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ABSTRACT

Supervisor:'-N.J. Divinsky

Several aspects of.the theory of radical classes in
associative ring theory are investigated.

In Chapter three,‘the Andrunakievic-Rjabuhin construction
of radiceis by means of ennihilaters.of modules is employed |
- to defihe‘several radical properties. One of these is shown
to be the. "weak radlcal”}of Koh and Mewborn. The relatlons
between these radlcals; their properties and some of thelr.

I/
appllcatlons to the study of clas51ca1 quotient rings are.

;investigated o 'gﬂ“, - ) ?
_ In-Chapter four;'the ideals of a ring K of the

form R(K), for a héreditary radical, R, are studied.' A
closure operatiou on the'lattiee of ideals is iutroduced, and
the ”closed”fldeals are prec1sely the 1deals of thls type.
It is proved that the asgendlng and descendlng chaln condltions
‘on the closéd ideals of a ring 1mp1y that the rlng has only
a'finite number of closed ideals. '

In Chapter five, flnlte subdirect -sums: of rings are
studied. The propertles of heredltary radicals and of the

-varlous structure spaces, in a s1tuatlon where one has a -

finite subdireet'Sum of rings, are investigated.
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INTRODUCTION

In this thesis, by a ring, we mean an associaéive
ring, nqt necessarily possessing a unity element. When K
is a ring, a K-module'ﬁill be a right K-module, and will |
usually be denoted by M or, wben-there is'dahger of ambiguity,

by MK."Of course, a ring X may be regarded as a right

K-module, and, in this case,,theAéubmoduies are just the
right ideals of K. |

If f: Ly » L, is a ‘homomorphism of rings (resp{ of

right K-modules), we say that f. is a monomorphism if

f(x), = f(y) implies x =y, and we say that f is a sur

surjection (or a sufjéétive mapping) if, for eVery‘element'

w of L, there is an element x in L

o such that £(x) = w.

1

We 'are mainly concerned, iﬁ“this thesis, with various
aspects of radicai theofyl_ In Chapter one, the definitions
and basic p;operties of radicalg éfé diécus§éd.' And tﬁrough—
out the thesis, froofs_of results are seldom given if the
result is proved in the book;by Divinskyl(6).'”Héﬁéver,-in'
such‘caées, explicit references are given to direct fhe readér
to a proof.

It is weil known that the Jacobson radical-of a ring
F-K can be described in terms of right K-modules. “This result
was generalized by Andrunakievic and Rjabuhin, who showed

that any radical pfoperty can be descrifed in terms of modules.

The first part of Chapter two is devoted to an expdgition of



" these results. 'The work.in Chapter two then turns to a
generalization (Theorem 2.2.1) of the well-known result that
‘the Jacobson radical of a ring K 1is the intersection of tﬁe
maximal modular right ideals of K.
in recent years, ring theory, from the point of'view
of radical theory, has diverged greatly from the other directions
that have been taken. An attempt to bridge this gap is made
in Chapﬁer‘three. In this chapter, the techniques discussed
in Chapter two are applied to defihe a number of new radical
properties. The relations between these radlcals and some of
the more classical radicals are dlscussed and two results
4 (Theorems 3.7.1 and 3. 7 2) glvcn generallzatlons of the Jacobson
density theorem. Also it is shown that one of the radlcals |
, discussed here c01n01des_w1th,the "weak radlcalvvof Koh and
Mewborn (2). ) L | B
Chapter four marks a return to general radical theory.
A ciosure operation on the lattice of two—sided‘ideals of a
‘ring K is introduced for which the olosed” ideals of K
are those 1dea1s of the form H(K) e where H 1s a heredi-
tary‘rad;cal. In Theoreh Aok, 3 it 1s shown that a rlng K
has the aseendlng and descendlng chaln condltlons for closed
ideals if and only if K possesses a flnite number of closed
ideals. Some attentlon is also given to the case where a
ring'is determlned by its minimal closed 1deals
In the flrst part of. Chapter five, a sllght generallzatlon

of some results of Andrunakievic (1) is given. This leads to
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representations'of certéin rings as.finite subdirect sums of
prime rings. In the latter part of Chapter five, finite
subdirect sﬁms in ggperal are examined. Let a ring K be a
subd;rect sum of thegéings Kl; KQ,... Kn’ and let S =.i§l Ki;
The relations between H(K) and H(S), ﬁhere' H is a
heréditary radicél3 and the relations between the various
structure spaces of K and of lS ‘are investigated (Theorems
5.4.5 and 5.5.1). ‘_ - )

Ihroughout the thesis, defilnitions areniﬁdicated by
underlining‘of the term beiné defined. \Other things, such‘as
theorems, corollaries, and examp;esware'nﬁmbered by three‘
integers. TFor exampie, Exampie 5:3.5 1is fp@nd in-Chapter five,
- §3%, immediately following Lemma 5.3%.2.

Most of the notation used is standard. A few exceptioné
are the'following. If K 1is a ring, and S. a;subset of

K, |S>K is the right ideal of K generated by S, and -

<S>y (or simply <S> 1if theré is no danger of ambiguity)
~denotes the two-sided ideal of K generated by 8.

Also, suppose that F- is a .set whose members are all
‘subsets of a given set S. If F is void, define []| F t&

be S, and otherwise define [[ F to be N X. In either
’ : - XeF

case we also define || F to be U X. Thus, for example,
‘ : - . XeF

- the well-known characterization . of the Jacobson radical of a

ring K as the intersection of all the modular maximal right



ideals of K takes the form J(K) =[] F,v where [ = {I:

I is a modular maximal right ideal of K}. If F is void,

then (both in fact and in this notation) J(K) = K.
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CHAPTER ONE

GENERAIL RADICAL THEORY

1.1 Radical Properties and Radical Classes

A claés R -éf associative fings is calléd a radical -
class if the following conditions are satisfied:
(A) Any homomorphic image of a member of R 'is also
in R,
(B) Any ring K has an ideal R(K) . which, as a ring,
| is in R; and which is maximum among the idgals
e . .

sl

of K which are in R.

. (C) For any ring K, K}R(K) has only-oné ideal in the

class R, namely the ideai 0. '(In other words,
 R(K/R(K)) = 0.)

As 1s well known, fhe classes J, consisting of all -
right quasi-regular rings, and N, . cbnsisting of éil nil‘rings,
are radical classes. On the other hand, the class of all
'nilpotent rings is not a radical class.

| Fof othei examples of;radical clésses, we refer to
Divinsky (6). Also, for some of the elementary properties _
- of radical classés{ﬂwe refer to Chapter one of the same |
reference. o . -
- Many authors refer to a "radical property"; rather than
to a>”radica1 élass”. If P is a property of rings,fthen» P

is a radical property iff the class S of all rings with




property »P ~i§la:radicél class. Conversély; if R 1is a
radical class, then the property ”belonging to R" . is a
radical property. For example, Vﬁil" is a radical properﬁy,
while "nilpotent" is not. | |
o1r R is a radical class, and if K 1is a ring which
belongs to R, then 'R(K) = K,. and we call K an R-radical
ring. If, on the éther hand, R(K) = 0, then we say that K

T

is R-semisimple.

For some of the more familiar radical clésses, R-semisimplé
is sometimes given another name. = For example, if J is the
Jacobson radical class, consisting éf all right qﬁasi-regulaf
rings, & ring K for which J(K) =0 is somefimes referred -
to as a semiprimitive ring. Again, if B 1is the Baer Lower
Radical (see Di?insky‘(6), sec. 3.3), then the B semisimple
rings are called sémiprime rings. |

g «

o :
1.2 The Lower Radical Construction

.Given a class of rings, M, itiis reasonable to ask, -
if M is not itsélf afradicalvclass, whether M 1s contalned
in a radical class, and, if sé; whether there ig a mihimali
or minimum radical class containing‘vM. The an§W§r to the f;fét
question is '"yes", for the class of all rings is’clearly a
radical élass.

The énswer to the Secoﬁd question is also "yes". We
shall show that, giveh any class”tM Jof rings, there is a

minimum radical class containing M. This will be denoted



SO(M), and_willlbe cal%ed the lower radicailclass with
respect to M,"The proof of ﬁhe eflétenge of SO(M) is due

to Kurosh (16). The present construction is -due to Sulinski, -
Anderson, and Divinsky (6).
_The construction is achieved as follows. Suppose we‘

are given a class of rings M. Define Ml' to be the class

of all rings which are homomorphic‘imagep of members of M.

Given any ordinal a > 1, if Mg has been defined for all
- ordinals B < a, then define M, to be the class of all

rings K for which evéry non-zero homomorphic imagéﬂof K

has a non-zero ideal in MB’ for some B < a. It is easily

.seen that, for each ordinal «a, M

a is homorphically closed

i.e. each homomorphic image of a member of M is in M),
: , _ : a a

and also that, if a and vy @re ordinals, where a < y, then
My € M. Define S,(M) = U M, the union being taken over

“

all ordinals.
Before proving that S_(M) is indeed the minimum
radical class containing M; welquote the following lemma,

whose proof is given in Divinsky (6). p.b4.

Temma 1.2.1 A class :R of rings 1s a radical class if and
only 1f it satisfies the following conditions:
(A) Any homomorphic image of a member.of R 1is in R

(D) If”’K-'ié_a,ring such that every non-zero homomorphic
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image has 4 non-zero ideal in R, then K is.
itself a member of R.
With this lemma, we can now prdve the following

theorem.

Theorem 1.2.2 SO(M) is a radical class which contains M.
Furthermore, if R is any radical class.confdining M, R
contains SO(M).

Proof: Clearly we have Mc SO(M),7 FurthermOre, since each

M, is homomorphically closed, S (M) has condition (A).
Suppose K is a ring for which'evefy nénézéro homomorphié

image has a non-zero ideal in SO(M). ; For eachfideal‘ I of

K for which I%K, the factor ring K)I has abnon—zero ideal

in. . SO(M). For each such ideal I, we choose an ordinal

\

such that K/I has a non-zero ideal in M, . -Since the

'OLI

collection of all ideals of K 'is-a proper set, there is an

ordinal B such that B > a; for all I. Now let K’ be

any non-zero homomorphic imagé of K. Then X' = K/I for.
some ideal T of; K. Since K/i has a non-zero ideal in -

Ma c MB’ the image of this'ideal under the isomorphism 1is a
I : S K '

non-zero ideal of 'K’ which is also in MS' Thus we see that

any non-zero homomorphic image of* K has a non-zero ideal -

c S,(M). We have shown that

in _MB’ ‘which gives K € MB+1



9.

S,(M) satisfies condition (D), and thus is a radical class.

Now suppose that R is a;radical élass, and that

M c R. Theﬁ, since R 1is homomorphically ciosed, Ml c R.
'Suppose that o is an ordinal, and suppose that, for all

Ma’ and from the fact that R has condltlon (D), we obtain

B < a, we have that M, c R. Then, from-the definition of

at once that M, c R. Thus SO(M) < R. 7This proves the theorem,

It is perhaps worthwhile to note that SO(M) was shown
~to be a radical class without knowing whether or not the

associated sequence of Ma's terminated in the'sense that, for

some ordinal o, M, = M (from which it follows that

a1
Ma = MB’

(24), it was shown that this construction does indeed terminate,

for all B > a). ‘In Sulinski, Anderson, and Divinsky,

and that it terminaﬁes at w > the first infinite ordinal.

Thus; no matter what class M is taken, 1t is true that

sO(M) = M, . Of course, it may be true that we have SO(M) =M,
@) ) . ,

where k' 1s a finite ordinal, for some choices of the class .

M. In particular, if M 1is itself a radical class, then

SO(M) = M, = M. For M equal to the class of all nilpotent

rings, denote SO(M) by B. "This is the well-known Baer

!

Lower radical. In Sulinski, Andefson, and Divinsky (24), it

waé'shown that B ='M2.
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The author has shown (Heinicke (10)) that there exists

a class M for which the bound w_ 1is attained. That is

to say, there is a class M for which SO(M) # M, for any

i1

finite ordinal k.-

1.3 The Upper Radical Construction

A question which is "dualV to ‘the one raised in §1.2
is: when caﬁ a.éivéh class bf rings be the class of R-
semisimple rings:for some radicai class R, .and, if the given
class C»vié ﬁbtiitself”a semisimpie class, is there a maximum

radical class R, for which any member of C , is R-semisimple?

In Chapter‘ogé of Divinsky (6) it is shown that a class
C 1is the class of R-semisimple rings for a radical class . R
ifland only if C satisfies both:

(E) Every non-zero ideal of a member of C can be

~

homomorphically mapped onto‘a:non-zero member of .C,I
and ' ?

(F) If K 1is a ring for whichwevery'non-zero ideal
can be homomorphically mapped onto avnon—zéro
member of C, then X ‘is itself in C. -

Furthermore, it is also shown that, if C is a class

of rings with (E), then the class C, defined as the class
of all rings K ‘for which every non—zeré ideal cah be mapped
onto a non-zero mémber of C, has both (E) and (F), and
is;therefore the claég of R-semisimplé:rings for some radiéal

property R. It turns out that R consists of all rings- K
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‘which cannot be mapped.onto a non-zero member of C. Also,
R is the largest radical class S for which every member
of C 1is S-semisimple. The class R, defined in this manner,

is the upper radical ciass with respect to C.

It might be pointed out that, given any class C of
rings,'it‘is possible to enlarge it to obtain a class c’
which has (E);innsugh a wayithaf.the upper radicél with respect
to CY . is, in féct; tbe largest.radical‘clasé S for'whiéh
all membérs.of' Qv are_S-semiSimple. For theorem 47 of
Divinsky (6) shows that if I is an ideal of K, then, for
vany radical class R, R(I) is also an ideal of K. An
immediate cofollary.is that if K 1is R-semisimple, and if I
is an ideal of K, then I 1is also R-semisimple. Thus,
for any radical class R, the class of R-semisimple' rings
is closed under‘the taking ofiideals. - (Henceforth, a class

~

closed under the taking of ideals will\bé called a hereditary

class.) Clearly, any hereditary class has (E).

If K is a ring, and if S is a subring, we say.that

S is accessible to K if there is a finite chain

S48 48,... 48, =K, ) .

.(where A 4 B means that A 1is an ideal of B). If C 1is
any class of rings, define €/ +to be the class of;all rings
isomorphic to an éccessibié subring of a member of C. It

is simple to verify %pat ¢’ is a heféditary"ciass containing
C. If R 1is the.ﬁpper radical with respect to C’, theﬁ

any member of C is R-semisimple. Also,,if S is a radical
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class for which every member.of C is S-semisimple; it
follows that any accessible subring of a.member'is also
S-semisimple, and thus every member of C’ is Sésemisimpie.

Therefore, - S ¢ R. For this reason we are justified in

referring to R as the upper radical with respect to C.

1.4 Hereditary Radicals

. Many of the-familiar radical classes, for example
J, N, and B, are knqwh to be hereditary classes. However,
not all radical clésség are herédiﬁary (see Divinsky (6),
p. 10). It is kndwn, (see Divinsky, (6), p. 125), that a
radical class R :is hereditary if and only if, for any ideal

of a ring K, R(I) = I n R(X).

The following-is due to defman and Leavitt (12).

Theorem 1.4.1 If M is'a hereditary class, then SO(M) is-

a hereditary radical class.

Proof. It suffices to show that each Ma is hereditary.

et K € M.l

a homomorphism 8 from a member L of M. onto. K.. Now
-1 :
(

and let T be an ideal of K. Then there is

8™%(I) is an ideal of L, and, since M is hereditary,

e‘l(I) is in M. Then I = e(e'l(I))} is in My, ~and M

1
is hereditary.
Let . a be an ordinal > 1, and suppose that Mg is

.~ hereditary for all p < a. Let K e Ma’ and let I be an
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)
./'

ideal of X, and let ¢ be any non-zero homomorphism of I..

If J 1is the kernel of ¢, then ¢(I) = I/J. We shall show

that 1I/J has a non-zero ideal in M,

for some X\ < Q.

Let U bg an ideal of K which is mafimal with respect
to having I N U E“J. (Such a U exists by Zord's lemma. ) ?
If U=K, then IcC J, and ¢ is a zero map, contrary to
our assumption. Tbﬁs, U'% K. Since K, (an& therefore K/U)

is in Ma’ 5K/U has a non-zero ideal W/U in M for some

A
A< a W ‘is strictly larger than U, and hence‘ WnIdJ.
Therefore, (WN I+ J)/J is a non-zero ideal of .I/J. We

show that (WN I+ J)/J is in M, .

If WNIcU, then WnIcUn IcJ, a contradiction.

Therefore, WN I ¢ U, and (WN I+ U)/U 1is a non-zero ideal

of'AW/U'e_MX. S;nce MX

is hereditary, (Wn I + U)/U is in
Mk' Therefore, (Wn I)/(Wn InU) is in MX' Since

WNINUcCWNJ, we canmap (Wn I)/(Wn INU) homo-
morphically onto (Wn I)/(Wn J), and the latter is then

Since (Wn I+ J)/3% (Wn I)/(Wwn InJ)
(Wn I)/(Wn J), we have'that (Wn I + J)/J 1is in MX; as

in MX'

desired.

We have shown that M is hereditary, and also that
if M, is hereditary for all ordinals 1 < :» < a, then My,
is bereditary. It follows by transfinite induction that, for

each ordinal a > 1, M, 1is hereditary. Therefore SO(M)'
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is hgreditafy.i Q;E.D.'

The converse of this theorem 1is not true. in Michler
(20) it is shown that the class of weakly regular rings is
an example of é non-hereditary class whose lower radical is

hereditary.

1.5 Supernilpotent, SP, and Dual Radicals

In many parts of ring theory, prime ringsAdnd prime

ideals play an important role. An ideal I of a ring K is

a prime ideal if T # K and,” if akb € I, then either

a e I 4or‘ b € I. This latter condition is well khown to be
equivalent to: if A and B are both right (or both left,
or both two-sided) ideéls of K, ahd if_ AB < I, then either

A E I or Bc I. Aring K 1is a prime ring if and only if

0 1s a prime ideal./'It is well known that the class of prime
rings is a hereditar&)clasé, and one can then form the upper\
radical with respect to the cléss of prime rings. A well-
known'result_of Levitzki (see chapter'B of Divinsky (5)) Says
that this upper'radical_is the same as the BaQr Lower radical
class. This,;it will be recalled, 1s the loweéiradicalvwitht{
respect to the class of nilpotent rings. Furthefmore, Levitzki
showed thaf,'forvany riné K, B(K) is the intersection of
all the prime ideals of »K. .

‘/This_SOrt of a result, where “the R-radical.of an
afbitrary ring is ﬁhe:intersectiég of certain/ideals is quite

common in radical theory. This occurs, for example with the

1
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so-called SP-radicals, (calied special radicals in the
literature.)

A class of rings is said to be .a special class if:

(X) Every member is a prime‘riﬁg.

(Y) The class, together wi£h the oﬁe-elément ring O,

| . 1s a hereditary class.

(z) If A is in the Class,.and if A is'ah ideal in

| K, theh' K/A* is in the claés, where ,
A¥ = {x e K: Ax = xA = 0}.

'Sinée a special classffogether with O, 1is hereditary,
the upper radical with respect to a special class C 1is the
class of all rinés'which cannot be mapped onto a non-zero
member'of- c. It ﬁ;s shown by Andrunakievic (1) (see also
Divinsky (6)3 chapter 7) that such an upper radical is heredi-
tary. Since any speclal class consists of prime ringé, such_

- an upper radical class must contain B, the Baer Lower |
radical. A radical that contains'bB cand is heréditary is

called a supernilpotent radical. Andrunakievic a1so proved

that, for any ring K, if R is the upper radical with
respect to a special class C,b ﬁhﬁn R(K) = T] {I: I 4 K,

and R/I e C}. Thié 1aét.statément,implies that an R}Sémisimple
ring is a subdirect sum of rings from the special class C.

 We shallvcéll an upperkradicai wifh respect to a special class

an SP-radical cléss. (Id the liferatﬁfe,ﬂthese radicals are

called "special radicals". We prefer to avoid this term,

because to use it would necessitate talking about "special
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radical claéseé” thch are not special classes.)

A number of guestions can be asked abqut.SP;radicals.
Since every SP-radiéal class is éupérnilpotént, the most
obvious question is: 'is the Converse»true? 'ﬁecently,
Rjabuhin (22) claimed to haveEShown thatvthe conQersé is not
trgé. The author‘has not had access to this result, and -
cannoﬁ Verify or disprove it. > &

A question more easily answered ié: “can distinct
spécial classes define the same SP;radical? It is known'(see‘
Divinsky (6), chapter 7) that the class of right primitive
rings is a special class’ﬁhich gives rise to the Jacobson radical.
Since the Jacobéon radical 1s right-left symmetric, the class
of_left primitive rings is also a special class whose upper
radical is the Jacobson radical. Bergman (4) has shown that
these are distinct special classes. |

A ring is subéirectly irreducible if theAintersection

of .the non-zero ideals is non-zero. In a subdirectly irreducible
ring' K, this intersection i1s called the heart of K. The

heart H of a subdirectly irreducible ring is a unique minimal
two-sided ideal, and either H2‘= H, or H° = 0. 1In the _

former case the heart is-said to be idempotent. It is known

that 1if H2 = H, -then H 1is. a simple ring. Also, a subdirectly
irreducible ring with an idempotent.heart is a prime ring.
(The proofs for these assertions, and for the’ ones that follow,

" can be found in chapter 7 of Divinsky (6).)
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fvSuppose thatv P is a property Jf rings which is
invariant'under isomorphisms. That is, if S= T, then
S has P 1if and only if T‘vhas P. Then 1t is true that
the class of all subdirectly irreduéibie.rings which have
idempoteht hearts, and whose hearts have'-P, is a special
class.' If we denote such a special class by C, then the

upper radical with respect to C 1s called a dual radical,

- Let R be any supernilpotent radical class. Define

C1 to be the class of all prime R-semisimple rings, and
define 02 to be the class of all subdirectly irreducible
rings with idempotent hearts, whose hearts aré R-semisimple;

These are both Spéoialvclasses, and 02 < Cl' If the correspond-

ing uvpper radicals are denoted by R@, corresﬁpnding to 02,_

and Rs" corresponding to C then the following statements

1)

are true:

(2) R, 1is the smallest special radical containing R.
(3) R 1is thé smallest dual radical containing R.

These results are due to Andrunakievic (1). Proofs -

may also be found in Divinsky (6).
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CHAPTER TWO

- 'RADICALS AND MODULES

2.1 Defining Radicals by Classes of Modules

It isfwell known that there '‘are two ways‘to describe
the Jacobson'radical.’ T@e first method could bé‘considefed.
as "internal" or "element-wise". In tﬁisfapproach, the

Jacobson radical ‘class is the class of all.right quasi-regular

rings. (A ring is right quasi-regular if, for.each x there

is a.y such that x + y - xy = 0.) The second method, an
"external method, concentrates on the right primitive rings.

A ring is said.to'be right primitive if there 1s a simple

~right K-mbdule M such that (0:M) = {x € K: Mx = 0} = O.
Suppose, for any ring K, we define I, to be the

class of simple right K -modules M for which MK # 0. (In

the sequel, we shall call such a module an irreducible module.)

T

Then, as is well known, the Jacobson radical of any ring K

can be written J(X) = [1 {(0:M) : M€ ZK}.

In general, if A and 'B are subsets or a'right K-
" module M, we define (A:B) = {k e K: Bk c A}. If A is a
submodule of M, then (A:B) is a right ideal of . K. If

t

B is also a submodule of M, then (A:B) is a two-sided ideal

of K. Also, if I 1is a left ideal of K, we denote by 'IM

the set of all m e M such that mI = O. This is a submodule
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of M.
Suppose that M is angifreducible right K - module. -
Then,fbrany'ndn—zeroxnjle, mKﬁ¥ 0. (For if mK =0, m € KM,

and KT = M, whence MK = O, which is false.)' Since M 1is

simple, MK = M. We then have a homomofphism (6(k) = mk)
6:K ~ M of K -modules which is. surjective. Any irreduéible.
right 'K -module is therefore isomdfphic_to a module of the
form K/I,_ where I 1is a right ideal of K. Such a right .
ideal must be a maximal right ideal, since M is Simple,
o - .

and, as is well known, must also be a modular right ideal.
(A right ideal I of K is modular if and only if?there.is
anAelement e in K;? e not in I, lsuch that o
{ex-x : x € K} < I. If K has a left unity element, then
every right ideal is modular.)

If M is ‘any right K- module, then (0:M) = |
T1{(0:m) : m elM}. If M is'irreducible, eaéb (0:m), where'I
m# O, 1is a‘ﬁaximal modular right ideal. We ghen obtain thét

result-that,.for-any ring K, J(X) = [] {(0:M) : M ¢ ZK} =

[T {(0:m) : O # m ;LM, Mez.}. This shows that J(X) can

be expressed as an intersection -of maximal modular right
ideals. On.the other}hand, if iﬁ is a maximal modular

right ideal, then K/I 1is an irreducible right K-module. Tt
is well known that (0:K/I) < I. . Since j(K) gf(de/I), we
have that J(K) ¢ I. Therefore, J(K) < TTf{I:i is a meximal

modular right ideal of K}. Combining this with the result
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above, we can conclude that JK) =TH{I: I is a maximal

‘modulaflright.ideal of 1K}. In this chapter, we shall seei?

how to generalize this to certain other ré&icals. |
Suppose that wéK - K’ -is a ring homomorphism. If

M’ is a right K)-Jmodﬁle, then we canugive M a right K-

module'struCﬁﬁre by defining m’*k~¥\m'.@kk)z: for all m’

in M and k 1in K. Ai§o, if @ is a surjeétion, then

any right K- module M for'which‘f(ofﬁ)xg Ker(p) can be

given a right Kf; module structure:as foliowé; if m_é M

and k'’ € K', choose k in ‘¢’1(k’) and define~'m*k’ = m-k.

This‘istell defined, since if o(k{) = ¢(k,) = k', then

= m:K,. It is easily

k,-k, ¢ ker(p) € (0:M), and m.k ’

172
verified that, if ¢ is a surjection, then, in each of the
two cases described abové, the lattices of submodules of the
drigin&l and of the,induced.module are ;sémorphic. Also,
the induced module is trivial if and only if the or;ginali
module is trivial. | |

In 196;,'Andrunakieviciand Rjabuhin (2), considered
the following'éituation. ’Suppose that to every ring K there
is assigned a (possibly empty) class ZK of right -K -modules

satisfying the_folléwing conditions:

(P.O) If Me %,  then MK # O.

K}
(P.1) If B 4K, and M G»ZK/B" then M, with the
induced K - module structure describéd above,

is ih‘ iK.'
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Zgs, and B4 K such that Bc (0:M),

(P.2) If Me. T

‘. ‘thén ;M, as a K/B-*module, is 'in EK/B'
(P.3) i£j bv= T]{(O:M)‘: M ez, and if B is a
non-zero ideal of K, then ZB.% g.
:(P.4) If, for each non-zefo ideal ‘B “of K, Zé £ J,
then 0 = TTL(0:M) & M e 5 ).

Theorem 2.1.1

| (1) 1If, for each ring K thére is assigned a class.

z of right K - modules such thati; P.O0 - P.>

K
are satisfied, then the class S, consisting of
. all rings K for‘which' ZK = ¢, 1is a radical
class.
(2) Under the assumptions of (1), condition P.4 is”
. satisfied if and only if, fpr each ring K,

S(K) = TI{(O:M) M e Egl-

Proof: (1) (This proof is due to I. Hentzel (10)). For

K}' If

each ring K, define ker(Z,K) = TW{(Q:M) : Me g
kef(ﬁ,K) = 0, We‘call‘tﬁe class. ZK faithful. Also, define
L(Z) to be thé-class of-rings X for which fbere’ekists
an M e Ty such that (0:M) = 0. (A K-moduié} M for

which (0:M) = O will be called & faithful module. Thus,

if T, has a faithful module, the class T, 1is faithful.)
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Recall, from §1.%, that if a class C of rings
satisfies:’. |

(E) Every non-zero ideal of a member of C can be

mabped onto a non-zero member of C

then the upper radical with respect to C .consisté of all
| rings Which cannot be mapped oq@o a nbn—zero member of C.
'_We shall show tﬁat the Class L(z) satisfies (E). Suppose
that K is in L(), and that B # O ig an ideal of K.

Since K is in L(Z), £, 1is clearly faithful, and so, by

X
P.3, there‘is;anx M in ZB...Let. I = (0:M) 4 B. Then

T 4 B;"agd by P.2, M, as a B/I - module, is in szl.
'An easy célqﬁiaﬁiﬁn shows thaﬁ; inlthe ring B/I, (O:M)B/I = 0.
Thﬁs B/I is d non-zero member of L(I).

From the discussion iﬁ §1?3, the‘class S, consisfing
of.all rings which éannot be mapped onto .a non-zero membér o%
L(g) is_a,radical cléss. If K 'is a ring such that Zk # g,
and 1f M 1is in ZK’» the sage argument as'was used for Bb

in the previous paragraph shows that K/(O:M) is in L(Z).

Conversely, if I 4 K, and if X/I € L(Z), then there is a

right K/I medule M in ZK/I‘ From P.1 we have that M,
with the induced X module structure is in ZK' Thus we have
that ZK £ ¢ if and only if K can be mapped onto a non-zero

member of L(Z), or, equivalently, the upper radical class with

respect to L(ZI) consists of all rings K for which Ly =_¢.
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If S(X) ¢ ker(Z, K), then, for some M e Iy,

S(K) ¢ (0:M). Deﬁbting (0:M) by B, we have that (S(K)+B)/B
is a non-zero ldeal éﬁ’ K/B elL(Z). Tﬁus, by condition (E),
(S(K)+B)/B can be mapped to a non-zero member of L(T).

Since ‘(S(K)+B)/B = S(K) ( S(K)n B), and since the iatter is

a homomorphJc 1mage of S(K), we have that S(K) can be
mapped onto a non zero member- of. L(T) This ﬁpmomorphic

image T of S(X) then has ZT #¢. But T, Ubeing a

homomorphic image of an S-radical ring, must bé S-radical, and

thus T, = 7. This contradiction shows that S(K) < ker(z, ).
_ , .

(2) Supposé now that P.4 ‘hoidg.i K/S(K) ~ is S-semisimple,
and (Divinsky (6), page 125) so is every.idéél of K/S(K).
Thus, for every non-zero ideal B of K/S(K), B is not
S-radical, and so Iy # #. By P.h, ker (%, K/s(K) ) = 0.

‘For each ‘M in ZK/S(K)’ M één be giVén a K- module
struéture, and, as a K-—module} M is in Iy An easy

calculation shows that (O0:M), = {k ¢ K : M 6(k) = 0} =

9~ ( (0: M) h/S(K) ), where 8 is the naturgl homomorphism of

K to K/S(K). Since 0 =‘ker<2, K/S(X) ),- we obtain
(k) = 871(0) = 7H([] ((0:M) : Me e ss(x)}) = T L(0:)

. . ’ - ' .
is a K module ;nduced from someh M € LK/S(K)}’ Since the

latter intersection,pohtains ker(T, K), we have S(XK) 2 ker(z, K),

and thus the two are equal.
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Conversely, suppose’that, for every ring K, S(K) =
' kef(z,K). If - the hypothesis of .P.4 1is satisfied, no non-
zero ideal of . K can be S-radical, and so. 0 = S(K) = ker(f,K).

This completes the proof of (2). Q.E.D.

It could be pointed out that any radicalfclass can be
described in this fashion. To be sped#fic,ikndfunakievié
and Rjabuhin also proved that, if R is any rédical class,
then the assignmenf to a ring K the'clasé of all nontrivial
right K—moaules' M for which JK/(O:M) is R—semisimple glves
classes of modules satisfying P.O = P{LL, and the radical
class S of the theorem is the same as the'cléss R.

We give two examples to show how some familiér radicals

are defined.in terms of modules.

Example 2.1.2 The Jacobson Radical

For each rihé} K, iet £, De the class of alllirreduci—'
ble right K-modules. It is easily seen’tﬁat P.d, P.1, aﬁd
P.2 are satiéfied. Suppose that  ker(g,K) = 0, and that
B#0 is an ideal‘of K. Then for some M in Zys B ¢ (O;M),
and MB # 0. Since B .is an ideal, MB is. a K-submodule, _
and so MB = M. e can also consider M as a B-module.
We show ££at, as a B-module, M is simple. If m-e M,
and m £ O, then mB £ 0, 'for ééﬁerWiSe, since 'B. is-a
two-sided ideal, the séﬁ»'{n elM : nB = 0} would be a hon—
zerb submodule, and thus would be all of M. This Would”

‘give MB = 0, a contradiction. Now mB 1s a non-zero K-
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submodule of M, and so is all of M. Thus M, as a B

module, is simple and non-trivial - i.e. M is in Iy. This

shows P.3 1is valid. |

| Suppdse that K 1is a ring for:%hich‘ ZB'# ¢ whenever
B is a non-zero ideal of K. If T = ker(g, K) # O, then
there 1is a"simple non-trivial 4T- module M. Thehgthere is a
4 e T such that Mt £ 0. Let m e M be such tﬁgt mt # O.
Then, (using the séme argument as was used in the preceding
- paragraph)  mtT # O, and so s M(tK) # 0. m(tK) is.clearly
a T-submodule of M. We can éive it the structure’of a K-module
by defining m(tk)¥*k’ to Dbe M(tkk’). Furthefmore, if x
is in T, then m(tk)*x = m(tk)x, and so any K - submodule
of m(tK),. with this multiplication, is a T—submodﬁie'of the
original T-module M. This shows that M(tK) is a simple
K-module. Also, m(tK) is not a trivial K-module, for, if
m(tK)*K = 0, then m(tT)T = 0. Since m(tT) # 0, {n e M: nT = O}
is non-zero, is a submodule, E@ﬁ 50 st be.all of M. This
would givg MT = O, a;contradiQﬁion. We have shown that the

\

K-module m(tK) is in Ty S;ngé\ T = ker(z,K), T c (O: m(tK)),

and 0 = m(tK)*T = m(tK)T. The argument above shows that this
leads to a contradiction. Therefore T = 0, and P.b is
~proved. | “

} (The,cOrrespondiné-}adical.property%Las desdfibed iﬁ’;
TheoremHQ.;}l, is the upper radical ﬁfoperﬁy with réspect to

the class of all rings K with a faithful simple nontrivial
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module. - These are the right primitive rings, and the radical

- property isvthe Jacobson radical property.

Example 2.1.3 The Baer Lower Radical

Aé‘ﬁas pointed out in Chapter one, the Baer Lower
radical is also the upper radica1.With}respe¢t to the class
of-all prime rings. We show hoﬁ:this fadical can be'desqribed
'in terms of modules. (See Anarunékievicvgnd’Rjabﬁhih (1).)

A right K-module is prime if and only if: MK £ O,
and if  m e M .and B qu 'ar%‘suéh'that mB = O, then m= 0

Ql‘ NIB = Q,

Lemma 2.1.4» A right K:imddule is prime if and only 1if MKT%'O,

and for every non-zero submodule N of M, . we have '(O:N) = (O:M).

Proof: If M iS’a_priﬁe right K -module, then MK # 0. Let
N be a»nbn-ZerQ submodule of M. qieariy‘_(O:N) 2. (0:M).

Also, N(0:N) = 0, and (0:N) is an ideal of K. Since

| I

N_% 0, we have M(O:N) 0, iﬁe: 5(O;N)"E (Q:M)}
Convérselyg suppose that M 'is a $QQulq satisfying

the conditibn, and suppose that m in M;'and;'B.4 K are

such thaﬁ mB = 0. Then mKB=O0. If mK#0, it isa

non-zers submodule, and we have Bc (O:hK) = (0:M), and

MB = 0. If mK =0, then m =0, for otherwise

{neM: nK = d} is a non-zero submodulem N such ﬁhaﬁ

NK = 0. This would give  MK = 0, - which 1is false.  This proves

the. lemma. Q.E.D.
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' For each ring K, define .

prime right K-moduleé. It is easy to verify that P.O,

to be the class of'all

P.1, and P.2 are satisfied. If ker(z K) = 0, and if B .
is a non-zero ideal of K, then there is a member 'M of

X such that MB # 0. We ‘show that M is also a prime B

K -
module. Let I 4B and m € M satisfy mI = 0. Then

mBI = O, and, SiHQ? mB is‘a .K submodule of - M, either

MI = O (by the lemma), or mB = 0. Since MB ¥ O, the latter

situatiod'imp;ies that m = 0, Thus M is in &

iy

B and P.3
is proved. |

| We now prove P.4. Suppose that, for each hoaner6‘
ideal B of X, iy # ¥ If T = ker(Z,K) ¥ O, then there
is a prime T - module -M. Proceeding as'Werdid in-the preVious
example, we can find m 1in M and t in T such that
mt # O.'.Then,vsince M is prlme and - MT # 0, m(tT) # O,
and so m(tK) # O.. As in the prev1ous example, we can give ‘
m(tK) a right K-module structure by defining -m(tk)%k" to
be m(tkk’). We show that this K- module is primé. vSince,
as a T module, M 1is prime, we haVei m(tT)T # O, énd S0
'm(tK)*K #0. If BJ4dK, and O =m(tk)*B = m(tkB), then
m(tkTB) = O. Now, TB 4 B, and, since M is a prime B-
module, either mtk = O or M(TB) = 0. In the latter case,
m(tKB) =0 (tK)*B Thus m(tK) € zK,’ and (0: m(tK) ) >
T = ker(z K) - i.e e. m(tK)*T 0. Repeatlng the same argument
that we have used beﬂore, the prlmeness of M as a T module

1eads to a contradiction. Therefore, T = 0, as desiredi i

y .
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- We haveishOWn-that, if, to each ring K we assign

the. class EK.

of prime right K modules, we have the
conditions P.O - P.4 satisfied. The corresponding radical -
is the upper radical with respect to the class L(Z) of all
- rings With"a primevfaithful right module. ‘The next lemma

shows that L(z){mis the class of all prime rings.

Lemma 2.1.5 K has a prime faithful right module’ M if and

only if K is a prime ring.

.,23992: Let M be a primé féithful right.K—module, and suppose

that aKb = 0, where a :and\ b _éfe in K. If a £ 0,

then Ma # O, and MakK ¥ 0, !but MaKb = 0. MaK is a sub-

module, and therefore b € (O:MaK) = (Q:M). (This}last equality

come from Lemma 2.1;4;) Thus Mb = 0, and b = O, since

M is faithful. | | |
Conversely, suppose that].K . is a prime ring. .It is

straightfdrward to verify that - K, cthidered gé a.right.

module over itself, is prime and faithful. Q.E.D.

This lemma shows that the radical associated with the
classes of prime 1K modules (for all rings K) is the upper
radical with respect‘@o the class of all prime rings - i.e.

the Baer Lower radical;

2.2 Intersections of One-sided Ideals
In an earlier paper than the one citedAin the‘previbus

section, Andrunakievic and Rjabuhin (2) showed-fhat any
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SP-radical can be described as in the previous section in

such éiWay that all members of .EK’ for all K, are prime

| modules.:}Prihé.ﬁgdulesg‘theréfore, occur in many situations.

| In contrast to the situation for the Jacobson radical,
it 1s not clear for special radicals in general, let alone
“for arbitrary radicais, whether 6r.not the radical of a ring
K can be éxpresséd in terms of one-sided ideals. Of course,
for thé Jaéobson radical casey J(K) is always the intersection
of ﬁhe maximal modular rightv;deals. ﬁe give next a generali-
zation of this result. ’

In the sequel, the notation I 4 K means I is a
o ' rt

. right ideal of K.
| We consider classes ZK of K-modules which.satisfy
P.0 - P.4 and also the addition condition

| (P.5) Every non;zerblsubmoduie of a member of ZK isa

also.a member of: ZK.

is

This condition is satisfied, for example,if I .

P A .

e

~ the class of irreducible right K-modules, or if Ip  is the
class of prime right K-modules.

Theorem 2.2.1  Suppose that, for each ring K.  there is

assigned a class ZK

of right K-modules such ?50~- P.5

are satisfied. For any ring K, let s(X) =-{I: I 4 K and
. S . ' . - rt

K/I ¢ EK}."Then s(K) has a subset. J such that, if S is
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. the radical defined by the-classes_ £x (as in theorem 2.1.1),

then S(K) = []{I: I-4 K and Ie .
' , : . rt '

Furthermore,'if each member of s(K) 1is a modular
right ideal, then we may take J to be all of ,g(K),' and’
~thus S(K) = []{I: I 4 K and K/I ¢ Tyl

‘ i rt . )
- Proof: Let m # 0 be a member of M; where M € ZK. Then
mK # 0, for otherwise N = {x e M: xK = O}',would be a
‘non-zero submodule of M, aud,_by P.5, N would be in ZK.'
' However NK = O, and this contradicts P.O. |
. Therefore mK # 0, and this is (by P.5) a member

) $..  Since mK K/(0:m), we have (O:m) is in s(K). Now

N (O:M), by theorem 2.2.1, so we have

S(K) =
S(K) = n. (0:M) =" n [1{(0:m) : O #m e M}; Thus, if we
Mez MeZ

set J = {I ‘I 4 K for which ,:_l MGZK, anda mi#¥ 0, me M
: rt , .

 such that . I = (O'm)}, we have J c s(K) and S(K) T]J.
Suppose now that each member of s(K) is modular.
u'That is, suppose that for each I 1in s(K there is an

element. éI in K such that eIx - X e I for each x in

K, Let m = I+—Ie K/I B Then_‘(p:m) = {k ¢ K:ekell =

{keK:keTI}=T. Thus I isin J and J = s5(X).  Q.E.D.
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CHAPTER THREE

. THE UNIFORM, RATIONAL, AND WEAK RADICALS

In thls chapter,'we shall deflne, by means of modules,
‘three radlcal classes, and some of" the propertles of these
radicals will be 1nvest1gated ‘ The bas1c concepts used here
- are usually applled in the study of quotlent rlngs, &8s found
.1n the papers of Utuml, Johnson, and Goldie. ,A good reference
which contains most of the bssic results,is Faith:(7).

)
|

" %.1 Essential and Rational Extensions

A'right‘K-module M 1is an essential extension of a
- submodule N if TN N # O whenever T is a non-zero
submodule ofv M. Under these circumstances, we also say that

~

.AN is an essentialfsubmodule of M.

We say that M 1is a rational extens1on.of a~-submodule
N“vif,.whenever we have N cTc M, T a submodule of M,
and f:T - M a module homomorphism such thatf~f(N) = O,
then f %'O,' Following Fsith”(l), we write M v N: if M
'is an essential extension of N,u and Mg N 1if M is a

rational extension. of N. i

- Lemma 3.1.1 If My N, then My N.

» Proof It T is a submodule of M such that TN N = 0, .

then define f: NOT - M by £(t) = t, for t e T, and
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" f(n) =0 for ne N. Then f(N) =0, and f must therefore

be the zero map - that is, T = 0, Q.E.D.

- Lemma 3.l1.2 Mvwv N 1if and only 1f, whenever X and y are

in M, with y # 0, there isa k€K and an integer n

such that xk + nx € N and yk + ny # O.
:‘ Proof: See Faith (7), page 58, for a proof of this result.

If - M is a right K-module, an elément m. of M is

‘said to be a s1ngular element if- (O:m) 1is an essential

submodule.(l.e..rlght ideal) lof K. If m is a singular
.element, and if x € K, then mx- 1is. also singular. For -

. let O0#I 4 K. If xI =0, then mxI = 0, and I c (0:mx).

If xI # 0, then (0:m) N XxI # O, and there is an~ i # 0
'in I such that mxi = O. In either case, I N (0:mx) # O,
- for all 0¥ I g, K, and so mx 1s singular. Clearly a

"_finite intersection of essential right ideals 1s essentlal,

so, if 'x - and ¥y arejeingulerfelemenfs, (O-x—y) (O: ) n (O v),

“and x-y 1is also singular. We see therefore that the set )

- of singular elements of a module forms a submodule. ,Thls~1s;

known as -the 81ngplar submodule of M, and is denoted_by
Z(M). Clearly, if N 1is a submodule of M, then z(N) =
;N»ﬂ Z(M). If M“ qs a rlght K module, the singular

submodule is a.two- 31ded 1dea1 of K, as ist called the

rlght 51ngular deal of K. - ThlS is usually denoted z (K)

- The left 51ngu1ar 1deal is deflned in the obv1ous way.4 The
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' right and left singular ideals of a ring need not be the.
same. (Sée; for example, Smalli(25).) .

' The next lemma provides a partial converse to Lemma 3.1.1.

Lemma 3.1.3 < If Z(M) = 0, and Mv N, then My N.

Ezggﬁ:A Let x and y # O be in M. Since N 1is essential
.in‘iM, it follows that (N:x) . is essential in X. (Ir I
4'is a right'ideal of K, ‘either =xI = 0 c- N, 'andl'I c (N:x),
or xIv¥ O, in which case xI N N # O and therefore
IN (N:x) #0.) Since 2Z(M) =0, y ¢ Z(M), and (O:y) is
;_not essentia1, whence (N:x) ¢ (O:y). There is therefore an
element k of Kv.in  (N:x) but not in (O:yj. Thus
| ~xk‘e N, and yk %ioi/ The rest’followé from Lemma 3.1.2. Q.E.D.

3.2 The Uniform, Rational, and Weak Radicals
A modulevié called uniform if it is an essential exten-
sion of every non-zero. submodule. If, in addition, M is a

‘rational extension of every non-zero submodule, we shall say =

; ~.that M 1is rationally uniform. - We say that two modules M

~and M’ -are subisomorphic if there are monomorphisms

© f:M - M and g:M - M. A module M which is subisomorphic

fo every non¥zero submodule will bé called a'homogeneous

‘module. o

Lemma_3.2.1 A homogehéous'module which is nqnftrivial is

prime.

Proof: Let N be a nonézero_submoduié of a'hOmogeneous -
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" module M. .Then there-is a monomorphism f:M - N. Since f
o is.oné;to-one, it‘followsvthaf (OﬁM) = (0:£(M) ), and this
contains (0:N). Since N c M, '(O;M) c (0:N), ‘and so -
:: (O:N) = (O:M),:‘By'Lémﬁa,Q.l;h,. M is'therefére a prime
module. Q.E.D. - o
' We now define, by using these classes of modules,
) threé_rédical,prgpeptiés,v $WO 6f thémiare new, éhd we.shall:
shdw that'the third coincides withvthe wéak radical-of'Kqﬁ
' and Mewborn (17). L | o
L For éacﬁ.fing. K; we{assign thé following classes of
- rigbtf.K modules: | , : b)

LR . , .

‘; 2K? is.the‘ciass of,all pfime, uniform right 'K - modules.

.f;;ﬁv_is'the class of'alllprime, rationally uniform right
K -modules.

3

Ly 1is ‘the class of all rationally uniformgvhomogepeous

right K -modules.

Theorem 3.2.2 The propertiés P.0 - P.5 are satisfied

1 2 3

. for each of the classes I, $°, and ¥°. (See‘Chapter‘two).

Proof: It 1s easily verified that tﬁe properties ofAuniforﬁity,
rational unifofmipy, and hdmogeneity, as well as primeness,

are inheritéd'by non-zero submodules, and sé P.0y, P.5 are
seen to be true; Thg discussion‘of'Exampie 2.1.3 showed that
thé property éf»pfimé;eés.is pfeserved under the induced

V.
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'1tmodu1e-spructufes arieing in ,P.l and P.2. ﬁpiformity is
jw.aiso preeervea sinee it is é'property of the 1at§ice of
'submodules of a module, and the K- and K/B-ﬂmodules occuring
in P.1 and P.2 have isomorphic 1attices of submodules.
'uThe other propertles, ratlonallty and homogenlety, are

_.deflned in terms of module- homomorphlsms from submodules of

':;fM<‘to submodules of M. It is ea511y verifled that these

are preserved under the operatlons of P 1 and -P. 2. It

. follows then that each of the ‘classes :Zl,‘_zeau.and 23,

i
L

- satisfy P.1 and P.2.
We now establish P.3. Suppose that O TW{(O M)
M e'z&}, where- i is 1,A2, or.- 3, and let B % 0 be an ideal
" of K. Then there is an M. in 2%' such that MB # 0. The
nipdiecussion\in Example 2.1.3 showed that M, as'a B;.moduie?
- is prime. |
If M is uniform as a. K- module, and if U and V'

~ are two non-zerolB-submoduiesuof‘ M, then (using the fact

~that M is prime) "UB . and VB are non-zero. These are

. K-submodules of M, and therefore have a non-zero intersection.

f Thusi unyv ¥ &, and M'lis a uniform B—module.
| Suppose that M,‘ ae a K module,'is a ratiopai exteusion
.of every non- zero submodule, and suppose that T and N are
" B- submodules of M,' 0 # T c N, and’ suppose that fiN - M

is 'a B-homomorphism such that f(T) = O. Thep B and NB
areﬂnon-zero (51nee B is prlme), and the restrlctlon f'
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“of f tef.NB is a B homomorphlsm for Wthh £’ (TB) =

"~ We claim £’  is a thomomorphlsm. Any element of NB is of
. ) . ‘ . ] ) B .' _ n N ‘ . " . i '
the form X = 21:1 yibi’ where“ Vi € N, and bi € B, For

k é K, £'(y;b3)k = ( f'(yi)bi_)k = £ (y;)M(b3k) = f'(yibik),

‘and 1t follows that f(x)k = £'(xk).

Since M is a rational extens1on of the, K - submodule
TB, and since f’ (TB) = 0, we must have £’ =0, and

therefore f(NB) = 0. For n.ebN, f(n)B = 0. The primeness

o of M, and the fact that MB # O, ‘give us that f(n) = 0,

and so f‘ is the zero map "This shows ‘that )M as a B
module, is a rational exten51on of T, where T 1is any
non-zero submodule.»/‘ _ | | |
| Finally, suppoue that M is‘sublsomorphlc to every
Anonfzero g-submodule of_ M, and let N be any non-zero
‘B-submodule. - Then  NB 1is a nen-zerol K - submodule, and NB
is subisomorphic to M. The k-monomorphism g:M - NB c N,
and‘the embédding map of ﬁ 'ipto ‘M“iare.B—monomorphisms,

and’ so M and N are subisomorphic. This completes the:
. W12

"}’prOOf that each of the classes ", T, and 23 satisfy P.3.

Now we establish P.h4. Let ’i; be 1, 2, or 3, and
-suppose that E £ . for any non-zero 1dea1 B of K, but
- 0 £ I{(o: M) T Me EK} T. 'Thenﬁthere exists'a'prime T-module

M in 2%. ‘As in Example 2. 1 3, there is m; in ,M,fft in

T such that m(tK) # 05._end this has a K-module structure

R
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a(definéd by m(tk))*k ='m(£kk’)-)' for which ij:lm(tK)‘
.1s a prlme X- module. R o
£ M “is unlform as.al'T vmodule, since K-submodules
: of ‘N are alsé'T:éubmodules, N is also uniform as a |
 1K—modu1e. Any non-trivial K thomorphish from a K-submodule
';Lof N to N is‘alT;homomorphisﬁ_from a T-submodule of M
‘into M, and ﬁust therefore have zero kernel if- M, as a
T-moduie, is a ratidnal.exten§10n of evef& non-zero gumedule;
' Thusfthis latter conditi@n_on the T-module M 1is passed on

i

' to the K-submodule N.

| Finally, suppose that M e zg, and let' L be a

' K-submodule of N. Then L is a T- submodule of M, and
W-there is a T- monomorphism f1 M- L. ,We show that  the -
‘,restrlctlon f' of f‘ to .m(tK)‘:lS indeed a K-homomorphism.

'For any K\ and k’ in K,- we have

f(m(tk))*k" (5f(m)‘£k)*k’_l(sincé ;f"iéra T-homomorphism)

( f(m)*tk)*k"f(since (m) is in L c N,
s ' and, in T the multiplications

' - and * agree)

i

f(m)*(tk’k’): (since L 1is a K-module)

© f(m*tkk’) (since tkk’ € T, and f
o | l"_ | ‘7- : is a T- homomorphlsm)
-.\V »’ 'f " = f((ﬁ-tk)*kf.); (from the definltlon of the
% multiplication ¥)

The‘map,_f,':restricted to N, .isvtherefore a K-homomorphism,
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and it is one-to-one.  This map, together with the imbedding
of 'L into N, are the maps which guarantee that N and L

are subisomorphic, and N efﬁiti Q.E.D, .

The previousrtheorem assuree us that each of'the

~ classes 21, g2, and £ define radical propertles as

Aif'descrlbed in Theorem 2 1. 1, and. that for any rlng K, the7:

the -Z  being £t s 22, ”or'

" radical 1s_ f}{(O.M) : Mﬁe Zg)s

s 23; as the case‘may be.  We ,shall call these radicals the

" 'uniform radical, - the rationaliradical, and the ‘weak radical,

e~_respectively, and we denote them by U, U ', and W. Thus U_

'hfftls the upper radlcal with respect to the class CU of all

- A :
3 rings K wlth a faithful, unlformo prlme rlght K-module; U*

»;- is the upper radical with respect to the class CU*: of all

‘laﬁrings K-.with a,faithful, rationally uniform'andiprime right .

'f\;t K-module, and W is the upper radical with respect to the .

B class'”CH of all rings K with a'faithful;.rationally

¢ uniform, homogeneous right K-module. Since Cy € Cux E-CU’

' “we have U c U¥ c W, From Lemma 2.1.5, we see that any

, e 5:member of' CU 'is'a prime‘ring. On the other hand, any rlght

7 'prlmitive ring (a ring w1th a, 51mp1e non-trlvial rlght module
" which ‘is falthful) is clearly in CW Therefore we have'
I cUcU*c W’E,J,-jwhere':B and ~J ‘are the Baer Lower and '

fJacobsonpradical classes;h;::
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’iTheorem 3.2.3 If K is a commutatlve ring, then B(K)

() = Ux() = ().

" " Proof: - From Example 2.1.3, we ‘have that B(K) (T 4 K:K/T

‘"3gis‘a prime ring}., Therefore, if we can show that any commu-

”'z-tative'prime ring is in Cy, * then for a commutative prime

‘1fring K, we will have that W(K) is contained in”eech;ideelf
I for which " K/I is prime,.and then W(K) c B(K) o

| Let K be a commutatlve prlme ring. Then K 1is a

"f}“domalnv (xy = O implles X =JO or y = 0). K, as a

' flrlght K module is clearly unlform, for if U and V are

‘f(fnon-zero submodulesA(i e. 1deals), then 0 % Uv = VU cun V., o

ﬁfSince K has no zero divisors, ’Zr(K) 0, and by Lemma

ix{f} 1.3 we have that K 1is rationally uniforms If U is.a

4:non-zer0fsubmodule, and if. O}# u‘e U, then L K - U, where.

L, (k) = uk; 'is avK-monomorphism, and U .is homogeneous.

. .:_‘. 3

K 1is easily seen to be a falthful K—module, and s0 the rlng
"x?iK is in Cyr . Q.E.D.

Corollary 3.2.% The radicals J and W are distinct.

. Proof: The subrihg S of the rationals consisting of numbers

}xof”the form'(even'integer)/(odd integer) is a commutative

. prime ring which is also right quas1 regular. Then W(S) =

F

LS.

i‘and 3(s) = 5. Q.. D.

Recall from §1.5, that a class C of rings is called
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:i.a special class 1f it sé%lsfies-
) 'gA(X) Every member is prlme. f% B
l"?(Y)'C U {O} '1s heredltary, | | :
;(Z)prA'A'é‘C, and A 4 K, then _K/A¥7;isein C,
 where A* = {x evK:xA = Ax = O}; |
The uppef padicals with respectAto the speciel classes
17~‘afe called the'SP—radicals. - ": N B

e Cux and"Cw are

7.specia1_c1asses, and therefore ‘U, U* and W are all

. Theorem 3.2.4 Each of the classes C

. SP-radicals. .

Proof: . The.proof is the same~ih_all three cases. Let
" U g denote oné 152 3 e
“~,ZK . enote_one of EK’, EK, or EK, and let p be -the
_corresponding class CU; CU*” or CW. We already know that

" any member of 'C - is a prime ring. .Suppose that K € C"andii
- 0#Bd K.,:Let.FM ibe'a'faithful member of F..- M can be

3iregarded as a B module, and {b € B: Mb =0} = 0. The

‘V;ry,proof.thatv M, as a B. module, is in ZB’ -proceeds exactly _

«

- as in the verification of property P.3 in Theorem 3.2,2.

—

f]:Thls proves that "B is in',Ci and condition (Y) is established.

Suppose that A\‘is in C, and that A 4lK, In order
to prove that condition (Z)v'is true, we must_show that
K/A* is in C, where A ;.(k <—:}K'6 kA Ak = 0}. We show
that A* is 1ndeed an ideal of K.< If x and y are in’

A¥ theu.‘x-y : is also.f Suppose that X € A* ‘and .k e,K.
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Then A(xk) = 0. Also (xk)A < xA = 03 and thus xk € A¥,
and A* 1is a right ideal of K. Similarly A* 1is a left
ideal. ‘ |

Now A 1is in C, so fhere is a faithful member M
of ;A. Proceeding exactly as in the verification of P.h,
there are m in M, and a in A such that m(akK) # O.
Then N = m(aK) has a K module structure defined by
m(ak)*k’ = m(akk’), and (as in the proof of P.4) this is a
member of I . What i? (0:N.)? Since aKc A, clearly we
have A* ¢ (O:NK). éﬁppose now that x e (0:N). Then
0 = m{aK)(AxA). Since m(akK) is an A submodule of M,
since AxA 4 A, ‘and since M 1is prime, M(AxA) = 0. But
M is also faithful, and so AxA = O. Thus (Ax)2 =v(xA)2 = 0,
and since A 1is a-prime riné, 'xA_= Ax = 0O i)g. X € A¥*,

Thus A* = (0:Ng). Then, by P.2, Ne Zg/a* and (0:Ng /ps) = O.

~

3.3 Matrix Rings and the Radicaigv U, U*, and W

For many radicals R, it is true that R(Kn) = R(K)n’

where Sn denotes the ring of n x n matrices:with entries
in a ring S. However, this‘is not true for all radicals -
not even for all SP-radicals, For example, the generalized

nil radical Ng, defined as the upper radical with respect

ta the class of all rings with no zero divisors, does not have

this property. A fleld F 1is Ng_ semisimple, but the ring
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of 2 x 2 mafrices over F 1is a simple ring with zero
divisors, and so 1is Ng 'radical; We shall prove now that
the radicals U, U* and W do have this ﬁroperty.

Recall that U, U* and W are all SP-radicals, and

(see Divinsky, (6) ), any SP-radical is hereditary.

Lemma 3.3.1 For a hereditary radical R, in order to

prove that R(Kn) = R(K)%Qﬁfor all rings K, .it is sufficient
to prove it for all rings which have a unity element.
Proof: It is well known that if S 1is a ring with unity,

there is a one-to one correspondence between the two-sided

ideals of S and the two-sided ideals of Sn' An 1deal I
of S corresponds to In’ and an ideal B of Sn corres-

ponds to the set of all members of S which are an entry
of some member of B. This correspohdence is an isomorphism

1,

of the‘lattices offtwo sided ideals of S8 and of Sn{

It is equally well-known that any ring K can be
embedded as an ideal in a ring K with unity. If R 1is
any hereditary radical, then R(K) = KN R(K). Under the
lattice isomorphism, we get R(K)n =K. N R(K)n. Therefore-

if all rings S with unity satisfy R(Sn) = R(S)n’ for any
ring K we have R(K)n = K A R(K)n =K N R(Kn) = B(Kn),

the last equality being due to the fact that R 1is hereditary,
and Kn 4 Kn-. Q:E;Do
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In the sequel, Iij will denote the matrix which,

when multiplied on the right to a matrix M has the effect
of interchanging the i'th and j'th columns of M. Thus

IiJ = (rst), where r,, = ryy = o, Tyg =Ty = 1, rgg =1

for 8 #1, s # j, and rog = O  for all other s and t.
Also, for any element k of a ring K, Eij(k) will denote

the matrix which has k 1n the (i,J) position, and zeros
in all other positions.

Lemma 3.3.2 Let C represent any of the classes Cu’ CU*’

)

or C,. If K is a ring with unity, and if K is in C,
then K. is in C. |

Proof: Let M be a faithful member of the class g
(= zi, where i=1,2, or 3). Define M to be the Cartesian

product of n copies of M. With componentwise_addition
and the obvious multiplication of an n-tuple (ml,m2,...mn)
on the right by an n x n matrix from the ring Kn,'ﬁ

\ v
becomes a right Kn-modﬁie.

Since M - is in Zg» M is a primétmodule. We show

that M 1is also prime., Let N Dbe a non-zero submodule of

M, and let 0 ¥ x = (xl,xe,...,xn) € N. Suppose, say, that
x; #0. Then T also contains XI;,, and this n-tuple has

its first entry non-zero. Let B 4 K, and let B be the
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set of members of K which are entries of members of B.

Then, as was mentioned earlier, 'qu K, and B = B, If

W = (wl,wz,...,wh) saéisfies, xB ='O, where g £ 0, say,
‘then B =0, For let y = (yst)g'ﬁ. Then 0 = ﬁIlJEls(r)yEtl(l) =
(wjryst,o,.,.,o) for all r in K. <Tﬂus WjKyst =0 in

M, which is a prime faithful K-module, éPd wJ.% 0. We

must have y_, = 0, and y = 0. This shows that M is prime

and faithful.
\ .
Now suppose that M is unig¢rmu~ Let U and V be

non-zero submodules of M, and let: u = (ul,ue,...,un) and
vV = (vl,ve,...,vn) be non-zero in U and V respectively.

The remarks in the previous paragraph allow us to assume that

uy and ‘vl are not zero, and we so assume., Let k and

k’ be elements of K such that u.k = vlk' # 0. Then
uEll(k) = VE4 (k') = (ulk,o,...,o) # 0, and this is in

TN V. Therefore M is uniform, provided M is,

Now we consider the case where M 1s rationally
uniform. Let N be avnoh-zero submodule in M, and suppose
that w = (wl,...,wn) #£0 is in TN. As we have seen, we can
‘take LY # O; Let x é'(xl,xé,...,xn) and y = (yl,yz,...yn) £0
be any members of M. Suppose thét Yy # 0. Since M is a

!

rational extension of w,K, there is a k 1n K such that
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x.k € wK, and y.k #£ 0. (This comes’ from Lemma 3.1.3).
Suppose that x.k = w.k’. Then xE 1(k) = (x.k,0 305004,0) =
(wlk',q,o,o) = wEll(k') e N, and _yEtl(k) = (ytk,o,...,o) # 0.

By Lemma 3.1.2, M is a rational extension of TWN. Thus, if
M is rationally uniform, so is M.
Suppose that M is homogeneous, and let N be a

non-zero submodule of M, If X = (xl,xé,...,xn) is in T,
so is xEtl(l) = (xt/’(;)”"’o)'- If we define N to be
{meM ¢ x = (xl,...,xn) € N such that X, = m}, then N

is a submodule of: M which contains all elements of M
appearing as entries of members of W, Consider

{(xl,...,xn) e M: x; € N, 1=1,2,...,n}. This set N’ we
have seen,'contains N. Conversely, if (xl,...,xn) e N,
each x; 1s the first entry of some w; in N, and

lell(l) + s + W (1) = (xl,O O,.oo,O) + (O x2,0’ooo,0)

n ln
+ eee + (0,0,...,xn) = X. Theref.ore X € N, and N = N'.

M 1is subisomorphic to N, and so there is a K-

monomorphism f:M = N. Define T:M -+ N by 'f'(xl,...,xn) =
(. f(xl),...,f(xn) Yo This is one-to-éne, and is a K -homo-
morphism. Also, f(M) ¢ W = TN. This shows that- ¥ and W

are subisomorphic. Q.E.D.

The converse of this lemma is also true.
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Lemma 3.3.3 If C represents any one of the classes

C

v ©

, or C, then, if K 1is a ring with unity, and if .
U* W

K € C, then Ke C.

2

Proof: Let M bé a faithful member of T, ( = Ty » Eo
. : n n n

/

3

or ZK as the case.ﬁay be), and define a K-module structure
n :

-

on M be defining m*k to be mE,,(k). Since M is
faithful as a .Kg module, M*K = 0. Choose m such that
m*K # 0, and let M"= m*K = {mEll(k): k € K]i, This will be.
& member of EK, and will be faithful. ?

To show primeness, suppose that k' annihilates a
non-zero submodulev N of M. Then there is a k in K
such that m*k # 0, m*k € N, and m*k*K*k’ = 0. For any
= = n ' ‘ ! =',
X = (xij) in Kps X = Iy 5 Eij(xij), and mEll(k)xEll(k )

mE) 4 (k)Eqq(%X;9)Ey; (k) = m*k*x, ¥k’ = O, Since m*k = mE, , (k) # 0,

and since M, as a Kn module is faithful and prime,
E 4 (k') € (0: mEj,(k)K ) = (0:M) = O, whence k' =oO.

Thus every non-zero submodule of M’ is faithful, and M’
1s prime and faithful,

Suppose now that M 1is a uniform. K, module, and
let U’ and V' be non-zero submodules of M'. Let
u = m*k and Vv = m*k’ be non-zero and in U; and V/

respectively. Then uK N VK, £ 0, Let x = (xiJ) and
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y = (vg3) De such that ux = vy # 0. Writing x as

3
!

n - ' _ n
zi,J=1 Eij(xij)’ we see ux = mEll(k)x = m( ZJ=1 Elj(kxlj) ).
If it were true that, for t=1,2,...,n, uxEtl(i) = 0, we

. . n ' N _ . .

would have 0 = I _, uxEtl(l)Elt(l) = ux, which is false.
Therefore, for some t,.uxEtl(l) = mEll(kxlt) # 0. Computation
shows that u¥*x, = uxEtl(l), and that .v*y,, =‘vyEt1(l).
Therefore u*x;, = V*y,, # 0, anduiU’ niV' # 0., M 1is

shown to be uniform. \‘

‘ .
o ®

Assume that M is a rationil extension of every non-
zero submodule, and let N’ be a nén-zero*supmodule of M.

Suppose that x = m*k, and y = m*k, #0 are in M, and

let z = m*r be a non-zero member of N'. M 1is a rational

extension of zK, # 0, and, by Lemma 3.1.2, there is an

a = (aij) such that xa € zK, and ya #£ 0. Now, ya =

m( 2321 Elj(k2alj) ), and; as in the previous paragraph,
YaEtl(i) = mEll(keélt) # 0 for some t. Therefore Y*alt =
mEll(kQalt) %}O. We also know that xa e zK . Supgése that
. xa = zw, where W =_(wiJ). Then x*a,, = xB;,(a8;,) =
'mEll(kl)aEtl(l) = xaEy; (1) = &WE, (1) = mEyy (r)WE( (1) =
mEll(rwlt) = mEll(r)Ell(wlt) =’z*w1t € z*K ¢ N’. Therefore

e N shdwing that M’ 1is a rational

y*aq¢ # 0 and -x*alt

extension of N’.
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/.
/)

v

Suppose now that M is homogeneous, and let N’ # O
be a submodule of M. Let z = m*k # O be in N’. Then

zK "~ 1is a non-zero submodule of the K, module M, and there

is & K homomorphism f£:M = zK . The restriction g of f

" to M 1is one-to-one and 1s a K-homomorphism. It remains
only to show that g(M’) € N’. Recall that M = m*K. Let

f(m) = zx € zK_, where x = (xiJ)‘ For.any m' in M,

m’ = mr = mﬁll(r), ‘and g(m’) ;ﬁf(mEll(r)) = szll(r) =

mEll(k)xEll(r) = mEll(kxllr)‘= mEll(k)Ell(xllr)‘=

z*(xllr) € z*K' c N'. The proof is complete. Q.E.D.

Theorem 3.3.4 If K 1s a ring with’unity; and if R is

any one of the radicals U, U¥, or W, then R(Kn) = R(K)n’
Proof: By theorem 2,1.1, for any ring K, R(K) = []{(0:M):

Me EK}. From properties P.1 and P.2, it follows that an
ideal I of K is (0:M) for some M e L, if and only if

K/I 4is in C. Also, if K has a unity, the lattices of
two-sided ideals of K and of Kn are isomorphic, and, for
I 4K, Kn/In = (K/I)n - that is, they are isomorphic rings.

It follows then that K/I € C if and only if Kn/In e C.

Therefore R(K). = [T{I 4 K:K/I eC} = [{I d K: K /I_ e C}.

Using the lattice isomorphism, this gives
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R(K), = [TI{I ¢ K: K /I € C}] =TI{I 4K ;: K /I €C}, ~

and this last intersection is just R(K,). Q.E.D.

Corollary 3.3.5 If K 1is any ring, and if R 1is any one

Proof: Apply Lemma 3.3.1 and Theorem 3.3.4. Q;E.D.

-
, &

3.4 Relations Between the classes ElL z

In order to clarify the relations between these classes,
and between the corresponding radicals, we introduce two new

radicals. For any ring K, define E% to be the class of

all non-trivial homogeneous right K-modules. Recall, from
Lemma 3.2.1, thaﬁ'every member of 2% is a prime module.

Also, for any'ring K, we define ng to be 2% n zg.

An examination of the proofs of Theorems 3.2.2 and 3.2.%
will show that these classes satisfy P.0 - P.5, and that
the radicals they define are SP-radicals. We shall call these

radicals'the homogeneous radical, corresponding to ZH, which

which will be denoted by H, and the uniformly homogeneous

radical, -denoted by HU, corresponding to EUH. From the

definition of EL°, we see that 'z%= Zn gy for any ring

K. The relation betweeh.these classes can be expressed in

the'following diagram (where the arrows represeht inclusions).
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1 - |
: K < <
v Prime / K\( ‘13 Irreducible
K-modules \\\\\\‘-\\\\( 4___.f,——._—-"""z‘K“"K-modules
SUH 4 S
IL / K .

Theorem 3.4.1 Any member of C the class of Tingé K

H)
\

HJ

with a faithful member of ZK’

has no non-zero nil right
ideals and no non-zero nil left ideals.

and let L be a non-zZero nil

Proof: Suppose' that K € Cyps

~

left ideal. If a € L, then, for any x in K,(xa) 1is in

, i
L, and (xa)" = 0 for some n. Then (5ax)n+1

=0, and
aK ‘is a nil right ideal. Since K 1is a prime ring, by
Lemma 2.1.5, akK #‘O,. Therefore, if there is a hon-zero nil
left ideal in K, there is also a non-zero nil right ideal.

We denote such a right ideal by T.
Let M Dbe a faithful member of Zg. Then MT # O, _

and so mT #¥# O for some m in M. Now mT is a K-submodule
of M, and so there is a K-monomorphism f:M - mT (since M,

is homogeneous). Suppose that f(m) = mt. By induction we

obtain £(m) = mt" for every positive integer n. The

n : _
element t is nilpotent, and so f Q(m) = 0 for some ng.
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Since f 1is one-to-one,}we obtain m = O, a-cqntradiCtion.
Therefore there‘gannot be any non-zero nil right or left

jideals in K. Q.E.D.

Corollary 3.4.2 The nil radical N is contained in H.

Proof: For any ring K, let M e Ei, and let A = (0:M).

Then (N(K)+A)/A 1is a nil ideal of K/A, a member of Cys

and therefore N(K)+A = A, and N(K) < A. Therefore

N(K) _g_" TIg(o:m) = M e g5 = H(K). Q.E.D.

Recall that the generalized nil radical Ng

upper radical with respect to the class of all rings with no

is the

zero divisors. -

Lemma 3.4.3 A ring with no zero divisors is in CH.

Proof: Consider K, a ring with no zero divisors, as a
right module over itself. For any non-zero submodule (right

ideal) T, let t #0 be in T. The map L.:K ~ T, where
Lt(k) = tk, 1s a K-monomorphism, which, together with the -

natural imbedding‘of T into K, gives a pair of maps:

which shows XK and T are subisomorphic¢. Therefore K 1is

in If, and is faithful. Q.E.D.’

Theorem 3.4.4 The radical H is contained in Ng..

)
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Proof: From §1.5 and the definition of H, an H-radical

ring K 1s one which cannot be homomorphically mapped onto

H)
a ring cannot be mapped onto a non-zero ring with no zero

a non-zero member of - C and, by the previous lemma, such

_divisors. K is therefore Ng radical. Q.E.D.

- ~

The relation between the’ various radicals is illustrated

_in the following diagram. (C.f. Divinsky,:(6), page 156.)

. ) ’ ‘ . ~ U ' U*
Nee——H —— ' : S
P . SL : Ng
Fig. 3.4.2

By considéring the singular-submodule zZ(M) _of a
- module ~ M, we can dbtain mbre,information*ébout the relations
"between these module classes.
If M is a right K-module, and if A 4K, A c (0:M),
then the additive.abelian group of M can be given a K/A-

module structure as described in the property P.l. Suppose

we denote these modules by MK cand MK/Af It makes sense,

if we consider these two”modples'as having the same underlyihg

set, to compare Z(MK) and Z(MK/A)‘é
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Lemma 3.4.5 If M is a right K-module, and if A q K,
A c (0:M), then Z(M /A) c Z(MK) '
Proof: For m in M, {k € K:mk = 0} = (O:m)K is a right

ideal of K which contains A, and which; pnder the natural

homomorphism K - K/A maps to {k € K/A : = 0} = (O m)K/A
If me Z(M,), then (O:m)y, is an éégent;al right ideal

of K/A. Let I be a non-zero right ideal of K. If
INA#O, then IN (Otm) #0. If InA-=0, then

A « . :
(I+A)/A is.a non-zero right ideal:.in "K/A, and (I+A)/A N
(o:m)K/A *,0‘ This implies (I+A) N (o:n{)K ;AA. Let x = i+a

be in (I+A) N (O:m)K but not in A. Then 1 #0, and
i=x-a is in (O:m)y + A = (O:m), and 1 ¢ I. This

proves that (O:im), is essential in K, and me Z2(Mg). Q.E.D.

Theorem 3.4.6 Let K be a ring, and let . M be a right

K-module such that M € L5, and such that M # Z(M). Then

(1) M has a submodule N # O such that N’é'éz._

‘Either Nc z(M) or Z(M) =
(2) If K 1is semiprime, then Z(M) = O.
(3) If K is a prime ring, then Z (K) = Z,(K) = 0.

Proof: (1) Let M and K satisfy the assumptions of the
theorem, and let (O:M) = A, From Lemma 2,1.5, K/A 1is a
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prime ring, and so B(K), the Baer Lower radical of K,
is contained in A. TLet ¥ = K/B(K). Using property P.2, .
M can be considered a X 'module, and, as such, M 1is in

EI%. From the previous lemma, we have that Z(MK) c Z(MK) £ M,

and so there is an m in M such that (O:m)z 1is not an

? : .
essential right jdeal of K. 'There is, therefore, a non~zero

right ideal I of K such that I N (oim.)-K = 0, It follows

that the X-module homomorphism f£:X - M, where f£(X) = mnk,
is one-to-one on I. I 1s therefore isomorpliic to a K-
submodule of Mg, We show that' I (and hence f£(I) ) 1s

in £2. From P.5, f£(I) 1is in IZ, and thus so is I.

Suppose that V is a non-zero K-submodule of I - that is,

V is a right ideal of K contained in I. Since X 1is
semiprime, V2 #£ 0, and so, forh'néome v in V, vI # O.

Since I 1is a rational extension of every non-zero submodule,
the K-module h'omomorphism of I to V whichmaps i ¢to vi
must be one-to-one. Therefore V and I are' subisomorphic.
Since V 1is any submodule of I, this shows that I e £Z.

-

The K-submodule f£(I) is then in z%, and, by property

P.1, £(I), as a K-module, is in FJ. This is the desired
module N. If Z(N) # 0 then N is subisomorphic to Z(N),
and it follows that N = Z(N) <€ Z(M). If, on the other hand,
Z(N) = 0, then O = Z(N) = Nn 2(M), and, since M 1is

uniform, 2(M) = 0.
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(2) Suppose now that K 1is semiprime. In the notation
of the'previous paragraph, K = K. In order to show that
zZ(M).= 0 it is sufficient to show that 32(N) = O, that is,
to show 2(I).= Q. But if wu e'Z(I), then (0:u) 1is essential
in K, and (0:u) N I # 0, and so there is L e I 1 # O,
such that ul.= 0. Then the map L,:I - I, where Lu(i) = ui,

has a non-zero kernel, and, since I 1is rational over this
kernel, L, =0, and ul = 0. Thus Z(I) EZ[X € K: xI = 0} =
la(I). Then Z(I)2 c la(I)*I = O. Since K 1s semiprime,
z(I) = 0.

(3).Suppose that K is a prime ring. 'If T is any -
two;sided ideal, and if I 1is any right ideal, then O # IT c
IN T. This shows that any two-sided tdeal must meet in a
non—zero'fashion any right ildeal. Now Zr(K) is a two-sided
ideal, and 2Z(I) = I N Z.(K) = 0, Therefore Z (K) = O.

In order to show that Zl(K)4= 0 also, we first show

that, for any non-zero u in I, (O:u) is a maximal right annihi-
lator. Suppose b € K, and (O:b)f; (Otu). If J is a
non-zero right ideal of K, either J N (O:u) 1is zero or

it is non-zero. In the latter case, J N (0:b) # 0, while'_
in the former case, ifo:u) + J‘; (Osu). Since K/(O:u) =

uk c I, K/(O:u) 1is uniform, and it follows that ( (O:u) + J) N
(0:p) 2 (0:u). Suppose that & € (O:u) and J € J are such
that a + J = x 18 in (0:b) but is not in (O:u).- Then
j#0, and J = x-a 4is in (0:b) N J. Thus, again in this °
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case J' N (0:b) # 0. Therefore (0:b) is essential as a
right ideallof‘ K and Db € Zr(K) = O; This shows that
(0:u) is a maximal right gnnihiiator in K.
We choose u in I, u #£ 0. If Zl(K) # 0, then,
since K 1is prime, there is an s 1n: Zl(K) such that

usu # 0, Then O # su € Zl(K); and so 1la(su) 1is an

essential left ideal, and 1a(su)‘0 Ku # 0. Thus théretis

a k in K such that ku # 0, but kusu = 0. Then

su € (O:ku) = (O:u). (The last equality comes from that fact
that (Oiu) 1s a maximal right annihilator, (Osku) 2 (0:u),
and ku ¥ 0.) Thus .usu = 0, a'contradictioh; |

Therefore 'Zl(K) = 0., Q.E.D,

Corollary 3.4.7 If M e i, and.if Z(M) = O, the con-

clusions of the theorem hold for M and K.

Proof: M 1s uniform, and so, by ﬁémma'}.l.B, M is a
——— \ .
rational extension of every non-zero submodule. Thus M € zg.

We then apply the theorem. Q,E.D.

3.5 Rings With the Ascending Chain Condition

Let P be a property of submodules of a right K-
module M. We say that M satisfies the ascending chain

conditlion for P-submodules if, for every increasing sequence

[

NjENy S oo S Nyeo of submodules which all have_\_p.ropei:ty
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P, there is an integér t such that N, = N.,, for all

| t+i
i > 0. This is equivalent to the.statement: evéry non-empty
set of submodules, each having property P, has a maximal
(relative to inclusion) member,
If P ' is merely the property of being a submodule
of M, and if M has the ascending chain condition for P-

submodules, we say that M is Noetherian, If K, as a

right K-module over itself, is Noetherian, we say that K is
a right Noetherian ring. A K-module is finitely generated

if there is a finite set X1s Xp» ...xn of elements from M

such that the smallest submodule of M containing Xys Xps eeoXy

( which we denote by le,xz,...,xn> ) is M itself. It

is well known that a module is Noetherian if and only if every.
submodule is finitely generated.
A submodule N of a right K-module M is called a

complement submodule if there is a submodule A ‘of M such

that N 1s maximal among the submodules T satisfying
Tn A=0. Also wéqsay that N 1is a complement of A. By

Zorn's Lemma, it follows that every submodule has-a complemént
N. Also, A 1is essential in M if and only if O 1is a )
complement for A. The ascending chain condition for‘comple-
ment subhodules of a right K-module willlbe denoted by maxX.-rc.

The next few results are due to Goldie (8).

Theorem 3.5.1 A right K-module has max-rc¢ if and only if M

)

!
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contains no infinite direct sums of non-zero submodules.,

Proof: Let M have max-rc, and suppose that V = @7

3=1

Bj is a direct sum of submodules of M. TLet To be a comple=-
ment of V, and suppose we have defined 'Ti, 0<1i<n, such

that, for 1> 1, T, is a complement of 0% and

R J=i+1. J’

Ti 2 Ti-l + Bi' Then T N 23—n+1 3.z 0, and hence the sum
T + B is direct, and (Tn + B 1) n e%.

n n+l = 0. By

Jj=n+2 J

Zorn's Lemma, there is a submodule T which is maximal among

n+l

the submodules X satisfying Xn ej n+2 J =0, X2 Tn + Bn+1'

It is clear that Tn+l is a complement of @7 B . The

j—m+2

sequence T T coe T of complement submodules can
0g T g s gt of o e
thus be extended to a sequence To.? T g Ty ees g Tn.g Thie

where T is also a complement submodule. It follows by

n+1l
induction that there is an infinite strictly increasing séquence
of complement submodules; contrary to our.assumption. Therefore
max-rc implies that there are no infinite direct sums of
submodules.

Conversely, suppose there was a sﬁrictly increasing

sequence 1 ;, o g coe g g . of complement submodules,

and suppose that Ti is a complement of, Ai’ Now Bi =

T, NA #0, and B_nziZI B cA n T =0 for each n.

i+l i-

It follows that the sum zz=1 Bi is a direct sum. Therefore,
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if there are no infinite direct sums, M must have max-rc. Q.E.D,

3

Lemma 3.5.2 Let M be a right K-module.with max-rc. Then

every submodule contains a uniform submodule.

Proof': Suppose that N 1s a submodule which contains no
uniform submodules. Then N 1is .itself not uniform, and N

such that N, N N = 0,

contains non-zero submodules Nl ahd N 1

1.

and the sum Ni + Nfl is direct. Suppose that, for an integer
n, we have a direct sum N; + Ny + ... N_ + N; of non-zero
submodules of N. Since N; is not uniform, there submodules

N

4 ’ .
n+l and Nn+1 of yh whose intersection is zero, It

+ N’ is

follows that the sum N; + Ny + ... N + N n+l

1 1

direct. It follows that we can construct a sequence , Nl’Ne"“

of submodules for which the sum is an infinite direct sum. By

the previous theorem;, this contradicts max-rc. KQ,E.D.

If M is a right K-module with max-rc, the previous
lemma assures. us that M contains uniform submodules. If we
let {Ua : a € A} be the set of non-zero uniform submodules-
of M, an application of Zorn's Lemma guarantees that there‘
is a subset F of A maximal among the subsets X of A

for which Ean'Ua is a direct sum. This\ F is a finite
set, by Theorem 3.5.1. Suppose that {U, : aeF} = {Ul,Uzg...Un}.

Then V = U1 @ U2 ® ... © Un is essential, for if VN A = 0,
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for some submodule A # O, then A contains a uniform sub-

A ° .where xo € As then

module W # 0. If W=0T
S o

G=Fuyir}3F and T Uy is direct. This contradicts
° dea B .
the maximality if F. These remarks show that, if M has

max-rc, there is a family Ul,Ue,'...,Un of uniform submodules
such that V = 9121 Ui is a direct sum, and is essential
in M.

Remark The integer n appearing in the previous paragraph

is an invariant of the module, called the dimension of M.

It is the maximum possible length of a direct sum of submodules
of M. (See Goldie (8), Chapter three.) Neither the invariance
of n, nor the fact that there are no direct sums bf”more

than n " submodules will be needed for our purposes,

.Theorem 3e5.3 Let K_,be a semiprime ring with a family

{W_: a e A} of uniform right ideals such that £ W_ is
o ‘ aen &

an essential right ideal of K. Then U(K) = O.

Proof: Any uniform right ideal W of a semiprime ring K

is a prime right K-module (and hence W € £x). For if V # 0

is a submodule of W, and if k € (0:V), then Vk = 0, VKk = O,
and Vc la(Kk) = {x:xKk = 0}. Now Kk is a left ideal, and
so la(Kk) 1s easily seen to be a two-sided ideal of K. If

WkK # O, then T =V N Wkk # O, since W 1s uniform, but
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T° c V-WkK < la(Kk).KkK = 0. Since K is semiprime, T

must be'zero, and so WkK = 0, and Wk c la(K). But 1la(k) = 0,
so Wk = O, Thus,lif V is a non-zero submodule of W, then
(0:V) < (0:W). The other inclusion is always true, so (0:V) =
(0:W). Also WK # 0, since W2 £ 0. By Lemma 2.1.%, W

is thus a prime K-module.

If T =2 W_ .is essential in K, where each W 1s
a - :
QEA . :
uniform, and hence in Zi, we have U(K) € n (O:Wa) c (0:T).
' QEA

The proof will be complete if &e can show that (0:T) = O.

But T is essential, so if (0:T) # 0, then (0:T) N T # O;.
and this intersection is a right ideal whose square is zero.
Since K 1s semiprime, this‘is;a contradiction.' Therefore

(O:T) = Oo ) Q.E.D.

Corollary 3.5.4 ‘If K 1is a ring for which K/B(K) has
max-rc, then U(XK) = B(K).

Proof: If K = K/B(K) has max-rc, then as we have seen,

there is a finite family of uniform right ideals whose sum

is an essential right ideal of K. By the theorem, U(K) =.0,
which implies U(K) c B(K). The other inclusion is always true,
so we have U(K) = B(K). Q.E.D. N

Theorem 3.5.5 If K 1is a semipriﬁe ring with max-rc and

z.(K) = 0, then W(K) = O.
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Proof: The condition max-rc guarantees that there is a family

S . | . o
of uniform right ideals Wl, W2, ceey Wn such that T = zi=1Wi

is essential., The argument in Theorem 3.5.3 shows that each
1 >

W, is in Zp. Since Z(W,) =W, n z.(K) = 0, Lemma 3.1.3

guarantees that each Wi. is a rational extension of every
non-zero submodule, and so Wi eizﬁ; If V 1is a submodule
of W (i.e. a right ideal of K contained in Wi), i £ 0
and so there is a v in V such that VW, # 0. Since W,
is rational over all submodules, the map LV:Wi - V, where

Lv(w) = vw, must have kernel zero and hence is one-to-one.
/ ) R

/

Thus Wi and V are subisomorphic, and, since V was any

non-zero submodule, W is homogeneous. This shows that each

1

° . . n .
W, € £J. Thus W(K) ¢ n_(0:W,) < (0:T), and, as in Theorem -
i=1 . !

3.5.3, (0:T) = 0. "Q.E.D.

Corollary 3.5.6 If K 1is & right Noetherian ring, then

B(K) = W(K) and this is a nilpotent ideal.

Proof: It is known that, in a right Noetherian ring K, B(K)
is nilpotenﬁ. The ring X = K/B(K) is also right Noetherian,
and hence has max-rc. t

h)

We now show that Z_(K) = 0. For x in K, (0:x')c

(0:xi+1). Since K 1is right Noetherian, for each x there
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n+l )

is an n such that (0:x%) = (0:x Suppose that x 1is

in Zz(K). Then, if n is as before, and if 'xn £0, X" £ 0
(since X 1is semlprime), and x"K N (0:x) # 0. (since x is
in Zr(K)). Therefore there is a k in K such that x"K # 0

but xx"K = 0, and (0:x7) # (O:xn+1). This contradiction

shows that, for x in Z (K), x" =0, and so Z (K) is a

nil ideal. By Levitzki's theorem, (see Faith (1), Chapter ten)
zr(K) is nilpotent, and thus Zr(K)

We can now apply Theorem 3.5.5 to conclude that W(K) = O,
and so W(K) < B(K). Since we always have W(K) 2 B(K), we

are done. Q.E.D.

Remark It is well known (see, for example, Faith (7), Chapter
nine, Theorem 7) that a semiprime ring K with max-rc and
Zr(K) = 0 has a classical right quotient ring Q which is
semiprime and right Artinian. Convefsely, it is also true

that if K has a semiprime right Artinian right classical
quotient ring Q, then K islsemiprime with max-rc and

Zr(K) = 0. Thus the conditions in Theorem 3.5.5 are familia;_

ones in ring theory.

The concept of homogeneous modules is related to the
concept of basic modules, as introduced by Goldie in (9).
_For Noetherian modules over right Noetherian modules, Goldie

defined a basic modﬁle M to be one which is homogeneous and
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and has Z(M) = O. By Lemma - 3.5.2, a Nbetheri@n modﬁle M
contaihs a uniformréubmodule N. If M is also homogeneous,
M 1is isomorphic to a submodule of N, and thus M 1is itself
uniform. Also 2Z(M) =0 and M uniformlimply (Lemma 3.1.3)
that M is a rational extension of each hon—zero submodule.

Thus a basic module, by Goldie's definition, is in zi{ For

our purposes, we shall define a basic module to be one which

is uniform, homogeneous, and which has 2Z(M) = 0. This is

equivalent to saying a basic module is a member of EE with

singular submodule zero.

The next result is due to Goldie (9).

Theorem 3.5.7 Let K be a right Noetherian ring, and let M

be any right K-module. Either Z(M) is essential in M or

M contains a basic module.

Proof: If 2(M) is not essential in M, there is a submodule
N of M for which Z(N) = Nn Z(M) = 0. Since K is right
Noetherian, there is a non-zero submodule N’ of N such

that (0:N’) is a maximal member of {(0:X): X 1is a non-zero
submodule of 'N}. Then N‘’K # 0, for N'K = 0 implies -

N < Nn Z(M) = 0, which is false. Also, if T 4is a non-zero
submodule ‘'of N’, then (0:T) 2 (0:N'), and the maximality

of (0:N) gives (0:T) = (0:T) = (0:N'). N is therefore

a prime K-module, by Lemma 2.1.4. For any n # 0 in N,

nK # 0 (elsewise ne Nn z(M) = 0), and nK is & Noetherian

!
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right K-module which, by Lemma 3.5.2, must contain a non-zero
uniform submodule M’. Thus M’ is prime, uniform, and has
z(M') ¢ Z(N) = 0. By Corollary 3.4.7 M’ contains a non-zero
submodule M’ in EE. This submodule is basic. Q.E:D.

In the reference (9), Goldie showed that, for the cases
he was considering, the uniform right ideals of a ring serve
as examples of basic modules. One can show that, in a sense,
these are the only examples. This is the importance of the

next theorem.

1

Theorem 3.5.8
(1) A basic K-module M 1is isomorphic, as a K-module,
‘ to'a uniform right ideal of K.

(2) If K 1s semiprime and if Zr(K) = 0, any uniform
right ideal of K is a basic K-module.

Proof: (1) If M 1is a basic K-module, Z(M) = 0, and for
m# O in- M, (O:m) is not essential in K. -Therefore there
is a right ideal I of K such that I n (O:m) = 0. The

K-module homomorphism f:K, = M, where f(k) = mk is one-

3\

to-one on I, so I 1is isomorphic to a submodule of M.
The homogeneity of M guarantees that there 1s a K-monomorphism
of M into f£(I). Composing“this mapping with the inverse
of the restriction of £ to I giVes a K-monomorphism g

from M into XK. M 1is basic, and.therefore uniform, so

g(M) 1is a uniform right ideal of K.
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(2) If X 1is semiprime, and Zr(K) = 0, any uniform
right ideal I satisfies 2(I) = 0. Proceeding Jjust as in -

Theorem 3.5.5, I 1is in z§,~ and so T ‘is indeed basic. Q.E.D.

3.6 Quasi-injective Modules

/

—/‘

In this section, we introduce the concept of a quasi-

injective module, and sketch some of the‘results known about
them. Most of the results of this section are due to Johnson
and Wong and their proofs may be found in Faith (7). Latér
we shall employ these results to obtain generaiizations of thé
Jacobson density theorem.

A right K-module E 1is said to be injective'if, given
a K-module M and a submodule N, ~and given a K-homomorphism
f:N - E, there is a.K—homomorphism g:M -+ E such that the
restriction of g to N 1is f.‘ It is well known that, given
any right K-module M, there is an injective K-module E(M)
and a K-monomorphism i:M - E(M) such that E(M) is an
essential extension of i(M). Furthefmore, if'fhere is another
injective K-module E’(M), and a K-monomorphism i':M - E‘(M)
such that E’(M) is an essential extension of 1i’(M), it ;s
known that there is a K-isomorphism f:E(M) - E’(M) such that
f;(m) =1’(m) for all m in M. ‘Therefore the pair (E(M), i)
is, in a sense, unique up to an isomorphism which respects
the imbedding of M. The pair (E(M), 1) 1is called the
injective hull of M.
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A right K-module Q 1is quasi-injective 1f, whenever we

have N a submodule of Q, and f:N=- Q a K-homomorphism,
there is a K-homomorphism g:Q - Q whose restriction to N

is f. Clearly any injective module 1is quasi-injecpive, and
any simple module is quasi-injective. However, injectives

and simple modules do not exhau§t the class of quasi-injective
modules. For example, let K be the ring of integers, and let
M be the K-module (i.e., an abelian group) of integers modulo 4.
It is well known that, for this choice of K, the K-injectives
are the divisible abelian grqups; SO0 M is neither simple

nor injective. The only submodules of M are M, O, énd'

{0, 2}. Clearly, to show M is quasi-injective, it is
sufficient to shéw:that any homomorphism from N (= {2, 0})

to M can be extended to an endomorphism of M., Let £ be
such a homomorphism. - Then 2f(2) = £(¥) = £(0) =0, and so
£(2) =2 or 0. In the former case, let g(I) =3, and in
the latter case let g(I) =0, where 1 = 0,1,2, or 3. This

gives the desired extension, so M 1s quasi-injective.

Theorem 3.6.1 ILet M be any right K-module, and let

(E(M), 1) be the injective hull of M. (If we identify M -
and 1i(M), we can regard M as being a submodule, and an
essential submodule, of E(M).) If we define

H = Homg( E(M),E(M) ), then, writing the operators of H

on the left, HM is a quasi-injective K-module which is an

essential extension of M., M 1is itself quasi-injective if
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and only if M = HM.

Proof: Clearly HM 1is a K-submodule of E(M), and it
contains M. Since E(M) 1is an essential extension of M,
it follows that HM 1is also an essenéial'extension of M.
Suppose that N 1is a submodule of HM, and that f:N - HM
is a K-homomorphism. We can regard f as mapping N to

E(M). From the injectivity of E(M), there is an h in H
such that h(n) = f(n) for all n in N. If w e HM,

t :
w =55 hi(mi)’ where h;, € H and m; € M. Then h(w) =

i

2121 hh,(m;) € HM, and so h(HM) c HM. Therefore the restric-

tion B of h to-HM is an endomorphism of HM which

extends f. This proves that HM is quasi-injective.
Clearly, if M = HM, then M 1is quasi-injective.

Conversely, suppose that M 1is Quasi-injective, and let

heH TIf h=0, then E(M) =h™1(M). If h#O0, then

h(E(M)) # 0, h(E(M)) N M # 0 (since E(M) is an essential

extension of M), and so hfl(M) £ 0, and W= Mn h-l(M) # 0.

The restriction of h to W 1is a map g:W-~ M which, since

M is quasi-injective, can be extended to & map g:M - M.

By the injectivity of kE(M) there is h in H such that

h(m) = g(m) for all m in M. Consider (h-h)M. If this

were non-zero, then (hJE)M N M#£O0, and there are m and

m

’ in M ‘such that m = h(m’) - h(m’) # 0. Then h(m’) =

h(m’) -m=g(m’) ~-me M, and so m’ € W. But this gives
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g(m’) = h(m’), and we obtain h(m’) = g(m’) = g(n’) = H(n’),
and m = 0, a contradiction. Therefore (h-h)M = 0. Then,
for m in M, h(m) %/H(m) =g(m) e M, and so h(M) € M,"
and HM c M. Since -M € HM, we have HM = M. Q.E.D.

In the future the quasi-injective module HM obtained
from the injective hull E(M) of M will be denoted Q(M).

Remark Using the same notation as in the thedrem, for any
h in H, we have h(HM) c HM. Therefore the restriction

of h to HM i1is in A

Hom( Q(M),Q(M) ). It follows then
that we also have Q(M) = AM.

Lemma 3.6.2 Any complement sub@gdule of a quasi-injective

module M 1is a direct summand of M.

Proof: Let M be quasi-injective, and let N be a complement
submodule of M. Suppose that N 1is a complement of L.
Then N 1is maximal among the submodules X of M such that

XN L=0. Consider the map go:N + L » N defined by
go(n +a) =n, where n.¢e N and a € L. We claim that

this can be extended to a homomorphism f£:M - N. This is
sufficient to prove the theorem, for then M =N & (l~f)M, -

for any m in M may be written m = f(m) + (m - £(m)),

and if n = x - £(x) 1is in the intersection of these submodules,
f(x) € N, ff(x) = gof(x) = f(x), and we have n = f(n) =

£(x) - £f(x) = £(x) - £(x) = 0. .

Consider the set of all ordered pairs (Y,t), where
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Y is a submodule of M containing N ® L, and t is a
K-homomorphism from Y into N extending gy We partially
order this set by saying (Yl,tlj >> (Y2,t2) if and only if

Y, 2 Y,, and tl(y) = tg(y) for all y in Y,. It is

easily verified that this partial ordering is inductive, and
so we can apply Zorn's Lemma to obtain a maximal extension

(W,g), relative to this ordering, of 8,c Then W > N+ L,
g:W - N 1is a K-homomorphism which is an extension of 8o°

We claim that W = M, and g is the desired map.
For suppose that W # M. Since M is quasi-injective, the
map g:W - Nc M can be extended to a homomorphism f£:M - M,
and f(M) & N. (For f(M) € N implies that (M,f) \ (W,g),
contradicting the maximality of (W,g)). Then f£(M) + N % N,
and so (F(M) + N) N L # 0. Let f(m) + n=a # 0, where a
isin L. If me W, then f(m) = g(m) is in N, .and a

is in L N N =0, which is false.; Thus m ¢ W. If we set

T = £"}(N + L), we see that m 1is in T, and that T D W.
Therefore T'; W. If we let ’ff b¢ the restriction of £
to T, it is easily verified that (T, g f') >(w,g),
contradicting the maximality of (W,g). Thus W =M, and
g:M - N extends 8o Q.E.D.

A right K-module is said to.be indecomposable if and

only if M cannot be written as A & B, where A and B
.\ .

are non-zero submodules.

<
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Corollary 3.6.3 A quasi-injective module M is uniform if

and only if it is indecomposable.

Proof: Clearly any uniform module is indecomposable.
Converseiy; if M 1is not uniform, there are submodules S

and T, both non-zero, such that SN T = 0. Zorn's Lemma

can be applied to obtain a complement S’ of S containing T.
By the theorem, S8’ 1s a direct summand of M, and S’ # M,

\

S’ # 0. This shows that M is rot indecomposable. Q.E.D.

Theorem 3.6.4 If M is any right K-module, the following
are equivalent: "
(1) M is uniform
(2) QM) 4is uniform
(3) Q(M) 1is indecomposable.

Proof: (1),'together with the fact that Q(M) 1is an essential
extension of M implies'(2), and (2) clearly implies (1).
Since Q(M) 1is quasi-injective, (é) and (3) are equivalent

by Corollary 3.6.3. Q.E.D.

A ring is said to be regular if, for every x there

is a y such that x = xyx. If X = Xxyx, then e = xy 1is

idempotent, and |x > = | e >. (Recall that | w > means the

submodule - in this case, the right ideal - generated by
w.) Consequently, in a regular ring, every principal right
ideal is generated by an idempotent. Conversely, if every

principal right ideal in a ring K 1is generated by-an



T2.

idempotent, then, for any x, |x> = |e>, and e = xy for
some y in K. But x = ew, for some w, and ex = eew =,
ew = X, Therefore Xx = ex = XyX, and K is a regular ring;

If y is a left quasi-regular element in a ring K
with unity, then X +y - xy = 0, and (1-x)(l-y) =1, so
1-y has a left inverse. Conversely, if K 1is a ring with
unity, and if 1-y i; an element with a left inverse =z,
then writing x = 1l-z, we have (l-x)(l-&) = z(1l-y) = 1.
This implies that x + y - xy = 0, and y is left quasi-
regular. '

A unit of a ring K with unity is an element with a
(two-sided) inverse. If K 1is a ring for which.the non-

units form an ideal I, we call K a local ring. If K 1is

a local ring, no element of J(K) can be a unit (for if it

were otherwise J(K) " would contain 1, and 1 is clearly

not right or left quasi-regular),band so J(K) c L. Conversely;/
if x e I, then 1-x ¢ I (for otherwise 1 = 1-X + X

would be‘in I, and hence a non-unit, whichlis ébsurd) and

so (l--x)"l exists. Ac above, this implies that x 1is left
quasi-regular, and I 1is a left quasi-regular left ideal,
that is Ic J(K). Consequently, in a local fing K, the
set of non-invertible elements of K is precisely' J(K).

It follows at once that, in this caée, K/J(K) is a division
ring.

It is a well known theorem, known as Schur's Lemma,

that, if M 1is a simple right K-module, then HomK(M,M) is
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a division ring. Simple modules are clearly indecomposable
quasi-injectives, so the second part of the following theorem

provides a generalization of Schur's Lemma,

’

Theorem 3.6.5 Suppose that Q is a quasi-injective right

K-module. -Denote A = Homp(Q,Q). Then J(A) = {aea: Ker(a)

is essential in Q} and. A/J(A) 1is a regular ring. Further-
more, A is a local ring if and only if @ is indecomposable,

and, in this case, J(A) = {aea: ker(a) # 0}.

Proof: Let I = {aea: ker(a)h’is essential in Q}. If \eA,
let L Dbe a maximal member of the set of all submodules X
of Q which satisfy X N ker(a) = O. Then L & ker(ir) is
essential in Q. For if T % 0  is a submodule of Q either

TcL or T+ L~¥ L, in which case (T+L) N ker(r) #O.

In either case it follows that T n (ker(:) @ L) # O. Define
f: XL - Q@ by sétfing £ Ax) = x. If Ax = Ay, where X
and y are in L, then x-y e L n ker(,) =0, so f 1is
well defined on L. * Since Q 1is quasi-injective, f can be
extended to 6:Q@ » Q. A simple calculation shows that
(» - 281) (L & ker(r) ) = O, S0 A - A8x e I

Since ker(a - B) 2 ker(a) N ker(B), and since
ker(ia) 2 ker(a) it follows that I ;s.a left ideal of A.
If aeI, since ker(l-a) n ker(a) = 0, - we have ker(l-a) = O.
If T = (1-a)Q, then the map g:T - Q, where g( (1-a)q) = q,
is'well defined and can be extended to a map ©6ea. Then

6(1-a) = 1, the identity map on Q, so (1l-a) has a left
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7)'1’0

Therefore I 1is a

left quasi-regular left ideal, and I < J(A).

Suppose now that X\ € J(A).

a 8 € A such that A - a6) € I.
left and right quasi-regular, and
I is a left ideal, ) = (1-:0)7%
J(A) < I,

and that A/J(A)

Therefore and J(A) =

J(A) = I,
Suppose now that A + J(A)
of A/J(A).

Then A2 - X € J(A),

essential in Q.

direct. Fdr if Ax =

\ox = (x-xg)x"=

Consequently, if Q

x! - \xx!’ for x, x’ in X,

0. Also, (lg-k)x =0

Then? as above, there 1is
Since X8 € J(A), A8 1is
(1-\8)"T exists. Since

(1-20)\ = (1—>\e)’l (x—xéx) e I.

I. We have proved that

is a regular ring.

is an idempotent element

and X = ker(he—k) is

Now we claim that the sum AX + (1-A)X is

then

So we have AX = 0.

is indecomposable (and hence uniform,

by Corollary 3.6.3) and if x + J(A) is idempotent in A/J(A),

then either A\X = O,

or (1-A)X =0, and

of Q implies that A/J(A)

and 1. Since A/J(A)

A/T(A) there is a y such that
and yx

showing that A/I(A)

non-unit in A, ‘then, for some

(1-a§)a e J(A). Since A/JI(A)

implies that either o or

and A € J(A)

(1-1) € J(A).

is regular, given any x # O

is a division ring.

B € A,

(1-aB)

(since X 1is essential),

Thus the indecomposability

has no idempotents other than O

in

XyX = X. Therefore xy

are non-zero idempotents and so these are both 1,

Now, if a 1is a

we have a-afa =

is a division ring, this

is in J(A). The latter
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implies that 1 - (1—@6) = of is invertible, so o would
be invertible, which.is false. Thereforé,-if Q 1s a non-
unit in A, we have a € J(A). Since any member of J(A) - is.
a non-unit, the non-units form an ideal and A is a local ring,
provided @ is ihdecompoSable. |

| ‘Conversely, assume that A 1s a local ring. If Q
is not indecomposable, we can Write Q=S86&T whefe S énd
T are non-zero. The map p:Q - Q, wheré p(s+t) = s, is
an idempotent eleméntipf A, and so‘%p(l—p).= 0.. Since.
A/IT(A) is a’diyisiod/ring, either p or l-p is in J(A)
and'either ker(p) = T or ker(l-p) =.5 is essential in Q.
Since both S and - T 'aie not essential, @Q must be indeqom— '
posable. | | |

I Q fis indécbmposable,.and»therefore QQiform, (vy

‘ Corollary 3.6;3),_anyvnonezero submodule ofm Q. is essential,.

and so it follows from the first part of the theorem that
J(A) = {a: ker(a) %'O]. Q.E.D. -

‘Theorem 3.6.6 If M is a prime module, then Q(M) is prime,’

and (0:M) = (0:Q(M)).

Proof: Recall that @Q(M) = HM, where H = Hom (E(M),E(M)),
and where E(M) 1is thé‘injec?ive huiliof, M. 'Suppoée that T
is a non-zero submodule of @Q(M). TN M #0, since (M)
istan essential extension of M; Frdm.the primeness of M,

we have (OﬁM) - (o: T ﬂvM) > (0:T) 2 (0:Q(M)). However,
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it is clear from the fact that Q(M) = HM thét  (O:Q(M)) > (0:M).
Theréfore (O-T) (O Q(M )) = (0:M), and Q(M) is prime by
Lemma 2.1.4. Q. E D

'For a right K-module M, and N a subset of M, let

NC = {keK: Nk = 0}, and for T a subset of K, let T' =

{meM: nT = 0}. (TM)F' is denoted T and (NK)M is denoted

MM, We note for future reference that, if M is a prime -

 K-module, then KM = 0.

‘Theorem 3.6.7 Let @ be a quasi-injective right'K—module,

- and let A = Hom; (Q,Q). Then Q has a left A-, right K-

bimodule structure. If N. ismény A-submodule satisfying

89 = W, then, for any x in Q, (MAx)E? = N + ax.
i ‘ ~

Proof: Let A = N° and B = xg. Then A% = N. .. Simple

computation shows B = x = (AX)K.

Clearly N + AX C (N+Ax)KQ, and so it.suffices to
prove (N+AX)KQ CNFAX. '.Now’ (N+AX = ¢ n (Ax)" =AnN B,
so we only need show (A N B)Q c N + AX. Suppose -y4€ (AnB)Q,
4

and consider @:xA - yA defined by 6(xa) = ya. If xa = xa’,

K .

where a and al - are\in A, then a-a’ €e AN x =ADN B.

Since ‘ywe'(AnB)Q, v(ia-a’) = Q,: and the mapping'ié Well-

defined. This is a K-homomorphism from XA to yAc Q, and

the qdasi-injectivity Qf Q implies that 8 :may be éxtenﬂed
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to A:Q - Q. Then ixa =ya for @il a in A, so (\x-y) €.
(Xx-ije AQ = N,. and Eyle N + AX. Q.E.D. g

Corollary 3.6.8  Suppose that Q is'quési-injectivé, and

that, KQj= Q. It 'xl,,x ;,xn are ény elements‘from Q,

2’.'
n | 3 XQ _ n

then (Zi=1_AXi)=‘ = Ziﬁl AX

Proof': Taﬁingl N =0 1in the theéfem,’s;ncea okQ - k9 - 0,

we have (/\xl)KQ = AX

. ) : \
1 "The rest follows by the obvious

N
induction. Q.E;D.
o }

‘We shall say thgt the elements XqsXpseees X, .of Q

are A—independenﬁ if, for each 1, Xy 4 ZJQI'AXJ.-
| 2

Theorem 3.6.9  (Density theorem for quasi-injective modules)

If Q 1is a“quasi—injectivé rigﬂt K-module such that

KQ =0, and if xl,x2,...,xﬁ ‘are A-independént elements of
Q (where A = Hom,(Q,Q) ), then there are right ideal's_

'Al,A2,.,.,An in K such that xiAi # 0, xiAj'= Q- “for
j-# i. PFurthermore, if yl,yg,.;.,yn are elements of 'Q

such that y, e XAy for each i, then there exists k 1in

K such that _xik = Vi for 1= 1,2,...,0

. R _ e n K
Proof: Let [Ai&f (Zj=l AX )

i . This is a right ideal in K,
A T | " ‘
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and, by Corollary 3.6.8, AiQ = LJ —1 AXyo which does not
o J# J

contalp x;. Therefore xiAi # 0, bgt xiAJF;:O for J # i.

Suppose now that y; is in xA., 1 = 1,2,...,n, and suppose

i
™

Vi = X385, where a; € Ai. _Then k 1=1 &5 Wlll satisfy

xik =V for all 1i. QfE.D.

Remark If M is a faithful, irreducible right K-module,

then M 1is simple‘ehd therefore quasi-injective. Also,

KM = 0, and A ‘is a division ring. Furthermore, if X

Xl’XQ”"’Xn" and A An ‘are as in the theorem? then

1,0..’
the s1mpllclty of M glves XiAi = M. Thus, in this case,

if ‘xl,xg,:..,xn are A-independent, and if Yyseees¥y are

A

arbitrary, there 18 a k 1in K such that xik'= Vs for
i=1,2,...,0. Th;s‘is the classical Jacobson Density Theorem.

* Remark If M is a prime right'Kemodule,"Q(M) is quasi-

injective and prlme (Theorem 3. 6 .6), and so KQ(M) = } - and
Theorem 3.6.9 is appllcable to Q(M). ‘We shall make use of
,-thlS fact later.  ‘ | )
In Theorems 3.6.4 and 3.6.6, we have seen that the

: propertles of prlmeness and unlformlty are transferred from

M to Q(M), and from - Q( ) to" M. We now show that thls

is-also trﬁe for the-property of‘being arratronal extension

of every non-zero submodule.
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Theorem %.6.10 Let M be a right K-module, E(M) the

injective hull of M, H = HomK(E(M) E(M)), and Q =
The following are equlvalent -
(1) @ is a rational extension of'every non-zero
‘submodule. | |
(2) M is a rational extension of every non-zero
submodule.

(3) A = HomK(Q,Q) is a division fing.

Proof': The property of being,a rational eXtensibn of every
non—zerb.submodule is inherited by hon—zero supmodules, so.
(1) implies (2).
We show (2) implies (3). Since rational extensions
are essential extehsions, (2) implies that M ‘is uniform.
By Théorems 3.6.4>énd_3.6.5, A 1is a local ring, and J(A) =
{a: ker(a) # 0}. WeiWill prove that J(A) = O. -
Let a € J(A), ‘and let L = ker(a). Firsﬁ of all
Mc L. For otherwise, a(M) # 6, M ﬂ“a(M) £ 0, and S0
- W= {me M a(m) e M} has a(w) # O Now the;restriction, £
of a to W has kernel LNM#O (since 'M¥His eésential .
in Q). Since. M 1is a rational extension of Ltn M,' we havém
0 = £(W) = a(w) ‘a, contradiction. This ShOWS“that‘ ae J(A)
implies"a(M) = O;: Recall now that @Q =HAM. (See the remark

following Theorem 3.6.1,); Thus apny . @ in @ may be written
q ='Zi21 Aymy s and a(q) = Zl -1 a&i(mi). nSihce ae J(A)»

axg € J(A),_axi(m.) = 0, and so a(q)»= 0. Thus J(A) =0,

i

3
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and A 1s a division ring.
| Finally we show (3) impliesf(l). Suppose O %'X § T,

where X and T are éﬁbmodules of Q, and suppose Zf:T - Q
if a K-homomorphism with £(X) = 0. Q is quasi-injective,
and so f can be.exteddégvto a member A jof A.  Now iffﬁ

A # O,'x is invertible,'since A is a di;ision ring, and éo
A is one-to-one. Buﬁ £(X) = A(X) = 0. Therefore A =0,
and so f(T):= O; Thié,éhows_that Q :ié a rational extension
‘of the submodule X, Since X 'waéﬁan afbit{ary non-zero
submodule of Q,.‘we arefgpné.' Q.E.D. | |

[

U-

3.7 Density Theorems for the Radicals H° and W -

In this section, we prove some results which generalize
the well—known’Jacobson"Density Theorem., Also we will prove
that the radical W coincides with the "weak radical of Koh

- and Mewborn (17).

We shall say a ring' K. is an ﬁ.w.~£ransitive ring
if and:only if: ,
(1) There is a local ring A and a left A-module v
. such that K acts faithfully as a subring of -
HomA(v,V), nThat is, V has a left A-, right K-

bimodule structure;, and Vi, is faithful.

(2) V contains a K-submodule M which is uniform,

and for-which AM ="V,

[ . <~
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.(3) If xl,xé,...,xn is any set of A—indepequht
| elements of vV, and if Yqs¥pseees¥y is‘any set
of elements from M (note - not from anywheré in
V) then there exist k in K and an invertible
element A 1in .A such that xik-= Xyi,' for
i=1,2,4..,0.

Furthermore we sha;l‘say that a ring K ‘is W-transitive

if K is L.W.-transitive, and if the local ring ‘A 'is a

division ring.

Theorem 3.7.1 . A ring - K 1is an L.W.—transitive ring if and

1

U

ZUH Thus an H -

K

only if K has a faithful module M 1in
semisimple ring“iéaa subdirect sum of L.W.-transitive rings.

UH

©'» and that (0:M) = O.

Proof: Suppose first that M e &

Let V = Q(M) and A= HomK(V,V); Since M is uniform,
Theorems 3.6.4 and 3f6:5 tell us that A is“a iocél_ring.'
V, as a right K-module, if faithful by Theorem 3.6.6 and the
fact that fM is pfime and faithful, and the remark following
Theorem 3.6.1 says tbat. AM = V. Thus?(l) and (2) of the |
definition of L.W.-transitlve rings . are satisfied. Suppose b

now that X;,Xy,...,X, are A-independent elements of “V,
and ¥y, Yps e Vo are.any'elements of M. Since v

is a prime K-module (Theorem 3.6.6), we can apply Theorem
%.6.9 to find right ideals Ay i =1,2,...,n, such that

x;Bs # 0, but xA, = 0 for 1 £ j."Sipce M is
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uniform, V 1is uniform by Theorem 3.6.4, and so

P=Mn ( xiAi) # 0. M 1is homogeneous, so there is a

i=1

D

v K-monbmorphism f:M - P which,-byﬁﬁhe Quasi—ihjectiVity 6f
V, can be extended to a member ) Cor 'A.. If ker(x) # 0,
then O.% Mn ker(n) < ﬁer(f), which is false. Therefore
ker(\) 1is zéro, and )\ is a ﬁonomorpnlsm. By Theorem 3 6 5,

4 J(A) and so x—l ex1sts Now x(y ) = f(y-) € Pcx; A

for each i, so, by. the second part of Theorem 3.6.9 there

is an element k of K. such that Xik Ay. for i = 1,2,.;.,n,

1 u
b

K 15 therefore L.W.-transitive.
ConVersely suppose thaﬁ K “EE L. W'-transitive, and
'suppose that v, A, and } M satlsfy the condltlons.  We
choose m % o in M, and let I = {k e K: mk = o}. Consider
‘the righu Kfmoéuie K/I. This is 1somorphlc to' mK ¢ M, and-
so K/I is uniform. We show that  K/I is hoﬁogéﬁéous. If
X/I is‘a noNn-zero submodule of':K/I,'"Where X 1s a'right_'

ideal of K, X %vI; then mX # O. Suppose x € X 1s such

~that mx # O. ‘By condition (3), there are k 1in K. and_‘x
in A, A invertible, such'tbat mxk = xm. Consider the -
K?module homomorphism f:K - X/I, wherg ‘f(s) =-xks -+ I.

The kefnel of f ié fs:xks € I} = {s: mxks = 0}. iS;ﬁce:'

A .is invertible, this kernel is precisely {s: msizvo}v=.I.

Then f induées a K-module monomorphism f:K/I - X/I, and

so K/I and - X/I are subisomorphic. This shows that X/I
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is homogeneous. If s (O-K/I) then Ks ¢ I, and

mKs =SO. For any yf 1n. M Lhere are- Gﬂ:ln A, B invefﬁ—
ible, and r in K such that mr ='ey. Then Bys = mrs = 0O,
end so ys = 0. Thus if s e (0:K/I), Ms = 0, .and so

Vs = AMs :‘;i 0. Since K- acts. faithfuliy._on V, this implies

s = 0. Thus K/I is a faithful r‘i’é‘;ht K-module which is
homogenous and therefore\prlme (Lemma 3. 2 1) ‘ K/I is'therefore
uniform, prlme, homogeneous and falthful, and 1s therefore a

falthful member of LEH.'

Now, if K 1is an HU: semiSimple ring,.'K is a

subdirect sum of rings iKa with a faithful member of EEH Q.E.D.

Theorem 3.7.2' A ring ‘K is W—transitive if and only if K

has a faithful member of Zg. . Also, a W-semisimple ring is .

a subdirect sum of W-transitive rings.

Proof: Suppose M is a faithful member of' Ei. Then, asein

the prev1ous Lheorem, we can show that K acts in an L.W.-

tran51t1ve fashion on ‘Q(M). In order to show that K is

- W-transitive, it suffices to show that . A = HomK(Q(M), Q(M))

is a division ring."Bdtrthis follows immediately from the

fact that M 'is a'rational extens;on of each non-zefo'sub-

module and from Theorem 3.6.10.

'Conversely, euppose that 'K1 is'W—trensitive, and that
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V, A, and M satisfy (1) - (3) of the definition. As in
the previous theorem, we can choose m # 0 1in ‘M and show |

that K/I;' where I = (o:m);” is a faithful.mgmber of ZEH.

In order‘to'complete the proof it is éufficient to prove
that K/I is a'rational,extension of every non-zero submodule.
Suppose that f:T/I -» K/I is a K-homomorphism with kernel-

J/I, where J and T are right ideals. of K, and I < Jc T.

We will show f = 0. If £ #0, let f£(T/I) = X/I # 0,
" where X 2 I, and X is.a righf ideal of K. Theh mX # Q,
_and>there exist r in K, i in X, and A in A, )
invertible, suchfﬁhat mxr = xm ¥ O.  Since { is invertible,
(O:mxr) = (O:m) =»I§ and” xr ¢ I. But mxrI = \mI = 0, |
whence xrI < I. Now O # xr + I € X/I ='f(T/I), land SO we

can let xr + I = £(t + I) for some t in T, t not in I.

it

Then f(tI‘+ I) = [f(t+I)1I = (xr+I)I = erv+ I=0 (in.K/I),
so tIc J. (Recall J/I 1is the kernel of f).. | |

B Either' mt and m aré dependént or they are indepen-
dent. If mt and mv,éreAAfindependeﬁt, there‘aré s in K

and 8 'in A, 8 invertible, such that mts = 0, ms = ém # O.

\
!

‘Then ts e IcJ, but s ¢ I, = - -

If mt and m ;arerk-dependent there is a 6':19 A
(a division ring)‘éﬁcﬁ‘that';é (mt)'=km.; The (O0:mt) = (O:ﬁ) =
I, and it follows that I  I. However, tJ ¢ I, for S
tch I'-impiies mtd = 6, whence hJ =_O:F and J C I, which

~ is false. Thus it foilows that (tJ+I) ;»1 and that
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(td+I)/I n J/I ¥ 0 in K/I (recall X/I is uniform).
Therefore Y = (t3+1) 0 7 3 I, and mY # 0. As we-have
seen=befofe, there are y in ?, d in X, and y 1in  A
such that 'myd =wym # 0, and. y' = yd satisfies y'I c I
but y}-y I. Now y’ €Y, so we.can write vy o= tj + 3 € J,
" where 'tj’-}z I.. If j eI, then tj e tI < I, which is
false. Again in ﬁhis Cése we have an element s (=j) such
that s £ I, but ts e J. : '

~ Now O = f(ﬁs%I) = f(t+I)§ = (xr+I)s = xrs + I, so
xrs € I. But fheﬁ, s € (Q:mxf) = (0:m) = I,  a contradiction.
This shows that f = 0, and gherefére K/I 1is a raﬁional.
extension of én érbitrary submodule J/I # O.
'Now, if K is a-W-semisimple ring, K is a'subdiréct
5 whefe each Ka has a’faithful member of

sum of rings Ka

5 og
Z . Q.EoDo
KCt

A ring A is a right order in'a ring- B if A is

a subring of B, if every element of A which is not a
zero~divisor ih A is invertible in B, and if every eiement
of "B can be written as uv_l,. where u, v are in A, and
v is not a zero—divi%or in A. | |

In (17), Koh and Mewborn defined a ring to be a weakly

transitive ring if:
(1) K ‘acts faithfully as a ring of linear transforma-
tions on a left vector space v over a division

rihg D,
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(2) iﬁere is a right order’ S in .D, .and a left
s-, right K-submodule M of |V which is a
Bimodﬁle,'which is unifiorm as‘éhK—mbdglg, énd

' Which satisfies V = DM, | B

(3) If XysXgse.s,X, 1s a finite D-independent set
.of elements from M, and if YisYpseees¥y are

any elements of M, then there are k in K
and s in S such that xk = sy, for i =1,

3

2,...,1’1.f

_ - Furthermore, they defined a radical cla?s, whiéh,wé‘
‘4will denote by W¥, by.défining w*(K) = TT{I‘Q K: K/I 1is .
weakly transitive}. - o | | |

| We now show that a ring acts in a W-transitive fashion
on some vector space if and only if it acts in a weakly
transitive\fashion on some (perhaps - different) vector space.

- It is an immediate consequence of thils fact, the -previous .

theorem, and Theorem 2.1.1 that W(K)“= W*(K)  for all rings K.

' Theorem 3.7.3. A ring K is wéakly transitive if and only if

it has a falthful member of L. .
| Proof: If K“\aéps in a weakly transitive fashion on V,
- the.same arguménts as in Theorems 3.7.1 and 3.7.2 give a

faithful member of zi.
Conversely, . suppose that ‘M is a‘faifhful member of

Zz.' As ;n_the first part of the proof'of Theorem >.7.2,
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A =»HomK(Q(M),Q(M)) is a division ring, and K acts in a
W-transitive fashion on Q(M). We will show that K acts
in a weakly transitive fashion on QM).

Let 'S = Hom,(M,M). Since M 1is a rational extension

X
of every non-zero submodule, every member of § 1s a mono-
morphiém,.and S has no zero divisors. ‘The quasi—injecti?ity
- of Q(M) guarantees that each s 1in & can bé‘extended to
and XE are two egtensions'of s in.

N a A in A. Ifi Ay

S, then Mc ker(is - A.). By Theorem 3.6.5, - - A, € J(A) = O.
S, ‘the = 7 = Aol 1™ Ao .

Thus any element s in S has a unique extension S in LA.
" In this’Wa& we have induced a'mappibg from S jto g_fwhich
is easily verified‘to be a. ring monomorphism. |

| We now show that § = {s: s ¢ S} 1is a right'Order in
A. Let A e A, X #0. Then W = {m é‘M: A(m) € M} is a
non-zero~K:submodule of M, and A(W) M. Since W and W
are subisomorphic, there is a module monomorphism f:M - W.
We can regard f as a mapplng from M to .M, that is; as
 a member of 8. Then k f M - W - x(w) E ‘M, and ‘xf can
.~ also be con51dered as a member of S Now Af and AT | |
agree on M, and so- xf -~ %f =8. Thus A =5 (T)_l. Sincé‘
A 1is a division ring, any non-zero ﬁemberyof_'g clearly has

an inverse in A, S0 3 is a right order in A -
Flnally suppose that Xq 5 x2;'...xn are‘A:independent
members of M,' and that yl,ye,...,y are~ihf M. In the proof

: o _
of Theorem 3.7.1, it was shown that'.xik = xyi for some k
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in K and X € A, where X\ was an extension of a map
f:M - P c M. Ciearly, in this case, kh= t. This completes

the proof. Q.E.D.

3.8 Prime Rings with Zero Singular Ideal and a Uniform Right Ideal

In Faith (7), page 129, the following probiem is
~posed: 1if K 1s a prime ring with a uniform right ideal

U and if 2 (K) = O then § = Hom, (U,U) 1is a right Ore

[y
1

domain (that is, S is a right order in a division ring).

Ir xl,xg,;..,xn are S-independent elements of U, and if

yl,yé,...,yn are 'in U, does there exist s # 0 in S
" and k in K such that x;k = 8y;, i=1,2,...,n. 2

If K and U are as above, then U, as a K-module,
i. This follows because the argu~ ~

)
K}

is a faithful member of I

ment in Thebrem 2.5.5 shows that U 1s in I and since

U-(0:U) = 0, and since K is a prime ring, (OJU) = 0, 1In
 Theorem 3.7.3 it was shown that the conclusion of the problem
is valid provided we regard U as“% submodule of Q(U), and

choose our x;'s to”beiA—indepéndent (A = Hom,(Q(U),Q(V))

not S- 1ndependent
The follow1ng example shows that this is the best that
- can be done, and that the congecture 1n the form stated above

is false.
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Example 3.8.1
| - Let 'K» be a ring with  1 and with no zéro—div;sors,
and for which K, as a right modﬁle ovér itself, 1s uniférm,
but for which K is not uniform as a left module over itself.
Such a ring, or rather.one with “right”fand.”left” inter- |
_changed‘iglgiven in Example 9, page 71, of Divinsky (6).

+ K is uniform, and, since' K has no zero-divisors,

K . ,
z.(K) = 0. The ring. K is a right/order in a division ring
D, and Q(KK) = D, asié"right K-module. K 1is isomofphic

to  Hom,(K,K), and the embedding of Hom,(K,K) into

K

1

HomD(D,D) = D is Jjust theﬂémbedding of K;Jintb D. The

ring D 1is a division ring, and any two -elements of D are
left D-dependent. |

However, since K; “as a 1efﬁ;K—module, is not uniform,
there are x and .y 'noq—zero in lK? such that Kx N Ky = O,\“
and = x and,;y are left }S"(i,§. ;K)x{independent. If ﬁhel
conjecture were true, there would exisﬁ- E"in <K and s
in S (i.e; K) such that xk = sy andijs %'sy,.'where
sy # 0. But then' (x-y)k = O,. and; sincé K Hés no zero

divisors, either x =y "or k = 0, both of which are false.

Therefore the éohjecture in its original form is false.

The following resuits show how Goldie's Theorem on
prime rings may be placed in a context similar to that of

the’cldssical_densi%y theorem for primitive rings.
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SUppése}thgf M is a faithful member of 22, and that
Z(M) = 0. (That is, suppose that M is a faithful basic
modgle.) Then D = Hormy( Q(M), (M) ) is a division ring,
and K acts in a.W—fransitive fashion on -DQ' (Théo?em %.7.2).

Thevnext{theoremfshows what happens when p? is finite-

dimensional.

Theorem 3.8.2 Let M. be a faithful basic module, and suppose

that Q@ 1is finite-dimensional, where Q = Q(M), and

D = Hom(Q,Q). Then K 1is a right order in the simple

" |

artinian ring L = HomD(Q,Q).

Proof: The ring L is the ring of all endomorphisms of a

~finite-dimensional vector space over D, and so L is
indeed simple artinian.
Let

is egsential in L

. 7
We show first that K K

K

XqsXpseeasX) be any basis for 'DQ, and suppose that s # O

is in L. Then xis # 0 for some 1, which we may take to
be 1. Since :QK is uniform, T = n xiK is non-zero and

i=1 -

is an essential submodule of Q.. For each 1, Ei = {keK:
(xis)keT} is an essenﬁial right ideal of K, and so-
E; ;ié essential in K. ﬁNoﬁ x,SE # 0 ( otherwise

’ Xy8 € Z(QK) =0 ) and so there 1is an e in E such that
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se # 0. For each i, x,se ¢ T, and so, by Théprem 3.6.9, there
is an element 'k in K such that x.k = x se for
i ='1,2,,..,n; Since X1’32""Xn is a basis for p&s

'k = se # 0. 'Iheref‘ore 'sSKN K#0O forany s #0 in L,
and K is an essential submodule, of Lyc-

Also, K 1is a }subring of the left and right artinian
ring L, and so K has the descending_éﬁain condition on
both 1eft and‘right annihilators. Slnce K;.is also prime,
we can apply the recent result of Johnson and Levy (14) to
conclude that any essential rlght 1dea1 of K | contains a.‘
regular element. Using the notation of the last paragraph,
for s £ 0 in“L, the ideal E has a regular element c.
As above, there is'an element k ih K such that k = sc.

| Thexproof will be complete when wé show that any
:régU1ar element of 'K has an inverse in L. Suppose that
.k is a regular element in K. -Then if' s 1in ﬂ is such
that ks = O, then ‘k( sKknN K) =0, and so sKn K = 0,
which'implies ﬁhat'ﬁé = O;. by the first paragraph. Therefore
a regular element in K has no right annihilator (eXcépt 0)
in L. Since T 1is artinian, this is sufficient for tnis

element to_have,an'inverse'in L. Q.E.D.

Corollary 3.8.3.. For a prime rihg K, ' the following are

equivalent.

(1) K is a right-order in-a simple artinian ring.
o o '



‘(2)‘Zr(K)'= 0, and K has max-rc.

(3) X has a faithful basic.module M, and K satisfies
the descending chain condition on right annihilators
of subsets oft M.

(%) z,(X) =0, K has a uniform right ideal U, and

K satisfies the descending chain cohdition.onsl

. right annihilators of U.

Eigggz The equi&alence of (1) and (2) is well known. Further-
| more, these Qonditiohs‘imply fhat K hés a uniform right
ideal U. Since K has an artinian quotient ring, and since
- the descending chaln condition on right annihilators is
inherited by subrings, (4) is casily seen to be-true,
If (%) is satisfied, then the uniform right ideal U

_is a basic module (Theorem 3.5.8). Also U, is faithful,

“since K is a prime ring. Therefore (3) is implied by (4).
Now if' (3) is satisfieéd, then Q(M) is finite-dimensional

over the division ring D = HomK('Q(M), Q(M) ). For if it were

‘otherwise, sinée'fQ(M) = DM, we would be able to find a .

sequence X;,X,,... of D-independent elements in M. By the
chain condition in (3), we obtain {xl,xe,..;,xn}K =

o x . S S | _
{Xl’ Xns X5 Xn+l} for some ., n. Bgt thené-by Corollary

n+l

+ 1

1 i

[[ vl

%.6.8, wé obtain Dx, = % Dx;, contradicting the

i

D—ihdependence of the x;'s.
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Thus . Q(M) is finite dimensional, and (1) follows from

the‘pfevioué theorem. Q.E.D,

| It 1s well known that a rlng Wthh acts tran51t1vely
on a finite- dlmen51ona1 vector space must be the endomorphlsm
r;ng of that vector space, and gonsequently-ls a simple
artinian ring. . The next theorem is the-analoguerf this.

result for W-transitive rings.
. . J

Theorem 3.8.4 Let K' be a W-transitive rlng, and suppose

that DV_ is flnlte dlmens1ona1 Then K has a simple

“artinian classical right quotlent\ring. ;

Proof: We are assuming'that we haveva, DVK’ and _MK as

in the definition of W—t?ansitivity,_aﬁd that DV ‘isvfinite-
:dimensiona%.j | . | |

We shgw fixst'thaf z(vk)-;vd} For if ;v‘e‘z(vK),
v £ 0, theh for any m in o, £héreféré k in K énd d
in D, d # 0, such that . vk = dm. “Then ;(O m) = (O*dm) =

' (0:vk), and the latter is essential since v € z(v ). Now

V.= DM, and this is finite-dimensional, so there is a basis

. n
Mg 5Mp5 e ee M, consisting of elements of M. But then E = 0

, . _ n
(O:mi) is essential, and so is non-zero., But VE = ( £ Dm, )E

\ ' ‘ - i:
and this contradicts the fact that K acts faithfully on V.

= O.

Hence ' (VK) =0, ‘and s0 Z(MK)
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Therefore M is a uniform K-module for'which,wZ(M) = 0.
Since V = DM is faithful as a K-module, M 1is also faithful.
Also M 1is a prime K-module. For suppose that mlI = 0 for

some m in M and I;qlK. By Theorem 3.7.2, K has some

faithful member of Zg, and so K 1s a'prime ring. Therefore
either I =0, or I, being & two-sided ideal in a prime
ring, is an essential right ideal, and m e Z(M) = O. This

establishes the primeness of M.

Thus M is a faithful member of £, and Z(M) = O.
By Theorem 3.4.6, M has a submodule N # O which is ‘a mémber

. of 22. -AiSOszK' is faithfui-and Z(N) = 0.
Let V' = Q(N) and D' = Hom(V',V'). The latter is a

divisioh,r%ng, by Theorem 3.6.10 and Lemma 3.1.3.

We will now show that dim(p, V'), < dim(V). Once this

has been éstablished, we may apply Theorém 3.8.2 to conclude

that. K is a right order in }HomD,(D,V’,D,V’), ‘which is a
simple artinian ring.
Suppose now that dim(DV) = n, ‘but dim(D,V’) > n. -

Then, since D'N = V’{‘ we cag figd xl,xg,..;,xh+lgvra set

of D'-independent elements of® N. However, since Nc Mc 'V,

these elements are not D-independent. Without loss of
: . ; n

generality, we may assume that we may write x = ¥ d.Xx.,
. _ : v n+1 j=1 J 3



where dl’de""’dn are in D. Thenv.(o:x

n+l’ — j=1 J
from which it follows that {xl,xé,...,xn} = {Xl’XE""’Xn’
Xn+1}K . We may then apply Corollary 3.6.8 and conclude

f . n S n-l : e - | '
‘that £ D'x., = 5 D’x., contradicting the D’-independence
=1 9 g= ¥ ‘
of the xj's. Thus -dim(D,v')f_<_ dim(pV). Q.E.D..
Remark: Under the conditions of the theorem, K 1is not,
in general, a right order in HomD(D ) ‘For example, let

D be any division ring Which is not.commutative; and let

C Dbe the centre of D. Let K = ng DVK' DDC’ and MK

It ie.siﬁgly_verified tha¢ K acts W—tran51tlvely on' the
vector space’ V; and that V 1is one dlmen31onal over D.
But K is the cehtre of a lelSlon rlng, and therefore is a
field, and is its own elass1ca1 rlght_quotlentﬁrlng; Also,
‘HemD(V,V) = D,. which is not commufative; so D %MK ='righ£ =

quotient ring of K.
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CHAPTER FOUR

HEREDITARY RADICAL IDEALS OF A RING

| In this chapter we  focus attention én the idéals I

of a rihg K for which I = R(K) for some hereditary rddical
R.. Thesé, as. we shail.see, will be the closed ideals for a
 closure operation defined on the lattice éf all ideéls of the
‘ring K. The propertles of thls collectlon of closed ldeals

' w111 be 1nvest1gated when certaln conditions are imposed on K.

4.1 An Equivalence Relation for Rings

\,
\

Recall from Chapter one that a radical class is said
to be hereditdfyxifvahd‘only if any ideal of a member of R
is also & member 9f R. Also recail that a sﬁbring T of a
‘ringl K is caiiédﬁan accessible subring of K if there is |
a finite chain | |
B N €T, e, ,.{ cT =K

where Ti is an ideal of T, +l‘ It folloWs'thét, if R 1is
'a heredltafy radlcal, and 1f K € R, then any accessible . _
‘ subrlng of K 1is in R. |

In Theorem 1;4.1;‘we'saw that if, M is a hereditary
.class of rings which‘is‘also closed under” the taking of

homomorphic images, then SO(M), the lowér radical class-

with respect to M, 1is a hereditary‘radical class. Suppose
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that we are given any class M of rings. Does there necessarily
exist a smallest hereditary radical élass containing M?

This question is answered affirmatively by the next theorem.

Theorem 4.1.1 Suppose M is an arbitrary class of rings,

and define M* to be the class of all homomorphic images of

: aCcessible'subrings'of members of M. Then M* 1is a homo-

-

morphically closed hereditary class, and - SO(M*) is the
smallest hereditary radical class containing M.

Proof: ,M* is cléarly homomorphicaliy closed. We show that

M¥ . is hereditary. If K e M¥, then there is:a ring &S in

M, a chéin T = T1 E,T2 S ... C Tn = S, where Ti 1s_§n

ideal of" Ti+1" .
maps T onto K. DNow, if I 1is an ideal of K, then

and there is a homomorphism £f:T - K which

<

f;l(I) =WJ: is an ideal of T, and hence J is an accessible
subrihg of S. Also, the restriction of f to .J 1is a.ring'
homomorphism from J onto I;-'Th{s shows that I € M*; and
thus M* iS‘hereditarfl. ' _ | ‘

By Theorenm 1;4.1,_ So (M%) is hereditary. If R is
any hereditary radicél.éiaSS, and if M e“B, then, sincefﬁﬁ
is closed under takingkof accessible subrihgs and homomorphic
images, M* c R. From‘the properties of “the 1ower‘radical,

we obtain S,(M*) < R. Q.E.D.

For a given classﬁ_M of rihgs, we will'denote ~SO{M*)2
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by H(M). If M consists of a single ring K, we shall
denote. H(M). by Hg.

We define an equivalence relation for rings by saying

the rings 'Kl and K23 are hereditarily equivalent 1f and only

if HKI =-HK2 , @& situation wh}fh we denote by »Klv Kg.
This 1s easily seen to be an equivalence relation.
For example, any ring is hefeditarily equivalent to a

direct sum of copies of itself. For if S = © K,» vhere
S v . ae : :

K, = K for each a, then K is isomorphic to an ideal of
S, and K e Hg. 4On the other hand, S 18 a direct sum of
'copies of K, ~and so S ¢ H

< That this guarantees . S ~ K

follows from the next result.

Prqpositioﬁ §,1.2 For any rings 'K and K%, K~ K' if

and onlylif"K € HK' and.. K’ e}HK.f

proof: If K~ KXK', then Ke H, = H, and K e H, =H

K K’ K K*
Conversely, if K € HK” then, by,Theorem 4.1}1vﬁé'have
Hp © Hypro Slmllar;y Hyr © Hy, and we obtain Hp = Hyr, -

that is K ~ K’. Q.E.D.

Proposition 4.1.3 ~If K and K’ are rings, then X ~ K’
if and only if, for every hereditary radical “R, the conditions

R(K) = K and R(K's = K’ are equivalent.



99.

Proof: Suppose first that K~ K'. If R is a hereditary

radical, and if R(K) = K, then K ¢ R, and H, = H CR,
by Theorem 4.1.1. Thus K’ ¢ R, or R(K') = K'. Similarly
R(K’) = K’ implies R(K) = K. :

_ Conversely, if the conditions R(K) = K and R(K') = K’

are equivalent for all hereditary;radicalsf~R, then HK’(KI)

K’ implies Hg (K) = K, or K e M. Similarly K e Hp.

By the previous proposition we have K ~ K’. Q.E.D.

For any ring K, we shall denote by E(K) the class .
of all rings K’ for which K~ K'. Clearly, if X' ~ K,

so we have at once that E(K) ¢ H The

Athen K’ e.HK

K.
opposite inclusion is not always true, for the dne—element

fingv\o is always in Hp Dut, unless K =0, 0 ¢ E(K).

A slightly less trivial example is the following.
Let K = Cw, the zero ring on the (additive) infinite cyclic

group, and let K’ = C,, the zero ring on the (additive)

cyclic. group of order 2. Then K’ is a homomorphic image of

K, and so K' e Hy. However, K’ ¢ E(K). This can be seen

as follows: the class R of all rings whose (additive) k
underlying abelian group 1s a torsion group is easily seen to
" be a radical class, and is é hereditary fadical class. Now
K’ ¢ R but K ¢ R. Thus X 76'K'f'. | |

It is of some interest to ask the question: when is

;
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is E(K) u {0} equal to the class He? The next few results

- lead up to the answer to this queétion. We shall see that

E(K) y {0} = H if and only if: K is hereditarilyveQuiValent

K-

" to a simple ring.

Lemma 4.1.4 ILet R be any radical class (not necessarily

hereditary), and let K be a ring. Then:
| (1) e B 4K, and if both B and K/B are in R,
g'ﬁhgn K' is in R. . | ' | |
(2) It f{B&: aeAj' is a family of ideals of K, and
if B, € R for each a, then 5 /By, is in R.
. aen _
Proof:. (1) Clearly R(K) 2 B, and so K/R(K) is a homé—
morphic image of ,K/B; Since K/B is in R, so must
K/R(K) Ee'in R. Therefore,} K/R(K)  is both R-radical and
R-semisimple, so K/R(K) =0, K=R(K), and K € R. )

(2) Let S= T B Then, for each a, B, € R,
- QEAN o

B 485, so B_c R(S). Therefore S = £ B_c R(S), so
o @ = - - ach 7 o

'S =R(S), and S € R. Q.E.D.

—

The next lemma 1s, in essence, due to Divinsky, Anderson,

and Sulinski. (c.f. Divinsky (6), Theorem 47).

Lemmav4.1.5 - Let’” R be any radical class, and let K Dbe-

a ring. Suppose thaﬁ) Kb Jb I, and that I ¢ R.
,(1) If x € XK, then I + xI 1s an 1deal of J, and
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"I+ xI is in R. |
(2) The ideal of K generated by I, I + KI + IK + KIK =

<I> is in R.

K>
Proof: I +xI is closed unaer addition. Also (T+xI)J ¢ T+xI,
and J(I+xI) c JI + (Jx)I c I - Thérefore I+xI 1is an ideal
of J. Consider the map f:I - (I+LI)/I where f(y) = xy+I.
_This ;atlsfles fy+y’ ) f(y) + £y’ ) .and f(yy ) + I = N
(xy)y;v+ I=1I (31nce Xy € J), whlle f(y)f(y ) (xy)(xy ) +
= (xyx)y’ + I = I. Therefore f is a ring homomorphism
and is a~surjection; Since I e R we have that I and
(I+xI)/I 'are in R; whence, by Lemma 4 1 L, I+XI is in R.
| kE)Iin a similar fashiof one “can showmthat I+IX is an
ideal in J and is a-mémper of R. If we repiace. I by
T+zI, for’rz é_K, we'alsovobtainvi(i%zl) +i(I%zI)x is an

ideal in J which belongs to R. Now we can-write '<I>K as

I +3% (i+xI)'+ £ (I+Iy) + = | {(I+2I) + (i+zI)w}. By »
xeK yeK ' z,WweK :

part (i) this is 4 sum of ideals of J which are all membérs

of R. By Lemma ¥.1.4, <I>. is in R. Q,E.D.

Corollary 4.1.6 Let RI be any radical class, and let I
be an accessible subring of a ring K. If I € R,- then -

<I> is also in. R.

K

Proof: We have seen that the statement is true whenevef

"I 4 J 4 K. Suppose that we have proved the result for all



102.

accessible subrings I’ which satisfy I' 4 3, < J'Bid cen

q J'n_1 = K, and suppose that we have I 4 J

Then let T = <I>J3 = ; + 33T + TJ5 + J5135

q_J4Q...dJ=

we have that T ¢ R. Now, we have T 'd J n

5
and so; by our induction assumption, <T>K is in R. Since
Ic T, wehave <I>, C <T>,. On the other hand, it is

) '\ ) . .
easily seen that T”E'<;>K, and so <T>p C <I>K.' Therefore

<T>, = <I>

K K3 and this in R.¥ Q.E.D.

i

Theorem 4.1.7 Let M be a homomorphically closed class of
rings. Then a ring K  is in SO(M) if and only if every
non-zero homomorphic imdge of K has an accessible-subring

which is 'a non-zero member of M.

- Proof: We use the notatlon of §1 2. Suppose flrst that K
is in O(M), and 1et K' #0 be a homomorphlc image of K.

Then K’ € SO(N), and, by the deflnltlon of SO(M) K' ¢ M,

for some ordinal' a. If « % 1, then K’ hasla non-zero

1

J-IJ.. By the lemma .

54 ... 9 Jn = K.

K,

ideal "K', which belongs to M > for some ordinal oy < a.”

Suppose that we have found K’., K’

1> Do eees K’n, -where

and K'. € M where o < o

. / 4 . >.

K i-d K L | 5 € aj | ‘ n -1 < .- Q. If
. : ’ . ) . 3o . .
a, # l{ then K n has a non-zero 1dea¥' K nel .WthhAlS in
M for some « < a_. Thus, if K’ had no accessible

am_l | n+1 | n
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subrings in M ( =M), we would be able to find an infinite
deécending sequehce bf ordinal numbers. Since the ordinals
are well ordered, this- 1s impossible, and so K' must have
an accessible éubring which isla member of M.
Cohversely;‘suppose the condition holds. If SO(M)(K)
£ K, then K/SO(M)(Kj =K' # 0, and, by our assumption, this

7
has a non-zero accessible subring I which is a member of

So(M). By Corollary 4.1.6, <I>., is also in Sy(M). If

J is the inverse image of <I> ., under the natural homo-.

morphism from. K to K’, Lemma 4.1,4 guarantéés that

J € 8y(M). This is a contradition since J 3 soém)(x).

Therefore K = S,(M)(K), or K e Sy(M).. Q.E.D.

Theorem 4.1.8  For any non—zeroﬁriné K, the following are’

.equivalent: | -

(1) K~ T whenever T 1is a non-zero homdmorphic image
of an accessible subring of vK.

(2) B(K) y (0} = Hy.

k}) E(K) y {0} is a hereditary radical class. ~
(4)‘E(K) u {0} 1is hereditary and is hbmomqrphically'
'éloséd. |
(5) For any ring FL, énd for any hereditary‘radical

R, if 0 #R(L) ¢ H (L), then R(L) = H(L).

(i.e. H

K(L) is either zero or a minimal non-zero
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hereditary radical ideal of L).

(6) E(K) contains a simple ring.

Proof: (1) implies :(2). We already know that E(K) U {O} cH

'Suppose that L is a ﬁon—zero member of HK‘ By Theoren

4,1.1 and the previous theorem, L has a non-zero accessible

subring L' in {K}*. By definition of {K}*, L' 1is a
" homomorphic image of an accessible subring of - K, and so
(1) implies L’ ~ K. Now L’ is an accessible subring of

- ) : B |
L and so _L_ € H < Hp, and Hp = Hy/» © H < H.

K~ L, and thus Hy

R S RTNt

Therefore

That (2) implies (3), and that (3) implies (4), are both

obvious.

(4) implies (1). Suppose that we have X b K, b K, .

D Kn’ and a homomorphism f of Kn onto a non-zeroc ring .

T. Now K ¢ E(K); and by using (4) we see that K;, Ky ...

and finally T . are in E(K) y {0}. Since T # 0, we have:
T ¢ E(K), or K~ T. | N

(2) implies'(B); Suppose that "R is a hereditary,”

radical, and that L is a ring for which O # R(L) < HK(L):

Then the ring T = R(L) 1is in Hp and therefore is in

E(K), so Hg = Hp. In'partrcular, HK(L) = HT(L}. ~ Since

T =R(K), TeR, and Hy

and we have R(L) = H(L).

k(

K*

X

c R. Therefore HK(L)'= HT(L) < R(L),

n.
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(5) implies (2).  Suppose that L 1is a non-zero

member of HK‘ Let K’ be a ring isomorphic to K, and

consider the (extern&i) direct sum X’ & L. Since K’ and

'L are both in Hy, we have O # L ¢ H (K'OL) ¢ H(K'OL) =

K'®L), which impli'es

K'QL. ' By condition (5), X'OL = H (

K' e H and L € H

-  Since K K, we have K e Hp K>
which gives, by Proposiﬁion 4.1.2,'_K'4:L:

(6)'implieé (2). Suppose~that. E(K) contains a simple
ring S. .fhen s certéinly sétisfies (1); and, by a. previous

part of this proof, Hy = E(S) u {O}. Since Hy = Hy and

since E(S) = E(K), the result follows. | |

»(4)bimplies (6). We chéose x £ 0 in K. By Zorn's
'Lemma,pthere is an idea1g?U‘ of X maximal among those
ideals which do not contain x. Tt follows then that, if H -
is the image of the (tﬁofsided) ideal generated by X 'under
~the natural thomérphismlOf K  ontova/U, H 1is the inter-
section of ali non-zero ideals of K/U, dnd'_H ¥‘O. By

S 2 o

‘condition (%), H 'is in gE(K).' If H® =H then H is well

known to be a simple ring. If H2 ¥3H5: then“H2 = O..:In

this case let h # O be in H. The additive subgroup T
generated by h is an ideal of H, and this is a cyclic
abelian group. T can therefo;e be homomorphically mapped
- onto Cp. (the zero ringbon the additive cyclic group of

order p) for some prime p. Again using (4), we have that T

p

and C, are in E(X). But ¢y

is a simple ring. Q.E.D.
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4,2 A Closure Operation

We introduce in this section a cldsure operation in-
the lattice of all ideals of a ring K, and show that the
"closed" ideals are precisely those ideals_of the‘form R(X)
for some hereditafy radical R. Some of the properties of
this lattice are conéidered. |

A mapping . ¢ of a lattice to itself is called a.

closure operation if it satisfies:

C1l. A< B implies c(4) < c(B).

c 2. e(c(X)) = c(X) for all X in thé\lattice.

3. X<c(X) forall X in the lattice.

The eiements of the lattice for which X = c(X) are
called closed élemenﬁs (relative to the ;1osure operation in

- question).

Theorem 4,2.1 . The mapping c of the lattice of two-sided

ideals of a ring K into itself, defined by c(I) = HI(K),

is a closure operation. The closed 1ldeals of Kr are precisely

those ideals of the form R(K) for some herediﬁary radical R.

Proof: If A, B aré ideals of K, and if A c B then A 4 B,

cH

and so A € HB whence H

" Therefore c(A) = Hy(K)

.
HB(K) = c(B).

Clearly C 3 is satisfied: We now establish C 2.
If B = R(K) for some hereditary radical R,W then B ¢ R,

Hy < R, and so c(B) = HB(K) c R(K) = B, and B = c(B)..-

!
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Thus any ideal of the form R(K) 1is closed. In pa;piculaf,
this shows that C 2 is satisfied. |

‘Finally, if B is a closed ideal, B = c(B) = Hp(

(X) 5

where HB is, of course, a hereditary radical. - Q.E.D.

In the sequel, for B an ideal of K, we shall

<

- denote c¢(B) Dby B.

Theorem 4.2.2° If A and B are ideals of a riﬁg"fK,. then
A =3B if and only if A ~ B.", |
Proof:  If & = ﬁ;_'éhen AT =3 = Hy(K), %0 A ¢ Hy.
.Similarlyg"Bxg Hy, and thus ;A.; B, by Proposition 4.1.2.

Conversely, if ‘A~ B then H, = H

" p» @and clearly 'Z = B. Q.E.D.

Theorem 4.2.3 Let ‘K be any ring. Then:

(1) 0 1is a closed ideal of K.

(2) The intersection of any set of closed ideals is

closed.’

(3) If {A: aeA} 1is a family of ideals of K, then -
S A = I K;. -
Qe o QAEA

Proof: .Since the class consisting of the;single ring O 1is
a hereditary radical class, (1) is satisfied.

Suppose that {Ca: QeA} 1s a set of closed ideals of

K. Since N C_ < C, for each B, we have "N C_ < Cp = Cg,
aen ¢ P : acn & B p
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and hence "N C.< N C,. Together with property C 1,

aen @ B,A;_@_‘
this implies (2).

Suppose now that {A : aeAl is a set of ideals of K.

Then Aa,E Ka for eachﬂ‘a, and so Z Aa c 5 Aa.» On the
. . QEA . QEA

other‘handg A o S z AB and so AafE by A6 sy which gives
66/\ \. ' BC/\ . ’ . .

i

z KQ,E z AB .. Applylng the closure operatlon to this 1ast
QEA Bea . ;

inequality establishes (3). Q.E.D.

The set of closed ideals of a ring K has a partial
ordering (inclﬁsinn) and this inducesva lattice structure on
the set of closéd ideals of K. If we denote these‘laﬁtice
- operations by A and y; then this lattice is a complete

lattice, where, if {Ca:'GEA} is a set of closed ideals,

A C , and v C_="$C_.
QEA . aeA o " QEA o QEA &

.

Il
D
@]

A 1@ttice is said to be modular, if, whenever -a, b
and ¢ are in the lattice, whére b < a, we have a A (byc) =
b v (aac). Mény of the/¢ommon lattices in algebraic systems,
such as the 1attice of idéals in a ring, are modular lattices,
| and this fact is crucial in prqying resu1ts as the Jordan-
"_Hoelder Theorem. The fbllowing example shows that the lattice
of cloéed ideals of a ring need not be a modular lattice..
In particular, this example also. shows that the lattice

operations (v- and A) in the 1attice of closed ideals are
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not necessarily the same as the lattice operations (+ and
n) in the lattice of all ideals of a ring. That is, the
lattice of closed ideals 1s hot_necessarily a sublattice of

the lattice of_all ideals of a ring.

Example 4,2.4

Let S ‘be a simpie non—triviél Jacobson radical ring
of characteristic 2. (Such rings are kn?wn to exist, See
Divinsky (6), p..i12,'or Sasiada and Cohn (23).) Ue embed
S into a ring Sf"ﬁith unity. by putfing a ring structure

on the Cartesian,product S x Z, (22 being the ring of inte-

gers modulo 2) by defining addition cdmponentﬁise and multi-

pliéation by '(ssnj(gl,hl)A= (ss1 + nsy + nlsé nnl);;_It is
well known thatl s’ has an associative ring §£ructure, that.
(0,1) 1is a unity for S, -and that {(s,0): séS} is an
ideal of }éy which is iéomorphic to S. Leﬁm Z be the riﬁg
of integers, and let K = 78S’. We claim that 2, §, 8, K
and O are ali closed ideals of"K;r‘ |
Wé Have mentioned that thézclass T of all rings

whose undérlying (additive)vabelian groups are torsion groups
is a hereditary radical class. (See §4.1.) Clearly for thé
ring K, T(K) = 8’. Since J(X) = 8, we havefbhat K, 0, Sl
and S’ are all closed ideals. | o

If 7 was not closed in -K, we would have 2 # HZ(K),
“and therefOre.'HZ(K/Z)’é HZ(S’)‘¥ Q. By‘Theérem'4.1.7 and

the definition of H, this means that S’ would have a
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non-zero acces 1b1e subrlng L which is a homomorphlc image
of an acéessible subrlng of Z, and L would be commutative.
Since S is the unique maximal ideal of 8§, ‘and since §
is a Smele rlng,'we would have to have nL = S} or L =735,
and thus 'S would be a commutatlve 51mp1e rlng. Such rings
are weil known to be either fields or rlngs for which the
multiplication is tfivial On the other hana ]Sitis a non-
br1v1a1 Jacobson radical ring, and thus can be nelther a
field nor a trivial ring. Therefore Z must be a closed
ideal of K.

‘Since K/(Z+8) ® 8'/S = Zy> @ homomorphic image of

Z, we have K/(Z+S) € H, ¢ H By Lemma k,1.4%, we then

748 .

N

;

|

€5
Il

obtain K € H or Z+ K. We can now see that . the lattice

Z+S

of closed ideals of K is not modular, since S’ n (S¥ZJ =

S N K=28", while S + (8NZ) =5+0 =S = 8. Also, since

S¥Z # S+Z, the lattice of closed ideals is not a sublattice

of the lattice of all ideals,

Theorem 4.2.5 - Let A and B. be ideals of a ring K, and
let B < A. Then (&/B) ¢ (B)/B. l_‘ _

Proof: A/B is a homomorphic'i@age of A, so HA/B c Hy.

Therev;jo.re i 3 := HA/B(K/B)= c HA(K/B):'HA(K_)/B = K/B, Q.E.D.

Corollary L, 2., 6 ' If A and B are ideals of KX, where

Bc A, then, if A is closed, A/B is a closed ideal of K/B.
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Proof: ZA7B5 C A/B = A/B Q.E.D.

The converse of the corollary is false. fhe following
example showe'that'closed ideals are nét preeeréed under |
extensions. We give an example of a ring K with ideals
A 'énd <B,_ where A D B, such that B is a closed ideal

of X, A/B 1s a closed ideal of K/B but : A ~is not closed

~in K.

Example L,2.7

Let F Dbe the field of two elements, and let A =
Fx @ Fy, where x- =0 and y- =y. Let K = {(2,f): ach,feF)
with addition defined componentwise and‘multiplication defined
by (a,f)(a’,f’) = (éa' + fa’ + f'a, ££'). We can identify
- the elements,of A with {(a,0): aeA} ¢ K, and thus regard
A ae'a subrihg of K. TUnder this identificatioh, it is easily
seen that A and B = Fy are ideals in K. Tt is equally
easy to see.that K/B’§7{(fx,g):,f,g € F} with addition
defined componentwise ahd multiplieetion defined by |
(£x,8) (£'%,8") = ( (af'+g&' £)x,e8’). This latter ring has four

elements, and the only non—trivialxeccessible subring is the
. . / .

one 1somorphic to A/B,afand this.is e nilpotent subring.
It follows, since B has a unity'eiement and has two elements,'
that K/B ‘has no non- zero acce851b1e subrings which are homomorphu:;-
images of acce551b1e subrlnﬁs of B. By Theorem 4.1.7,

B(K/B) - 0, and so. B - B. In K/B: the.ideal A/Bb is

nilpotent, and is, in fact the Baer Lower Radical of K/B.
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Therefore A/B is closed in K/B.

It is easy to see that , K/A % F = BeH,.

Thus, by

Lemma 4.1.4%, & = HA(K) =K, and A 1is not closed.

o

4.2 Minimal Closed Ideals of a Ring

We shall call a minimai (non—zero) closed ideal of a
ring an atom. Then Theorem 4.1.8 aéserﬁs“that E(K) contains
a simple ring if and only'if, for eyery'ring L, HK(L) is |
either zero or an atoms .

Recall that B denotes the Baer Lower Radical. It

is shown in Divinsky (6) (page 43) that B = S ( {c.} )

which implies at oncé;ksince B is heredltary, that B = HC .

o©

" Lemma 4.3.1 Let K be a ring for which B(K) -1s non-zero
and has no elements of finite additive order. Then B(K) -

is an atom of K.

Proof: If T is any non-zero ideal of K contained in B(X),

then T € B. "By Theorem 4.1.7, T then has an accessible
subring T whlch is a non-zero homomorphlc image of an
accessible subring of C ; But ‘B(K), and_therefore T, has.
no elements of finite additive ordér; and‘ Cw: is isomorphié
to every.subring of itself. It follows that T must be
isomorphic to C_. Since T’ is an accesgible'gubring of

T, T'eHT, and we have B = HC" = HT' c HT E,Baszherefore

[o]

B(K) = Hp(K) = T, and B(X) can not properly contain any’
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non-zero closed ideals. Q.E.D.

For any ring K, and any prime  p, let Fp(K) be

the set of all elements of K whose additive order is a

power of ,p;‘ It is easily yer%fied that Fb(K) is an ideal
of K,  and that FP(K/FP(K) ) = 0. Frbm this it follows that
the class Fp of ail-rihgs.whose elemeﬁtfiall‘héVe,additive
order a power of' p‘ ié a radical c1ass. 'Cleafly this class

is hereditary. R,

Theorem 4.3.2 If K 1is a ring for which B(K) # 0, then

K contains an atom.

Proof: If thé additive group of B(K) has no elements of
finite order,_Lemmd‘M.B.l says that B(K) 1is itself an atom.

If B(K) does have eléments of finite order, it follows from-

‘standard arguments_bflabelian group theory that T =’Fp(B(K)) £ 0

)

for some prime p. Now T = Fp(B(K)) Q'FP(K) n B(K), and

this is an ideal of K. Also,- T 1is in B, and so, by
Lemma 4.1.4, -T 'hasva non-zero accessible subr{ng -’

which is a homomorphic image of Cw. .Since T also is in~

' Fp; so is .Tf,"énd SO, T; = Cpn for SOme 'n.: But then T’
has an ideai T whiéhvisiisqmérpﬁ?c“ﬁo Cp; and ‘T 1is
alsoian écceSéible subring of K.‘fo Corolla?y'4.l.6,

x € Hpw = Hg land SO HC'(K) £ 0. Bvaheorem 4.1.8,

' P . b

<T>

]
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and the fact that C, 1isa simple ring, Hy (K) is an

atom of K. Q.E.D.

Theorem %4.3.3 -~ Let I "be a minimal ideal of a.ring K.

Then T contains an atom.
Proof: If I is.a minimal ideal of K, elther I° =TI or

12 = 0. If I° =1, it is well khown that ‘I is a simple

ring. Then, by Theorem 4.1.8, T ='HI(K)ﬂ”is,an atom.
Ir 1° = 0, consider the additive group of I. If
this'has elements of finite order, then, for some prime p,ﬁ

In F(K) #o. By the minimality of I, Ic Fp(K).- The

same arguments.as'in the proof of the previous theorem guar-
antees that I has an accessible subring T” isomorphic

to Cp,' Wé then obtain Hpo € H

1> and so T E'HT”(K)‘= |

Hp (K) # 0. By Theorem 4,1.8, Hj (K),. since.it is-hot zero,
is an atom. On the other hand, if I° = 0, and if I has
»Ino elements of finité édditivé order, choose'-k # 0 from I.
'Then the additive subgfoup of I generated by ’x 'ié an

- ideal of I, and is isomorphic to Cs. Therefore B = HC c HI’
. ' N ,/' ) . | m -

~and B(K) < HI(K) c T. By Theorem %.3.2, this contains an

atomn. Q.E.D.

4 Reﬁark It is not necessarily true that T 1is itself an atom.



For example, let F be the field of rational numbers, and

A 2

I

Fx+Fy, where: x2 =0, Xy = X = yX, y- = y. If we set

K = A@Cé, Fx  is an ideal of K. Infact, Fx is a minimal
‘ideal of K. For if L ‘s an ideal of K contained in 4,

L is an ideal of A, and, since Ki hés;d unity, L mist

be a subalgebra'df A. Since Fx 1is of dfmenSion 1 over F,

Fx is a minimal Subalgebra of A, and hence is“éiminimal ideal
of K. Nowl Fx containé a copy of C°° és an ideal,.and spf
Fx

it follows that .H B, and Fx = B(K) = Fx @ cp. This

.is not an atom, for it properly contains Cp = FP(K).

4.4 Rings with Chain Conditions on Closed'Idealsﬁ

In this section we shall consider rings Whicﬁ“havéj'
either or both of the éscénding and descending.ghainvconditions
on closed ideals. Since the lattice of closedlideals'is'not"“l
modular, we have no reasoh to expect a result analogous to
the Jordan-Hoelder Theorem; On'fherther hand, a closed ideal
'C -of a ring must contain allAhgmomorphic images of C which
are ideals of - K, ‘so distinct closed ideals must differ in
'some,définite way from one.another. In the presence of, saysy
both the ascending and déscending chain conditiong-for closed
ideals, we might bopgltﬁat th@?e'would nét be too many diff-
“erent closed ideals. We shall see;that this 1s the casé.
-Indeed, wélshal; pfove that thé two chain conditions_are
necéssary and sﬁffiéient”conditions to guarantee that there

are only a finite number of closed ldeals 1n the rihg,
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- Pirst of all, we show that the ascending chdin condition
on closed ideals is not a property which is.preserved under

homomorphisms.

Example 4.4.1 .
We give an example of a ring"K} which has the ascend-
ing chain condition for closed ideals, but for which there is

a homomorphic image of K ‘which does not have this property.

Let K= & Kh,' where Kifénz, the ring of integers,

~and let A= @ thn’ where {p,: i=1,2,...}, is the sequence

n=1
of prime numbers. Then A ¢ K, and K/A’§1-® Z‘ = B, where
_ : i=1 Pi
Z is the ring of integers module p.. Let W _= & Z_ = ;
P :‘ ot moy=1 Py
~this is an ideal of B. For x e W, ( II pi) x =.0, and the

.same is true if x 1is any element of -a homomorphic image of

an accessible subring of Wn. On the other hand, if y € B/wm,

m ' A
and if ( II'pi)y = 0, it follows that y = 0 (since vy
i=1 : A
- . ’ a m h
has additive order relatively prime to IT pi). Therefore
. i=1 :

' B/Wm has no non-zero accessible subrings which are homomorphic

i

images of accessible subrings of "W_. From Theorem 4.1.8

we obtain Hy (B/WH) = 0, -and so W~ 1s closed in B. Since
X . m . ' . - .
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¥ v ~ ) ) .
wi §‘Ni+1 ‘we have that B = K/A does not have the ascending

chain on closed ideals.
We now show that K does have the ascending chain

condition on closed ideals. Let Ci’ i=1,2,... be an

ascending chain df closed ideals of K. For each J there
is an i such that™ 0 = CjKi c Cj N K;. For any 1 and j

consider tpe i'th projection TS of XK ‘onto Z,. and consider
the set S = {Wi(Cj‘ﬂ Ki) : i1 and J are positive integers].

Since Z° has the'ascending chain on all ideals, there are -

: : ' AN n K
i, and Jo such that E; KCJ n‘Ki

) is a -maximal member
o Jo :

O

of S. We note that, if .ei is the embedding of Z into K

which takes Z onto K,, the faéfythat Cj is closed -

guarantees that Cj =) eiﬁi)(cj N Ki/) for all i, i/, and -j..
:;Qon51der n > 307. If Cnﬂg,cjo s there is an eleméét -

'x in C_ which does not belong to cj . “Writing x =

Xy +hpte oo F Xy s wh?re ﬁi:e K> we must‘have_ xihﬁ CJ.o for

i, Now K. a unity e.,, and "X, = Xe. .
some 1 Now Kl has unity el??ﬂ nd Agl xel’e Cn

- Therefore xi,§ C, N Ki,}_gnd. vi(xi) ?.71(Cn n‘Ki). We

have 8.7, (C. n K )€ C. NEK, gxpn N Xy, and so
T (cj NK, )=m8, m (cj nkK, )cm(C, n;Ki)., By the
0 @) e A o . O 0 ,
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maximality of . (C. N K, ), we must have equality, and -

o Jdo ‘o
thus  m (x;) € 7, (Cj N K, ). But then x, =@,m (x;) ¢
: o Yo o .
g,m. (C. NK, )c C.,. This is a contradiction. Therefore
1 lo JO lo - JO .

Cp = €y for all n > jo,- This proves that K has ‘the
o . :

ascending. chain condition on closed ideals.

Lemma 4.4.2 Let {Kaﬁ aeA} be a family of rings indexed

bylsome”Set 'A, and suppose’ that each Ka is an ideal in a
ring T. (This is no real limitéﬁion,.for we}ceuld take

T = & K';) Then Hif K =8,( U Hy ).
- aen © ‘ﬁek “ " aen Ka, .

Proof; ‘Since each HK - 1s hereditary, U HK - 1s a hereditary

a . QEA T

homomorphically closed class, and so SO(TU Hye ) is a hereditary

GeA o
radical class, by Theorem 1,41, ~Since each X: e S ( U He );
- T - S a 0 K
. S | o QEA Q
Lemma 4.1.4fgives T K. €S (v ﬁ:‘) and so H K<
. deA a O Qen Ka 2 5 ‘OL —
A o . QAEA
A

Now.let ‘B be a member of SO( U‘HK

). By Theorem
aeA Tal

4,1.7, every non-zero homomorphic image ~ B’ of B has a
non-zero accessible subring _W’ -in "y HK » and thus
' AEA O,

I : .
W' e HK

for some a € A. We apply Theorem 4.1.7 again, and
a - -
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recall the definifion of .H, , and we can conclude that

K

W' has an accessible subring W Ewhichkis a;homomorphic

image of an accessible subring Y of K&. Since: K 44 I Ka’
' : ' ' L QEA

Y 1is an accessible subring of £ K_. Also W is an
‘ QeA

accessible subring of B'. Therefore B’ has a non-zero

accessible subring (W) which is.a non-zero homomorphic -

image of'én aécessible subfing'of z Kd' Again applying

' - ' Coaen :

Théorém L.o1.7 ahd'fhe definition of HT"B € HZ K . Q.E.D.
LAEA

Corollary 4.4.% Under the same conditions as in the Lemma,

 1€§ V' vbe a ring for Which .212. Ka(v) # 0. .Then, for
 some  QeA, HK (V) #o0.
. Ky, ,
Proof: By the theorem, S,( U H, )(V) # O. By Theorem
. : 0 aeA Ka , o :

4,1.7, V has an accessible subring W which is & non-zero

member of U H and W ¢ H for some . a.‘JBy Corollary

QaeA KOL \ Ka,

v € Hy g € B (V). Q.E.D.

4,1.6, <W>,, € H, , and so 0 # <W>
o4 ' : [0

If -A“3andh B are closed ideals of a ring K, we

shall say that A covers B -if A:; B,_‘but theré no closed

N

ideals T - fof which A ?,TJ; B. -

Lemma 4. 4.4 Let K be a ring with the ascending chain
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lcondition for closed ideals. tThen ﬁhefe are only a finiteﬁ

number of gloSed idealékwbiéh cover a given closed ideal.
Proof: Let B be a_cloéed ideal sz K, ;nd let {A: oeA}
be the set of closed ideals which cover B. By -the assumed
chain condition there is a finite ggﬁset; F, of A for

which % A is-a maxi@al member of {Z K G is a finite

BEFO B , e . . _=~."~Y_€G Y T

subset of A}. ~Suppose that Ty = {al,agl,..,ad}. For cach

ren, K, 42 K K., “and therefore K

n
- =B, K. .
A .}—1 o i lﬂai,

17a.

- n
c 1.
= i

X

This implies that KK/B"e H . TFor some i, Dby Corollary
' . K .
i=1 oy

44,3, we have H (KK/B) is non-zero. But then O #£

Ka.
1
HKa (KX/B} = K, /B Q}HKQ (X/B) = X,/B N Kai/B' This last
i i - '

equality 1s due to the fact that B E~Ka , ,and -the fact that
- ’ l ) .

K, is closed. Therefore O # (K, N K, )/B. Since K, and

i P i
Ka are both closed, so is their intersection. However, -
i : .
since both X, -and K. cover’ .B, we must have K, =K, .
’ : i . i i

 Therefore A = F.. Q.E.D.

Theorem 4.U4.3 A ring X has both the ascending and descending



121,

chain conditions on closed ideals if ahd only 1if there 1is at

most a finite number of closed ideals.

Proof: Obviously, if there is only‘a.finite number of closed
ideals, the chain conditions mﬁst hold. .

- Suppose that both chain conditions hold. We assume
there is an'infiniteinumber ofAclosed:idéals and obtaln a
contradiction. If there is an infinite gumber of closed ideals,
then P = {I: I is a closed ideal, and there are infinitely

many closed ideals J. .such that J:% I} is a non-void set.
'ﬁ condition,
e

there is a maximal member TO of P. Let L ; 12,...,L

(For the ideal 0 € P.) By the-ascendingvchai

n

be the (finite) set of closed ideals which cover TO. (The
previous Lemmavguafantees that this is a finite set.) Each
L; 1is not in P, so there is just"a finite set L 50
A o > ~
3 =1,2,...,0, of closed ideals W satisfying W2 L. We
claim that any closed ideal which properly contains T, must

bélong to the finite set uU. U~ {L

}, &andithis will
i=1 j=1 o

i;j

contradict Ty ¢ P. ' | _
Let J be a closed ideal of K such that I T,

By the descending'chaié condition for closed ideals, there is

.é closed ideal L of K minimal with respect touthe propertyl

To,g Lcd. Clear}y L covers TO, and so L = Li for some

i. But then J = Li j for some j. Q.E.D.
s \
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4.5 Rings Determined by Their Atoms

‘in module theory,’theﬁcbncept of a completely reducible
module is well established. (See, for example, Jacobson
(13), Chapter three.)'AThe analogous Eoncept fér»rings is also
weli—known. The main result in this direction is the follow-

ing theorem, which is due to Blair (5).

Theorem 4.5.1 For a given ring K, the following are

equivalent:
(1) KX =% S_, where each Sd is a simple ring and
GeEA )
an ideal of K. }

(2) XK = & S?» where - each SYn is a simple ring and
ver . :

an ideal of K.
(3) For any ideal I of K, there is an ideal J
such that I & J = K.
Proof: Clearly (2) implies (1).' We show thaf’(l) implies (2).

If we choose «eA, the set {Sa} is trivia;ly'an independent
family of ideals, that is the sum of all the ideals in the set
is a direct sum. By Zorn's Lemma there is a subset I of

A which is maximal with respect-to the property that £ S,

‘ yer ¥
is a direct sum. - For any aea, if S, ,N(¢ 8) =0, then
‘ ST _ Syer -
b¥ S is direct, contradicting ﬁhe maxim@lity of Tv

Beru{a} P

Thefefore,‘for any aea, S, N ( @ SY) £ 0. Since S, 1is a
. vyer'. - ‘
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»/'

simple ring, the intersection is all of Sa" Therefore,

Sa S- @ Sy’ and ;K = _@’SY.
vyeT - yer
(2) implies (3). Let . I be an ideal of K. If
I =K, therefis no more to be denef- If I # K:} then, for
some YG?, IS SY, and IN SY = 0,. since SY tis simple..
Therefore the eolieetion of all subsets MA of ‘T for which

In (¢ Sé)»=lo is not empty. Zorn}s'Lemma can be applied
e : ' ' :

to give a subset AO_:of A maximal with this property.

Then the sum I + D, where D= & S

6eAO

5 is direct. If

I6Ds#K, then Sy ¢ I +D for some’ y ¢ I'. Since SY
is simple, § 1 (I8D) = 0, and we obtain a contradiction to
the maximality of Ao' Therefore I ¢ D = K, as desired.

(3) implies (1). First of all, we show tha£ K hae
minimal ideals which are simple‘rings;"'Lete x € K, x # 0.
By Zorn's Lemma, there is an ideal J of K maximal with.
respect to'not containing X.: We claim that J is a maximal
ideal of K. If B 4K, B ?,J, then x ¢ B. There is an _
ideal C of K eueb that_ B o C = K. Since the lattice of
ideals of K 1is moéﬁlar, J=J+ (B1C) = B n (J+C). Now,
if Jd g J +'Cé then x 1is in,boeh B and J+C, ;and—there-
fore x e J, which is false. Therefore J = J+C, or; CcJ.

But J c B, and therefore C c Cn B=0. This shows that
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B=K, and J 1is therefore a maximal ideal.

By condition (3), we can write K=J & J'. If J’
is not a simple ringg}it has a.properlideél L’, which is an
‘ideal of K, since ’J’ is a direct summand of K. ‘We‘then
obtain J < J & L’ g K, contradicting the maxima1iﬁy of K.
Thefefbre J’ ié a simple ring and a minimal ideal of K.

Let S -be the sum of all the minimal .‘l;deals'of K
which are simble rings. Then, if S # K; K = éa? s’, for some
ideal §' #0. Let s’ #0 be in S§', and 1et  J .be an
ideal of K .maximal with_reépect,to containing S ,and'nof
containing s’. Tﬁe samé‘proof as above shows' that J is a
maximal ideal of K;~ If K=J @jJ;, J’ isbthen a minimal
| ideal of K,"J’ is é simple riﬁg, and J'.E 3. But then
' J" 3" ndJd=0. This showsﬂ S = K, andﬂ(l) is satisfied. Q.E.D.

~

Corollary 4.5.2 - If K satisfies the conditions of the

theorem, any ideal I of K is of the form & S@ for
: : - fe

some subset of A.
Proof: We have seen that K = I & D. Applying the arguments
used in the proof of the previous theorem, we can write -

K=D@T where T= 6S,. Then IZTKD=T= &S5,
v | ge 8 | ge O

If f: T - I is the isomorphism, we have I = @Nf(Se),.
. i e
and each f(Se) € {S, aeA}. Q.E.D.
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. We remark at this point that,:in thé proof of Theorem‘
4.5.1, the modularity of the lattice of two-sided ideals of
K was used. We have seen (in Example 4.2.4) that the lattice
of closed ideals of a ring is not necessarily a modular lattice.
We shall éttempt‘to see how much 6f Theorem 4.5.1 remains_
true When we dilscuss the lattice of closed ideals, rather
than thé iattiée of éll ideals. For the rest of‘this chapter,

{8, enl will denote the family of atoms of X, and

s,(K) =¥ 5, . . :
e '
)

Theorem 4.5.3 Let K Dbe a ring, and let L be a closed

ideal of K such that L S,(K). Then there is a family

{Sg: seca} of atoms such that S{(kK) =T (0 =)
‘ . - SEA

Proof: If L = 8;(K), let A =.¢. Otherwise, for some atom ™

s, of X, Sa,g L. Then S N L .is a closed ideal of K-

!

properly contained in 15@’ and therefore Sa N L =0, The

collection of all subsets I "of A - for which' {Syﬁ vyer} is

‘an independent family, and for which L N0 ( @ 5,) =0, is not
| | o - Lyer 7. |

empty. Zorn's Lemma can be applied to give a maximal such

family a,. We claim 8(K) =T @ (8 5,0. . _ |

ses,

If thié equality were noﬁ,trﬁe, then Lo (o S@)
. : o.
3 o _

must fail td contain, and hence must have zero intersection with,

‘
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some atom Sy But then S n (Lo (¢ sé) ) = 0, and we
. - Sdep T
o}

obtain a cdntradictiop to the maﬁim&lity of - Bye Q.E.D.

Corollary 4.5.4 If K 1is a ring, then
(1) the family of all atoms is,an independent family

(2) for each closed ideal L <'S;(K), there is a

closed ideal L’ of K of the form & 36 such
dEA '

that S, (K) = T @ L.

Proof: We show (2) first. Under the present hypotheses, the

statement of the previous theorem becomes Sl(K) =L & (@I SgT.
: 4 _ d€p
o

If we let W =6 S6 we have ‘Sl(K) =L & W. We do not
&-€h ’ . '
Silate!

know that W 1is nébessarily closed. However,_it follows

from Theorem 4.2.3 that we also have S;(K) =L @ W.

We now establish (1). By applying the previoué theorem,

taking L = O, we obtain §;(K) =@ S  for some subset
‘ ' 3 : yel Y A
I' of A. It remains only to show that I = A. For any -

Q€ A, Sa c Sl(K) =@ SY = Hg”'s (K)._ It follows by an
‘ yer YeTvY : :

application of Corollary 4.4.3 that, for some y € I',
0 é’HSY (Sa) = 8, ? HSY(K) = $a N SY. Since * S, apd‘ sY are

both atoms, this implies that S, =S, and a=y. QED.
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Remark  In the case where K ﬁ'Sl(K), part (2) of the

corollary saysjthat"for$any cldsed.ideal L of K there

is & .closed ideal L' of the form & S, such that S;(K) =
| | | 5EN

K =’E;§7Er;
'In an arbitrary fiﬁg there may'bé mére that one closéd

ideal L’ (for a given closed ideal L) such that':K = TT@TT?Z'

For example, consider tﬁe ring K of Ekaﬁple 4.2.4%. TIn this

ring, Z,;S :and S’ afe'cloéed idgéls,fand K=706%S =

Z 6 57, where AS'% S XThié”ring K does Aot'satisfy’

K = Sl(K). ~Tt would be theresting’toiknbw whgther, if

A
Hi

Si(K), ‘one can have L, L', and L” “closed, g,

and K=L 6L =L¢ L.
| In this example,-since S is an atom, S 1is clearly
minimal among the closed ideals L’ such that K = 1" & Z.

) . / . - . : 3 3
The same can be saild sometimes in a more general situation.

Theorem 4.,5,5 If K 1is a ring, L a closed ideal of K,

and if' {S : wen} .Ais a family of atoms-of K " such that

K

i

LG (@ S_), then for any closed ideal L' such that

.st - ' ‘ .

K = T8L",  then L’ﬁg [ Sw' - In other words; @ S is a
' WeD ‘ wEQ‘w

'unique minimal closed L’ - such that K =T ® L7 .

L &L

- Proof: Suppose that K = . "For each .w € Q, S, <

/

By Corollary 4#.4.3, either

. . o .
TOLT, and 5 e B g
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(s ) # 0, or’ HL{(Sw}‘# 0. But HL(Sw} = s&un HL(&) =
_ . oL . - ' . 7 . " .
S NL=0, and so O %an,(Sw) = sw n L. slnce sUJ is

c L. Thus @ S < L', and, since L' 1is

an atom; S
: WeEQ

w

closed, & S < L’. Q.E.D.
' UJGQ w - .

Theorem 4.5.6 The following are equlvalent for any ring - K:

1) K = Sl(K)

no

( |
(2) (a) For each closed ideal L thére:is a closed
 ideal I’ such that K = T@ I
‘ (b) Every non-zero closed ideal confains an atom.
(3) (a) For each closed ideal L # K there.is a
closed ideal L’ # O such that L n L’ = O.

(b) Every closed ideal contains an atom.

Proof: (1) implies (2). That (1) implies (2) (a) follows
from Corollary 4.5.4, Also, we have seen in the same corollary
that the set of atoms 1s an independent family of ideals.

Suppose L # 0O is & closed ideal, {Sa: aeA} - is the family

of atoms of K, and that K =10 ( © S.) . Since L #£0,
| . : 4 sen -

there is an a in A but not in 4&. By Corollary L3,

either HL(SQ) # 0 or,ifor some &, Hsé(sa) £ 0. " In the

latter case, we would have O # st(K) ns. =S8

5 o™ 5 n SG' SInge

s, and ‘éa are both atoms, this would imply that §_ = 5,

5
: ;



which is false. Therefore we have O # HL(Sa)

ft
o
Q
D
o
e
)
]

Sy N L. Since Sy, is an atom, this gives S, € L, as

desired. . -

~ Clearly (2) implies (3). To show that (3) implies
(1), suppose that (3) holds, but that K # 5,(K). By (3)(a)
there is a closed idedl L/ such that S{(K) n L' =0, and,

by (3)(b), L’ contains an atom T. Then T C Sl(K) nTc

Sl(K) N L =0, wa contradiction. Therefore K = Sl(K). Q.E.D.

Theorem 4.5.7 Let K be a ring, and {S_: aeA} the family "
N !

of atoms of K. “Suppose also that K = Sl(K): Then the

lattice of closed ideals of K is modular if and only if,.

of.

for every closed ideal L of K~ there is a subset A1,

A such that L =@ S . In this case the lattice of closed
AEAL '
L

ideals is distributive. (That is, if A,B, and 'L are closed

ideals, then L n (A+B) = LNA + INB .)

Proof: Suppose first that the lattice of closed ideals is

modular, and let I be a closed ideal of K. By Corollary\

4.5.4, there is a subset A of A such that L.@.( ©°S;) = K.
: ~ Q€A ‘

Also by the same cdrollary, the family of all atoms is inde-

pendent. If we set_ A, = A~ A then we also. have

(® 5J)Je(6s) = @85, =K Fron Theorem 4.5.5, we

.keAL .0 EA . QEA
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obtain & 5. < L. If we denote & S. by B, then the
A= , A |
keAL XGAL

assumed modularlty of the 1att1ce of closed ideals gives.

L=LnK=1Ln (Be (5. ) B + (L n (Zs8;) =B+0 =B,
_ den . belh

as desired.
 Conversely, suppose that any closed ideal L 1is of

the form £ 5, for some A; C A. Wé note first that if @

reap

and A are subsets of A, then (% Se) + (% Sg) = TS
PE@ el Y F-AU®Y

and (Z S)n (L 5) = Z _S8p.. The first equality is

be@” seA Be@na '
obvious. Also & Sb. is clearly contalned in both g Ss
‘ BeBNA 7 6e®
and T S, h,n;T{ _.'ﬂ‘ By our assumptioh, we may write

the closed ideal Z“SG n x 86' as 5 S for T < A. For-
be® den yer -

each vy €T, S c 'z S@ , and, by Corollary 4.4.3, for
some 6 in@® , we have 0 #H, (S ) =S, N S . Since these
- | DBy yn ey

are both atoms, 5, = 8 ‘and y = ¢. Similarly, v is in 4.

Therefore we have = Se n -z S, © ¥ S

beE® deh 0 QEAN®
An 1mmed1ate consequence of these remarks is that if
L= g. 3 and L. = 3% S, are closed 1deals in. K, and
A 1 . B ' ,
X€AL QEA ' : ‘

if L ¢ Ll’ ﬁhen AL c AL .
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We can now ehow that the_lattice of closed ideals of
K isﬁdistributive.»eTHe:above remarks show that the mappiﬁg

from subsets of A to elosed ideals; where A maps to‘

& Sé , 1s a lattice homomorphism, Our'assumption Jjust says
e . ' i . '

that this map is onto fhe lattice of cldsed ideals. = Since the
»1att1ce of subsets of any set is a dlutrlbutlve 1attlce, and

\
51nce dlutrlbut1v1ty is preserved undcr 1attlce homomorphlms,

the result‘follows at once. Q.E.D.

In conclusion, we examine what occurs if we impose a

stronger condition than just K = Sl(K).

Theorem 4.5.8 »Suppose that K 1is a ring, {Sa:aeA} the set

of atoms of K, and suppose that K = & Sa’ Then:
— : QEA '

(1)‘the fam;ly of atoms is independent, .

(2) for any closed ideal L there is a'unigue-clesed
ideal L' suéh that L @ L' = K |

(3) for each closed ideal L there is a subset

of A such that L = § S..

A
L A
AEAT

(%) the lattice of closed ideals of K 1is a distribu-

tive sublattice of the lattice of ideals of K.

Proofi (1) ‘is true for any ring K, by Coroilary L5, 4., We.

now prove (2). If L° is a closed ideal of K, by Corollary

4.5.4, there is a subset A of A such that K =T 6 (T 5,) =
o S e . | ] . 6 €A
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Le(xz Sé) . For each \e€a~d , Trom Corollary 4.%.3 we
deh - R

obtain that either HL(SK) £ 0, or, for some G&€A, Hgq (Sx) # 0.
' : ; S )

As we have seen before, the latter would imply that Sé =~Sk?

and A = &, which is false. Therefore, for ‘XeéAa~bd, O # HL(SX)’

li

and, as befbre, we obtain S, € L. Therefore, K = & S

he | | AEA
(e SX)Q(ZS[))EL@(ZJSG)(_:_K, and thus K =10 ( @ 5,).
NEA~D 5€h s€eA ' S€EN

We claim that K =1L @& (@ S.). For if Ln (& S sé) # 0,
' - b€ : - 4 & €l
then O # H @ S‘ﬂ(L), and, by Corollary 4.4.3,!we would have
Hg (L) # 0 for some” §eA. As we have seen previously, this
6 .

' woulq imply‘-s6 c L, which is false. 'Thué we have K =L @ Lf,
where L’Iz'_@'§~: is a closed ideal. If we also had X = LoL",
SEA ' ' o :
where L”' is,also closed, then L’ = K/L % L”. Since L'
and L” are iéomorphic élosed ideéis; they afe'the same.
'This proves (2). N
Using the notation of thevbrevious paragraph;'if L is
, .

a closed ideal, we héVeI:K =(® | SX) ¢ (o Sé) =L &.(o Sé),
. NEA~D T Seh : . 8€N
where L =) _@ Sx; "It follows immediately that L~=A'@ .Sx.
o AEA~D : P ; AEAVD
(In general, if K =U @'V.= U’ @V, where Uc U’, then -
U =U’.) This proves (3). ;

Now we show (4). .Let L and L’ De closed ideals -



133.

of K. 1In order to show that the 1atticé of closed ideals
of K 1is a sublattice of the lattice of all ideals of K,

we must shdw'that LHL = L + L'."ﬁe may write TI4L’ = -z SY_.
. - : vel
3 ST

[

by (3). ‘Then, for each ver, HL+L“(S )" is non-zero. Therefore,

y

by Corollary 4.4;3, either HL(SY) or Hif(sv). is . non-zero.
Since SY is an atom, this implies that either SY L or .

SY c L and, in either case, SY < L + L'. Therefore

TfL  c L+ L. |

| The lattice of all ideals of K is a modular lattice,
and so 1is any sublattice; Theorem'4.5.7 can now be applied
to conclude that the lattice of closed ideals islindeed

-~

distributive. Q.E.D.
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. CHAPTER FIVE

RINGS WITH CHAIN CONDITIONS ON CHARACTERISTIC IDEALS

' 5,1 Characteristic Tdeals -

An-ideal I of a ring K 1is a characteristic ideal

of K if, whenever K 1is an ideal of a ring S;' I 1is also
an ideal of S.-} E | |

Character;étic ideals are not'uncommoh in a}ring.
Clearly, in-a fiﬂg~ K, 'K and O are characteristic ideals.
If X has a unity element e, whenever K 1s an ideal in
a ring S we can write S = eSe;+ (l—é)Se + eS(1-e) % (lQe)S(l—e);
However, eS 'and. Se are in K, and so eS = eSe % Se;
which gives eS(1l-e) = (1-e)Se = O.- Also we obtain .éSe‘= K.
It folloﬁs\then'that S =‘K @ET, where T is a two-sided ‘
ideal of 8, as,.of course, is K. From this we see that
any ildeal Qf- K is,aﬁ ideal of S, wﬂiph implies'that any
ideal of X 1is a characteristic ideai of K.

From the Andrunakievic Lemma (Divinsky (6), page 107)
we can see that any idempotent ideai I of K 1is a charac-
teristic ideal of K. For if I 4 K, and I° = I, then,

whenever K 4 S, the ideal <I>q of S generated by I

satisfies I = IBEE <I>S) c I; from which we seé_that

I = <I>S5 is an ide@i of &S.

e

The relevahce of characteristic ideals to the study
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of radicals comes from the fact that, for any radical class
R, and fof any:ring  K, R(K)> is a characteristic ideal of
K. (See Divinsky (6), page 124.) |

-Another example of a characteristic ideal is an ideal
I of aring K whiéh 1s such that K/IJ is a semiprime ring.

For if K 1is an ideal of a ring S, then <I>S‘E,K5,:aﬁd,

by the Andrunakievic Lemma, <I>;” < I. Since K/I ‘is semiprime,

we obtain <I>, < I, and thus I = <I>,, an ideal of 8.

S S?
Therefore T 1is a characteristic ideal of K.

~As a final example of characteristic ideals, we note
that, in a sémiprime/ring K, for any ideal I of K, |
I* = {xeK: Ix = 0} i5 a two-sided characteristic ideal of
K. First of all,. I*‘ is easily seen to be a right ideal of
K. It is a left ideal.of K because, if x € I* and keK,
then I(kx) < IX'¥ 0. . Here we have used the fépt that I is
a two-sided ideal of K."Singe“'II*_=.o, we have (I*I)E'= o,
which gives, since X islsemiprime; I*I = 0. I% folloWs
that 1* = {xéK: xI = Ix - O};‘ Suppose now thét K is an -
ideal in a fing S.. Then I*S c K, and I(I*S) = (II*)S = 0,
vso‘ I*S < I*. Also, 'SI* c K, ahg (1 ST#)° = 0. Using the
semiprimeness of K, we have . I Si* = 0, or SI* < I*,
This proves'that I* is a characteristic’;deal of K.

Clearly,lif K 1is a semiprime ring and if I is an

ideal of X, then I ¢ I**. Since taking annihilators

reverses inclusions, we have I* D I¥**, However, if we



replace I by I¥ in the equation I ¢ I¥* we see that

T c I***, and thus I* = T*¥*%, ft is an immediate gohsequence
of these remarks that,:in.a sgmiprime ring K, eithef of the
ascending or descending ghainfcondiﬁions on ideals of the'ﬁ

form i*, where I fiéﬁéﬁ-ideal'of K, implies the othefi:
chain éondition, and also that these é§ndi%ions are:implied

by either the ascendiﬁg_or descending chain con@ition'on
characteristic ideals.‘ |

"An ideal of the form I¥*, where ‘I is an ideal of

K, will be called an annihilator ideal of K.

Theorem 5.1.1 “Let K be a ring, and 16%\ I lbe a character-

istic ideal of K. If K has the ascending (resp, descending)
chain condition on characterisitic ideals, then XK/I alsgo has
the ascending (resp. descending) chain condition on character-

istic ideals.

Proof: Let Cn’ n=1,2,... be an ascending chain of

characteristic ideals of K/I. If we let Tn be the inverse

image of Cn under the natufal hbmomorbhism ;f:K - K/I, .then

T is an ideal of K, and Tn c Tn+

n 1° -

We claim that T is a characteristic ideal of K.
For if K < S, since I ‘is'Characterisﬁic, I 48, and we
can form the factor ring S/I. This has K/I as an ideal.
Also, the naturalvhomomcrphismdxf can be extended to g:8 - S/I.

Since C, = Tn/I"is a characteristic ideal of X/T,
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/

o

¢, 1is an ideal of §/I, and thus T, = £71(c,) = g™*(Cy)

n
is an ideal in 8, This shows that T  1is indeed a character-
istic ideal of . K.

By the assumed chain condition, there 1slan integer

for all 1 > O, Therefore C_ = C

m such that Tm = T m mid

m+i
" for all i > 0, and this proves K/I has the ascending
chain condition on characteristic ideal. - The descen&ing

chain condition case is proved ihhthe»same way. Q.E.D.

5.2 Some Structure Theorems

In this section, some results of Andrunakievic (1) are
applied to show that certain rings can:be described as finite
subdirect sums of prime rings. These results of Andrunakievic
were also noted by Levy (19).

Recall from Chapter one the definitions of supernil-
potent, SP, and dual radicals, If R 1s any supernilpotent

radical, it was asserted in Chapter one that we have R c RS

c R&’ where R; 1s the upper radical with respect to the

class of prime R-semisimple rings, and Rv is the upper

radical with respect to the class of all subdirectly irre-
ducible rings with R-semisimple hearts. The radicals RS

and R¢ are, respectively, the smallest SP-radicai, and the

smallest dual radical, containing‘the radical class R.

Theorem 5.2.1 (c.f., Andrunakievic (1), Lemma 16)
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Let A be a non-zero. ideal of a semiprime ring K.
If K has the ACC on annihilator ideals, then A contains
a subring A’ which is a prime ring, and which is an ideal
of K.
Proof: Suppose the statement is false. Then A 1s not

1tself a prime ring, and so A has non-zero ildeals Aif and

I. - _ ’ 3 C
Bl such that Al 1 = 0, Let Al = <A1 >K s and, Bl =

Y

<B,’>.°. Since K 1is semiprime, neither A, nor B, is

zero, and, by the Andrunakievic Lemma,- AlBl c Al Bl' = 0,

Suppose that, for a positive.integer n we have found

are

and Bi+l

Ai’ Bi’ i=1,24ee05n, 8such ?hat Ai+1

non-zero ideals of K contained in Ai and AiBi = 0, By

our assumption, A = is not a prime ring, and so it contains’
ideals (of A)) U and V which are non-zero but which
= <n2,

satisfy UV = 0., If we let A = <U>K3 and B

n+l n+l
then these are non-zero ideals of K (since K 1s semiprime)

contained in An. . Also An+1Bn+1 < UV = 0. Thus the sequences

of Ai's and Bi's, i =1,2,...,n, can be extended by

adjoining An+1 and ABA+1. By induction, there are infinite
sequences Ai and -Bi’ i a positive ihteger;‘such that,
for each i, Ai+1 and B, . are non-zero ideals of K

contained in A, énd AB

1By = 0 for all 1. Since A, A

1 = Ti41°
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¥, By the ACC on annihilator ideals, there

. *
wg have A% ¢ Ai+l

is an m such that Am* = A *, Since A

m+1 =0,

m+1Bm+l

2
¥ L -
Bm 1 c Am 1= Am*, and therefore B ~ < AmAm = 0., The
semiprimeness of K then gives B_ = 0, a contradiction. Q.E.D.

m

Lemma 5.2.2 (c.f. Andrunakievic (1), Corollary 8)

Let R be a supernilpotent radicai, and K an;R-
semisimple ring with the ACC on annihilator ideals. Denote
by Cl the class of prime.R-semisimple rings. Then K con-
tains an ideal B such that B* ¥ 0, ‘and K/B is in Cy.

Proof: Since R 1is a supernilpotent radical, K 1is also a
semiprime ring. By the previouS'thgorem, there is a non-zero
ideal A of X which is a prime fing. From Divinsky (6),
Corollary 2 of Theorem h? (page 125), A is also R~-semisimple,

and so A 1is in Cl' From Chapter one, Cl is a speclal

class, and so K/A¥ is in Cqe Since” 0 # A c A**, we see

that B = A* is an ideal of the desired form. Q.E.D.

Theorem 5.2.3 (c.f. Anﬁrunakievich(l), Theorem lH)
Let R be a supe{nilpotent rédica;, and let K Dbe an

R-semisimple ring with ACC on annihilator ideals. Then K

is a subdirect sum of a finite numbeér of prime R-semisimple

rings.
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Proof: Consider {Paﬁ acA} where, for each ogA, P, is

an ideal of K such that P * # 0 and K/Pa 18 a prime

R-semisimple ring. By the previous lemma, this is & non-

void family of ideals of K. Let A= N Pa' We shbw first
. QEA

that A = O. |
From Theorem 5.2.1, if A # 0, A contains & non-zero
ideal B of K which is a prime ring. . 'P‘roceedving as in the

proof of Lemma 5.2,2, we obtain the result that B* € {Pa: QEA]} «
.Thﬂﬂ\' ‘3*2 Ho

Suppose that B* = P [a A,
o
Since Bc A, we have B¥ D A¥, and hence B¥* D A+A¥,

Teking annihilators gives B¥** = P, * < (A+A*)* c A¥ N Ax*,
o

Then (Pq

*)2 c A*A** = 0, and, since K 1is semiprime,
o S

Q

P * = 0, This contradiction of the definition of the Pa's
o .

shows A = O,
It remains only to show that A 1is the intersection

of a finite number of Pa's.
; Pt = * o

First of all, each Pa satisfies Pa Pa . For Pa

is a prime ideal of K, and O = PP ** ¢ P,. Thus either
2
)

P,¥ ¢ P, (which would imply "(Pa* = 0, which is false),

*% i » 1 ¥* %
or P ¥ c P,. Since P, 1s always contained in P *¥, the

equality follows.
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We now show that, for any finite subseti F of .A,‘

= N P.. We have n (P x*) = (g P *)* 5

(NP
( BeF P seF L per .» g 'BeF P

)% ¥
BeF P

( h P‘)** - The last 1nequa11ty comes from the eaS1ly verified
BeF

)* =) z (PB*)’ _and.the_second equality comes

,:A

fact that (N PB
R peF BeF
from the fact (also ea51ly verlfled) that, for ideals A,,
2,;..;,An‘ of K, N A% = ( 5 A, ()*. -Since (0 Pg)*x
‘ i=1 i=1 : BeF _

B’ the desired eQuality follows.
5€F L

always contains

Since K 'is semiprime, the remarks in §5 1 show that

K also has the DCC on annihilator ideals. Also, for any

 finite subset F of A, is its, own "double anni-

B
_ BeF
-hllator”, and is therefore an annlhllator ideal. By the DCC

on annlhllator 1deals,1there is a flnlte subset Fo of A

-

is a mlnlmal member of { N P : G 1is a

- such that B
; ' BeF g o _ ' - veG

finite subset of A}. It follows:thenlthat, for each A 1in

or N Py © P ;. Therefore

PN (N By =
(2, Pe per, P S

A BeT, BeF 5’

3
7

N PB c A =0,
'BeF -

1

| We have fduhd a finité subset {PB: 6eFo}, .thé ihter7(7
'section of whose membefslis.zero; 'Tﬁé ring K 1is thereque.
a subdirect sum of the.finite_numbeerf;rings {K/PB; BEFO},

,agd eachrbf these rings”is'a,prime”R-semisimplé ring. .Q.E.D. 
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Theorem 5.2.4 Let K be a ring with the ACC (resp. DCC)

- on CharaCtéristicfideals, and;lét R be any supernilpotent -
- .radical class. Then R(K) = R (K), and K/R(K) .is a finite
subdirect sum of prime R-semisimple rings satisfying the same:

chain condition.

.23992: As:wé have seen in §5;1, R(K) 1is a characﬁeriétic‘
ideal of K, and 80, by Theorem 5.1.1, K/R(K) also has the
ACC (resp. DCC) on characteristic ideals.'.It‘Was.also shown *
in¥§5.1 that either of these ghain conditions in a semiprime
~ring implies both’the ACC and DCC for annihilatoi ideals.
Thefefore 'K/R(K)KSatisfies the hypotheses of Theorem 5.2.3,
and we Can concludg f?at K/R(K) is dﬂsubdifect‘sum of prime
- R-semisimple rings. ﬁl,K2,;.{,Kn. Each K; 1is a hbmdmorphic

© .image of  K/R(K), and thus of K. Suppose K, = K/I,. Then

y

each I is a prime ideal of KX, and is thus?a characteristic -

ideal of K (see §5.1).. By Théorem 5.1.1, Kif has the ACC..

"~ (resp. D.C,C.) on characteristic ideals.

Since each K, is prime and R-semisimple, it is Rs 
‘semisimple.' Since,was'is'well knpwn; for éhy radical class _ -
P, a‘subdiréct sum of P-Semisimplé rings is P-semisimple,

" 'we have that'fK/R(K)"fis‘Ré-semisimple. -Since R(X) c R(K),
this implies R(K) = R (K). Q.E.D.

e

Lemma 5.2.5 Let S be a prime ring with DCC on character-

" istic ideals. Then S -is'a subdirectly irreducible ring with
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heart H satisfying H- = H.

n

"Proof: Since S, and therefore S vfor all integers n,

-is a characteristic ideal of S, the DCC on eharacterisitc

Sm_l for some n, Since S is

ideals'guarantees that s"

prime,'Sn #0. Tnus 8" is 'a non-zero idempotent ideal, We

saw in §5.1 that any idempotent ideal is characteristic. |

Thefefore we can apply the DCC on characterisitc’ ideals to

find_a'minimal non-zero idempotent ideal I, “ |
Suppose that I’ is any‘minimal non—zero idempotent

ideal. Then IN I’ 1s a characterlstlc ideal which, if 1t<

is not zero, has some power of 1tse1f say (InI ) idempotent.

Butvthe‘minimaiity of both I ‘and I’ must then give I =

_(InI')m =‘I’.' On the other hand; we cannot have INTI’ ='O,

for thls would imply II’ = O,T cogtradicting the fact ‘that 8

is a prlme ‘ring. Therefore we conclude that there is'a unlquev

:fnon-zero mlnlmal 1dempotent 1deal I. )

’ Now let B be any non-zero 1dea1 of S. .vThen SBSH

"is a characterlstlc 1deal and using the DCC and the fact that

: S' is prime we see that'some power of SBS '1s 1dempotent.f

Again using the_bCC;on eharacteristip ideals, we caneconcluQe

ethat there’ie 2 minimal idempotent‘ideal;of S contained

in 8BS, and hence“in B.\ Therefore' Ic B uSince I‘ is,an

ideal of 8~ contalned 1n~every nor-zero 1deal of ~ S, 'S is

indeed subdirectly 1rreduc1b1e, and I, the heart of S

is idempotent. Q.E.D.
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Theorem 5.2.6 ~Let K be a ring with DCC on characteristic
ideals, and let R be a supernilpotent radical property.-
Then R(K) = Rw(K)’ and K/R(K) 'is a subdirect sum of rings

Ki,'i = 1,2,...,0, -wWhere each Ki is prime, R-semisimple,

subdirecﬁly irreducible, and éaﬁisfies the DCC on characteriSticv

ideals.

E{ggi: By Theorem‘5.2;4, K/R(K) can be-repreééntéd as a
subdifecf sum of rings Kl’KE""’Kh’ where each Ki is
prime, R—Semisimple, and satigfiés the DCC on-charactéfistiq_
ideals. By the.previous Lemma, each Ki_:is subdirectly
irreduciblg.._Let the heart of Ki be H;. Since H, 1is
gn_ideal‘df the R-semisimpie'ring Ki’:Hi is also R-semisimple.
" From the;definitidh of  Rcp wé'see'tbét each K; 1is also
Rw—sémisimﬁlé.  K/R(K)ﬂ is a subdirect.sﬁm of R$—semisimp1e\
~ rings, and is thereforé’ Rw—semisimplgfﬂ Since R(K).E R@(K)?
‘wevobtaih the deéired eqﬁality. ‘Q.E.D.

In what.followé,i L will denote the Leﬁ%tzki (1ocai1yé
?Anilpotent) radica1v§lass, and B will denote thé Baer LOWET“-t

radicaly

N

‘aeAn} be the family -

Lemma 5.2.7 In a ring K, let {N:

" of all nilpotent ideals of K, and let T =.E N, Then -
: - o T OEA '

T is a characteristic ideal.
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Proof: Suppose K is .an ideal of a ring S, and consider
<N>g, the ideal in S generated by N_. This is an ideal
of S contained in X, and so is an ideal of K. By the

i‘Andrunakievic Lemma; .<N">_S3 c N q° SO <N >S..is nilpotent, -

and .<Na>s c T. Then <I>q < a§A<Na>S €T, so T =<KDg,

or T 1is an ideal of S. Q.E.D.

N

 Theorem 5.2.8 Let K be a ring with either the ACC or the

DCC on chargcterlstlc ideals.” Then B(K) = T, and this is

nilpotent. | : | ;

Proof: It is well known that the nilpotence of T will
imply that T = B(K). It is-sufficient;'therefore,-to‘pyové'
fhat T is nllpotent ' :

| Suppose first that X has the DCC on characteristic

ideals. If T . is not nllpotent some power of T, say o 5
is noﬁfzero and 1dempotent (s1nce':T Ais- characterlstlc)

Then I = T" satisfies 1°=17=1. By the DCC on character-

istic ideals, there is a minimal member of the set of all h
characteristic ideals J for which IJI # 0. Let this

minimal member of Jo.vahen, for some x in Jy, IxI # 0.

' ,Nowﬁ_IxI is a charactéristic,ideal of K contained in JO,
and I(IXI)I.= I°xI° ;fik: # 0. By the minimality of J,,
) . L .

: . : S n _
JO = IXI, 'and we haVe; X = i yi¥z4 for Y9sYpseees¥pe
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Zqse

Lz, in I. Sined_Tc B(KQ c L(K), the subring W
of K generated by the yi's, theﬁ éi's and x is nilpotent.

of index, eay .m. Repeated substitutionffor fx .m times in
S n _ .
the right hand side of x = X yi¥X2s gives x =0, a

contradiction of  IxI # 0. In the DCC‘case, therefore, T
is nilpotent. |

Consider nowvthe'case where K has the ACC on
eheracteristic’ideals. The set of all nllpotent characterlstlc
o ideals is not empty, for it contalns the ideal O, \Aand so
it contains a maximal member H. For any nllpotenﬁ 1dea1\

N of X, KNK 1is a nilpotent characteristic ideal, and so

‘is H + KNK © By the maximality of " H, H=H+ KNK,' or

KNK < H. Then T3 CKIK =K( £ NJKS £ KNKC H, so
i AEA CEA .
TB, and therefore T, is nilpotent. .

Coroliary 5.2.9 If XK is & rlng w1th the DCC on character-.

istic ideals, L(K) = B(K), ‘and this is nllpotent

Proof: From. Theorem 5 2.8, (K) is nllpotent From Theorem

5)?.6;' B(K) Cp(K), and (see Divinsky (1) Theorem 67) -

L(K) c Bw(K) Therefore B(K):= L(K) = Bm(K), and this

is nilpotent. Q.E.D;

We would 11ke to have a converse to Theorem 5.2.4 or

to- Theorem 5. 2 6. The problem in obtaining one is that, 1f

¥
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K 1is a ring, aﬁd' A and B are characﬁeriStic ideals.
where A"EVB, . we do not knowﬁwhether or not A/B ‘ié a
charéctéristié ideal of K/B. If this question could be
answeréd affirmati?ely,'the'techniques>used in the fQ11owing
theorem could be used to obtain converses ﬁo Theorems 5.2.4

and 5;2.6f

Thedrem'5.2.lo Let R be a supernilpotent radical property.

A ring K is R-semisimple and has the ACC (resp. DCC) on all.
- two-sided ideals if and only if it is a finite subdirect sum
of prime R-semisimple rings with the ACC (resp. DGC) on all
two-sided ideals. ~ /
Proof: We shall provg the result in the ACC case. . The proof
in the DCC case is similar. v _

Suppose'first that K is R-semisimplé and has the ACC
on all idedls.. By Theorem 5.2.4, K’ is a subdiréct,sum of‘\

rings .Kl,...,Kn, and each K is prime and R7semisimple;

From the properules of subdlrect sums, each ‘Ki 'is a homo-
. morphic 1mage of K. It follows_that Ki also has the ACC
on all ideals. o

Conversely suppose that .K is a subdirect sum of the-

15! 2,...,Kn where each K, has

'the ACC on all.ideéls.‘ Then -K, being a ‘subdirect sum of
R semisimple rings, is R- semlslmple.

"It remains only to show that K has the ACC on all
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ideals. Suppose .that I

150050005 are ideals of K such
n v : ' _
. that n I; =0, and Ki'é K/Ii. (Such ideals exist, since

K is a subdiréct sum of the Ki's.%ﬁ

Let {Lt; t a positive integer},be an ascending chain

of ideals of K. We can use the ACC in K, to find, for

J=1,2,...5n, an integer Nj such that‘(LN N IO N I1 Nvee N
oo Jj o '
Ij_1)+ I; =@y e NIg0 e N Ij_1)+ IJ for all r > O,

J e ' i

where we denote K Dy IOf If we set N = max{Nl,Ng,;..,Nn},

then, for all r > 0, we have

(1) Ly + Iy = Dy + 14

+,I2

(2) Ly n ;1 + Iy =Ly, 0 I

3

-

(n) LyN I 0 I n‘...”h I, + I, =K#N+r;n.;lfh ..
' | n In_iv+.In.‘ |
We épow that JLN%?;LN+r for %11‘ x> 0. TFor any x
in Ly, . there issan.\xl in L, such that s, =X - x ¢ L.

‘Then §1 f LN+f Q'Il apd there,ig»ap 'X2 in _LN n-I1 . such

| thap S5, = 87 - X 'e.I.. i‘Tand_ xzz'_and hence

1 2 »Alsp, X

h - C
nL apd so s;5 € L. -0 I

s, are in L 2. TN+r 1

N+r

L
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- Continuing in this manner, we find, for Jj = 1,2,...,n elements

and s. = S. - x. €L

x5 € Ly N ;1 Noeee N Is & -1 ; Nep NI N0
TN n I | | |
_We have
ST
52]= Slva*e
sé =8y - Xy
) )
Sﬁ;l.= Sn-2 ~ *n-1 o
Sy % Sn-l‘_‘xn , ‘where S, € LN+r'n Il 0}12‘.;. N In = 0,
and where each X5 e_LN. Then s, = ;n € LN‘ Ciimbing béck‘

up, We see that Spoq2 Sn-25“‘{32" and finally Sq :are ;Q

LN. But then x = S +‘xl‘ is also in. LN' Thls‘shows that
LN+r c LN' for all r > O. Since the Li'S' are an ascending
sequence, we have LN ='LN+r -for all 'r > 0. - This proves'_

that K has the ACC on all ideals.  Q.k.D.

5.3 Finite Subdirectfsﬁms»'of Rings . -

., Suppose that a ring K 1s a subdirect sum of-a family

of rihgs {Ka: aeA}, More precisely, suppose that K has a

family of ideals {I,: aeAl such that, for'eaéh a, there
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is an isomorphism ea:'K/Ia ~ K » and N I, =0, and
_ . QEA

denote by 1 the monomorphism of K into J] K, where
v QeA

i(x} = (ea(x+Ia) )aeA' Following Levy (19), we'sha%}ﬂ§gy that

thé subdirect embedding i is irredundant if each K, is

necessary in the sense that, for each Ben, aegv{g} # 0. Also,

we will say that K is an irredundant subdirect sum of the
Ka's.

Not all subdirect sums“are irredundant. .For example,
if X is the ring of even.integers, then K can be represented
as a subdirect sum of the nilpotent rings 22/2“2,,n = 1,2,000,

- (where Z is the ring of integers), and any'finite‘humber of
the rings EZ/EnZ_ may be omitted.
On?the“qther hand, if K 1is a subdirect sum of a -

 finite number of rings. Ky5Kss...5K 5, then K may be repre-

sented as an irrédundant subdirect sum of some of the Ki’s.

For suppose the,correspdnding»ideals of K (such that
. n
N I.l = 0, and we

’K/I?'E'K.) are K,
J i=1

J l, i = l'$2,-..,n. . Then

can find a subset F of {1,2,...,n} minimal with respect

to having the property that N I = 0. Then K is an

irredundant subdirect sum of ‘{KYr vEF].

The next observation is due to Levy (19).
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Lemma 5.3.1 " Let 1i: K-= II-KB be a subdirect embedding.

BeA

-For each «a We identify Ka w%th the ideal { (XB)BEA: ;B=O

for B £ a} of - II:KB; Then i 1is an irredundant subdirect

embedding if and only if, for each aea, i(K) N K, is a
non-zero ideal of IIBGAKB'
Proof:T F;rst of*all, i(K) n X, is an ideal of ‘&E% Ky

¢ i(K) n K. Then Xy = 0 for all

For ;uppose"x';-(xé)éeA

is an element of T K.

8 # a. Now suppose that (yé)
' QeA

beA
From the properties of subdirect émbeddings, there is an

element a in K such that the a'th component of i(a)

is vy ‘Then we see that xy = (Xaya)éeA and that x.y, =0

“for & # a. Since x € i(X), let x = i(b) for some b € K.

~ .

il

Simple computation shows that . xy = i(b)y = i(b)i(a) i(ba),'

and that this is in i(K) n K . Therefore ( i(K) n K )TT Ky
c i(X) N Ky and i(K) n K . is a right ideal of -

RS Kﬁ.v Tn a similar fashion, i(K) n K, 1is a left ideal. -
Bea ' . : ,

Suppdse now that, the map 1 is'an_irredundapt subdirect
embedding. Then, for each a; there is a non-zero element a
in N IB' 'Simple computation shows that 0 # i(a) € i(X) n K

BeA o . - . '
BFa . |
| Conversely, suppose that, for each a, i(X) n K, #£°0.

4
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Then, for & given a, if a in K is such that 0 # i(a) ‘e.

QoEoDc

i(K) N K, it is easily seen that a € n I

BeA
B#a
We have seen, in Theorem'5}2}6, that, under certain
cenditions,'we can ekpress a rihgl K as a finite subdirect
sum’ of subdifectly irreducible rings. As noted'above,l X
‘cen theh be'expressed as an irredundant subdirectesum of eeme
of these rings. Undef éhese circﬁmstenees,ythe following o

result holdé. o ‘ y

nes

Ki = s  be an irredundant.
1 L o

Lemma 5.3.2 Let 1i: K =
T i

subdirect embedding, and let each K, be subdirectly.irre- -

ducible with heart H..
Then we have H = @ H. c ( i(K) ﬂ;Ki)‘E i(K) < 8, .
a = 1 + T

‘lf@ab

. n , e o ‘ .
and H and & (i(K) naKi) are ideals in S, and hence in
| i=1 o o i | |

‘Proof: By the previous lemma, for each i, i(K) n'Ki is a _

non-zero ideallof S. ft_is therefore a non-zero ideal of

Ki’ and thereforeieonteins Hi‘ The rest follows immediately.
Q.E.D.

Under the conditions described in the Lemma, it is

natural to ask whether more can be said about 1i(K). ' For
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example, is i(X) an ideal of S, or is =
. 'n - - o
i(K) = @& (i(X) ﬂ,Ki) ? The following example shows that
i=1 u . : S '

neither of these statements need be true.

~Example 5.3.2

Let I be any ring of characteristic p, and let

'L’ Dbe.the ring { (x,n): x € L, n e Zp (the integers‘modulo'

p) } with addition defined componentwise and multiplication:

defined by - (x,n)(x',n’) = (xk’ + ' n'x + nx’, nn’): (c.f.

Example 4.2.4) This is a ring with unity element (0,1) and
which has a copy of L as an ideal. '

Tet S be a simple non-trivial Jacobson radical ring

of characterisitic p (see Example 4,2.4), and form the

. _ 14 7 . — —_ ='
ring T = S; @ Sg_,. wherg S1 ~;‘_82 = S. Also, let W‘.

~

(5, @ 82)’.- There is a ring monomorphism i: W - T, defined

by 1[((sy585),n)] = ( (Sl:n)z(égoh) )i This map 1,  -composed

)

with the projections of T bnto Slf and ng gives mappings

from W onto S’ and S,', so it follows that i- is a’

subdirect embedding.

It is easily verified that S’ is subdirectly irreduc-

‘ible with heart S, and also that S, @ S, = 1

6 S, = (L(W)n s.’) e

(i(w') N se')'g i(W'). Since $1.='i(Wf) n s,', and similarly

for Sz, Lemma‘5.3.1 assures us that 1 1is an irredundan@
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subdirect embedding. Also, i(W') - is not an ideal of T,

for, if it were, we would have i(W') must contain.

((0,2),(0,1) )7 ( (0,1),(0,0) ) = ( (0,1),(0,0) ) and this

is not true. ..

5.} Hereditary Radicals of Finite Subdirect Sums of Rings

If H is'éﬁhereditary radical class, and .if I 1is
an ideal of a ring S, then H(I) = I n H(S) (Divinsky (6);’
page 125).‘ This is not in generai true if I is Jjust a |
. subring of s, not even if I 1is subdirectly embedded into
S.. For example, we have seen that the ring of)evén integers,
which 1is J-semiéimple (where }J is the Jacobson radical) o
is a subdirect sum of niipotent rings. It is easily Verifiedl

that, if each X 1is a right quasi-regular ring, then

IT kK

41 Ky is also right quasi-regular; The even integers, -
QEA ' ‘ ' o

thereforé, can be subdirectly embedded into ‘TT (EZ/EDZ) s
. o . n=1 . :

which is Jacobson radical.
In this section, we shall see that the situation is -

different for finite subdirect sums. We shall prove'that,

if i: K- @ Kj = 8, 1is a subdirect embedding, then, for
' J=1 R : '
every hereditary radical H, ﬁ(i(K) ) = i(X) n H(S). Note

thatP'in Exampie 5.3.3, We saw that 'i(K) heed not be an

ideal of S.
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T ' _ n
 Lemma 5.4.1 If S= &

radical, then H(S)

i
e
=
2

Proof: Since K, 45 for each J, H(K,) 9, since H(K,)

is a'chafacteristic ideal of Kj' Therefore we have
n

H(K.) < H(S). ©Now let x = % x, be in . H(S), where
19T - =1 |

h.es

J
X, € K, for each j, and consider the projection’ Pyt S~ K.

Under this map we have Xy = pj(x) € pj(H(S)) c H(KJ).

n .
' Therefore 'x € Z H(K.). Q.E.D.

) n §
- Lemma 5.4.2 Let i: K- S = & Kj be a subdirect embedding.
v nY ' j=1 ' : ~

Then i( H (K)) g-izK).n H(S).
Proof: Léf‘-pj be the projeétiqn of“‘é onto Kj. From ﬁhe
properties of subdireét sums , the composition-'pji maps,iK
onto Kj' for each j3: and S0 »pji(H(K)) i; an ideal of N

K

57 and is therefore contained in H(Kj). ‘Then, for y € H(K),
N N n ) 4~\ o n R ’
we have 1i(y) = 2 p.i(y) € & H(X,) = H(S). Since i(H(K)) <
o A g=1 9 =1 9 o -

/

i(X), we have i(H(K))ggiH(s)°n‘i(K). Q.E.D.

Lemma 5.4.3  Using the same notation as above, H(S) n i(X)
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is a sgbdirect sym of the H—rédical fings pj(H(S> n i(K))?
J = 1;é;.ﬁ.,q. |
Proof: HkS) h?i{K) is an idéal of 1(X), so pj(H(S) n i(K))
is an ideal of pj(i(K)) = Kj' Also, pj(H(S) n i(x)) c
pJ(H(S>) = H<KJ)’ where this 1a§t equality follows from
Lerma 5.%.1. Therefore pJ(H(S) N i(K)); is indeed an H-
radical fing.

v - v n

For any x in H(S) n i(X), we can write x = Jilpj(x),

, ' n ’ :
and so we have H(S) n i(K) ¢ @ pj(H(S) n i(x) ). It is
J=1 :

clear that the inclusion mapping is-a subdirect embedding.‘ Q.E.Dy

" Lemma 5.4.4 Let P be a subdirect sum of rings Pl’P2""iPn’

4

~and suppose that each ‘Pj is H-radical, where H 1is a

hereditary radical. 'Then P 1is also“an H-radical ring.

;

Proof: We know that?ﬁhere are ideals Il’ 12,;.;,In such that

- " , . | |

Pj E P/Ij, and N Ij = 0. We proceed by induction on n.
o ' J=1 : -

When n = 1, the result is trivially true. Suppose

that we know the result is trgé for: n = k-1, ‘and consider

. ' . ; _ n
. the case where n =%. Ifwe let T, =I., and' T, = N I,,
I i . 1 1 . 2 j=2'3

t

it follows that B/T; % Py, 'so P/I, 1is H-radical.. Also,
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it is easily seen that P/T2 is a subdirect sum of the rings

-‘(P/Tg)/(IJ/Tg)'l P/Ij,l j =2,3,...,n, and, by our induction

assumption, P/T, fié;H—radical; Also”Tl nT, =20, so ‘Pb
is a'sﬁbdireéf sum of the rings P/T and P/T,. Tt is
- thefefdre sufficient té‘ﬁrove the result when "k = 2.
- Since T, n‘T2-='o,'-Tl-;'(Ti)/(TlnTg)'%j(T1+T2)/T2'Q'P/T2.
Since P/T2 ié H-radical, and since  H is herééitary, T, :
is therefpre'an Héradical‘rin%.» Therefo?e T, ¢ H(P), which
" implies H(B/Ty) = H(P)/I,. But H(B/T,) = P/T,, ahd it

follows that H(P) = P, and P is H-radical. Q.E.D.

N

 Theorem 5.4%.5 Let i: K= S = Kj be a subdirect embedding.

e

3=1

Then, for H a hereditary radical, H(i(K)) = i(K) n H(S).

Proof: Since i is'a'monomorphism, Wé'havé' H(i(K)) = i(H(K)),
and this is contained in i(K) n H(S) Dby Lemma 5.4%.2. Also,f.
1(K) n H(S) 1is an ideal of 1i(X), and, by Lemmas 5.4.3 and
5.4.4, i(K) N H(S) .is an H-radical ring. Therefore o

, S

i(K) () € H(i(K)). @.E.D. -

-

. N " I n
Remark: It is not necessarily true that - H(i(X)) = @& (H(Kj)ﬂi(K)).

| In Example 5.3.3, let H be the radical F,. (See §4.3). |

Then 'Fp(i(w’)) - i(w), while \(Fp(S1’) NI e (Fy(sy') n

(W) =5, @ s

5 and jthese are not'equal.
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o

e

5.5 Finite Subdirect Sums and Structure Spaces

Let P be a property of rings such that if S has -P,
and 1f S’ 1s_1somorph1c to S, then 8 also has P. For
any ring K, let F(K P) be {I: I is a prlme ideal of :
I # K, and K/I has P} For example, if P is the property
of being a right prlmltiVe ring, ‘F(K:P) is the set of all
ideals I of K for which K/f is a rrght primitive ring.

| As is well known, at least in.speciallcases, it is
possible to’ ‘define a topology on F(K P) by-introducing a
closure operatlon in the follow;ng manner if quIF K:P),
then cl1(1) is defined to be {I e F(K: P Io Iﬁlﬁ, where
MU= n U. This closure operatlon satlsfles '
uew

Cl 1: | cl( g ) =¢ ' _ _ -

c1 2:  For Wec F(X:P), U < c1(Y). -

€1 3:  For Y < F(K:P), cl cl(W) = c1(W). |

¢l 4:  For "IL and \J 'conta,ined‘in F(K:P)',v cl(uu'ij)

LW U 1), | o |

It is a sténdard result of topology that, when we have a

closure operation satisfying Cl 1 - Cl 4, the subsets N
4whioh satisfy ’UL—'clak form the closed sets for a topology.
(Kelley'(15) Chapter one) | |
We show that C1 l - Cl 4 are satlsfled By definition,’
U= ¢, we set  [TWU= K. With this convention, CL 1.
and Cl 2 are ea311y seen. From Cl 2, if W\c F(K:P),

we have cl(u, c el cl(ﬂ). Now, if I e cl c1(W), then
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Io [T c1(W) = T]{J € F(K: P) J': rlu} Tt follows that
Tl’uc [Tcl(u) c I, from Wthh we see I € cl(U) and Cl 3
is proved If r&, and Q*y are subsets of F(K P) and if
USW, then. THL:>[7hf and so cl(W) < cl(mD Therefore
cl(l,) u c1(\V) < chup\p for all subsets WU and ’Uﬁ of |
F(K{P); ‘Now let I € cl‘uuﬁ Then I =) FWCWUln

(TTW n (T 2 (M- (My).  since I’ is a prime ideal of
" K, we have either I g_T]\I andv Ie clkﬂ),v or I> rTu,
and Iecl{W): 1In either case I e c1(W U c1(lf). This
establishes C1 4, | i | -

'Various proberties of struéture spaces, land the relations

between topological properties of the structure space and the
' rlng—theorétic propertiés of~the ring have been investigated
by several authors. (See, for example, Michler (21), and
_.the references 01ted Lhere ) | |
Our present goal is to prove the follow1ng
1

- Theorem 5.5.1 Let K be a ring, and let ’i: K= S =

e

J
be a subdirect embedding; if P 1is a property of rings
which respects isomorphisms, then the map f: F(S:P) » F(i(K):P),

where f(l) =.In i(K), is a continuous closed mapping onto

1l

-vF(l(K) ) Furthermofé, for .I € F(S P) S/T % i(K)/f(I).
From these results it follows that F(1 (K) P) A(aﬁa.theréfore
.F(K;P)‘) has the topology given by a quotlent’topologj.for"
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We shall break the proof into a number of steps.

Lemma 5;5.2

(1) If I #S is a prime ideal of S, then I n i(K)

is a prime ideal of i(K), and i(K) n I # i(K).

I

(2) S/T = 1(K)/(i(X) n I), under the conditions of

J

/

(1). L

(3) If I e F(S:P), then In i(K) e F(i(K):P).
. o o o . n
Proof: -Clearly (3) will follow from (2). If I #S= & Kj,
then, for'somé:‘jo .we have KJ K I. For anyE\J # jo' we “have

0

0 = KjKj‘.E'I, so if I “is a prime ideal of - S, Kj c I
o o . » . ) -

.

~ for all j # Jo Then we see that we can write I = (IﬂKJ ) @

. . O '
( @ K.). ATherefore S =K, + I.% - ~
3#3o Y : : Jo - o '
0 ' ;
The map ,p.'i: K- K. -is onto 'K.* (where p. is
S do Jo o L J
_ ' | ' g L n
- the projection of .S onto KJ), so that, for :x = & Xj;

in S, where each x; 1is in K,, there isa k in K ‘such
that p, i(k) = x, . Since ID> £ K., it follows that
. : ’ JO . . JO . . J}ZJO

- x e i(K) + I, and hence S ='i(K) + I. It is a conséquence
of this that S/I = (i(K) + I)/I % i(K)/(i(X) n I)..

From this isomorphism, both (1) and (2) follow. Q.E.D.
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Lemma 5.5.3  The mapping f: F(S:P) » F(i(K):P), where

£(I) = In i(K), is a continuous mapping.

Proof: By Lémma'5.5.2, the map f as defined is indeed a .
mep into f£(1(K):P). To show that it is continuous, it
 suffices to show that the inverse image of a closed set is
closed. - “ |
Let C Dbe a closed subset of F(i(K):P). Then
e7h(e) = (T e F(s:P): I i(K) 2 [Tc}. If 17 e ci(£71(C)),

then. I’ contains []£71(C), and I'n i(K) o (M£73(C) ) n i(K) =

{ n I) n i(X) = n Ini(k) = []c. Thus I‘ni(Xx)=2[1c,
Ter~i(c) CTerl(c) - a
or £(I') =1I'N i(K) € c1(C) = C. Thus I’ e £ 3(C), and
f;l(C) is closed. Q.E.D.
. . | \
Lemma .5.5.4 Let i: K-+ S = @ Kj be subdirect embedding,
, : J=1 i '

and let f: F(S:P) » F(i(K):P) be the continuous mapping
. which sends I to "I n i(K).- For 1(Q) e F(i(K):P), £ 1(Q)

is a fihite non-empty set. In particular, f is a surjection.

Proof: ILet 'Dj, J = 1,2,...,&,._be the kernel of the hab )

pji: K “'Kj’ whefe pji ié the Jj'th projection of - S 'onfo;

Ky It is easily~verif}ed that i(Dg?ﬁf i(K)vn (ﬁij Km);ﬂ
‘Suppose that Q is a pri@e\ideal in K. lSin;e

b
’
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_ = 0,  we have that Q2> DJ for least one
| =1 ‘ ' ‘ ‘ |
Let T={j:1<j<n and 'Dj c Q). If @ ¢ £i(i(q),

Cthen @ N i(K) = 1(Q) # i(K), so @ must fail to contain

Jg er-sqme Jo.. We show that :JO’ is in T.
Since Q" is a prime ideal of S, - and since
KJKj =0cQ, for j#J,, it follows that K;c Q' and
(@] L ) ’ : .. ‘
so L K,c< Q. Then £(Q") =i(Q) =q n i(K) 2 ( = K;) n

| Q//‘

s
343, o

1(K) = 1(D, ), whence D, €@ and j . Thus, if

JO (o]
e £77(1(Q)), there is a unique Jo in T such that
> £ K. Therefore £ 1(i(Q)) = u {Qer 1(i(Q)):
JAI o J ' - | teT -
gt

We know that T 1is a finite non-void set. To complete.

fU

the proof, we will show that, for % in T,

{Gﬂef'l(i(Q)): > T KJ} consists of the single member -

QI

T It

;_p i(Q) + ‘Z K.. First of all, S/Q" = K, /p.i(Q) =
AR o/Pett

pti(K)/pti(Q)‘, Since' b£-= kej(pti) c Q, we ﬁgve ‘S/Q"é

(K/Dt)/(Q/Dt)f§~K/Q. Therefore -Q"'is indeed a,@rime ideal

of ‘S if Q 'is a prime ideal of K, and @ e F(S:P) if-

Q € F(K:P).
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Now we show that Q" is indeed in f—l(i(Q)z,}-Fof'
: n o - ,
g € Q, we have 1i(q) = £ p.i(q) € (pti(Q) + ¥ K.)n i(X),
L I At |

and thus .I(QJ‘E Q" n i(K). Let x = i(k) € @ n i(K). We

. n . . .
. may write x = Z.pji(k), Since x € Q', there'is a gq 1in
=1 - | .
" @ such that pi(q) = pt;(k). Then. i(q-k) = i(q) - i(k) e
i(K)_n'( 2‘Kj)_= i(Dé) c i(Q). Then 1i(k) is in’' i(Q), and
- JAL < | '

thus  1(X) n @ < i(Q). We have. now shown that £(Q’') = 1(Q),
as desired. At this ‘point, we have shown that;, for any‘lQ. '
o T - i .
in F(X:P), f—l(i(Q)) is not empty, and thus f maps onto
CF(1(K):P). o | |
Suppose now that Q' f"l(i(Q)), and Q" =3 ? Kj'
| | ST J#t 9

Ve shall»show Q" = Q. Now 'f(Q?) = Q' n i(K) = i(Q), so -~

p.1(Q) ¢ pt(Q”) c Q. (This last‘inequality‘bomeg from the

fact that @ > . T K..) From ithe definition of Q’, we have

T i#t Y
Q, _(-_: Q/l.. .
: no. . : _
If x= £ x, is in ", where x, € K., then -
j=1 9 ' S I R
QN @ x - % XJ = X- \Since i 'is a subdirect embedding,
J#t B f

there is a k in K such that p,i(k) = x.. ‘Then 1i(k)

n ' . ' ‘ . s
Y pti(k) € @ + L K, =Q". Therefore i(k) e i(K) n @
=1 : j#t J S o o »

i(Q) = i(K) n Q. < Q. _Since Q' also contains ¥ K.,
| R | SR At 97
¢ M ) ] .

e
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‘we obtain X ;és a member of Q“. But then x = x, + I X,

is also in Q', or Q < Q. Thus Q = Q, as desired. Q.E.D.

Lemma 5.5.5 'Undér'éhe same‘assumptions as before, - is’

a closed mapping;:'A

Proof: As in thé“brevidus lemma, if I is a prime ideal

of S{I #S) there is a unique Jo

in {1,2;...5}' such -
that I > ¥ K.. It follows

that we can write I = (INK. ) +
= 375 9 : . o do
3#3,

o

]
0/

it is easy

r K.. .If we set F, {I é‘F(S:P) : ID> ¥ K}
Ry P R , J T = Zsm
RIS S - mA]

I

to verify that F(S:P) U Fj’ and that this is a disjoint
_ J=1 -

union. From the definition of the closure operation in the

topology, each FJ is a closed set in F(S:P). If C° .is

. n-
any closed subset of F(S:P), we can write C = 'U!(Fj nc,
. . . o 7 - . B . J:l - R

and f(C) =

e

f(F, Nn C). Since C 1is closed, so is F. n C.
=1 4 o e | J
In order to show that f 1s a closed mapping, it is .therefore

sufficient to showhthat each f(FJ n C) 1is closed if C is™

closed. , o

‘Let i(Q) € cl(f(F.NC)Y. Then i(Q) > n  (QNi(K)) o
z td = Q" eF- b=
, Q" eF.NC
_ J
( i. Km) n i(K).='i(Dj); _From the previous 1eﬁma, or rather
m# J ‘ , : ' ' } ‘

the proof of th¢ lemmg,'welhave that}:Qf,='Pji(d)3+‘m§ij

t
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satisfies f(Q') = i(Q). We show that Q' e cl(Fjvn c).
Let .x = £ x_ € TT(FJOC). Since i is ‘a subdirect

embedding, there is a kY in. K such that pji(k) = X

Then i(k) = X. + % pmi(k). Since .each 3Q” in F.Nn C
v ' : Jo- m#j , T . J

contains ¥ K_ it follows that x. ané theh‘zi(k) are

mAg " Y T
in rj(anc), and so »i{k) ¢ i(Kj N (FW(FJDC ). In other
words, for Q”. in Fj n Cc, i(k) e i(X) n.Q& = £(Q"). 'Therefore
1(k) éIFT{f(Q”).: Q e Cn Fj]. Since 1(Q) e el f(FjﬁC))
we have i(k) is in i(Q),.'so' kAé Q. Therefore X, =

. ‘ . P . n ‘ . i
p.i(k) € p;i(Q), and x = £ x_e€ p.i(Q) + £ K = Q.
g g S e ™ mgg Mmoo

J

d . ~

| This shows Q' g_rT(anc),. or Q' e cl(FIC) = F, N C.
Now i(Q) = £(Q') e £(F; N ¢), and so f(Fj nc)

is closed. Q.E.D.

Corollary 5.5.6 - The topology on F(K:P) has the topolégy

‘of a quotient space of F(S:P) induced by the‘map T.

Proof: We have seen that the map f: F(S:P) -» F(i(K):P) 1is
continuous, Qloseg,vandfsurjqétive. From'Kelley (15)
 (Theorem 3.8, page 95) F(i(K):P)  has the quotient topblqu

‘induced by fi Q.E.D.

Remark: This completes the proof of Theorem 5.5.1.
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We have seen that the mapping f: F(S:P) - F(K:P)
is a closed mapping. The foliowing exémple shows that f

need not be an open mapping.

Example 5.5.7

' We consider the rings W' and T as defined in
Example 5.3.3. Recadll that, using the notation of the'example,

we had an irredundant subdirect embedding i: (s S,)" =

_Sl’ o SE" Let P be the property of being a prime'fing.

T : ,
It is easily verified that 1 and the homomorphism between

CF(W:P) and F(l(W P) induce a continuous closed mapping

f:F(T:B) - P(W.B) such that f(Sl’ ®’32) ='f(sl_@ S,') =

S, @ ).= S,.

, —
f(S ) = 8 ! ) >

1 @ Sps 1> and £(8y The set 4{81, si@se}

\

‘1s a closed but not’ open set in P(W B), and this is the

| image under the mapplng f of {Sl 5 S1 ) 82} which is both’

. closeq.ahd open in - F(T:B),

We consider briefly the case-Where a ring K: 1s a
finite subdirect sum Qf;primefrings. Then, as we have seen,
‘ : v . N _ : .on
there exists an irredundant subdirect embedding. i: K- & Ki’
where each Ki i a prlme rlng. It follows ffom Levy (19),
that if a ringA K is an 1rredundant subdlrect sum of rlngs

{Ka: QeA}, then the rlngs Ka‘ are determlned up to iso--

morphism,3by the'ring K. Wevconsider the oprsité question:
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if i: K - Kl is an irredundant'subdirept embedding, to

T eD

what extent is. K determined by Kl’ Kg,&;.;Kh? A partiai
answer is found in the following results.

. . 3 il" , i .
Lemma 5.5.8 . ILet L - K = S =

4

%=

K, where ‘i and 1
1Y 2 | |

j .
are ring monomorphisms such that i and. 1i’  are subdirect

embeddings, and_gach Kj is a prime ring. Then' K = 1i’(L)

I

if and only if, for every prime ideal @/ of §,:Q" N i(K)
QN ii/(L). | '

Proof: Clearly, if K = i’(L), the condition is satisfied.

To show that the condition 1s sufficient, it suffices

 to show that i(K) = ii‘(L), since i and ii’ are mono-

morphisms. Let pj denote the pfojection of S onto Kj’
\ .

Then any element i(k) of i(K) may be written i(k) = .
. n o coe e
z pji<K). Since 1i’ 1is a subdirect embedding, there is
J=1 '
an element w in I, such that plii'(w) = pli(k)’ and so
' o n no o
i(k - i'(w)) 1is in £ K,. Now Q = £ K. 1is a prime _

- ideal of 8, and we have i(ki- 1'(w))e Q'n i(K) = Q'n ii’(L).

- Therefore there is an eleméntx»z in L. such that _
i(k - 1/(w)) ="ii’(z). It follows that k = i’(w) + i’(z) =
17 (wtz) e i’(L); Since kK is a;bitrary.in K, we have

K=1i'(L). Q.E.D. .-
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Theorem 5.5.9 Let S = & Kj’ where each Kj is prime,

and let i: K~ 8 and 1i’: K - 8! Dbe subdirect embeddings.
Then 1i(K) = i’(X’) if and only if the following are satisfied:
(1) For each prime ideal Q" ~of S, i(K) n Q'.= :
) n . |
(2) The subfing _i(K) n i’(K’), wunder the natural

embedding into S, is subdirectly embedded into S.

Proof: Clearly these two conditions follow if i(K) = i’(K’).
Conversely suppose these cohditidns_hold. Then, if weﬂlét |

T = i(K),n i'(K'), and if we let f: T - i(K) )and g: i(K) - S
be the 6bvious embeddings, We can apply the prévious lemma éﬁd
obtain 1(K) ;-f(T) =T = 1(X) n i'(K'}.'_Similarly.we find’
i(K) n i'(K') = i'(K’). Q.E.D.
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