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ABSTRACT

Volterra Integral Equations of the second kind occur in many
problems in Physics and Engineering. Here we study the conditions for and
behaviour of positive solutions of these equations. Examples have been

given to point out some of the difficulties that occur in the:theory}
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. solution for a differential equation as given in [5], have been

INTRODUCTION

In this paper we will consider a Volterra equation of the second

kind,

. y ‘
u(x) = £(x) + j R(x,t)u(t)dt . ‘ (0.1).
o .

where K(x,t) is a VOLTERRA TYPE KERNEL that is, - ’ \\

K(x,t) = 0 for t> x .

~In the first part we will be concerned with comparisdn and approximation

theorems. Some compairson theorems have been given in [1] and [7]. Here

we apply stronger conditions to f(x) and  K(x,t) and obtain a proper i
. . | |

inequality between solutions. - Their ideas,'as'well as that of an approximate

combined to

[T

give a theorem relating approximate solutions to that of (0.1) .

. . . . . ' L
Some discussion on monotone solutions has been given. |Even though

the conditions for such solutions are very strong, examples have been given

to show that weaker conditions may work.

On the question of.upper bounds most of the material has been
taken from [1], [3], [5] and [6] . A discussion is given in the first
section.

In the last section we deal with conditions for positive solutions

of (0.1) when K(x,t) < 0 . In this case the equation then considered i

\



X .
ulx) = f(x) - f K(x,t)u(t)dt
o v

where K(x,t) > 0 . A study of the asymptotic behaviour of positive solutions

of this equation is given .




CHAPTER 1
BOUNDS AND MONOTONE SOLUTIONS

For completeness we state here the principal results we need for

Volterra equations. Let

and K(x,t) be a VOLTERRA TYPE kernel defined on I X I .
Define Kl(x,t) = K(x,t) and for n > 2

X

Kn(x,t) = j ‘K<x,$)Kn_l(s,t)ds .

t

By the resolvent kérnel of K(x,t) we mean the function H(x,t). given by

_Z Kn(x,t) . This series converges uniformly on
k=1 '

I x I, provided K is continuous

the series H(x,t) =

We quote . here without.proof the following theorem. ..\\

Let f(x) be continuous on I and K(x,t) be a VOLTERRA TYPE \

. _ ‘ 1
kernel continuous on' I x § . Then there is a unique solution to the equation

L
.
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. X :
ulx) = £(x) + J K(x,t)u(t)dt
o

x v
given by ' u(x) = f(x) + f H(x,t)f(t)dt : (0.2)
. (I

qu the proof of this theorem see [2] or [4]
We begin this section with a simple but'very'important lemma.

Unless otherwise stated we will assume that f ¢ C(I) and

K(x,t) ¢ C(I x S) .

[

Lemma 1.1 If K(x,t) > 0 and f(x) > 0 then wu(x) > £(x) > 0 ..
Proof If K(x,t) > O then the resolvent kernel H(x,t) > O and hence
it follows from (0.2) that wu(x) > f£(x) > 0 .

~ Corollary 1.1 If K(x;t) >0 and £(x) > 0 then wu(x) > f(x) > 0 .

A % » .
" Proof Now u(x) = f(x) + J K(x,t)u(t)dt and hence from lemma 1.1
o

u(x) > 0 ana so u(x) » f(x) >0 .

We now give some results on monotone solutions. The first théorem
gives conditions on both f(x) and K(x,t) . However;'it will be seen that
these conditions c;ﬁ be relaxed. Even though we have not been éble to prove
theorems with 'soft' conditions on K , the point is made in-examples 1.1

and 1.2 .



THEOREM 1.1 If f(x) > O and monotonic increasing and K(x,t) >0
o . ' : o (
and monotonic increasing in x, then u(x) is monotonic increasing .

[T

Proof: Let x > s

X

then u(x) - u(s)

f(x) - £(s) + J

_ s .
K(x,t)u(t)dt —'j K(s,t)u(t)dt
(o] [e]

jv

s % .
f (K(x,t) - K(s,t))u(t)dt + j K(x,t)u(t)dt .
(o] S :

but from lemma 1.1 . u(x) > 0 and so u(x) - u(s) >0 .

(

X

K(x,t) > O in the above theorem then u(x) is strictly monotonic increasing N

Corollary If we replace f(x) > 0 by f£f(x) > 0 and K(x,t) > O by

|

" Proof: From Corollary 1.1 u(x) > O and so from '_ . ’

s X .
u(x) - u(s) = £(x) =" f(s) + f [K(x,t) = K(s,t)Ju(t)dt + J K(x,t)u(t)dt
) s

’
[

we have ' ' . !

;u(x) - u(s) > f(x) - f(s)

>0 . N

i.e ulx) > u(s)

As we can see from Theorem 1.1 the condition that K(x,t) is monotonic

increasing in x 1is quite strong. However, the theorem is not true for



arbitrary K(x,t) > 0 (see example 1.2). On.the other hand in some cases
(see'example 1.1) we can.still_obtain monotonic increasing solutions when
K(x,t) - is monotonic decreasing in x . It should be noted that for this:

to be true it appears that K(x,t) should not decrease too fast .

Before we give the example we quote a lemma due to TRICOMI .

A(x)
A(t)

Lemma 1.2 If  K(x,t) = then the solution of (0.1) can be written

X~t

. x A .
as u(x) = f(x) + J e’ K(x,t)f(t)dt .

(o}

For the proof see [2] pages 17-18 .

EXAMPLE 1.1 Consider the case when f£(x) e C'(I) with f(x) > 0 and

) =X

£'(x) > 0 . Take K(x,t) = =5 — a5 in lemma 1.2 .
ST ‘ - A(t) ot .
| o X ox-t —x t '
then u(x) = £(x) + J e’ Te Te f(t)dt _
(¢} . o Rt
‘ x
= f(x) + J f(t)de
o

u'(x) = £'(x) + £(x) .

EXAMPLE 1.2 : g e o

Take Alx) = e ~ - and £(x) =e* ..

From lemma 1.2 S | o ) e . .\\ 
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2 + (1 - n) f e dt
o
<0 for mn>7

THEOREM 1.2 If wu(x) is monotonic increasing with K(x,t) > 0 and

x
, J "K(x,t)dt <1 for all xe I 4if £(x) > O then

f(x)

X -
1- f K(x,t)dt S}

(o]

. X
Proof: u(x) = f(x) + J K(x,t)u(t)dt
o

f(x) < u(x) <

X
< f(x) + ulx) J K(x,t)dt
: (o]

. , : X '
that is’ u(x) (1 - f K(x,t)dt) < £(x)
_ : o ,

C£(x)
1 —1J Kx,t)dt
. Yo ’

or :u(x).i




that wu(x) > f(x) follows from lemma 1.1 .

As seen from above, the conditions for a 'nice' upper bound is

quite strong. In [7]'the case K(x,t) = u(x)k(x-t) was considered and the

following theorem stated.
THEOREM 1.3  If the limit c = lim £(x) exists and K(x,t) = k(x-t) is
absolutely integrable i.e J ]k(t)ldt < @ then the limit of wu(x) given

if and only if f &Ste(e)ae £ 1
_ o |

C
. .9

by (O.l) is %ig u(x) = —
1- J k(t)dt
' o] 4

provided Re(s) > O .

In general the resolvent kernel cannot be easily calculated and
so the need for upper bounds that remain close to the solution is extremely
important. If K(x,t) = g(x)h(t) then as shown in [3]

X

H(x,t) = g(x)h(t) exp( J g(t)h(t)dt).}

t

~In some cases we can write K(x,t) i_Kl(x)Kz(t)<‘and apply GRONWALL'S \3\\

INEQUALITY and obtain
: X ‘ X ' .
u(x) < f(x) + Kl(x)(exp J Kl(s)Kz(s)ds)( f 'Kz(s)f(s)ds) (1.1)

: o o :

For proof see [5] oxr [1] .

4,




This form however as was pointed out in [6] does not say much %bout
the behaviour of wu(x) - at infinity. Sometimes (see example'given below)

it is better to write the upper bound for K(x,t) in the form .

n
K(x,t) < ilei(x)Hi(t) .

If this is done then we can apply the following theorem due to WILLEIT. ' The .

proof is given in [6]

THEOREM 1.4 Suppose that

n X
u(x) < £(x) + Z w, (%) J v, (s)u(s)ds
421 1 . 1

where wivj (i, = 1... n) and v,u are integrable on I . Then u i_ﬁnf(x)
where Ei(i =0, 1 ... n) 1is defined inductively as a composition of 1 + 1
functional operators, that is,

E, = D.D .. DO where

Dof(x) = f(x)

. < % .
Dif = f + (Ei_lwi)(exp L) viEi_lwi)-(‘J; Vifdt) .

The following example was considered in [6] .
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X -t -

Let u(x) < x + f '()\zxe + Lu(t)dt .
o

Here A is a real parameter and the problem is to determine the asymptotic
behaviour of u as X — w, in particular, to prove that u = 0(1)

uniformly for x restricted to compact subintervals of [0, o).

. If we take wl(x> =1 v (x) =1 and wz(x) = x and Vz(x) =v>\2e-_>\x

then the desired'_reSult follows by direct application of theorem 1.4. However

if we apply 1.1 directly i.e take K(x,t) < max(l, A?x)e " or

=\t

K(x,t) < (1 + Azx)max(l, e )

then this does not produce that u must be bounded as A —> .
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CHAPTER 2

.

: COMPARISON AND APPROXIMATION THEOREMS

In this chapter we will be mainly concerned with the equation

X .
ui(x) = fi(x) + Jo Ki(x,t)gi(t)dt‘,‘(l =1,2) . (2.1)
Here we assume that fi(x)4€ LZ(I) -and
Ki(x;t) e Ly(I¥XI) , for i =.1,2

THEOREM 2.1. Let Ki(x;t) be a Volterra type kernel with

e ) < . . csi
III(X’F)! i_Kzgx,t) apd lfl(x)l —'fZ(X> ; Kl(x,;) and fl(x) possl§ly
complex.. If ui(x) is the unique solution of the equation

. . X
ui(x) = fi(x) + JO_Ki(X’t)ui(t)d% ,

then l ul(x) ]iﬁuz(x) . 'In fact,

0y G) = @] > £,G) =[£G

Proof: The proof 'is a éonsequenge of Lemma 1.1. The reader is réferred:'

to [1] for details.

We now consider the case when fl(x) is real-valued.
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THEOREM 2.2. Let Ki(x,t) i=1,2 be a Volterra type kernel such
that KZ(X’F).ZVK1<X’t) >0 . If ﬁz(x) Z_fl(x) with fz(x) > 0 and
ui(x) is the unique solution of (2.1) then u2(x) z_ul(x) . In fact

vuz(x) - ul(x) Z_fz(x) - fl(x)

Proof: Let ~Hi(x,t)' be the reéolvent kernel for (2.1). Then it is -

easily seen that 0 j_Hl(x,t)_i Hz(x,t)'.
u - . X .
u2(x)vf.ul(x) = fz(x) f fl(x) + jo Hz(x,t)fz(t)dt

< .
_jo Hl(x,t)fl(t)dt .

L . X ) .
£,(x) - £,00) + Jo [H,(x,t) - Hl(x,t)lfz(t)dt
% | .
+ Jo Hl(x,§)[f2(t) - f(8)]de
and so UZ(X) ~.ul(x)_i fz(x) - fl(x)
This completes fhe proof.

It should be noﬁed that Theorem 2.2 is applicable when

Theorem 2.1 is not.

THEOREM 2.3. Let f(x) ¢ LZ(I)', K(x,t) > 0 and K(x,t) e L,(IXI)

If u(x) is the Qﬁique solution to (0.1) and v(i) € LZ(I) with
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. ‘ , . |
v(x) < £(x) +'J K(x,t)y(t)dt
o . .

then u(x) > v(x)

X
Proof: Let v(x) = g(x) + j K{x,t)v(t)dt , then _f(x) > g(x)
’ . o . .
W) - v = £G0) - glx) + j K, 6) [u(t) - v(e)lde
O .

and so from Lemma 1.1 u(x) - v(x) >0 , i.e. u(x) > v(x)

o . ' n n ‘
THEOREM 2.4. Let K(x,t) = ) K, (x,t) , F(x) = ) £.(x) with
' i=1 = i=1 :

Ki(x,t)_z 0, fi(é) >0 vand -Ki(x,t) € LZ(IXI) fi(x) € LZ(I) for

i=1,...,n. If ui(x) is the unique solution of .
X _
u (x) = £.(x) + JO K, (x,t)u, (£)de
and u(x) is the unique solution of

; y ‘
ulx) = F(x) + J R(x,t)u(t)dt - |
' 0. : i .

n - ( ' : ' -t
then ] u,(x) < u(x)
i=1 7

‘Proof:' The proof is by induction on n .

Theorem true for n = 1 . St ‘ .
., v n_l ' .
Assume true for n = k-1 . 1i.e. Z ui(x) < v(x) where
. '=l
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k-1 x k-1
v(x) = ) £.(x) +J 7K, (x,t)v(t)dt
. i . i
1?1 .70 i=1
. : k-1 ©orx k-1
u (%) +v(x) = fn(x) + 'Z £, + J ’Z K, e, t)v(t)de
i=1 o i=l
X
+ J K (x,t)u_(£)de
o
since from Lemma-l.l ‘un(x)_i 0 .. From Theorem 2.3 we have o ,

u_ () + V() < u) ,
|
| k-1 | |
i.e. _ un(x) + '2 ui(x)Ai_u(x)
i=1

or

IIM::S_

ui(x) < u(x)

i=1

This completes the. proof.

We shogld note here that even if we deal with distinct
functions in L2 (i.e. fz(x) > fl(x) say) we cannot ,in general obtain

a direct inequality for solutions. If however, the solutions are con-

tihuous then this can be done.

Let us consider the case when f£(x)  and ¥XK(x,t) are continuous.‘

.
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. ) X i

THEOREM 2.5. Let u(x) = f(x) + j _K(x,t)q(t)dt s
F 70 ' ‘

‘ x

v(x) < f(x) + J.

o .

v(x) is continuous then u(x) > v(x) for xe I .

~Proof: u(0) = £(0) > v(0) that- is u(0) > v(0) . Suppose the.theoreq

HIEAN

is false, By continuity of wu(x) and v(x) there exists Xy
that ‘
v(xl) = u(xl)
where - v (%) < u(x). for 0< x <'xl .
*1
Now »u(xl) = f(xl) +-Jo K(xl,t)u(t)dt
i_f(xl) +-J K(xlt)v(t)dt
. o) '
> v(xl)

This contradicts u(xl) = v(xl) Hence the theorem is true.

L 4 . %
COROLLARY 2.1. If w(x) > £(x) + J K(X,t)w(t)dt

X,
u(x) = £(x) +-f K(x,t)u(t)dt
. lo] ’
A,V(x) < f(x) +J K(x,t)v(t)dt
o

where w(x) is continuous, then

"K(x,t)v(t)dt with £(x) >0 and K(x,t) > 0 .

>.0

If

such

|

|

~
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WG > ulx) > v b

COROLLARY 2.2. Let u_ (x). be the unique solutions of
IR i _ .

. ! x N
ui(x) = fi(g)'+ Jo Ki(n,g)ui(t)dt

for i=1,2. ié fi(x) e C(I) and Ki(x,t) €.C(IxI) with -
fl(x) > fz(x) >0, Kl(x,t) g_Kz(x,t) >0 then.~ul(x)‘> uz(x) fo;

x e I . . B i - T ‘
X z
Kz(x?t)ul(t)dg‘

, Pfoof: ul(x) = fl(x)‘+ Jo Klgx,t)ul(p)dtv> fé(x)'+ Jo

»Bence from Theorem 2.4 Qe'haﬁe: ul(x) > uz(x) foﬁ xel.

DEFINITION'ZJI. We say y(x,8) is a G—approximaté solution of (0.1)
) X’ . ' '
. if ]y(x,é) - f(x) eJ K(x,t)y(t)dt] < 8(x) .
o _ o 4 AR
THEOREM 2.6. " Let. G(x,t) , K(x,?) € LZCIXI) “with  G(x,t) > K(x,t) > 0 .

If  v(x) 'is the solution of v(x) = §(x) +»J G(x,t)v(t)dt and u(x)
D S , : o Yo o ,

is the unique solution of (0,1) then Iy(x,S)'- u(x)l i_v(x) .
o X

Proof: - Consider the case when y(x) < §(x) + £(x) + J K(x,tjy(t)dt .
. Since - u(x) is a'édlﬁtioﬁ'of"(o.l) we have '

~.
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¥ X : '
Y00 - ul) < 860 + | KRG O® - u(®)lae
. o -

, S X
Let w(x) = 6(x) + J K{x,t)w(t)dt
. ' o :

~ then from Theorem

that is .

If we take ¥ (%) >

then y(x)_-

aﬁd»so ' u(x} -

Hence from Theorem

therefore we have

2.3 we have

Yo - w0 < W) < Ve ,
y@) - ux) < vE) .
.
-6(x) + £(x) * J R(x,t)y(t)dt
s o

: x
u(x) > -6(x) + J K(x,t)y(t) - u(t)dt
. o .

y

(o]

,Y@):6@)+j‘K@J)h&)-y@Hdt

\2-3 g

/
/

u(x) - y(x) < v(x)

ux) - y(x,.G)I <vx) .

~
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' DEPENDENCE ON INITIAL VALUE h O

In the case of differential eduation of the form y' = f(x,y)
where f is:continuous and y(x,) = y, we know that solutions depend

continuously on the initial value .x With this is mind we can write the

o.
solution of (0.1) as a function of two variables that is, the solution

X

(K(x,t)u(t)dt can be written as wu(x,s) , for x> s

of u(x) = £{x) + J
' . s

The next theorem shows that  u(x,s) is monotone decreasing in the second

!
variable . S o ' v y
‘ |

THEOREM 2.3 Let u(x,sfi be the solution of

, %
u(x,s) = £(x) + J K(x,t)u(t,s)dt _ '
‘ » . s : : . : b

‘where f(x) 3{0 and - K(x,t) > 0 ; then for s; > Sy, u(x,sl) ﬁ{u(x,sz) .

x / .
K(X,t)u(t,sl)dt

Proof: u(x;sl) = £(x) + J
ST s
1

’ X .
< f(x) + J K(x,t)u(t,sl)dt

So

hence from theorem 2.1 we have u(x,sl) f_u(x,sz) .

*
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CHAPTER 3
ASYMPTOTIC BEHAVIOUR

From the above discussion we can see that f£(x) acts as 'boundary

line' depending on whether K(x,t) >0 or K(x,t) <0 .

In the case when f(x) and K(x,t) are continuous: it is impossible

to obtain solutions wu(x) < f(x) when K(x,t) is positive.

The natural questioﬁ therefore arises: are there solutions u(x)
such that O < u(x) f_f(x)?- In the next theorem we give sufficient conditions

for such solutions:.

Instead of considering equation '(0.1) with 1K(x,t) <0 we willlr
consider
X o , o '
u(x) = f(x)»- j lK(x,t)u(t)dt:- ‘ (3.1)
Jo - : L . :
with K(x,t) >0 .

/
/

' £(x) . K(x,t)
£(y)  K(y,t)

THEOREM 3.1  Let £(x) > O and K(x,t) > 0 if for x <y

1
i
|

0<t<x then the solution to (3.1) is such that £(x) > u(x) >0 . : -

. . N o | _
Proof: u(x) = £(x) - J K(x;t)u(t)dt that is- f(x) > u(x) . ' A\
o ) . fo) o PP

It remains to prove that 'u(x) cannot be negative anywhere-on I .
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u(0) = £(0) > 0 .

Suppose the theorem is false. Then by continuity -

there exists x,. > 0 and & > 0 such that

1
‘u(x) >0 Q,<"‘_<_X1'
u(xl) =.O
u(x) < 0 X <x <x §
i.e for - : x1'< x<x +8

we have

- R |
0> ux) > £(x) - j Y Rx, ) ue)de

- £(x,) (%, s
- fx) A 1
o " Tt F) Ty L K(x,t)u(t)dt }
> £ rf(x) - Jxl Rex. . £yale)de }
—f(xl) i & o" . Xl,t u(t 't
§§§)>U<x1>
=0 .
i.e. . ‘ | . | , u(X) 2_0 for 'xl < X_<_x1 + 8

~

contradiction to the fact that u(x) < O in that interval .

4.

Therefore the'theorem is true . -

..

r




i.e. f£(x) >u(x) >0 .

Corollary 3.1 If K(x,t) is monotonic decreasing in x .and - f(x)

montonic increasing, the conditions for the above theorem is satisfied.

Corollary 3.2. If we take the case K(x,t) = k(x - t) 'all we need is

that k(t) be monotonic decreasing .

We now study fhe,asymptotic behaviour of u(x) given certain
conditioné on K(x,t) and £f(x) .

|
{

THEOREM 3.2 If u(x) >0 "is a solution of (3.1) and if o> K(x,t} >0 ,

K(x,t) monotone increasing in .x' and f£(x) monotone increasing and t
. ) . \

l

} :

£(x) < B < d; then %ig u(x) = 0.

Proof:  Suppose that u(x) — O. then there exist a sequence '{xﬁ} sucﬁ

- < . " o . ‘-
that X S ¥ —> " and ' |
u(xn) >a>0 for some o > 0 . ‘

We claim thefe exist B > O such that

u(x) 2_%a - if kn <x<x +8.

'
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Now u(x). - U(Xn) ‘

X ‘ X '
=) - f(x) - j K(x,t)u(t)dt + f " R(x,t)u(t)dt | , B
_ o - . o : ‘ i
. : |
' l Xn . X ’ . X i '
= f(x) = f(xn).+ J K(xn,t)u(t)dt - J'n K(x,t)u(t)dt - J K(x,t)u(t)dt;
[o] s ' . X '

o
: n

X o X S 4
._>_f n K(xr'l,t)u(t)dt - f n K(x,t)u(t)dt - J K(x,t)u(t)dt
o - v o ' X

o
n
> - j K(x,t)ult)dt
n
> ,-B'J K(x,t)dt ¢+ M= _sup u(t) <B < w. j
o Yx : ‘ x <t<x S L
n n— - K
‘ : X .(x' E
i.e. u(x) > u(xn) -i:":B'}J K(x,t)dt > 7 3
. ' - ,
n
X B ' -
provided j n K(x,t)dt _f_%—g .
n
Since we may take |'xn - xn+ll > 1. foryall n>0 and B <.1. _ S
~we have
X o . '
f K{x,t)u(t)dt 3_-—2-A . Z 1 A= dinf K(x,t)
Jo . xn<x-8 ‘ (x,t)eIxI

—> 00 ' as X > 0.

H
.
(1
[«~]
| v
' Fh
Lan)
o]
o~
il

x
u(x) + J K(x,t)ut)dt
. ‘0 ' '
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and so f(x) — o as x> o .
This contradicts the hypothesis tha;‘ f(x) <B< o .

Therefore ﬁ(x) —> 0 as x =+ o0

THEOREM 3.3 Let u(x) be a solution of (3.1). If %ig J K(x,t)dt = 0 \\
: o

X \
with A < o, %ig J K(x,t)dt = C < @ and f(x) < B < with l
. o , '
lim sup £(x) > 0 then '
u(x) —~ 0. ‘ : - i
' i
Proof: Suppose u(x) — 0 then for € > 0 there exist N O such

s—V—

T

A .
that wu(x) < € and j K(x,t)dt < e x> N.
o

and “hence

Cx
f(x) = u(x) + J K(x,t)u(t)dt
o

A X
= u(x) + f K{x,t)u(t)dt + j K(x,t)u(t)dt
Jo

A
‘ A X ,
< u(x) + BJ K(x,t)dt + QJ K(x,t)dt for x> N .
. 0 A
. <€ + Be +eC for x> N .

that is £(x) — 0
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this contra§icts %;g sgp f(x) >0 .

Therefore u(x) -~ 0 .

o

Corollary If we consider the case K(x,t) = k(x - t) gnd J k(t)dt < o
' o

‘then the above theorem is still true .

THEOREM 3.3 If u(x) > 0 is a solution of (3.1) and wu(x) dis monotonic

X .
decreasing with %%g f K(x,t)dt = @ and f(x) 5_B < o then u(x) — 0.
o
X .
Proof: ulx) = f(x) - j K(x,t)u(t)dt
. Yo

x
u(x) + u(x)j K(x,t)dt < f£(x)
. o :

f(x)

u(x) <

x
1+ J K(x,t)dt
)

—> 0 as X —>
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