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ABSTRACT

_This paper investigatesvperceptron-like devices with-
an eye_towérd the recognition of éimple predicatés, such aslpdrity
and connectivity.' First "multilayer" perceptrons are investigated
to.littlevaVail. Then much more powérfﬁl perceptrons which.

have feedback are cénsidered,vyielding better results.
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INTRODUCTION

«

The purpose of this thesis is to further explore the
capabilities of various kinds of "perceptron-like' devices. The
main inspiration, spirit’approach'and source of sﬁyle will be a

monograph of Minsky and Papert entitled Perceptrons and Pattern

Recognition, (Sept. 1967). This monograph* is remarkable, not

so much for impressive results as for its sﬁraight—forward
unassuming approach which removes much of the mystery (and
potential controversy) which has dogged earlier perceptron

investigations.

The Minsky paper explores the complexity of various
logical and gevmetric concepts with respect to a very simpie kind
of perceptron, a linear separation machine, where there is no

"feed-back' or other communication among the "associator units'.

Briefly these perceptrons operate in the following manner:
They are presented with a reétangular array (galled a retina) of
squares which may be in the active or inactive state.  The éo-
called "associator units" then look at small parts of the retina
and decide on that basis to vote "yes" or "no'. A1l &otes‘aré
tallied and a particular weighted average taken of the votes,

How the average is weighted, of course, varies from machine to

machine. If the weighted average is above a certain threshold

* The monograph (plus some extended results) has just been publ-
ished in book form. Perceptrons, M. Minsky and S. Papert, M.I.T.
Press (1959). Some of the material in this paper has been anti-
cipated though not expanded upon in Perceptrons on pages 228-232,
a section which did not appear in 1957,




the machine is said to "accept" the particular activated subset

of the retina, otherwise there is rejection.

‘The set of all accepted subsets is said to define a
predicate or a boolean function on the retina. The machine is

salid to recognize the predicate so defined,

Perceptrons or closely related devices are often used
in pattern recognition programs for computers because fhey are so
simple in design (and easy to program). Rosenblatt did much
work in the pattern recognition area with such machines "generated
at random'. “Other "learning" programs, such as the Samuel Checker
Player, also closely resemble perceptrons. Samuel, for example,
has many so-called ”board parameters" such as "number of pieces"”,
and "number of‘possible moves'. These parameters are his. .
associators, for they grasp only a small part of the total inform-
ation on the board. HlS parameters are comblned in wieghted

averages to help determine what is supposed to be the best checker'

move,

Minsky on the other harnd is not concerned with the appli-
cations of perceptrons, but rather with the theoretical limit of
their ability. To explore this question he defined a very

restricted and specific kind of perceptron and investigates that.

Unfortunately these linear separation machines are not
powerful enough to deal with many concepts (i.e., predicates) such
as parity and connectivity which seem to the human at least, to be

on the most elementary level. We are constantly surprised with
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the difficulty (high order) of some tasks as compared to the ease

(low order) of others.

This paper will explore other designs for perceptrons
alohg the lines of Minsky with an eye toward the difficulty of .

computation involved in various tasks.

" Basically, the thesis will explore perceptrons with
many .associator "levels", and then perceptrons which allow feed-
back from machiné to reﬁina. The first alternative_will not be
especially fruitful. However, the second subject (feedback
perceptrons) Qill beAquite\interesting and deserving of -much more

study than i1t can get here. !



PERCEPTRON-LIKE MACHINES

We assume that we have a machine which is presented with
a rectangular array R of sguares which may be occupied (blacked
in) or not. We wish to say certain things about the array (often

called the retina).

Definition: A predicate function on R 1is a function

¢ : P(R) - {0,1} , where P(R) is the set of all subsets of R.

A predicate i5 written as [o] where [1] =T ana [0] = F .

For any X ¢ R we say [o(X)] holds or is true iff o(X) =1 ..

The two terms will be usedAinterchangeably henceforth.’

) |R]
Proposition: There are 22 predicates on R ..
Proof: There are clearly 2|R, subsets X C-R in the domain

of any predicate. Certain X's in dom (¢) are "accepted by

o " (i.e. o(X) =1 ) and certain are "rejected".  Thus ¢ is

uniquely described by the set of X's accepted i.e. by a subset

. R
of dom (o) .. Since there are 22l subsets of dom (¢) there

IR
are 22 predicates o . -
A particularlyxsimple and useful class of predicates
are called masks. .
Definition: A mask Py is a predicate such that eilither

p(x) =0 for any X <SR or there is a set A c R such that



0a(X) =1 4iff X2 A for all X cR . The zero mask will be

denoted as P, 5 the one mask (logically) as m¢ .

Definition: Suppose & 1s a set of masks. We say that ¢ is

realizable from ¢ by a simple mask perceptron iff for all X c R

[4(X) =1] < = < mi(X) > 8 for some reals o ,8 .
¢ el @3 : ®i

The simple mask percéptron which can be thought of as

a separate piece of "concrete" hardware (consisting of the

threshold 8 § the coefficients: ocQp and the masks mi) is said
T :

to compute o from & . We write o € S.M.P. (3) in this case.

Remark: We could have assumed 6 = O , aw to be rational or
i

even integral in R , and we could also have written > instead

of > , obtaining an equivalent definition.

Proof: ~ (i) If we make the assumption (which we will henceforth

make) that vy € & then

Ta e (X)> 6 iff ¥ « 0. (X) + (¢ - 8o (X) > 8
pied Pit o.ea it % LA
CPifJiPd)

showing that 6 can always be taken to be zero.

()

(ii) Only a finite number (< QIR,) " of sums S(X) = T %, 95

@ieé 1

will occur. If h 1is the minimum nonzéro pairwise difference



of the finite set of sums {S(X)} we then have S(X) > O iff

$(x) > 0 -f/2 for all X c R, showing that the > could be

taken as > .

(iii) If h 4is as before then we know that it is possible to

pick «’ € Q close enough to % such that

i i
o) : o}

: h
T oa o0.(X) +a’ ¢, (X) - Ta o (X)) <
w.€3 1+ ?1 o Pyt 2l
1 O .
1#10

for all X ¢ R . If all such «a_'s are so replaced we clearly
i
have:

v al 0. (X)> v a’ . (Y) iff T o (X)) > £ a (Y
qoicpl( ) wiwl( ) mi@l( ) CPicpl( ).

-

that is preservation of order for all of our finite number of sums,

showing that -OLCP 's can be taken to be rational. »Multiplying‘
i .

through by the least common denominator shows the same thing for

integers.

We now define a (formally) more complicated machine,

which will turn out to be equivalent in computing power.

Definition: Suppose & is a set of predicates. We say that

© is realizable from & by a linear separation perceptron iff

[p(X) =11 %4> % « @i(x) > 8 for some reals o ,0
S pied YL T : Y



and as before we write ¢ € L.S.P. (3) .

e

.

S

N
\\

Remark: As before we could have assumed 6 = O,a@ € Z and <
: S

to be < . We shall henceforth refrain from making this kind of

remark explicit.

Proposition: If & = the set of all masks then any predicate

Y € S.M.P. (&) .
Proof': We write ¢ indisjunctive normal form

[v(x)] %9(%L(X)VCQ(X)V;..VCH(X) where

each C.(X) = [z, Ianlz. In...Alz. ] and
- 1 te mi )
each [Zij] = [Xk] or [Xk] = [l-Xk]. for some X, ¢ R .
We then havé
C.(X)€ 2, *2Z: *vuvecz, =1 .
1 1 o L

We now replace each z;s by X or 1-X, obtaining a polynomial
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in the Xk's only. No Xk's appear, though some terms will be
negative and all will therefore be definable by a mask ¢ or its
negative (-1l)p .  Therefore

C;(X) % = o(X) - T §(X) 21 .
: pedS : @eéi< -

(Note that O and 1 are the only values attainable.) and

[W(X)]e=2 2 o(X) - ;Z ®(X) > 0 since
. wed : e , '

el

¥(X) will hold iff any one of the conjuctions Ci is true.

We now introduce the two concepts of support and order,
which are to be some measure of how complicated a predicate 1is

supposed to be.

Definition: The support A of a predicate o 1s the smallest
subset A € R upon which ¢ depends, i.e. for which '

w(XPA) = o(A) for all X <R . We write A = supp (®) .

Definition: We say that ¢ 1s of order k 1iff k d1is the

smallest number such that

¥ (X) &3 %oi@i(x) > 0

where the @;'s are all predicates with |supp @11.5 k -and the

a_'s are some real numbers.

®;

Theorem: ¢ is of order k iff k is the smallest number such
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" \ .
that o(X)e>T a_ o (X) > 0 where the ¢ 's are all masks with
. p=l ch b7 P
{ supp (¢p)| <k for all p and the %y 's are reals.
: D
Diécussion: This theorem says in effect that the L.S.P.'s and

the S.M.P.'é are equivalent in computing power. These machineé
are the cénter of study in the Minsky paper. Unfortunately the
complexity of predicates with respect to these machines (and the
order measure of complexity) does not‘cofrespond to the human
notion of what kind of things are "easy" and what kind of things
are "difficult". For example, we can say that the logical
operation of‘?A(negation) is easy in that it does not increase
thé order of =fJ{ over that of { . On the other hand thé oﬁer-
ations of v “?r” and A "and" can (in a way which will.beumade.
more precise 1atér) not even be considered as being of fiﬁite

order.

In the geometric realm, the counting of points and even
the recognition of integers is "easy" as is the ability to recog-
nize certain topological invariants. On the other hand, recog-

nition of parity, and connectivity is not of finite order.

These disappointing results could be viewed as a defect
of the simple kind of machines used, or of the order measure, or
both. We could, for example, consider complexity as a function
of both the support size of the 'S and the number of masks or
other types of predi¢ates used, Such a theory éould be quite

intractable, so we consider instead various methods of strengthening
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the machines. We must be careful though: a machine which is
too strong will recognize all predicates in a small order and be-

quite uninteresting.

We will, of course, be sacrificing one of the "seductive”
atbributes of the perceptron, namely that it computes in'a very
straight-forward (and eésily simulated way) by first computing a
lot of easy to evaluate, simple informatidn and then combining this

partial information by a simple algorithm. .

Proof: Let \k be the least number such that

(X)e>z o, ¢p(X) > 0 where the wp's»are

D
predicates with |supp (wp)l <k for all p . We will replace
each ¢ by a sum of the form ¥ o o where the m's. are
P wed ‘
masks such that max |supp ©| = |[supp @D[ the-theorem will then

ped
follow.

Let ;)fgxn . As before we will write

b (%) = cg(x)vcg(x)v...vcﬁ(x) . where
C?(X) = [ZEl]A[ZEQ]A‘..A[ZEmi] and )
(28] = [x] or [1-X] .

As before we obtain C?(X)@%>E b p(X) - ¢ o »(X) > 1 where

@E and gg are index sets of masks. The thing to notice is the
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identity &XB = a(1-X)B = (a-aX)p = aB.— aXp where o and B
are conjucﬁions._ This identitj §hows that the maximum support
of the o's and the &'s will be Supp.Cg(X) . And since at
least one of the Cg will have maximal suppért = Supp ¢p(X) we

can write

[y(X)]e=>T oy (T o(xX) - T X)) >0
- P P ©Ed ped” -
Remark: So far our predicates have depended upon the retina R .

We wish to extend the definition of predicate to predicate schema,

a term which will then be used interchangably with predicate.

Definition: A predicate schema is a rule which generates a

particular predicaté for a retina R of any given sige.

-

Examples: (1) Denote the parity predicate by $PAR. which has
the property that ¢(X) =1 iff |X|] is even for every retina

R and for all X cCc R .

(2) ~  Denote-the connectivity predicate by Voony Which has

the property that $CONN =1 iff X is connected for every

retina R and for all X c R .

We say that a figure X < R 1s connected iff every
point x € X éan be connected to any other point y e X by a
rectilinear path in R . We do not permit “diagonal commections”

as they would permit two paths to 'cross" without "touching".

Notation: A fectilinear path v in- R ‘going from X to y will

be denoted as vy = {xX = xo,xl,xg,...,xn_l,xﬁ=y} where X; and

X “have a side in common for i = 0,1,...,n-1.

i+l



12.

Definition:

A predicate (schema) { is of finite order iff the

predicates generated by w, are uniformly bounded. The minimum

uniform bound M. is called the order of ¥ .

We now begin our search-for more complicated kinds of

machines which can cope with ¢PAR’ and WCONN . So far we have

dealt with machines of the following design:

R

- RETINA

-

ASSOCIATOR UNITS SUMMATION ALGORITHM

The assoclator units have been masks or other predicates

the machine has been equipped with. So far they have all been on’

one "level" and cannot communicate among each other. We now

define a 2-level perceptron with the following design.

R — A_ - f P2
§ fo BTy RS

1% s
¢, It

We will make our definition in a form which can easily

be generalized by induction.
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Definition: A predicate ¢ 1is realizable from a pair of sets of

predicates & and %, iff for all X c R

A

(X)) =1l e> v < (Xi) > 8 for some reals % ,0

” o cp 3 .
Ps3€25 2i 2i

where Xy = {ml.j | cplj(X? =1} . We write

Remark: We could simplify our nqtafion (and our thoughts) if we
thought of our firstlevel of associator units, él , as a new

\ .
retina Rl s the output of our 2-level perceptron
M M

1 2 e
imgi}izl > at time t =0 as

P=<v8,{a

mli@1i31=1 > 1o

2
X € R, the output at time ¢t =1 as X; C Ry and the output at

=2 as Xy = {gy; | v5;(X]) =1} © R, and the output time

ct

t 2 as O or 1 .

1l

Definition: A predicate ¢ 1is realizable from an“n—tuple of

sets of predicates {@i};;l iff for all X c R

am 56 € R

(X)) =1le> ¥ «a (X > 0

tpnieq?n

X <R

where X
O —

il

X, = {@kj é 8 | wkj(xk-l) =1} for k =1l...n .

. ' AN
|
We write ¢ e nL.P. (8.}, . .
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Remark: As before we will think of the ith level of associators

@i as a new retina Ri for the next level i+l . The output

of the n 1level perceptron P at time t will be Xt for

t =0,...,n and O or 1 for t =n+l

Definition: The order of ¢ with respect to an n-level perceptron
P will be the least number k such that ¢ e nL.P. {8} ;

and ©; € éi-—9f SUPP Py | < k- for all i

Theorem: If ¥ has order k with respect to a l-level perceptron
(linear separétion perceptron) then ¥ has order < [5 kK 1 +1
with respect to a 2-level perceptron.. N.B. [ ] denotes.the "

"greatest integer function'. 3e.g. (5] =5, [5%]1 =5, [J2] =1.

Proof: Let w(X)@qila¢ $i(X) > 8 G, 8 S R and
g i i

| supp mi] < k for every i . By a previous theorem we might

as well assume that the mi's are masks. We might further

assume that the aw 's are either + 1 for they may be assumed
i - _

integral and hence 4+ 1 1if we permlt ourselves to copy a particular

Ps several times. We now have

(X)L o(X) - T ofX) > 8
ped we?

~

with |[supp @] < k for any o € & U & where & and 3 are sets

of masks.

, We now design our 2-level perceptron. For each o € 3%

(or 3) divide supp ©® up into no more than [3’}"] +1 disjoint

(
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subsets S? containing no more than [5 kK ] + 1 elements each.

Such a division must'be possible or we would have
k= |suwpp o] > (7K1 +1)(TK] +1)>/ESE =k .

For each 1 define a mask (wlmi) with

(b )(X) = 12X > £ for all X cC R .
171 =~ i —

Let Ry'= {(4;9;) |pes 1< [FFI+1} . Define (¢ 0)
as (b)(X) = 1e(y0;) e X forall 1< [FHI +1.

Finally consider the predicate

N

p(X) &> (Vo) (X)) - T_(o) (X)) > 6

, ves 2 O A 1 ,
wnere Xy = {(¥jo5) | (479;)(X) =1} . Clearly p is realized
from a pair of sets of predicates &, = Rl and

3, = {(¢§$) | ® ¢ 8} . Clearly also by construction p is of
order i.[3 kK] +1. i

We wish to see p(X)&»y(X) . = But

1({X) e % o(X) - T _o(X) > 0 where & U & contains only masks.
(e d ped o , .
And o(X) = le» X S for all 1w (¥;9,)(X) =1 for all

iqqp(wlmi) € X, for all i%r@(wgw)(Xi) =1 . So ocur sum

To(X) - Te(X) = B () (X)) - T_(Yp)X .
wed ped wed . PE D

oo V(X)) g (X)

Theorem: If ¢ 1is of order X with respect to a l-level

perceptron then ¢ has order < [Jk ] + 1 with respect to an



n-level perceptron.

Proof':

K.=R /”

1 \Liﬁzt)\ ag?’
v
Xo<X / \)\l b\
% SC(? X2 S°a¥> Xa Scq¥
Our proof pfoceeds‘as in the previous theorem where

§(X) &=> T o(X) - EZ o(X) >0
0 peEd wed

we obtain where & and

“end

..are
sets of masks and

|supp o] < k for all e & U 3 .

Pick any © € & or &

and divide supp ¢ into dis-
joint subsets S? containing at most [JF X ] +1 points .

. k
* ﬁ’[ﬁfﬂf] +1

On this "first level" define (¢i1¢)(X)

= le= XD sfi" .

. s s G . k L) . e e
Now divide Rj = {(wil@)ll < ——;—:—I; into dlSJqlnt

\ . : .

subsets S?E containing at most [k ] + 1 points where
k .

i, < . Define (¥,,0)(X;) =1¢9X, 2 S._» .

2 ([%PT?] +~l)2 | i2 1 i2

. . 1
We now have ng = {wigm) l

. jid ’
) e 2 (V%] + 1)2}
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Proceed inductively, dividing Rﬁ—l into disjoint sub-

sets S, o that contain at most [YT1 +1 points where

, then defining on the m° 1level

img(W“ 1)
% = () T30 < e

and

l? =1leeX .28, ®» until m=n . At this time

°

= 1 . That is at level n .

A
=~

For any ® € & (or %) there is a unique (winm) = 4, -

Consider o(X) &> T (4 o Y X ) - mL (i) (X, ) > 0
ped ‘ ped it

X .

where X
Xoug = LY 1m;1@) eR,y l9pedu?d and (y 1m41Q)(X ?3? 1}
for m = 0,...,n-1

Clearly (?) o is realised by an nL.P. from {Ri}g_l

and is of order < (k] +1 .

But o(X) = 1e® XD supp o

. | i, < K = '
"1 LTA(YR Y 4 1) _
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iff XD S5 o i
iff (wigw)(Xl) =1
iff (wi ©) € X2

iff  Ryp € X,

LE X128 |
15 (4 @)X 1) =1
, n

iff T oo(X) - T e(X)> o
oo e(X) ey (X)

Corollary I: If ¢ 1s any predicate then there is N large

enough so that the order of o < 2 with respect to an N-level

perceptron.
Proof: Let R Dbe a retina and o ‘a predicate'on R . Cléarly

v 1is of order k < LR] with respect to a l-level perceptron.

We conclude then that order ¢ < (VX ] +1 with respect to an
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n level perceptron.  Since 1lim k]l +1=2 and [k ] +1
n .

-0

is integer valued, we conclude that there is an N such that
[gfif] +1 =2 . Therefore order ¢ < 2 with respect to an
N level perceptron; Most complicated predicates will be of
order 2 , however some may be of order 1, for example, the order

1 predicates with respect to a l-level perceptron.

We might just as well mention that there is a direct
proof which may be sketched as follows. (incidently this proof

would be typical of other machines endowed with too much power. )

N

Let R Dbe a retina. Form the set S of all pre-
dicates ¢ ~such that ¢ 1s of order 2 with respect to an n-
level perceptron for some n . We show that S = the set_of all

predicates on *R by showing that

(1) S contains the masks of support 1 (trivial).
(2) ¥ e S=>"T ¢ € S. This may be proved by reversing
inequalities or changing the sign of ﬁhe_coefficiehts.

(%) 4 € S and € S-€>¢lv¢2 € S . This fact may be

¥o
proved considering the -Nl and Ng—level perceptrons Pl and P2

which recognize wl and wg respectively and constructing a new

N5 percepﬁron with N3 = max {NI,NQ} + 1 in a manner suggested

by the picture:


file:///tfith
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L N

i

We will not go into details.

Corollary II: . Any predicate schema IEE is of order ‘5;2‘With

respect to the class of all finite level perceptrons.

Proof': This statement is obvious given the definition of
predicate schema (and the unstated definition of "order with

respect to the class of all finite level perceptrdns") since all

b generated by .CZ are uniformly bounded in order bjr' 2 . We

mentlon the "result" only to clear up lingering ambiguities.

Discussion: The proofs of the last two theorems seem formidable,

mostly because of our strict adherance (for the time being) to the
formalism and our liberél use of subscripts. Actually the idéa?
behind the theorems is simple (or trivial). We merely convert

our perceptrons into mask.perceptroné and'then break down {the big

masks by "pyramiding" smaller ones in the manner of the suggestive
S
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picture. o

NN

N
7

o

-

/
which converts a mask '"of order" [incorrect usage],ﬂ.j.into_a "mask
net" of order 3 and level 2 . Our theorem says with 2 levels
the worst ordér we could have expected was [?/ 11 ] +1 =

[3.31] +1 =14 .

To obtain a mask net of order 2 we must use 3 levels.

LY

L1 ]e

P L1

=

The theorem says that for 3 levels our order will be =

< (/5] +1 = [1.82] +1=2.

11

Theorem: If ¢y 41is of order 'k with respect to an n- level

perceptron then ¢ has order < K" with respect to a l-level

perceptron,
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" Proof: (Sketch) Informally, for any 'm € R, we look at

"supp »" in each of R 7, R, ;s...5 R . We can easily see that

these supports will be < k,kg,...,kn

in the various retina. To
construct our l-level perceptron we merely take for any o ¢ Rn
a new ¢ which is a predicate on RO and depends on only the

: N s
(p0851b1y) k' X;'s in R,
Remark: Qur theorems have made the order problem rather uninter-
esting for the perceptrons with uniformly sﬁpport restricted higher
order associator units as well as casting serious doubt on the
order measure 'itself for this class of machines. Specifically,

the complexity of the predicate seems measured more by the inter-

connections of the associators than the size of associator support.

FEEDBACK PERCEPTRONS

Discussion: We now continue our search for stronger perceptrons,
this time obtaining a machine which looks more like an automaton
than the combinatorial nets we had before. We are motivated byi
a desire td minimize the amount of "wiring" in the machine so )
thaﬁ order will play a larger role. Our idea is to eliminate
wiring between the many levels by using the;first leyel over and

over again in a "feedback'" arrangement. So whereas before we had

a situation like this:
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REGrow 2

REGIonN \

1

with potentially complicated wiring situations in regions
through n as marked, we now wire region 1 once.and for all.
We might alternatively think of this situation as requiring all

regions 1 through n to be wired identically.

F’@evj lcqck

We could think of the étate of the machine at t = 0
) =l}4>

as ST(0) =X cC R, at t =1 as ST(1) = {o(X) | o(X

+ o 2 ST(2) =

at t {xe R | o € ST(1) and x is at the end of a

Teedback arrow}.

We have one problem left: . We must tell the summation

operator when to operate otherwise the machine will cycle end-

lessly, never giving an output. For this purpose we allow all
Iloll or »a Hlﬁ

..

0 € Rl to communicate into a common channel a
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A "1" into the channel from ¢; means that . 1s ready to

proceed to the summation state; a zefo means it is not. Only
when there is unanimous éonsent does the summation take place.l
The machine then shuts down. Diagramatically then we have the

following;

1

h1./4

Z ACTI\VATOR

Definition: A feedback perceptron (F.P.)P is a triple. ..

<R,R; ,A> where the (rectangular) retina R = {xi}i€I is a set

of points,. indexed by a finite set I . Ri is the set of

associator units {@j}jeJ indexed by a finite set J , and

A = fag}, ;U {8} is the set of coefficients o together with
the threshold 6 . The associator units 05 are functions from
P(R) to {X,0} x {0,1} x {0,1} where X € R . (Think of this

triple as indicating the following.

<YES;NO/reactivation of retina, YES;NO/proceed to summation,

YES;NO subpredicate trued>

Remark: Any F.P. P is a finite automaton. We define.the

initial state of the machine as S < R . Inductively we define

0
S, = xeRr {5% ®4 € R and @j(si) =<x O orl, Oor 1>} .

b4
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Define the output at time n by

OUT(n) =1 iff mj(sn) = <x or 0,1,0 or 1> for all Jj e J
and T a. @.(S ) > 8 where A = projection onto
jGJ J J n° -
last co-ordinate.
OUT(n) = 0 iff @j(sn) =<x or 0,1, 0 or 1> for all je J
A
and T o, m(Sn) < 8
jeJ d .
OUT(N) = ¥ otherwise.

5,
N

Definition: We say that X is accepted by the F.P.P iff

OUT(n) = 1 where n 1is the least integer such that OUT(n) # %
and the state of P (i.e. the activated subset of R) remains the
same after t =n . | |
Remark: We might as well assume that our associators . can
reactivate whole subsets of R since we may add aé many
"redundant "p's" as needed, connecting each feedback arrow with

a different X; on our subset.



ORDER OF PARITY PREDICATE FOR FEEDBACK PERCEPTRONS

Theorem: Parity ®s of order 2 with respect to a F.P.

Proof: See page 11 for a definition of Ypar > the parity
predicate. Enurmerate R as {xi} i=1,2,...,2n. - If I is

odd a similar argument works. Enumerate Rl as .mj J=1,2,...,n

and define @J(X) = <a,b,c> where

5 - O X, e X but not both,

a = Jj/2 if Jj even and X
' J , J-1 -

j/2 +% if j odd and X, Or X, € X but not both.
‘~ 25 j-1

Il

0 otherwise.

i

b =0 1iff a =0 unless jJ =1 then set b 0 iff x,=lAx,=1

T

c =0 if% only one of X and X e X
EJ Qj—l

¢ =1 1iff both or neither X5 and x, . € X .

It

Let A = {aj} where @ = 1 if j =1 and % 0 otherwise.
then

[X 1is even] & % as Py 2 1

Clearly this machine operates by continually "trimming
X down" (preserving parity) until only one or zero points are left,
If one point is left, [X| is odd, if none, [X| 1is even. An
example of this machine is simulated and the sequence of'steps

shown in Figs. 1, 2, 3 and 4.

To complete our proof we should also show that no "order
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1" F.P. can recognize parity. Namely, the two parts of the
proof would show that order (¢PAR) on F.P.s is (1) < 2 and

(2) > 1 . We show this fact after the next theorem in a section

entitled "parity proof continued'.

CANNONICAL OPERATIONS FOR FEEDBACK PERCEPTRONS

Remark: The last machine operated by reducing a figure to a more
tractable forﬁ‘which it could then deal with. In mathematics we

usually call this kind of process normalization or reduction to

cannonical form. We now show that all (F.P)s operate in such a

way.

Definition: A (F.P) P computes ¢ by reducing figures to

cannonical form iff (1) $(X) = 1 &= the machine accepts X and

(2) the sequence of states SO,Sl,...,S before aéceptance or

n
rejection of any X < R are such.that [¢(si) = 1] for all 1

or [¥(S,

1) =@l for all_ i,

Theorem: A1l (F.P)'s operate by reducing'figures to cannonical
form.
Proof: Assume P is a (F.P) and does not so operate.  Then

there is a predicate ¢ such that P accepts ¢ and there exists
X < R such that the sequence of states before acceptance

ok <n, with ¥(S.) =0 . If we let

Sg2++55,  contains Sy
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Sk-z Ro , a new initial state, the sequence RO,Rl,..., will

coincide with Sk?sk+1""’sn with Sn accepted? which means

§(8) =1 contradiction.

Discussion: Clearly any state of a (F.P) P on R can be

described as leading to acceptance,'rejection, or endless cycling.
Thé.initial state merely starts the path of arrows induced by the
next state function which (in the absence of additional input)
would normally lead to an endless cycle. The only event thaﬁ
can prevent such a cycling situaéion in this case is to hit on a

state which aé%ivates the summation operation and tends to accept-

ance or rejection.

The problem then is to partition the set of states
(= p(R)) of the finite automata P into (33 and A with fihé 01 <>
y(X) =1 and X€ B¢y U(X) = 0. DNormally such a problem is
easy, but in this-situation it is not since the next state function
(and hence the arrow paths) are severly constrained in S by the

order of P .

A full and satisfactory theory on this subject would
require relating order constraints to the state graph of the auto-
mata and then to the class of predicates, a weighty task indeeé!
We will content ourselves with the problem of "programming"

(F.P)'s to handle various predicates such as.cénnectivity.'

Parity'Proof Continued: Consider any order 1 F.P. which

recognizes wPAR . A consequence of Minsky's group invariance
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theorem is that the only predicates of order 1 with respect to
a l=level perceptron are of the férm o(X)e» |X| <M or
o(X)&p |X] > M . We conclude that the blackened subsefs of R
(i.é. the sequence of states of MP) must ténd in cardinality to
an odd number > M for somé' M < [R] for rejection and an even
number < M for acceptance in ahy order 1 parity recognizer.
of course,'the states could also tend to any od@ number < M for

rejection and any even > M for acceptance.

We now consider the following- small example. Let R
be a 1x2 regina. We examine the behaviour of all-possible
associator units to show the impossibilify of recognizing the

parity predicate with an order 1 F.P.

S is the associator on the left square _#i of R.

95 is the associator on the fight square Xy of R.

We break the proof down into cases where the cannonical

form for "accept" is J - (Gase I) or- x I x (Case II).

We further break things down depending upon whether the cannonical

form for "reject is X (Case a) or : X (Case b)

or both (Case c) .

~ Case Ia: if 'Lﬁb” is read as "leads to'the state" we can
symbolize the féquired transformétions in this.case‘in the fqllow—

ing way. (Remember: we must prevent endless cycling on non-
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(accept or reject) states.’

(i) agceptéd' — E
(ii) X - | X
(iii) X rejected —>| X
(iv) XX =

Now'(i) shows that ml(il) =v<¢, 1l or O, 1 or O> .
That is upon being presented with a.blank Py reactivates nothing.
Clearly ¢2 'ﬁas the same property. Next (iv) shows ®1 and P5
reactivate nothing upon "seeing" an active squére. Therefore
¢; and ¢, cannot reactivate anything so parts (ii) and (iii)
are impossiblq, contradicting the assumption that Caée Ta-is |

possible. We briefly run through the other cases (omitting'lb

and ITb for reasons of symmetry) showing that they ére all

impossible.
Case Ic:.' The required transformations are:
(i) accept _s
(ii? - X | reject _ X )
(i11) X reject —s x| \
(iv) Xl X —>

As before (i) and (iv) show ¢, and o, ' are inert,
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showing (ii) and (iii) impossible.

Case IIa: The required transformations are:
(1) —| XX
r.__'
(ii) 1 X —=| X
(iii) X§ |reject —=>| X{
(iv) XJ[X accept —| X X

Items (1i) or (iii) show that neither o or o, will
reactivate‘both Xl and X2 together. And (i) further shows
that both must activate at least one of’ Xl or X2 , glven a

blank. Therefore one of the follbwing possibilities obtains:

(1) 0(0) = Xpmsm> 9y(0) = <Ky
ke} 0 (0) = Sumu 9y(0) = Aymy>
(3) e (0) = <X2,-,->A @2(0} = <X -,
(4) @(0) = Kgomym>  9,(0) = <Xyymyo>

Numbers (1) and (4) can be rejected out of hand as the run counter

to (1) . Number (2) is contrary to (iii) and (3) is contrary

to (ii).
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Case IIc:
(1) —>| Xi X
(ii) X | reject —p XJ
(1i1) | X reject —>| X
(iv)v x|l x accept —p| X|I X

Item (1) shows that y(0) = <=,0,-> or g, (0) = <-,0,->.
Thus either (ii) of (iii) are not reject states. Contradiction.
Aside: It is interesting to note that alternative (3) in Case
ITa is a consistant assignment for Case IIc. Also: ifvthe last
clause in the definition of "accept" (i.e. the state stays..the
same) were not required we wduld NOT have been able to derive a
contradiction in this 1X2 eXample. Furthérmore even for

larger examples, I do not know whether any contradiction would

exist. The number of possibilities for associator action is very

large.

'Having'eliminated all possible cases, we have shown that

an order 1 parity recognizer is not possible for F.P.'s -



ORDER OF CONNECTIVITY PREDICATE FOR FEEDBACK PERCEPTRONS

Preview: We devote the next section to showing that wCONN is
of order 5'8 . That is we find F.P., MC which will-recognize

with no associator of Mc having support > 8 . M is

Y conn c

simulated, as is Mp at the end of this paper. = (See p. 11 for

definition of wCONN)'

Description of Mc: MC will operate on an mxn retina” R and

will be equipped with six kinds of associator units, the Right

Dribbler, the 'Left Dribbler, the Surrounder, the Sidewinder, 'the

Backslider and the Scaiawag as pictured bélow.

4 } 1 % b 1
E ,‘l "'~=.._=H 2 “ ..'b__.—J
51421 6 5ilefl 5 4i 2 8
: | S — T S
81l 7 e [ 3 5 6 7
Right - Left = Surrounder
Dribbler Dribbler
(RD) (LD) (SR)

(DR = RD or LD)

P

8 181
2 s _
s 2F 1 EFE“{:E]

= : e :
naEEEnE

Sidewinder Backslider - Scalawag
- (sw) | - (BS) (sc)



The arrows show which way active squares tend to propogate

(as shown below) under the various kinds of units.

At each square X; € R , one of each kind of unit (six
in all) is placed upright in such a way that square 2 , the

centre of the unit coincides with xi cnn the retina. The assoc-

iators may overlap the edge of the retina in which case such

overlapped squares are always registered as "blank" or "inactive'.

We must now describe the output (i.e. the triple) of

each unit as well as the summation operator % .

N

First Component: Bach unit will have only two outputs, the

"growth" or "activating" output and the ”stand@af’br "recopying"

output. The standpat output merely copiesAthe existing igput
with no additigns or‘gubtractions so that no information will be
lost during the time ihterval. The growth outputAcopies the
existing input and adds to ity i1f possible, sqﬁare 2. Roﬁghiy
gpeaking, most outputs will tend to standpat; only a few are

growth outputs. We give for each kind of unit the necessary and

sufficient conditions that the output be a growth output.

Both Dribblers:  All four conditions must be met.

(1) Square 1 is active. Sqguare 2 is not. i.e. l+,2o

(2) Square 5 is active implies Square 3 1is. ‘i.e. 5+~3+

(#) 7+ *Q§+ and 57 and 8+)¢or more simply 7 - (3,5,8)"



Surrounder: (1,3,4,5,6,7,8)+ 2°

Sidewinder: (3,1,6,7,8)+ 2°

Backslider: (3,4,5,6,1)% (2,7,8)°

Scalawag: Both conditions must be met:

(1) (8,6,7,5,2)° 17

(2) )_,_+ - 3+

Second Component: For all units the second component (which says

whether or not\the unit is ready‘to-sum) is a O iff ﬁhe unitks
first component was a growth putput’and'(of course) a 1 ‘iff the
unit's first component was a standpat.output. Tbérefore Mc
proceeds to summation only after all units standpat, whicﬁ;aof
course, implies that the machine state has stabilized.

/

Third Component: We define the third component (which says

whether or not the unit accepts the small bit it sees) in a way

which will become clear only after a proof. The right dribbler

Fal

puts out a O 1iff
(1) 17t 2° OR (2) 1t 3° . ' )

All other units always put out a one. .

Summation Operator: M, accepts X iff M,. is ready to sum

upon being given X and ¥ (1 - @QX))g_O ; . an-associator unit

of Mc.
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That is, acceptance or rejection is on a "blackball' system, X
being rejected iff any one of the right dfibblers pﬁts out an O

in its third component.

Definition: A square x € R 1is said to be in the scope of

X, € R (written x € scope (xl)) iff x = X OR "x 1s below X
in xo's column OR x 1s to the left of X in'7xo‘s row OR

X 1s down and to the left of Xy -
Remark: - Informally the way MC operates is to take any x € X

of a connected figure and fill in its scope, 1f it has not been

done already. Thus a figure starting out like this:

Really then the third component of the RD is merely
checking to see if all scopes have been filled in on a processed

and,(supposedly connected) figure. - Disconnected figures like

this. '
is | a%’ﬁ%%?;
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will end up like this at the time of rejection.

this fact i1s very clearly illustrated after the text in

the figures.

Notation: Let a rectilinear path v in R going from x to ¥y
be denoted,ai\-ylz {x = Xo’xl’XQ""’Xn—l’Xn:y} where X and
x5 .9 have a side in common for i = 0,1,...,n-1

Lemma 1:  If X, e X and Vo € X are not connected to each

other then no single associator ¢ will connect them directly.

(i.e. in one time step.)

Proof: . Suppose X and Vo, are not connected. In order that
6 connect X to yk>directly, Yo must be at oneuof the squares

marked 1,2,3,4,5,6,7 or 8 in relation to X, -

IER R
1243 194 1]
4 b X5 d
13 5 c T o114
6 ]

We eliminate all possibilities, first eliminating 5,6,7 and 8 by
symmetry. - (For example: If Y, is at 7 the picture looks

the same as if it were at 3 , etc.)



Case 1:. N is at 4 and b must héve been activated. We look
at the six associators centered at b . A right or left dribbler
at b would imply a previous connection from_ 4 to X, via

{4, 12, 3, a, XO} to activate D . A backslider would connect

b to x5 Vvia {4, 13, 5, ¢, xo} "if it were active as would a
sidewinder and a surrounder. A scalawag could NOT activate D

under any clrcumstances.

Case II: v, 1is at 3 . Either a or b could have been

activated.

Sub-case Ila: y 1s at 3 and a was activated. . We examine

the assoclators centered at a . A dribbler (right or left)

activating a would imply a previous connection from - Xq to 3

via {3, Db, xo}‘ or {x d, 1, 10, 2, 11, 3} . A backslider at

o 2
a implies a previous connection via {3, b, xp} as does a side-
. J 1

winder and a surrounder. A scalawag cannot activate a .

Sub-case IIb: y 1is at and b was activated. Either DR

5
implies a connection via {3, a, XO} . A BS could not do the

jobvnor could a SC. A~ SW implies a connection via
{3, a, xo} . A SR connects Via {3, 12, 4, 13, 5, ¢, Xb} .
Case II1: y is at 2 and a was activated. Active dribblers

at a would imply a connection {2, 11, 3, b, XO} as would a
SR or {2, 10, 1, 4, xo} . Neither a BS or a SC would work.

An active SW at a implies a connection {2, 10, 1, 4, xo}-.'

Case IV: vy is at 1 and either -a or d was activated. -
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Sub-case IVa: DR's give a path {x_, b, 3, 11, 2, 10, 1} or

{x,5 4 1} . A BS, SW, SR, or SC yields the path {xo, d, 1} .

Sub-case IVd: A DR activating d connects via {xo, a, 1}

as does @ SR . A SC or BS would not do the job. A SW

connects via {xo, 65, 7, 14, 8, 9, 11}

All possibilities having being eiiminated, the lemma 1is

‘shown.

Lemma 2: Suppose x, and y_  are not connected.  Then no

two associatoré @ and P will connect them directly.
Proof: Suppose X and ¥ are not connected. In order that
'@l and 9, connect X to Vo directly, Vo must be at one of

the squdres marked 5,6,7,8,9,10,11,12,13,14,15 or 16, in relation

to Xy For if yo were at 1,2,3, or 4 we would have a

connection.

=

10 fajfelx § 4l njuis

11 et 20 g} 15

124 £ § 14
13

Ifr y, were outside the assigned area two associators could not
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possibly connect them directly. It y, were at a,b,c,d,e,f,g,
or h and were connected via {Xo’xl’XQ’XB = yo} to x

either x; or X, would have to be at 1,2,3, or 4 , forming

a direct connection using only one assoclator's activated square,
2

contrary to Lemma 1.

As before we eliminate all possibilites, eliminating

first 11,12,13,14,15 and 10 by symmetry.

Case I: yo is at 5H . There are 3 difect paths from 5 to

N

(1) 15, a5 1, x b (11) {5, &, 4, %]

(131) {5, h, 4, x_}

o
Case II: Y .1s at © .  There are 3 direct paths fréﬁ” o ‘to
%o
(1) 16, b, 1, %) (1) 16, &, 1, x 1-
(iii) {6, a, 4, XO}
Case IIi: Vo is aﬁ 7 .. Thefe is only one»direct path
{7, b, 1, xo} from 7 to xg | |
Case IV: v, is at 8 . There aré % direct paths from 8~
to  x,-

(1) 8, b, 1, x b (11) 18, ¢, 1, x}

(iii} {8, ¢, 2, xo}

Cage V: Yo ‘is at 9 . There are” % “direct paths from 9 to
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(1) 19, e, 1, x b (31) {9, ¢, 2, x}
(1i1) {9, &, 2, x.} .
Case VI: Yo is at 10. There is -only one direct path

{10, 4, 2, x )} from 10 to X, -

Note: We will shorten this long, tedious proof somewhat by the

following observations and notational conveniences.

(i) When we argue a case. we might as well assume that both

squares in the path in gquestion were initially blank, and hence
needed activation. Take, for example, Case I(iii). We argue

in this way: vy, is at 5 and was connected in one time step to

x, Vvia the path {5, h, &4, xo} . Assume to the contrary that
either h or .4 was previously active. We derive contfdﬁictions
in both cases. Case h: h was previously active. But then' h
was not COﬁnected to X, since 5 wasn't. So h and X, (two

disconnected points) were connected in one time step by two assoc-}

iators via the square 4 alone. Therefore h and X, were
connected in one time step by one associator. . This statement

violates Lemma 1. Case 4 uses the same idea.

(ii) To avoid needless verblage, our case arguments will
merely list the type of associator alledged to have activated a
path‘squaré, followed by a path or a statement of impossibility.
This path will represent a pre-existing connection between X and
Yo whose existence is implied by the active associator. For

example, in Case I(iii) again we will write (in part) f )

T
!

S
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3, g, 15, H, 5

BS at 4 - X2

SC at 4 - DNW

These cryptic lines mean that "in order for a BS to activate
square 4 a path must have existed before connecting X, to 5
via {x > 3, &, 15, h, 5} , contrary to assumption”.  Also we

have "A SC Does Not Work, i.e. it would not activéte 4 in this

case'. First x_  inhibits the SC. Second h is blank also -
inhibiting the SC. Note that we could also have written BS
at 4 - DNW since h 1is blank. We will not be fussy about

where our contradictions come from.,

I(i):
. 7

8 b 6 *

c 1 a

2 X, Lt n

3 1&g 115

LD, BS, SW, SR or SC at 1 - X, 4, a, 5 . So we assume 1 was
activated by an RD. In this case BS, SW or SR at a ~_xo,4,h,5

SC at a - DNW since b was active. DR at a - X_,2,¢,8,b,5,%,5.

Therefore 1 was previously active, contradiction to Lemma 1.

I(i1),(iii): SW, BS or SR at ¥ - x_, 3, g, 15, h, 5 . SC at

4 - DNW . DR at 4 - Xo:l:a)S’

IT(i)(ii): LD, BS, SC, SW or SR at'1 “:Xo>

4, a, 6 . RD at

1~ x5, 2, ¢, 8, b, 6.



II(iii): SR, DR at 4 - x> 1s &, 6. BS, SC at 4 - DNW .

. A
So a SW-at 4 is the only possibility.  Assume a SW at 4 .

DR, SW at a = x> 3, & 15, h, 5, %, 6 . SC, BS at a - DNW .
SR at a = x_, 1, D, 5
TII: 7 | =
8 ib 6
c 1 a
2 X,
DR at 1 = x_, 2, c, 8, b, 7 or X5 ho-a, 5, b, T . BS, SC,
AN
SR at 1 - DNW . So. SW at 1 is the only possibility. Assume
an SWatl . SC, SW, BS, SR at b - DNW . DR at b -
XO’ 4) a, 6: *5

-

III(1)(i1):

%k

*

@0)
o'
[0)}

d 2F x 4
@]

114§ e 5

DR at 1 - 8,¢,2,x_, or 8,b,6,a,4,x_ . SR, BS at 1 - 8,¢,2,x5
SC at 1 — DNW . The only alternatice is a SW . Assume a SW at
1. We must now examine the units at b and at ¢ . DR at b

- xo,4,a,6,#,7?¥,8. BS, SW “at b - x_,1,¢,8 . _Sg"at b - DNW .
SR at,bvﬁ,xo’l’c’g : Now for ¢ . DB at ¢ = 8,b,l,xo.'or
8,#,9,d,2,x, . BS, SCor SR at c ~ DNW . SW at ¢ ~x_,1,a,6,b,8.

Contradiction in both cases.
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IV(iii): SC, BS at 2 - DNW. SR at 2 - x_,3,e,11,d,9,¢,8
DR at 2 - 8,0,1,x6 . So SW at 2 is the only possibility.
Assume SW at 2 . DR, SW at ¢ = xo,l,b,8 . BS, SC, SR at ¢ ~

DNW .

v(ii)(1ii):

* %
O
o
)
o

1w0ha |2 Ix 14
O

& 11 je 5

DR at 2 - 9,c}1,xo . SR, BS at 2 - x_;%,e,11,d,9 . SCat 2 -
DNW . So SW at 2 is assumed. We examine d' and” ¢ . DR at
c - 9’*’8’b’l’xo . SW, BS at ¢ - xo,z,d,9 . SC SR at ¢ - DNW .

Now for d : DR at d - xo,a,e,11,+,1o,§,9 or x_,2,¢,9:«SW at

d = x,52,¢,9 . SR, BS, SC at d - DNW .

V(i): SR, BS, SW at ¢ - 9,d,2,xo. SC at ¢ - DNW . The only

possibility then is a DR at ¢ , meaning that 8 and =+« are active.

We examine square 1 . DR at 1 ~.x0,4,a,6,b,8,%,9 or x_,2,¢,9 .
SC, SR at 1 - DNW . BS at 1 - xo,2,c,9 . The énly possibility
is an SW at 1 meaning that 2 was originally active when the DR at
c was applied. This yields .xo,2,d,9 or Xo,l,b,8,*,9 ) -
VI1: - ¥ 9 C lj
10 § d 2 1%
i 11 e 3

BS, SW at d - 10,%,11,e,2,x_ . SC,.DR at d » DNW .  The only
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i possibility left is a DR ; hence « and 9 wére previously active.

We examine square 2 .  SC, SR at‘2 - DNW . DR at 2 - x.,1,¢,9,%,10.
BS at 2 - xO,B,e,ll,d,lO . So an SW at 2 1s the only possibility.
Hence 11 was previously active when the DR at d° was applied.

This yields x,3,e,11,%,10 or x,,2,¢,9,%,10

Q.E.D.
Remark: This proof was very long and boring! It was put in
for completeness and to ease nagging doubts. The proof might

have been shortened somewhat by ingenious assumptions, however it
is very easy ﬁo get fooled! The brute force method though boring

is at least clear.

Lemma 3: The, state transitions of" MC go only from connected
states to connected states or from disconnected states to discon-

nected states. They never switch back and forth.

Proof: (i) Let X be a connected figure in R - and let

x* > X be the figure formed from. X by an application of the

state transition function of Mc . We show that Xl is

connected. Let xl,yl € Xl . We show xl is connected to yl .

I both xT  ana yl ¢ X we are done. If either x- or yl I3

X1~X it must have been produced by one of the six kinds of assoc-

iator units with xl or yl in position 2. But.in such a
case xl or yl (or both) would be connected to associator position

1, denoted by x and y respectively, which is in X . A path

1

from x* and y- could then be of the form



1 . 1
v = {x = KooKy sXpsKags e s Xy 9%, =¥ }  where XyseeesX, 5 €KX
and elther x, =X or X ., =Y .

(ii) Let X Dbe a disconnected figure and let X:L 2 X Dbe

the figure obtained from X by an application of‘the state trans-

ition of MC . We show Xl 1s disconnected by assuming it is
connected and deriving a contradiction. Suppose. Xl is connected
and X 1s disconnected. Let x and y be in separate components

A and B reépectively of X . 'There is a path

1

v = {xl = X S yl} connecting x to y in X . Every

0’"

x; € y 1s classed either as (1) an element of A or (2) is

derived from some element of A Dby an . associator unit centered

at X; Or (3) is an element of some other component than A

(say.C) or X or (4) is. derived only from elements of other
eomponents by dssociators centered at X5 - Let the first two
~alternatives be of type I and the second two of type IT . Since

“the path v starts in type I and ends in type II there must be an

o

1g such that Xy i1s the last X €y ofxtype I.. Ifﬂ X5 is
, o} S o :

of class (1) X5 3 cannot be of class (3) (C and A are dis-
: . ° . :

connected) or of class (4) without violating Lemma 1.  If Xy

is of class (2) x4 41 cannot be of class (3) or (%) without

violating Lemmas 1 and 2 respectively.

Lemma 4: If R 4is a retina which contains a connected figure
cand 1f M, is ready for summation then the following configuration
8 e . , o

cannot occur on R



7.

X
.__Y_GZ

Proof: Assume X & R 1is connected, that M, 1s ready for

" summation (i.e. no associators will be active) and that

1 2 occurs 6n R where 1 and 4 are active, 2 and 3
N
are blank. There is a simple path vy connecting 1 to 4 not
passing through 2 or 3 . v = {1 = Xo’xl’xé""’xn—l’xn = 43

Form the unguantized simple closed curve yl by connecting the

\

centre of 1 to centre (2) and centre (x;) to centre (Xi+l) for

i =0,...,n~-1 with straight line segments. Our picture looks

like this:
S éi 2

| GE

R

Definition: We say Y semi-encloses a square X - iff y is of

the form given above and yl encloses x in the usual sense of

the Jordan Curve”Theorem.

Cladim: If 2 and > are blank then either vy semi—enéloses

> or vy semi-encloses 3 but not both.

Proof: Let =z be a point (not a 'square) inside 3 . Connect
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z to centre 3. by a line segment and then draw a 450.ray from
centre (3) uvpward out to 3R . This new path & will intersect
yl either an odd or an even number of times. If odd, > 1is

semi—encloseé by vy ; 1if even 3 1is not semi-enclosed by vy .

Clearly also since ‘Yl' passes through & at the "centre" we
have: vy semi-encloses 35 — v ‘does not semi—enciose 2 .and Y

semi-encloses 2 = vy does not semi-enclose 3 .

We resume the proof of Lemma 1. Pick a vy connecting’

1 and 4 semi-enclosing minimal area. Pick a highest row in

Y . There will then be a local area represented as
Xi+l highest row .
X, -
i

The path may then turn either to the left or to the right.

Case L: - y turned to the left in this particular Spot.
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R ]
1%,
\
.

Now 1 must be blank since 1 1is semi-enclosed by y and vy 1is
a minimal semi-encloser. If 1 1is active; the ﬁath 7 obtained‘
by substituting 1 .for Xi+lA in vy will semi-enclose less area
than vy while still connecting our o:iginal two squares. So 2
is active, avdiding a dead end. And 3 1is active by the

dribbler rule and the fadt that 1 is blank. We have

\

c | X X X
L
a X
b X
We investigate the various possibilities for a and b . a

and b cannot both be blank because c¢ would be active and the

‘Derule would be violated. a and_ b cannot both be active.
To have such a situation would again violate the DR rule. We
are left with two cases. First a 1is blank and b 1s active.

Second Db is blank and a is active. In the first case we

have:
XX X X §X
aq X
by X X

where again the bnly_possible assignments for a1 and b, are

active, by blank). Clearly

: (al blank, bl activg? .gr (al

T
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this first alternative could not continue indefinitely to the

exclusion of the second,

—

SR RS RN RS RS RS RIRIRIE:
a, | %)
br'l x P x(xdxixix)x|x

because X* 1s not one of our endisquares. The only possibility

left is that at some time the second alternative must occur yield-

ing:

-~

which gives us our original configuration - only now we must be

able to»connect | X “ with a new single path yl,'totally
BE o
semi-enclosed by vy ( or on vy). In this way we obtain a
sequence of paths yl,yg,...,yﬁ connecting our'figure and semi-
enclosing a strictly decreasing amount of area. Eventuaiiy we

get to the point where the absolute minimum area is semi-enclosed

Y .;

which means vy looks like X [X or X#J X i X
| X X X X
X IX ix ' X I X

whence the blank in the middle is filled in by a SR or a LD .

Contradiction.
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Case R: The path turned to the right; Here wé have as before:
x Ix Jx |
X a
c KX b N

where ¢ Dblank ylelds a new path Y, > totally enclosed in Y

If ¢ 1is active we get a contradiction with the RD rule.

Lemma 5: If R is a retina which contains a connected figure

and if M, is ready for summation, then the configuration

X cannot occur on R .

3

Proof: For this lemma, the proof goes as before except that we

end up with minimal area semi-enclosing configurations like

x Ixh x Ix §x
X X or X X
x Ix lx x |x

violating the SW and RD rules.

Lemma 5: I R 1is a retina which contains a connected figure

and if Mc is ready for summation then

X

cannot occur on R .



Proof: 3 X §5
1 2
yoI'x 5
It is easy to se. that 1 and
We assume that 2 (for examplu’
is symmetric.' If 2 4dis active
or 5 Dblank or (3 Dblank and 1
the forbidden patterns of the las

We argue now as before
minimal area semi-enclosing path
.figure. (note: we have abused

obtain the figures

X Xl X top row
X a
c X2 b

dep ending upon whether vy

there is no consistent choice for c¢

"turned right or lef

52.

2 must be . mnk in this case.

is active as the argument for 1

then we have either '6 blank

active) all situations leading to

lemmas.

2
1.
(V]

pilcking the highest row of a

vy connecting our original

the definition slightly.) We -

"top row

and

t". In both cases

Note thét ouf first remark

in the proof was necessary to prevent the path from ending or

beginning at Xy Or x2

Lemma 7: If R is a retina con
if MC

on R .

is ready for suwmmation, then

taining a connected figure and

X cannot occur

E




Proof: (sketch)

We can show by process of elimination that a, b and ¢ must be

blank. Then we plan to use the same type of argument as before.
But we must be careful. This time the path vy may have as
highest row only the end points. In such a case we cannot build

such a strong\configuration around our highest row as before.

Case A: y extends above the end points: Here as before we get
X X {1 X X X X
X a or a Li;
¢ 1 X b b X {c

leading to contradiétions;

Case B: Yy does not extend above the endpoints: Here we must

look at the lowest row for the vy semi-enclosing least area.

la Jc ' da |
. J— - -
moved Xy b moved c ja je
right ' ‘ left
X X X §J b Xl
x x Ix lx |

By Lemma 5 a is blank. By our comment at the beginning of the

o

proof Db 1s blank, hence c¢ 1is too. If vy has moved to the
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left we could further conclude that e dis blank and d is active.
(Using the SW and SC rules respectively. ) But then the RD and

ID at a would be active contradiction.

If vy had moved to the right, i1t would eventually have

to turn back up again to meet an end point,

24 3 |4

X
X X X X X X X X X X 1 X
) __

duplicating the situation of the left moving path.

- We conclude that there can be no path y of the

required type connecting the original figure. Contradiction.

Theorem: Upon recelving a connected figure X on an mxn

retina ‘R , MC will continue to add retina cells to X until

a “"solid" figure X° is produced. This figure X° = U scope(x)
: xeX :

L o . s .

After X is attained, no state change will take place.

Proof': Suppose X 1is a connected figure and has been inserted

into M, . It is clear from the form of the six associator units

that the state at time X(t) "satisfies

X c X(t) < U scope (x)
xeX o
Tt is also clear that if there is a time ty With X, ) = x©
. O -

no state change will take place after ¢t Our task then is to

o
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show that if Mc sums at some time tl , then we have

X(t ) = x° = U scope (x) . We do so by contradiction.
1 xeX : '
Assume that at time ¢ ='tl M, sums and that
X/ v &€ U scope (x) . Therefore there is an x, ¢ X such
<Ll) T xeX - , 1

that y € scope (xo) and that v & X(t for some y € R .

1)

Adopt the following scanning procedure in scope Xy -

Start at X and scan down the last column. Then scan.the
second to last column from top to bottom and so on until all
columns have been scanned. Pick the first such y 1in the .scan

and call 1t Vo *

Pictorially then we have one of the following three

pictures, depending upon where Vo is in scope Xq in reldtion

- s 1 1 s
to X, - Remember Vo 1s blank”™ since Yo € X(tl) .
Case I:
X
o
X X )
X X
Yo &
X -
X
Case II: X
_— o
\ x B
Yo X X
X X



Case IIT: Xo
X
X
Yo

We show that none of these cases are possible. That
is y_. € X contradiction.
o (tl> ,
Cases I and III: By choice of vy, we have one of the following

figures with\\yo blank

L BB
2 E yol X E_IW

]

In order that N be blank and not have been activated

by a DR we must have either 3 active or (2 active and 1 Dblank)
or (% active and 5 Dblank). These cases lead to the forbidden

configurations.

! .
X ﬁ X X ‘ _ .
or X E or X . -

Case I1: By chodice of Vo, we have



] -

T )8
o3 2|5
1001 jy f ¥
1145 X
X

In order to avoid activation of Io by a SC we must have either

1, 2, 3, or 4 active.

Sub-case (1): 1 active yields X “ X | contradiction!

AN
Sub-case (2): 2 active implies also that & is active or

(1 is active and 3 Dblank) or 5 is blank, all contradictions.

I

Sub-case (4): is active. We must avoid having 2 active

by sub-case (23. The only way to avoid having a DR £i11 2 is
by having y, active (false) or (3 active and 7 Dblank) or

(5 active and 8 blank) both contradictions.

Sub-case (3): 3 is active. We must avoid 1 Dbeing active.

So we have 11 active or 10 active or (10 active and 9 blank)

or Y, active.

In no case could we avoid the forbidden patterns.

. Ea

) = x° = U scope (x) and t, ='t_ . The theorem

Therefore X
(%) xeX . oo

is shown.

Corollary 1: Mc recognizes wCONN_'

Proof: Let X be connected. When M, sums it will do so on
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. o . .
the figure X = U scope X , causing every associator to output
xeX :
a 1 , causing acceptance.

Let X Dbe disconnected. When M, sums (which it

surely will do in a finite amount of time) it will do so on a

figure Y . Certainly Y < 'U scope (i) . (Just look at the
veY
associators.) Since Y £ U scope y , a connected set, we must
» veY
have Vo € Y with some X, € scope y  ~ Y . Pick any northeast-
erlymest such Xy Then either
X X or X
VR L}
X.
o]

with <X6 € Y, xeY) will occur leading to rejection because

of the third component RD rule.

Therefore .MC accepts X 1iff X 1s connected.

Therefore MC recognizes wCONN .

Corollary 2: Yoy LS of order <8

~ . .l 3 I - 3 S .
Proof: Since MC recongizes Voonn 2 the proof consists only of

noting that all associlators units of Mc have eight or less squares

in them.
Topics for further study: or coursepbne might always try to
get better bounds on order (¢CONN) . The order 1 or 2 cases

might be possible to rule out via brute force, but for order

3, 4, 5, 5_or 7_tthe-probiem seems té ambunt to either a_hopélessly
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large case.elimination problem or a hopelessly difficult F.P.

programming problem,

Other predicates might be investigated. ¥ - would

_ mod n
be easy. I have thought briefly about Voryorv cony ©F

y(X)e» X has exactly n components.

As Minsky notes, geometric properties involving straight
lines and circles etc. involve tblerance"topologies which seem to
be more of a problem than the F.P.'s. Other algebraic predicates

might be 1nvestigated.
AN

Various training sequences could be investigated on
the F.P.'s using computers. Unfortunately I would expect
" earning" to be .slower for these machines than for regular
perceptrons if only becaﬁse there are so many more modes 55'

action for the F.P.

The problem of formulating a general theory of F.P.'s
seems almost hopeless. In fact many of the minimal state problems
for finite automata and iterative arrays are‘very'much like our
problems,with connectivity. Oﬁly rough bounds are computed for

specific tasks. No general theory is even hoped for.

We could vary the F.P.'s.in su¢h a way as to simplify
tasks (i.e. lower ovrders). For example, we might permit the

retina to be activated by n colours rather than 1

We might note in passing that the design of feedback

perceptrons is quite similar to that” of the cellular structures




treated in von Neumann's Theory of Self Reproducing Automata.

The main differences are in the sgmmation algorithm of the end
and in the fact that logical operations can be broken down over
many cell neighbourhoods in feedback perceptrons. Perhaps a
cloger study of the relation of feedback perceptrons to cellular
structures would lead to stronger methods for the perceptfdns as

well as giving them wider appeal.

The problem that really started us off was the comput-
ational complexity problem. As previously mentionéd, the
unlimited numbgr of associators we allow undercuts the order
"measure as a true measure of complexity. Maybe a theory which-

counts total computation steps of any kind is accessible.
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