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ABSTRACT

This thesis consists of two parts. In the first part, we .
study‘summabiiity in left amenable semigroups. More explicitly, various
summability methods defined by matrices are considered. Necessary and (orj
sufficiént conditions are given.for matrices to be regular, almost regular,
Séhur, almost Schur, stfongiy regular and almost strongly regular,
generalizing those of 0. Toeplitz, J. P. King, J. Schﬁr, G. G. Lorentz and
P. Schaefer for the semigroup of additive positive iﬁtegers. The theorems

are of interest even for the semigroup of multiplicative positive integers.

Let S be a topological semigroup which is amenable as a
discrete semigroup. Denote by LUC(S) the set of bounded real-valued left
uniformly qontinuous functions on S . It is shown by E. Granirer that if
S 1is a separable topélogical group which is amenable as a discrete group
.an& has a certain property (B) then LUC(S) has "many" left invariant
means- In the second part of this thesis, we extend this result to
certain topological subsemigroups of a topological group. In particular,
we show that if S is a separable ciosed non-compact subsemigroup of a
locally combact’grbup which is amenable as a discrete semigroup then |
LUC(S) has "many" left invariant means. Finally, an e#ample is given to

show that this result cannot be extended to every topological semigroup.
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~ INTRODUCTION

In .[11] G. G. Lorentz introduced é new method of
summation'which assigns.azgeneral limit to cerfain boﬁnded sequences
X = {x(n)} . ,Hé célled the sequénces which are 'summable by this method
almost convergent. In various‘summability methéds defined by matrices, an
infinite matrix A is strongly regular if the sequence Ax ' is convergent
to k vwhenevef x 1is almost convergent to k , where Ax is the sequence

. {ZA(m,n)x(n)} whenever the sum is convergent for each m . It is almost
n .

regular if Ax is almost convergent to k whenever x is.convergent to
k , and it is almost strongly regular if Ax is almost convergént to k

whenever x 1is almost conQergent to k. Necessgry and (or) éufficient

conditions for matricesvto be strongly regular, almost regular and almost
strongly regular have been obtained by G. G. Lorentz, J. P. King and P.

Schaefer respectively in [11], [10] and [14].

Now the method of G. G. Lorentz is connected wiﬁh the
theory of amenable semigroﬁps. One of the purposes of this thesis is to
exténd thg various summability methods described above to a classlof
amenable semigroups. This will be od; concern in Chapter I. Our setting
then is as follows: S 1is a left amenable semigroup without any finite
left ideals. It.is shown that only in such semigroup; is almost convergence
a genéralization'of convergence in the sénse defined in section 1 (theoreﬁ
2.1). If A is an ihfiﬁite matrix on S , we have the following cases:

(1) Af (see section 1 for the definition‘of Af) is convergent for

every bounded real-valued function f on S . (Schur matrices)

-



(2) Af 1is left almost convergent for every bounded real-valued

funétion f on S’. (Almost Schur matrices)
- (3) Af 1is convergent to k whenever f 1is convergent to k .

(Regular matrices)

(4) Af. is left almost convergent to k whenever £ iis cdnyergent to
k . (Almost regular matrices)

(5) Af is convergent to k whene?er f 1is 1eft'aimost convergent
to k . (Stroﬁgly regular matrices)

(6) Af 1is left almost'convergent to k whenever f 1is left almost

convergent to K . (Almost strongly regular matrices)

We give necessary and (or) sufficient conditions for matrices to satisfy
(l).to (6). I;Ashould be pointed out here thét the results for (1) and (3)
do not in any Qay depend. on the algebraic structure of . S , so that the
results of O. Toeplitz [17] and‘J. Schur [15] can easily be extended; The
oniy additional arguﬁent needed is given in lemma 3.1. Examples dre given .

to illustrate our results.

The second purpose of this thesis is the étudy of the set
of ieft invariant ﬁeans of a topologigal semigroup. This will.be our
concern in Chapter II. Our goal is to extend to tonlogicél semigroup a
theorem of E.:éranirer which states thatvthe set’of left invariaﬁt‘means on
the lgft uniformly continuous functions of an amenéble separable topologiéal
group . is '"huge" if it has an unbounded left uniformly continuous function.
However, we are only able'to ex;énd the above result to certain topologicél
subéemigroups of\é topological group. Exgmples are then given to éhow that
fhis‘extehsion.is non—trivialgi Also an e#émple is'given to show that the

extension to any topological semigroup is not possible.



CHAPTER I T 3.

SUMMABILITY IN AMENABLE SEMIGROUPS

1.  DEFINITION AND NOTATIONS.

Let S -be a set. A function f on S :withvvalues in
a linear topological space L 1is called unconditionally summable to g in

L if lim z f(s) = g , where ! is the family of all finite subsets of
oel SeC : : :

S directed by inclusion. We shall denote this by g = Z f(s) and say
. ’ ‘ seS
the sum Z‘ f(s) converges to g [2]. In particular, we may take L
‘ seS - ‘ '

to be the reals. Then Z f(s) = g if for every e > 0 there is a
seS ‘
-then ]'z_ f(s) - g] <e. It is
-seo

- finite subset .0, such that if o Do,

well known that the above definition implies only countably many f(s) are

different from O [8, p. 19, theorem 1].

Let S be a set and S le{m} be the one-point
compactification of S when S has the discrete topology. Let m(S) be
the linear space of all bounded real-valued function on § with the sup
norm, and let C_ be the closed linear subspace.of all those £ in m(S)

such that 1im f(s) exists. From now on, we shall write 1lim f(s) for
g J s :

lim £(s) , so that lim f(s) = k means that for every € > 0 there is a -

s ‘ s

finite subset ‘6 S such that |f(s) - klv; e if s €S A g If, in
addition, S 1is a semigroup, then, for f em(S) , ae S , pa<f) = f(a) ,
and Za[ra] is the left [right]_translation operator on m(S) defined by
laf(s) ='.f(as)- L;af(s) = f(sa)] . The conjugate mapping of L, »Qill be
dénoted by La . If CoA denotes the convex hull of A then elements io

Co{pa : a e S} are called finite means. A linear functional ¢ on m(S) -



is a left ihvariant mean (LIM) if ¢ (f) >0 for £ >0 ; (1) =1

and ¢(2af) = ¢(f) for all 'f € m(S) and all ae S , where. 1 is the
constant one function on S , and f > 0 means f(s) >0 for all s ¢S .
We denote the set of all left invariant means by MR(S)‘. If Ma(S) # 6 ,.
where ‘¢ denotes the empty set, then the semigrqup S,_islsaid to be left
amenable (LA)l. If, in additign, ¢ . is multiplicative, i.é.,

6 (fg) = ¢(£)o(g) for all f,g e m(S) then S is said to be extremely
Aleft amenable (ELA) . Ekamples of left amenable semigroups are:
'qommutaﬁive semigroups,.solvable groups and locally finite groups} For
details aﬁd an excellent reference see [1]. Extremely l?ft amenable semi-
gfoups é;evprécisely those semigroups in which every two elements. have a
common right zero. For details and other interesting results see [3], [4],

[5] and.[13].

If 8§ is LA ,'then a function f & m(S) is said to be
left almost convergent to- k if ¢(f) = Y(f) =k for every ¢,p eML(S) ..

‘We shall denote the set of all almost convergent functions by F , and

write f is fac to k to mean f 1is left almost convergent to k .

If A= (A(s,t)) is an infinite matrix on S and

’

f e m(S) , let Af be the function defined on S by Af(s) = z A(s,t)f(t),
. c

whenever the sum on the right hand side converges for each s ¢ S . We

say f is FA—summable to k 1iff 1lim z A(s,t)f(tb) = k- uniformly in b,
, ’ s. t ' .
where b € S . This generalizes the definition by G. G. Lorentz [11, p.171].

AN



2;' CONVERGENCE AND LEFT ALMOST CQNVERGENCE.
| We show in this sectioh'tﬁat léft almost convergence is

a generalization of convergence in a LA .semigroup.without finite left

ideals. | |

) ) s
~ 2.1. THEOREM. Let S be a LA semigroup. Then f -is <fac' to k

whenever f is convergent to k iff S does not contain any finite left

ideals.

PROOF. ’ Suppose S does not contain any finite left ideals. Wek_
first show ¢(la) =0 for any LIM ¢ and any a ¢ S., where 1A , here
and elSewhére,'denotes the characteristic function of vA . We shall always
write ¢(A) for ¢(1A) . If ¢(a) > 0 then since ¢ is left.invariant,

$(sa) > ¢(a) > 0 for all s € S . Since ¢(S) =1, Sa has to be a

finite left ideal, which cannot be.

Suppose now f € C_  and 1im f(s) =0 . For € >0
s

let H be the finite subset of S for which |f(s)| < g whenever

seS~H. Let M=max [f(s)| . Then |[f(s)]| < § ML +elg -
seH , aeH
. /
Hence if ¢ 1is any LIM then |¢(f)| < g . And since € 1is arbitrary,

we see that ¢(f) =0 . If now l%m f(s) = k then by.considefing f-k ,

we see that £ dis fac to . k .

- Conversely, suppose S has a finite left ideal A .

Let G be a minimal left ideal of S contained in A . We now show that

G 1is a group. Let G = {g., «.., g} . Then by the minimality of G ,
. : &1 n

Gg = G for each g e G . Hence for 1 <i,j <n , there is some 1 <k <n

-



'Such‘that 8 8; = gj . Tﬁennfor any LIM .¢ , we héve

¢(gj) = ¢(gkgi) z_¢(gi) - And since this argument is symmetric we conclude
that '¢(gj) =‘¢(gi) for each gi,gj e G : If now g e G 1is arbitrary then
$(g6) > ¢(G) = n¢(gg;) > mp(gg,) , where m is the cardinality of gG .
Since g6 € G we see that n=m and so gG =G . This.shows théﬁ G 1is

a group.

Let now ¢ be defined on m(S) by ¢(f) = %- zbf(a) ’
' aeG

f ¢ m(S) . Then it is easy to see that ¢ is indeed a LIM . Clearly'the

function lG is convergent to 0 , while 1

G is not fac to O since

¢(1G) = 1 . This completes the proof.

In view of the above theorem, whenever we consider LA

~semigroups we will always assume the semigroup to be without any finite

left ideals, even though we might not explicitly mention so.

3. ALMOST REGULAR MATRICES.
We first prove the following useful lemma. We point out

here that unless S 1is a countable set the usual proof does not work.

3.1.  LEMMA. Let A be an infinite matrix on S . A necessary and
sufficient condition for Af ¢ m(S) whenever f ¢ Cm‘ is that there exists

aﬁ'.Mv> 0 such that sup )|A(s,t)] <M.
5 ¢ '

- PROOEF. - Suppose  sup ZlA(s,t)[ E_M_'for some M > 0 . Then
: t

clearly for each s €S the sum YA(s,t)f(t) converges and |Af| < M|f]|
. ) t

-



for_each. f e C°° .

Conversely, suppose Af ¢ m(S) for every f ¢ C, . For
each fixed s ¢ S let o be the countable subset such that A(s,t) =0

for all t é 6. Let ol be an increasing sequence of finite subsets such

that L)cn =0 ; For each fiﬁite subset dn “define the continuous linear
n ‘ o ‘
functional A on C_ by A (f) = ] A(s,t)f(t) . Then A (f)
‘ teo
n

converges to Ao(f) for'each fecC,  , where Ag(f) = z A(s,t)f(t)

teo
Hence for all =n , ”An" < M(s) for some constant M(s) . This implies
."Ac“ < M(8) . Let now ‘AS be the linear functional on C, . defined by
As(f) = Af(s) . Then AS is continuous since ||ASH = ”Ac“ < M(s) .

Now the set {As : s € S} is a pointwise bounded set of
continuous linear functional on C, since for each f e C., .
sup IAS(f)| = sup |Af(s)| < » by hypothesis. By the principle of uniforms "
S .

boundedness there is an M > 0 such that ‘ASI <M for all s e S'.

Once again let ‘s € S be fixed, and for each finité
subset cn define the function fn e C, by |
sgn A(s,t) if -t ¢ oh
0 otﬁerwise

fn(t) = {

Clearly f e C and |f ” < 1 . Therefore
n ] n' —

ti- |ats,0) | = |§A<s,t>fn'<t>| = 1A < lagll <
€0, _
Consequently, XlA(s,t)l =l 2 |A(s,t)| 5_ﬁ . And since this is true for
- : t . teo '

each s ¢ S, it follows that sup ZlA(s,t)I <M .
. . . S t

-



3.2. THEOREM. Let S be a LA semigroup. Then a matrix A is‘almost

regular iff the following conditions are satisfied:

(3.2.1) sup 2 A(s,t) < M for some M > 0 .

(3.2.2) A(s,t) ,as a function of s , is fac to O for each te S .

(3.2.3) ZA(s,t) , as a function of s , is fac to 1 .
. : .

PROOF. : Suppose A 1is almost regular. Then (3.2.1) follows
from lemma 3.1. Conditions (3.2.2) and (3.2.3) follows if we note that

Al _(s) = A(s,t) and Al(s) = JA(s,t)

Conversely, suppose (3.2.1) and (3.2.2) énd (3.2.3).hold.
Theh (3.2.1) together with 3.1 implies Af e m(S) for every f ¢ c, -
Using (3.2.2) and (3.2.3) Af is fac to lim f(s)- wheneQer f iSvin_fhe
set B = {1, L P te S} . The proof is.chn éompleted by noting that B

is fundamental in C, » i.e., the uniform closure of the linear span of

B is C .

oo . . '

3.3. REMARK .
(a) J. P. King was.the firsﬁ to consider almost reguiar matrices, and for
the semiéroﬁp of'édditive'positive integers, 3.2 yields King's theorem
3.2 in [10].
(b) Let (N,+) and . (N,f) denote the semigroﬂp‘of additive pdsitive‘
| integers Anthhé_semigroup 6f multipiicative positive integers

respectively. Define the matrix A by

Y



§(1,n) if m is odd

§(m,n) if m is even ,

where ‘é(m,n> =1 iff m=n and O othérwise. Then with (N,+) , A

is not aimost regulgr because the.éequence (1,0,1,0,...). which appears
in'tﬁe first column of.thevmatrix is fac to 1/2 . However, with (N,*),
the sequenée‘ (1,0,1,0,...) restricted to the ideal. 2N is the identically
0 sequence and hence by proposition 3.5 below, is fac to 0 . It can
easily be checked that A satisfies the conditions of 3.2, so that A 1is
almost regular when the semigfoup ig, (N,.) . _Wevfeel'that this example
toéether with those that will follow justify the étudy.df summability in

LA semigroups. 

In the following let S be a LA _semigroﬁp, C be the .

constant functions on S , and

n . .
H = {.Z £,(g, — 2, 85) 2, ¢€ 5, fi.8, ¢ m(S) , n = 1,2,...}
i=1 i
n ' ,
K = {'z (fi - Ra fi) : ai €S, fi em(S) , n=1,2, ...}
l=l i
We denote the uniform closure of any set A in m(S) by Cl(A) . For

¢ € m(S)* define T¢ : m(S) ~ m(S) by (T¢f)(s) = ¢(rsf) . In particular,

if ¢ is a finite mean, i.e. ¢ = ) ¢(t.)pt , then
, N | =1 t i
(T¢f)(s) = 2 ¢(fi)f(tiS) . Therefore, if LO(f) =.{Zsf : s e S} then

T¢f e CoLO(f)
We now bring in a result of E. Granirer [5, p. 71,

théorem 7] whigh will be used throughout this chapter. TFor completeness,
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we will give its proof.

3.4, THEORENM. Let S be a LA semigroup{. Then F =C@® CL(K) , and
f is fac td' kA iff f ¢ k1 + CL(K) . »Furthermore,v
ti) - If ‘f_ is Rac. to' k. and {¢a} is a net of means.such that

lim NLS¢a - ¢d” = 0 for each s‘e'S then '1§m HT§-£ -klff=0 .

' 4 o
(i1) If k1 € ClCoLO(f) then f dis. Rac to k .

AéRQOF. If f is fac to 0 then f e C1(K) . IOtherwisé, there
| would be some ¢ € m(S)* such that ¢ (£) fAO and ¢(C1(K)) =0 by the
Hahn-Banach theorem. But then ¢ is left invarianf and hence

b = a¢l —‘8¢2L, where ¢1, ¢2 are LIM on m(S) and a,B'z!O [6, p. 55].
Since 6, (£) = ¢,(£) = 0 it follows that ¢(f) = O , which cannot be.

Thus f e C1(K) . And.since. $(C1(K)) =0 -for'any LIM ‘¢ we get C1(K)
coincides with the set of functions fac to O . If f is fac to k
then f-kl is fac to 0 , so that f£ e kl + C1(K) . If kl e CL(K)

then k = ¢(kl) =0 . Hence F =C@ CLK) .

If ¢ is a "LIM then we note $(f) = ¢(g) for every
g € CoLO(f) . Hence if kil ¢ ClCoLO(f) then it follows from the. fact that
k1 can be unifofmly»approximéted by a sequence . g, € ColO(f) we haver

¢(f) =k . This prcvesl(ii).

Suppose now f = g - Zag for some g e m(S) , ae S .
If now '{¢a} is any net -of means such that lim HLS¢& - ¢a“ = 0 for each
‘ T a v .

s € §, then for, t € §,

N



1

_ J<T¢af><;>l = 4,8 - T 20
| = ¢, (re - 2,78
=[G4, - L)z sl
<lre, - o lliell
Thus lém ”T¢af” = Q‘. Since each o , ”T¢au 5~”¢a” =1, gndv T&a is:

linear it is easy to see that lim ||T f” = 0 whenever f e C1(K) . 1If
, a, .

¢

o :
f is fac to k then f =%kl + g for some g.€ CI1(K) . Thus

lim ”T f - kl” = lim “T (f - kl)n = lim ”T g“ = 0 . This proves (i).
oo ('l) . Q q) o . ¢ . :

Q (03 Qo

3.5. PROPOSITION. Let f ¢ m(S) and A be any right ideal of - S . 1If
rf € m(A) 'is the restriction of f to A then =f is fac to k iff

f dis fac to k .

PROOF. ‘The map 7w : m(S) > m(A) is defined by mf(s) = f(s)

for s e A, fem(S) . Let ¢a be a net of finite means converging to
left invariance in norm, i.e., lim ”Ls¢d - ¢a“ =0 for each s ¢S [1,
o

p. 524, theorem 1]. We may assume that each have their support in A,
237 : o

since otherwise, we replace ¢a by La¢a for some fixed a e‘A . Let

n o '
¢a(f) = z ¢a(ti)f(ti)-. If f is /&ac to k then by theorem 3.4(i), it .
i=1 N : :

follows for all s e S ,

: n
](T¢anf?($) - k| Iizl¢a(ti)nf(tis) - k]

n _ :
= lizl¢a(ti)f(ti8) - k|

IA

T, £~-x1ff~o0.
: ¢a
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Hence  f is fac to. k by -theorem 3.4(41). -

. Similarly by taking ¢a tb be a net of finite means on
m(A) such that 1lim ”L§¢a f_¢aH = 0 for each s & S , we can show - f °
o .

is fac to k "whenever wf dis fac to k .

4. REGULAR MATRICES.

| The followiﬁg is the exten#ion of the well known Toeplitz
theorem for regular matrices. However, this extension does not depend on
thé'algebraic_structure of 'S . The oﬁly additional argument'needed.in the

usual proof is given in lemma 3.1.

4.1. THEOREM. Let S be a LA semigroup. The following_conditibns

are both necessary and sufficient for an infinite matrix A to be regular:

(4.1.1) sup ZIA(s;t)] <M for some M >0 .
_ s = : . :
(4.1.2) 1im A(s,t) = 0 for each t g S .
s

(4.1.3) 1lim JA(s,t) = 1 .
S /

PROOF. » Suppose A 1is regular. Then (4.1.1) follows from lemma
3.1. "Conditions (4.1.2) and (4.1.3) follow if we note that

Alt(s)‘= A(s,t) ‘and Al(s) =. ) A(s,t) .
' ' tes

Conversely, suppose (4.1.1), (4.1.2) and (4.1.3) hold.
Then (4.1.1) and lemma 3.1 implies Af e m(S) for every f € C, . Using |

(4.1.2) and (4.1.3) . Af 1is convergent to lim £(s) whenever f is in
. : s o

-
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‘the set B =:{l, 1 t ¢ S} . We then complete the proof by'noting that

t

B is fundamental in C_

4.2. REMARK. It is interesting to compare theorem 3.2 and 4.1. More
specifically,.we draw to the reader's attention the similarities in the

conditioné of the theorems as well as the proofs.

5. STRONGLY REGULAR MATRICES.
We will frequently need the following: If S 1is a left

cancellative semigrbup, besS, sup Z|A(s,t)| < M then
_ -8 .

t
(1) Z A(s,t) = ) A(s,bt)
teb$s teS”
(11) . . |aGs,0)] = ) |AGs, )] -} |AGs,t)|
teSvbS . teS tebS
_ = T (a0 - |at,bo ]
’ teS :
(5.0.1) ~ '

< 1 |AGs,0) - As,bt)]
teS

The following theorem 5.1 contains one of the main results
of this chapter. When 'S 1is the semigroup of additive positive integers, -

theorem 5.1 yields G. G. Lorentz's theorem 8 in [11, p. 181].

5.1. THEQREM. Let S be a left cancellative LA semigroup generated

by BCS . The following conditions are necessary and sufficient for an .= .

infinite matrix A to be strongly regular:

(5.1.1) sup Y|A(s,t)] <M for some M > 0 .



(5.1.2) lim JA(s,t) = 1 .
| & LSt

'(5.1;3) 1im ZIA(s,t) - A(s,at)l = (0 for each a € B .
s .

t
PROOF . . We first show (5.1.3) implies that
lim ) |A(s,t) - A(s,bt)| = 0 for every beS. Let b=aa - T
s ¢ : ' _ n n-1 1
where . a, € B for i=1,2, ..., n - Let bj = ajaj_l cee @y

j=2,3, ..., n-1 . Then the desired result follows from the following:

Yla(s,t) - A(s,bt)| < Y|a(s,t) - A(s,alt)l'
t t

+ E IA(s,t) - A(s,azt)[

tsalS

(5.1.4)
+ ) |AGs,t) - A(s,a3t)| + .

tebZS

+ L las,t) - A(s,aht)] .

Now éuppose f dis fac to k . Then Af € m(S) by

3.1.: Let ¢a be a net of finite means converging in norm to left

invariance, i.e., lim'”Ls¢a - ¢a|]'= 0 [1, p. 524, theorem 1]. Let
o . ) : ,
n ‘ v S v
o (f) = Z o (£)Ef(t.) . Let e >0 . Then there is an oy such that
G . o 1 i .
i=1 0 o »
if o > ap then l z¢a(ti>f(tit) - k} <e forall tesS by theorem

i=1

3.4(i). Then for all t,s € S , and all « >ap.

. - . » n . ‘.
(5.1.5)  |YA(s,t) } b (EE(E D) - JA(s,t)k| < Me
t . i=l ~ t A

From (5.1.2) thére is a finite subset H such that for s ¢ H1 then

1

-
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|}A(s,t) = 1] < e . Hence for s ¢ H o,
t ' .

(5.1.6) C|TAG, )k - k| < k|
. : t

Fix an a > ay . From (5.1.4) there is a finite subset H, such that

if s ¢ ﬁz R then Z|A(s;tit) - A(s,t)l <g for i=1,2, ..., n . Hence
t .

for s ¢ sz,

n o
DEMCRIICROT

|Af (s) - EA(s;t)
t i=1

n

.2

1_1

: n '
by (£AE(S) = izl¢a(ti)ZA(s’t>f(tit)l

n
| 1 ¢, (e DINAG, )ECE) - JACs,0) (e, 0)]|
i t t :

Ci=1 7

. n :
(5.1.7) | o, e )0 ] AGs,0)f(t) + ] A(s,t)£(r) - JA(s,t)E(t,t)]]
. t .

i=1 - tet.S teSnt .S
i o i

. n ' - A n '
< |£ o (t)]|As,t t) - A(s,t)| + ||f o (t.) ~ |A(s,t)
< lli_z_l o (51 %I s | + €] izl R tssztisl |

n | | |
<2f£ll I ¢, (e )]]A(s e t) — Als,t) | (see (5.0.1))
i=l t

<2)jglle .

Then for the fixed o > ap and s é H, = Hl\J H2 , it follows from (5.1.5), .

0
(5.1.6) and (5.1.7) that

S n
|Af(s) - k| < |Af(s) - JA(s,t) ) ¢, (£ DE(E )|
' t 0 i=1

n N
+ |JA(s,t) ) 9, (e E(t t) - YA(s,t)k|
t iél ' t




+ IZA(s,t)k - k|
t ' :

< Nl + M+ |k])e .
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Conversely, suppose A .is'strongly regular. Then A is

regular and hence,'(S.l.l) and (5.1.2) follows. If (5.1.3) does not hold

for some a , then'there is an € > 0 such that Z|A(s,t) - A(é,at)l >
’ t

for infinitely many ses. Using this and the fact that -

S5¢

lim [A(s,t) - A(s,at)] = 0 for each 't € S we now choose an increaéing sequence -
s _ o

o(k) of finite subsets of S and an infinite subset '{sk} of S as
follows: For convenience, denote A(s,t) - A(s,at) by B(s,t) . In
general, for k =1, 2, ..., if o(k) D o(k-1) (whefe 0(0) = @) let

s, € S be such that

k
(5.1.8) . N IB(Sk’t)l > 5¢ “and
teS .
(5.1.9) I IBGs,0)| <€
’ teo(k)

And since the sum Z |B(sk,t)| is convergent there is a finite subset
teS ’

o(k+l) O o(k) such that

/
J

(5.1.10) ). [B(s,,t)| < ¢
' teS vo(k+l) :

Then from (5.1.8), (5.1.9) and (5.1.10) we have

o . |B(s, ,t) |
tea (k+1)vo (k)

.
~

=<§_z - ) >13<s'k,t>|

(5.1.11) .
: " teS teo (k) teSvo (k+1)

-

> 5¢ - ¢ -¢ = 3¢



17

We now define f & m(S) by

o sgn B(sk,t) if fle a(c(k+l)&0(k))
f£(t) = { o

-0 otherwise.

Since S 1is left cancellative, f .is well-defined. Moreover, hel <1
‘and ¢ f-f is gac to O . But for k=1, 2, ..., it follows from
(5.1.9), (5.1.10) and (5.1.11) that

A~ (s = | ] AGs,00E@at) = [ aGs,0)E(e)]
. teS teS . ‘ "

| z A(sk,t)f(at)A4 z A(s

LOE(E) - T AGs, ,£)E(8)]
teS tealS k K’ . '

teSvas

|-ZV[A(sk,t) - A(sk,at)]f(at)|
teS .

| I B(s, 0 (at) |
teS

I T + 7 )B(s,.,t)f(at) |
teo (k) teo (k+1)~no (k) teSvo (k+1)

2C L= L = T B,
teo {ktl)vo (k) tec(k) teSvo (k+1)-

>3 - -¢€=¢

But this cannot be since A(Zaf - f) converges to 0O . Thus (5.1.3) holds.

5.2. REMARK, - If A 1is a s;rdngly regular matrix we canndt hope that
(5.1.3) hold inAééneral as the following example shows: Let S be the set

of positive integers with multiplication * defined by 1i%*j = k , where

-
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k is the smallesf odd integer greater thén.of equal to iV j = max(i,j).
Thep % is associative since fof each i,j,k e S , botﬁ ‘(i*j)*k and |
i*(j*k) are equal to the smallest odd integer greafer théh or equal to
max(i,j,k) . Moreover, for e&ery i,j e S ﬁhen either if/ j or
ivij)+1 is_a'fight zero for i and 3. .Heﬁce S 1is an ELA
semigréup; Let now A bé é matrix defined on ‘S by

(1) A(m,n) = 0 - whenever n is even, or n < 2m-1 .

(ii) ‘A(m,én—l) > A(m,20+l) > 0 whenever 2n-1 > 2m-1 .

-(iii) ZA(m,n) =1 for each m .
n -

Then A does not satisfy (5.1.3) since for example,
lim EIA(m,n) - A(m,3*n) | =1. However, A is strongly regular as theorem
m 1 .

5.4 below shows. We leave the details for the reader to check.

5.3. REMARK. If S 1is a cancellative LA semigroup without any
finite left ideals then C, 1s a proper subset of F , since otherwise, the

identity matrix would have to satisfy (5.1.3). Then there exist finite

O1s Tps 3s beS, a# b, such that at =.t "for t e S %,Ui' and”™ ¥

then at =bt =1t .

subsets

bt =t for teS~o, . Hence if t e S~ (01\J o}

2 2)

Since S is right cancellative, a = b , which cannot be.

5.4. THEOREM. If S 1is ELA semigroup then the following conditions
are both necessary and sufficient for an infinite matrix on S to be

strongly regular:

.

(5.4.1) sup ZlA(s,t)I <M for some M >0 .
' s ¢t '

-
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(5.4.2) lim JA(s,t) =1 .
' ' L S t ) .
(5.4.3) © 1lim - Z IA(s,t)| = (0 for every a € S such that a e Sa. -
' ‘ - . 8 tegSvas ‘
PROOF. = = " Let f=g- Zbg , & € m(S) ; g#0 , and be S . Let
a e é be such that ba = a . TFor e >0, let H0 be a finite subset
such that if s ¢ Hy then ) la(s,t)| < e/2]g] . Then for s ¢ Hy
' teSnasS _ : » :
we have
|af(s)| = | ] a(s,t)g(t) = ] A(s,t)g(bt) ]
. teS - teS
<11 AG,os() - T AG,0)g®o)| + 2fgll . [aGs,0)]
' teal tea$ teSnas
<e .
Thus Af 'is cbnvergent to 0 . And since A dis linear, Af is
convergent to 0 whenever f € K . Suppose now f e Cl(X) -, and let
g ¢ K be such that lim Hg - f|]= 0 . Then -
n . n n
lim ”Agn - Af| < lim M[gn - f]l=0". Since 1im is a continuous linear
n n :
functional on C this implies 1lim Af(s) =0 . If now f 1is fac to k
. o . s :

then f-k is fac to O and hence lim A(f - k)(s) =0, i.e.,
3

lim Af(s) = k .
: .

Conversely, if A is strongly regular then (5.4.1) and
(5.4.2) hold. 1If (5.4.3) does not hold there is an g > 0 and an

a € S such that™~ - Z [A(s,t)] > 5¢ for an infinite number of s € S .
teSnas : )

Using this together with the fact that 1im A(s,t) = 0 for each t ¢ S ,

-
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we can choose, as ih the proof of 5.1, an increasing sequence (k) of
finite subsets of S ~ aS and an infinite subset :{sk} of S so that the

following conditions holds:

(5.4.4). ) IA(sk,t)l <e

teo (k)

(5.4.5) 7 |ats, )| < e
teSvaSvo (ktl)

(5.4.6) I lAGs,0)] > 3
teo (k+1)vo (k) ’

We can choose the sets o(k) to be subsets of S ~ a$ since S v aS is

infinite (otherwise Z IA(s,t)l would be a finite sum of convergent
teSnvas .
fﬁnctions) and the sum Z |A(s,t)| is finite. Define
teSvas :

-~ (sen A(s,,t)  if te o (k+1)~o (k)
f(r) = { .

0 otherwise.

Now observe that Hf” <1, Qaf = 0 , the support of f is contained in
S &_aS , and that f - Raf is ‘fac to 0 . Using (5.4.4), (5.475) and

(5.4.6) we have for all k ,

7
aCe - 2. D ()| = | [ AG,0E(t) = [ A(s,,00f@D)| = | [ As,0)E(D)]
: teS ) teS teSnva$
=C Y o+ ) + ) )A(sk,t)f(t)!

tea(k) teo(k+l)vo(k)  teSvaSvo (k+1)

O S JIRE I AU [ (o)
teo(k+l)%o(k) teo (k) teSvaSvo (k+1)

>3 ~eg=-¢=¢ .
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But this cannot be since A(f - Qaf) is conﬁergent to 0 . Thus

(5.4.3) hold. -

5.5. REMARK.
(a) vIn the proof of the necessity in 5.4,vwe did not use the fact that a
is a right zero of some element in S , so that in‘any LA semigroup,
(5.4.1), (5.4.2) and (5.4.3) are necessary conditions whenever A is
strongly regular. |

£ for any

(b) We note that in the proof of 5.1, if f 1is replaced by 3

b € S, the same op is obtained since ‘|T¢ (rbf)H 5_”T¢ 1. 1t
' a o

follows from this that the same finite subset H there is obtained

0

0
if f 1is replaced by rbf for any b €S . Also in the proof of
5.4, if f is replaced by rbf for any b € S , the same finite
subset H is obtained. In his proof, for the semigroup of additive-

positive integers;'G. G. Lorentz maae,the same observation (it should
be pointéd out that our proof differs in many ways from his) énd used
it in the.proof‘of the following theorem 5.6 for the additive positive
integers [li, P- 18;]; . We now use this observation in the folloﬁing

theorem.

5.6. THEOREM. Let é be a left cancellative LA'[ELA, not necessarily
leff cancellative] semigroup and ‘A be an infinite matrix on: S satisfy-
ing the conditioné pf theorem 5.1}[theorém 5.4}. Then f is FA-summable
to k 1iff f ,is\‘zac fo k . '
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PROOF. | If f is fac to k then, as known; ‘rtf is fac to
k for every ¢t € S . This can easily be seen from the fact that the left
translation operatof commutes with the right translation operator. By
remark’5.5(b) 1lim A(rtf)(s) =,lim-z A(s,t‘)f(t't) = k uniformly in t ,
. . s . S 1 . '
t ) .

i.e., f 1is FA—summable.

The converse follows easily from corollary 5.8 to the

'following theorem, proved first for the semigroup of additive positive

integers by P. Schaefer [14, p. 51].

5.7. THEOREM. Let S be a LA semigroup. If A 1is' almost regular
and f is‘ FA—summable to k then £ 1is Rac to- k..

PROOF. We'basically'adapt Schaefer's proof to the ‘general
semigroup case. Suppose f is FA—summable.to k . Then

lim ZA(s,t)f(tb)'= k uniformly in b . Let“g be a function of s and

S t . ) >

b defined by g(s,b) = YA(s,t)f(tb) . Then g(s,b) = k + h(s,b) , where -
t ‘ ' -

h is a function of s and t such that h , as a function of s, is
. ?
convergent to O wuniformly in b € S . Now for each finite subset ¢ of .
. \
\ .
S , define g, as a function of s and b by go(s,b) = Z A(s,t)E(td) . \

teo

Then g, converges uniformly to g for each fixed s € S since

]|gc - g|| = sup lgc(b) -g®)| < ). |aGs,t)| ||£]] and this can be made as
b teSvo

small as we please.

If now ¢ is any LIM then for each fixed s e S ,

-
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b(g) = 6(lim g ) = Lim ] A(s,06(2 ) = ] A(s,06(£) = ¢(etn) = k + o(h).
o O tes teS

R Thus ¢(f)ZA(s,t) =k + ¢¢h) . Since h , as a function of s converge§
N t !

to O wuniformly in b e S , for every ¢ > 0 there is a finite subset :H
such that if s é H then [¢(h)[ <g, i.e., ¢(h) , as a function of sé,
: f

is .convergent to O . If now ¥ 'is any LIM then

i
(5.7.1)  yIe()]A(s,0)] = ¢(DV[JA(s,0)] = v(k) + Y(s(h)) " . o
t t Sk

Since A 1is almost regular, w[ZA(s,t)] =1 and yY(p()) =0 . Therefore,
t

we see from (5.7.1) that ¢(f) = y(k) =k , i.e., f dis fac to k. :

This completes the proof.

The following corollary, which is due to G. G. Lorentz
for the additive positive integers [11, p. 171], is an immediate

consequence of: 5.7 since every regular matrix is almost regular.

5.8. COROLLARY. Let S be a LA semigrdup.' If A 1is regular and f

is ‘FAésummable to k then £ is fac to k.

6. ALMOST SCHUR MATRICES.
' The following theorem gives sufficient conditions for a

matrix to be almost Schur.

6.1. THEOREM. - Let S ‘be a LA semigroup. Let ‘A be an infinite

matrix on S satisfying the following conditions:



(6.1.1)

sup

S t
(6.1.2)
(6.1.3)
Then Af 1is fLac to
PROOF. Let

directed by inclusion.

g, (s) = ] AGs,0)E(D)
teo

" (6.1.3). Now (6.1.1)

readily show that Af

A(s,t) , as a function of

ZIA(s,t)I <M for some M > 0 .

t
s , is fac to

Zatf(t) for each f e m(8)
t .
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The sum 72{A(s,t)[ converges uniformly in s .

o, for each t ¢ S.

% be the family of all finite subsets of §

Let f e m(S) . For each o ey define 8y

Then clearly 8 is Rfac to

implies Af e m(S)

is the uniform limit of 8y

and if ¢ 1is any LIM then"

¢(Af) = ¢(Lim g_
o

6.2. COROLLARY.

‘almost Schur matrixQ

PROOF.

0 and ZA(s,t) is

t

then Af 1is fac to O by the theorem. In particular, XA(s,t) is

Rac

l;m L o £(t)
teco

) = 1§m ¢(80)’=

to 1 .

fac to 0, which cannot be.

™~

6.3. REMARK.

= Ta_£(¢) .
s

by

! a.g(t) by
teo o

And using (6.1.2), one can

. Hence Af 1is fLac

[

’

If A 1is an almost regular matrix then A cannot be an

If A is an almost regular matrix A(s,t) is Rfac to

If A is also an almost Schur matrix .

‘It is easy to see that if A 1is an almost Schur matrix

then (6.1.1) and (6.1.3) are necessary. However, (6.1.2) is not necessary
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as the following example shows: Let S be the semigroup of ordinals less
. . . .. {

than the first uncountable ordinal § with the usual addition of order ¢

b
i
i
3
f
H
i
|

types. Then S 1is a non-commutative, left cancellative, ELA semigroup

(5, p. 73]. Define A on .S by

o 5(s,t) if 1<s<w ,tes

0 otherwise,

.where w 1is the first countable infinite ordinal. Then for any f & m(S),
it is easy to see that Af(s) =0 for s ea + S for any o >w . By

3.5 Af is fac to 0 . But clearly {6.1.2) is not satisfied. “

6.4. EXAMPLE. Let S$={(mn) :m=1,2, ...,n=1, 2, ...} . .

' Define the operation * on S by
(a) (ml,nl)*(mz,nz) = (ml+n2, nlfnz) if my # 1 and m, £ 1 .

(®)  (m,ny)x(ln,) = (Ln)x(m,n,) = (i,nz) if m #1. -

(c) (l,nl)*(l,nz) = (l,nl\/ nz) , where n, Vv oo, = max (nl,nz) .

That S 1s an ELA semigroup actually follows from the foilowing general

construction: Let S =‘Slkj S where S is any semigroup and S is

2 1 2

ény ELA semigroup. For a,b e S , define the product axb to be the

product of a and b in Si , i=1, 2, if both a,b € Si . If ace Sl ;

bve 52 then axb = bxa = b .

Now for each k and each & fixed, define

‘ @2 if m=1
f(m,n) = {
: 0 otherwise .

-
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o ' | | \
Then g(m,n) = &y ;yE@,m) = £[(1L,Dxm,m)] = (1/2)**  for all m and |

n . Then g(m,n) - f(m,n) is fLac -to 0 . Define the matrix A on S §\\‘
by "A(m,n;k,%) = g(m,n) - f(m,n) . Then A(m,n;k,2) ,»és'a function of

(m,n) , is fac to O for each’ k and & ; and

Z IA(m)n;k,Q)I = z (l/2)k+£ cbnverges uniformly in (m,n) to 1 . By
K, % k, 8 L | L

6.1 A is an almost Schur matrix.

7. SCHUR MATRICES.

The following is the extension of Schur's theorem.

However, this extension does not depend in any way on the algebraic

structure of S .

7.1. THEOREM. The following conditions are both necessary and

sufficient for an infinite matrix A to be a Schur matrix:

- (7.1.1) lim A(s,t) exists for every t € S
. 8 .
(7.1.2) The sum ) |A(s,t)| converges uniformly in S .

Moreover, if lim A(s,t) = o, then Af converges to Zatf(t) for every
S . t

f ¢ m(S) .

PROOF. Suppose (7.1.1) and (7.1.2) are satisfied. If I denote
the family of all finite subsets of S directed by inclusion, for each

ogel and f e m(S) define go(s) = 2 A(s,t)f(t) . Then (7.1.1) and
teoc . .
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(7.1.2) imply that each g, € C, and Af is the uniform limit of 8,
and thus Af € C_ . Since lim 1is a continuous linear functional on C.»

- 1lim Af(s) = Zatf(t)
s t

Conversely, suppose A is a Schur matrix. Then

sup 2]A(s,t)|‘§_M for some M > 0 and lém A(s,t) = o exists for each
t

t € S . Define g, as above. Then 8, is a norm-bounded net converging
pointWise to Af in C_ .. By [12, p. 249, lemma 3] 8y converges wk

to .Af 1i.e., for every ¢ ¢ 21(8) , lim ¢(g0) = ¢(Af) . In particular,

. o} : ‘

l%m Af(s) = lim lim gc(s) = Eatf(t) . Hence the matrix B defined on S
- O S t

by B(s,f) = A(s,t)'— o, is a Schur matrix.éuch thét‘ Bf converges td' 0
for ever& £ em(S) . If now (7.1.2) is not sétisfied then there is an

e > 0 such that for all finite subsets ¢ there is an infinite subset
S(o) such that Z [B(s,t)m > 5¢ for all s ¢ S(o) . Using this,

teSno

‘together with 1im B(s,t) = 0 for all t ¢ S , choose an increasing
: s :

sequence o(k) of finite subsets of S and an infihite subéet'-{sk} of
S as follows: 1In general, for k =1, 2, ..., if Co(k) DO o(k-1) (where

o(0) = @) , let S, € S be such that
, p |
(7.1.3) ) IB(sk,t)l > 5¢ and
tesSva (k)

(7.1.4) L IB(s 0] <€
C teo(k)

And since the sum ZIIB(sk,t)] is convergent, there is a finite subset
' teS - '

a(k+1l) D a(k) sugh tbat

(7.1.5) Y |B(s
teSvo (k+1)
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Then from (7.1.3), (7.1.4) and (7.1.5) it follows that

, _ IB(sk,t)I =() - 7 ) )[B(sk,t)T
teo (k+1)~vo (k) teS teo (k) teSvo (k+1)

(7.1.6)

> 5 - e - g = 3¢

Define now f e m(S) by

sgn B(sk,t) if t € 0(k+l)&c(k)
f(t) = {

0 o otherwise .

Using (7.1.4),.(7.1;5), (7.1.6) and ||f|| <1 , we have, for k = 1,2, S
[BE(s )| = | 1 B(s,0)£(e)] i
teS i
z ( | 2 - 2 - Z )|B»(sk,t)|

teo (kt1)vo (k) teo(k)  teSvo(k+1)

>3c - -¢€=¢

But this cannot be since Bf is convergingvto 0. -

8. ALMOST STRONGLY REGULAR MATRICES.
The following theorem gives sufficient conditions for a -
matrix to be almost strongly regular. We strengthen the theorem when the

semigroup S 1is° ELA .

8.1. THEOREM. ~ Let S be a left cancellative LA semigroup generated

by BCS . Let A be an infinite matrix on S such that the following

-
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conditions hold:

(8.1.1) sup 2|A(s,t)| <M for some M >0 .
st .

- (8.1.2) EA(s,t) , as a function of s , is- fac to 1 .
) “ g A A

(8.1.3) ZIA(s,t)‘— A(s,at)| , as a function of s , is fac .to 0 for

every a € B .

‘Then Af is fac to k whenever f 1is fac to k . ‘ - e

.PROOF. Condition (8.1.3) together with'(5.1.4) implies

Y|A(s,t) - A(s,at)| , as a function of s , is gac to 0 for all a e S.

If £ e F then (8.1.1) implies Af e m(S) , while
— ‘ . .
(8.1.2) implies Af is fac to f(s) whenever f is a constant function.

Suppose f € K and f =g - Zag for some g em(S) , ae S . Let ¢,

be a net of finite means converging in norm to left invariance, i.e., ' \
lim HLs¢a - ¢all =0 for each s ¢ S [1, p. 524, theorem 1]. Let \\’
o '

¢a(ti)f(ti) . Then (8.1.3) together with theorem 3.4 shows that \

00 = B

1

It s

for eVery e >0, there is an ag /such that if a > ag then for all '

n
‘s e S, izl¢a(ti)§|A(tis,t) - A(tis,at)[ < ¢ . Then for all s e S ,

. 1)
a > ogp >

n
'i§1¢a<ti>FAg-' A(zag)](ti3)|

n > n
- !izl¢d(ti)Ag(tiS),f iz ¢d(ti)A(zag(tis))l | ;

1

-
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| A

A

A

It

Af
gn
lim
n
lim
n

for

8.2

(a)

n . )
| Lo, T Aleys,e)g(e)] .

y

i |
. 1¢a(t1) ! Alts,t)g(t) - iZ‘¢a(ti) I ACt;s,t)g(at)]

teS. 1 teS

n
| T o () T [ACe;s,at) - Atys,0)]g(an) ]
i=1 teS

i=1 teSvals

) n ' n - ‘_ L
lell izl¢a(ci) ) |A§tis,at) - Alegs,0)] + ngllizl¢a(§i) I |acesiey]

teS teSvaSl i
|
!
n |
2”g}| 2 ¢a(ti) Z IA(tis,t) - A(tis,at)l ' (see (5.0.1)) f
i=1 teS
2 |lgll e
follows from theorem 3.4 that Af is fac to O . Since A is linear,

is fac to O -whenever f ¢ K . Suppose now - f ¢ C1(X) , and let

¢ K be such that lim lg, - £l = 0 . Then
. n o

lag - Af]| < lim M [g - £||= 0 . Hence if ¢ is any LIM then
- ,
l¢(Agn) -~ o(af)| =0 . Thus Af, is fac to O since ¢(ag ) =0
each n . This completes the proof.
. REMARK.
If S is the additive positive integers theorem 8.1 yields P.

Schaefer's theorem 2 [l4,ﬂp. 52]. Our proof is eﬁtirély different

from his. His proof does not seem to carry over to the general case.



31

(b) It is clear that if ' A is an almost strongiy regular matrix then
(8.1:1) and (8.1.2) are both necesséry con&itiéns. However, (8.1.3)
does not always hold, since the identity'matrik A is. almost stfongly
regular but fpr the-additivé positive integers,

lim Z|A(m,n) - A(m,n+l)[ =2 . When. S is ELA (not necessarily
n .

left cancellative) we have the following stronger result.

8.3. THEOREM. Let S be ELA , and A be an infinite matrix on S

satisfying the folloWing conditions:
(8.3.1) sup Z1A(s,t)| <M for some M >0 .
: s ¢ _
(8.3.2) EA(s,t) , as.a function of s , is fac to 1 .
t

(8.3.3) z,' |A(s,t)| , as a function of s , is fac to 0 for
teSvalS

_every a e S such that a e Sa .

Then Af dis gfac to _k whenever f is fac to k .

PROOF., . Let f fac to k. By [5, p. 72, theorem 8] for

every € > 0 there is a b e S such that if t e bS then |f(t) - k| < e.

Let a e S be such that ba =a . Then if t e aSCbS , |[£(t) - k| < €.
By (8.3.2) and (8.3.3) let c,d e S be such that if" s € ¢S then

]EA(s,t) - l| <be , and if s € dS then z ]A(s,t)l < g . Ndw !
t ‘ teSval

Af ¢ m(S) by (8.3.1) and if s € ¢SNdS # ¢ (since S is ELA), then



|Af(s) - k| < |JA(s,e) (£(t) - k)| + |JA(s,E)k - kvl
t v t

i

< ¥+ Y A, e - x| + k] [YaGs,t) - 1
teSvals tea$sS o t

A

el + Jx]De + Me + [k|e

@|k|+ €] + me . : o

By [5, p. 72, theorem 8], Af is fac to k .

8.4. REMARK. If A 1is non-negative, i.e., A(s,t) > 0 for all
s,t ¢ S, then:(8;3.l), (8.3.2) and (8.3.3) are necessary also. 'Fof,

Y Jags,t)]| = ) A(s,t) = Al_. .(s) . Since 1_ . is fac to O
teSvaS ~ teSnas Svas : Svas '

it follows that (8.3.3).h§lds.

8.5. EXAMPLE. Let S  be the semigroup described in 5.2. Let .AI be

defiﬁgd fdr éach. m,n by | .

(i) A(Zm—l,Zn—l) 3_A(2m—1,2ﬁ+l) > 0 whenever 2n-1 Z;Zm-l  énd 0
otherwise. ’ |

(ii) A(2m,ﬁ) =1 only if n=1 and O othefwise.

(iii) A(m,n) =‘O wﬁeneVer n is even.

.(iv) ZA(m,n) =1 for each m .
a ,

By 8.3 A 1is almost strongly regular. However, if we replace the operation -
% by the ordinary addition, then A is not almost strongly regulaf since

the sequence £ .= (1,0,1,0,...) 1is fac to 1/2 while Af 1is the

sequence (l,l,l,;.,) , which is fac to 1
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CHAPTER II

THE INVARIANT MEAN ON A TOPOLOGICAL SEMIGROUP

9. DEFINITIONS AND‘NOTATIONS.
For general topological terms we will follow Kelley [9].

We recall if (S,U) is a uniform space, then for each V VvelU,

1’ V2’-
xeS, ACS, ‘

(1)  V[x]

='{y‘e S : (x,y) e V}
(i1) V[A] = U V[x] .
. “xeA ’

1
(iv) - v'l = {(x,y) € SxS : (y,x) € V} .

(iii) A °V2’='{(X,y) e SxS§ : for some =z & S , (x,é) € V2 and (z,y) € Vl}.

(v) vt o= Vove ...— oV (n.terms)

i) (V,°V)[A] = V[V, [a]]

For each V € U we say V totally covers S if for

. k .
some finite subset. {al, cee ak}(: S, S (:<\JV[ai] . We say S has [
| =1 N\
property (B) if there is some V € U such that for each n and each \
, .k o
finite subset {al, N ak}C: S, S \,)V[ai] # ¢ . Examples of uniform ;
, i=1 .

épaces'having property (B) are non-compact locally compact group and any
uniform space which haé an unbounded real-valued uniformly'continqous | - ¢
function on S f7, p. 118]. To see the later, let

v =A{(x,y) e Sx8': |f(x) - £(y)| <1} . Then (x,y) ¢ V2 implies

y € Vz[x]'=-V[Vtx]] and hence. y € V[s] for somé s £ V[x] .i It follows

that |£(x) ; F(y)| < |£(x) - £(s)| + |£(s) - £(y)| < 2 . bﬁy inducfion, if

(x,y) € v then |f(x) - f(y)[ <n . Ther@fofe, if S does not. have’
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n ‘ .
-property (B) then S = \_)Vn[ai] for some n and some finite subset
. i=1" :

‘{al,'..., an}(: S . Hence for s €S, |[f(s)|] <n + max ]f(ai)| , which
ST . a ' l1<i<n

cannot be.

Throughout this.éhapter we are mainly interested in' a .
topological subsemigroup S of a Hausdorff topological g?oup G . bFor

such a semigroup S we shall adopt the following notations throughout: If

U ié the left unifofmity for a topological groupl G~.then for each Ve U, .
the set VM S x S will be denoted by V* , so that |
peo= {Vvkx : V¥ = V(‘\%/ﬁ S, V.e U} 1is the relative left unifofmity for thé
topological subsemigroup S of G . The spacé of bounded real—valuéd left
uniformily continuous functions with respect to U* will be denoted by :
LUC(S) . It is Well known that LUC(S) 1is a closed left translation o i
invariant (i.e., Qaf e LUC(S) fqr each f € LUC(S) , ae S) sﬁbspace ofl\<'
m(S)A-containing the constants. If L m(S) is a left invariant subspace'\
letl 25' : L >L be the restriction of ls to L . Wé will use tﬂé symbol

QS instead of ZS' so that LS will be the conjugate mapping QS'* as
well as Qs* . It will Be clear from the context which mapping we have in
mind. Let JZ(S) ='{¢_e m(S)* : LS¢ = ¢ for éach s € S} and“

Jul(S) =‘{¢ e LUC(S)* : LS¢ = ¢ for each s € S} . Then J2<S) or JUR(S).

is infinite dimensional if considered as vector spaces, it is |not finite

dimensional.

10. TECHNICAL LEMMAS.

We will need the following lemmas. The crucial lemma is
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10.4, and the proof follows more or less the proof of lemma III—l'iﬁv

{7, p. 119].
10.1. LEMMA. " If W is a neighbourhood of the identity e in G and |
V={(x,y) € GxG:ye Wx} then for every a € S , V[a] = WaMs . A\
_ . |
PROOF.. *[a] ='{y €S : (a,y) € V}
= V[a] m S |
= Wa/\$s
10.2. LEMMA. If W 1is a symmetric neighbourhood of the Adentity e

in G and V= {(x,y) € G X G : y e W} then vt v for every n .

PROOF. . Suppose (p,q) € V*2 . Then for some r ¢ S ,
(p,r) e VMS %S and (r,q) ¢ VS x S . Hence (p,q) ¢ sz“\s'x S =iV2*.
|

The lemma now follows by induction. |

10.3. LEMMA. If W 1is a symmetric neighbourhood of the identity e

in G, V={(x,y) € G xG:ye Wx} , and a, e'S Vz*[al] then

% * =

VE[a;JMV*[a,] = @ .

PROOF. - Suppose q € V*[al]/“\V*[az] . Then gq ¢ Wal/"\Wazfﬁ\S‘.
SN -1 -1 2

Hence q = Wlal = Wya, which 1mplles a, =W, Wja; € W ’Wal =W a; -

Thus a, e'wzalf\ S = Vz*[al] , which cannot be.

-



10.4, LEMMA. Let S be a topological subsemigroup of a topological
grodp G , and ;{pn}:=l ‘be a countable dense subset of § in the relative

|

topology. Let V¥ e U* be symmetric and such that v+" *-does mot totally

.cover- S for any positive integer n . Then there is an unbounded

non-negative left uniformly continuous function F on S such that

k+2

-1 2 (k+2
P01 ¢ v B
i=1 o
PROOF. ; ~ We choose a sequence of increasing subsets of S as
follows: In general, if A c.e, A has been chosen such that for

1’ n-1

I <j<nl,
@ VEp U U Cay
@  wEE_ICA . |

T A | ) yld
(3). AjCV p1 ... UV [Pj] ’

we let An = V*{Kh_l(d;v*[pnj] , where AO =¢ ,n=1, 2, ;.. . : (Here
denotes the closure of A in § .) Then we have

, @ VElpy 1 U U VRl ] CAn .

(5) VHE_,1CA

© &, C A C VR Ul 1]

C'V*zn[P_l] U... U V*2171—1[pn]

n

Cv el UL UV T

Continuing this-way we obtain the sequence '{Aﬁ} with the following

properties:

N
~

>
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(7). Lu}An_= S

_ n=1 ' : ' X
(8) VK[An](: An+l
n+ : : . !

(9) n+1C UV“Z(H-*-I)[ ]

Condltlons (8) and (9) are clear from (5) and (6), while (7) follows

because {p }°° is dense in S and so § k_)V*[p ] L_)A S. W
n n=1 :

S~z (D

may even assume An VA

-1 # @, since otherwise, we could choose a |

subsequence with this property. . That this is possible follows from (9) and

~
~

L I :
.the fact that V#  does not totally cover S .

It is proved by A. Weil in [18, p. 13] that if (E,U) is
a uniform space, p € E,VveVU, Vn is g sequence qf symmetric members
in U such thgt Vn+l°Vn+lC:'vn CVv thgn there is a uniformly éontinuousbl
function £ :LE + [0,1] such that f£(p) =0 , f(E n vipl) =1 and
,f(q) - f(r)l < lv/Zn—l whenever (q,r) € Vn . Moreovér, as noted by
E. Granirer [6, p.121] if PC S then tﬁé,function f can even be chosen

in suéh a way that f(P) = 0 and. £(E ~ V[P]) =1 . Applying this to our

situvation, if Vg ,n=.0, 1, 2, ... is any sequence of symmetric member
% % = y? % f - U i

of U* such thatv_VO . V* and Vn+l°V;+l(:'V£v, thgn there is, for gach

k=1, 2, ... , a left uniformly continuous function fk : S -+ [0,1] such

that

(10). ‘fk(Ak) =0

1y £.(s " V*[E&])v= i and hence £,.(8 n A =1

) 150 - @] <12t i ) e vk

-



Define now the sequence of functions '{hk} by

hk(s) = fk(s) + k-1 for k=1, 2, ... . Then

{ k=1 if s elX£

" h, (s) = ,
k if seSVA L

k

and if (p,q).e Vg then for every k ,
o a n-1
B (@) - B (@] = |5,6) - £ (@] < 1/2

Define the required function F on S by

. h.(s) if se A
F(s) ={ SR 2 S ‘
hk(s) if s ¢ Ak+l N Ak for k > 2.

38

Then F is unbounded since Ak n Ak—l # ¢ . Suppose now s_¢ Ak+2.' Then

s e A ~ A for. n > k+1 , and so F(s) = hn(s) > n-1 > ktl-1 = k .

T n+l n Kb2

Thus 710,11 C A, C U B
i=1 :

]

We now prove F  1is left uniformly continuous. Let

n-2

€ > 0 and choose n so large so that 1/2 < e . Let (p,q) e.Vﬁ-
‘have three cases to consider:
(1) If both p and q are in Ak+l n Ak for some k > 2 , then
v ' -1 '
[F() - F(@] = [n, (®) - B (@] <1/2°7" <
(ii)‘ If both p and q are in A2 then’
— .
[P - F@| = [hy (@ - b @] <

(idii) Assume that i is the first index for which p ¢ Ai and j is

" the first index for which q s-Aj'. Assume also i < j . Since

-

Wef
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q € VE[p] C v*[p]C V*[Ai]CZ‘V*[Ai+l](: A;,q » Wehave j=41i+1.

Also, we may assume 1 372. Then since p € Ai N Ai+1 and q € Ai+l_w Ai

h; (@ = hy_ (P

we have  |F(@) - F(p)] =
| | = |y (@ - -1+ G-D) -.hi_l(p)l
= [h (@ - by +.hi_l(q) - h,_ (]
< |h@ - hi(Pil + Ihi_l(q) -.hi_i(p)l

< 12t 4 1P 2102 <

This completes the proof of the lemma..

11. THE MAIN IHEOREM.
The following theorem is due to E. Granirer [7, p. 124,

’

theorem 1]:

11.1. THEOREM. Let G be a separable Hausdorff topological group which
is amenable as a discrete group andbsatisfied property (B) . Then Jﬁl(G)
is infinite dimeﬁsional;

It is our aim to extend the ébove theorem to certain
topological semigroups (theorem 11.3). Our method is more of less of that
used in the proof of the above theorem. We will give an example to show that .

the above thedrem;cannot be extended to any semigroup. First, we need the

following theorem of E. Granirer [7, p. 112, theorem 1]. For the sake of

completeness, we will give its proof below.
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-11.2, THEOREM. Let S be a LA semigroup and 'L m(S) be a left
invariant subspace containing the constants. If
JLQ(S) =‘{¢ gL*% : Ls¢,= ¢, for each s € S} , assume that there is a

1

sequence '{pn}:;lcz S such that

{¢ € ].47'€ :.Lpn¢ = ¢ 3 n = 1’ 2”“‘} = JLR(Sl~w;

If JLQ(S) is n dimensional for some n < ® then each LIM ¢ e L* is

a w*-sequential limit of finite means on L .

i
|
t

}

PROOF. Let ¢ € L*¥ bea LIM and let ¢ € m(S)* be the norm
preserving éxtension of ¢o . Then 1 =|!¢O|| = ¢o(l) = Y(1) . This
implies ¥ is a mean on m(S) . Let v be any LIM on m(S) . Let

¢$ =vQEy , where Vv ® ¢ 1is the functional defined on m(S) by
v© Y(f) = v(h) , where h is defined by h(s) = w(zsf) , f em(s) ,
s € S . Then ¢$ is a LIM on m(S) which is an extension of ¢é'[l,

p. 526-527 and p. 529, corollary 2]. In fact, if f e.L , then

h(g) = w(zsf) ¢O(28f) = ¢o(f) N i.e.; h is a constant on § . Therefore

o

VEU(E) = v(m) = v (1) = ¢ (EIV() = ¢ () , i.e., vOu is an extension

of ¢o .
Let now ‘{¢&} - be a net of finite means in m(8)*

such that 1lim ¢'(f) = ¢'(f) for every f e m(S) and 1lim |[L ¢' =-¢'[[=0
o @ o s s'a o .

for each s ¢ S [6, p. 44, (5.8)*]. 1If ¢a‘ is the restriction of ¢& to
L then it can easily be checked that 1lim ¢a(f) = ¢O(f) for each f ¢ L
Y o ‘
and 1lim ”Ls¢a - ¢a” = 0 for each s ¢ S (where the norm now is that of
o

L*). | - . ' "
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Let S(¢o,l/n) = {¢peL* : |¢ - ¢0” € 1/n} '; Since

JLl(S) is finite dimensional, there .is a decreasing sequence Vn _of» e w

Wk-closed convex_neighbourhoods of ¢O such that

'

4, € vn/\ JLSL(S)C'S(cbO,l/n)ﬂJL,Q(S)

Now for each n there is ﬁaé such that if «a Z.“g
then . ||L ¢a - ¢a“’?‘l/n for 1 <i<n . Since ¢ is a wk-limit of
pl . ‘ o}
such that ¢a € Vn . For convenience, write ¢n
o .
for ¢ . Since {¢n} is a net contained in the w*-compact set of

o)
n

means, let wo be any w*-cluster point of {¢n} . Let fel, £f#0, \\  '

{¢a} there is o > a

1
n n

(

and. pj be fixed. If ¢ > 0 is given, there is g such that
!

/o < e/3|f] and for =n zng s HL§j¢n - ¢n||< e/3|£]. Sipce wb is a
‘w¥-cluster point of '{¢n} there is an n, > mn_ such that
|(1po - ¢nl>zpjf| <'e/3 and |(¢nl - wo)f| < €/3 .- Thus o

L - P L - £ L - £
| |§ pjwo_ 'wo> | <. | pj(wo, %, |+ [ ( Pj¢“1 ¢nl> |
| ]

+ G, - vl
o1

< v, - ¢nl)zpjfl + "ij¢ﬁ1 —A¢nlu Il

+ G - v )E]
-1

[£]] +e/3=c¢ .

<e/3 + ¢/3]|f]
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Therefore, for each 'pj , Lp wo.ﬁ wo and hence by hypothesis,
4 3 o

wo € JLR(S) . Also,v51nce wo is a w*-cluster point of {o 1} _k<:_vk R

‘e

n n=

we have ¢ € V./\ J . 2(8) C S(¢_,1/k)MJ _2(S) . This shows
0 k L o L , ' :

“¢o - ¢OH < 1/k for each. k and thus wo ='¢o . Summarizing, we have

shown that the sequence >{¢ﬁ} has a unique w¥*-cluster point ¢o
We-now show lim ¢n(f) = ¢o(f) for every f e L . 1If
n

not, there would be a fo € L and a subsequence n, such that

|(¢. - o¢)f | >e for some € >0 . But {¢_ 1} , as net in the
n, o o — . o n,
i : i
w¥-compact set of means, has a w%-cluster point u . But u , being a
w#*-cluster point of ¢n » has to be a w*-cluster point of '{¢n} . By
i -
uniquehess u = ¢o , which cannot be, since pn g {¢ : ](w —“¢o)fl > e}.

This ¢ompletes the proof.

The following is the main thoerem in this chapter:

11.3. THEOREM.. Let S  be a discrete amenable semigroup wh?ch is a

. : i

. separable topological subsemigroup of a topological group G ¢ Let W
be a symmetric neighboﬁrhood of the identity e in G and

V={(x,9) € G %G :ye Wx} such that for every nu , V% does noti;

totally cover S . Then Juz(S) is infinite dimensional.

PROOF. . Let ‘{pn}:=l 'be'the countable dense subset of S and

let ¢ ¢ LUC(S)*\ be such that Lp ¢ = ¢ for every n . Let s e S be
n

arbitrary, £ € LUC(S) . Then since
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@ 4= O = 6(Lf -5

(L f -8 £+ 0 £ - £)
8 Py Pn '

= (L f -2 £) ,
6 = 2 D)

it follows that I(LS¢ - ()] §_H¢Hlksf - £l >0 as p, +S . Hence
. N |

{¢ e LUC(S)* : L, $=¢ ,n=1,2, ...} =17 2() .
' n

Suppose JuQ(S)i is n _dimenSiona; for some n < o
Let ¢ be a fixed two sided invariant mean on m{S) . Sinqe the
restriction of »¢ to LUC(S) is a LIM on LUC(S) , by 11.2 there is_é |
sequence_'{¢k} of finite means on LUC(S) sﬁch that o (f) = lﬁm ¢k(f)

for every £ €& LUC(S)

Define now the following bounded sequence of uniformly

continuous function on the real line: For n =1, 2, ...

{ 1- 2lx - (n - 1/2)| if n-1<x<n

fn(x) =
0 otherwise
1 - 2|x - n+l if n - %ﬂi x<n —-%
gn(x) = { . : ’ /
0 otherwise ,
.\\
Let f(x) = 2 fn(x) . Then f is well defined since for i # j , fi
' n=1 ;
and fj have disjoint carriers. Similarly, g(x) = gn(x) is well

n=1

defined.. The graphs of f and g are shown below.

: 1l

0 i/z 1 3/2 2 .5/2
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And if {a_} is a bounded sequence of reals then jJa f and )a g are
» n : . _ nn Lon
bounded uniformly continuous functions on the real line.

Let W be the symmetric neighbourhood of . the identity e

in G and V = {(x,y) : y € Wx} such that for every 1 V7% does not
totally cover S . By lemma 10.2, y#" does not totally cover S for
every n . Let F be the unbounded left uniformly continuous function

obtained in lemma 10.4. Then for each s € S , [(£ + g)oF](s) = l- and so

o((f + g)oF) = 1 . Hence ¢(foF) > 0 or ¢(geF) > 0 .

Without loss of.genefality assume ¢(feF) > 0 . For the -

sequence ¢

X of finite means which convergeé w*¥ to the LIM ¢ in

LUC(S)* define the following linear functionals ¢é , ®' on the space m

of bounded real sequences '{an} by
\

o la ) = ¢k(gaﬁfnoF>

¢.({an})' >¢(§anfnoF)

: m
Let ¢k(f).= Z ¢k(ti)f(ti) .  Then
i=1

¢y (111 ¢k(§fnoF>

m
iz ¢k<ti>(§fn°F><?i>

iy

by (£ )E oF (2,

]

.§¢k(fn°F)

§¢i<{1n}) .-



- where {ln} is the sequence which is 1 at the n-th place’'and O

éverywhefe else. This shows '¢£ e Q[zl] , where- %, 1is the space of

1

1

its second conjugate Zl** . Since 21 is weakly sequentially complete

[1, p. 33, corollary 3], Q[zl] is w¥-sequentially completg in m* 'W Thus

L , ‘ . : : '
absolutely convergent sequences and Q is the mnatural mapping of = 2 into

l
. . !
for any sequence {an} s f

¢

| | |
¢(Ja_f_°F) ]
n : '

¢'({an})'

lim ¢, (Ja £ _°F)
n

lim ¢i({an})_

Thus ¢' e &, and it follows that ¢'({1}) = §¢'({1n}) = J6(£ F) . This
n n

means ¢(fn°F) > 0 for at least one n since
0 < $(UF °F) = ¢"({11) = Jo(f oF)
n n

Since {s € S : fnoF(s) >0} C {s eSS : Fs)C tO,n]}

n+2

C L,)V*Z(n+2)[pi] ,
i=1 |

it follows ¢(V*
2(n+2)

2(n+2)[pj]) > 0 for some pj . By lemma 10.2

(v [pj]) >0 .

Now let 7 : m(G) » m(S) be defined by 7f(s) = f(s)~..
for f e m(G) , s € § . Then % : m(S)* » m(G)* and if ¢ 1is a_mean on
m(S) then 7%y is a mean on m(G) . In particular, for our invariant

mean ¢ -, T7T%¢ 1is a mean on m(G) . We now show that ﬂ*¢(rsf) = 7%p(f)

14
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for all s €S and f e m(G) . First ﬂrsf = rsﬂf since for t e S ,
'nrsf(t) = rsf(t) = f(ts) = wf(ts) = rsﬂf(t) . Hence
m*¢(r £) = ¢(mr £) = ¢ (x mf) = ¢(nf) = m*¢(£)

v2(n+2)

Let U = Since U does not totally cover ™S_,

let a; €S A UZ*[pj] . By lemma 10.3, U*[pj]{”\U*[al] =¢ . In general,
if U*[pj]’ U*[al], . U*[an_l] has been chosen to be pairwise disjpinf
séts let

ST 2,
a e5n (Uzw[pj]L)...LJ vla__ 1)

By lemma 10.3, U*[pj], ey U*[an] are pairwise disjoint. Thus for any n,

{
]

1= ¢(S) 3_¢(U*[pj]) + ...t ¢(U*[an])

=.¢(w2(n+2)pj/\ S) + ... + ¢(w2(n+2)a¥/f\s)'

- ¢(WW2(H+2)pj) + o+ ¢(ww2(n+2)an) /

= n*¢(W2(n+2)pj) + oo+ ﬂ*¢(W2(n+2)an)

= (atl)mro (w2 (MFD)y : é
This implies me¢(W> "2y =0, wh?L(:’h'cannot be since ¢(v2(“f?)*.[pj]) > o

2(n+2)) >0 .

implies 7#¢p(W Hence Juz(S) cannot be finite dimensiqnal.

11.4. REMARK,
(a) It is knbwn_that if S is LA~ and‘ L is a left invariant sﬁbspace
of m(S) then each LIM on L can be extended to a LIM on m(S).

Such an extension can be obtained by an extension theorem of

-
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R. J. Silverman [16] or by a direct argument as given in the proof of

theorem 11.2.

(b) If S is LA and L .isAa left invariant subspace of m(S) let
‘JLZ(S)‘='{¢ g L* L5¢ = ¢ for each s € S} .. It is shown in [7,
p. 114, remark 2] that JLQ(S) coincides with the linear subspace

spanned by the left invariant means in J.2(S) .

L
In the following corollary C(S) denotes the space of
bounded real-valued continuous function on S and

JéQ(S) = {6 e C(S)* : L ¢ = ¢ for each s ¢ S}

11.5. COROLLARY. If S is the semigroup in the theorem 11.3 then JCQ(S)

is infinite dimensional.

S~

PROOF. ~ EFach LIM on LUC(S) can be extended to a LIM on
C(S) . For, by remark 11.4(a) each LIM ¢ on LUC(S) can be extended to a

LIM ¢" on m(S) and the required extension is obtained by restricting

¢" to C(S) . Suppose JCQ(S) has dimension n for some n < « . Let
:{¢1, ceny ¢n+l} ‘be n+l linearly independent set of LIM on LUC(S) ,
and let ‘{¢i, cens ¢£+l} ‘be the respective extensions to LIM  on C(S) .

n+l o
Then z ai¢£ = 0 for some a, # 0 . But for every f e LUC(S) ,
. i=1 : : ' .

ﬁ+l ' n+l .

Y 0,0/ (£) = J a,6(f) = 0 implies o, = 0 for each i , which cannot b
jop 11 jop F i

~

Hence JCQ(S) is infinite dimensional.

e P



12. EXAMPLES.

12.1. Let S =F{O;l,2,.,.} with ordinary multiplication‘and
the discrete topology. This topology ié genérated by the metric d
defined by d(x,y) =1 iff x# vy and 0 btherwise. If LUC(S) 1is
the bounded real-valued uniformly continuous functions on S then
LﬁC(S) =m(S) . By [7, p. 34, theorem 3.1]° J%(S)b has dimension ‘i .
Clearly, S 1is separable and has property (B) . This example shows

theorem 11.3 cannot be extended to every topological semigroup.

The following lemma is essentially known:

12.2. LEMMA. If Sl is a LA subsemigroup of a topological group and

S is a dense‘subsemigroup of S then there is a positive linear isometry

1
from Ju(S) onto Jul(Sl) .

PROOF . - ~ Let m : LUC(S;) > LUC(S) be defined by mf(s) = £(s)
for f ¢ LUC(Sl) and s €S . If f ¢ LUC(S) then f has a unique
extension f' in LUC(Sl) by [9, p.. 195, theorem 26]. Moreover, this

extension preserves norm since if s € S and S, -8 , s €8S, then

1 o
for every € > 0 there is an ao such that If'(s) - f(su)l < g if
o z_uo . Thus blf‘(s)| §_|f'(s) - f(sa)| + lf(sa)l < g+ Hf” and so.
l£']l < |[£]l - oOn the other hand, it is clear that [£] < |£'| . Hence:

!

!
|

Luc(s) . It folldws from this that w* : LUC(S)* > LUC(Sl)* is a linear|

1

- T 1is a map which sends the unit.ball in LUC(Sl) onto the unit ball in

isometry. .That it is positive is easy to see.

-
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!

Since S, .is LA, Jul(Si) is non-empty. If

o € J %(S)) then define ¢ e LUC(S)* by ¢(£f) = ¢'(£') , where

t

is

+h

1
and f € LUC(S) then ¢(L_f) ='<1>'((sasf)')‘= ¢T(AET) = 0T (E") = ¢(£)

the unique extension of £ to S, . Then . € JuQ(S) ‘since if s ¢

[N 7 Y ———

To see the second equality above, we note that if ‘s €S , L € Sl and

' 3 ‘ ‘ — ‘ ' 3
s, € S 1is such that Sg - t then (lsf) (t) = (Zsf).(l;m Sa)

i

3 ' — - B - . — I —_ ' 0
l;m <lsf) (sa)~_ lém st(sa) l;m f(ssa). f(l;m ssa) f.(l&m ssa)

£'(st) = Zsf;(t) . .Thus Juz(S) # @ and w%P =‘¢'

Now let f € LUC(Sl)', s €8S

10 8y € S such that S, +vs.

Then

“nzsf._ zs ﬂf“ = sup szsf(t) —_zs wf(tj|
a tes o

= sup llAf(t) - f(s_t)]
tes s >

< sup Izsf(t> -2 £(t)|

tssl o :

=lle £-2 f£|[+0 as s +s.
-8 SOL .

/

Hence if ¢ ¢ JUQ(S) ‘then

ﬂ*¢(ﬂsf) = ¢(ﬂﬁsf) = ¢(l§m zsaﬂf)

= 1im (& 7f) = lim ¢ (vf)
a Sy a '

= wkg (£)

% =
Consequently T [Juz(S)] Juz(Sl)
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12.3. THEOREM. Let S be a separable subsemigroup of a locally compact

~group G such that S the closure of S .in G , is amenable and

l"

non-compact. Then Juz(S) is infinite dimensional.

PROOF. _ Let W be a compact symmetric neighbourhood of the
identity e in G. If V={(x,y) €6 xG:yeWx} then for every n

S o S . . . s
V'* does not totally cover S. , since otherwise, there is a positive

1
integer n and a finite subset '{al, ey ak}C: Sl such that
-k 0 L . . ’
Sl_C: uv *[ai] =W ai(—\Sl) , which is a compact set. But this
i=1 i=1 ‘ . :

bd

‘cannot be since S is non-compact. By theorem 11.3, Juz(Sl) is infinitew

1

dimensional and hencé by lemma 12.2, JuR(S) is infinite dimenéional.

12.4. EXAMPLES. Using theorem 12.3 we can see Juz(S) is infinite

dimensional if S is the following topological semigroups:

—

(i) S = [0,%) with ordinary addition and the induced topology from

the usual topology on the real line R .

(ii) S = [1,») with ordinary multiplication and the induced topology .

from R ;‘ | ‘\\_

(iii) S = (0,1] with 6rdinary multiplication and the induced topology
from R . |

(iv). S is any positive cone in a Euclidean vector space E with the
‘usual addition of vectofs and the induced topology from E . (S

is a positive cone if S + S S and AS S for any‘

non-negative scalar X .) : '

N



)

(vi)

(vii)
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ordinary multiplication and the induced topology from R .
Let S be the set of all real 3x3 diagonal matrices whose

determinant is greater than or equal to 1. Then S with the

‘usual multiplication of two matrices is a commutative. (thus

_\.

S =PyUll,») , where P is the set of negative irrationals, with

\

N

1

amenable) subsemigroup of the group 'G3(R)', the full linear group.

It is well known that GB(R) can be considered as a subset of -

 R9 , and G3(R) becomes a topological group with the induced

T
Hl

[

since for each A = (aij) € S, the norm of A is ;
;- |

1A= (T |a,, |HY? |
i=1

a compact set.

Let A be a real nxn matrix of the form

topology from R9 . The semigroup S 1is a separable closed -
" non-compact subset in G3(R) . That S 1is closed because the
: - : o
determinant function D is continuous and S =D l([l,w)) . 'tAnd

, S 1is an unbounded set and hence cannot|be

where A is any scalar greater than or equal to 1 , Ip and 'Ié

are identity matrices of fixed orders p and q respectively,

ptq=mn, and B 1is any qxp matrix. Let S be the set of all

such matrices' A . Then S is a commutative (thus amenable)

separable closed non-compact subsemigroup of Gn(R) , the full

linear group. That S 1s closed because the determinant function -

D is continuous and S = D—l([l,w)) . Also, since for each

-



2
|

ij

)1/2. we see
o

: n
matrix A = (aij) , its norm is I,A”‘= ¢ ) J|a

i,j=1

that S 1is unbounded and hence cannot be compact.




(1

[21

[3]

[4]

(5]

[6]

(7]

(8]

(9]

101 -

[11]

[12]

[13]

{141

[15]
[16]

[17]

93-113.

53

BIBLIOGRAPHY

M. M. Day, Amenable semigroups, I1l. J. Math. 1 (1957), 509-544.
, Normal linear spaces, 2nd edition, Springer, Berlin, 1962.

E. E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965),
177-197.

', Extremely amenable semigroups II, Math. Scand. 20 (1967),

, Functional analytic properties of extremely amenable semi-

groups, Trans. Amer. Math. Soc. 137 (1969), 53-75.

, On amenable semigroups with a finite dimensional set of

invariant means I, II, I11. J. Math. 7 (1963), 32-48 and 49-58.

, On the invariant mean on topological semigroups and on

topological groups, Pacific J. Math. 15 (1965), 107-140.

P. R. Halmos, Introduction to Hilbert space and the theery‘of spectral
multiplicity, Chelsea, New York, 1951.

J. L. Kelley, General topology, Van Nostrand, New York, 1955. T

J. P. King, Almost summable sequences, Proc. Amer. Soc. 17 (1966),
1219~1225.

G. G. Lorentz, A contribution of theory of divergent sequences, Acta
Math. 80 (1948), 167-190.

T. Litchell Constant functions and left invariant means on semigroups,
Trans. Amer. Math. Soc. 119 (1965), 224-261.

, Fixed points and multiplicative left invariant means, Trans.

. Amer. Math. Soc. 122 (1966), 195-202.

P. Schaefer, Almost convergent and almost summable sequences, Proc.
Amer. Math. Soc. 20 (1969) 51-54.

’ T

J. Schur, Uber lineare Transformation in der Theorie der unendlichen.
Reihen, J. fur die reine und angewandte Math. 151 (1921), 79-111. !

[
|

R. J. Silverman, Invariant linear function, Trans. Amer. Soc. 81

(1956), 411-424.

"

0. Toeplitz, Uber allegemeine lineare Mittelbildungen Prace Math. —Fiz.
22 (1911), 113-119. i

-



[18] A. Weil, Sur les espaces a Structure uniforme et sur la topologie
generale, Hermann, Paris, 1938.




