MATRICES
WITH
LINEAR AND CIRCULAR SPECTRA

by
LUANG-HUNG CHANG
B.Sc. National Taiwan University, 1958

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARTS

in the Department
of
Mathematics

We accept this thesis as conforming to the
required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

August, 1969
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Mathematics

The University of British Columbia
Vancouver 8, Canada

Date September 17, 1969
ABSTRACT

Much is known about the eigenvalues of some special types of matrices. For example, the eigenvalues of a hermitian or skew-hermitian matrix lie on a line while those of a unitary matrix lie on a circle; their spectra are "linear" or "circular". This suggests the question: What matrices have this property? Or, more generally, what matrices have their eigenvalues on plane curves of a simple kind? Is it possible to recognize such matrices by inspection?

In this thesis, we make a small start on these problems, exploring some matrices whose eigenvalues lie on one or more lines, or on one or more circles.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Matrices with Eigenvalues on Lines or Circles</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>The Expanded Matrix of A Complex</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Nonnegative Matrices</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Tridiagonal Matrices</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Compound Matrices and Some Other Theorems</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Extended Polynomial-problem on Eigenvalues</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>38</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I am greatly indebted to Professor B. N. Moyls for suggesting the topic of this thesis, for allowing me a generous amount of his time and for his many constructive comments during the preparation of this thesis. I also wish to thank Professor Roy Westwick for his criticism of the draft form of this work.

The financial support of the University of British Columbia is gratefully acknowledged.
1. Introduction.

Let

\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} = (a_{jk}) \]

be any square matrix of order n with elements in the complex field \(C \). A non-zero vector \(\mathbf{x} = (x_1, x_2, \ldots, x_n)^T \) with complex entries \(x_1, x_2, \ldots, x_n \) such that \(AX = \lambda \mathbf{x} \) is said to be an eigenvector of \(A \) corresponding to the eigenvalue \(\lambda \); \(\lambda \) is a root of the characteristic equation

\[\det(\lambda I - A) = 0 \]

of degree n. Counting multiplicities there are n eigenvalues of \(A \). The set of eigenvalues of \(A \) is called the spectrum of \(A \).

There exists a lot of information about the eigenvalues of some special types of matrices. For example, it is easily seen that diagonal \((a_{jk} = 0 \text{ if } j \neq k) \) and triangular \((a_{jk} = 0 \text{ if } j > k) \) matrices exhibit their eigenvalues on their main diagonal: \(\lambda_j = a_{jj}, j = 1, 2, \ldots, n \).

It is not quite so trivial that the eigenvalues of a real symmetric matrix \(A (A = A^T) \), where \(A^T \) denotes the transpose of \(A \) lie on the real axis. This was first proved by A. Cauchy [8] in 1829, and many subsequent proofs have been given, by
other eminent mathematicians, including Jacobi and Sylvester. This theorem was generalized by Hermite [12] in 1855 to matrices for which \(A = A^* \) (\(A^* \) denotes the transpose conjugate of \(A \)), and resulted in such matrices being named after him. A well-known simple elegant one-line proof of this result is the following:

For a unit eigenvector \(X \) corresponding to \(\lambda \),

\[
\lambda = \lambda X^* X = X^* AX = (X^* AX)^* = \overline{\lambda}.
\]

In a similar way the eigenvalues of a real skew-symmetric matrix \((A = -A^T) \) lie on the imaginary axis. This was first proved by A. Clebsch [9], and later by Weierstrass [19]. That the same is true for a skew-hermitian matrix \((A = -A^*) \) was shown by G. Scorza [18] in 1921. This is immediate if one notes that \(iA \) is hermitian.

The eigenvalues of an orthogonal matrix \(A \) \((AA^T = I) \), where \(I \) is the identity matrix of order \(n \) have absolute value 1 and occur in reciprocal pairs. This was proved by F. Brioschi [7] in 1854, and again by F. Rahusen [17] in 1894. The eigenvalues of a unitary matrix \(A \) \((AA^* = A^* A = I) \) also have absolute value 1. The proof was first given by H. Aramata [3] in 1927, and a short proof was given by R. Brauer [5] in 1928. The result is obvious if we observe that for a unit eigenvector \(X \) corresponding to \(\lambda \),

\[
1 = X^* X = X^* A^* AX = (\overline{\lambda} X^*)(\lambda X) = \overline{\lambda} \lambda.
\]
As far as the eigenvalues of a general matrix are concerned, nothing specific can be said about their location; they can obviously lie anywhere in the complex plane. A great many theorems have been proved about the localization of eigenvalues; many have been summarized by M. Marcus and H. Minc [15] and M. Parodi [16].

The three types of matrices mentioned above have something in common. Their eigenvalues each lie on a line or on a circle; or, in other words, their spectra are linear or circular. This suggests the question: What matrices have this property? Or, more generally, what matrices have their eigenvalues on plane curves of a simple sort? Is it possible to recognize such matrices by inspection? These seem to be rather difficult questions to answer. In this thesis, we make a small start, exploring some matrices whose eigenvalues lie on one or more lines, or on one or more circles.

In section 2 we introduce a class of matrices called "HORT". A matrix is said to be HORT if it can be obtained from an hermitian matrix by a suitable rotation and/or translation. Its eigenvalues lie on a line. In a similar way we discuss "UOT" matrices, which can be obtained from unitary matrices by a suitable translation. We obtain necessary and sufficient conditions for a matrix to be HORT and UOT.
With each \(n \times n \) complex matrix \(A \) there is associated in a natural way a \(2n \times 2n \) real matrix called the Expansion of \(A \). In section 3 we discuss some simple relations between \(A \) and its expansion.

In section 4 we examine \(n \times n \) nonnegative indecomposable matrices. We show that if such a matrix has all its eigenvalues on a line, it has real eigenvalues, and its index of imprimitivity is at most 2 (Theorem 4.2). Its eigenvalues lie on a circle if and only if its index of imprimitivity is \(n \) (Theorem 4.3).

In section 5 we introduce two further classes of matrices called "almost" hermitian (Definition 5.2) and "almost" HORT (Definition 5.3), and obtain necessary and sufficient conditions for a matrix to be "almost" HORT.

In section 6 we discuss the relationship between the eigenvalues of the \(r^{th} \) compound matrix \(C_r(A) \) of \(A \) and those of \(A \).

Finally, in section 7, we looked at the extended polynomial problem on eigenvalues; that is, the determination of the roots \(\lambda \) of

\[
\det(\lambda^r A_0 + \lambda^{r-1} A_1 + \ldots + A_r) = 0,
\]

where the \(A_i \) are \(n \times n \) complex matrices. In the case where the degree \(r \) is 1 or 2, we give some conditions for the roots to lie on a line or on a circle.
In this thesis we shall use the following notation:

- **$C\#$**: the complex number field.
- **H**: Hermitian matrix.
- **S**: Skew-Hermitian matrix.
- **U**: Unitary matrix.
- **(p,q)**: a point in the complex plane.
- **$\text{Exp } A$**: expanded matrix of A.
- **$Q_{k,n}$**: totality of strictly increasing sequences of k integers chosen from $1, 2, \ldots, n$.
- **$C_r(A)$**: r^{th} compound matrix of A.
- **$A[x|y]$**: submatrix of A using rows numbered x and columns numbered y. Here x and y are sequences of integers.
- **$\det(A)$**: determinant of A.
2. Matrices with eigenvalues on lines or circles.

Definition 2.1 A matrix A is m-linear (m-circular) if all its eigenvalues lie on m lines (circles) in the complex plane.

This definition implies that if A is m-linear, it is also p-linear for all $p \geq m$. One could argue that A should be m-linear if its eigenvalues lie on m lines but not more than m lines. In that case, however, we should sometimes be faced with some pesky combinatorial considerations, which merit discussion only when we are interested in the least m for which A is m-linear. It appears reasonable to us to define m-linear as in Definition 2.1.

Those matrices with just one distinct eigenvalue (the spectrum is a point) are rather special. We could call them 0-linear and 0-circular, but we shall be content to include them among the 1-linear and 1-circular matrices. These matrices are not the only ones that are both 1-linear and 1-circular. Such matrices are those from which the spectrum consists of at most two points. Every 2×2 matrix is 1-linear and 1-circular.

Suppose that the matrix A is 1-linear. If the line L of eigenvalues of A passes through $a = r + si$ with angle of inclination ϕ, then parametric equations for L are:

$$
\begin{cases}
 x = r + pt \\
 y = s + qt
\end{cases}
$$

where t is a real parameter.

Let $a = r + si$, $q/p = \tan \phi$ if $p \neq 0$, and $\phi = \pi/2$ if $p = 0$.

Now the matrix $B = (A - aI)e^{-i\phi}$ has real roots. Conversely, if there exist a complex number a and a real number ϕ such that B has real roots, then A is 1-linear. Hence
Theorem 2.1 A is 1-linear if and only if there exist a complex number a and a real number θ, $0 \leq \theta < \pi$ such that $(A - aI)e^{-i\theta}$ has real roots.

One might be tempted to say that the problem of recognizing 1-linear matrices really amounts to recognizing matrices with real eigenvalues. But it is not this simple. The criterion of Theorem 2.1 may not have too much value in recognizing 1-linear matrices from those with real roots. However, matrices related to hermitian matrices can be recognized.

Definition 2.2 Let $A = (a_{jk})$ be an n-square matrix with elements in \mathbb{C}. We say that A is HORT "hermitian on rotation and/or translation" if $(A - aI)e^{i\theta}$ is hermitian for some complex number a and real number θ.

If A is HORT and $H = (A - aI)e^{i\theta}$ is hermitian, the eigenvalues of A are $\lambda_j(A) = \lambda_j(H)e^{i\theta} + a$, $j=1,2,...,n$ and they lie on the line $y = \tan \theta \cdot (x - r) + s$ if $\theta \neq \pi/2$ and on the line $x = r$ if $\theta = \pi/2$.

Note that a skew-hermitian matrix S is HORT since $(S - 0I)e^{-i\pi/2} = -iS$ is hermitian.

Theorem 2.2 A is HORT if and only if there are complex numbers v and w with $|w| = 1$ such that

$$\bar{a}_{jj} = wa_{jj} + (\bar{v} - vw),$$

and

$$\bar{a}_{kj} = wa_{jk} \quad \text{for } j \neq k, j,k=1,2,...,n.$$
8.

Proof. If A is HORT, there exist, by definition, a complex number a and a real number ϕ such that $H = (A-aI)e^{-i\phi}$ is hermitian. That is

$$(A-aI)e^{-i\phi} = (A^*-\bar{a}I)e^{i\phi}$$

or

$$A^* = e^{-2i\phi}(A-aI) + \bar{a}I,$$

thus

$$\bar{a}_{jj} = e^{-2i\phi}a_{jj} + (a - ae^{-2i\phi})$$

$$\bar{a}_{kj} = e^{-2i\phi}a_{jk} \quad \text{for } j \neq k, j,k=1,2,...,n.$$

Put $v = a$ and $w = e^{-2i\phi}$.

The converse is immediate by reversing the order of the above argument.

In practice the recognition of an HORT matrix is even simpler than the criterion of Theorem 2.2. If $\phi \neq 0$, $a(=v)$ can be assumed real. If $\phi = 0$, a can be assumed to be pure imaginary, $a(=v) = bi$ where b is real, $\phi = 0$, and $w = 1$.

Thus we have

Theorem 2.3 A is HORT if and only if either (1) or (2) holds.

(1) $\bar{a}_{jj} = wa_{jj} + v(1-w), \quad \bar{a}_{kj} = wa_{jk}, \quad j \neq k, j,k=1,2,...,n$

for some real v and complex w such that $|w| = 1$.

(2) $\bar{a}_{jj} = a_{jj} - 2bi, \quad \bar{a}_{kj} = a_{jk}, \quad j \neq k, j,k=1,2,...,n$

for some real number b.
HORT matrices are 1-linear, but of course they are by no means the only 1-linear matrices, just as hermitian matrices are not the only ones with real eigenvalues. In fact the example $A = \begin{pmatrix} 1 & a \\ 0 & 2 \end{pmatrix}$ shows that a matrix with real elements and real eigenvalues can be just about as "unhermitian" as one can conceive.

Suppose that the matrix A is 1-circular. The equation of the circle of eigenvalues must be of the form

$$(x - r)^2 + (y - s)^2 = b^2,$$

where b is a non-negative real number.

Analogous to the case of HORT matrices, we make the following definition.

Definition 2.3 Let $A = \left(a_{jk} \right)$ be an n-square matrix with elements in $\mathbb{C}^\#$. A is UOT "unitary on translation" if $(A - aI)b^{-1}$ is unitary for some complex number a and real number $b \neq 0$.

If A is UOT and $U = (A - aI)b^{-1}$ is unitary, the eigenvalues of A are

$$\lambda_j(A) = \lambda_j(U)b + a, \quad j = 1, 2, \ldots, n$$

and they lie on the circle

$$(x - r)^2 + (y - s)^2 = b^2 \quad \text{if} \quad a = r + si.$$
Theorem 2.4 A is UOT if and only if there exist a complex number \(v \) and real number \(w \neq 0 \) such that
\[
\sum_{m=1}^{n} a_{jm} \bar{a}_{jm} - va_{jj} - \bar{v}a_{jj} + |v|^2 - w^2 = 0
\]
\[
\sum_{m=1}^{n} a_{jm} \bar{a}_{km} - va_{kj} - \bar{v}a_{jk} = 0, \quad j \neq k, \ j, k = 1, 2, \ldots, n.
\]

Proof. If \(A \) is UOT there are, by definition, a complex number \(a \) and a real number \(b \neq 0 \) such that \(U = (A - aI)b^{-1} \) is unitary. That is
\[
UU^* = (A - aI)b^{-1}(A^* - \bar{a}I)b^{-1} = I
\]
or
\[
AA^* - aA^* - \bar{a}A + |a|^2 I = b^2 I,
\]
thus
\[
\sum_{m=1}^{n} a_{jm} \bar{a}_{jm} - a\bar{a}_{jj} - \bar{a}a_{jj} + |a|^2 = b^2
\]
\[
\sum_{m=1}^{n} a_{jm} \bar{a}_{km} - a\bar{a}_{kj} - \bar{a}a_{jk} = 0, \quad j \neq k, \ j, k = 1, 2, \ldots, n.
\]
Put \(v = a \) and \(w = b \).

The converse is immediate by reversing the order of the above argument.
3. The expanded matrix of a complex matrix

In looking at 1-linear, or more generally m-linear, matrices, there are really two major avenues of investigation: complex matrices and real matrices. We shall not confine ourselves to real matrices, but explore both problems.

We note, however, that corresponding to each complex matrix \(A \) there is a related real matrix called the "expanded matrix of \(A \)" denoted by \(\text{Exp} A \), and defined for \(A = (a_{jk}) = (b_{jk} + c_{jk}i) \), \(b_{jk}, c_{jk} \) real, by

\[
\text{Exp} A = \\
\begin{pmatrix}
 b_{11} & c_{11} & b_{12} & c_{12} & \cdots & b_{1n} & c_{1n} \\
-c_{11} & b_{11} & -c_{12} & b_{12} & \cdots & -c_{1n} & b_{1n} \\
b_{21} & c_{21} & b_{22} & c_{22} & \cdots & b_{2n} & c_{2n} \\
-c_{21} & b_{21} & -c_{22} & b_{22} & \cdots & -c_{2n} & b_{2n} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
b_{n1} & c_{n1} & b_{n2} & c_{n2} & \cdots & b_{nn} & c_{nn} \\
-c_{n1} & b_{n1} & -c_{n2} & b_{n2} & \cdots & -c_{nn} & b_{nn}
\end{pmatrix}
\]

In 1960, E. Gott [10] proved that

\[\det(\text{Exp} A) = |\det(A)|^2. \]

A one-line proof of this theorem was given by J. L. Brenner [6] in 1961 based on an interesting theorem of S. N. Afriat [1]:

\[\det(\text{Exp} A) = \det \begin{pmatrix} \text{Re} \det(A) & \text{Im} \det(A) \\ -\text{Im} \det(A) & \text{Re} \det(A) \end{pmatrix} = |\det(A)|^2. \]
Brenner also showed that the collection of the eigenvalues of Exp A consists of the eigenvalues of A and their conjugates.

This is particularly interesting for matrices A with real roots. The roots of Exp A are just those of A counted twice, certainly real and 1-linear.

We give some simple results relating A and Exp A in Theorem 3.1

Let A = (a_{jk}) be an n-square matrix with complex elements. Exp A is normal if and only if A is normal. Exp A is symmetric if A is hermitian, Exp A is skew-symmetric if A is skew-hermitian and Exp A is unitary if A is unitary.

Proof. First we show that Exp A is normal if and only if A is normal. Suppose a_{jk} = b_{jk} + c_{jk}i, and let

\[A_{jk} = \begin{pmatrix} b_{jk} & c_{jk} \\ -c_{jk} & b_{jk} \end{pmatrix}. \]

Since

\[\sum_{m=1}^{n} A_{jm} A_{km}^* = \sum_{m=1}^{n} A_{jm} A_{km} \]

if and only if

\[\sum_{m=1}^{n} a_{jm} a_{km} = \sum_{m=1}^{n} a_{jm} a_{km} \]

j, k = 1, 2, ..., n.

\[(\text{Exp } A)(\text{Exp } A)^* = \left(\sum_{m=1}^{n} A_{jm} A_{km}^* \right)_{jk} \]

\[= \left(\sum_{m=1}^{n} A_{jm} A_{km}^* \right)_{jk} = (\text{Exp } A)^* (\text{Exp } A) \]
if and only if

\[\text{AA}^* = (\sum_{m=1}^{n} a_{jm} a_{km})_{jk} = (\sum_{m=1}^{n} -a_{jm} a_{km})_{jk} = A^* A. \]

Thus A is normal if and only if \(\text{Exp} A \) is normal.

If A is hermitian, its eigenvalues are real, and, since the eigenvalues of \(\text{Exp} A \) are those of A and their conjugates, \(\text{Exp} A \) has real roots. However A, being hermitian also implies \(\text{Exp} A \) normal. Now a normal matrix with real eigenvalues must be hermitian. Hence \(\text{Exp} A \) is hermitian, and indeed, since its elements are real, \(\text{Exp} A \) is symmetric.

Similarly, one can prove the last two statements, if one notes that the conjugate of a pure imaginary is again pure imaginary and \(|a+bi| = 1 = |a-bi| \).

Theorem 3.2 Let \(A = (a_{jk}) \) be an \(n \)-square matrix with complex elements. Assume that A is HORT, i.e., \((A - aI)e^{-i\phi} \) is hermitian for some complex number \(a=r+si \) and real number \(\phi \) with \(0 \leq \phi < \pi \). \(\text{Exp} A \) is 1-linear if (1) \(\phi = \pi/2 \), or (2) \(s=0 \) and \(\phi=0 \), or (3) spectrum of A is a point. \(\text{Exp} A \) is 2-linear otherwise.

Proof. If \(\phi = \pi/2 \), the eigenvalues of A lie on \(x = r \) and so do those of \(\text{Exp} A \). If \(s=0 \) and \(\phi=0 \), the eigenvalues of A and \(\text{Exp} A \) are all real and lie on \(y=0 \). If the spectrum of A is a point, \(\text{Exp} A \) is obviously 1-linear. Otherwise, the eigenvalues of A lie on the line with equation

\[y = \tan\phi \cdot (x - r) + s. \]
Those of Exp A lie on
\[y = \tan \phi \cdot (x - r) + s \]
and \[y = -\tan \phi \cdot (x - r) - s. \]
This proves our theorem.

Theorem 3.3 Let \(A = (a_{jk}) \) be an \(n \)-square matrix with complex entries. Assume that \(A \) is UOT; i.e., there are complex number \(a = r + si \) and real number \(b \neq 0 \) such that \((A - aI)b^{-1}\) is unitary. Exp A is 1-circular if \(s = 0 \), or if the spectrum of \(A \) is a point. Exp A is 2-circular otherwise.

Proof. By the remarks shown in Section 2, the eigenvalues of A lie on the circle
\[(x - r)^2 + (y - s)^2 = b^2. \]
Now, if \(s = 0 \), the above equation may be written
\[(x - r)^2 + y^2 = b^2, \]
which is symmetric with respect to the real axis. Then the eigenvalues of Exp A all lie on this circle for they are conjugate in pairs. If \(s \neq 0 \), the eigenvalues of Exp A will lie on two circles:
\[(x - r)^2 + (y - s)^2 = b^2 \]
and \[(x - r)^2 + (y + s)^2 = b^2. \]
More generally, one can see that if A is 1-linear then \(\exp A \) is either 1-linear or 2-linear. Conversely, if \(\exp A \) is 1-linear, then A is 1-linear; if \(\exp A \) is 2-linear, then A can be either 1-linear or 2-linear. It is obvious, however, that if \(\exp A \) is α-linear, $\alpha=1,2,3,\ldots$, then \(\exp(\exp A) = \exp^2(A) \) is also α-linear. No new lines of eigenvalues are added. This is not surprising since \(\exp^2(A) \) is A "blown up" with each root duplicated. A similar discussion applies to \(\alpha \)-circular matrices.

A more interesting question is to ask for the number of lines on which the eigenvalues of B_m lie, where

1. $B_0 = B$ is 1-linear,
2. $B_k = \exp(a_k B_{k-1} + b_k I)$; a_k, b_k complex, $k=1,2,\ldots,m$.

In general, each time we make an expansion, we double the number of lines of eigenvalues, hence the maximum linearity is 2^m. But of course B_m can be 2^q-linear for each q, $0 \leq q \leq m$, for suitable choices of B, a_k and b_k. Conceivably, B_m could also be α-linear, where α is not a power of 2. Just when B_m is α-linear for any integer $\alpha \leq 2^m$ seems to be a complex combinatorial problem. To illustrate the possibilities we give the linearity of B_1 and B_2 when B_0 is hermitian, skew hermitian and unitary (Tables 1 and 2).
Let \(a_1 = p_1 + q_1 i \neq 0, \ b_1 = r_1 + s_1 i \neq 0, \ a_2 = p_2 + q_2 i \neq 0 \) and \(b_2 = r_2 + s_2 i \neq 0 \).

Table 1. \(B_0 = H(S) \)

<table>
<thead>
<tr>
<th>Conditions on (p_1, q_1, r_1, s_1)</th>
<th>(\text{Exp B}_1)</th>
<th>Conditions on (p_2, q_2, r_2, s_2)</th>
<th>(\text{Exp B}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1 = 0) & (s_1 = 0)</td>
<td>1-linear (y = 0)</td>
<td>(q_2 = 0) & (s_2 = 0)</td>
<td>1-linear (y = 0)</td>
</tr>
<tr>
<td>(p_1 = 0) & (s_1 = 0)</td>
<td>(p_2 = 0) & (s_2 \neq 0)</td>
<td>otherwise</td>
<td>1-linear (perp. to (y = 0))</td>
</tr>
<tr>
<td>(p_1 = 0) & (r_1 = 0)</td>
<td>1-linear (x = 0)</td>
<td>(q_2 = 0) & (s_2 = 0)</td>
<td>1-linear (y = 0)</td>
</tr>
<tr>
<td>(q_1 = 0) & (r_1 = 0)</td>
<td>(q_2 = 0) & (s_2 \neq 0)</td>
<td>otherwise</td>
<td>1-linear (perp. to (y = 0))</td>
</tr>
<tr>
<td>(q_1 = 0) & (r_1 = 0)</td>
<td>1-linear (perp. to (y = 0))</td>
<td>(q_2 = 0)</td>
<td>2-linear</td>
</tr>
<tr>
<td>(p_1 = 0) & (s_1 = 0)</td>
<td>(p_2 = 0) & (s_2 \neq 0)</td>
<td>otherwise</td>
<td>2-linear (perp. to (y = 0))</td>
</tr>
<tr>
<td>(q_1 = 0) & (r_1 = 0)</td>
<td>2-linear (paral. to (y = 0))</td>
<td>(q_2 = 0) & (s_2 = 0)</td>
<td>2-linear (paral. to (y = 0))</td>
</tr>
<tr>
<td>(p_1 = 0) & (r_1 = 0)</td>
<td>(q_2 = 0) & (s_2 \neq 0)</td>
<td>(p_2 = 0)</td>
<td>4-linear (paral. to (y = 0))</td>
</tr>
<tr>
<td>(p_1 = 0) & (s_1 = 0)</td>
<td>(p_2 = 0) & (s_2 \neq 0)</td>
<td>otherwise</td>
<td>2-linear (perp. to (y = 0))</td>
</tr>
<tr>
<td>(q_1 = 0) & (r_1 = 0)</td>
<td>otherwise</td>
<td>2-linear</td>
<td>4-linear</td>
</tr>
</tbody>
</table>

Table 2. \(B_0 = U \)

<table>
<thead>
<tr>
<th>Conditions on (p_1, q_1, r_1, s_1)</th>
<th>(\text{Exp B}_1)</th>
<th>Conditions on (p_2, q_2, r_2, s_2)</th>
<th>(\text{Exp B}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1 = 0)</td>
<td>1-circular</td>
<td>(s_2 = 0)</td>
<td>1-circular</td>
</tr>
<tr>
<td>otherwise</td>
<td>otherwise</td>
<td>otherwise</td>
<td>2-circular</td>
</tr>
<tr>
<td>otherwise</td>
<td>2-circular</td>
<td>(s_2 = 0)</td>
<td>2-circular</td>
</tr>
<tr>
<td>otherwise</td>
<td>otherwise</td>
<td>otherwise</td>
<td>4-circular</td>
</tr>
</tbody>
</table>

Definition 4.1 A real n-square matrix $A = (a_{jk})$ is called nonnegative, if $a_{jk} \geq 0$ for $j,k = 1,2,\ldots,n$.

We write $A \geq 0$.

Definition 4.2 A nonnegative n-square matrix $A = (a_{jk})$ $(n > 1)$ is said to be decomposable if there exists permutation matrix P such that $PAP^T = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$ where B and C are square matrices. Otherwise A is indecomposable.

The fundamental theorem on indecomposable nonnegative matrices is the Perron-Frobenius theorem \[15\], which we state as follows:

Theorem 4.1 Let A be an n-square nonnegative indecomposable matrix. Then:

1. A has a real positive eigenvalue r (the maximal eigenvalue of A) which is a simple root of the characteristic equation of A. If $\lambda_j(A)$ is any eigenvalue of A, then $|\lambda_j(A)| \leq r$.
2. If A has h eigenvalues of modulus $r : \lambda_1 = r, \lambda_2, \ldots, \lambda_h$, then they are the h distinct roots of $\lambda^h - r^h = 0$; h is called the index of imprimitivity of A.
3. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are all the eigenvalues of A and $\theta = e^{i2\pi/h}$, then $\lambda_1 \theta, \lambda_2 \theta, \ldots, \lambda_n \theta$ are $\lambda_1, \lambda_2, \ldots, \lambda_n$.
in some order.

(4) If $h > 1$, then there exists a permutation matrix P such that

$$
PAP^T = \begin{pmatrix}
0 & A_{12} & 0 & \ldots & 0 & 0 \\
0 & 0 & A_{23} & \ldots & 0 & 0 \\
& \vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \ldots & 0 & A_{n-1,h} \\
A_{n,1} & 0 & 0 & \ldots & 0 & 0
\end{pmatrix}
$$

where the zero blocks down the main diagonal are square.

Suppose that the nonnegative indecomposable matrix A is 1-linear. Let r be the maximal (positive real) eigenvalue of A and suppose that there were a complex eigenvalue, say $\lambda \neq r$. Since the coefficients of $\det(\lambda I - A) = 0$ are real, $\overline{\lambda}$ is also a root of $\det(\lambda I - A) = 0$ and $|\lambda| \leq r$. Then λ and $\overline{\lambda}$ lie on or in the circle $x^2 + y^2 = r^2$ and are symmetrically placed with respect to the x-axis. Thus r, λ and $\overline{\lambda}$ can only be on a line if $\lambda = \overline{\lambda}$. Hence we have:

Theorem 4.2 If an n-square nonnegative indecomposable matrix A is 1-linear, then all its eigenvalues are real. Furthermore, $h \leq 2$.

It is trivial that if A is nonnegative indecomposable and 1-linear, then $\text{Exp} A$ is also 1-linear; in fact, its roots are all real.
Part(3) of Theorem 4.1 indicates that A is almost n/h-circular.

If A is 1-circular, then all the eigenvalues of A satisfy $|\lambda_j(A)| = r, \ j = 1,2,\ldots,n$, where r is the positive real maximal eigenvalue of A. Thus all $\lambda_j(A)$ are roots of $x^n - r^n = 0$, and $h = n$. Conversely, if $h = n$, the roots of $\lambda^n - r^n = 0$ coincide with the eigenvalues of A, and A has 1-circular eigenvalues. Hence

Theorem 4.3 An n-square nonnegative indecomposable matrix A is 1-circular if and only if $n = h$.

An example of the matrices appearing in Theorem 4.3 is the permutation matrix

$$
P = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0
\end{pmatrix}.
$$

The eigenvalues of P are the n^{th} roots of unity:

$$
\lambda_j(P) = e^{i(2\pi/n)j}, \quad j = 1,2,\ldots,n,
$$

for P is the companion matrix of the polynomial $\lambda^n - 1$.

P is a special case of the more general matrix

$$
B = \begin{pmatrix}
a & b_1 & 0 & \ldots & 0 \\
0 & a & b_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & a & b_{n-1} \\
b_n & \ldots & 0 & 0 & a
\end{pmatrix}.
$$
Here, \(\det(\lambda I - B) = (\lambda - a)^n + \frac{n}{1} \sum_{k=1}^{n} b_k \). The eigenvalues of \(B \) are:

\[
\lambda_j(B) = re^{i(2\pi/n)}j + a, \quad j = 1, 2, \ldots, n, \quad n \text{ even}
\]
or

\[
\lambda_j(B) = re^{i(\pi/n + 2\pi j/n)} + a, \quad j = 1, 2, \ldots, n, \quad n \text{ odd},
\]

where \(r = \sqrt{\frac{1}{1} \sum_{k=1}^{n} b_k} \).

The eigenvalues of \(\exp B \) are just those of \(B \) counted twice; hence \(\exp B \) is again 1-circular.

\(B \) is interesting in that it is 1-circular even if the non-zero entries are non-real. Its eigenvalues are

\[
\lambda_j(B) = n \sqrt{|c|} e^{i((\psi + 2\pi j)/n)}, \quad j = 1, 2, \ldots, n,
\]

where \(c = \frac{1}{1} \sum_{k=1}^{n} b_k = |c| e^{i\psi} \). Let \(a = p+qi, \quad p, q \) are real, then

\(\exp B \) is 1-circular if \(q = 0 \) and \(\exp B \) is 2-circular otherwise.
5. Tridiagonal matrices.

Definition 5.1 A matrix $A = (a_{jk})$ is called a tridiagonal or Jacobi matrix if $a_{jk} = 0$ whenever $|j - k| \geq 2$.

Thus

$$L_n = \begin{pmatrix}
 b_1 & c_1 & 0 & 0 & \cdots & 0 \\
 d_2 & b_2 & c_2 & 0 & \cdots & 0 \\
 0 & d_3 & b_3 & c_3 & 0 & \cdots & 0 \\
 \cdots & \cdots \\
 0 & \cdots & 0 & d_{n-1} & b_{n-1} & c_{n-1} \\
 0 & \cdots & 0 & 0 & d_n & b_n
\end{pmatrix}$$

is a general n-square complex Jacobi matrix. Since any matrix A is similar to a Jacobi matrix L_n [14], we are interested in conditions under which L_n is m-linear; particularly when L_n is 1-linear.

The following theorem was proved by F. M. Arscott in 1961 [4]:

Theorem 5.1 If all the entries of the Jacobi matrix L_n are real and $c_j d_{j+1} > 0$, $j = 1, 2, \ldots, n - 1$, then all its eigenvalues are real and simple.

We shall generalize Theorem 5.1 as follows:
Theorem 5.2 Let M_n be the matrix L_n with real b_k, $1 \leq k \leq n$, and complex c_j, d_{j+1} such that $c_j d_{j+1} > 0$, $1 \leq j \leq n-1$. Then the eigenvalues of M_n are real and simple.

Proof. The coefficient of λ^k in $\det(\lambda I - M_n)$ is the sum of the $(n-k)$-square principal minors. Wherever c_j occurs as a factor in such a minor so does d_{j+1}, and vice versa. Thus these elements always occur together as a product $c_j d_{j+1}$. It follows that the characteristic equation $\det(\lambda I - M_n) = 0$ has the same coefficients and roots as when all c_j and d_{j+1} are real and $c_j d_{j+1} > 0$. By Theorem 5.1 the eigenvalues of M_n are real and simple.

By Theorem 5.1 and Theorem 5.2, given a Jacobi matrix L_n, if b_1, b_2, \ldots, b_n are real, $c_1, c_2, \ldots, c_{n-1}$ and d_2, d_3, \ldots, d_n are complex numbers such that $c_j d_{j+1} > 0$, $j=1,2,\ldots,n-1$, then its eigenvalues are all real. Analogous to the case of 1-linear matrices discussed in Section 2, we make the following definitions:

Definition 5.2 Let L_n be a Jacobi matrix with complex entries. We call L_n "almost" hermitian if b_1, b_2, \ldots, b_n are real, $c_1, c_2, \ldots, c_{n-1}$ and d_2, d_3, \ldots, d_n are complex numbers such that $c_j d_{j+1} > 0$, $j=1,2,\ldots,n-1$.
Note that if L_n is "almost" hermitian and $d_{j+1} = \bar{c}_j$, $j=1,2,...,n-1$, then L_n is hermitian.

Definition 5.3 Let L_n be a Jacobi matrix. We call L_n "almost" HORT if $(L_n - aI)e^{-i\phi}$ is "almost" hermitian, for some complex number a and real number ϕ such that $0 \leq \phi < \pi$.

Theorem 5.3 L_n is "almost" HORT if and only if there are complex numbers v and w with $|w| = 1$ such that $(b_j - v)w$ is real, $j=1,2,...,n$ and $c_jd_{j+1}w^2 > 0$, $j=1,2,...,n-1$.

Proof. If L_n is "almost" HORT, by definition, there exist a complex number a and a real number ϕ with $0 \leq \phi < \pi$ such that $B = (L_n - aI)e^{-i\phi}$ is "almost" hermitian; i.e., $(b_j - a)e^{-i\phi}$ is real and $c_jd_{j+1}e^{-2i\phi} > 0$, $j=1,2,...,n-1$.

Put $v = a$ and $w = e^{-i\phi}$.

The converse is immediate by reversing the order of the above argument.

Theorem 5.4 Let L_n be a Jacobi matrix that is "almost" HORT; i.e., $(L_n - aI)e^{-i\phi}$ is "almost" hermitian for some complex number $a=r+si$ and real number ϕ with $0 \leq \phi < \pi$. Then $\text{Exp } A$ is 1-linear if (1) $\phi = \pi/2$ or (2) $s = 0$ and $\phi = 0$, and $\text{Exp } A$ is 2-linear otherwise.
Proof. We omit the proof here since it is similar to that of Theorem 3.2.
6. Compound matrices and some other theorems.

Definition 6.1 Let $A = (a_{jk})$ be an n-square matrix and $1 \leq r \leq n$. The r^{th} compound matrix of A, $C_r(A)$, is the $\binom{n}{r} \times \binom{n}{r}$ matrix whose entries are $\det(A[x|y])$, $x \in Q_{r,n}$ and $y \in Q_{r,n}$ arranged lexicographically in x and y.

For example, if $n = 3$ and $r = 2$ then

$$C_2(A) = \begin{pmatrix}
\det(A[1,2|1,2]) & \det(A[1,2|1,3]) & \det(A[1,2|2,3]) \\
\det(A[1,3|1,2]) & \det(A[1,3|1,3]) & \det(A[1,3|2,3]) \\
\det(A[2,3|1,2]) & \det(A[2,3|1,3]) & \det(A[2,3|2,3])
\end{pmatrix}$$

In particular, $C_1(A) = A$ and $C_n(A) = \det(A)$.

Theorem 6.1 Let $A = (p+qi)U$, $p+qi \neq 0$. The eigenvalues of $C_r(A)$, $1 \leq r \leq n$, lie on a circle with center at the origin and radius $|p+qi|^r$. When $r = n$, the eigenvalues coalesce at the point $(p+qi)^n$. If $|p+qi| = 1$, all the eigenvalues of $C_r(A)$, $r = 1, 2, \ldots, n$, are on the unit circle (Fig. 6-1).

Fig. 6-1
Proof. Since the eigenvalues of $C_r(A)$ are the $\binom{n}{r}$ products
\[\lambda_{j_1}(A)\lambda_{j_2}(A)\cdots\lambda_{j_r}(A),\]
where $1 \leq j_1 < j_2 < \cdots < j_r \leq n$, and since the $\lambda_j(A)$ are on the circle with center at the origin and radius $|p+qi|$, the eigenvalues of $C_r(A)$ lie on the circle with center at the origin and radius $|p+qi|^r$.

Theorem 6.2 The eigenvalues of $C_r(S)$, $1 \leq r \leq n$, lie on the real axis if r is even and on the imaginary axis if r is odd, while those of $C_r(H)$ lie on the real axis.

Proof. Since the eigenvalues of S are pure imaginaries, the eigenvalues of $C_r(S)$ are real if r is even and pure imaginary if r is odd.

The last statement follows immediate from the fact that the set of real numbers is a field.

One notes that the set $\{C_r(A) : r=1,2,\ldots,n\}$ is 2-linear if $A = S$ and 1-linear if $A = H$.

The following two theorems tell us that we can obtain 1-circular matrix from 1-linear matrix by certain transformation, and vice versa.

Theorem 6.3
\[A = (I - S)(I + S)^{-1}\]
is a unitary matrix; i.e., we can obtain a matrix whose eigenvalues lie on a unit circle from a skew-hermitian matrix by this transformation (Fig. 6-2).
Proof. First note that $I + S$ is nonsingular since the roots of S are pure imaginaries. Also, $(I+S)(I-S) = (I-S)(I+S)$.

$$AA^* = (I-S)(I+S)^{-1}((I+S)^{-1})^*(I-S)^*$$

$$= (I-S)(I+S)^{-1}(I+S^*)^{-1}(I-S^*)$$

$$= (I-S)(I+S)^{-1}(I-S)^{-1}(I+S) \quad \text{(since } S^* = -S)$$

$$= (I-S)((I-S)^{-1}(I+S))^{-1}(I+S)$$

$$= I.$$

Theorem 6.4 If $\det(I+U) \neq 0$, then

$$A = (I - U)(I + U)^{-1}$$

is skew-hermitian; i.e., we can obtain a matrix whose eigenvalues lie on the imaginary axis from a unitary matrix by this transformation (Fig. 6-3).
Proof. We need only to show that $A = -A^*$:

$$A^* = ((I+U)^{-1})^*(I-U)^*$$

$$= (I+U^*)^{-1}(I-U^*)$$

$$= (I+U^{-1})^{-1}(I-U^{-1})$$ \text{(since $U^* = U^{-1}$)}

$$= (U^{-1}(U+I))^{-1}(U^{-1}(U-I))$$

$$= (U+I)^{-1}UU^{-1}(U-I)$$

$$= (U+I)^{-1}(U-I)$$

$$= (U+I)^{-1}(U-I)(U+I)(U+I)^{-1}$$

$$= (U+I)^{-1}(U+I)(U-I)(U+I)^{-1}$$

$$= -(I-U)(I+U)^{-1}$$

$$= -A^*.$$
7. Extended polynomial-problem on eigenvalues.

Let A_0, A_1, \ldots, A_r be $r+1$ n-square complex matrices. Let $X = (x_1, x_2, \ldots, x_n)^T$ be a nonzero vector with complex entries. Consider

\begin{equation}
(\lambda^r A_0 + \lambda^{r-1} A_1 + \ldots + A_r)X = 0.
\end{equation}

The determination of λ such that equation (7.1) holds is called the extended polynomial-problem on eigenvalues. X is said to be an eigenvector belonging to the eigenvalue λ. One can see that the eigenvalues of the polynomial-problems are exactly the roots of

\begin{equation}
\det(\lambda^r A_0 + \lambda^{r-1} A_1 + \ldots + A_r) = 0.
\end{equation}

The determinant is a polynomial in λ of degree not exceeding $r \cdot n$. If A_0 is nonsingular, the degree of (7.2) is exactly $r \cdot n$.

If $r = 1$ and $A_0 = I$, then the roots of $\det(\lambda I + A_1) = 0$ are the eigenvalues of $-A_1$.

If $r = 1$ and A_0 and A_1 are arbitrary matrices the problem is referred to as a generalized eigenvalue problem [13].
Theorem 7.1 The roots of (7.2) are the generalized eigenvalues of $\lambda B_0 + B_1$ such that

$$(7.3) \quad (\lambda B_0 + B_1)X = 0,$$

where X is a nonzero vector,

$$B_0 = \begin{pmatrix} -I & 0 & 0 & \ldots & 0 & 0 \\ 0 & -I & 0 & \ldots & 0 & 0 \\ 0 & 0 & -I & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & -I & 0 \\ 0 & 0 & 0 & \ldots & 0 & -A_0 \end{pmatrix}$$

and

$$B_1 = \begin{pmatrix} 0 & I & 0 & \ldots & 0 & 0 \\ 0 & 0 & I & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & I \\ -A_r & -A_{r-1} & -A_{r-2} & \ldots & -A_2 & -A_1 \end{pmatrix}.$$

If $A_0 = I$, then the roots of (7.2) are the eigenvalues of B_1.

If A_0 is nonsingular, then the roots of (7.2) are the eigenvalues of B_2, where

$$B_2 = \begin{pmatrix} 0 & I & 0 & \ldots & 0 & 0 \\ 0 & 0 & I & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & I \\ -A_rA_0^{-1} & -A_{r-1}A_0^{-1} & -A_{r-2}A_0^{-1} & \ldots & -A_2A_0^{-1} & -A_1A_0^{-1} \end{pmatrix}.$$
Proof.

\[\lambda \mathbf{B}_0 + \mathbf{B}_1 = \begin{pmatrix} -\lambda \mathbf{I} & \mathbf{I} & 0 & \ldots & 0 & 0 \\ 0 & -\lambda \mathbf{I} & \mathbf{I} & \ldots & 0 & 0 \\ 0 & 0 & -\lambda \mathbf{I} & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & -\lambda \mathbf{I} & \mathbf{I} \\ -\mathbf{A}_r & -\mathbf{A}_{r-1} & -\mathbf{A}_{r-2} & \ldots & -\mathbf{A}_2 & -\mathbf{A}_1 - \lambda \mathbf{A}_0 \end{pmatrix} \]

To the first column add \(\lambda \) times the second column, \(\lambda^2 \) times the third column, \ldots, \(\lambda^{r-1} \) times the last column, we obtain

\[\lambda \mathbf{B}_0 + \mathbf{B}_1 = \begin{pmatrix} 0 & \mathbf{I} & 0 & \ldots & 0 & 0 \\ 0 & -\lambda \mathbf{I} & \mathbf{I} & \ldots & 0 & 0 \\ 0 & 0 & -\lambda \mathbf{I} & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & -\lambda \mathbf{I} & \mathbf{I} \\ -\mathbf{P}(\lambda) & -\mathbf{A}_{r-1} & -\mathbf{A}_{r-2} & \ldots & -\mathbf{A}_2 & -\mathbf{A}_1 - \lambda \mathbf{A}_0 \end{pmatrix} \]

where \(\mathbf{P}(\lambda) = \lambda \mathbf{A}_0 + \lambda^{r-1} \mathbf{A}_1 + \ldots + \lambda \mathbf{A}_{r-1} + \mathbf{A}_r \).

Since

\[\det(\lambda \mathbf{B}_0 + \mathbf{B}_1) = \det \begin{pmatrix} \mathbf{I} & 0 & 0 & \ldots & 0 & 0 \\ -\lambda \mathbf{I} & \mathbf{I} & 0 & \ldots & 0 & 0 \\ 0 & -\lambda \mathbf{I} & \mathbf{I} & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & \mathbf{I} & 0 \\ 0 & 0 & 0 & \ldots & -\lambda \mathbf{I} & \mathbf{I} \end{pmatrix} \]

\[= (-1)^{r-1} \det(-\mathbf{P}(\lambda)) \det \begin{pmatrix} \mathbf{I} & 0 & 0 & \ldots & 0 & 0 \\ -\lambda \mathbf{I} & \mathbf{I} & 0 & \ldots & 0 & 0 \\ 0 & -\lambda \mathbf{I} & \mathbf{I} & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & \mathbf{I} & 0 \\ 0 & 0 & 0 & \ldots & -\lambda \mathbf{I} & \mathbf{I} \end{pmatrix} \]

\[= (-1)^{r-1} \det(-\mathbf{P}(\lambda)) = (-1)^{n+r-1} \det(\lambda \mathbf{A}_0 + \lambda^{r-1} \mathbf{A}_1 + \ldots + \mathbf{A}_r), \]

the roots of (7.2) are the generalized eigenvalues of \(\lambda \mathbf{B}_0 + \mathbf{B}_1 \).

Now if \(\mathbf{A}_0 = \mathbf{I} \), \(-\mathbf{B}_1\) is an identity matrix of order \(r \cdot n \),
and the roots of (7.2) are the eigenvalues of B_1.

If A_o is nonsingular, then A_o^{-1} exists, and (7.2) may be written

$$\det((\lambda^r I + \lambda^{r-1} A_1 A_o^{-1} + \ldots + A_r A_o^{-1})A_o) = 0,$$

or

$$\det(\lambda^r I + \lambda^{r-1} A_1 A_o^{-1} + \ldots + A_r A_o^{-1})\det(A_o) = 0.$$

Since $\det(A_o) \neq 0$, the roots of (7.2) are the roots of

$$(7.4) \quad \det(\lambda^r I + \lambda^{r-1} A_1 A_o^{-1} + \ldots + A_r A_o^{-1}) = 0.$$

From what we have proved above, the roots of (7.4) are the eigenvalues of B_2, where

$$B_2 = \begin{pmatrix}
0 & I & 0 & \ldots & 0 & 0 \\
0 & 0 & I & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 \\
& & & & & \\
& & & & & \\
& & & & & \\
0 & 0 & 0 & \ldots & 0 & 0 \\
-A_r A_o^{-1} & -A_{r-1} A_o^{-1} & -A_{r-2} A_o^{-1} & \ldots & -A_2 A_o^{-1} & -A_1 A_o^{-1}
\end{pmatrix}.$$

Q.E.D.

Let $P(\lambda) = \lambda^r A_o + \lambda^{r-1} A_1 + \ldots + \lambda A_{r-1} + A_r$.

Definition 7.1 The polynomial $P(\lambda)$ is said to be m-linear (m-circular) if the roots of $\det P(\lambda) = 0$ lie on m, but not fewer than m lines (circles).

We shall give a few results on 1-linear and 1-circular polynomials when $r = 1$ and 2.
For the case $r = 1$, we are primarily interested in the case when the roots of $\det P(\lambda) = 0$ are real. One might guess that if A_0 and A_1 are both hermitian, then $\lambda A_0 + A_1$ has real eigenvalues. It is not quite this simple. Some restrictions are needed on A_0 and A_1.

Theorem 7.2 Let H_0 and H_1 be hermitian matrices of order n and H_0 be positive or negative definite, then the roots of $\det(\lambda H_0 - H_1) = 0$ are real [2].

Proof. Let X be a nonzero eigenvector corresponding to the generalized eigenvalue of $\lambda H_0 - H_1$; i.e., $(\lambda H_0 - H_1)X = 0$, or $\lambda H_0 X = H_1 X$. Premultiplying by X^*, we have

\[\lambda(X^* H_0 X) = X^* \lambda H_0 X = X^* H_1 X. \]

Since $X^* H_1 X$ is real, and $X^* H_0 X$ is real and not zero, λ is real. Therefore the roots of $\det(\lambda H_0 - H_1) = 0$ are real.

Theorem 7.3 If H_0 and H_1 are hermitian matrices such that $H_0 H_1 = H_1 H_0$ and $\det(H_0) \neq 0$, then the roots of $\det(\lambda H_0 - H_1) = 0$ are real.

Proof. We shall first prove that $H_0 H_1$ is hermitian if and only if H_0 and H_1 commute. On the one hand, if $(H_0 H_1)^* = H_0 H_1$, then $H_1^* H_0^* = H_1 H_0 = H_0 H_1$. On the other hand, if $H_0 H_1 = H_1 H_0$,
then \((H_0^{-1}H_1)^* = H_1^*H_0 = H_1H_0 = H_0^{-1}H_1\).

Secondly, we note that \(H_1H_0^{-1}\) is hermitian, since \(H_0^{-1}\) is hermitian and \(H_1H_0 = H_1H_0\) implies \(H_1H_0^{-1} = H_0^{-1}H_1\).

Now, the equation \(\det(\lambda H_0 - H_1) = 0\) may be written as \(\det(\lambda I - H_1H_0^{-1})\det(H_0) = 0\). The roots of \(\det(\lambda I - H_1H_0^{-1}) = 0\) are real and so are those of \(\det(\lambda H_0 - H_1) = 0\).

Theorem 7.4 If the generalized eigenvalues of \(\lambda B_0 + B_1\) are real, \((\lambda + a)B_0 - bB_1\) for \(a, b\) complex numbers is 1-linear provided \(b\neq 0\) and \(B_0\) nonsingular.

Proof. The result is immediate if one notes that the roots of \(\det((\lambda + a)I - bB_1B_0^{-1}) = 0\) are of the form \(a + \lambda_jb\), where \(\lambda_j, j=1,2,\ldots,n\), are the generalized eigenvalues of \(\lambda B_0 + B_1\).

We now look at the case \(r = 2\).

Theorem 7.5 If \(A_0 = H_0, A_1 = H_1, A_2 = -I\) and \(H_0\) is positive definite, then the roots of \(\det(\lambda^2 A_0 + \lambda A_1 + A_2) = 0\) are real.
Proof. One notes that

\[-B_0 = \begin{pmatrix} I & 0 \\ 0 & H_0 \end{pmatrix}\]
is positive definite and \(B_1 = \begin{pmatrix} 0 & I \\ I & -H_1 \end{pmatrix}\)
is hermitian. By Theorem 7.2, the roots of \(\det(-B_0 \lambda + B_1) = 0\) or \(\det(B_0 \lambda - B_1) = 0\) are real. Thus the roots of \(\det(\lambda^2 A_0 + \lambda A_1 + A_2) = 0\) are real by Theorem 7.1.

Remark If \(A_2\) is nonsingular and

\[\det(\lambda^2 A_0(-A_2)^{-1} + \lambda A_1(-A_2)^{-1} - I) = 0\]
satisfies the conditions in Theorem 7.5, then all its roots are real.

Theorem 7.6 If \(A_0 = H_0\), \(A_1 = H_1\) and \(A_2 = -H_0\) such that \(\det(H_0) \neq 0\) and \(H_0 H_1 = H_1 H_0\), then the eigenvalues of \(\det(\lambda^2 A_0 + \lambda A_1 + A_2) = 0\) are real.

Proof. The equation \(\det(\lambda^2 A_0 + \lambda A_1 + A_2) = 0\) may be written

\[\det(\lambda^2 I + \lambda H_1 H_0^{-1} - I)\det(H_0) = 0, \text{ since } \det(H_0) \neq 0.\]

By Theorem 7.1, the roots of the last equation are the generalized eigenvalues of \(\lambda B_0 + B_1\), where

\[B_0 = \begin{pmatrix} -I & 0 \\ 0 & -I \end{pmatrix}\] and \(B_1 = \begin{pmatrix} 0 & I \\ I & H_1 H_0^{-1} \end{pmatrix}\). Since \(B_0\) and \(B_1\) are hermitian, \(\det(B_0) \neq 0\) and \(B_0 B_1 = B_1 B_0\), by Theorem 7.3, the roots are real.
Turning to 1-circular polynomials we have the following results:

Theorem 7.7 If U_0 and U_1 are unitary matrices, then the roots of $\det(\lambda U_0 + U_1) = 0$ lie on the unit circle in the complex plane.

Proof. The equation $\det(\lambda U_0 + U_1) = 0$ may be written

$$\det(\lambda I + U_1 U_0^{-1}) \det(U_0) = 0.$$

Since $\det(U_0) \neq 0$ and $U_1 U_0^{-1}$ is unitary, the roots of the above equation are on the unit circle and so are those of $\det(\lambda U_0 + U_1) = 0$.

Theorem 7.8 If $A_0 = U_0$, $A_1 = 0$ and $A_2 = U_1$, then the eigenvalues of $\det(\lambda^2 A_0 + \lambda A_1 + A_2) = 0$ lie on the unit circle in the complex plane.

Proof. Since $B_0 = \begin{pmatrix} -I & 0 \\ 0 & -U_0 \end{pmatrix}$ and $B_1 = \begin{pmatrix} 0 & I \\ -U_1 & 0 \end{pmatrix}$ are unitary, by Theorems 7.1 and 7.7 the eigenvalues of $\det(\lambda^2 A_0 + \lambda A_1 + A_2) = 0$ are on the unit circle.
Theorem 7.9 If the generalized eigenvalues of $\lambda B_0 + B_1$ are on the unit circle, $(\lambda + a)B_0 - B_1$ is 1-circular, where $a = r + si$ is a complex number and b is a nonzero real number.

Proof. Since the roots of $\det((\lambda + a)I - bB_1B_0^{-1}) = 0$ are of the form $a + b\lambda_j$, where λ_j, $j = 1, 2, \ldots, n$, are the generalized eigenvalues of $\lambda B_0 + B_1$, they are on a circle with center at (r, s) and radius b; i.e., $(\lambda + a)B_0 - bB_1$ is 1-circular.
BIBLIOGRAPHY

