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ABSTRACT

Using the concept of dominant strategies, a method for
reducing the strafegy spaces of a game is developed.  These
results are used to reduce some infinite games Qf the Colonel
Blotto type tq finite matrix games-which ére then solved by the

Snow-Shapley theorem.
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CHAPTER 1

INTRODUCTION

1.1 Definition of a Game:

" A two-person, zero-sum game is defined by a triplet
G = (X,Y,f) .Where X and Y are measurable spaces and f 1is
a bounded, re;l valued measurable function defined on X X Y .
Associated with the spaces X, and Y are two fémilies of sets
S and T where S is a o-field in X and T is a o-field in -
in Y. The setsin S (or T ) are the ﬁeasurable'subsets
of X (or Y ) where it is assumed that the individual elements
of X (or Y ) belong to S (or T ) . In~tﬁis paper we will
consider only Zero-sum games, that is gameé wiﬁhutwp irreconcilable
opponents in which one participahﬁ.wins what the pthér loses.

The space of strategies for Player I is the set
U=1{y: yis a measure on S and u(X) =1}
The spacé of strategies for Player II is the set
V=1{v:v is a measure on T and v(Y) % 1}

For a particular choice of y e€ U and v € V the payoff to

Player I is

F(u,v) = ” f(x,y)dudv = H £(x,y)dvdu



while the payoff to Player ITI is -F(u,v) . Player I seeks to

maximize the payoff while Pléyer II seeks to minimize'the payoff.

1.2 Min-max Solutions of Games:

If Player I uses the strategy M, € U he is certain to

receive at least inf F(u ,v) in payoff from Player iT .

veV e

Thus

the number Vv = sup inf F(u,v) is the uppér limit to the amount

HelU veV

Player I canxyin with certainty independent of Player II's choice

of strategy.

\
'

IfAPlayer IT uses the strategy Vo € V he is certain

to lose at most sup F(u,v ) in payoff to Player I.
nelu v

 Thus the

number V = inf sup F(u,v) is the lower limit to the amount

veV uel

Player II can restrict his loss with certainty independent of

Player I's choice of strategy.

Definition 1.2.1 = If the relationship'

sup inf F(u, ) = inf sup F(u,v ) =V
ueU veV VeV el

is valid then v 1is calied the value of the game.

Definition 1.2.2 A pair of strategies u* ¢ U and

optimal if and only if F(u,v*) < F(u*,v*) < F(u*,v)

MeU and v e V.,

v¥ ¢ V are

for all



Definition 1.2.3 Let v Dbe the value of the game, and let

€ > o be given. A pair of strategies u* € U and v¥ eV are

e-optimal if and only if

F(u*,v) > v-¢ forall velV
and |

F(u,v¥) < v + ¢ for all p'e U .
It can be shown that the validity of

sup inf F(u,v) = inf sup F(u,v)
pHeU veV : veV uelU

\
N\

guarantees the existence of e-optimal strategies. Furthermore,
. ]
the relationship '

max min F(u,v) = min max F(u,v)
pelU veV. : veV el

is valid if ‘and only if there exist optimal strategies W evu

~ .

and v € V with v = F(u*,v*) .

1.3 Some Classes of Games.

Some types of games frequently considered are as -

follows:
1. Finite Matrix Games.
X = {1,2,-’.,1'1} s Y = {l,-...,m} s S =" 2X’ T = 2Y .
| ' n n
U = {l-l=(ul,-~-:l-kn) € R : Hiz_o :_Z U-i=l}

1



m

m .

£(i,j) =a.. e R, 1 =1{l,...,n} Je (1,...,m},

A = [ay,]

) n m
Flu,v) =% Ty, &a,. v, = pyAv
T il e D

A is called the payoff matrix of the game.
Games on the Unit Square.

X =Y=1[0,11], S=T= Class of Borel sets of [0,1]

\\ . B

=
u
<
1

set of all cumulative distribution functions

on [0,1] .
For p=pu(x) e U and v = v(y) e Vv,

1.1
Pu,v) = [ [ 2(xy)aulx)av(y) .
0 _ S

4 m
Games on Convex Subsets of R X R .

n m

XcR , YcR , X and 'Y closed,“convex .

S

class 6f Borel sets generated by the open sets in

the relative topology on X . -

T = class of Borel sets generated by the open sets in

tﬁe relative topology on Y .
Borel Games.

X and Y -are topological spaces.
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S and T are the classes of Borel sets (generated by

the open sets) of X . .and Y respectively
The games considered in this thesis will be of types

1l and 3 and techniques will be developed to reduce some games

of type 3 to games of type 1.

1.4 Optimal Strategies for Matrix Games.

It.can be shown that for any matrix game the relation
\ ' ‘

max min F(u,v) = min max P(u,v) = v is always valid [%, p.26].
uelU veV veV uel - :

That is, méfrix games always. have optimal strategies. *Fdrthér_
more, the set of optimal strategies for each player is a closed
convex set [3, p.3%]. The matrix games that arise in’ this paper
will be solved by means of the following theorem, due to R.N. Snow

—

and L.S.-ShapleyA[B, p.45]."

Theorem 1.4.1 If uw* and v* are extreme points of the

convex sets U¥ and V¥ of optimal strategies, and if the
value of the game v 1is not zero, then there exists a non-

singular submatrix M ‘of A such that

v .= 1 .
' eM'IéT
* eM"'-L

Moo= =
eM eT

. \)* B M—leT . -
eM—le
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v

where e i1is a vector of the same dimensions as M all of whose .

. - T . .
components are 1 , and e is its transpose.



CHAPTER 2

REDUCTION OF THE GAMES

2.1 Introduction.

It is often possible to simplify a game by reducing
the spacé of\gtrategies of one or both players. | That 1is, if a
game G is defined by the triplet (X,Y,f) the reduced game ot
will be defined by the triplet (@,D,f) where g C X and
D Y are both measurable sets. If the subsets oOv and H are
chosen correctly the value of the game and the optimal'strategies

of the game Gl

will also be the value of the game and optimal
strategies of the game G . In particular, this reduction can
be very useful if X and Y are infinite sets gnd A\ and Q)
are finite subsets because then the Snow-Shapley theorem can be
used to solve the game. It should be noted that this reduction

is a generalization of the concept of .dominant strategies in

finite matrix games, Dresher [2, p.40]. ' o -

2.2 Definition of Dominance.

For a game G flet O\ and 9 be measurable subsets of

X and Y respectively, Define Ug = {p ¢ U : y(@) =1} and



V@:{VGV‘: \)(@):l}.

Definition 2.2.1 Ol is dominant with respect to & iff for

each v € Vg

sup J f(x,d)dv = sup I f(a,d)dv .
xeX ‘© : aco D :

O\ is dominant iff it is dominant with respect to Y .

Definition 2.2.2 @ is dominant with respect to O\ iff for each

MGUQ | «\\

inf J f(a,y)dp = inf f{a,d)du .
yeY “& deD "o

D is dominant iff it is dominant with respect to' X .

2.3 Reduction of Games using Dominance.

Lemma 2.35.1

1. If for each x ¢ X there exists u = By € Uy such
that for all d e®  f(x,d) < Jq fla,d)du (*)  _
then U 1s dominant w.r.t. & . ‘

2. If for each y € Y there exists v ='Vy € V@ such that .
" for all a €@ f(a,y) > J@f(a,d)dv then §) is

dominant w.r.t. O\ .



Proof:
1. From (*) we get for each x ¢ X there exists u e Uy

such that for all v € Vg
[ £(x,a)av SLI £(a,d)dudv
9 ' o\
= £(a,d)dvdy
= Llptesa)ava

< sup f f(a,d)dv
aco D

Clearly since O < X
. :

sup I f(x,d)dv > sup f fla,d)dv .,V -
XeX "D aco "D

Therefore sup f f(x,d)dv = sup”f f(a,d)dv .for all
xeX “D aca "D -

v Ve » which implies Ol is dominant w.r.t. §

2. Similarly & is dominant w.r.t OL

Lemma 2.5.2

sup J f(a,d)dv .
HelUq ‘@D aeq

n

1. For any v e Vy , sup [ [ f(a,d)dvau

inf f fla,d)du .

2. For any u € Uy ', inf f f(a,d)dudv £
: de

velg @ ";

\

Proof: That 'sup I J f(a,d)dvdu < sup

uely ®a*®d ..aeotlgf(a,d? 1is obvious .

The inequality in the other direction is true bé@ause u(q) =1

and points were assumed to be measurable sets.
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Corollary 2.35.1

1. For any v € V, sup I f f(x,y)dvdu = sup f f(x,y)dv .

reU xeX
2. For any LedU , inf JI f(x,y)dudv = inf [ fx,y)dn .
veV IR yey © -
Lemma, 2.3.3
1. Ol is dominant w.r.t J) iff for all v € Vg
sup H £(x,d)dvdy = sup | f £(a,d)dvdy .
uel “°D weln ‘o "D -
2. D is dominant w.r.t. Q iff for all u € Uq
inf [[ f(a,y)anav = inf j [ £(a,a)apav
veVv Yo veVg "D o
Proof': The proof follows immediately from the definition and

Lemma 2.3%.2.

Theorem 2.3.1  If (| is dominant w.r.t. £ and @ is dominant

w.r.t. O then the optimal stratégiés and the_value'oflthe,game

(Obihf) are also optimal strategies and the value of the game

(X,Y,f) .
. * * . . 3
Proof: Let u” ¢ Un and v € Vg Dbe optimal strategies and

v be the value of the reduced game (0,D,f). . - Then by the

preceeding lemma,
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inf sup Ij f(x,y)dvdu < sup I[ f(x,d)dv*du>'
veV el pel - o

= sup I f f(a,d)dv¥du
pelg o' D

I

j I f(a,d)dv*du* ; v
o D

sup inf fr £(x,y)dudy > inf ff f(a,y)au*av
uel veV *° veV “ "o ,

1l

inf L [ £(a,a)au*av
veVg D "o : :

fl

\ | L)f f(a,d)du™av* = v .
0

But by Fubini's Theorem

Jf f(xjy)dvdu = J.J\ f(x)Y)dUdV .
Thus
inf sup JI f(x,y)dudv < v < sup inf JJ f(x,y)dudy .

veV el el veV

Theorem 2.3.2

1. Let Xc R® be a cloSed, bounded convex set with a
finite set of extreme points O . If for <Y the function
f: XxY-R is a convex function of x for each d e , then

QL is dominant w.r.t. D ..

Proof: Let v € Vg , consider the function g(x) ;_ﬁgf(x,d)dv .

Then g 1is a convex function and takes 1ts maximum at an extreme

point of X .



) 120

i.e. sup | f(x,d)dv = maxj f(a, d) for all v e Vy .
xeX Y - aco’

2. Let Y< R" be a closed,‘ bounded set with a finite set
of extreme points EO . If for O € X the function
f : XxY~-R 1is a concave function of y for each a e O,

then & is dominant w.r.t. Ql

2.4 Definition of e-Dominance

" Definition 2. 4 1 (O is e-dominant w.r.t. i) iff for all v e Vg

sup f (x, d)dv < sup I (a,d)dv + €
xeX aeq

Definition 2.4.2 D is e-dominant w.r.t. @ iff for all u e Uy

inf J fla,y)du > inf J (a,d)dp - €
yeX ded "

2.5 Reduction of Games using e-Dominance.

Lemma 2.5.1

?

1. Ol is e-dominant w.r.t. D iff for all v e‘V@

328 ”ﬁ (x, d)dvdu < 528 [ ‘[Df(a,d)dvdu + €

2. ® is e-dominant w.r.t. @ iff for all u ¢ Ua{

i.‘[e'l\f]" JJ f‘(a.,y)dudv. > tz\ffs J J f(a,d)dudv - €

Proof: Follows immediately from Lemma 2.3.2.
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Theorem 2.5.1 If O is e-dominant w.r.t. O and P is e-

dominant w.r.t. Ol then the optimal strategies for the game

(,9,f) are e-optimal for the game (X,Y,f) .

e .

Proof: The proof is the same as the proof in Theorem 2.3.1.

Lemma 2.5.2

1. TLet X c R be a convex bounded set, £ : X = R be a
convex, bounded uniformly continuous function andf X = closure X.
Then we can extend f +to a function F : X - R such that
F/X = £ and, F is a convex function on X .

Proof': !
f(y) if y e X

Let P(y) =¢ 1lim f£(x) if y e X - X
xeX

First we show that F is well defined. Let. {x } and {(x/)

. . . . l : -
be sequences in X with lim X, = lim X, =X };m f(xn) = S ,

lim £(x!) =t with t #S . If we denote the metric in R* by
n

p then for all & > o there~exists an integer .N > o such that
n >N then p(xn,xé) <& . Also, for all € » o there exists

N’ > o such that if n > N’

lf(xn) - Sl < ev and [f£(x)) - %] < € .

If we let ¢ = %JS-tl' then for all & > o there exists x_  and

x) with p(xn,k;) < & but
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|£(x,) - £(x)| > e

This contradicts the fact that f is uniformly continuous;

Hence S =t and F is well defined.

- Now, let x,y e X and, {xn} and {yn} be sequences

in X such that 1lim X, =X, and 1lim Yn =y .

n n

Then if o < a <1

Il

a lim £ix,) + {l - a} lim £(y

aP(x) + (1 - a)F(y) L n? |

”lim-[af(xn) + (1 - a) £(y,)]
n . SR ¥

v

1im flax, + (1 - a)yn)

I

F(ax 4 (1 - a)y)

-~

i.e. F is convex on X and clearly F/X = f Dby definition.

2. Let Y cR" be a convex, bounded set, f : Y ~R be a
concave., bounded, uniformly continuous function 4@nd Y = closure Y.
Then we can extend f  to a function F : Y - R such that

F/Y = f and F is a concave function on Y . -

Lemma 2.5.3

1. Let X < R® be a convex, bounded set such that X has
a finite set of extremelpoints &t ,f: X-R bea convex,

bounded, uniformly continuous function. Then
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sup f(x) = sup lim £(x)

xeX ~ a€ R X-a -
xeX
Proof: The proof follows immédiately from Lemma 2.5.2 and the

‘fact that a convex function on a closed convex set with a finite

number of extreme points takes its maximum at an extreme point.

2. Let YR be a convex, bounded set.such that ¥ has
a finite set of extreme points D , £ : Y - R be.a concave,
bounded, uniformly continuous function. Then
inf £(y) = inf lim f(y) .

yey® de® y-d
yeY

" Theorem 2.5.2

1. Let X c R* be avconvex, bounded set such thét X hasg
a finite set of extreme points O , and let § < Y be a finite
set. If the function f : X XY -R is a boﬁndéd, convex,
uniformly continuous function of x for each d e fH , then for

all € > o there exists a finite set QM =0(e) € X such that o

is e-dominant w.r.t.

Proof: Let p be the metric on .Rn . By Lemma 2.5;2 for each
2e¢lh , dedP and e > o there exists & = 5(a,d,e) > o such
that

lim £(x,d) < f(a,d) + ¢ when a e X and p(a,d) < 6

X=2, .
xeX

Since E) is finite this implies that for a e¢ O fhére exists
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a = a(a,¢) € X such that for all d e P

lim f(x,d) < f(a,d) + ¢
X=-a . - -
xeX

Then for all v € Vp

1im [ £(x,a)av < [ #(a,a)av + ¢
X-a “D D .
xeX

Let Q= {a =a(a,e) : a ed} . But L@f(x,d)dv is a convex

bounded continuous function on X and by Lemma 2.5.3, for all

™,
N

vV € W@ N

sup | f(x,d)dv = sup [Llim f,f(x,d)d\)] < sup J‘ f(a,d)dv + ¢
xeX D ach x-a ' o aco '

xeX j

y

i.e. Ol is dominant w.r.t.

Theorem 2.5.3

1. Let X =
i

oS

Xi where for each 1 , Xi is a bounded,
1

convex set such that closure Xi has a finite number of extreme
points, let ) c Y be a finite set. If the function

£ X X Y - R 4is a bounded, convex, uniformly continuous function
of x in each region Xi for each d € d , then for all e > o

there exists a finite set Ou ¢ X such that O is e-dominant

w.r.t.

Proof': From Theorem 2.5.2, in each region Xi there exists a

finite set @ ; such that O ; is e-dominant w.r.t ® in X, .



i.e. for all v e Vo

sup I (x,d)dv < sup J‘ (a,d)dv + ¢
XeX . . aeozl .

Letting = U o, we get
121 )

e

.

sup j £(x,d)dv < sup f f(a,d)dv + ¢ .

-XeX ae (y(

17.



CHAPTER >

ATTACK AND DEFENSE PROBLEMS

3.1 Introduction

In this Chapter, the results of Chapter 2 are used to
reduce some infinite games to finite matrix games. The solutions
of these matrix games -are then found with the use of the Snow-
Shapley theorém. The games considered are all of the Colonel
Blotto type and hence the terminology of attack and defense

problems is used throughout this Chapter.

In each model, n cities are to be defended by D
units and attacked by A units. The outcome of a battle at one
city does not affect the outcome of a battle aﬁ another city.

The attacking player seeks to distribute his forces‘among the

n bities so as to maximize the expected payoff, while the
defending player seeks to distribute his forces among the n
cities so as_to minimize the expected loss. Fach game is defined

by its sets X and Y of pure strategies and its payoff function

f where
X = [x,='(xl,x2,...,xn) DXy >0, BoX o= A}
: : i=1
.
Y={y=(yl,y2,-.-,yn) : in_O, B2 Yn'-“-D}
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. |
f(x,y) = j_EJl fi(xi’yi) and
£.(x,,y;) is the payoff at city i if the attacking

force consists of Xi units.

The methods will be applied to two types of models: first, models
with a continuous payoff whose solutions have been obtained before
by other methods; secondly, to some games with discontinuous

payoffs, previously unsolved.

N
\,

\

3.2 A Model of 2 Cities with a Continuous, Convex Payoff Function

The first game considered is defined by

< x.i 1}

X = {(x,1-x)] o

it

Y= {((y,1-y)] o<y < 1)

q

£(x,y) = £1(x,y) + £5(1-x,1-y) where

N

: : A (x-y) if x> vy
. 1 Z
fl(ng)' {

o] if x<vy

Xé(l-x_—(l-y)) if 1-x > 1-y

i

f2(l-x,l—y)
- , o] if 1-x < 1-y

Adding fl and f2' we get

‘{xl(x-y) if x>y

f(x>Y) = :
, 12(y-x) if x<vy
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Graph of f(x,y) for fixed Yy :

k2y

From the graph it is clear that for each y in [o,1], f{(x,y)
is a convex function of x . Therefore, by Theorem 2.35.2 the
set of extreme points of X , Ol = {(o;l),(l,o)} , is dominant.
But f(o,y) ;\xgy and f(l,y) = xl(l—y) are both linear
functions of y . By T heorem 2.3%.2 the set of extreme points
of Y, $=1{(o,1),(1,0)} , is dominant with respect to Ol .
Using Theorem 2.5.1, we have reduced our fnfinite game - to the
game with matrix |

f(o,0) f(o,1) 0 Xe' -

B = , =
£(1,0) f£(1,1) ) XlA -0

The Snow-Shapley theorem gives us the value of the game as

Ay A

The optimal strategy for_the attacking player is

A : A _
' 1 2 . o
o = (X O VY ) where he attacks only city 2 with prob-
172 172

R

‘ability K~1%_ and attacks only city 1 with probability
B R~

M

— The optimal strategy for the defending player is
1772 ‘ ' ‘ S
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A A ' ‘ ST _ '
* 2 . 1 . o
B¥ = (x = T ) where he defends only city 2 with probab-
1'%2 172 :

' X2l , A
ility KIIIE and defends iny city 1 with probability TI:TE-
3.3 A Model of n—Cities with a Continuous, Convex Payoff.

This game is defined by
. | ‘n
X = {x = (xl,...,xn)lxi >0, T x5 =A)}
i=1
‘ ‘ n
Y2 {y = (yy.-5¥)]y; 205 T y; =D}
i=1
n
£{x,y) = i§ fi(xiﬂyi) with fi(xi’yi? = ximax(oﬁxi-yi)

and A> D .

It is apparent that f(x,y) is a convex function in

x for each y e Y . Therefore by Theorem 2.35.2 the set of
extreme.points of X , Ol= {a; = (ail,aig,.;,,ain)laij = o0 if
i 4] ay5 = A if i=J ,1i=1,...,n} is dominant. But

f(ai,y) = xi(A—yi) is a linear function of y for each a; €

Therefore by Theorem 2.3.2, the set of extreme points of Y ,._
Y]d. . = o if i‘;éj“,'

d... =D if i=j ,1i=1,...,n},
is dominant with respect to Q.

We have reduced our infinite game to the game with matrix
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A (A-D) A;A - A A A
AoA  A,(A-D) AA - A A
B = [£(a;,d,)] =
Ay A
A - o A A A, (A-D)

- =

This matrix game is equivalent to the game solved in Dresher [2,

p. 541. If we assume that Ay > Ay >e-e> A, >0 an@ let

A-D .
—~—— +then
. A e

!
e
}I_IJM 23
g
]
!
o]
]}

a¥ = (al, .,an) where
o, = X_j;,_ for i < t
l - iAA‘E — 2
= 0 for i > ¢

(3) The value of the game is

P

V=£A:R =max%l—)-
t k<n k
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3.4 A Model of 2-Cities with a Payoff with Large Discontinuities.

The remaining-models considered in this chapter are in -
some ways similar to the game solved by Cooper and Restrepo [1].
Howevey, because ofvthe large discontinuities in the payoff;.the
optimal strategies and the value df the game considered here are
very sensitive to changes in the relative sizes of the attacking
force A and the defending force D . The 2-city model was
solved for the cases where gA‘i D < 2A and where %A < D¢« gA

in which the infinite games c¢ould be reduced to finite matrix

games. The\g—city model was only solved for the case where
(22'1)A.§ D<nA. Because of the large discontinuities in the

payoff, we were unable to find finite dominant subsets for the
other models. However, it is felt that similar techniques can

be used to extend the results obtained.
The 2-city model is defined by
X = {(X,A-X) :x e [o,A]}
Y= {(y,D-y) : ye :[o,D]}

f(x,y) = fl(x,y) + fe('A-X,D—y) where

il

Y if x> vy.
fl(ny) . "
‘ -hx if x < ¥y
N ~if A-x > D-y.

fg(A-’X,D—y) = 2 )
‘ -h(A-x) if A-x < D-y

with Xl > kg
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If o < A< D<K 2A we get
Xi-h(A—x) if x> ¥y

£(x,y) = {i, - hx if x < A-D+y

~hA if A-D4+y < x < v¥y

~ Case 1: 3/2 A<D< 2A

It will be shown that in this case the infinite game

can be reduced to the finite game with payoff matrix:

-hA X2

A -hA
corresponding to the dominant sets

ci). {(D-A:A): (A:D"A)}

If

To establish this result, consider

~hA if x < D-A

f(x,D-A) =
kl—h(A-x) if x > D-A _
(1)
.(-hA if x > A-(D-A)
f(X'JA') = ’ .
A ,-hx if x < A-(D-A)

2 Lo

From (1) it is clear that since A-(D-A) < D-A :



(i) for x e [o0,D-A] f£(x,D-A) = f(o,D-A)-
| £(x,A) < £(o,8)

(11) for x e (D-A,A]  £(x,D-A) < £(A,D-A)

f(x,A) = F£(A,A) .

By Lemma 2.3.1, 0 is dominant w.r.t. o).

Now consider:

~hA if y < D-A
f(O)Y) = '
k2 if y > D-A
(2) |
h - (-hA if y > A
f(AJy)=
Xl if yy < A .

From (2) it is clear that

f(o,D-A)

v

(i) for y e [o,Al] £(o,v)
- £(A,y) > £(A,D-A) _

(ii) for y e [A,D] f(o,y? > f(o,A)
£(A,y) > £(A,A)

By Lemma 2.3.1, OU. is dominant w.r.t. b

Therefore, we need only consider the game with matrix

£(o,D-A) f£(o0,A) ~hA .

il

B =
|f(A,D-A) f£(A,A) Ay -hA s

for which



Then, by the Snow-Shapley theorem,

(1) The value of the game is
2
\Ay - (hA)

Vv =
xl + kg + 2hA

(2) The optimal strategy for the attacking piayer is

* 1
(07 = ()\l -+ hA, )\2 -+ h.A.) )\l_*_m

\
N
\

(3) The optimal strategy for the defending .player is

1

A +x2+2hA

g¥* = (A, + DA, X
1

1 + hA) -

Case 2: L4/2A < D < 3/2A

~

It will be shown that in this case the infinite game can

be reduced to the finite game with payoff matrix

r ’ )
-hA RS M
xl-h[A-(D-A)+] ~hA A,-h(D-4)* ' -
A\ -h(D-8)"  -hA A o-h[A-(D-4)7]
M M -ha n
: g

corresponding to the €-dominant séts..
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L= {(0,4),((D-A)",Aa-(D-A)"), (A'\-(D-A'v)f,‘(li—A")'““)",'_.(A,'o)}f',A
D= {(D—A,A),(A—(D—A),Q(DfA)'),(A,D—_A)1 ; |

where (D-A)T = (D-A) + &6 for small & > o .

To establish dominance we consider now. the payoffs -

fbr strategiés in the sets Ol and 9 .

Consider first

~-hA if x < D-A
f(x,D-A) =
o xl-h(A—x) if x> D-A
“\\ - .
A y-hx if x < A-2(D-A)
(1) f£(x,A-(D-A) ={-hA if A-2(D-A) < x.< A-(D-A)
Ay ~h(A-x) x > A-(D-A) - |
A-hx if x < A-(D-A) "
f(X,A) =
' -hA ~ if x > A-(D-A)

Graph of f(x,D-A)
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Graph of f(x,A-(D-A))

A-(D-E) A

S S
b

‘ DA
A-2(D-A) A-(D-A) _
: ~hA
Let X, = {(x,A-x)]o & x < D-A}
X, = {(X;A—X)ID-A < x < A-(D;A)} i
Xy = [(x,A-x)|A-(D-8) < x < A}
Then X = Xl U X2'UvX3 .and:
(1) x e [0,D-A] )
f(x,D-A) < f£(o,D-A)
f(x,A-(D-A)) < £(0,A-(D-A)) X

£(x,A) < f(o,A) .

That is, in the region X, , R, = {(0,A)} is dominant

w.r.t.ﬁ)
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(ii) PFor x € (D-A,A-(D-A)), f(x,D-A), £(x,A-(D-A)) and
f(x.A) are all linear functions. By Theorem 2.5.2,
for e > o there exists 6 > o such that if
(D-A)" = (D-A) + & then the set

+ + + + .
a, = {((D-A)",A-(D-A)7), ((A-(D-A)7,(D-A)7)} is

e-dominant w.r.t. 9 in the region X, .
(iii) PFor x ¢ [A-(D-A),A]
f(x,D-A) < £(A,D-A)
f(x,A-(D-A)) < £(A,A-(D-A)) .

£(x,A) = F(A,A)

By Lemma 2.3.1, Q 3 = {(A,0)} 4is dominant w.r.t. D

[
45 .

in the region X3 .

Using Theorem 2.5.3, we see that Ol =01l UO).Q U013 is

e-dominant w.r.t. 3) .

Now consider:

-hA if y < D-A
f(o,y) =
- o if y > D-A
A -h(A-(D-A)%) if y < (D-A)T :
£((D-A)%,y) ={-ha it (D-A)T < ¥ < 2(D-A)
xz-h(D-A)"“ ~if y > 2(D-A)
(2) A;-h(D-A)* . if y < A-(D-A)Y
f(A-(D-A)Y,y) = {-ha if A-(D-A)T <y < A-B

Xz-h(A-(D-A)+) if ¥y > A-b



Xl if y <A
f(A,Y) = .
-hA if y> A

Graph of f(o,y)

A
|
|
A-(D-A) SR
: f — )y ' ’
L D-A 2(D-A) .P
+
Graph of f£((D-A)",y)
{
|
[
A.-h(D-A)T l
kl—h(A-(D—A)+) 2 )
A-(D-A) l
DA ‘ ThEy & ;D ’
|
Graph of f(A-(D-A)+ey)
1
!
x
l
A -h(D-a)"
- Ap-h(A-(D-2)%)
A-(D-3) . —
D-A 2(D-A) A D
|
Graph of f(A,y)
|
|
A !
|
|
A-(D-A) I
DEE ‘ S(D2A) K D
) “hA
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From (2) and the graphs we see that
(1) For y € [o0,D-A]

£(o,y) f(o,D-A)

f

£((D-A)%,y) = £((p-A)*,D-A)

i

£(A-(D-A)T,y)

i

£(A-(D-A)",D-4)

£(A,y) = £(A,D-A)

(ii) For y e (D-A,A)
f(o,¥) = £(0,A-(D-4))
£((D-2)*,y) 3 £((D-A)*,A=(D-A)
£(A-(D-A)T,y) > £(A-(D-A)*,A-(D-A))

£(A,y) = £(A,A-(D-A))

(iii) For y e [A,D] ‘

f(a,y) = £(a,A) for all a ¢ A

Therefore by Lemma 2.3.1, 9 is dominant with respect

to O . The infinite game has been reduced to the game with
matrix i i
f(o,D-A) f(o,A-(D-A)) £(o,A)
5 £((D-A)*,D-4) £((D-A)T,a-(D-4)) r£((D-A)7,A)

£(A-(D-A)¥,D-4) | f(A-(D-A)+,A-(DfA)) f(A-(D-A)*,A)
£(a,D-4)  f(AA-(D-A))  £(a,A)

y



s2.

-ha Ao Ao 1
Xl_h[A_(DfA)+] -hA _xg-h(D-A)+

B = | : |
A -h(D-a)" -nA  A,-h[A-(D-A)"]
A A ~ -hA

1 1

Let 4 =X, +hA , v =1 +hi,a=n[a-(D-a)%] , b =n(a)".

Then letting C = [b.

13 + hA] which has the same optimal strategies

as B,

Accdrding to the Snow-Shapley theorem it is sufficient to consider
for the determination of the optimal strategies only square

matrices of dimension less than or equal to 3 . Considering the

matrix

Then

-v(u-b) Ky 1(u-b) ﬂ
z
Mv{k-b)Hiv(v-a)

M % v(u-b)  =pv u(v-a)

v(v-2a) uv - -p(v-a)

- ~

From the Snow-Shapley theorem

_ Bv(e-b) + uv(v-a)
_— ,

v
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where p = u(u~b) + uv + v(v-a) .

a* = (v(v-3), wv, 0, u(u-b)) - I
(1(p=b) + v - v(u-b) ]
5* = |u(v-a) + v(pu=b) - uv . .15.
Lv(v-a.) + uv - u(v-a)A
Then
a*C = (v,v,v)
[ v ]
* v
® =1, + (p-v)[(p-b)(z-b) = (p-a)(v-a)]
v ok
* J 4

But H-v = Ap=A; £ O sinc'e. A2 Ay s
(u-b)(v-b) - (u-a)(v-a) = (r,~h(D-A)*+hA)(r1-n(D-a) +nA)
- (k2+h(D-A)+)(ki+h(D-A)+) > 0
since -h(D-A)* + bA > h(D-A)T if D < ZA .

That 1is, . .

(1) The value of the game with matrix B is

_ pv(p+v - (a+b)) hA
p

v

(2) The e¢-optimal strategy for the attacking player is o,

(3) The e-optimal strategy for the defending player is B*.



Case 3: 5/4A < D < 4/3A

In this case we were unable to find finite dominaht
subsets, “Based on Case 1 and 2, the intuitive most likely sets

are

O = {(0,A), ((D-A)F, A-(D-A)"), (a-2(D-A)*", 2(D-a)T),

(2(D-A)F, A-2(D-A)T), (A-(D-2)T, (D-2)™)}

D= {(0,D), (D-A,A), (2-(D-A),A-2(D-A)), (A-2(D-A),2(D-4)),

(ADD--A:)) .(DJO)} | .

A
\

We note that the first components of points in G and D

partition the intervals [0,A] and [o0,D] into subintervals.
However, either for some d e ® , f(x,d) is not convex on a
subinterval of [o0,A] or for some a € @ , f(a,y) is not concave

on a subinterval of [0,D] . Therefore the results of Chapter 2

do not apply for the choice of Q. and & . -

3.5 A Model of n-Cities with a Payoff with Large Discontinuities.

This game is a generalization of the game considered in

Section 3.4.  .The game is defined by

A}

=

-
>
]

X = {x = (xl,xgg...,xn)

A
s s
—

i

v

O o}

. >
.
[

Y = {y = (y5¥p50 50 vy 2 D}

-
L
Il

n
f(x,y) = ‘El fi(xi,yi) where
. i= .
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A if x5 > ¥y

£ (x. y.) ={1 .
ivticdi . :
: ~hx;  if 0 xg g_yi and

klz_)\e_)_"'?_)\nc

The only model considered here is the case where

(2%;1)A <D< nA. It will be shown that optimal strategies for
this game can be obtained by finding optimal strategies for the

reduced game (0,D,f) where
0= {(A,0,...,0)5(0,A,05.0250)5...,(0,...,0,A)} = {aog...,an}

D= {(q-\(n-l)A,A,...,_A),..,,(A,...,A,D-(n-l)A)’} = {dl,...,dn} .

To prove this iet

X, = {x e X | x; < D=(n-1)A , for all i}

.

X; = {x e X | x; > D-(n-1)A > x; for all J A1} .

, n _
Then X =X_ Uy X, since if x, > D-(n-1)A -then x. > ZA .-~
0 4.9 1 i _ i

But 1. For x e X, , f(x,d) = -hA for all d e 9 .
2. For xe'X; , £(x,d;) = -pA if J A1
(x4, ) h o x
f(x,d.) =% -h T x,
-t e jo1 Y
JAL
i.e. for all x e X , £(x,d) < £(a;,4)  for all

ded.

By Lemma 2.3.1 QU is dominant w.r.t. D .



N
(O)

For the proof that D is dominant w.r.t. OU see Cooper and

Restrepo [1, Lemma 2.1].

Now let Wi = hA -+ xi and

Then f(ai,d.) = -hA + Pij and the finite game (A,9,f) has the

J

same optimal strategies as the matrix game with payoff Pj_'j

See Karlin [3, p.28].

1. The value of the game is

n
v =-hA + [ % %; 17t
. i=1 i

2. The optimal strategy for the attacking playef is

| g o]

' : 1 1 ,-1
a = (a s e el ) with Q. == = { ¥ _____‘}
’ : SR S 6 -

3. The'optimal strategy for the defending piayer is

1.-1
ik

* . 1 n
B = (51,...,Bn) with Bi = {
A - i

i i



CHAPTER 4

SOME -MATRIX GAMES

4.1 Introduction

As stated previously the 2¥city game model éonsidered
in Section 3“3 could only be solved for two particular cases.
If we considef their'dominant sets, we note that for a ﬁoint in
a dominant set, one component is always an integial multiple bf
D-A . For this reason we are led to consider the same game

model but formulated as a discrete game with

X

S

{(x,A-x) : x an integer, o < x < A}
Y = {(y,D-y) : 'y an integer, o <y < D}, D = A+l.

By definitions of X and Y , all'these games_aré
finite matrix games. As may be expected the size of the payoff
matrix for this model increased as A increased and'therefore the
game was only solved for A < 8, D <9. The computafion o}

. the payoff matrix is straight forward. In each case, by choice
of suitable notation and by means of standard domina@ée arguments
the resulting games can'be.reduced to one of the games considered

below.

©



4 2 Matrix Games from the Discrete 2-City Model

In the following games, Vv will be the value of the
game, o will be the optimal mixed strategy for Player I, and
5* will be the optimal mixed strategy for Player II. All the

games were solved by using the Snow-Shapley theorem.

Game No. 1:

M= M,V > 0 .
v .0

Thig game has already been solved in Section 3.2.

NEAY
Mialivery

* 1
o = (vou) 55y
* 1
" = (H:V> o~

Game No. 2:

o) 5 a < M

0 <b<wv

This game has been solved in Section 3.4.

Let d = uv(-a) + uv(v-b)
p = p(H-a) + uv + w(v-b) , then
V=d/p

* -

a” = (v(v-b),uv,u(u-a))l/p
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g = (-v(u-a) + uv + u(Ufa>>V(U‘é) - U; + U(V‘b)>

v(v-b) + uv‘é u(V—b))l/P

Game No. 3
o TR M
i v-d ol u-a  u-a o L a,c <y
- v-b v=b o) H-c 0 <b,d <wv
v v v o | ”
v(p-a)luev-(se)] wv(v-d) mv(uea)  w(uea)(u-c)
v(u-a)(u4v-b-c) - -pv(u+v-b-c) wmv(v-4d) , u(u-c)(&—d)
v(u=-c)(v-d)
dM-l___ _
V(u-c)(v-3a) v (p=-c) —py(dt+v=-a=-d) u(v-b)(L+v-a-d)
-~ =u(u-c)(v-4)
v(v-b)(v-d) v (v-b) pv(u-a) ~u(v=b)(H+v-a-a)

where d = uv[(u-a)(u-c).+ (n=-a)(v-b) +-(v—b)($—d)] .
Let o = u(p-a)(u-c) + uv(u-a) + uv(v-b) + v(v-b)(v-a) ,

€ = (]__,l,l,l)T

Then v = &/p

a” = (v(v=b)}(v-a), uv(v-b) uv(u-a),k(u-a)(u-c))1/p

B* = dM'le/p
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Game No. 4:

v=-1 O of-a u~a P-a o < a,c,e < n

M= |v-d v-d 0 u-c  pu-C
0 < b,d,f <wv

v-b v-b v-b o  pM-e

V v v v o)
L J
The inverse matrix of M was calculated, but both M"l
and B* were too complicated to include here. However, if we
let .
! \
d = pwl(p-a)(u-c)(p-e)+(u-a)(u-c)(v-b)+(u-a)(v-b)(v-d)

+ (v=b)(v-a)(v=-£)]

©
1l

b (ma) (1=c ) (e ) 4w ] (1=8) (mc )+ (1m8) (vob ) +(v=b) (v-a) ]
| - v(v-b) (v-d) (v-£)

then v = d/p

a® = (v(v-b)(v-a)(v-£),uv(v-b)(v-ad),nv(p-a)(v-b),

pv(d-a)(u-c),u(u-a)(u-c)(u-e)) .

L,% A Method of Inverting Matrices.

When using the Snow-Shapley theorem to solve a game with
payoff matrix M , the inverse of square submatrices of M must be
computed. The strategies given by the theorem for a particular

submatrix must then be checked to see if they are optimal. Irf
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they are not optimal, the submatrix is discarded and the process
is repeated. The following method was found to be a convenient

way for finding.the inverse of a matrix.

Let M be a square matrix, I be the unit matrix of
the same dimension as M . Cpnéider the tabloid IjM|I .
First webapply row operations to the tabloid IIM yielding the
tabloid, say BICJI . Then we apply column operations to clz
resulting in the tabloid BIDIE . We apply row aﬁd column
operations until the matrix D 1is in such a form that its
inverse can q?sily be found by the standard techniques. Buﬁ
-1 1

then D = BME which implies M~ = ED™'B .



Lo,

REFERENCES

[1] J. N. Cooper and R. A. Restrepo, "Some Problems of Attack

and Defense', SIAM Review, Vol. 9, No. 4, (October

1967), pp. H80-691.

[2] M. Dresher, Games of Strategy: Theory and Applications,

Prentice-Hall, Englewood Cliffs, New Jersey, 1961.

[3] S. Karlin, Mathematical Models in the Theory of Games,

Programming and Economics, Addison-Wesley, Reading,

Massachusetts, 1959.

~



