical concept. One group of results revolves about
the concept, theorems, and constructions of general radical theory,
We obtain some subdirect product representations by methods suggest-~
ed by the theory, A large number of'specific radicals are defined,
and their properties and inter-relationships are examined., This
provides a natural frame-work for results describiﬁg what epimorphs’
an algebra can have, Some new results of this nature are obtained

ﬂin,uhe@proaagsow@BinaLLygmare@nazibuﬁiemwiswmadeﬁtoFthewstructuﬁe
theory of complete PBoolean algebras, Product decomposition theo?ems

are obtained, some of which make use of chains of radical classes,
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INTRODUCTLON

The first.significant breakthrough in the stud; of struc«j
ture by meané of radicals was Cartén's cléssification of the finite-
dimensional se@i-simple Lie algebras over the field of complex num=-
bers, Early in the twentieth century, Wedderburn obtained his struc~
ture theorem for finite-dimensional associative algebras, It took
neafly forty years for the next major development: the definition of
the Jacobson radical and the density theorem. The general proceduré
in ﬁhese éases was the same: for a class of rings, define an ideal
for each ring in the class, call it the radical, and see what can be
said about radical-free (semi-simple) rings., In the early 1950(5’
Kurosh and Amitsur defined the general concept of a radical class,

which became the subject of much subsequent research,

In 1939, Mostowski and Tarski introduced the notion of a
Superatomic Boolean algebra. A number of significant results con-
cerning this cléss of algebras have been developed since, without
exploiting the fact that it is a radical class, In 1972, Cramer gener-
alized the suéeratomic radical to obtain a tranéfinite chain of rddi—
¢cal classes of Boolean algebras, Again; the ideas and methods were

hot radical~theoretic in nature,

The aim'of_this thesis is to obtain information about Boolean

algebras by means of the radical concept, and to place these results



in the setting of general radical theory.

In general radical theory, it is necessary to begin with
a2 class of rings élosed under ideals and epimoxphs. The class of
Boclean algebras is not such a class: an ideal of é_Boolean algebra
is not a Boolean algebra. In Chapter COmne, starting with the more
geﬁeral concept of a Boolean ring, we provide a natural definition
of a radical class of Boolean algébras° In the process, we obtain
two interesting results concerning these radicals: first, every
ﬁon—zgro radical class of Boolean aléebras contains the class of
superatomic algebras; secondly, every fadical class of Boolean

algebras is hereditary.

In Chapter Two, we investigate the construction of the
lower radical. In general, this is an infinite progedure; for Boolean
algebras, the construction terminates at the second stage., If the
generating cléss is closed under epimorphs, we find that.a complete
radical algebra must be a product of generéting algebras, We define
éome lower radicals, the most important of which weé call power-set
radicals, For aﬁy power—sét radical, we obtain necessary and suffic-
"~ ient conditions for a complete algebra to be in the fadical, and for an
algebra to generaté the radical. The latﬁer result proves useful in

obtaining a product decomposition theorew for certain complete algebras,

In Chapter Three, we study the upper radical construction.

The algebras which are semi-simple with respect to an upper radical



are characﬁerized as subdifect prqducts of the algebras which deter-
mine the radical. An upper radiéal description of the superatomic
radical yields a characterization of atomless Boolean algebras as
subdirect produéts of sepérable, atomless algebras, Other upper
radicals are defined, and we obtain a subdirect representation for
the complete, atomless algebras,

Chapter Four concerns the radical defined by Cramer. Radical-
theoretic'méthods are usédvto prove and extend scme of his resulté. In

‘particular, an upper radical description 1is obtained for some of his

" radicals,

Pierce has conjectured that any complete Doolean algebra is
a product of homogenéous algebras. Chapter Five gives some partial
results in this direction. It is shown that if any descending chain
of principal ideals in a complete algebra has only finitely many
isomorphism typesn.then the algebra is a product of homogeneous algeb~
ras, The main result asserts that certain complete algebras are
products of unequivocal algebras (that is, algebras which must be
e;ther radical or semi~-simple with respect ﬁo'any radical class).
Some of tﬁese results ére re-stated in the language of cardinal prop-

erties, which provides some additional insight.

Chapter 5ix gives some closure properties of radical and semi-

simple classes under the formation of prodﬁcts and coproducts, Not



unexpectedly, power-set radicals axe shown to be closed under suitably
restricﬁed products.of complete algebras, A new product is defined
‘which yields a radical algebra whenever ali the algébras imvolved in
the construction are radical. A mumber of radical classes are shqwn
ﬁo be clesed under finite coéroducts. 'We obtain two results indicat-
ing that doprcductsAare strongly related to semi-simplicity. First,
any coproduct of algebras, one of which is semi-simple, is itself
semi-simple. Secondly, for any radical class, there is a caxdinal «
such that for any algebra A of more than two elements, the coproduct

of at least x copies of A will be semi~simple,

In Chapter Seven, we regard radical classes as elements of
a latiice. The structﬁre of this lattice is investigated, The theme
..of.Chapter.One .is re-iterated by.showin.the -isomorphism-of the lattice
of Boolean ring radicals with the lattice of Roolean glgebra radicals.'
Finally, we focus on the specific radicals defined in this work, with

. a view to locating them in the lattice,



PRELIMINARIES

This sectlion outlines the terminology, notation, and basic
facts to be used.  Basic refe;ehces are Sikorski [24] and Halmos [13].
Further references are given as needed, and details are provided for

results not easily accessible or explicitly stated in the literature,

§1, Fundamental-Notions

a) We assume familiarity with the concept of Boolean ring, both in

the ring-theoretic and lattice~theoretic settings. We will use both
the ring operations (+, ¢), and the lattice operations of joln (v ),

meet (A ), and complementation ('), The concepts of ideal in the two

settings coincide, We will use the notation Ay for the principal
ideal of the ring A generated by the element x, The term Boolean
algebra (otwsimply algebra).will be used for a Boolean ring with a
hnity 1 distinct from the zero O, A subalgebra of a Boolean algebra

is a subring containing the unity.‘ Any ideal of a Boolean algebra gen-
eratesja subalgebra, consisting of the ideai together with the comple-
ments of elemenﬁs of the ideal, Such.a éubalgebra will be éalled an

ideal-generated subalgebra., An algebra-homowmorphism is a ring-hono~

morphism which is l-preserving,



b) The important connections between Boolean rings and algebras are
the following:
i) every non~zero principal ideal of a Poolean rimg is a
Boolean algebra,
| ii) any Poolean ring can Be embedded‘as é maximal ideal.in a
Béélean.algebra, which is unique up to isomorphism, and
1ii) any non-zero epimorph of a Poolean algebra is itself an

a\l_,geb'ravg and the epimorphism must be l-preserving,

c) We will use the symbol A for the class of all Boolean algebras,

and the symbol B for the class of all Boolean rings.

d) ue assume familiarity, also, with the Stone duality theory, which

assigns to. any Boolean algebra A, a topoclogical space S(A), called‘ité
Stome space;, which is Hausdorff, compact, and totally disconnected,
The correspondence is reversible, and allows the following interchange
of algebraic and topological concepts: -

i) an element x of A (or the principal idéal Ay) corresponds
to a clopen subset S(x) of S(A), and A is isomorphic to the algebra‘of
clopen subsets of S{A); |

ii) an ideal I of A cofresponds to an open subset S(I) of S(A);
namely, S(I) is the union of thebclopen sets S(x) for x € I;
iii) the epimorph A/I of A corresponds to the closed subset

S@A) - S(I) of S(A);



'iv) an embedding A >3¥ B corresponds tc a continuous sur-
jection S(B) —» S(A);
v) an epimorxphism A~ B corresponds to a continuous injec-—

tion S(B) S(A).

e) Lattices will always be assumed to have extreme elements 0 andblg
which are distinct, An gggg_in a lattice is a non-zero element which
contéins only 0 and itself, A dual atom is an element distinct from 1
which 16 contained only in 1 and itself. In the Stone épace of a-
Boolean algebra, atoms appear as isélated points. Elements x and y of
a lattice are disjoint if x Ay = O, A set D is disjointed if any two
distinct elements of it are disjoint. The supretum of an arbitrary E
in a léttice, whenlit exists, will be denoted by sup E, The terms

reomplete ~{oxcomplete ) will ~ber weed to-indicate thatwarbitrary ~(couni~

able) suprema always exist.

f) The Axiom of Choice will be used without further mention, but the
assumétion of the Generalized Continuum Hypothesis'(GCH)»will always
be explicit, For any cardinal «, we will use the notation x+ for the
next largest cardinal, and exp k for the cardinal more commonly-denoted

by zKo



§2. Properties of Boolean Rings and Algebras

a) If I is an ideal of a Poolean ring A, and J 1is an ideal of I,

then J is an ideal of A,

b) LEvery non~zero boolean ring has a two-element epimorph. We will

denote the two»eleﬁent Eoolean algebra by 2.

¢) For any collection {A;: 1 € I} of Eoolean rings (algebras), the
Cartesian product of the underlying sets together with the point-wise
operations forms a Boolean ring (algebra), ﬁhich we call.the product
of the Ay and denote by A = (A s 1 € I), Finite products are denot-
ed by A1 x Az x °ee x A, The Stone space of the product of algebras

is the Stone-Cech compactification of the disjoint union of the S(Ai).l

d) The subset of the product A of algebxas Ai” consisting of elements
vhich are 0 in all'but‘a finite number of coordinates is an ideal of
A but is not an algebra., The subalgebra of A which it generates will

be called the yeak product of the A, and will be denoted by the

‘symbol wH(Ai: i e XI). Its Stone spagé is the one-point compactifi-

cation of the disjoint uunion of the S(Ai)°

e) An algebra 4 is a retract of an élgebra B if there is an embedding
f of A into B, and an epimorphism g of B onto A such that the composi-
tion gf is the identity on B, Any principal ideal of an algebra A is
a retract of A, In particular, apy-factor algebra in a product or weak

product A 1is a principal ideal of A and so is a retract of A,



f) Any Boolean ring A admits a product decomposition at any element
%t namely, A is the product of Ax with the ideal of elements disjoint

from X, If A is an algebira, we have A = Ax X Ayt

g} A subset D of a Boolean algebra A is said to be demse if it con-
sists of non-zerc elements, and any non~-zero element of A contains an
element of D, In particular, we can speak of dense ideals and dense

subalgébras of an algebra.

h) A Poolean algebra is said to be separable if it has a countable,
dense subset, Any separable algebra has cardin#lity at most expSfo.
Furthermore, there is only one complete, atomless, separable algebra:
the quotient of the algebra of Borel sets of reél numbers, modulo the

ideal of all meagre Porel sets [16],

i) Proposition 1: Let A be a subalgebra of a Pooleam algebra BE,

' Then B has an epirorph which has a dense subalgebra isomorxrphic to A,

Proof: By Zorn's Leuma, éhoose an ideal I of B maximal with respect
.to the property AN I = 0, The restriction of the natural epimorphisﬁ
f: B—»> B/l to A is an embedding, so B/I has a subalgebra isomorphic
to A, Now sup?ose f(b) is a noﬁnzero element of BfI., Ihen b is not
in I, so the ideal J generated by I and b is strictly large; than I,
By the maximality of I, there ié a non-zero element a in A(ﬁ Je

Being in J, this element must have the form a = x Vv ¢, where x ¢ I
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and ¢ € b, Since f is an embedding, 0 ¢ f(a) = £(c) ¢ £(b). Hence

the copy of A in B/I is dense.

§3, Complete Algebras

a) The algebra of ‘all subsets of a set X will be denoted by P(X), and

is called a power-set algebra, It is characterized as the product of
|X| copies of the two-element algebra, and its Stone space is the Stone-
Cech compactification BX of the set X with the discrete topology. When

lxl 55{6 is infinite, we will demote P(X) by P,
b) 4ny product of algebras over an index set 1l has P(1) as a retract,

c) Complete algebras are precisely the retracts of power-set algebras,
They-can also*bé'characteriéedwas“the”injec&ive"Bcolean'algebraso An

algebra C is said to be injective if,

8
A >——>B whenever £ is a homomorphism from A to
j :
I
£ //’ C and g is an embedding of A in B, then
v~ h
C there is a homomorphism h of B to C

such that £ = hg.

d) Pilerce [22] has shown that an infinite cardinalffa'is the cardinal~-

ity of a complete Boolean algebfa if and only if Héko =N

e) Any Poolean algebra A has a normal completion A with the following

properties:
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i) A is complete, and contains A as a dense subalgebr#. 1t
is unique with respect to these fwo properties,
| i1) If A is a subalgebra of a complete algebra B, then.B has
X'as a subalgebra containing A.
Uéing_i), it 1s easy to see that if x € A, then the normal
complétion of Ax is the principal ideal of X'generated by x. Hence

= A
5 ©

Mbﬂ

£) An algebra'A satisfies the countable chain condition (c.c.c.,) if

any diéjointed subset of A is at most countable.

Proposition 2: If A is an infinite algebra satisfying c.,c.c.,; then
&] = faf,

Proof: IEvery elemeut of A can be represented as a disjoint (hence, at
‘ — H,
most countable) supremum of elements from A, Hence |a] < IAl °,

alco, |al™ < |57 = [Z], by ) avove.

Es

g) ‘Any o-complete algebra satisfies the following condition: If the
algebra A is isomorphic to its principal ideal Ax’ then it is also

isomorphic to Ay for any y > X.

h) A Boolean algebra A is said to be homogeneous if it is isomorphic

to each of 'its non-zero principal ideals,
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1) The following proposition is suggested by Theorem 3.3 of

Pierce [22]:

Proposition 3: The normal completion of a homogeneous algebra is

homogeneous.

 Proof: Let A be homcgeneous and suppose X is a non-zero element of
A, Choose some non~zero y in A such that y € x., Since Ay %= A, we
get Z; “ X'by the uniqueness of the normal completidn. Using g), we

conclude that K; = K;

j) Plerce (see Cramer [5]) has shown that any infinite epimorph of

a o-algebra has Po as a retract,
_ 54 Copreducts

a) 1If Xi is the Stope space of Ai for 1 € I, then the topological

product ¥ of the X, 1s also a Boolean space, The algebra A of

i

clopeg supsets of X is called the cogroduct.of the Ai and will be
denoted by E(Ai: i e XI). For finite coproducts, we will use the
notation Al +-A2 + °°°Z+-An. The coprod@ct of algebras is unique

up to isomorphism,.

b) The projection map of X onto Xi provides a natural embedding of

A

in A, We identify the subalgebras of A so obtained with the Ai'

i
Then the Ai form an independent family of subalgebras of A; that is,
for any finite collection of non-zero elements x; chosen from sub-

algebras with differeat indices, X} A Xy A eos A X # 0. Furthermore,

every eclement of A ié a finite join’of elements of the above form,
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c) Each Ay 1is; in fact, a retract of A. An easy topological'argu-
ment yields a strouger result: if J is a subset of I and B, is a

h]
retract of Aj for each j € J, then Z(Bj: j € J) 1s a retract of A,
In particular, Z(Aj: J € J) is a retract of A, Ve assume these partial
coproducts are actually contained in A. Under this convention, A is

the union of all its subalgebras which are finite coproducts of

the Aio

d) If F, is a closed subset of X, for each i ¢ I, then DEF: 1 e 1)

is closed in H(Xi: ie 1), We spell this out algebraically:

Proposition 4: Let A = X(Aié i e I). and let J1 be an ideal of Ai_for
"each i ¢ I, Let J be the ideal of A generated. by the union cof the

J Thens .

i°
1) J consists of all finite joins of elements of the

form xl/\ Xy A ,,.YA xn,»where each xy is chosen from one of the
subalgebras Ak’ and at least one %y is chosen from the ideal J;
of Ak” |
i1) A/J = Z(Ai/Jiz'i e I).

The proof is a straightfforwafd verification; The proposi-
tion has somé useﬁul corollaries:

i) Let I be an ideal of A@ J an ddeal of B, and let K be
the ideal of A+ B consisting of finite joins of elements of the
form a A b, where a € A, b ¢ B'and either a ¢ I or b ed, Then

A+ B/K = A/I + B/J,

11) If L is the ideal of A+ B consisting of all finite
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joins of elements of the form a A b where a €. I and b € B, then
A+ B/L = A/I + B,

'111) If a € A and b € B, then (A + B) = Aa + B

aasb b°

‘e) If E is finite with n atoms, then A + B = AR,

§5., Subdirect Products

a) If A= H(Ai: i € I), then there is a patural epimorphism of A
onto Ai for each'i € I, A subalgebra B of A is called a subdirect
.product of the A; if each of these epimorphisms, restricted to B,

still maps onto Ai.

b) If‘{Ji: i e I} dis a collection of ideals of an algebra A whose
intersection is the zero ideal; then A can be represented as a sub~- -

"directﬁproduet*of’thé”ﬁ/ﬁi.

§6, Free Algebras

a) F is a free algebra on k generators 1f F is generated by a set X
‘of cardinality x, and any function from X to an algebra A can be
extended to a homomorphism of F to A, In case « =}{a is infinite, we

willl denote the free algebra on K generators by Fuo.

b) The free algebra on k generators can be realized as the coproduct
of k copies of the four-element Boolean algebra, or equivalently, as
the algebra of clopen subsets of the Cantor space 2 , the topological

product of k copies of the two-element discrete space.
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c) For infinite free algebras, the cardinality of F, is Ha° Further~
woxe, F, is homogeneous and satisfies c.c.c. Hence its normal comple~

tion F; is homogeneous and has cardinality %;io“

d) If A is a coproduct of « algebras, each with more than two elements,

then the free algebra on k generators is a retract of A,

e) Tﬁe-couatable free algebra Fo is the only cbuntable, aﬁomless
Boolean algebra, Its normal completion f; is complete,»atdmless, and
separable, and so 1t is isoﬁo;phic to the unique algebra with these
properties (see §2, h), |

/ .

f) Free algebraé are examples of a wmore general concept, A Boolean
algebra P is said to be projective if for any homomorphism £ of P to
| ‘man ‘algebra "B, aid rany “epimorphism
-, g of Aonto B, there is a homomor-
7 g v phism h of P to A such that
B

gh = f;

§7, Universal Mapping Properties

a) Every algebra 1s an epimorph of a free algebra. There is an

analogous result for éomplete algebras:

Proposition 5: If A is a complete algebra of cardinality at most ﬁ;,v

then A is an epimorph of F_.
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Proof: A is an epimorph of F, , which can be embedded in-f;. Then

injectivity of A yields the result,

A form of this result was first proved in Efimov [10] by a

fairly involved topological argument,

b) Hausdorff [15] has shown that if HB = expffa, then Fﬁ can be

embedded in Pa' This has some important consequences,

Proposition 6: Let'ﬁ% = exp ﬁ%, Then F8 is a subalgebra of a Poolean

algebra A if and only if Pa is an epimorph of A.

Proof: One direction follows from the injectivity of Pa and the fact
that it is an epimorph of FB’ The other direction follows from the

Eprojecﬁiyisy%cquBwandﬂﬁausdorﬁfﬂsﬁgeeult,
Proposition 7:  Let ﬁ%= exp H&o Then Fé is a retract of Pé.

Proof: Since Pa is complete and FB is a subalgebra of it, we get

that Fé is also a subalgebra of it, Dut any complete subalgebra of

'

an algebra 15, in fact, a retract of that algebra,

c¢) The most useful form of the preceding results for our purposes
is the following:

Progosi;ion 8: Let HB = expf{u. Then Py and_ﬁé are epimorphs of

one another,.
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Corollary: Any two complete algebras of cardimality exp H; are epi-

morphs of one another,

Proof: 1t suffices to show that if A is complete of cardinality A% =
exp/qo, then A and P, are epimorphs of one another, By Prop. 5, A is

oo

an epimorph of FY and hence of P , by Prop, 8. By Pierce's result

(83, 3), P‘o is an epimorph of A,

d) If a < B, then P is a principal ideal (hence a retract) of Pge
-The algebras are not isomorphic since they do not have the same
number .of atoms., They might, ho&everp have the same cardinality,
It is_conéistent with the usual axioms of set theqry to assume, for
| exémple, that ekpf{o =vexpffl (see Easton [9])., It is also consistent
M?KOWQSSUWE%WhaEHQ“<“SﬂimpkiQQWQﬁp/1am<“expfﬂsym$1ﬂcewﬁhiﬁwiﬂm&ﬂaﬂnse-

quence of GCH, In any case, we have the following:

Proposition 9 : vPavand PB are epimorphs of cne another if and only

if exp H = exp HB‘

Proof: Assume expfﬂu = expffg m/{Y. By Prop. 8, Pu and F} are epi~
morphs of one another, as are PB and f}. lence, the two power-set

algebras are epimworphs of one another., The other direction is clear,

n infin-

e) Pilerce's result (§3, j) has useful consequences, If Ais a2
14 5

A

ite epimorph of a o~complete algebra, then A has no infinite free epi-v
morphs, In particular, wo infinite éomplete algebra can have an in-

finite free epimorph,
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CHAPTER ONE

RADICAL CLASSES OF BOOLEAN ALGELRAS

The concept of a radical class of rings is well-known and
has been studied extensively, The theory can be applied immediately
to the class of Boclean rings, but some adjustment in the definitions

and results is necessary for the class of Ivwolean algebras.

§l. General Radical Theory

This section is a review of the basic concepts of radical
«theory: for-associative-rings, -A-gencral refevence-for this material

is Divinsky [8].

1.1 Defipition: A class of associative rings is called universal if

.1t is closed under the fermation of epimorphs and ideals,

In what follows, we assume that all classes of rings con-

sidgred are subclasses of some fixed universal class,

1,2 Definition (Amitsuxr [2], Kurosh [17]): A non-empty class R of

rings is a radical class (or simply a radical) if it satisfies the
following properties;

1) every epimorph of an R-ring is an R-ring;b

\
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ii) every ring A contaiums an R-ideal, called the K-radical |
of A and denoted by r(A), which contains every R-ideal of A, and

iii) for any ring A, r(A/r (A)) = 0,

1,3 Definition: If R is a radical class and A is a ring such that

r(A) = 0, then A is called R~-semi~simple,

When some fixed radical class is being discussed ahd there
is no danger of ambiguity, we will simply use the terms "radical" and -

"semi-simple®” without specific reference to the radical class,

It is obvicus that the trivial ring {0} is the only riung
which can be simultaneously radical and semi-simple with respect to a

- radical class,

1.4 Proposition: For any radical class R and any ring A, r(A) is

the intersection of all ideals I of A for which A/I is R-semi-simple,

The following propositions characterize radical classes and

give some of their closure properties.

1.5 Proposition: A class R is a radical class if and only if:
i) R is closed under epimorphs, and
ii). if A is a riog such that every non~zero epimorph of

A has a non-zero R-ideal, then A is in R, -
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1.6 Froposition:  If R is a radical class and 1 is an ideal of a
ring A which is generated by R-ideals of A, then I is an R-ideal

of A,

1.7 Corollary: If R is a radical class, then the weak direct product

of K-rings is an R¥ring.

1.8 Proposition: If R is a radical class and I is an R-ideal of a

ring A such that A/I is in K, then A is in R,

1.9 Definition: For any class M of rings, we say a ring A is an

approximate M-ring if every non-zero ideal of A has a non-zero epi-

morph in M,

1.10 .Propesition: A class.of rings M is the.class of all R~semi~
simple rings for some radical class R if and only if M is equal to
the class of all approximate M-rings. In this case, R can be recov-

" ered from M as the class of all rings with no non-zero epimorph in M,

‘1,11 Definition: A class of rings is called hereditary if every

ideal.of a ring in the clasé is also in the class, -

1.12 Progositiog (Armanderiz [3]): A class M is the class of all
semi-simple rings for some radical class if and only if:
i) M is hereditary,
ii) M is closed under subdirect products,
'1i1) if I is an M-ideal of a ring A for which A/I is in M,

then A is in M, and



iv) if I is an ideal of a ring A such that I/B is a non-
zero M-ring for some ideai Bof I, then there is an ideal C of A

contained in I such that I/C is a non-zero M-ring.

The fact that any semi-simple class of associative rings is

hereditary was first proved by Anderson, Divinsky, and Sulinski [1].

1.13 Proposition: A radical R is hereditary if and only if r(I) =
IN r(A) for any ring A and any ideal I of A, Furthermore, if R is
"~ hereditary, then for any ring A, r(A) is the ideal of A generated by

"the principal R-ideals of A,

1.14 Definition: For any class € of rings and any ring A, define

c(A) to be the ideal of A generated by the principal C-ideals of A.

This coincides with the definition of r(A) for a radical
class K provided that R is hereditary. In the mext section, we show
. that all radicals we consider are hereditary, so the notation will be

unambiguous,

§2, Radical Classes of Boolean Rings

The class of Boolean rings is a universal class, so we can
immediately apply the concepts and results of the previous section.
We will prove only what is needed to facilitate the passage to Boolean

algebras..
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1,15 Proposition: If R is a non-zero radical class of Boolean rings,

then the two-element Boolean algebra 2 is in R,
" Proof: Any non~zero Foolean ring has 2 as an epimorph.

1,16 Corollary: If R is a non-zero radical class of Boolean rings,

and.A is a Boolean ring with a maximal ideal I in R, then A is in R,
Froof: Both I and A/I = 2 are in R. By Prop., 1.8, A is in R,

1.17 Propositien: Every radical class of Boolean rings is

hereditary,

Proof: Let A be in the radical class R of Boolean rings. Any ideal
I of A is generated by the principal ideals of A contained within Iit.
“"Each 6f ‘these “is an ‘epimorph ©Uf "A and so ‘is"in'R, "By Prop. 1.6, 1 is

in R,

We are now ready to prove the theorem which allows us to

restrict attention to Boolean algebras,

1.18 -Theorem:> Let R be a non-zero tadical'class of Boolean rihgs,
and let S = AN K, the class of Boolean algebras in R, Then for any
Boolean riﬁg B, the following are equivalent: o . |
1) B 1s in R,
1i) every non-zero principal ideal of B is in §,
ii1).C 1is ip S, where C is thé Boolean algebra containing

B as a maximal ideal,
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Proof: 1If B is in R,lthen every non-zero principal of B is in R

by Prop., 1.17, and C is in R by Cor, 1.16, Being algebras, they
are, in fact, in S. Thus 1) implies ii) and iii), If ii) holds,
then every principal ideal of B is in R, Since B is generated by
its principal ideas, it is in R.by Prop, 1.6, Thus ii) implies‘i),‘
If 1ii) holds, then C is in R, so by Prop, .17, B is in R, So

111) implies 1),

§3, Radical Classes of Boolean Algebras.

1,19 Definition: A non-empty class S of Boolean algebras is calléd

a radical classs if and only if there is a radical class R of Boolean

rings such that S = AN R,

The remainder of this section shows that all the concept§

- and results of radical theory can be expressed (with only minor modi-
~fications) entirely in the language of Boolean algebrés. in keeping
with Defn., 1,14, for any cléss S of algebras9 the ideal s(A) of the
algebra A is the ideal generated by the Sfideals (necessariiy

principal) of A,

1,20 Proposition: A class S of Boolean algebras is a radical class
if and only if:
i) S is closed under algebra epimorphs, and

11) s(A/s(A)) = O for every Boolean algebra A,
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Proof: IEIS‘is a radical class of algebras obtained from the Boolean
ring xédical R, then it is clear that s(A) = r(A) for any algebra A,
~ Hence, ii) folloﬁs immediately: Also, any algebra epimorphism is a
ring épimorphismD éo i) follows,

Suppose S satisfieg i) and i11), and let R be the class of all
Boolean rings A satisfying AX € S for every non~-zero x € A, I; ié
clear that S is preciseiy the class of all algébras in R, so all we
need show is that R is a radical class of rings, Suppose that B is a
ring epimorph of the R-ring A. Then any non~zero principal ideal of B
is 2 ring epimorph of scme ﬁon-zero principal ideal of A, which.is an
S;algebra. Moreover, a non~zero ring epimorphism oﬁ an algebra must
breserve the unity and so is, in fact, an algebra epimorphism., By 1),
then, every non—zerowp;ingipal;idealnof,B is an Sf#lgebné, and éé
B € R,

Now suppose A is a ting such that every non-zero epimorph.of'
A has a non-zero‘R-ideal. If A is not in R, then there is a non-zero
x €A such that A  is not in S. But them A /s(A;) is a pon-zero ring
epimorph of A apd so must have a non-zero R-ideal, But then the
algebra Ax/s(Ax) has an S-ideal, contradicting condition ii),

By Prop. 1.5, R is a radical class of Bcolean rings,

1,21 Proposition: A class S of Booiean algebras is a radical class
if and only if:

| i) S is closed under algebra epimorphs, énd

ii) if A is an algebra such that every aigebra'epimorph of

A has an S-ideal, then A is in S,
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EIS&Q‘ Suppose S is a élaés satisfying 1) and ii), define R as in the
last proposition, and repeat the argument showing that R is closed

under ring epimorphs., Now let A be a ring such that every non-zero ring
epimorph of‘A has a non-iero R-ideal, In particular, every non—z%fo} »
principal ideal of A satisfies this condition, and s§ has éﬁ'é;iAe;i.

By ii), the, every non-zero principal ideal of A is in S, and so A is

in R, Thus, R is a radical class of Boolean rings and S consists of

all the algebras in it, The opposite directlon is clear,

1.22 Proposition: Let § be a radical class of algebras, obtained
from the Boolean ring‘radical R, Then for any algebra (ring) As

s(A) = r(a) = {x: A e R} = {x: x = 0 or A, € S},

.Proof: .Let I = {x:.4 e R}, .AlLl .that.needs.proof is that .l is an
~ ideal of A; Since R is hereditary, I is closed under subelements,
The fact that I is closed under finite joins follows from the fact

- that A is generated by A_ and A , and Prop, 1.6,
xvy x y

This proposition makes precise what we will mean by the
expression: the radical of an algebra consists of its radical

elements,

.1.23 Definitions If S is a radical class of algebras, we say an

algebra A is S-semi-simple if s(A) = O, A class of algebras is a semi-

éimple class if it consists of all S-semi-simple algebras for some

radical class S of algebras,
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'1.24 Definition: For any class M of algebras, we say an algebra A
is an approximate M-algebra if every non-zero principal ideal of A has

. an (algebra) epimorph in M,

1,25 Proposition: A class of algebras M is a semi-simple class if
and only if M is equal to the class of all approximate M-algebras,
In this case, the radical class associated with M is the class of all

algebras with no (algebra) epimorph in M,

Proof: A straight-forward verification, similar in spirit to Prop,

1,20 and Prop. 1.21,

§4, Copventions apd Summary

Unless otherwise stated, we will henceforth refer only to
classes of algebras. The definitions of class properties will be

modified in the obvious manner., For example:

1.26 Definition: A class of algebras is said to be hereditary if it

is closed under the formation of non-zero principal ideals.

. The term "epimorph" will henceforth mean "algebré epimorph,"

‘We retrieve the symbol R for a radical class of Boolean
algebras, We make the convention that an dideal I of an algebra A will
be called an R-ideal of A if Ax.s R for every x ¢ I, Hence an R-ideal

need not be in R,
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The following propositions summarize the properties of
radical and semi-simple classes which we will find most useful. Some
of these properties have already been proved, and the others are

straight-forward extensions of known results,

1,27 Progoéggiggz Let R be a radical class of Boolean algebrés. Then:
i) 2 ¢ R,_
- 1i) R is hereditary,
1ii) if A is an algebra with an R-ideal I such that
A/l is in R, then A is ;n R, |
_ iv) if I is én ideél of an algebra A gene?ated by R-ideals
éf A, then I is an R-ideal of A,

.v) R is closed under the formation of weak products, -

1,28 Proposition: Let M bé:a semi-simple class of Boblean algebras,
_ ihen: i) M is hereditary, |

ii) M is closed under subdirect products,
iii) if 1 is an M-ideal of an algebra A such that A/I.is in M,

then A is in M.
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CHAPTER TWO

THE LOWER RADICAL

Given any class of rings, it is possible to construct a
smallest radical containing this class (see Divinsky [8]). We
investigaté the special features of the general construction in the

case of Boolean algebra radicals,

§1, The Lower Radical Construction

2,1 Proposition: Let X be_any class of rings in some univetsél class
of rings. :For any ordinal o, we define a class Xa as follows:
i) X0 = X, -
- id) Xl is the class of epimorphs of X-rings,

iii) for o > 1, assuming X, has been defined for all B < a,

B
let X, be the class of all rings A such that every non~-zero epimorph
of A has a non-zero ideal belonging to XB for some B < a,

Let L(X) be the union of the classes Xy« Then L(X) is a

radical class., Furthermore, if R is a radical class containing X,

then R contains L (X).

If H is a class of rings closed under epimorphs and R = L(H),

ve have a comstruction due to Amitsdr {2] which, for any ring A, yields
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an ideal h*(A) of A, Whenever H satisfies an additional condition,

-h*(A) coincides with r(A), thus giving an internal, iterative construc~-

tion of the radical of A in terms of H,

2.2 Definition (Pierce): A ladder in a ring A is a well-ordered

chain of ideals of Ay 0= 1 < I, € 0, < I
: 4] 1 jACL

is a limit ordinal, then I is the union of the I, for B < a, . We

B

€ oes g such that if «

note that there is a least ordinal § such that'Ia = 16 for all o 2 6,

and we call I; the summit of the ladder {Ia}'

2,3 Lemma: Let R be a radical class and suppose {Ia} is a ladder in

a ring A with summit Ié’ satisfying Ia+1/1a € R for all ordinals o,

Then I5 is in R,

“Proof: " Using Prop. 1,6 and Prop. 1.8, an easy induction &hows that

Ia is in R for all ordinals a.

2;4 Definition: Let H be a class of rings closed under epimorphs.
For any ring A, we define a ladder in A as follows:

i) hb(A) = Q |

11) assuming that b (A) has been defined, ha+1(A)/ha(A) is
the ideal of A/by(A) generated by its H-ideals, and

| " iii) 1f o is a limit ordinal and hB(A) has been def ined for

B < a, then ha(A) is the union of the hB(A) for B < a,

We call {hy(A)} the fl-ladder in A and denote its summit

by b*(A).

all
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Using Prop. 1,6a we easily get:

2,5 Lemma: If H is closed under epimoxrphs and R = L(H), then for

all rings A, h*(A) s r(4).

2,6 Definition: A class of rings H, closed under epimorphs, is

called an Amitsur class if h*(A) = 0 implies h*(I) = O for every ideal

I of A,

2.7 Proposition: Let H.be closed under epimorphs and let R = L(H),

Thea r(A) = h¥*(A) for all rings A if and only if H is an Amitsur class,

The proof of the sufficiency is due to Amitsur [2]. The

necessity follows from the fact that semi-simple classes are hereditary,

§2, The Lower Radical for Loolean Algebra Radicals

If X is a class of Boolean algebras, we can use it to gener=-
ate a Boolean ring radical, and thence a radical class of algebras L(X)
which is minimal with respect to containing X, This assures us that

fhere is a lower radical coustruction for Doclean algebra radicals,

»Using the fact that ideals of ideals of an.algebra are them-
selves ideals of ﬁhat.algebra. we can show that the general construction

of Prop. 2.1 stops at the second stage for Boolean algebra radicals,
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2,8 Progoéition: Let X be any class of Boolean algebras, and let
R be the class of all algebras A such that every epimorph of A has an
ideal (necessarily non-zero principal) which is an epimorph of an

X~-algebra., Then R = L(X)n

Proof: Since X< R & LX), it suffices to show that R is a radical
class, Clearly, K is closed under epimorphs, Now suppose that A is
an algebié such that every eﬁimorph of A has an ideal in R, We must ..
show that A ig in R, Suppose B is an epimorph of A, By assumption,

B has an ideal C in Rq- Then C, bei£g an epimorph of itself and in R,
contains an ideal D which is an epimorph of an X-algebra, But then.

D is en ideal of B, and‘sbievery epimoxrph B of A contains an ideal
which is an epimarph of an X-algebra, Thus A is in R as required, and

"R'is a vadical ¢lass,

The following definitions and lemwa will be useful in deter-~
mining the struétuie of algebrés‘in a lower radical, particularly when
the generating class is closedvuhder epimorphs, and they will also be
e#tremely useful in Chapter Five. firstw'recall (Preliminaries, 82, f)
that any algebra has a produét decomposition acxoss any element and its
complement, .Moré generally,.if-D is any disjolnted subset of an a;geb-
ra A with sup D = 1, then A has a dense ideal-generated subalgebra iso-
morphic te wH(Ad: d € D). When A is compléte, vwe have A = H(Ad: d e D)..

We extend these results as follows: .
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2,9 Definiticn: If P is a property of algebras, we say x 15 a
P-clement of A if Ax is a P-algebra, The property P is hereditary

if, whenever x < y are elements of A and‘y is a P-element of A, then

X 1s alse a P-element of A,

Whenever an algebra A has a dense subset of P-elements, for
some hereditary property P, then any maximal disjoint subset D of

P-elements must satisfy sup D = 1, Hence, we easily get the following:

2,10 nggg; Let P be a hereditary property of Béolean élgebras; If
A 1s an algebra with a dense subset of P-elements, then A has a dense
ideal-generated subalgebra isomorpﬁic to a weak product of P-algebras,
If A is a complete algebra, then A is a product of P-algebras if and

only if the P~clements of A are dense in A,

~ Noting that the property of being a two-element algebra is

hereditary, we immediately deduce the following well-known result:

2,11 Corollary: A complete algebra is a product of two—elementvaigeb=
ras (that is, a powet—set algebra) if and only if it is atomic. (that is,

the atoms are .dense. in .the algebra),

R 2012 Theorem: Suppose ff is a class of algebras closed under epimorphs,
‘and let R = L(H). Then:
i) A is in R if and only if every epiworph of A has an

ideal in H,
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1i) A is in R‘if.and only if every epimorph of A has a dense’
subset of-H-eléments,
iit) any R-algebfa A has a dense ideal-generated subaigebra
visomprphic ﬁo a weak product of H—algebraé, |
iv) any complete algebra A in R is a product of H-algebras,
v) R contains atbmiess complete algebras if and enly if

H doeSo

Proof: The first assertion follows Jmmediately from Prop. 2.8. Since
principal ideal of an algebra are eéimorphs of that algebra, ii) follows
from i), Using Lemma 2,10, we immediately get iii) and iﬁ) from 1i),

and v) follows from iv).

2.13 Propositioa: Let R = L(H) as in Prop. 2,12, and let A be a homo-

geneous algebra. Then A is in R if and only if A is in H,

Proof: If A is in R, then every epimorph of A and in particular, A
itself, has an ideal in H. Since A is isomorphic to any principal

ideal of itself, A is in H, The other direction is obvious.,

Homogeneous algebtés are a special case of the following

more general concept:

2,14 Definition (Divinsky): A Booleén algebra A is unequivocal if

for every radical class R, A is either in R or is R-semi-simple, .
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2,15 Proposition: An algebra A is unequivocal if and only if

L(a) = L(A) for every mon-zero x in A,

Proof: We always have L(Ax) contained in L(A)., If A is unequivocél,
thén it must be in L(Ax) since ‘it cahnét be semi-simple with respect
fo this radical, Hence we get L(A) = L(Ax) for any non-zero X in A,
Conversely, suppose this always holds for an algebra A, and suppose
that A is not R-semi-simple, for some radical R, Then for some non-
zero X in A, Ax is in R, But then, L(A) = L(Ax) is containéd in R,

and so A must be in R, Hence A is unequivocal.

2,16 Corollarxz Every non~zero principal ideal of an unequivbcal

élgebta is an unequivecal algebra,

”W2Tf7“*@ggggggf”“UnEquivoeﬁimﬁlgébraswnééﬂ“%bf*bé*hbmogeneous@ “For
examplé, let A be the product of nonwisomorphic homogenecus algebras
Al and A2’ which ére epimorphs of one another, Such pairs exist:
 take Al = i"o and A, = P /I, wherg 1is chg'ideal of finite sets in P_,
Cleariyp in any such situatioﬁ, L(A) = L(Al) = L(Az). Now let x =
(%15 xz) be a non-zero elemént of A, so that eithef Xy br‘x2 is non-
zero. Then Ax has a principal ideal, hence an epimorph, isomorphic

1

_to either A, or A2. So L(Ax) = L(A) for all non-zero x in A, and A

is unequivocal,

We now show that the Amitsur procedure for obtaining the

radical is always valid for Boolean algebras,
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2,18 Proposition: If H is a class of Boolean algebras closed under

epimorphs, then H is an Amitsur class,

Proof:  Suppose that A is an algebra for which h*(A) = 0 and that 1
is an ideal of A, If I has any ideals in H, then A has these same
ideals in H, contradicting h*(A) = 0, Thus, h®*(I) = 0, and H is an

Amitsur class by Defn, 2.6,

83, The Superatomic Radical

2,19 Definitjon (Mostowski and Tarski [21]): A Eoolean algebra is

said to be superatomic if every epimorph has an atom,

The concept of a superatomic FPoolean algebra was first
wexstudiedaby Mostoweki.and ~Tarseki - [21] jeandwdater<by Yaqub-: [22])-«and
Day [6], [7]. The following proposition from Day [7] summarizes the

various characterizations of superatomic Boolean algebras.

2,20 Proposition: If A is a Boolean algebra, then the following are
equivalént:
i) A is superatomic,
ii) every epimorph of A is atomic,
-1ii) every subalgebra of A has an atom,
iv) every subalgebra of A 1s atomic,
v) no subalgebra of A is an infinite free algebra,

vi) A has no subalgebra isomorphic to Fo9
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ﬁii) A bas no chain of elements order—isoworphic with the
chain of rational numbers,
jviii) the Stone space of A is clairsemé; that is, every non-

empty subspace of S(A) has an isolated point,

If we let H be the class consisting of the two-element
algebra, then H is closed under epimorphs, and Defn., 2,19 can clearly.
be re-~stated as follows: A is superatomic if and only if every epi~

morph of A has an ideal in H, By Theorem 2,12, we have:

2,21 Proposition: The class 0 of superatomic Boolean algebras is a
radical class; namely, it is L(2), the lower radical generated by the

two-element Boolean algebra,
2,22 "Corollary: "Every radical c¢lass of "Boolean algebras centains 0.
 Proof: Every radical class of Boolean algebras contains'gﬁ

2.23 Coroilagz (Day [7]): The weak product of superatomic Boolean

algebras is a superatomic Boclean algebra,

By Prop, 2.18, we can use Amitsur's constuction to obtain

the sﬁperatomic radical of any algebra., The following is clear:

2.24 Proposition: Let H = {2} and let A be any Poolean algebra.
Then hu+1(A)/hu(A) is the ideal of A/ha(A)_generated by its atoms;

more precisely, it consists of all finite joins of atoms of A/ha(A)o



- 37

If A is superatomic, then it is the summit of its H-ladder.

Let & be the least ordinal for which hG(A) = A,

2.25 Definition (Day [7]): The cardinal sequence of the superatomic
Boolean algebra A is the sequence of order type 6 whose a-term, for

a < 6, is the cardinality of the set of atoms of A/ha(A)°

This specialization of the Amitsur construction has been used
with success by Day in his study of superatomic algebras., We mention

two of his more striking results,

2,26 Proposition (Day [7]): Two countable superatomic Boolean alg-~
ebrag are isomorphic if and only if they have the same cardinal se-~

quence.

2,27 Prcpogition (Day [7]): 1If k is an infinite cardinal, then there
are more than k non~isomorphic superatomic Boolean algebras of cardin-

ality kg

Superatomic Poolean algebras have arisen naturally in the

study of free complete extensions of an algebra,

2;28 Definition; C is a free complete extension of B if:
i) C is complete, |
41) B is a subalgebra of C,
iii) any homomorphism of B to a cémplete algebra can be ex-
tended to a complete homomorphisﬁ (that is, oue which preserves all

suprema) of C to that algebra.
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If- B has a free complete extension, them it is unique

up to isomorxrphism,

2,29 Proposition (Yaqub [27], Day [6]): B has a free complete

extension if and only if B is superatomic,

Further results of a similar nature occur in these papers.

'~ 54, The Cardimality Radicals

2.30 Definition: TFor any ordinal a, we call the lower radical
generated by F , the free algebra ou.Ha generators, a cardinality

radical and denote it by Fao

2.31 Prdgositiod: Fa is the lower radical generated by the class
of Boolean algebras of cardinality at most)fao_ Moreover, if a < B,

then F, is properly contained in FB o

Proof: ‘The first assertion follows from the fact that every algébra
of cardinélity at most,H; is an epimorph of Fu’ If a < B, Fu is an
epimorph of Fg, s0 we get Fu contained in FB' But FB is in FB and

not in Fa’ so the containment is proper,

In a patural sense, the superatomic radical is the first
member of this chain, for it is the lower radical generated by all

finite Boolean algebras.




39

We shall see in Chapter Seven that Fo is an atom in the
lattice of Boolean algebra radicals, so we have some interest in

examples and some properties of Fo~algebras,

2.32A Examples: Of course, any weak préduct of counfable algebras is
iﬁ F°° Furthermore, any atomless algebra in Fo ha; a.dense ideal-
generated subalgebra d1somorphic to a weak product of‘copies of Fo
The normal completion of any atomless algebra in Fo is a powér of f;.
énd anybpower can be s0 realized; that is, as the normal compietion
of an Fo-'algébrae |

Let S be a superatomic algebra with x atoms, Since any.
élement in an atomic algebra is the supremum of the étomé.beIOQ it,
we can embed S in P(x), which can be realized as the subalgebré of
elements with {0, l}~coerdi§é£es in any k—product, In.particular, ve
can assume that P(x) is embedded in F,"s Let I be the ideal of F,*
generated by the atoms of S, Then any non-zero principal ideal of
FoK contained in 1 ié isomérphic to ¥ . Furthermore, if A is the sﬁb—
algebra of FOK-generated by S'anfi.lD then I is also an ideal of A,
aﬁd All is éuperatomic° In fact, A/I is isémorphic to the quétient of
S by the ideal geénerated by its atoms, Hence, by Prop. 1.6 and
Prop. 2.22, A is in Fo. Intuitively, we can regard this as the
'teplacement of each atom in S by a copy of.Fo.
In Chapter Six, we wiil describe-another method of obtain-

ing F°~algebras from superatomic algebras,
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A natural extension of countable Eoolean algebras are the

separable algebras, that is, those having'a countable, dense subset,

2,33 Definition: - K is the lower radical generated by the separable

. boolean algebras,

We will find use for this radical in Chapter Seven.

§5, The Power-Set Radicals

2,34 Definition: The lower radical generated by Py» the algebra of
all subsets of a set of cardinalityfﬂa, will be called a power-set

radical, and denoted by P_.
2,35 Proposition: Letf{B = expf{a. Then Pa = LCFE).
Proof: By Prop, 0.8, P, and Fé are epimorphs of one another,

2,36 Proposition: If a < B, then P, is contained .in PB' Fur ther-
more, P, = P8 if and only if expf{u = expffgo

Proof: The first assertion follows from the fact that P is an epi-
morph of PBp and ;he'second from the eqﬁivalence of the cardinality

condition with the fact that P and P, are epimorphs of one another,

B
. using Prop. 0.9,

2,37 Theorem: 'Let5{6 = epr{a, Let A be a complete algebra.

Then the following are equivalent:
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i)vA € Pyo

ii) A is an epimorph of P“,
iii) A is an epimorph of Fé,
iv) |a] <'HB.

. Proof: Using Prop, 0.5 and Prop, 0.8, we see that ii), iii) and iv)
are equivalent, and they clearly imply 4). Now assume i). Then by
Theorem 2.12, A is a préduct of epimorphs of P , say A = H(Ai; ie I).
Let HB =§¥ao|Il. Then Py can be representéd as a product of |I|-copies

of P, each. of which has one of the Ay as an epimorph., Then PB has

a
their product A as an epimorph, We must now show that PB is an epi-
morph of Pa; This is obvious if B < a €0 assume a < B, Sincef‘{B =
max {H;p |1]}, this means thatH8 = |1, Since A is in P, and has

SP(I) =P, as a retradt.‘this*méaﬂs*that“PB”iB in P, "hence that

B
PB - Pa‘\ But this is equivaient to the fact that P, and Pg are epi-

morphs of one another,

2;38 Corollary: Let A be an infinite complete algebra, Then A is in
P, if and only if |a| = exp 4 . In this case, L(A) = P_ and if A is

atomless, then it is unequivocal.

.Proof: Any infinite complete algebra has cardinélity-at least exp Ho‘

The rest follows from the Corollary to Prop. 0.8 and from Piop. 2,15,

It is interesting to note, here, that Monk and Solovay [20]
have shown that there are exp exp H;,isomorphism’classes of complete

Boolean algebras of cardinality exp H;._
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We will be interested in Chapter Five with those complete

algebras that generate a power~set radical,

2.39 Theorem: Let Hé = exp H;. ‘Let A be any algebra.in Pye Then -
the following are equivalent:
i) L) = Pa'

i) P, 1s an epimorph of A,

iii) fé is an epimorph of A,

iv) FB is a subalgebra of A,
. If A is any complete algebra, theﬁ A geﬁerates'?a-for its lower
radicai precisly when it has cardinality %B and satisfies any one of
11), iii) or iv), which is equivalent to saying that A and P, are epi-

morphs of one another, -

Proof: Using Prop. 0.6 and Prop, 0.8&, we see that 11), 111) and iv)
are equivalent to one‘another, and it is clear that théy imply 1).
Assuming ‘1), we see that Fé-is in L(A). Peing homogeneous, it is an
epimorph of A by Prop, 2.13. Thus 1) implies iii). If A is a complete
algebra, then A ¢ Pu is equivalent to the inéqnality IA] s?{s, which,
in the presence of any of the»conditions 1) - iv), must actually be

an équality. The rest follows immediately,
Finally, we introduce a related radical:

2,40 Definition: P is the lower radical generated by the class of

all complete algebras,
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2.41 Proposition: P is the lower radical generated by all power-
set algebras, and so is the smallest radical class.containing all

the Pac.

Proof: Every complete algebra is a retract of a power-set algebra.
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CHAPTER THREE

THE UPPER RADICAL

Given any class of rings satisfying a condition called
regularity, it is possible to generate a semi-simple class which is ‘

minimal with respect to containing the given class,:

§1, The Upper Radical Constrzuction

We describe the construction immediately for classes of
Boolean algebras, The method and prcof of its validity are essen=~ .
V'”ﬁfﬁﬁly%the?same"as*iuﬂgeneralwradical“theory“(see“DiVinSky“[819“Qith

minor obvi&us modifications,

We recall that the two-element algebra must be in any
radical class, This entails that semi-simple algebras must always

be atomless,

3.1 Definition: A class M of Boolean algebras will be called repular
if every M-algebras is atomless, and every M-algebra is an approximate

- M-algebra (Defn, 1.24),

Of course, any hereditary class of atomless algebras is a

regular class,



45

© 3.2 Progositiong' Let M be a regular class of Boolean algebras, and"
let U(M) denote the class of all Boolean algebras with no epimorpﬁ in
M. Thent
1) UM) is a‘radical class of algebras,
ii) every algebra in M is semi-simple with respect to U (M),
ii1) 1f R is a radical class such that every algebra in M

is K-semi~simple, then R is contained in U (M),

3.3 Definition: The radical class U(H) is called the upper radical

dete:mined by the class M,

Given any class Y of atomless Boolean algebras, it is clear
that the class M of all non-zero principal ideals of Y-algebras is a

 .hereditary class.of.atomless.algebrag,

3.4 Definition: If ¥ is any class of atomless Boolean algebras and
M is the class of all non-zero principal ideals of Y-algebras, then
we will denote the radical class U(M) by U(Y) and call it the upper

‘radical determined by the class ¥,

§2, The Charécterization Theorem

3,5 Theorem: Let M be a regular class of Boolean algebras, and let
U(M) be the upper radical determined by M, Then an algebra A is

U(M)-semi~simple if and only if it is a subdirect product of M-algebras,
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Proof: By Prop. 1.28, semi—simplevclasses are closed under subdirect
products, so one direction is immediate, The other direction will
follow if we can show that for R = U(M), and for any Boolean algebra
A, r(A) is equal to the intersection J of all ideals I of A such that
A/L ié in M, Then, for a semi-sinple algebra, this intersection will
be 0, and A will be a subdirect product of the A/I,

By Prop. 1.4, r(A) is the intersection of all ideals I of A
for which A/I is R~semi~-simple, and so it is contained in J, If they
are not equal, let x be an element éf J which is not in r(A). Then Ak
is notyin_R, aud so has an epimorph AX/K in Me Note that K is also an
idéal of A, Leﬁ L denote thelideal of A generated‘by K and x', Then,
ﬁsing §2, f) of the Preliminaries, we see that A/L = AX/K, which is in
oMy~ Hence L“is“one*dfﬂthe*ideals“occurrtng&infthe“ﬂéfiﬁiti@n“af J, "and
so J 1s contained in L. But then x must be in L and, being disjoint
from x', it must be in K, But this yields the contradiction Ax/K = Q,

Hence J = r(A) as required,

§3.3Afomless Boolean Algebras

'The superatomic radical 0 is clearly the upper radical deter-
mined by'the atomless Boolean algebras, We find a much smaller regular

class which_determines 0 as its upper radical,
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3.6 -Theorem;‘ Let M be the class of all atomless, separable Boolean
algebras, Then: |
i) M is a hereditary class, and so determines an upper
radical, | |
i1i) this radical is;, in fact, the superatemic radical, and so
1ii) an algebra A is atomless if and only if it is a subdirect

product of atomless, separable algebras,

Proof: It is clear that M is hereditary. By Prop, 2.20; an algebra

is non~superatomic if and only if it has a subalgeﬁra isomorphic to Fo.
Henée, by Prop. Ocl,vény non-superatomic algebra has an epimorph with
a dense sﬁbalgebra isomorphic to Fo; that is, any non-superatonic
algebra hés an atomiess, separable epimorph.‘ Hence U(M) = 0, énd the

rest follqws from Theorem 3,5,

4, Sowe Upper Radicals

It is clear thaf a class consisting of a single atomless,
homogeneocus algebra is a hereditary class,band 50 generates an upper
radical. Any semi-simple algebra, then, can be represented as a sub-
direct power of this.algebra. The radicals defined in this section
.all have this feature. In only one case do we make further’ment;on'
of this fact, for.it yields a subdirect power representétion for

atomless, complete algebras,
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. 3.7 Definition: Ea is the upper radical determined by the infinite

free algebra Fq.
3.8 Proposition: If a < B, then Ea is properly contained in EB'

Proof: The containment follows easily from the fact that Fa is an

epimorph of Fg. Furthermore, Fy, is in E_ but not in E_,

B

3.9 Definitionz Ga is the upper radical determined by F;o

3,10 Proposition: If o < B, then Ga is contained in Gg. Furthermore,

if and only if ?; and FB are epimorphs of one another,

Gu = G‘3

Proof: F; is an epimorph of FB; The rest is obvious,
3,11 Coxollary: Letwﬁ&_muggpjjoﬂgnd let 0 € @,8 $.yo Then G, = Gg.

Proof: By the Corollary to Prop., 0.8, any two complete élgebras of

cardinality exp ﬁo are epimorphs of one another,

-

For F and F
o [}

their cardinalities be the same: H:{o = HB @, We do not know whether

to be mutual epimorphs, it is necessary that

the cardinality condition is sufficient,

3.12 Theorem: Any atomless, complete algebra is a sudirect power

Of FO'

‘

Proof: Using Theorem 3.5, it suffices to show that any atomless,
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complete algebra is Gonsemi-simple. Any principal ideal of an atom=~
less, complete algebra is itself atomless and complete, and so, by

83, 3) of the Preliminaries, it must have F, as an epimorph and cannot

be in Gé, Hence any atomless, complete algebra is G -semi-simple,

We shall see that G, has many upper radical characterizationms
“and so yields many subdirect product representations for atomless, com-
pleie'algebras° Because of its speéial'prOperties,~however, f; is an

especially appropriate building bloak.

3,13 Example: Let Q be the algebra of all finite unions of left-

| _closed, right-open subintervals of the unit intexval [0, 1) of the |
reals, It is élear that Q is an atomless, homogeneoas algebra. The
‘Stone space of Q is the set-x obtained from‘the_closed unit‘;ntervél
[0, 1] of reals by splitting every‘intefior point x into two parts,
x~ and x+. ke consider X as an ordered set with the natural order:

0 <x < xt <y <y"<1whenever 0 < x <y < 1, and give it the ..
order topélogy (seé Sikorski [24], example §9, E). We will show that
Q is in both G, and Eo'

If Q is not in Go’ then it has P, as an epimorph; in other
words, we can embed BN in X, ‘But ]Xl = expfﬁo.and‘lle‘% exp exp’foo
éobthis is'impossible.‘ | |

If Q is not iﬁ Eo,-thén wve can embed the Cantor set 2”? in
.X. . To show that this is impossible, we show that any uncountable

closed subspace of X has an uncountable base,
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Let F be any uncountable closed subspace of X>and let

{Ga}.be a base for F, Let F' (respectively F~) be the points of F

of thé form x* (respectively x7). Then one of F+, F~ must be un-

" countable, Suppose I"’.+ is uncountable, For any xt in F+, the inter-
val [z, 1] is clopen in X and so FN [x", 1] is clopen in F. Thus
there is a basic set G, suchvthat xt e G, < FN [x*t, 1], 1f x¥ < y+,
then x' ¢ [yt, i] and so xt £ Gy° Thus for distinct x*, yt in F+,
we get Qistinct basic open sets Gx and GyB and the base {Ga}‘must be
uncountable, If F  is uncountable, ‘an obvious modificatién of the

argument yields the same result,

85. The Upper Radical Determined by Homogeneous Algebras

3.14 Definition: J is the upper radical determimed by all atomless,

homogeneous algebras,

J is contained in any upper radical determined by a class of
atomless, homogenecous algebras. Thus it is contained in both Go and
Eo. If is not equal to their intérsectibn, howeve;s for the algebra
| Q of the‘lést example is J-semi-simple, A natural question here is
whether J = (0, In Chapter Seven, we will discuss one comnsequence of a

positive answer, We present some considerations which make a positive

answer reasonable,
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3;15 Definition: A monotonic cardinal property v assigns a car~

dinal number v(A) to each algebra A in such a way that v(A;) < v(A)
for,all‘non—zero x in A, If this inequality is an equality for all

non-zero x in A, then A is called Vv-homogengous.

3.16 Lemma: If v is a monotomic cardinal property, then the v-homo-

geneous elements of any algebra A are dense in A.

Proof: For any non-zero x in A, pick y € x such that v(Ay) is minimal

among the v(Az) for 0 # z € X, By mbnotonicity of v, A, is v~ homo~-

y

geneous,

3.17 Corollary: 1f v is a wonotonic cardinal property, then any

~complete algebra is a product cf v-hemogeneous algeﬁras.

Proof: It is clear that the property of being v-homogeneous is her-

editary, so we can apply Lemma 2,10,

This last result is due to Pierce ([22] and provides support
for his conjecture [23] that every complete algebra is a product of
homogeneous algebras, We provide similar support for the conjecture

that J = 0,

3.18 Progositioné Let v be a monotonic cardinal property and let
JQ be the upper radical determined by the class of atomless, v~homo-

geneous algebras, Then J, = 0,



52

Proof: 'Any non-superatomic algebra has an atomless epimorph, which.
‘has an atomless, v-homogeneous principal_ideal,' Hence Jv can contain

only superatomic algebras.
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CHAPTER FOUR

CRAMER'S RADICALS

We investigate the radicals introduced by Cramer in [5],

781, The Classes C.

Superatomic Boolean algebras can be characterized as those
having no countable free subalgebra, Cramer generalized this as

follows:

4.1 ADefinitiog: The class C, is the class of all Boolean algebras

with no subalgebra isomorphic to Fa’

Cramer's proof that the Ca are radical classes uses topolo-

gical wmethods, We present an algebralc proof,
4.2 Proposition: C, is a radical class,

Proof: By projectivity, Qhenever F, can be embedded in an epimorph of
A; ﬁhen Fy can be embédded in A, Thus.Ca is closed under epimorphs,
Now suppose that A is an algebra such that'every epimorph of A has a
_piincipal ideal in C o, If Fy can be embedded in A, then by Prop. 0.1,
Fy can be densely embedded in some epimor?h Bof A, If x is any non-

zero element of B, there is a non~zero y < x such that y ¢ Fyo Then
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the principal ideal of'FG generated by y can be embedded in By

which can be embedded as-a subalgebra in B,. Since Fa_is homogeneous,
this saysﬂthat no nonazero'principal ideal of B can be in Ca” contra-
dicting the assumption on A, Thus A is in Ca, and by Prop, 1.21,

Ca'is a radical class.
4.3 Proposition: If a < 8, then Ca is properly contained in CB°

Proof: The containment follows from the fact that Fj can be embedded

in Fgo It is proper since Fy ¢ CB but F, ¢ Cg.

.§2¢ The C, as Upper Radicals

4.4 Definition: _Thejclass Qd is the class of all Boolean.algebras

which do not have P, as an epimorph,
4,5 Proposition (Cramer [5]): Let HB = exp}¥a, Then Da = CB°
Proof: This follows immediately from Prop, 0.6,

4,6 Corollary: P, is a radical class, and if a < B, then Da is

properly contained in g,

Except for the fact that P is not atomless, the description

of P, suggests an upper radical, IfHBl== exp H,, however, since E,

e

and Fg are epimorphs of one another, we immediately get CB =D, = GB‘

Actually, we can extend this result,
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4,6 Proposition: C, is contained in Gyo and C_ = Ga if and onlybif
H 4 _ ' : - : o
Hu © uﬂa‘

gggggj. Since F; has F, as a subalgebra, it is not in C, and being
homogeneous, it must be Ca-semi-simple,' But Ga is the largest radical
for which F; is semi-simple, so C, ié contained in Ga' Iff{iﬂo =Ng»
then |F | = N,» and so it is an epimorph of Fy. If F, is embedded in
an algebra A, then by injectivity of f;, we éet that A}haé F; ag an
épimorph; In other words, G, is contained iﬁ Ca9 and we get equality
of ghe radicals., Conversely, suppoée the radicals are equal, and

. suppose thatffi{o > By cardinality, then, F, cannot have F, as

a’” 3]

an epinorph and so F, is in G . But F, ¢ C;, so this contradicts the

équality of the radical classes,

§3, The Radical D

Since P and E; are epimorphs of omne another, D, = G,. Ve
have alreaﬁy seen that all atomless, complete algebras are Do-semi-
"simple. This section plays variations 6n the theme thét Do-algebrasA
are in a very strong sense»the opposite of complete algébrasa The
basic fact we need is Pierce's tesu;t't§3, 3) of Preliminaries) that

any infinite epimoxph of a c-complete.algebra must have P, as an epi~

worph. An immediate consequence of this is the following:
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4.7 Proposition: Let A be an infinite Do-algebra._ Then:
i) A has no infinite o-complete epimorphs,
ii) A is not the epimorph of any o-complete algebra, and

iii) A has no infinite,'complete subalgebra,

4,8 .Progosition: Let ¥ be any class of atomless aléebras satisfying:
i) each algebra in ¥ has P as an epimorph, and
ii) there is an algebra in ¥ which is an epimorph of P e

Then the upper radical determined by Y is Doo

- Proof: By‘condition i), a eralgebra camnot have an epimorph in Y,
so D, is contained in the upper radical determined by ¥, By con-
dition 11), any algebra in the upper radical determined by Y cannot

""have'P, ‘as an epimorph, and so’iS‘id“Do.

4,9 Corollary: Do is the upper radical determined by any of the
" following classesf | |
i) all atomless, complete algebras,

ii) all atomless, 6—complete algebras,

iii) all atomless, compiete homogenéops aigebtas;

iv) the class consisting of all principal ideals of P /I,
 wher¢ I is the ideal of finite sets in éa’

v) the class consisting of F;,
vi) the class consiéting of any atomless,‘compleﬁe algebra

of cardinality exp;“b.
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CHAPTER FIVE

DECOMPOSITIONS OF COMPLETE ALGEBRAS

The product decouwpositions of this chapter depend on find-
ing a dense subset of P-elements in an algebra, for some hereditary
| property‘P. The seétch for P-elements below an arbitrary non-zero
element leads naturally to the éonsideration of various chain~like

‘conditions.

§1l, The General Setting

Qe have already seen that Pierce's detomposition of complete
algebras v;a cardinal properties is a Speciél caée of Lemma 2,10, The
thgorems of this chaéter also make use of this lemma, We note that the
properties of being homogeneous and unequivocal are hereditary prop-

erties, Hence, we immediately get the following:

5.1 Progosition: Let A be a complete algebra, Then A is a product of
homogeneous (uhequivocal) algebras if and only if the homogeneous

(unequivocal) elements of A are dense in A,

Pierce's result also included a hniqueness feature (see[22])

which also holds fb: decompositions into homogeneous (unequivocél)
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algebras, whenever such decompositions exist, The following propo=-

‘sition includes all these uniqueness results as special cases,

5.2 Proposition: Let P be a hereditary property, and suppose A is
a complete algebra with a dense.subset of P-elements, - Suppose there
is an equivalence relation = on the P-elements of A such that:
(*) if x and y are P-eleﬁents of A aﬁd x £y,
then x A y = 0,
Then there is a unique decomgositioq A - H(Ax:'x ¢ X) with the follow-
ing properties: ‘
| 1) for any x € X, A, is a product of P-algébras Ay, y s.Y*,
wﬁerg y1 £ yp for amy Y15 Y2 s.ng and
ii) for x # 2 iﬁ X, y; €Y, v, € Y

20 Y1 F Y2

Proof: The set X consists of the suprema of the equivalence classes
of P-elements of A, Then X is disjointed by (¥*), and sup X = 1 by the
density of P-elements in‘A° The rest of the prdof is a straight-for-

ward verification,

To see how this applies, we need to specify an equivalence

relation for each ofbthe properties we have considered:

i) v-homogeneity: say x = y if v(Ax) = v@Ay),
y if Ay = Ay' and

iii) unequivocality: say x = y if L(Ax) = L(Ay).

H

ii) homogeneity: say x

' In each case, it is easy to see that condition (*) is satisfied, so
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that a suitable replacement of P in Prop., 5.2 will yield a uniqueness

result in each of these three situatioms,

- §2, Decompositions into Homogeneous Algebras

5.3 Definition: An algebra A will be called near-homwogeneous if

every descending chain of principal ideals of A contains only a finite

_ number of isomorphismvtypes of algebras,

Finite products of homogeséous algebras are a natural example
of near-homogeneous algebras, Another class of examples are the power-
Seﬁ algebras. Any principal ideal of such an algebra is another power-
set algebra, which isvdetermined up to isomorphism by the cardinality
of “its atoms. "Hence any descending chain of "such idedls yiéids a

descending chain of cardinals, which nust be finite.

" . 5.4 Theorem: If A is complete and near~homogeneous, then A is a pro- .

. duct of homogeneous algebras.

Proof: By Prop, 5.1, it suffices to show that any non»zérdﬂprincipal'
ideal of A conﬁains a non-zero homogeneous principal ideal, So let

X be a non-zero element of A, If Ax is nét homogeneous, there is a
nbn-zero element y £ x such tha£ Ay is notvisomorphic to Ax' Proceed~
ing inductively, we get a descending chain Ak > Ay >...>-Az > see

. where no two adjacent algebras are ispmorphic. By §3, g) of the
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’Preliminaries, if any two élgebras in the chain are isomorphic,
then they are aiso isomorphic to #11 the intervening ones, Hence
no two algebras in the chain can be isomorphic,‘ Because A is near-
homogeneous, the chain must terminate in a finite number of steps,
and ﬁhe algebravthus obtained is a non-zero homogeneous principal

ideal of A contained in Ax’

5.2 LExample: Ve ﬁresent an example of a complete algebra A which
is a product of homogeneous algebras, but which is not near-homogen-

éous. Let {Kn: n < w} be a strictly increasing sequence of cardinals

Ho

‘satisfying Kn = Kps Such seduences-exist:’for example, take x_ =

o
exp,&% and Katl = ©XP Ko For any such sequence, let An denote the
normal completion of the free algebra on K, generators, Then A is

conplete, homogeneous, and its cardinality is x_. Let A= H(An: n < w),.

n
There is a nétural isomorphism between certain principal ideals By

df A and partial products of the A, as follows: Bk = H(An: k< n<w),
Ihus we get é descending chain of ideals of A: B, > By > eee 2 Bk > coes
Any ﬁon-zero principal ideal of B; must contain a.copyvof soume A, |

for n 2 i and so must have cardinality at least Kyo For j < i,

howevery, Bj has a principal ideal isomorphic to Aj 6f cardinality Kj.

S;uce K4 < Ky, By camnot be isomorphic to Bj.
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53, Decompositioné into Unequivocal Algebras

.5.6-.Definition: Let {R, } be a well-ordered chain of radical classes.
We say that an aléebra A is R-layered if, for any non-zero x in A,
either‘Ax is finite, or there is an ordimal B such that L(Ax)_== RB’
‘A will be called layered if there exists some well-ordered chain of

radical classes {R,} such that A is R-layered.

" Examples of layered algebras will be given in 54, It is
clear that any principal ideal of an R-layered algebra is itself R-

layered,

5.7 Theorem: If A is a complete layered algebra, then A is a pro-

duct of unequivocalralgebrasQ

ggggg; _By;frop. 5.1, it'sufficeé to show that any non-zero priﬁcipal
ideal of A contains a non-zero Qﬂequivocgl principal ideal, So let

: x be a non-zéro element of.A, and suppose {R } is the chain of radicals
with respect to which A is layered, If A, contains an atom, then it
contains the unequivocal algebra 2, Otherwise, if A ié atomless, let

B be the least a such thét L(Ay) = Ra fdr some non~-zero y £ X, Chﬁpse

some y for which L(Ay) = R Now for 0 # z < y, L(Az) is contained in

80
RB' »Since A is K—layeted; L(Az)‘iSISOme Ra; and by the minimality of
8; L(Az)'= RB' But then, by Prop, 2.15, Ay is an unequivocal principal

ideal of A,
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5.8 Theorem: Let A be a complete algebra, and suppose that for any
non-zero x in A, there is a power-set algebra P such that Ay and P
are epimoxplis of one another. Then A is a product of unequivocal

algebras,

Proof: Using Theorem 2,39, it is clear that the condition on A is

precisely what is needed to make A a P-layered algebra for the chain

(P}

Using Theorem 2}39. we see that is would be extremely useful,
in determining the scope of this theorem, to know which algebras, other
than power-get algebras and completions of free algebras, have large
. free subalgebras, Unfortunétely, little is known., As a sample, wé

quote the following result: =

f5.9 Proposition (Efimov [11)): For any algebra A, let cA denote the
supremum of the cardinalities of families of disjoint elements of A, -
Suppose A is an algebra such that cA € x and IA' > exp exp eXp K,

Then A has a free subalgebra on (exp k)+ generators,

lie note that FO can never be in the lower radical generated
" by an infinite complete algebra, Hence there is no point in attempting

further results along these lines using the chains {Fa}, {C )}, or {Ea}°
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84, Connections with Cardinal Properties

it is possible‘to obtain Theorem 5.7 in a slightly more
lengthy mamer using Pierce's result (Cof. 3.17). There are some
_inCeresting additional results along the way, and the approach is
bettei suited to presenting examples, so we proceed to develop it

nowe

5,10 Definition: For any well-ordered chain of radical classes
{R,}, we say an algebra A is admissible with respect to the chain if
it is in ope of the radicals of the chain, For any admissible A, we

define p(A) = min {H,: A € Ra}'

“Then p is a cardinal property on admissible algebras, and
the fact that it is monotonic follows easily from the fact that every

radical class 1s hereditary, We note that p(A) is always infinite.

5,11 Lemma: The admissible élgebra A is p~homogeneous if and only
if there is an ordinal B such that:
i) A ¢ Ra for ali o > B,
11) A is R -semi-simple for all a < B,

In this case, of course, p(A) =f{8-

Proof: Let A be p-homogeneous with p(A) wf{s. Then for all « 2 8,

A is in‘Ru. By p-homogeneity, p(A#) = p(A) = Hé for all non-zero x
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in A, .In other words, no non-ze:o_principal ideal of A occurs in

any R fof o < B, Hence A is R -semi-simple for all a < B.. Con-
versely, suppose ﬁuch a B exists, Then clearly p(A) = Hb. Since.A

is Ra—semi-siméle for ﬁ <.B,‘Ax cannot be in any such Ra for any non-
zero x in A, Since p(Ax) < p(A) =f{8, we must héve p(Ax) n;%a. Hence

A is p~homogeneous,

5.12 Lewma: Let {R } be a well-ordered chain of radicals. Suppose
the algebra A is R-layered (hence admissible) and p-homogeneous,

Then A is unequivocal.

Proof: Let p(A)=W}(B° and let x be a non-zero element of A, By
p-homogeneity, Ax camnot be in Ra for any o < 8, Hence, for any such

o Since A is R-layexed‘;ndwh$4¥) is _contained in &3, we

o Lea) # R,

mst have L(Ax) = RB for any non-zero x in A, Hence A is unequivocal,
We are now ready to re-prove Theorem 5.7:

5.13 Theorem: If A is a complete layered algebra, then A is a pro-

duct of uﬁequivoqal algebrasa'

Proof: Suppose A is R-layered. By Cor..3.,17, A is a product of
p-homogeneous algebras. Being prinéipal ideals of A, these algebrés

are also R-layered and so each is, in fact, uﬁequivocal.

"We are now ready to proceed with examples, We concentrate on

the chains {P,} and‘{Da} which define cardinal properties m and §
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respbectiv‘ely. Not:e‘ thai: every complete algebra is admissible wit';h-
respect to these chains.v For the remainder of this chapter, we assume
GCH, Aside from the fact that GCH simplifies the examples we cqnsider,
"the following proposit.io.n requires the assumption that if a < 8, thén

Cexp K, < exp Ay

5.14 Proposition (GCH): For any admissible algebra A, §(A) < w(A)+, |

_Furthermore, 6(A) = m(A)+ if and only 1if L(A) = Pu where /‘{a = 1(A),

Proof: Since Py cannot have Pl as an epimorph, we get Pa < Da-ﬂ'
This implies the first statement.- C_learly,kén(A) = n(A)+ if and only
if AeP, but A £ 'Da; that is, A ¢ P, and A has PQ as an epimorph, By

Theorem 2,39, this is equivalent to L(A) = Pq.‘

5.15 Corollary (GCH): An algebra A is P-layered if and only if,
for every non-zero x in A such that Ax is infinite, 6(Ay) = T(A )+,
A completé algebra with this property is a product of unequivocal.

algebras.

5.16‘ Exam‘ les (GCH): We note that ‘K(P“) = Hu ‘and G(Pu) "Hu-ﬂ'
Hence every power-set algebra is P—iayered, v

| Since P, = L(Fu*'l')’ we have n(-faﬂ) = /S’a. Now suppose
is a 1limit ordinal. We always have that .I—"-a is an epimorph of P,
s0 Ea ) | Suppose B < a and Fo. E.PB .Then Fﬁ is an epimorph of PS

.30H3+1 ?H‘f{o.' Dut Bf a implies g+ 1< a and }{6_'.1.}?_8:{0’ -
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al In either case, Tf(.]-.‘:u) =

So F; is not in PB‘ B < a, and v(F;) =
L H < °
(2 v a)
Since Fa+l has Pa as an.epimorph, then, by injectivity of

Pu’ so does i;+l‘ Hence 6(§;+1) =’{a+l°' So, for successor ordinals,
'F41 is P-layered,

. ’ For limit ordinals, the situation is unclear, For example,
wve do not know if F; is P-layered, Hhowever, if a is a limit ordinal
satisfying Hax° = f{,, then Ifm| = Hu.' so _fa cannot have P, as an epi-
morph; that is, ?& € Da' If B < a, then B+ 1 < o and so Fa has PB as
an epimorph, So then doesf'a° and f; é_DB for 8 < a, In this case,
theu,'é(F;) = H; = ﬂ(F;), Hence, in this case, f; is not P-layered.

We note that such ordinals exist; for example, take a to be the first

,muncouncableﬁardinale
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CHAPTER SIX

CLOSURE PROPERTIES OF RADICAL AND SEMI-SIMPLE CLASSES

Every radical class is closed under finite products and
weak products, Every semi-simple class is closed under subdirect

_products, We extend these results.

§1..Closure of Radical Classes under Products

Any M -product of algebras has P as an epimorph, so this.
givés us.a crude negative result: whenever a radical does not contain
“Pa,”ﬁhén nb“ﬁh—product caﬁ'bé in the radical, One might hope to show
the converse: whenever Pa is in-abradicai class, then it is cloéed
under ﬁ;-productso Cramer [5] has obtained a result which shows that

this is false,

6.1 Proposition: For any ordinal a, there is a sequence {An: n< wl

of superatomic algebras whose product is not in Ca‘

We shall see in Chapter Seven that any P, is contained. in
some CB’ so we can find a sequence of supératomié algebras whose pro-
duct 1is not in Po' In Chépter Seven, we will present a weaker form of

‘this (false) conjecture which has more likelihood of being true.
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6.2 Ptogositibon: If exp }{a = exp HB, then Pa is closed under HB-

products of complete Pa—algebras,

Proof: Let A = H(Ai: 1 € 1) be a product of complete P&-algebras with
[z} s HB” By Theorem 2.37, |a;| < exp H, and so |A| € (exp H&)HB =

exp H@, Since this‘product is complete, it is in Pa by Theorem 2,37,

Halwos ([14], exercise 3, p. 118) ha§ defined a "weak pro=-
duct" slightly diffeient from our weak product., We give a generaliza-
tion of his construction, which also includes our weak product and the
construction of Example 2.32 as special cases, For any product A of
" algebras, P(I) ig.embedded in A = H(Ai: i € I) as the elements of A
with {0, 1}—coordinates. ‘Let B bé a subalgebra of P(I) which contains

~=«theratoms~of+P (L),

6.3 Definition: The product of the A, over B is the subalgebra C of
fA consisting of all elements which differ from an element of B in at

most a finite number of coordinates., .

It is clear that C is the subalgebra of A generated by B
and wI{A;: 1 € I). Balmos' "weak product" corresponds to choosing
B=P(l). For the weak product, choose B to be the finite-cofinite

algebra on I, Our Example 2.32 used a superatomic subalgebra of P(I).,

6.4 Lemma: Let J be the ideal of C generated by the Aj and let K be

the ideal of B generated by its atoms, Then C/J = B/K.
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gggggg It is clear thai C contains the A;, Let x ¢ C and suppose
that x differs from elements by, b, € B in at most a finite number of
coordinates, Theh b; differs from b, in at most a finite numbervof
coordinates; that is, b; + b, g'K. Thus the map which sends x to the
ﬁosegbéf b; in B/K is a well-defined epimorphism, Clearly, J is its

kernel,

6.5 Proposition: Let R be a radical class and suppose the Ajy and B

are in R, Then the product C of the Ay over B is in R,

Proof: J is generated by radical ideals of C, and C/J, being isomor-

phic to én epimorph of a radical algebra, is radical, Thus C ¢ R,

6.6 Corollary: Radical classes are closed under %eak products,

§2. Closure of Radical Classes under Coproducts

. 6,7 LBasic Lemma: Let R be a radicai‘class. Suppose A and B are
Boolean algebras, and that A is the summit of a ladder {I } with the
foilowing pr0pefty:
| (*5 for each u, each element of Iu+1/1u-ié a finite
.join of cosets [a] such that (A/L )[5] + B e R,

Then A + B ¢ R,

- Proof: Let K, be the ideal of A + B generated by I . Then {Ku} is a

ladder in A + B with Sumﬁit'A + B, and so, by Lemma 2.3, it suffices
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to show that Ka+1/Ka e R for allla° Now K +l/K is an ideal of

A+ B/Ka' which, by Prop. 0.4, is isomorphic to A/I_+ B, As an

ideal of A/I, + B, the elements of K,41/K, can be represented as finite
joins of elements of the form [a] A b where [a]l € Ia+1/Iu and b € B,

By (*), [a] = [aj] Vv «ss Vv [gn] where (A/Iq)[ai] + B € R, This lattet’
algebra is isomosrphic to (A + B/K )[ 4] which contains (A + B/Ku)[ai]Ab'
Then, since each [ai] A b is a radical element of Ku+1/k , We get

that Ka+1/h € R as required.

6.8 Theorem: Let R be a radical class and let B ¢ R. Then, for any

superatomic algebra A, A + B ¢ R,

Proof: By Prop., 2.24, A is the summit of a ladder {I,} where every
element of I,,7/1, is a finite join of atoms [p] ¢ A/Ia. Then -

A1) + B=2+B=3B¢eR

- 6.9 Corollary (Déy [7]): A finite coproduct of superatomic algebrés

is superatomic,

6.9v Example: Let Z be the Boolean space (Qnder the order topology)

of ordinals less than or equal to 2, the first uhcountable ordinal,

' Then the algebra S of clopen subseté of Z is superaﬁomic, end so, by

the lasg theofem, A'= F, +§ € Fo; We sth_that if I ié the ideal of
A generated by the elements x such that A; = Fyy then A/I'is not

superatomic, Let Y.= S(Fo) be the Cantor set. Then X = Y x Z 1is the
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Stone space of A, Let U = S(I), For an? clopen subset M of X, MN U
ﬁust have.a countable base, Now suppose M is a clopen subset of X

* such that (y, 2) € M for some y € Y. The projection p,[M] of M onto

Z is an open subset bf Z containing Q. This opén set contains a clopen
set N which is homéomorphic to Z;, whose pre-image pz'l[N] is a clopen
subéet bf k Eontained in M, éince Z has no countable base, neither,
then, can M, Hence UN {(y, 8): y € Y} = ¢, Ciearly,v{(y, Q): y e Y}
is homeomorphic to ¥, so X - U has a closed subSpaée homeomorphic to ¥,

Algebraically, A/I has Fo as an epimorph, and so camot be superatomic,

6,10 Leuma: Let H be a class of Boolean algebras closed under epi»'
morphs. Suppose B is an algebra whose coproduct with any H-algebra is

in L(H). Then the coproduct of B with any L(H{)-algebra is in L(H).

Proof: Let A ¢ L(H). Then it is the summit of its H-ladder {I_},
and every element of Ia+l/;a is a finite join of H-elements. - By the
-assumptiOn on B, its coproduct with any principal ideal generated by

an H-elewent must be in L(H). Hence, by Lemma 6.7, A + B € L(H).

6,11 Theorem: Let X be any class of aigebras closed undexr finite

coproducts. Then L(X) is closed under finite coproducts.

Proof: Let H be the class of all epimorphs of X-algebras. Since the

.c0product of epimorphs of two X-algebras is an epimorph of their co-

product, and since X is closed under finite coproducts, so then is H,
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If C'is an H-aigebra, then its coproduct with any other H-algebra'iS'
in H# and so in L(H).‘ By Lemms 6,10, the sOproduct sf C with any L(H)-
algebra B is in L(H). Since this is true for anj C in H, we have that
the coproduct of B with any fi-algebra is in L(H). Applying Lemma 6,10 -
againpnwe get that the coproduct of B with any LkH)-élgebra A is in
L{H). vHence L{H) is closed.under finite coproducts. Since LX) =

L(H), the result follows,
6°12”'Corollarz;. F(1 is closed under finite coproducts,

Proof: The class of algebras of cardinality at most ﬁ& is closed

under finite (in fact, H;-) coproducts,

One might hOpe to prove that F, is closed under H -coproducts.
We will show, in the next section, that it is not even closed under

countable coproducts of superatomic algebra,
The following result‘is from Cxamer [5]:

6,13 Proposition: Suppose that {Aj: 1 € 1} is a collection of C -
algebras, finite coproducts of which are in C ., Suppose that |I| =

HB and that/{ is H -inaccessible (that is;}{ cannot be expressed as

B
the sum of f{ cardinals each of which is less than,ﬂ ). Then the

SHEAL

}“coproduct A=T(@Ard e I) is in C .

Proof: - The coproduct A is the union of all its subalgebras B,, J € J,

| 3*
which are fipite coproduc:s of-the_Ai (see Preliminaries, 54, c). Note

that 3] = |1 = HB' If A has a free. subalgebra generated by a set D
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of cardinality H_, then since Ha.is HB-inaccessible, DN BJ must have
cardinality Hﬁ for some j € J., But D anj génerates a.free subalgebra

of Bj. contradicting By € C.o

6.14 Corollary: Let {Ai: ie 1} be a collectiop of»Fa-algebras.
Suppose that |1] = HB,and that'Ha+1 is‘HB—inaccessible. Then the co~

product of the Ay is 4n ¢a+l'

as a subalgebra, F_ is contained

Proof : SinceAFa does not have Ea+1 o

in Cyy1s and F | 15 closed under finite coptoductsf

Intuitively; this says that small enough coproducts of small

enough algebras cannot have large free subalgebras,

uélnwmiewvoﬁm&heﬂféct.thatuﬁinite;productshoprrojecpive al~
‘geﬁras arégprbjectiQe, it is not unreasonable to ask if finige éoprodé
ucts of compl;te algebras are coiplete. It is-releﬁant in this con-
text since a positive ansver woulawhave consequences concetuing the
A'éldéhié_qf‘P ;nd poésibiyifhe P, under £inite coproducts. Unfortunate-
ly;.thé anéQe? is alwost always negative.. |

AN

6.15 Proposition: If A and B are infinite algebras, then A + B is

not complete,-

Proof: Choose infinite disjoint collections {a;: i < w} and

{bi: i < w} in A and B respectively., Set xy = ajA by in A + B, Let

x € A+ B be an upper bound of {x;: 1 < w} . We show that x cannot
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" be a least upper bound. We note that x can be represented in the
form x = (CI.A d1) vV eee VvV (e A d)) where c; € A and d; € B, Then
there exist k and 1 # j such that xy A (e A dy) # 0 and
Xy A (Ck A dk) # 0, for othefwise, x would intétsect only finitely
many x4, In other words, (a; A ) A (by A ) # 0 and

(aj A ck) A (bj A dk) # 0, Then, sincé A and B are independent sub-
algebras of A + B, we get that_y = (a; A ck) A (bj A dk) $# 0, For
“any m < w, since 1 # j, eifher ajA agp = 0or bj A by = 0, Hence
| XAy = 0 for all m < w, But 0 P ; £ x s0 X A y' is an upper bound

of {x5: n < w} which is striétly smaller than x.

‘This proposition generalizes Exercise 6N of Gillman and

Jerison [12]9 where it is asserted that P, + P“ is not complete,

6.16 Cordilarxz' The coprodﬁct of two algebras is complete if and

only if one is finite and the other complete.

Proof: This follows>immediately from the proposition and the fact

. that if A is finite with n atoms, then A + B = Bn°

. Using the fact that O is closed under finite coproducts, we

are able to prove the following:
6.17 Proposition: Eo is closed under finite coproducts,

Proof: Suppose that A and B do not have Fo as an epimorph, If f is

an epimorphism of A + B .onto Fo with kernel K, let I = KN A and
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J = KM B be the corresponding ideals in A and B, Let L be the

ideai of A°+'B genergted by I and J. Since L is contained in K,

A+ BIL has A + B/K =.fo as an epimofph. The epimorphism f maps

A onto the subalgebra A/I of Fo; Hence A/I is countable, so the only
atomless epimorph‘it could have is Fo. Because A € Eo' this cammot
éccur, so A/I is superatomic, Similarly, B/J is superatomic, and so,
then, is their coproduct A/I + B/J, However, A/I + B/J = A + B/L,
and we have already»shown that this algebra haé Fo as an gpimorph.

. This contradiction shows that A + B.¢ Eoo

6.18 Corollary: Let X be the product of the Boolean spaces Xj, soo
X, Then X has a subspace homeomorphic to the Cantor set 2H° if and

only 1f one of theXi does,

§3;'C0pfoducts and Semi-simplici:z

The results of this section indicate that coproducts are far

more likely to be semi-simple than radical,

6.19 Theorem: Let R be a radical class and suppose the collection
.{Ai: i ¢ I} contains at least one R-semi-simple algebra. Then the

coproduct of the A, is R-gemi-gimple.

Proof: Clearly, it suffices to show that if A is R-semi-simple, then

so is A + B for any B, By Prop. 1.25, we must show that any non=-zero

principal ideal of A + B has an R-semi-simple epimorph, and it is
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clear that we can restrict our attention to non-zero elements of the
form a A b where 2a €¢ A and b € B, But (A + B)aAb = A.a + B and A,
-which is R-semi-simplé,_is a retract of this coproduct, Hence A + B

is R-semi-simple.

Any infinite coproduct of algebras is atomless; that is,
O-semi-simple. We are able to obtain analogous results for anmy
radical, provided we restrict ourselves to the coproduct of infinmitely

many copies of the same algebra,

6,20 Definition: Let x be any cardinal and A any algebra, We write-

kA for the coproduct of k copies of A and call it a x~multiple of A,

6.21 Propesition: If A is eny algebra and k any infinite cardimal,

then kA 1s unequivocal,

Proof: Let X é'S(A) and suppese M is a clopen subset of xX = s(xA).
Then M = H(Ma: o <x) where M, is a clopen subset.of X and Mu = X for

all but a finite number of «. But then the partial product B(M,: M = X)
~1s a retract of M and is homeomorphic to x5, Algebraically, any non-

~ zero principal ideal of xA has a retract isombrphi; to kA, Thus the
lower fgdical generated by any such principal ideal is the same as the

lower radical generated by kA, In other words, kA is uhequivocal.

4

6,22 Coxollary: If A is not in a radical class R;'then kA is R-semi-

" simple for any infinite Ke
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. Proof:- Since A has a non-radical epimoxph A, it cannot be in R,

Being unequivocal, it is R-semi-simple,

6,23 Corollary: For any a, there is a superatomic algebra S such '

that H S is Fa-semi-simple.

Proof: Let S be the finite-cofinite algebra on a set of cardinality
Ha+l' Since every non-zero principal ideal of ﬁss has cardinality

Ha41s 1t must be Fu-semi-simp;e.
6.24 Corollary: Every algebra is a retract of an unequivocal algebra.

-The last corollary is a generalization of the fact that
every algebra is an epimorph of a free algebra, Grdtzer [13] has
—~announced a~stronger*resultz;for“any“algebvafA;*chere“iS"an“aIgebra B

such that A + B is homogeneous. Thus any algebra is a retract of a

. homogeneous one,

6.25 Definition: A radical class R is proper if it does not contain
21l Boolean algebras, Then it canmnot contain all free algebras, For
any proper radical class R; let o(R) = H& where a is the least ordinal

g such that FB £ R, DMNote that o(R) is always infinite, _

‘6.26 Theorem: Let R be a prOpef radical class and let A be an algebra

with more than two elements, Then kA is R-gemi~simple for all x > o(R).

Proof: Let k = HL > o(R), By §6, d) of the Preliminaries, KA has F
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as a retract, By definition of o(R), F, £ R, so xA £ R, By Cor, 6,22,

kA is R-semi-simple,

: A6.2§ Examples: We list o(R) for kumown R:
1) e0) = H,

11) o(P ) =K,

1i1) o(P) = H_,

19) o(Ey) = M,
) o(Fa) = Hoe1s

vi) 9(€) = ¥,

vii) o(G;) = g where Hj = H:“.
viii) o(J) =H,,

ix) oK) = H.
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CHAPTER SEVEN

THE LATTICE OF RADICALS

We can partialiy order Boolean algebra radicals by the
relation of containment. If we exteﬁd the term "lattice" to include
structur.es defined on classes as well as sets, we find that the
'Booléafx algeb_ra radic.._als fofrﬁ a iatt‘ice with some interesting algeb-

raic properties,

§1, Lattice-Theoretic Preliminaries

7.1 . Definition: An abstract algebra <L; ve A, ¥, 0, l>is called a-

pseudo-complemented distributive lattice (with 0 and 1) if

(L; Vs Ay 0) D is a distributive lattice (with 0 and 1) and * is a
unary operation on L satisfying a A b = 0 if and only if b < a%,

Thus a* is the maximum-of the elements disjoint from a,
A more general concept is the following:

7,2' Definition: An abst:ract algebra <L; VA, O 1> is a Brouwerian
lattice if it is a lattice (with 0 and 1) in which, for any a, b ¢ L,
there is ¢ ¢ L such that a A x < b if and only if x € c, ‘We demote

the element ¢ by (b:a).
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Setting a* = (0:a), we see that any Brouwerian lattice is
pseudd-complemented, and it can be shown (see Birkhoff [4]) that any

Brouwerian lattice is distributive,

In a completevlattice, an obvious candidate for (b:a) is the
sﬁprémum’of’all x such that a A x £ b, - If the lattice also satisfies
the infinite distributive law: a A sup {aj: 1 e 1} = sup {an a;: i ell,
then this will suffice to show that the supremum ¢ in questions does -

indeed satisfy a A ¢ € b, and the lattice will be Brouwerian,

7.3 Proposition (see Lakser [18]): Let <L}\/,‘A, %, 0, i) be a
pseudo-complemented distributive lattice,' Then for ény a, b elL:
a) 1) a < arx, |
| 11) a < b implies b* < a%,
iii) a* = a¥**%,
iv) a = a*?,if and only if a = b* for some b € L,.
v) a = a*%, b = b*% implies a A b = (a A b)*%,
vi) O% = 1, 1% = 0, 0 = 0%*, 1 = 1#%,

' b) Let L* - (#*: a e L} ={aelL: a=a%**}, called the skeleton
of Lo Then 6, 1 € L* and L* is closed under A and *, If we definé
~au b= (a¥ A bX)* = (aVv b)*, then L* is closed under U, and
<L*;LJ,A s %5 0y i> is a Boolean algebra, which is complete if L is,

c) Let Db= {a € L: a* = 0}, called the set of ggggg_eleﬁeﬁts
of L. Then D is a filter in L; that is, it is closed under A and

.larger elements,
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7.4 Lemma: Let p be an atom in a pseudo~complemented distribut:bive
lattice L. Then:
1) foranya € L, p € a V a*, and

vii). p < a if and only if p £ a*x,

Proof: If p is not contained in a, then since 1t is an atom, p A a =
‘0. Then p < a* and 1) follows, If p < a** but p is not contained in
a, then again we get p < a* so that p ¢ a A a** = 0, contradicting

the fact that atoms are non-zero, The other direction of ii) is obvious,

B 7.5 Proposition: Let L be a complete pseudo-complemented distribu-
"tive lattice, and let t be the supremum of the atoms of L (we assume
there are some), Let L = {aeL:agt}l ={ant:aeclL}, For any
.a .sIJ;,,define,_a° = g% A_;t. .Then:

i) <Lt;.v, Ay % O t> is a Booléan algebra; in fact, it
is a power-set algeb_ra, : |

ii) Lt is an epimorph of L*, and the epimorphism is an

isomorphism if and only if t € D,

Proof: Note first that by Lemma 7.4, t € a v a* for any a € L. Thus
t=(avar)at=(aAt)Vv (a*A t) = (@A t)v a° for any a € L,

If é £ Lt' thgn_a =aAt, so ve get t —n'a v a° for ail a e Lt' Clear~-
iy, a A a° = 0, so Lt is a Boolean algebra, Since it is‘completevand
atomic, it. is a power-set algebra. Define f: L¥*—> L by £(a) =a A t,

Then f clearly preserves A, Also, f(a*) = a*A t = a°, By Lemma.7.4,
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anp=a**A pfor all aelL, We extend this to t by showing.that

a A t = sup {a A p: p is an atom}, It is clear that a A t is an uppér
Bound for this set, Suppose ¢ 1s any other upper bound., Then for any
aﬁom p, P £(a v a¥%) A (pva*) = (aA p) vV a* € ¢ V a*, But then
t<cva*andaA tsaA((cv a*) =aAcsgic, Hencea At is, in
fact, the least upper bound of the set. It easily follows that
a/\i‘.»= a** A\ t for all a e L, Thus f(au b) = (aVv b)** A t =
{lavb)Aat= (aA t) v (bat)=£@v £(0b), -Furtherﬁore, for any
ante Lie f(a*?) = a A f. Hence f is an epimorphism, Clearly, a

is in the kernel of f if and only if a At = 0 if and only if a £ t%*,

Thus £ is an isomorphism if and only if t* = 0; that is, t € D,

7.6 Progositidn: Let L be as in Prop. 7Q5. Then L is atomiec if and

only if t € Dy .

Proof: Supposé t € Dand that a is a noufzero element of L containing
no atoms; Then a A p = 0 for all atoms p, so that aA t = 0, But
then a € t*¥ = 0, Conversely, if L ig atomic and t ¢ D, then there is

an atom p contained in t*, But then p < t A t* = 0,

Recalling that for any a ¢ L, t = (@ A t) v (a*/\ t), we see
that if a ¢ D, then t < 2. Hence t is a lower bound for D, and in case
t € D, then D is the principal filter generated by t; In this case,

L splits at t inio a principal filter above t and a.power—set aigebra

below it,
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§2, The Lattice of Radicals for Associative Rings

Snider [25, 26], ﬁsing results of Leavift [19], gave the
first account of the lattice of radical fbr associative fings. The
'vclass of such radicals forms a complete lattice under the natural
ofdeting. The meet'of any collection of radicals is their intersec-
"tion and the joih is the lower radical generated by their union, The
join is also detérmined by its semi-simple class, which is the intersec-
- tiom of the semi-simple classes of the radicals in the collection,

The class of hereditary radicals forms a complete sublattice of the
lattigéAof radicéls and 1s shown to satisfy an infinite distributive
-1éw which makes the remarks following Defn, 7.2 pertinent. We con-
clude that the 1atticé of hereditary radicals is Brouwerian, distribu-
tive, and pseudo-complemented, Snider shows that this lattice ié
atomic, the atoms being the lower radicals generated by a single simple
v-‘ring. Hence, using Pfop. 7.5 and Prop. 7.6,_we can extend ﬁis rgsults

as follows:

7,7 Proposition: Let T be the lower radical of aséociative rings gen~
. erated by the class of simple rings, Then:
| i) T is hereditary and T* = 0,
1i) ﬁhe class of hereditary radicals contained in T form
a power-set Boolean algebra under the natural qrder, and
141) this algebra‘is isomorphic to the skeleton of the

lattice of hereditary radicals,
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Snidervcharacterizes (S:R), but there is an intuitively
mbre-obvious candidate for it than he gives. Unfortunétely, it is
not, in general, hereditary., It will, however, yield a nice character'
ization of (S:R) in universal classes for which every radical is

- hereditary,

7 8 Progositiox. Let R and S be heredltary radicals, let M be the
class of R-rings which are S-semi—simple, and let W be UM), If W

is hereditary, then W = (S:R),

2522§:  Since R is hereditafy and semi-simple classes are hereditary,
yéhé class M is hereditary and so determinés an upper radical, First,
supbose A.is aring inRa W, R is closed under epimorphs, so .by
.definitioh of“w,‘A canuhave-no-noneZeromepimsrphwwhichmisuS=semi—
simple. Bat the; AeS, soRA W< S, Now suppose V is a radical
such that RAV S, Let A be ith, ‘Then 0 = s(A) 2 r(A)N v(A) =
-An y(A) = v(A). So A is V-semi-simple. Since W is the largest

radical for which M-rings are semi-simple, V < W , Thus W = (S:R).

7.9 ‘Corollary: Let R be a hereditary radical and let W be the upper

'_radicai generated by R, If W is héreditary, then W = R*,

Proof: R* = (0:R) is the upper radical determined by R-rings which are

. semi~simple with respect to the zero radical; that is, the class R,
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§3, The Lattice of Radicals for Boolean Algebras

Snider's results can be appled immediately to radicals of
Boolean rings, and since Booléan ring radicals are hereditary, we can

use the desctiptions-of Prop., 7.8 and Cor. 7.9.

7.10.'Progosition: The class éf ﬁoolean ring radicals forms a com-
plete, Brouwerian, pseudp-compléme#ted distributive lattice with ex-
treme elements, _If.R and S are Boolean ring radicals, then (S:R) is
‘the upper radical generated by R-rings which are S-semi-simple, and

R* is the upper radical generated by R,

We recall that any non-zero fadical class must contain the
‘two-element Boolean algebra. Thus RAR:=0 eﬁtails that either R
or R* must be 0,.so that psaudo-complementation is~trivial, -~However,
this same fact means that we can discard 0 and the Boo;ean_ring
radical L(2) will Servé as a ééro for the new lattice. .Iﬁ order to
. see that the léttice-theoretic properties are essentially unchanged,

all we need do is verify the following:

7.11 Lémma: If R and S are non-zero Boolean ring radicals, then

.(S;R) is non-zero.

Proof: Since R and S aie hon—iero, g_ié in both of them, and then

RA L@ =L)< S, Then L(2) s (S:R),
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Then Prop. 7.10 holds without change for unon-zero
Boolean ring radicals, except for the description of pseudo-comple-
ments, which now becomes R* = (L(2):R); that is, R* is nov the upper

‘radical generated by atqmlesé R-rings.,

7.12 The Isomorphism Theorem: Let Lat(b) be the class of non-zero

radigal classes of Boolean rings and Lat (A) the class of Boolean

" algebra radiéals° Let f be the map which sends any ﬁon—zero Boolean
ring radiﬁal R into the class of Boolean algebras in R, Thén f is a
one-to-one correspondence between Lat (B) and Lat(A) which preserves
o:der in both directions, and so

.Lat:(B);v,A, *, L(2), B>.~.<Lat(A);v yA, %, 0, A\.
| 2), B )

Proof By definition of radical classes.of .algebras, f .is anto, Since
we can recover R from f(R) as the class of Boolean rings, all of whose

principal ideals are in f(R), f is one-to~one. The rest is obvious,

For the sake of completeness, we give-a description of R*

and R** for Boolean algebra radicals,

7.13 Proposition: Let R be a radical class of Boolean algebras, Then.
R* is the class of all algebras with no atomless epimorphs in R, and
‘R¥* is the class of algebras A such that any atomless epimorph of A

has an atomless epimorph in K.
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7.14 Corollary: If A is atomless,vtﬁen L{AaY* < U(A),

Proof: If B has no atomless epimorph im L(A), then it certainly has

‘no principal ideal of A as an epimorph,

We now have all the not;ons required to state the conjeétute
mentibned in the discussion following Prop. 6.1l. The conjecture is
that if R';s a‘radical class and A = H(Ai: i e I) is a product of R-
algebras such that P(I) € R, then A e R**, Recalling that P(I) is
a retract of A, let M be the ideal of A such that A/M =VP(I). If J
is’any idéal of Avsuch tha; A/J is atomless, let K(J)‘be the ideal of
A generated by M ande. The conjecture would be préved if we could
show that A/K(J) is infinite for any such J. (We use Pierce's result

of the Preliminaries 3, j) and the definition of R*%,)

Wé also present somé considerétions related to the conjecture
that J = 0, Suppose Hl'is a class of homogeneous algebras closed under
epimorphs (hence containing 2) and that Hz consists of all other homo-
geneous algebras, Then any radical R for which.Hl-algebras are radi-
‘cal and H,~algebras are sem;-simple must satisfy L(H}) € R € U(Hz).
Taking H; = {2}, we see that the conjecture J = 0 is a sfecial case of
the conjecture that L(Hl) = U(HZ)' One can easily extend Prop. 7.8 to
show that if S = U(M), then (S:R) = U(R N M), from which it followsﬁ

that if R and S have the same homogeneous algebras im them, then
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(J:R) = (J:8). Thus we get:

7.15 Progositidn: If J = O and R and S are radical classes with the

séme’homogeneous algebras in them, then R¥ = S,

§4, Dual Atoms and Complements in Lat (A)

Snider's proof [25] that the lattice of hereditary radicals
for associative rings has no dvual atoms can Be considerably simplified

for Boolean algebra radicals,

7.16 Proposition: If R is a proper radical class (that is, not every
"algebra is radical), then R is properly contained in a proper radical

class,

gzggg;‘:Siﬁce R cannot contain all free algebras, lét a be some ordinal

such that F, £ R. Then F_ e F v R, so this is a radical class prober;

iy containing R, For any 8 > a, fB is not in R or in Fa? Being unequi-
vocal, it is semi~simple with fespect to both radicéls, and so it is

Fy v R-semi-simple, Hence F,V R is proper.

Snider [26] gives a characterization of complemented heredi-
tary radicals which we can use to deduce that O and A are the onlyA
complemented elements of Lat(A). We‘choosé to deduce this from the

following stronger result:.

7.17 Progosition: 'The-supremhm of any set of proper radical classes

is ?roPer.ﬂ
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"Proof: Let {Riz i € 1} be a set of radical classes, For each i ¢ I,
choose a(i) such that Fa(i) £ Ri. Since I is a set, the set of a(i)
has a supremum a, Then Fa is R;- semi-simple for all i ¢ 1, and so is

semi-simple with respect to the supremum of these radicals,

7.18 Corollary: O and A are the only complemented elements of Lat (A).

- §5, Locating Known Ra&icals in Lat(A)

We have already_obtained some lattice~theoretic relation-
ships‘between our radicals, and they will not be repeated here as they

are summaxized in the diagram which comprises §7,

v

7,19 Proposition: For all o, Po* = D . Also, P*x = 0.

Proof: Let ¥ be any one of the following classes: atomless P&—algebras,
for any a, or atomless P-algebras., Then Y satisfies the conditions of
Prop. 4.8 and so the upper radical determined by ¥ is U ,. But R¥, for

any radical R, is the.upper radical generated by atomless R-algebras,

i Corollary: vo is in the Boole;n algebra of skeletal elements of

Lat(A), Furthermore, P < Do* and for each a, P, < Do*'

7.20 Progosition:‘ Let B be the least ordinal such that exp HB > exp,ﬁa.
Then B8 is the least ordinal such that Pa < PB.' In this case, the

containment is proper,
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.Ptoof: By cardinality, P, does not have PB as an epimorph, but all
smaller power-set algebras are epimorphs of | If the radicals are
equal, then U, = D, A Dg =D A P =P *A P, = 0, which is a contra-

diction.

7.21 Proposition: Let B Be the least ordinal such that exp}'{B > exp'ﬁg.

Then for all a > B, ﬂa* =0,

Proof: For any a, we have D * < P *, If « > B, then by Prop., 7.20,
———c— . a o .

Po < DB < D, so that Da* g P = DQ; But then Dc* 3 Do A D= 0.

7;22 Corollary: Let B be as above, and let y = exﬁf*s._ Then for

G- > Yy Cukc 0.

. Proof: This follows from the ,,f,actu,‘.t:har,.,é(.jy '"'-'-'Q‘B'

?.23 P;ogositggg: Let 83 @ HQH°. Then Ca £ Ga < CBo

Proof: The first containment was proved in Prop. 4.6. Note that

F, has F_ as an epimorph. Then if A has F_ as a subalgebra, it must,
8 o .

8
as an epimorph, This proves the second

by injectivity of F;, have F

containment.

7.24 Corollary: Let y be as in Cor. 7.22, Then for all a > Y,
Ga* o 0.

7.25 Pro o;itiog:"Lé;}{B = exp Hy. Theg Pa € Fgo

Proof: By cardinality, Pa € FB;
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- 7.26 Proposition: F, < Cu+1.
Proof : Clearly, F e Coygo

-‘ 7.27 Corollary: fa’s D,

o
"~ Proof: Letf‘B = epou 3;{a+ . »Then Fa < Ca+1 < CB = Pa.
7.28 Progosition: C < t.
: a a
Proof: F  is C&-semi-simple and Ea is the largest radjcal for which
. this 1is true.

7.29  Corollary: F, < Ea+l' .

7.30 Proposition: Fr<E.
» a a
Proof: Apply Cor. 7.14,

7.31 Proposition: For a > 0, E * = 0,

lb§ Ea' Then E * < Fo*. By Prop. 7,30,

F ¥ ¢ Eo < E,. Then E* < E , and so E * = 0,

‘Proof : By Cor. 7.29, Fo_s [3

7.32 Progosition:' Fo*'c Eo‘:

Proof: By Prop. 7.30, F;* <-E°. Suppose A does not have F  as an
: epimcrph; and let B be an atomlessvepimbrph of A, If Be Fo.-then
it hés a countable principal ideal which would be isomorphic to Fo
,»j_contradicting the assumption on A, lence A has no atomlesé epimofph

in F ; that is, E < F,.
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7.33 Corollary: D, * < E o
'Proof:_.By Cor. 7,27, Fo < Do'

7.34 Corollary: B Eo is in‘the Boolean algebra of skeletal
~elements of Lat(A). So alse is the radical E A D, which is dis-

tinct from Eys Do’ and 0,

Proof: The meet of skeletal elewents is skeletal, Note that.Fo is

_in»Do but not in Eo' and P, is in E, but not in D, The algebra Q of

Example 3.13 is an atomless algebra in E.A D,

7.35 Proposition: K contains'Po and F . Kx =0, IfHY = exp‘Hg,

then K < Fy, and for all a > v, F * = 0.

"Preoof: 'Since P, and F, are separable, the first assertion follows
immediately., The second statement is simply a re~statoment of
Theorem 3.6, Since every separable algebra has cardinality at most

'H;, ve get ihat_K < FY° Then if @ 2 vy, K < FY < Faand F“* s K5 = Q,

7.36 Corollary: If y is as in Prop, 7.35, and @ 2 vy + 1 , then
cq*_u 0.

Proof: Use Ptoﬁ. 7.26 and Prop, 7.35. This sharpens Cor,. 7,22,

7.37 Corollarz: IfHl - exp H;, then C,* = 0 fox all o > 2, Note

-that in this case, Cl = Do,'so Cor. 7.36 is a best possible result,
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§6. Atoms in the Lattice

7.38 T&orem: Let R be an atom in Lat (A). | Then:

i) for any non4superatomic algeSra A ecR,R=1L(),

ii) there is an atomless, separable algebra A in R, such
_‘that R = L(A)-
iii) any atomless algebra A in R is unequivocal, and
iv) for any atomless algebra A in R, L(A)* = { (A) so that
U@ ¢ o, |
Converseiy, if A is an atomless unequivocal.algebra such

that U{A)* ¢ 0, then L(A) is an atom in the lattice of radicals,

Proof: The’ first.assert:ion is obvious, and ii) follows from the fact

V ., that ar}y;.nqn-:mpe;:at;\qmic..e;al,ge,bra.ihas, -an..atomlegs,..separable.epimoxrph,
Using Prop., 2,15, 1ii) follows from i), If Ai is an atomless R-algebra,
vthen La)*x < Ua) by Cor. 7.14, Since L(A) is an atom, either

~L"(A) < UQ) er L@A) A U) = 0, The first is impossible, and the

second impiies U(A) £ L(A)*, Then iv) follows, For the converse,
suppose A is unequivocal and U(A)* ¢ Q. If A were U(A)*-semi-simple,

we would have U(A)* < U(A), contradicting U(A)* # 0. 'Thixs, since it is
unequivocal, Ace Uy and L(A) U)*, so UA) < UQA)** < L(A)* < U(a).
Hence U(A) = L(A)*, Now let S be any radical and suppose A £ S, Then

A is S-semi-simple, so S < U(A) = L(A)* and L(A) A S =0,
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7.39 "Theorem: Pé and Fo are atoms in Lat(A),

Proof: VWrite P = L(f') and F = L(F ). Then F' and Fb aré.unequi—
vocal, Also U(F ¥ = D % 4 0, and U(F, )* = Eg* # 0, Hence, by the

last theorem, P and F, are atoms,

t §7. A Diagram of the Lattice

- On the next page, we present a diagram of Lat(A), which
summarizes the results of the last two sectioms, For simplicity,
. we. assume GCH and we omit mention of the Ga’ which, by Prop. 7.23,

are interspersed among the chain {Ct.
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1,
2,

3,
4,
s,
6.
7.
8.
9,
10.

11,

12,
- Nootrand Princeton, N, J., 1960, _ R I

13,

14,
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INDEX OF NOTATION

Pagé_references are given where they might be helpful,

Ordinals: a,- B, Yy eso Well-ordered chains: {1,} (29), {n,(a)} (29),

{R,} (63).
Cardinals: k, ¥, |A|; x+ = next largest cardinal after x; exp k = 2%,

Rings and Algebras: A, B, C,..v. ; Ax = principal ideal of A generated
By X3 h*(A) (29); A = normal completion of the algebré A
(10-11); 2 = two-element Boolean algebra; Fu = free élgebré
on Ha‘generators; P, = power-set algebra on a set of cardin-

5walftyWH&;”Q¥€¢9).

Topolégical Spaces:bx, Y, Z,'... H BX ; Stone~Cech compacfification of
thefspacq‘x; BN = Stone-=Cech compactificatioﬁ of a countable
‘ sét with the discrete toéology; 2K = product of k copies of
the two~element discrete space, a Cantor_spgce; 2ﬂ°‘d the
Cantor éet; s{a), S(x), S(I) =vconcepts‘associated with the

Stone duality (6).

Constructions: Product of algebras: n(Ai: ieI1I), AxB, AK'(B); weak

product of algebras: wil(A;: ie 1) (8); cogroduct-of algeb=-

s P e T

 ras: Z(Aii ie I),‘A + B (12), xA (75); 'product of toplogi-

cal spaces: I(Xy: 1 e I), XX,
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Lattice operations: (b:a), a* (78-79).
Cardinal proﬁerties: v (51); p (63); u; §(64); o(R) (76).

Classes of Rings and Aigebras: Xy ¥y My Hy oo, 3 radical classeé with
corresponding radical ideal: K, r(A), S, s(A), ... (18-19);
1owet.rédica1: L(X) (28); upper radical U(Y) (45); B = the
class of Boolean rinés; A = the class of Boolean algebras;
Lat(B) = the class of radical classes of Boolean rings;

Lat(A) = the class of radical classes of Boolean algebras,

Radical Classes of Boolean Algebras:
, lO = the superatomic Boolean algebras (36),
Fy = lo§er radical genefated by F, (38), _
K = lowér radical generated by separable algebras (40),
Py = lowei radical generatea by Py (40),
P = lower radical generated Sy complete algebras (42),
E, = upper radical determine&'by F, (48),
G, = upper radical determined by F, (48),
J = uppet-radical determined Ey atomless homogéneous
. algebras (50), |
- _Jv = upper radical determiqed'by atomleés v-homogen=-
enous algebras (Si), | 4

C, = algebras without F, as a subalgebra (53),

Da = élgebras without P, as an epimorph (54). -



