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Abstract 

The class of sequential spaces and i t s successive smaller 

subclasses, the Frechet spaces and the first-countable spaces, have 

topologies which are completely specified by their convergent 

sequences. Because sequences have many advantages over nets, these 

topological spaces are of interest. Special attention i s paid to 

those properties of first-countable spaces which can or cannot be 

generalized to Frechet or sequential spaces. For example, countable 

compactness and sequential compactness are equivalent in the larger 

class of sequential spaces. On the other hand, a Frechet space 

with unique sequential limits need not be Hausdorff, and there i s 

a product of two Frechet spaces which i s not sequential. Some of 

the more d i f f i c u l t problems are connected with products. The 

topological product of an arbitrary sequential space and a T^ 

(.regular and T^) sequential space X i s sequential i f and only i f 

X is locally countably compact. There are also several results 

which demonstrate the non-productive nature of Frechet spaces. 

The sequential spaces and the Frechet spaces are precisely 

the quotients and continuous pseudo-open images, respectively, of 

either (ordered) metric spaces or (ordered) first-countable spaces. 

These characterizations follow from those of the generalized 

sequential spaces and the generalized Frechet spaces. The notions 
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of convergence subbasis and convergence basis play an important 

role here. Quotient spaces are characterized in terms of conver 

gence subbases, and continuous pseudo-open images in terms of 

convergence bases. The equivalence of hereditarily quotient map 
i 

and continuous pseudo-open maps implies the latter result. 
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Introduction 

A first-countable space i s a topological space whose open 

sets can be described by i t s convergent sequences alone. This i s 

so by either of two properties of first-countable spaces ([16], 

Theorem 2.8) : 

CI) A -set -is -open -if -and-on-l-y- i f -each -sequence-which 

converges to a point in the set i s , i t s e l f , eventually in the set. 

(2) A point l i e s in the closure of a set i f and only 

i f there i s a sequence in the set converging to the point. 

For more general spaces, i t is often assumed that sequences are 

inadequate and that nets or f i l t e r s must be used. There are, 

however, many topological spaces which do not satisfy the f i r s t 

"axiom "of couritabiTity and "yet 'sequences 'suffice' to determine open 

sets. The real line with the integers identified to one point 

i s an example of such a space. 

The topological spaces satisfying (1) are called sequential 

spaces and those satisfying (2), Frechet spaces. Each first-count­

able space, and hence each metric space and each discrete space, 

i s both Frechet and sequential. Moreover, the real line with the 

integers identified is both a Frechet space and a sequential space. 

Consequently, since (2) implies (1) but (1) does not imply (2), 

the concepts of Frechet space and sequential space provide successive 

proper generalizations of first-countable space. In studying 

sequential spaces, one can r e s t r i c t oneself to sequential convergence. 
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Accordingly, since the language of sequences has many advantages 

over that of nets, i t i s of interest to know when a topological 

space i s sequential. 

A result due to Ponomarev characterizes first-countable 

T^-spaces as continuous open images of metric spaces. Analogously, 

S.P. Franklin {8J establishes that the sequential spaces are 

precisely the quotients of either metric spaces or first-countable 

spaces, and Arhangel' ski3C [2] asserts that "among Hausdorff spaces, 

Frechet spaces and only these, are continuous pseudo-open images 

of metric spaces". (The pseudo-open maps form a class between the 

open maps and the quotient maps.) In [22], P.R. Meyer extends 

Arhangel'skii's result by eliminating the Hausdorff 

hypothesis:--^ 

.pseudo-open images of either metric spaces or first-countable 

spaces. In order to obtain this result, he introduces the notions 

of convergence subbasis and convergence basis which, provide the 

foundation for studying topological spaces whose open sets are 

completely specified by any given class of nets. Meyer's general­

ized sequential space methods are used to derive D.C. Kent's [18] 

characterizations of "spaces in which well ordered nets suffice." 

Recently, many mathematicians have researched sequential 

spaces and generalized sequential spaces. The purpose of this 

thesis i s to present the more important of their results in a 

unified theory. The author generalizes a few of these results and 



- ap­

proves numerous statements asserted without proof in the original 

papers. 

Chapter 1 i s an investigation of sequential spaces, their 

properties, their characterization as quotients of metric spaces 

or first-countable spaces, and their relation to other topological 

properties. Their relation to the first-countable spaces i s of 

particular interest. It i s well-known that countable compactness 

and sequential compactness are equivalent in the class of f i r s t -

countable spaces. Franklin asserts their equivalence in the larger 

class of sequential spaces. Franklin proves this result in [8] for 

Hausdorff spaces and in [10] for spaces with unique sequential 

limits. In this thesis, the author provides the proof of the same 

„r,esult ...f,o:r,,,ar.bî  „,T.he,J,.author,valso',.shows 

that any countable product of countably compact sequential spaces i s 

countably compact. There are, however, many properties of f i r s t -

countable spaces which cannot be generalized to sequential spaces. 

For example, the product of two sequential spaces need not be 

sequential. A result due to T.K. Boehme [3] shows that this situa­

tion cannot occur in the presence of suitable compactness conditions. 

In addition, E. Michael [23] has proved that for any T^ sequential 

space X and sequential space Y, the topological product space 

X x Y i s sequential i f and only i f X i s locally countably compact. 
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The second chapter i s concerned with. Frechet spaces, their 

properties, and their relation to sequential spaces. The character­

ization of sequential spaces i s used to prove Arhangel'skii's 

characterization of Hausdorff Frechet spaces. In this section, the 

author proves Arhangel'skix's assertion that the continuous pseudo-

open maps and the hereditarily quotient maps are equivalent. The 

author also provides the proof of a result due to P.W. Harley III I12J 

concerning the product of two Frechet spaces. 

Chapter 3 i s devoted to Meyer's generalized sequential 

space methods and his study of convergence subbases and m-sequential 

spaces. CAn m-sequential space i s a space for which m-nets (I.e., 

nets whose directed-set i s of cardinality <_ m) suffice to determine 

^closed ,,.ssats..,.)̂  

given in terms of convergence subbasis. This result leads to a 

characterization of the m-sequential spaces. The author proves an 

analogous result for continuous pseudo-open images which, leads to 

Meyer's characterization of m-Frechet spaces. 

In the last chapter, the author employs many of the 

properties of convergence subbases to investigate weakly sequential 

spaces and m_ - sequential spaces (i.e., those spaces for which well-

ordered nets and well-ordered m-nets, respectively, are sufficient 

to describe closed sets). These spaces are characterized i n terms of 

ordered topological spaces (i.e., those spaces which have the order 
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topology arising from a total order).. Finally, there i s a brief 

coda which demonstrates that the concepts of first-countable 

space, Frechet space, and sequential space are equivalent i n 

products of ordered spaces. 



N o t a t i o n 

For the most p a r t , the terminology and b a s i c n o t a t i o n 

used i n t h i s t h e s i s f o l l o w s K e l l e y I16J. The exceptions are 

l i s t e d below. 

C D X - A = {x e X : x i A} 

C2) For any t o p o l o g i c a l space X and subset A of X, 

i n t ^ ( A ) denotes the i n t e r i o r of A with, respect to X and c l ^ ( A ) 

i s the c l o s u r e of A w i t h respect to X. When no c o n f u s i o n seems 

p o s s i b l e these w i l l be abbreviated to i n t A and c l A. 

( 3 ) R i s the set of r e a l numbers, Z i s the set of 

i n t e g e r s , Q. i s the set of r a t i o n a l s , and W = { 1 , 2 , 3 , . . . } i s the 

set of n a t u r a l numbers. 

(4) to i s the f i r s t i n f i n i t e o r d i n a l and ft i s the f i r s t 

uncountable o r d i n a l . 

( 5 ) For any o r d i n a l a, a + 1 denotes the set of a l l 

o r d i n a l s which are l e s s than or equal to a; th a t i s , a + 1 i s the 

successor o r d i n a l of a. 

(6) A t o p o l o g i c a l space i s s a i d to be f i r s t - c o u n t a b l e , 

or a f i r s t - c o u n t a b l e space, i f and only i f i t s a t i s f i e s the f i r s t 

axiom of c o u n t a b i l i t y . S i m i l a r l y , a t o p o l o g i c a l space i s second-

countable,, or a second-countable space, i f and only i f i t s a t i s f i e s 

the second axiom of c o u n t a b i l i t y . 



Chapter 1 

Sequential Spaces 

Sequences have numerous advantages over nets. This i s 

so because many properties of sequences f a i l to generalize to 

•nets. For example, a converging sequence and i t s l i m i t i s compact, 

whereas t h i s i s not true f o r nets. Among Hausdorff spaces, each 

convergent sequence ( i . e . , the union of the sequence and i t s l i m i t ) 

s a t i s f i e s the second axiom of c o u n t a b i l i t y and i s therefore 

metrizable. These f a c t s together with other properties of sequences 

not a p p l i c a b l e to nets play a c r i t i c a l r o l e i n the i n v e s t i g a t i o n 

of sequential spaces. 

CJ.8J, 19] and J10]) survey of sequential spaces. There are, 

however, several important r e s u l t s due to Boehme [3] and Michael 

.123] r e l a t e d to t o p o l o g i c a l products. 

--1.1 D e f i n i t i o n Let-X be a t o p o l o g i c a l space. 

(1) A subset U of X i s s e q u e n t i a l l y open i f and only i f 

each sequence i n X converging to a point i n U i s eventually i n U. 

C2) A subset F of X i s s e q u e n t i a l l y closed i f and only i f 

no sequence i n F converges to a point not i n F. 



For any topological space, a subset A i s closed i f and 

only i f no net in A converges to a point not in A CI"! 6] 5 Theorem 2. 

Therefore closed sets are sequentially closed and open sets are 

sequentially open. The converses need not be true. 

1.2 Example There are sequentially open sets which are not open 

and sequentially closed sets which are not closed. 

Proof Consider the ordinal topological space ft + 1 provided with 

the order topology. Let S be a sequence in ft + 1 which i s not 

eventually equal to ft. Then S is frequently in ft and hence there 

i s a subsequence S q of S in ft. But the supremum of S q i s less 

than ft, and therefore S q cannot converge to ft. This implies that 

S cannot converge to ft. Thus a sequence in ft + 1 converges to ft 

i f and only i f i t i s eventually equal to ft. Additionally, a 

sequence in ft can converge only to a member of ft. It follows that 

{ft} i s sequentially open and ft i s sequentially closed in ft + 1. 

But {ft} i s not open and ft i s not closed in ft + 1. 

1.3 Proposition A subset of a topological space is sequentially 

open i f and only i f i t s complement i s sequentially closed. 



.Proof If U i s a sequentially open subset of a topological space 

X and S i s .a sequence in X-U converging to x, then x e X-U. 

This i s so because otherwise S i s eventually in U. Thus X-U 

i s sequentially closed. Conversely, suppose that F i s a sequentially 

closed subset of X and let S q be a sequence in X converging to 

y e X-F. Then S q i s not frequently in F since otherwise there i s 

a subsequence of S q in F converging to y t F. Hence S q i s event­

ually in X-F, and therefore X-F i s sequentially open. 

1.4 Proposition For any topological space X, the collection of a l l 

sequentially open subsets forms a topology for the set X. 

Proof Clearly, 0 and X are sequentially open. If {U : a e A} 

c L 

i s any family of sequentially open subsets of X and S i s a sequence 

in X which converges to x e \J^& - a £ A}, then x e U £ for some 
c e A. Consequently S i s eventually in U^ and therefore i n 

(J {U : a e A}. Hence [J {U : a E A} i s sequentially open. 
3. Si 

Suppose now that U and V are sequentially open, and l e t {y n : n e ui} 

be a sequence in X converging to a point in UflV. Then {y^ : n e w} 
i s eventually in both U and V, and there exists n Q, n^ e OJ with 

{y : h > n } C U and {y : h > n. } C V. So y e U D V for a l l n > y n — o *̂ n — 1 n. — 

sup {n
Q> n^}. Thus UflV i s sequentially open, and the proof i s complete 
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1.5 Definition The set of a l l sequentially op.en subsets of a 

topological space is said to be the sequential closure topology. 

1 ...6 Definition A topological space is sequential, or a sequential 

space, i f and only i f each sequentially open subset i s open. 

.(.In view of (1.3) -and ,(1.5), - i t -is .clear that a -topological - space 

i s sequential i f and only i f each, sequentially closed subset i s 

closed, or equivalently, i f and only i f i t s topology coincides 

with the sequential closure topology.). 

In first-countable spaces, a set i s open i f and only i f 

each sequence converging to a point in the set i s , i t s e l f , event-

'ually iri' the' set "([16] /"Theorem 278) . '"ThereTore"•first-countable 

spaces, and hence metric spaces and discrete spaces, are sequential. 

On the other hand, by virtue of (1.2), the ordinal space n + 1 

provided with the order topology i s not sequential. 

After a few preliminary results, several equivalent 

formulations for the notion of sequential space are given. 

1.7 Definition Let X and Y be topological spaces; and l e t T be 

the topology on X. The space Y divides X i f and only i f no topology 

T a on X which i s s t r i c t l y larger than T leaves every T-continuous 

function from Y into X T-continuous. 
a 



1.8 Proposition Let X and Y be topological spaces, let T be 

the topology on X, and l e t T^ = { B C X : f^Ci) is open in Y for 

each T-continuous function f : Y ——> X}. The space Y divides X 

i f and only i f T = T . 
a 

Proof -Since -inverse-set^functions-preserve -set^operations,-it 

i s clear that T i s a topology on X. Furthermore, T d T and 

every T-continuous function from Y into X i s T-continuous. If 
a 

Y divides X, then T CI T and so T = ' T . Conversely, suppose that 

T^ i s any topology for X which leaves every T-continuous function 

from Y into X'T --continuous. If g : Y -> X i s a T-continuous 
p 

function and B e T , then g ^CB) i s open in Y and hence B E T . 
p ct 

Thus T = T implies that Y divides X'. a 

1.9 Lemma A mapping f of the ordinal space to + 1, provided with 

i t s order topology, into a topological space X i s continuous i f 

and only i f the sequence {f (n) : n e to} converges to f Cw) i n X. 

Proof If f : to + 1 > X i s continuous and U i s any neighbourhood 

of fCw), f ^(U) is a neighbourhood of to in to + 1. Then f .''"GJ) 

contains (m» to] = {n : m < n e to} for some m e to. Therefore 

{f(n) : n E to} i s eventually i n U and hence (f(n) : n E to} converges 



to f ( w ) . Conversely, suppose that V i s an open subset of X. 

If f (w) -t V then f'1 (V) =' {n e w' : f (n) e V} = U {{n} : n e w , 

f(n) e V}, which i s the union of open subsets of to + 1. If 

..f(u)) e V, {f(n) : n e cj} i s eventually in V and consequently there 

exists p e w such that f(n) e V for each ri >̂  p. Therefore 

f *(V) = X p . , J J (n ,.: -p >.,.n...e .to., ...f,(n.) ..e .V.},,.is .-open.„in,.co H-,1. .The 

lemma i s proved. 

1.10 Definition A convergent sequence i s the union of the 

sequence and a l l of i t s limit points. (Let S be a convergent 

sequence in a topological space X , and let S q denote the range 

of S provided with the relative topology. The topology on S i s 

the largest topology in which the natural function f : S > S Q 

defined by f(x) = x i s open.) 

1.11 Lemma Every convergent sequence in a Hausdorff space i s 

compact and metrizable. 

Proof Let S = {x n : n e w} \J {x} be a convergent sequence in a 

Hausdorff space, and suppose that U i s an open covering for S . 

Now x e U for some U e U. Furthermore, {x^ ; n e w} i s eventually 

in U and thus x e U whenever ri > m for some m e' to. For each n — 

n < m choose U e U such that x e U . Then {U} U {V : m > n e to} n n n n 



i s a f i n i t e subcovering of U for S, and so S i s compact. To see 

that S i s a metric space, let = ^-{x^ : Ic > n e to} for each 

k e to. The collection {V^ : n e to} i s clearly a countable 

neighbourhood basis at x. Because S i s compact Hausdorff and 

hence a regular T^-space, there exists open sets U and V 

satisfying x e V d c l V O'U and x^ £ U. Consequently 

{x.} = S-(cl V U {x : i ^ n e to, x £ c l V}), which i s open in S. x ^ n ' n r 

The family {V : n e to} (J {{x } : n e to} i s a countable open basis n n r 

for the topology on S. Therefore S i s a second-countable regular 

T^-space. In view of CI16], Theorem 4.17), S is metrizable. 

,a0b s erv.e,*t hat ,..,ther e ^ 

defined by d C x , x ) = |l/m - l/n| and dCx ,x) 1/m. m n ' m 

1.12 Theorem For any topological space X, properties C l ) and 

C2) are equivalent. If X is Hausdorff they are also equivalent 

to C3) and C 4 ) . 

C l ) X i s sequential. 

C2) to + 1, provided with i t s order topology, divides X. 

C3) Each subset of X which intersects every convergent 

sequence in a closed set i s closed. 

CA) Each subset of X which intersects every compact metric 

subspace of X in a closed set i s closed. 



Proof (1) < > (2) Suppose that U is a subset of X with f (U) 

open in u •+ 1 for each continuous function f : w + 1 > X. Let 

{x^ : n E w} be a sequence in X converging to x e U. Define g(w) = x 

and g(n) = for each new. Then (g(n) : n e OJ) converges to g(w) 

and i t follows from (1.9) that g : w + 1 > X is a continuous 

function. Thus g "''(U) is an open subset of w + 1 containing w, which 

implies that g "*"(U) contains (m,w] for some mew. So = g(n) e U 

for each n >_ m + 1, and hence {x^ : n e w} is eventually in U. There­

fore U is a sequentially open subset of X. If X is sequential, U is 

open and consequently, by virtue of (1.8), w + 1 divides X. 

Assume now that U is a sequentially open subset of X, and 

"let"4!'-4: ~w , 

{f(n) : n e w} converges to f(w). If f(w) e U then f ̂ (U) contains 

(k,w] for some kew. So f ̂ "(U) = (k,w] (J {n : k _> n E W, f (n) E U} 

which is open in w + 1. If f (w) t U, f ''"(U) = {n E w : f (n) E U} 

is open in w + 1. Therefore f '''(U) is open in w + 1; then U is open 

i f w + 1 divides X. 

(1) < > (3) Suppose that F is a subset of X, and let 

S = {x^ : n e w} U {x} be a convergent sequence in X. Either Ff| S 

is finite or infinite. In the first case, F D S is obviously compact. 

In the second case, F contains a subsequence of {x : n e w}. 



Therefore, i f F is sequentially closed, x e F. Hence F H S i s compact 

because (F 0 S)-U i s f i n i t e for any open set U containing x. Now; 

let be a net in F fl S converging to y e X. Since F f) S i s compact, 

Sy has a cluster point in F f\ S. But, the Hausdorff hypothesis 

implies that y is the only cluster point of S^. Evidently, F f) S 

i s closed. Thus, i f a subset of X i s sequentially closed, i t 

intersects every convergent sequence in a closed set. Conversely, 

i f {x : n e a)} i s contained in F, {x : n e to} is also a sequence n n 

i n F f i S. If F D S is closed then x e Ff) S and hence x e F. 

-Consequently, a subset of X i s sequentially closed i f and only i f 

i t intersects every convergent sequence in a closed set. The 

^equivalence Aof.<*X*l^^ 

(3) < > (t\) Suppose that F i s a subset of X intersecting 

every compact metric subspace of X in a closed set. According to 

(1.11), each convergent sequence i s a compact metric subspace of X. 

Therefore F intersects every convergent sequence in a closed set, and 

~hence~(3)- implies that-F- i s closed-To-establish- the-converse, 

assume that E is a subset of X intersecting every convergent sequence 

i n a closed set. Let K be a compact metric subspace of X. Since 

X -is Hausdorff, K i s also closed. If S i s a sequence in E f] K 

converging to x, then x E K. Additionally, x e E because E A (S U{x}) 

i s closed. Thus ED K i s a sequentially closed subset of the closed 

-metric subspace K; consequently E D K i s closed, and the proof i s 

complete. 



The elementary properties of sequential spaces are 

summarized in the following theorem. 

1.13 Theorem (1) A function f : X ——> Y of a sequential space 

X into a topological space Y i s continuous i f and only i f 

{ f C x ^ ) i n s t o } converges to f ( x ) whenever { x ^ : n E to } converges 

to x . 

(2) Every quotient of a sequential space i s sequential. 

(3) The continuous open or closed image of a sequential 

space i s sequential. 

(4) The cartesian product of sequential spaces need not 

be sequential. However, i f the product i s sequential, so i s each 

of i t s coofH'inate spaces. 

(5) The disjoint topological sum of any family of 

sequential spaces i s sequential. 

(6) The inductive l imi t of any family of sequential 

spaces i s sequential. 

(7) A subspace of a sequential space need not be 

sequential. An open or closed subspace, however, is sequential. 

(8) Every loca l ly sequential space i s sequential. 



Proof (1) The necessity of the condition i s true f o r a r b i t r a r y 

t o p o l o g i c a l spaces. I f f i s continuous and U i s an open subset 

of Y containing f ( x ) , then f ̂ (U) i s an open subset of X con t a i n ­

ing x. Moreover, {x n : n e to} Is ev e n t u a l l y i n f "^(U) and so 

f ( x n ) e U f o r a l l n s u f f i c i e n t l y l arge. Hence {fCx n) : n e to} 

converges to f ( x ) . Conversely, suppose that V Is an open subset 

of Y and l e t {y^ : n e to} be a sequence i n X converging to y e f ̂  Ql) . 

By hypothesis, {f CyQ) : n e to} converges to f (y) and so eventually, 

fCy n) e V. But then {y n : n e to} i s eventually i n f ^"(V). I t 

follows that f ̂ (V) i s a sequ e n t i a l l y open subset of X. Then, since 

X i s sequential, f "'"(V) i s open and hence f i s continuous. 

- •"•(2')'"*"Let 'f "T"'X—->""Y''b'e'*V'qu^'tieht map of a sequential 

space X onto a t o p o l o g i c a l space Y. Suppose that U i s a s e q u e n t i a l l y 

open subset of Y and that {x^ : n e to} i s a sequence i n X converging 

to x e f '''(U). Then, since f i s continuous, {f(x^) : n e to} converges 

to f(x) e U. Consequently {x n : n e to} i s eventually i n f ^"(U), which 

implies that f ̂ (U) i s a sequ e n t i a l l y open subset of the sequential 

space X. Therefore f ̂ (U) i s open and hence, by d e f i n i t i o n of the 

quotient topology, U i s open. 

(3) By (116], Theorem 3.8), i f f i s a continuous open 

or closed map of a to p o l o g i c a l space X onto a space Y, then Y i s the 

quotient space r e l a t i v e to f and X. It follows from part (2) that 

i f X i s a sequential space then the Image f(X) = Y i s sequen t i a l . 
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(4) An example of a non-sequential product of sequential 

spaces w i l l be given i n (1.19). To prove the second part of (4), 

l e t X be the cartesian product of any family {X& : a e A} of 

-topological spaces. For each c e A l e t P : X > X^ denote the 

projection map of X onto i t s coordinate space X^. From the 

definition of the product topology on X, P^ i s continuous. Further­

more, according to (.[16], Theorem 3.2), the projection of a product 

space onto each of i t s coordinate spaces i s open. Hence P^ i s a 

continuous open surjection. Thus, i f X i s sequential, part (3) 

implies that X^ i s sequential. 

(5) Let X be the disjoint topological sum of any family 

{X : a e A} of sequential spaces. If U is not open in X, there 
3. 

exists c E A such that U/1 i s not open and hence not sequentially 

open in X . Consequently, there i s a point x e Dfl X and a 
C C' 

sequence in X^-U converging to x with respect to X c and therefore 

with respect to X. Then U i s not sequentially open and the 

contrapositive of "each sequentially open subset of X being open" 

i s established. 

(6) Assuming that (A, <) i s a directed set, l e t 

{X , (j> ̂  : a, b e A; a < b} denote the family {X : a e A} of 

sequential spaces together with the set of continuous maps 
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^ab * ^a > "̂ b s a t^ s^y^ nS t a e condition : i f a < b < c then 

4 = (J) o (f) By definition, the inductive limit of {X : a e A} 
cLC DC 3 p 3. 

i s the quotient space X/^ where X is the disjoint topological sum 

of {'X : a e A} and R is the equivalence relation : two elements a 

x a e X^, x^ £ X^ in X are equivalent i f and only i f there exists 

c e A,such that a < c, b < c and 4 (x ) = 4, (x, ). It follows 
' Tac a be b 

from parts (5) and (2) that X/R i s sequential. 

(7) The non-hereditary nature of sequential spaces w i l l 

be demonstrated in (1.15) and (1.17). To prove the second part 

of (7), assume f i r s t that Y i s an open subspace of a sequential 

space X and let U be a sequentially open subset of Y. If 

"S = - { x
n J ' n e to} i s a sequence I n *X converging to x eVcz Y then, 

since Y i s open, S is eventually in Y. There exists m e <o such 

that x e Y for each n > m. Moreover, {x , : n e to} is a n — m+n 

sequence in Y converging to x e U. Then, since U is sequentially 

open in Y, i x
m + n : n e u} i s eventually in U. This surely implies 

that S i s eventually in U. Hence U i s sequentially open and there­

fore open in X. 

.Assume now that Y is a closed subspace of the sequential 

space X and let F be a sequentially closed subset of Y. Suppose 

t h a t S i s a sequence in F converging to y with respect to X. 
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Because Y is closed in X, y e Y and consequently S converges to y 

in Y. Since F i s sequentially closed i n Y, y e F. Thus F i s 

sequentially closed in X, and so F = Fft Y i s closed in Y. 

(8) Let U be a sequentially open subset of a loca l ly 

sequential space X. If G i s any sequential neighbourhood of 

x e U, int G i s sequential by part (7). Let V = (int G)n U. 

It is clear that V is sequentially open and hence open in int G. 

But then V i s open in X. By hypothesis, there exists a col lect ion 

{G : x e U} of sequential neighbourhoods satisfying x e G . 
X X 

For each x e U, = (.Int G^) H U i s open in X. Therefore 

U = (J {V x : x e U} i s open, and (8) i s established. 

As previously stated, first-countable spaces are 

sequential. The following shows that not a l l sequential spaces 

are first-countable. 

1.14 Example There i s a sequential space which i s not f i r s t -

countable. 

Proof Let.X be the real l ine R with the integers Z identified 

to the point 0. From (1.13.2), X i s sequential. Suppose that 

{U^ : i e to} i s a countable neighbourhood basis at 0 in X. 

Since each IK i s obviously open in R, there exists a col lect ion 

{V : .n e u} of open intervals satisfying n e V 0 U • For each 
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new. choose an open interval I with n e I CL V . Then 
n n n 

{x E R : x < 0} U ( U {I : n E to}) i s an open neighbourhood of .0 

in X which does not contain U for any n E to. Hence X cannot be 
n 

first-countable. 

,1.15 -Example A jSubspace of .a .sequential-space need not be 

sequential. 

Proof Let X be the real numbers provided with the topology 

generated by i t s usual topology and a l l sets of the form {0}U U 

where U is a usual open neighbourhood of the sequence 

{——r- : n e to}. The topology of the real line i s altered only —n-rx 

at 0. For each open subset G of X, {0}UG i s open i f and only i f 

{——j- : n E to} is eventually in G. Accordingly, each sequence in n-rx 

X converging to 0 is either eventually in {0} or eventually in 

every neighbourhood of {^J" : n E to}, and hence is either eventually 

-equal-to 0 or a subsequence of : n e w^ • 

Define a subspace Y = {(x, 0) : 0 4 x £ R} U {(^r» 1) n E to} 

U {(0, 1)} of the plane. The space Y is the disjoint topological sum 

of the punctured real line .{(x, 0) : 0 £ x E R} and the convergent sequence 

{ ( — - , 1) : n E w l U U O , !)}• Since both {(x, 0) : 0 ^ x e R} 



and {(— -̂p 1) : n e CJ} [) {(0, 1)} are first-countable, Y i s 

sequential. The relative topology for Y is generated by sets 

of the form {G^jip 1)}, (CO, 1)} U i-C^p -1) : 111 .1 n e ^ > a n d 

CU-{0}) x {0} where m e w and U i s a usual open subset of the real 

line*!?. Let I 5 : Y > X be .the surjectlon defined by 

"P(x, y) - x for each (x, y) e "Y. To establish that 'X i s sequential, 

i t suffices ..to prove that P i s a quotient map. It i s f i r s t shown 

that P i s continuous. Let U be an open subset of X. If 0 i U, 

U is open in R and cons equently P (U) = (U x {0}) \J {(^pD : n e co,—r=- e U} 

i s open in Y. I f O e U , U = {0} (J G where G is an open subset of the 

real l i n e such that t' ̂  • n e to} is eventually in G. Assume 

1 • e*g^ wii e K e v e r« n-^>~ i n :-- e~ w-; '«Afben 
n+1 

P _ 1CU) = CG-{0} x {0}) {J (HO, 1)} U 1) : m < n £ o>}) 

(J { (~jip 1) : m > n e w, ~ j p e U}, which is open in Y. Hence P 

is continuous. Now let V be a subset of X such that P ^(V) is open 

in Y. If 0 i V then P - 1CV) = ' {(-^p 1) : n E u), ~ - e V} U (V x {0}), 

which i s open i n Y i f and only i f V i s open in R. If 0 £ V, CO, 1) £ P '''CO 

and so there exists k E w such that (~jip 1) £ P ^CV) for each ri 21 k. 

Then P _ 1CV) = C{C0,1)} U i C~-, -1) : k ^ n E U)}) U'{C^p D : k > n E CO, 

E V} (J CCV-{0}) x {0}). Since P^CV) i s open in Y, V-{0} i s an n+1 

open subset of the real line containing -—^ for each h >_ k, and 



consequently V = {0} U (V-{0}) is open in X . Hence P is a quotient 

map, and therefore X i s sequential. 

Consider the subspace X-v^j- : n E to}. Because each-

sequence in X-{ ^ ' n E to} converging to 0 must be eventually 

equal to 0, {0} is sequentially open. But then, since {0} i s not 

open, .Xrr.{^j- : n e to} Is a non-sequential subspace of the sequential 

space X . 

1.16 Example (1) The continuous image of a sequential space need 

not be sequential. 

(2) The open and closed image of a sequential space 

need not be sequential. 

Proof (1) Let (X, T) and (X, T ) be topological spaces with the 

discrete topology and a non-sequential topology on X respectively. 

The identity map 1 : (X, T) > (X, T ) i s a continuous surjection 

X ot 

of the sequential space (X, T) onto the non-sequential space 

(X, T ). In particular, the continuous image of the identity map of 

ft + 1, provided with i t s discrete topology, onto i t s e l f , provided 

with i t s order topology, i s not sequential. 

(2) Let R be the real line and l e t X be the topological 

space of (1.15). The identity mapping of the first-countable space 

R-{^j^- : n e to} onto the non-sequential space X-v^j- : n e to} i s an 

open and closed surjection. 
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The topological space M of the next example i s important 

for later reference. 

1.17 Example There i s a countable, T^ (normal and T^) sequential 

.space with a non-sequential subspace. 

Proof Let M = (W x W) [J W C/{0} with each Cm, n) e W x "W an 

isolated point, where W denotes the set of natural numbers. For 

a basis of neighbourhoods at n e W, take a l l sets of the form 

..{n} U { (n, m) : m >_ q} where q e W. Define a subset U to be a 

neighbourhood of 0 i f and only i f 0 e U and U is a neighbourhood 

of a l l but f i n i t e l y many natural numbers. Clearly, M i s countable 

_,and.Hausdorf f. To establish that M i s normal, let G be an open 

- subset of M containing the closed subset A. If 0 t A, choose 

{m e hi : n e W f) A} such that V = {n} U {(n, m) : m > m } i s n n — n 

contained in G. Since 0 i A and A i s closed, W f) A i s f i n i t e . 

Therefore, V = [ U {V n : n e W f) A}] (J [ (W x W) D A] i s open and 

—A-G--V-G c l V c G. Suppose now that 0 e A. Then, choosing 

{m e W : n e W D G} such that U = {n} U {(n, m) : m > m } i s n n ' — n 

contained in G, U = { U (0 i n c N n G}J U [ (N x W) C\ A] {J {0} 

i s open and A c U c c l U CG. Hence M i s normal. 
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To prove that M i s sequential, l e t U be a sequentially 

open subset of M. For each x E (hi X hi) D U, x e int U since {x} 

.is open. For each, x e hi f\ U, {(x, m+1) : m e to} i s a sequence 

in M converging to x. Then, since U i s sequentially open, there 

exists m e to such that V = {x} U {(x, m) : m > m } i s contained x x — x 

in U.. ..But V ...is .a .neighbourhood .of ..x,,...and,therefore .x ,e .int ..U.. 
X 

If 0 e U then.W-U i s f i n i t e because otherwise W-U contains a 

sequence converging to 0. Consequently {0} U ( U {Vx : x e hi C\ U}) 

•is a neighbourhood of 0 contained in U. Hence U i s open, and so 

:M i s sequential. 

...Since 0 e cl^ihl x hi), {0} i s not open in K-hl. If 

--I^) ,: .1 ,.e .toj .is any,sje;q,uenc.e,in.^ x ^either., there .is some 

. n e hi such that n^ =-.n for infinitely-many i or there i s no such 

-~n. -In the f i r s t case, {(n^, m/) : i e to} has a cluster point in 

the set {n} \J {(n, m) : m e hi}. Indeed, either there exists m e hi 

such that nu = m for i n f i n i t e l y many i or there i s no such m. It 

follows that the subsequence {(n, nr ) : i e to} has a cluster point 

at either (n, m) or n. Then, since M i s Hausdorff, {(n_^, m_.) : i e to} 

cannot converge to 0 i n the f i r s t case. In the second case, 

•-{(n_̂ , m̂ ) : i E to} has a subsequence in which each point has a 

distinct f i r s t coordinate. Without loss of generality i t can be 



- 26 -

assumed that the sequence ((n^, nu) : i e to} has distinct f i r s t 

coordinates. Choose a sequence {k_̂  e W : i E to} such that 

k. > m.. For each i E to let V. = {n.} (J {(n., m) : m > k.}, and 1 1 1 1 l — i 

for each n e W-{n̂  • : i E to} let U n = {n} U {(n, m) : m E W}. 

Then ijj iY.± : i. e .(•£). J / i.USV^ : ,n e W-{n : i E to.}.}.) (/_{.0} 

i s a neighbourhood of 0 disjoint from {(iu, nu) : i e to}. 

Accordingly, a sequence in M-W converges to 0 i f and only i f 

i t i s eventually equal to 0. Therefore {0} i s sequentially open 

i n the subspace M-W, and hence M-N is not sequential. 

The topological space M-W i s a countable Hausdorff 

space which i s not sequential. The following shows that such a 

space must f a i l to be locally compact. 

1.18 Proposition Every countable, locally compact Hausdorff 

space is first-countable (and hence sequential). 

Proof Let X be a countable, locally compact Hausdorff space. 

Then X is regular. Let x e X. By hypothesis, there exists a 

compact neighbourhood K of x. The subspace K i s regular and 

compact. From the regularity condition, there i s a collection 

U = {Uy : x ^ y E X'} of neighbourhoods of x satisfying y I c l K. 

Clearly {x} = C\ U. The family B of a l l f i n i t e intersections of 
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members ,of U is a neighbourhood basis at x. This i s so because 

otherwise there exists an open neighbourhood V of x such that 

no member of 8 i s contained in V. But then, the intersection 

of the closed subset K-V with any f i n i t e intersection of 

{el : y e X-{x}} is non-empty and yet (K-V) f) ( c l U y : y e X - { X } } = 0; 

this contradicts K"being compact. To complete the proof, i t i s only 

necessary to establish that B i s countable. Let = {n : i >_ n e W}. 

There i s a one-to-one correspondence between the set of functions 
A i 

U = {f : A^ > U; f is a function) and the set of a l l f i n i t e 

intersections of i elements of (J. Consequently the cardinality 
A i 

of 8 Is less than or equal to the cardinality of U {U : I e W}. 
A- i 

""The card'inali'ty 'of 'U ^-^8^)^~••^-4^ , "andJ-henc'e"the 'cardinalit-y of 

B ±s <_ hfg' H0~ He ~ Ha ([16], Theorem 179, page 279). 

Since any countable product of first-countable spaces i s 

first-countable, i t is natural to ask i f there i s an analogous 

result for sequential spaces. This question i s answered negatively 

by the succeeding example. Indeed, the product of two sequential 

spaces need not be sequential. The construction used in this 

example i s slig h t l y different than that derived by Franklin ([8], 

Example 1.11). Using this construction, i t i s also possible to 

prove that the square of a sequential space need not be sequential. 



1..19 Example There i s a product of two sequential .spaces which 

i s not sequent ia l . 

Proof Let OJ be the ra t iona l s 0̂  wi th the integers i d e n t i f i e d , 

and l e t X = Q_ x Q.' • The space X i s the product of two sequential 

spaces but contains a sequent ia l ly open set w which i s not open. 

To describe W, l e t { x n : n E CO} be a sequence of i r r a t i o n a l numbers 

less than one converging monotoriically downward to 0. For.each 

n E co, l e t be the i n t e r i o r of the plane rhombus determined by 

the points ( - x » n ) , (0, n + ^)» ( x

n > n ) a n ^ n - -j) ; l e t 

J n be the i n t e r i o r of the t r i ang le determined by the points 

(x , n ) , (1, n + 4) and (1, n - ; and l e t K be the r e f l e c t i o n 

of J i n the y - a x i s . Then n J 

W = H U J UK U {(x, y) E R 2 : | x | > x } 1/ { (x, y) E R 2 : y < 0} n n n n 1 1 o ' J J 

i s an open subset of the plane. Thinking of U {Ŵ  : n E co} as a 

subset of the plane with the hor izon ta l integer l i n e s i d e n t i f i e d , l e t 

W = X n ( U (Wn : n E co}) . (See Figure 1) 

Let P 1 : X > Q_ and : X > OJ be the canonical 

pro jec t ions . For any open neighbourhoods U and U ' of 0 i n Q. and 

OJ respec t ive ly , P ^ ( U ) D P2^(U') i s not contained i n W because 

there ex i s t s m E CO such that P ^ ( U ) C\ P2^(U' D {x : m - y <x < m + y} 

i s not contained i n W . Therefore (0, 0) £ i n t W, and hence W i s 
m 

not open i n X . 



Figure 1: The Graph of U (W : n e co} in R 
n 

(See Example 1.19) 
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To establish that W i s sequentially open, let {y^ : n e to} 

be a sequence in X converging to y e W. If I^Cy) ^ 0> convergence 

in X is simply convergence in Q xQ and,since (Q. x Q) H ( U {W^ : n e to}) 

i s open in Q_ x {y^ : n e 03} i s eventually in W for this case. 

Assuming that ^2^^ = 0, i f P^(y) 4 0 then W can be replaced by a 

scaled down version of i t s e l f , in W, with y at the symmetric position. 

Therefore i t can be assumed without loss of generality that 

y = (0, 0) . Now {y n : n e to} > (0, 0) implies that ^2^1? '' net0* ° 

i n . But then, i f P i s the quotient map of Q. onto. Q.' and K is the 

set of integers k such that {P ̂  0 ^ ^ n ^ : n e w^ ^veciuent^y ^n 

U-{k} for each neighbourhood U cf k, { p 2^ y

n ^ : n e w ' * S c v e n t u a H y 

in {0} U V where V i s any neighbourhood of K. Furthermore, K i s 

f i n i t e because otherwise ̂ 2^T? : n e <°} n a s a subsequence not 

converging to 0. To verify that K i s f i n i t e , let V be a neighbour­
hood of K and suppose that K = {k : n e to} where k < k i f and 

v * n n m 

only i f n < m. There i s a sequence {l_^ : i e to} of open intervals 

satisfying (1) I± C V, (2) Z D I± = {1n±}t and (3) I ± n Ij f 0 i f 

and only i f i = j . For each i e to there exists n^ e to such that 

y n > e 1^. Next, l e t {U^ : n e to} be a sequence of open sets 

satisfying k. e U. <Z I-{yn.}, and let G be a neighbourhood of Z-K 



disjoint from U {I. : i e co}. It follows that G U ( U {U : n e co}) J i n 

is a neighbourhood of 0 in OJ disjoint from the sequence 

{P 0(y n -) : i E co}. Therefore, {P 0(y n>) : i £ to} is a subsequence 

of {P 9(y ) : n E co} not converging to 0, and hence K must be f i n i t e . 

•Let-q ;=-sup-fk : -k-E-'K-}. —Since {P^Cy^) -: -n "E CO-} -converges"to 0 -in 

Q_ and ^2^r? : n £ * S e v e n t u a l ± y i n ^} f V for any neighbour­

hood V of K, {y^ : n e co} i s eventually in 

E = [X fl ( U {Wn :. n <_ q})] U (0. x 10}). But E is contained in W. 

Thus W i s sequentially open, and this completes the proof. 

Defining OJ and as above and thinking of U {Wn : n E co} 

as a subset of the plane with the horizontal integer lines identified 

and the v e r t i c a l Integer lines identified, i t is not d i f f i c u l t to 

see from (1.19) that (OJ x OJ) n ( U {W : n E co}) i s a sequentially 

open subset of OJ x OJ which i s not open. Hence OJ x OJ is not 

sequential, and therefore the square of a sequential space need not 

be sequential. 

After a few preliminary results i t w i l l be shown that the 

situation described in (1.19) cannot occur in the presence of 

suitable compactness and separation conditions. F i r s t , i t i s 

convenient to prove that countable compactness and sequential 

compactness are equivalent in sequential spaces. As i s well-known 



([28], Proposition 9.8), these concepts are equivalent in the 

class of first-countable spaces. Since sequentially compact 

spaces are always countably compact, the following establishes 

their equivalence in the larger class of sequential spaces. 

The proof i s provided by the author. 

1.20 Theorem Every countably compact sequential space i s 

sequentially compact. 

Proof Let X be sequential and countably compact, and suppose 

that S = {x^ : n e to} i s a sequence in X with no convergent 

subsequence. Let A = U {c l x : n e to}. If S = {y : n e to} 
n o n 

" t iTy , '"^either 

c l x for some m e to, or no such m exists . In the f i r s t case, m 

y e c l x C A. In the second case, there exists a subsequence J m 

{y : k e to} of S with y„ e c l x . . But then {x^ : k e to} 
\ ° n k ^ k n k 

i s a subsequence of S converging to y. The second case, therefore, 

cannot occur and so y e A. From this i t follows that A i s sequentially 

closed and hence closed.. Since X i s countably compact, A i s 

countably compact and consequently S has a cluster point x e A. 

Now x E c l x^ for only f in i t e ly many n e to because otherwise S 

would have a convergent sequence. Let k e to be such that x ft c l x^ 

whenever n >̂  k. But then, applying the same argument at above, 
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\J {cl : 11 >_ k} i s sequentially closed and yet does not contain 

i t s accumulation point x. 

A result due to Novak 127] demonstrates that the product 

of two countably compact spaces need not be countably compact. 

The following shows that one of the spaces being sequential i s 

enough. 

1.21 Corollary The product of two countably compact spaces, 

one of which i s sequential, i s countably compact. 

Proof Let {(xn» y ) : n e to} be a sequence in the topological 

product space X x Y of a countably compact space-X and a countably 

'compact saequenti-ai«spaee--»Yv-^By'-virtu e^of-s?2Q').j-Y--d?s 'sequentially 

compact. Accordingly, the sequence {y^ : n e to} has a subsequence 

{y : k e to} which converges to some point y c Y. Since X i s countably 
n k 

compact, {x : k e u} has a cluster point x e X. Then (x, y) i s a 
nk 

cluster point of the sequence t(xn» y ) : n e to}. 

1.22 Corollary Let X be the topological product of any countable 

family {X^ : n e to} of sequential spaces. Then X i s countably 

compact i f and only i f each X i s countably compact. 
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Proof The necessity of the condition i s obvious since the 

continuous image of a countably compact space i s countably 

compact ([7], Theorem 11.3.6). To establish that X i s 

sequentially compact and hence countably compact, l e t {x^ : n E to} 

be a sequence i n X. For each l e w let P^ be the projection map 

of X onto X_̂ . If each X^ is countably compact then, by (1.20), 

each X^ is sequentially compact. Hence there exists a sequence 

{k̂  : i e to} of functions mapping .to into to such that {x^ : n e to} 
o 

i s a subsequence of {x : n E <JJ} and {P (x, , J : n e u} i s a n o k (n) o 

convergent subsequence of i P G ( x
n ) : n e to}, and for 1 < i e ii , 

~{x, , \ : n E to} Is a subsequence of {x, , ̂  : n c to} and 
..aĉ Cn) ^ - ki--T^'' 

-{P;(x, , »•) : n e to} i s a-convergent subsequence of {P.(x. , 5: n E to}, 
i % ^ ( n ) ' 1 ^i.^y 

The sequence {x, , ̂  : n E to} i s the desired convergent subsequence 
n 

of {x : n e to}, n 

1.23 Corollary Let X be an uncountable set, and let 2 denote the 

set {0, 1} provided with the discfete topology. Then the product 
X 

space 2 i s not sequential. 

Proof Suppose that 2 i s sequential. Since any product of compact 
X 

topological spaces i s compact, 2 i s (countably) compact and hence, 

by (1.20), sequentially compact. Let f : X > 2 W be a surjection. 



X •Define a sequence {x : n e to} i n 2 by x (a) = [f (a) ] (n) for each n n 

a e X. Let {x : k e to} be a subsequence of {x : n E to}. Now 
k 

there exists y E 2 U such -that y( n2j c) -=.0 and- y( n2i c+i) = f o r 

each k E to. Since f i s surjective, f(3) = y for some 3 e X. 
X 

Therefore, " i f "P "is the "canonical "pro jection'map-of 2 -onto the 
3 

3-th coordinate space, then {P„(x ) : k E to} cannot converge 
3 n k 

since 2 i s discrete; clearly P.(x ) = x
n (3) = [f(3)] (n^) = y^y)' 

k k 
X 

Thus {x : k e to} does not converge, and hence 2 cannot be 

sequentially compact. The contradiction shows that 2 must not be 

•sequential. 

1.24 Theorem Let X and Y be sequential spaces, and assume that 

each point of X has a neighbourhood basis consisting of sequentially 

compact sets.-- Then the topological product space X x Y i s sequential. 

Proof Let G be a sequentially open subset of X x Y . To prove that 

G i s open, suppose that (u, v) E G and let G = {x : (x, .v) e G}. 

Clearly u E G^. If {s^ : n E to} i s a sequence in X converging to 

s E G^ then {(s n, v) : n E to} i s a sequence in X x Y converging to 

(s, v) E G. Since G i s sequentially open, {(s n, v) : n E to} i s 
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eventually i n ,G, and consequently {s^ : n E co} i s eventually ,in 

G^. Hence G^ i s sequentially open and therefore open in X. By 

hypothesis, there exists a sequentially compact neighbourhood 

U of u with U x {v} contained in G. Let V be the largest subset 

of Y such that U x V C G; that i s , V = {z : U x {z} C G}. If 

V i s not open, there is a sequence {y n : n E co} i n Y-V converging 

to y £ V. But then, for each n E co there exists x £ U with 
n 

(x^, y ) i G. Since U i s sequentially compact, {X r : n £ co} has 

a subsequence {x : k e co} which converges to some point x e U. 

It follows that {.(x , y ) : k E CO} converges to (x, y) E G and 
n k n k 

hence that (x , y ) E G for a l l k sufficiently large. The 
k n k 

contradiction shows that V must be open. Then,' since (u, v) e.U *• V C G, 

(u, v) E int G and so G i s open. 

1.-25-Corollary -(1) - The -product of two sequential-spaces, -one of 

which i s regular and either locally countably compact or loc a l l y 

sequentially compact, i s sequential. 

(2) The product of two sequential spaces, one of which 

i s l o c a l l y compact and either Hausdorff or regular, i s sequential. 
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Proof (1) Let X and Y be sequential spaces, and assume that X 

i s regular and locally countably compact. Each point x e X has a 

countably compact neighbourhood K. Let {U : a e A} be a neighbour-
a 

hood basis at x such that each U i s a subset of K. Since X Is 
a 

regular, for each a e A there exists an open set V a with 

x e V a c l V a. U . Then each c l V is countably compact and 
Q, Q. 3. . cl 

{cl V : a e A} i s a basis of countably compact closed neighbour-a 

hoods of x. By virtue of (1.13.7) and (1.20), c l V is sequential 

a 

and hence sequentially compact. Accordingly, each x e X has a 

neighbourhood basis {cl V : a e A} consisting of sequentially 

a 

«Gompact,v,s.ubsefcs,..,,.«^The«.iprieGeding.,theorem.wimplies.uthat sthe...product 

space X x Y i s sequential. The second part of (1) is now clear 

since sequentially compact spaces are countably compact. 

(2) This follows from (1) because every locally compact 

Hausdorff space i s regular and every compact space i s loca l l y 

countably compact. 

As seen in Example 1.19, the product space Q * Q.' i s not 

sequential. Although both coordinate spaces Q and are regular, 

neither topological space is locally countably compact. It i s 

clear that 0J f a i l s to be locally countably compact at 0. The 

space Q i s not locally countably compact because regular l o c a l l y 

countably compact spaces are Baire spaces and Q is not a Baire 

space ([7], pp. 249-250). 



1.2,6 Corollary If X and Y are sequential Hausdorff spaces then 

the product spaces ;X * Y and (X x Y) , provided with the usual 

s 

product topology and the sequential closure topology respectively, 

have the same compact sets. 

Proof Since the sequential closure topology is larger than the 

product topology, i t i s only necessary to show that each compact 

subset of X x y is compact in (X x Y) . Let K be compact in X x Y, 
s 

and l e t K = {x : (x, y) e K} and K = {y : (x, y) e K} be the x y 

-projections of K into X and Y respectively. The subspaces and 

K are compact Hausdorff and hence closed. Thus K and K are also y r x y 

-•^sequenfeial^spaeesw'^ 

x i s sequential. Consequently, the topology induced on K by 

K x K i s the same as that induced on K by either the usual product x y -

topology or the sequential closure topology. Therefore U D K i s 

open in K whenever U i s open in (X x y) , and hence K is a compact 
s 

subset of (X x y) . 

s 

The foregoing corollary i s of interest in studying k-spaces. 

— ( A topological space X i s a k-space i f and only i f a subset A of X 

i s closed whenever A/1 K i s closed in K for every compact subset 

K of X.) 
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1.27 Proposition Every sequential space is a k-space. 

Proof Suppose that A i s a subset of a sequential space X with 

A H K closed i n K for every compact subset.K of X. Let S be a 

sequence in A converging to x. Since S U {x} is compact, 

A D (S U {x}) i s closed in S U {x}. This implies that x e A 

and hence "that-A -is •sequentially -closed. 

There are, however, k-spaces which are not sequential. 

For example, the ordinal space U + 1 provided with the order 

topology i s a k-space which i s not sequential. The space ft + 1 

is a k-space because i t i s compact ([7], pp. 222, 162) and the 

locally compact spaces are k-spaces ([7], 11.9.3). 

In view of (1.26) and (1.27), i t is not d i f f i c u l t to 

see that the product of two"k-spaces need not be a"k-space. The 

non-sequential space Q_ x OJ i s , in fact, a product of two Hausdorff 

sequential spaces which i s not a k-space. This i s so because 

there exists a non-closed sequentially closed subset A of Q. x £)* 

such that A f\ K i s closed in K for every compact subset K of 

ca * a')s. 

The next two theorems are important results concerning 

the product of quotient maps and the product of sequential spaces 

respectively. For each cardinal number m, let denote the 

discrete space of cardinality m, l e t be the quotient space 

obtained from D x [0, 1] by identifying a l l points in D x {0}, 
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l e t g : -D x [0, 11 -—> Y be the quotient map, and let y denote fom m ' m ^ r ' "'o 

the point x {0} in Y^. For any topological space X, let 1^ be 

the identity function on X. (For any two functions f : X > Z 

and g : Y > Z q , define ( f x g)(x, y) = ( f ( x ) , g(y)) for each 

(x, y) e X x y.) 

1.28 Theorem The following properties of a regular space X 

are equivalent. 

(1) X i s loc a l l y countably compact. 

(2) 1 x g is a quotient map for every quotient map g 

x 

with sequential domain. 

(3) h = 1„ x g i s a quotient map, where m is the 

X m 

smallest cardinal such that each x e X has a neighbourhood basis 

of cardinality <_ m. 
Proof (1) > (2) Let g : Y > Z be a quotient map with 
sequential domain Y , and l e t f denote the product map 1^ x g. 

Clearly f i s continuous; i f A x B i s a basic open subset of X x z 

then f '''(A x B ) = A x g ' ' ' (B), which i s open since g is continuous. 

Let G be a subset of X x Z with f *(G) open in X x Y . Suppose that 

(u, v) e G and l e t r e g ^(v). There i s a basic open set U * V i n 

X x Y such that (u, r) e U x v C f *(G). Since X i s loc a l l y countably 

compact, there exists a countably compact neighbourhood X. of u. 
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Then, since X i s regular, there i s an open subset of X 

satisfying u e c l I ^ C U D The set K = c l U 1 i s a 

countably compact neighbourhood of u contained in U. Let 

E = {z e Z : K x {z} C G}. Since (u, r) e K x V C f - 1 ( G ) , 

K x {r} <Z f^CG) and G ̂ > f (K x {r}) = K x {g(r)} = K x {v}, which 

implies that v e E. It remains to prove that E i s open. But 

since g i s a quotient map, i t suffices to show that g ^(E) i s open. 

If a e Y and K x {a} d f - 1(G) then f(K x {a})dG, which implies 

that K x g(a) CZ G and hence that g(a) E E. Thus 

g - 1(E) = {y e Y : K x {y}<Cf _ 1(G)}. Suppose that g - 1(E) i s not 

open. Then, since Y i s sequential, there i s a sequence 

{y^ : n e to} i n Y-g ^"(E) converging to some y E g "*"(E). S O 

K x {y^} CZf"f "'"(G) for each n E to. Hence there exists a sequence 

{x : n e to} in K with each (x , y ) £ f ^(G). Because K i s n . n n 

countably compact, {X r : n E to} has a cluster point x E K. Then 

the sequence {(* n, y ) : n e to} has a cluster point (x, y) e f "'"(G). 

Since f "'"(G) i s open, {(xn» Y n) : n E to} i s frequently in f "*"(G) 

contradicting (xn» y^) £ f ̂ "(G) for a l l n e to. Thus g ^"(E) must 

be open, and (1) implies (2). 

(2) > (3) Both D and [0, 1] are sequential spaces. 
m 

Since D i s discrete, D i s locally compact Hausdorff and i t follows m m 

from (1.25) that D '* [0» 1] is sequential. Thus g m i s a quotient 

map with sequential domain x [0, 1] and so (2) implies (3). 
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(3) > (1) Suppose that X i s not locally countably 

compact at-some point X q. Let {U^ : a e D̂ } be a neighbourhood 

basis at x . For each a e D , c l U i s not countably compact o m a 
a 

and thus has a countable family {F n : n e W} of distinct non-empty 

,,xlos.ed,,suhse.ts...sa,tiafying^the..finite ...intersection...property .whose 
cl Si 

intersection i s empty. Let E n = D {F^ : n >_ k e W} for each 
" a a a n e W. It i s clear that f] {E : n e A/} = 0, E -> E ,, , and n n n+1' 

a each E i s closed and non-empty. Thus, for each a e D there n m 
a 

exists a countable well-ordered family {E^ : n e W} of distinct 

non-empty closed subsets of c l U satisfying the f i n i t e inter-

a ' 

section property whose intersection i s empty. 

To establish that h i s not a quotient map, for each 

a e D m define S a C X x (D m x [0, 1]) by S& = U {E* x {( a, ^)} : n e W}, 

and define S C X x y b y S = U {h(S ) : a e D }. It suffices to 
m . a m 

show that h - 1(S) is closed i n X x (D x [0, 1]) and that S i s not 
m 

closed in X x y . Note that (x o, y Q) t S since (x, (a, 0)) I 

for any x e X. If U x V i s a neighbourhood of (x o > y ) in X x y^ 

then, since X i s regular, c l WQCZ U for some c e D^. Thus choosing 

(c, i ) e g^(y)n <<c, : n E"W}, 0 * h(E^ x {( c, | ) } ) C (U * V ) n S; 

the point (c, exists because V i s a neighbourhood of y Q and 
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. v ^ r : n e co} converges to 0 in [0, 1]. It follows that 

(x , y ) e cl„ „ (S) and hence that S i s not-closed in X x Y . N o' Jo X*Y m m 
Since D i s discrete, i t remains to prove that m 

h ~ 1 ( S ) n (X * ({a} x [0, 1])) i s closed in X x ({a} x [0, 1]) for 

each a e D . But since (X x {(a, 0 ) } ) D S » 0, h - 1(S) n (X x ({a} x [0,1])) 
HI 3. 

= S • Assume that 'the point (x, (a, a)') i s contained i n the closure of a 
a 

Sfl with respect to X x ({a} x [0, 1]). Since each i s closed, i t 
a a i s clear that x e E-. Then, since {E : n e W} i s well-ordered and 1 n , -

a a f) {E n : n e W} = 0, there i s a smallest set E^ containing x. It 

follows that a j> -̂ because otherwise G x ({a} x (a - e, a + e)n[°, 1]), 

where 0 < e < ?~ . >. and G is a neighbourhood of x disjoint from 

a 
Ep +^, i s a neighbourhood of (x, (a, a)) disjoint from S g. Moreover, 
since [0, 1] is Hausdorff, a E : n <_ p}. Therefore 

a -1 (x,(a, a)) £ E x {(a, a)} C S . Thus h (S) is closed in ot a 

X x (D x [0, 1]), and the proof i s complete, m 

1.29 Theorem The following properties of a T^ sequential space 

X are equivalent. 

(1) X is locally countably compact. 

(2) X x Y i s sequential for each sequential space Y . 



(3) X x y i s a k-space, where m i s the smallest m 

cardinal such that each point of X .has a neighbourhood basis of 

cardinality £ m* 

Proof The proof that (1) implies (2) i s given in (1.25), and 

• i t i s ̂ obvious -that *(2-) implies (3) .«since Y^ ,is •sequential »and every 

sequential space is a k-space. By virtue of (1.28), to establish 

that (3) implies (1) i t suffices to prove that h = l v x g is a 

A m 

quotient map. F i r s t , i t i s convenient to prove a preliminary lemma. 

Let K be a compact subset of X * Y and let P be the f i r s t coordinate 
m 

projection map of X x Y m onto X. If (X x {y^}) r\ K = 0, h _ 1(K) = K 

*ahd-"'K*-'±s-^Iso^-xbmpaet^ih*X'x-(.D^x«['0,-"'"x '{y^)nYc'!f''^} 

for any a e Dffi the set E = (K-(X x {y Q})) U (P(K) x { ( a , 0)}) i s a 

compact subset of X x (D x [0, 1]) because any open neighbourhood 

of (a, 0) in x [0, 1] is contained in some open neighbourhood of 
•y in Y . In addition, h(E) = K. It follows that every compact o m 
subset of X x y is the image under h of a compact subset of m 

X x (D x [0, 1]). Suppose now that B is a subset of X x Y with m m 

h _ 1(B) closed in X x (D x [0, 1]). Since X x y i s a Hausdorff 

m m 

k-space, to prove that B is closed i t i s sufficient to show that 

B A K i s compact in K for every compact subspace K of X x y 



- 44 -

•But K •== h(C) for some compact subset C of X x (D x [0, 1]). Thus 
m 

E = h "̂(B) n 'C i s a compact, subset of C. Clearly h(E) i s contained 

i n B A I . If .b e B n K then b e K and so there exists some a e C 

such that h(a) = b. Furthermore, b e B implies that a e h "''(B) and 

hence that a e h - 1(B)n C = E. Therefore b = h(a) e h(E) and 

consequently h(E) = B o K. Then, since E i s compact in C and h is 

continuous, B/~) K i s a compact subset of h(C) = K. Thus B i s closed 

and h i s a quotient map. 

A characterization of the sequential spaces follows from 

the next theorem. 

1.30 Theorem Every sequential space i s a quotient of a disjoint 

topological sum of convergent sequences. 

Proof Let X be a sequential space. For each x e X and for each 

sequence {Xr : n e to} in X converging to x, let SCx^, x) = {x n : n e to} U {x} 

be a Hausdorff topological space in which each x n is isolated and the 

sequence {x^ : n e to} converges to x. Although the elements of 

S(x n, x) need not be distinct i n X, they are taken to be distinct i n 

S(x n, x) . Thus s ( x
n > x) is homeomorphic to to + 1 provided with the 

order topology. Clearly S(x n > x) is a convergent sequence in S(x n > x). 

Let W be the disjoint topological sum of a l l possible S(x , x). 



Since for ,.each x e X the convergent sequence {x : x^ = x, n e co} U {x} 

is a .summand >of W, the natural function f : W > X defined by 

f(x) = x i s a surjection. In addition, f i s continuous because i t 

'is'continuous on each summand. To complete the'proof, i t -remains to 

establish that f i s a quotient map. Let U be a subset of X with 

f "\(11) opjen in W. If {.y : n e co} i s a sequence in X converging to 

y e U, y e f ̂ (U)n ̂ ^n» Y^ which is open in S(y n > y). Then 

{y n : n e co} as a subset of S(y n > y) i s eventually in f ^"(U), and 

hence • {y : n e co} as a subset of X i s eventually in U. Consequently 

U i s sequentially open and therefore open in X. 

1.31 Corollary A Hausdorff space i s sequential i f and only i f i t 

i s a quotient of the disjoint topological sum of i t s convergent 

sequences. 

Proof The necessity of the condition i s clear from (1.30). It i s 

only necessary to remark that i f X i s Hausdorff then W i s precisely 

the disjoint topological sum of a l l the convergent sequences in X. 

Conversely, (1.11) implies that each summand of W i s a metric space 

and hence a sequential space. Then X i s sequential by (1.13.5) 

and (1.13.2). 
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1.32 Corollary Every sequential space is the quotient of a zero-

dimensional, locally compact, complete metric space. 

Proof It suffices to show that W i s a zero-dimensional, loc a l l y 

compact, complete metric space. Suppose that U i s a neighbourhood 

basis at y e W. Each D e 0 i s both open and closed in W because 

U r\ S(x , x) i s bo.th open and .closed in S(x , x). Hence W i s n r n 

zero-dimensional. According to (1.11), each S(x n, x) i s a compact 

metric space. Obviously W is locally compact. If d . v i s a 
S v

x

_ »
x

 / 

metric on S(x , x), then 
n 

f 
d 

n 

S ( x n , x ) ( u ' V ) l f U> V £ S ( x n » X ) 

1 otherwise 

i s a metric on W. Lastly, W i s complete by virtue of ([7], Corollary 

14.2.4). 

1.33 Corollary The following are equivalent. 

(1) X i s sequential. 

(2) X i s the quotient of a metric space. 

(3) X i s the quotient of a first-countable space. 

Proof In view of the preceding corollary, (1) implies (2). Clearly 

(2) implies (3) because metric spaces are first-countable. Since 

first-countable spaces are sequential, (3) implies (1) by (1.13.2). 
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1.34 Example There is a separable sequential space which is not 

the quotient of a separable metric space. 

Proof Let H be the real numbers provided with the half-open 

interval topology. Sets of the form {x : a <̂  x < b} = [a, b) are 

a basis for this topology. Since for each x E H the collection 

{[x, n^j_) 5 n e co} i s a countable neighbourhood basis at x, H is 

first-countable. Then H x H i s first-countable and hence sequential. 

The space H x H i s also separable because {(x, y) : x, y rational} 

i s a countable dense subset. Suppose that H x H is the quotient of 

a separable metric space X, and let P : X > H x H be the quotient 

map. According to ([7], .9.5.6), every separable metric space i s 

•iMndelof•^.TliuS'^ Ĥ--x-••>H. -"Indeed., 

i f {U : a e A} Is an open covering of H x H, {P ̂ (U ) : a e A} i s 
a a 

an open covering of X and hence i t has a countable subcovering 

{P ^(U ) : n E co}; then {U : a e A} has a countable subcovering a a • n ' 

{U : n E co} of H x H. 
a n 

Consider the subspace K = {(x, -x) : x irrational} of H x H. 

For any E > 0 each (x, y) e H x H such that x + y _> 0, ([x, x+e) x 

[y, y+e)) r\ K £ 0 i f and only i f (x, y) E K. In addition, for each 

(x, y) E H x H such that x + y < 0, ([x, x+6) x [y, - x - 6 ) ) ^ K = 0 

whenever 0 < 6 < -x -y. Thus K is a closed subspace of the Lindelof space 



H x H. Since K i s discrete and uncountable, ,K i s not Lindelof. 

However, i f {V - : a e A} is an open covering of K, 
Si 

{V : a e A} U {(H x H)-K} i s an open covering of H x H. Then, a 

since H*x H is Lindelof, there i s a countable subcovering 

{Va : n e co} U {(H x H)-K} of H x H. It follows that K i s 
n 

covered by {V : n e co} and hence that K i s Lindelof. The 
a n 

contradiction shows that H x H must not be the quotient of a 

separable metric space. 

It has been shown that the notion of sequential space 

i s neither hereditary nor productive. The following i s a 

characterization of those subspaces and those products of sequential 

spaces which are themselves sequential. 

1.35 Proposition For X sequential, let 4^ denote the quotient 

map of X* onto X, where X* i s the disjoint topological sum of 

convergent sequences in X as derived in (1.30). 

(1) A subspace Y of a sequential space X i s sequential 

i f and only i f 4 v i , - l , v v i s a quotient map. 
'X 

(2) The product of two sequential spaces X and Y i s 

sequential i f and only i f <j>Y .x 4 i s a quotient map. 
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Proof ( 1 ) Let Y = c C^Y) and cf> = <j>v | ' . Let g : Y* > Y 
X X • A 1 ^ 

be the function defined by g(x) = x for each x e Y*. Then g i s 

a quotient map i f and only i f Y i s sequential. It suffices to 

show that (f> i s a quotient map i f and only i f g i s a quotient map. 

Let U be a subset of Y. If 4>~1(U) i s open in Y 1 then <j)-1(U)/^\ S 

is open in 'S for each summand S of Y^. From the definition of the 

relative topology on Y i t i s clear that each convergent sequence 

in Y i s a convergent sequence in X. Therefore each summand of Y* 

i s a summand of Y^, and consequently g ̂ (U) = <f> ̂ (U)/n Y* i s open 

in Y*. Conversely, suppose that g ̂ (U) i s open in Y*. Then 

4 "*"(U)/*"} S = g ̂ (U)n S i s open in S for each summand S of Y^ 

which i s also a summand of Y*. Let S( x
n> x) be a summand of X*; 

then = S(x n, x) D Y i s a summand of Y^. The topological space 

is either f i n i t e or i n f i n i t e . In the f i r s t case, each point of 

is isolated and thus C\ <J> ̂ (U) must be open in S^. Assume 

now that the second case occurs. If x t U then 

S^n I "*"(U) = {x n : n e w} n <{> ^(U) which i s certainly open in S^. 

If x e U, each sequence in converging to x e O <i> "̂ (U) i s a 

subsequence {x^ : k e to} of {x : n E to}. But since 
\ n 

* ^(U) H S(x , x) i s open in S(x n , x), {x : k e to} i s eventually 
°k k n k 

in D <f> ''"(U). It follows that S 1 f) <j> "*"(U) i s a sequentially open 



subset of the first-countable space S^. Therefore <j> (U) i s open 

in Y^, and the proof of (1) i s complete. 

(2) Since X* and Y* are first-countable, the topological 

product space X* x Y* i s first-countable and hence sequential. .Then 

i f h '= - . < ( > . x A i s a quotient map, X x y i s sequential. To establish X Y 

the converse, assume that .X x y is sequential and let G be a subset 

of X x y with h~1(G) open in X* x y*. Suppose ( (x »' y ) : n e co} 

i s a sequence in X x Y converging to (x, y) e G. Then (x, y) e h "̂(G) 

and there exists a basic open subset U x V of X* x y* such that 

(x, y) e U x V C h - 1(G). Accordingly, U n S(x n > x) is open in 

S(x , x) and V fl S(y , y) i s open in S(y , y). This implies that n n n 

the sequences {x^ : n e co} and {y n : n e co} are eventually i n U and 

V respectively, and hence that (x n > y ) e h 1.(G) for a l l n sufficiently 

large. Therefore (x , y ) = (<j> (x ), ^ ( y ^ ) ) = h(x , y ) e G for 

n xi A H x n n i l 

a l l n sufficiently large, and so G i s a sequentially open subset of 

the sequential space X x y. Thus G i s open and h i s a quotient 

map. 

A first-countable space with unique sequential limits i s 

Hausdorff since otherwise i t is possible to find a sequence converging 

to two distinct points. That i s , i f x and y are distinct points 

which cannot be separated by disjoint open sets and {U n : n e co} 
and {V : n E co} are countable neighbourhood bases of x and y 
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respectively, then the sequence {x : n e to} satisfying x n e U ^ H V R 

converges to both x and y. The succeeding examples show that this 

result cannot be generalized to sequential spaces. 

The construction used in the f i r s t example is based on 

Sorgenfrey's [29] well-known result concerning the product of 

normal spaces. It w i l l be shown that the square of the normal 

space H i s not normal. 

1.36 Example There i s a sequential space with unique sequential 

limits which i s not Hausdorff. 

Proof Let H be the real numbers provided with the half-open 

*inter-vai i n^ 

sequential. If A = {(x, y) : x + y = 1} i s the antidiagonal of 

H x H, let A and A. be those points of A with rational and q l 

irrat i o n a l coordinates respectively. For any e > 0 and each 

(x, y) e H x H such that x + y _> 1, ([x, x+e) x [y, y+e)) f) A^ ^ 0 

i f and only i f (x, y) e A^; similarly, ([x, x+e) x [y, y+e))D A^ ^ 0 

i f and only i f (x, y) e A ^ And for each (x, y) e H x H such that 

x + y < 1, ([x, x+6) x [ y > l-x-5))O A = 0 whenever 0 < 6 < l - x - y . 

Therefore A and A. are disjoint closed subsets of' H x H. 



To prove that and A^ cannot be separated by d i s j o i n t 

open sets , l e t U be an open neighbourhood of A ^ . For each 

i r r a t i o n a l x , l e t f (x) = sup{e > 0 : [x, x+e) X [1-X , l -x+e)c~U}. 

Then f i s a function on the set of i r r a t i o n a l numbers and f i s 

never zero. The set of i r r a t i o n a l s i s the countable union of sets 

of the form {x : f (x) > —} where n e W. In tthe r e a l l i n e R, the 
— n 

i r r a t i o n a l s are of the second category ( [7] , pp. 249-251) and 

consequently there ex i s t s m e U such that {x : f (x) i l ~} i s not 

nowhere dense i n R. Hence there i s a r a t i o n a l number r which i s 

an accumulation point of {x : f(x) i l ~} • For any neighbourhood 

V of the point ( r , 1-r) , there ex i s t s p e R such that P < ~ 

and [ r , r+p) x [1-r , 1-r+p) d V . But there i s an i r r a t i o n a l 
1 1 number s e ( r -p , r+p) such that [s , s + —) x [1-s, 1-s -\—) C U. 

r > n m m 

Then <[r, r+p) x [1-r , 1-r+p)) fl ( U , s + ~) x [ l - s , 1-s + ^)) j 0, 

and hence U H V ^ 0 for every neighbourhood V of ( r , 1-r) . There­

fore ( r , 1-r) e c l U , and so A ^ / T c l U 0 for every neighbourhood 

U of A ± . 

The set E = (A q x A ) U (A ± x A ± ) {J {(x, x) : x e (H x H) 

( A ^ U A^)} i s an equivalence r e l a t i o n i n the f i r s t -countab le space 

H x H. The quotient space X = (H x H) /„ i s sequential and T, but 
hi I 

not Hausdorff. Let 4 : H x H > X be the quotient map, and l e t 



q = * (A ) and i = <|>CA.). Then q and i are the only pair of 

distinct points of X which cannot be separated by open sets, and 

consequently i f some sequence in X converges to two distinct 

points, ..they must be q and I. Suppose that S = "{x : n e w} 

converges to q. Since X i s T^, i t can be assumed that x^ ̂  i 

for a l l n e co. Again since X i s T^, i f frequently x^ = q then 

S cannot converge to i . However, i f X r i s eventually different 

from q, there must be some q^ e A^ and a subsequence S q of S 

converging to q^ in H x H. But then there i s a neighbourhood of 

A^ disjoint from S q , and thus S cannot converge to i . Hence X 

has ̂ unique,..sequential ..limits... 

1.37 Example There i s a countable, compact, sequential space 

with unique sequential limits which i s not Hausdorff. 

Proof Let M be the Hausdorff sequential space of (1.17). 

Let p be some point not i n M and let = M 0 {p} with M open 

in and where the basic neighbourhoods of p are of the form 

{p} U ((W x W)-F) with F the union of the ranges of a f i n i t e 

number of convergent sequences i n M. Since M is Hausdorff and a 

convergent sequence in M cannot also converge to p, has 

unique sequential limits. However, Mn i s not Hausdorff because 
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0 and p have no disjoint neighbourhoods. It i s also clear that 

i s countable and compact. To verify that i s compact, let 

U and V be any open neighbourhoods of 0 and p respectively. Then 

W-(U U V) is ^finite .and M^-(U U V) is the union of the ranges of 

a f i n i t e number of convergent sequences in W x hi. But each 

"sequence i n *M̂ -(U XI V) converges "to some "meniber Of "W-"(U"U V) . 

Hence for any f i n i t e collection {U^ : n e W-(U U V)} of open sets 

satisfying n e U , M1-(U U V V [ (J{U :n e W-(U U V)}]) i s f i n i t e , n 1 n 

To see that i s sequential, let V be a sequentially 

open subset of M̂ . If p ft V, V i s sequentially open in the 

sequential space M. Then, since M i s open in M̂ , V i s also open 

in M̂ . Assume now that p £ V. Clearly, V i s a neighbourhood of 

each point in V-{p} because V-{p} is sequentially open in M. 

Since any subset {(m, n) : m e A C W, n e B C W} contains a sequence 

converging to p whenever A is i n f i n i t e , M̂ -V must contain points 

of W x W having only f i n i t e l y many first-coordinates. Thus V 

contains a basic neighbourhood of p and so p E int V. Therefore V 

i s an open subset of M1 and consequently M1 i s sequential. 
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1.38 Proposition (1) A sequential space with unique sequential 

limits i s T^. 

(2) If X i s a topological space with unique sequential 

limits and X x X is sequential, then the diagonal A = {(x,x) : x e 

of X x X i s closed (and hence X i s Hausdorff). 

Proof (1) For each.member .y of a sequential space Y, the 

singleton {y} is sequentially closed and hence closed in Y. 

(2) Every sequence i n A i s of the form t( x
n> x

n ) : n e -

Since X has unique sequential limits, {( x
n> x

n ) : n e to} converges 

to (x, x) i f and only i f {x^ : n e to} converges to x. Therefore 

A i s sequentially closed and hence closed in X x X. 

It follows frqmjpart (2) that the product spaces X x x 

and x M̂ , where X = (H x H)^ £ and are the non-Hausdorff 

sequential spaces of (1.36) and (1.37) respectively,are not 

sequential. If these products were sequential, X and would be 

Hausdorff. 

After a preliminary result i t w i l l be shown that a 

sequential space with unique sequential limits in which each point 

has a neighbourhood basis consisting of countably compact sets i s 

Hausdorff. The topological spaces X = (H x H)^ £ and do not 

satisfy this compactness condition. For any neighbourhood U of q 
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i n X , l e t { x n : n e to} be a sequence i n U such tha t 

x E ( n , n+e ) x (1-n, 1-n+e ) CZ U where 0 < E < -i-. The sequence n n n n 2 ^ 

{x^ : n E 10} has no c l u s t e r p o i n t i n the neighbourhood U . T h e r e ­

f o r e U i s not c o u n t a b l y compact, and consequent ly X i s not even 

l o c a l l y c o u n t a b l y compact. Suppose now t h a t V i s any n e i g h b o u r ­

hood of p i n M ^ . Then, s i n c e {n+1 : n E to} i s a sequence i n M 

c o n v e r g i n g to 0, V-(W U {0}) i s a l s o a neighbourhood of p . I t 

i s c l e a r t h a t t h e r e e x i s t s m e W such t h a t {(m, y ) : n e to} i s 

a sequence i n V - ( M (J {0}) w i t h y = y, i f and o n l y i f n = k . But 

{(m, -y ) : n e to} has no c l u s t e r p o i n t i n V-(W U {0}). So V-(WU{0}) i s not 

c o u n t a b l y compact, and does not have a c o u n t a b l y compact 

1 

neighbourhood b a s i s a t p . 

1.39 P r o p o s i t i o n A s e q u e n t i a l space has unique s e q u e n t i a l l i m i t s 

i f and o n l y i f each c o u n t a b l y compact subset i s c l o s e d (and hence 

s e q u e n t i a l ) . 

P r o o f L e t X be a s e q u e n t i a l space . Suppose X has unique s e q u e n t i a l 

l i m i t s and K i s a c o u n t a b l y compact subset of X . L e t S = { x n : n e to} 

be a sequence i n K c o n v e r g i n g to x . S ince X has unique s e q u e n t i a l 

l i m i t s , {x} U range S i s s e q u e n t i a l l y c l o s e d and hence c l o s e d i n X . 

Then i f y i s a c l u s t e r p o i n t of S, e i t h e r y = x or f r e q u e n t l y x = y . 
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Again since X has unique sequential limits, y = x . Thus x i s the 

only cluster point of S, and consequently x e K.. Therefore K i s a 

.sequentially closed subset of the sequential space X. 

Assume now that S i s a sequence in X converging to two 

distinct points x and y. Since {x} U range S i s compact, {x} U range 

. S i s closed and hence ..contains y. . This implies that S i s frequently 

equal to y. But then {y} i s a non-closed compact subset of X. 

,1.40 Corollary A sequential space has unique sequential limits 

i f and only i f each sequentially compact subset is closed. 

Proof Since every sequentially compact set i s countably compact, 

the necessity of the condition follows from (1.39). Conversely, 

.suppose that S = {x^ : n E .to} i s a sequence in a sequential space 

X converging to points x and y. Then {x} U range S i s sequentially 

compact because each sequence in the set has a subsequence which i s 

either a subsequence of S or eventually equal to x m for some 

.m .e-.io. Therefore...{x} U range .S_is .closed.,. and_consequently either 

y = x or frequently x^ = y. The latter case cannot occur since 

otherwise {y} i s a non-closed sequentially compact subset of X. 

1.41 Proposition Let X be a sequential space with unique sequential 

limits. If each point has a neighbourhood basis consisting of 

countably compact sets, then X i s Hausdorff. 
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Proof Each countably compact subset of X i s closed (by 1.39), 

sequential (by 1.13.7), and hence sequentially compact (by 1.20). 

Thus each point of X has a neighbourhood basis consisting of 

sequentially compact sets, and so (1.24) implies that X x X i s 

sequential. Then, according to (1.38.2), X i s Hausdorff. 

1.42 Corollary If X i s a sequential space with unique 

sequential limits and each point has a neighbourhood basis 

consisting of compact or sequentially compact sets, then X i s 

Hausdorff. 



Chapter 2 

Frechet Spaces 

The Frechet spaces form an important subclass of the 

sequential spaces -which-conta-ins the first-countable spaces-. 

The study of Frechet spaces i s closely related to that of both 

first-countable spaces and sequential spaces. For example, every 

subspace of a Frechet space i s Frechet and the quotient of a 

Frechet space need not be Frechet. On the other hand, there i s 

a Frechet space with unique sequential limits which i s not 

Hausdorff and the product of two Frechet spaces need not be 

~Ffe%he"t. "This chapter emiilates'Tranklin's"([8], *[9] and [ 10]) 

investigation of Frechet spaces. There are, however, several 

results concerned with Arhangel*skii 1s [2] study of pseudo-open 

maps and a result due to Harley [12] connected with the product 

of Frechet spaces. 

2.1 Definition A topological space X i s Frechet, or a Frechet 

space, i f and only i f the closure of any subset A of X i s the 

set of limits of sequences in A. 
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In first-countable spaces, a point x i s an accumulation 

point of a set A i f and only i f there i s a sequence in A-{x} 

which converges to x ([16], Theorem 2.8). Therefore first-count­

able spaces, and hence metric -spaces and discrete spaces, are 

Frechet. 

2 . 2 Proposition Every Frechet space i s sequential. However, 

there are sequential spaces which are not Frechet. 

Proof By definit ion of sequentially closed and Frechet space, 

i t i s obvious that every sequentially closed subset of a Frechet 

space i s closed. Thus every Frechet space i s sequential. On the 

«other>*hand,-, (the^iitopologi 

respectively are examples of sequential spaces which are not Frechet. 

In both spaces, 0 E cl(W X W) but no sequence in W x W converges to 0. 

2 . 3 Theorem ( 1 ) Every subspace of a Frechet space i s Frechet. 

( 2 ) The disjoint topological sum of any family of 

Frechet spaces i s Frechet. 

( 3 ) Every loca l ly Frechet space i s Frechet. 

(4) If A i s any subset of a Frechet space X then Y = ^/^» 

the topological space X with the points in A identif ied, i s Frechet. 
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Proof (1) Let Y be a subspace of a Frechet space X and l e t A 

be a subset of Y. Then c l (A) is the set of limits in X of 

sequences in A. Hence c l (A) = c l v ( A ) n Y i s the set of limits 

Y X 

in Y of sequences i n A. 

(2) Let.X be the disjoint topological sum of the family 
{X : a e ,A} of Frechet ..spaces. Let B be a subset of X and l e t B' a 

be the set of limits of sequences in B. For each c e A, B'n 

i s the set of limits in X of sequences in B(1 X ; because X i s 
c c c 

Frechet, B' n X i s closed in X . Then B' i s closed and (2) i s c c 

proved. / ' 

(3) Let B' be the set of limit points of sequences In 

a subset B «of-a locally -Frechet'<space-X. -';For-•each'-'x e X-B' there 

i s a neighbourhood G of x which is Frechet. By part (1), int G 

i s Frechet. Let V = (int G)O (X-B'). The intersection (int G ) O B' 

i s the set of limits of sequences in (int G) H B. Then (int G ) n B' 

i s closed in the subspace int G, and consequently V i s an open subset 

of int G. It follows that V Is open i n X. By hypothesis, there 

exists a collection {G^ : x e X-B1} of Frechet subspaces of X such 

that each G x is a neighbourhood of x. Each \r = (int G x>H (X-B') 

is open in X. Therefore X-B' = U {Vx : x e X-B*} i s open i n X 

and so B1 i s a closed subset of X. Hence X i s Frechet. 



(4) If g : X > Y is the quotient map, let i = g(A). 

Let B' be the set of limit points of sequences in a subset B of Y. 

If i I cl Y(B) then, since X i s Frechet, clyCB) = C 1 X ( B ) = B ' « 

If i e c l (B), either k e c l (B) for some k e A or no such k exists. 
Y A 

In the second case, there i s a collection {U : x e A} of open 
x 

subsets of X satisfying x e U x and U^H B = .0. But then 

U {U x : x e A} i s a neighbourhood of i disjoint from B. The 

contradiction shows that the f i r s t case must occur. Thus k e c l v ( B ) 

and consequently there exists a sequence in B converging to k. 

Hence i e B' and the proof i s complete. 

2.4 Example (1) There i s a Frechet space which i s not f i r s t -

countable. 

(2) The product of two Frechet spaces need not be 

Frechet. 

Proof (1) The real line with the integers identified i s Frechet 

(by 2.3.4) but does not satisfy the f i r s t axiom of countability 

(by 1.14). 

(2) It follows from (2.3.4) that the topological space 

£)', the rationals with the integers identified, i s Frechet. Then 

Q x Q.' i s the product of two Frechet spaces which, by (1.19), i s 

not sequential and hence not Frechet. Similarly, the square x Q_' 

i s not a Frechet space. 



',2,;5 .-Example (1) The open and closed image of a Frechet space 

need not be Frechet. 

(2) . The quotient of a Frechet space need not be Frechet, 

Proof (1) Since every Frechet space i s sequential and every f i r s t -

countable space i s Frechet, the proof of (1) i s the same as that 

of (1.16.2). 

(2) Let X be the topological space of (1.15) and let 

A = X-({ : n e <JJ} U {0}). For each n e w there i s a sequence 

n 1 { X j , : i e w} in A converging to n +^- By the theorem on iterated 

limits ([16], Theorem 2.4), 0 e c l A. However, every sequence in 

X converging to 0 i s eventually equal to 0 or a subsequence of 

: n e to}-. Hence X i s not Frechet. But X is a quotient of 

the first-countable space Y. 

2.6 Definiton A surjective function f : X > Y of the topological 

space X onto the topological space Y i s pseudo-open i f and only i f 

for any y e Y and any open neighbourhood U of f ^(y), y e int f(U). 

2.7 Definition A map f : X > Y satisfying some property C i s 

said to be hereditarily C i f and only i f for each subspace Y^ of 

f(X) and X 1 = f " 1 ^ ) the induced map f | x : > Y 1 satisfies 

property C. 
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2.8 Proposition (1) Every open or closed surjection i s pseudo-

open . 

(2) Every continuous pseudo-open map i s a quotient map. 

(3) Every pseudo-open map i s hereditarily pseudo-open. 

Proof Let f : X > Y be a surjective mapping of the topological 

space X .onto .the top.oiogic.al space "Y. 

(1) Let y e Y and let U be an open neighbourhood of 

f _ 1 ( y ) . If f is an open map, y e f ( f _ 1 ( y ) ) C f(U) = int f(U). 

Thus open surjections are pseudo-open. Suppose now that f i s a 

closed map. Then, since X-U is closed and f ^(y)c^ X-U, y i s not 

contained in the closed set f(X-U). Therefore Y-f(X-U) is open and 

consequently, since f(X-U) ~D f(X)-f(U), y e Y-f(X-U)C Y-(f(X)-f(U)) = f(U) 

implies that y e int f(U). 

(2) Let V be a subset of Y such that f - : L(V) i s open i n X. 

For each y e V, f ^(V) i s an open neighbourhood of f ^(y). Then, 

since f i s pseudo-open, y e int f ( f "'"(V)) = int V and hence V i s open. 

(3) The function f induces a map h : X^ > Y^ where Y^ 

i s a subspace of Y, X^ = f "''(Y^), and h = f |^ . Suppose that f i s 

pseudo-open. Let y e Y^ and l e t be an open neighbourhood of 

h _ 1(y) i n X^. Then = U PI X 1 where U i s open i n X and 

f " " 1 ^ ) = h - 1 ( y ) C ^ C U . Accordingly, y e i n t y f ( U ) . But . 

y e ( i n t y f(U ) )n Y 1 = ( i n t y f(U ) ) n Y 1 = i n t ^ ( f ( U ) n = int hCU^). 

Hence h Is pseudo-open. 



,2.9 Example (1) There i s a pseudo-open map which i s not open. 

(2) There i s a quotient map which i s not hereditarily 

quotient. 

Proof (1) The quotient map from the real line onto the real 

line with the integers identified i s a pseudo-open map which i s 

.not open. 

(2) Let X and Y be as in (1.15), and let P be the 

quotient map of Y onto X. If X^ = X-{^£j- : n e to}, then 

Y± = P~ 1(X 1) = {(0, 1)} U {(x, 0) : 0 t x e RM^jip 0) : n e to} 

and P induces the map P^ = P|Y • But P^ is not a quotient map 

sines P^({0}) = {(0, 1)} is open in Y^ and yet {0} i s not open 

in 

The next result was asserted without proof by 

Arhangel'skix [2]. The proof i s provided by the author. 

2.10 Proposition A function i s continuous pseudo-open i f and 

only i f i t i s hereditarily quotient. 

Proof Let f : X > Y be a continuous surjection, and l e t 

f. = f L where Y. is a subspace of Y and X = f^CY-). If U. 

i s open i n Y^, = UO Y^ for some open subset U of Y. Then, 

since f i s continuous, f^CO^) " f ^ C U O Y 1) = f - 1 ( U f l Y ^ = 

f "^(U)n X- i s open in X-. Thus continuous maps are hereditarily 
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continuous. It follows from (2.8) that i f f is continuous 

pseudo-open then f^ is a continuous pseudo-open map and therefore 

a quotient map. Conversely, assume that f is hereditarily quotient. 

Suppose y e Y and V is an open neighbourhood of f "*"(y). Let 

Y 2 = (Y-f(V))U {y>, X2 = f _ 1 (Y 2 ) •= [X-f~ 1(f(V))].U f _ 1 ( y ) , and 

"f 2 "=;f-|x . Then f~*(y) '=-f ~*(y)•;*«• V'n;X2, • which :±s open- in X2» 

Since f 2 is a quotient map, {y} is open in Y2 and thus {y} = G H Y2 

for some open subset G of Y. This implies that G is contained in 

f(V) and hence that y e int f(V). 

2.11 Proposition Every continuous pseudo-open image of a Frechet 

Proof Let f : X ——>'-Y.be a continuous pseudo-open function of a 

Frechet space X onto a topological space Y. Let B be a subset of 

Y and suppose that y £ c l B. If f _ 1(y)n c l f _ 1(B) =0, 

U = X-cl f ̂ (B) is an open neighbourhood of f "'"(y). Then, since f 

is pseudo-open, y E int f(U)ci f(U) = f(X-cl f ' 1 ^ ) ) C f (X-f - 1(B)) d Y-B 

contradicting y e c l B. Hence there is some x E f ̂ (y)O c i f ^(B) 

and, since X is Frechet, there exists a sequence {x^ : n E OJ} in 

f "̂(B) converging to x. Thus {t(* n) : n E to} is contained in B and, 

since f is continuous, {f(x n) : n E w} converges to f(x) = y. There­

fore Y is a Frechet space. 

http://-Y.be
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2.12 Corollary Cl) The continuous open or closed image of a 

Frechet space i s Frechet. 

C2) If a product space i s Frechet, so i s each of i t s 

coordinate spaces. 

Proof CD follows from C2.8.1) and C2.H), and Cl) implies C2). 

The following i s a slight generalization of the 

necessity condition of Franklin's Proposition 2.3 C[8]). The 

Hausdorff hypothesis is replaced by "unique sequential limits". 

2.13 Proposition If f : X > Y is a quotient map of a topological 

space X onto a Frechet space Y having unique sequential limits, 

then f i s pseudo-open. 

Proof Let y e Y and suppose that U i s an open neighbourhood of 

f - 1 C y ) . Assume that y I int fCU). Then y e Y-int fCU) = c l CY-fCU)), 

and consequently there exists a sequence S in Y-fCU) converging to y. 

Because Y has unique sequential limits, c l Crange S) = {y} U range S. 

If F = f - 1 C S ) then, since f is continuous, c l F = c l C f - 1 C S))C f ~ 1 C c l S) = 

f'Hs U (y>) = f~*(S) U f _ 1 ( y ) = F U f _ 1 ( y ) . But f - 1 C y ) C U and 

U n F = 0. This implies that f - 1 C y ) n c l F = 0 and therefore that 

F i s closed. Hence f - 1CY-S) = f - 1CY)-f _ 1CS) = X-F i s open. Then, 

since f i s a quotient map, Y-S i s an open neighbourhood of y, contradicting 

the supposition that S converges to y. 
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2.14 Theorem A Hausdorff space i s Frechet i f and only i f i t i s • 

a continuous pseudo-open image of the disjoint topological sum 

of i t s convergent sequences. 

Proof Each Frechet Hausdorff space is sequential Hausdorff and 

hence, .by (1.31), a quotient of the disjoint topological sum of 

i t s convergent ..sequences. Then, .by ,(2.13), the quotient map 

must be pseudo-open. Conversely, for any Hausdorff space X each 

convergent sequence in X i s a metric space and hence a Frechet 

space. It follows from (2.3.2) and (2.11) that X i s Frechet. 

2.15 Corollary Among Hausdorff spaces, the following statements 

are equivalent. 

(1) X i s a Frechet space. 

(2) X i s the continuous pseudo-open image of a metric 

space. 

(3) X is the continuous pseudo-open image of a f i r s t -

countable space. 

Proof By virtue of (1.32) and (2.14), X i s the continuous pseudo-

open image of a zero-dimensional, locally compact, complete metric 

space. Since metric spaces are first-countable and first-countable 

spaces are Frechet, (2) implies (3) and (3) implies (1) by (2.11). 
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As previously stated, first-countable T^-spaces are 

precisely the continuous open images of metric spaces. In view 

of (1.30) and (2.14), Franklin posed and answered negatively the 

question of whether every first-countable (Hausdorff) space i s the 

continuous open image of a disjoint topological sum of convergent 

sequences. Any such sum Is a Baire space as are continuous open 

images of Baire spaces ( [5 ] , p.767). J.de Groot's Corollary i s 

applicable here because every convergent sequence in a Hausdorff 

space i s metrizable. However, many spaces are first-countable 

Hausdorff but not Baire spaces. The rationals Q_ is an example of 

such a topological space. 

An unanswered question of Alexandroff asks whether or 

«>not there "is -a >«*f ir-st-countable'ecompact- -Hausdorff - space vwith 

cardinality > c. The corresponding question for Frechet spaces 

i s t r i v i a l l y answered by the following. 

2.16 Proposition The one point compactification of any discrete 

space i s a Frechet space. 

Proof Let X* = X U {<*>} be the one point compactif ication of the 

discrete space X. For any subset A of X*, 0 0 e(cl A)-A i f and only 

i f A contains i n f i n i t e l y many points. Moreover, any sequence 

{x^ : n E io} i n A satisfying = x m i f and only i f n = m converges 

to 0 0. Therefore, i f °° e e l A, A contains a sequence converging to 0 0. 
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If x E (cl A)n X then, since X i s discrete, x e A. Hence X* 

i s Frechet 

The topological spaces X = (H x H ) / E
 a n d M̂., of (1.36) 

and (1.37) respectively, are sequential spaces with unique 

sequential limits which are not Hausdorff. Although i s not 

Frechet, the next result shows that X i s . 

2.17 Example There are Frechet spaces with unique sequential 

limits which are not Hausdorff. 

Proof Let H and X = (H x H ) ^ be as in (1.36). Recall that 

<f> : H x H — > X i s a quotient map of the first-countable space 

^x^H^onto^t'he^non-HauBdor-f'f^sequent'ial^'sp'ace"X-'which *has unique 

sequential limits. To establish that X i s Frechet, i t suffices 

to prove that <j> i s a pseudo-open map. Let x e X and suppose that 

U i s an open neighbourhood of <J> ̂ (x). If x E X-{q, i} then 

<j> ''"(x) = x and for any neighbourhood V of x such that V fl A = 0, 

x e U H V = *(U n V) C <J)(U). If x = q and G i s an open neighbour­

hood of A^ disjoint from A ^ q e <J> (U H G) = int <j>(un G) C int <J>(U) . 

Similarly, i f x = i then i E <f>(U). Thus <j> i s continuous pseudo-

open and X i s Frechet. 
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Let Y be a Frechet space with, unique sequential limits. 

It follows from (1.41) that i f each point of Y has a neighbourhood 

basis consisting of countably compact sets, then Y i s Hausdorff. 

The succeeding example shows that simple compactness i s not 

enough to ensure that Y i s Hausdorff. 

2.18 Example There i s a countable, compact, Frechet space with 

unique sequential limits which i s not Hausdorff. 

Proof Let Y = (W x hi)U {p, q> with p f q and {p, q} H (hi x -hi) j 0. 

Let each ( i , j) e W x W be an isolated point. For a basis of 

neighbourhoods of p take a l l sets of the form {p} U ( U {(i,j) : i , j e hi; 

i . >_ k}) where k e M, and for q take a l l sets of the form 

i^U (\J{±, j) : i , j e W; j >_ j ' } ) where each j e hi. The topological 

space Y i s compact because i f U and V are open neighbourhoods of p 

and q respectively, then Y-(U U V) is f i n i t e . It i s also clear that 

Y i s not Hausdorff since p and q cannot be separated by disjoint 

open sets. Then, since Y-{p, q} i s discrete, i f some sequence converges 

to two distinct points, they must be p and q. However,a sequence 

{(i ^ , j ) : n E co} in W x W can converge to p only when { i ^ : n e w} 

is unbounded, and to q only when { i ^ : n e co} i s bounded. Therefore 

Y has unique sequential limits. It remains to prove that Y i s 

Frechet. Let A be a subset of Y. Each point i n Y-{q} has a countable 
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neighbourhood basis. Thus for each y e Y-{q}, y E c l A i f and. 

only i f there exists a sequence in A converging to y. If for each 

i E W, A n ({i} x hi) i s f i n i t e , q £ c l A. If for some i i t i s 

inf ini te , there i s a sequence in A converging to q. Hence Y i s a 

Frechet space. 

The topological product spaces X x X and Y x Y, where 

X and Y are the non-Hausdorff Frechet spaces of (2.17) and (2.18) 

respectively, are not Frechet. In fact, these products are not 

even sequential. If these product spaces were sequential then, 

by (1.38.2), X and Y would be Hausdorff. Similarly, the spaces 

Q x and £' x OJ of (2.4.2) are products of Frechet spaces 

which are not sequential. Example 2.19 shows that this need 

not always be the case. This example also demonstrates that the 

term "sequential" cannot be replaced by "Frechet" in (1.24) and 

(1.25). 

2.19 Example There i s a product of two Hausdorff Frechet spaces 

which i s sequential but not Frechet. In addition, one of the 

spaces i s normal, compact, and first-countable. 

Proof Let X be the real l ine with the integers ident if ied, and 

let I = [0, 1] be the closed unit in terval . Both X and I are 

Hausdorff. Furthermore, X i s Frechet and I i s a normal, compact 

first-countable space. It follows from (1.25.2) that X x I i s 
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sequential. To see that X x I i s not Frechet, define A C X x I 

by A = U {A : n e W} where A = {(n - -) : k E W}. Then J n n k n 

(0, 0) E c l A since (0, 0) e c l {fr-1, -) : n E W} and 
n 

{(n - 1 , : n e W} CL A. But no sequence i n A converges to (0, 0) 

because no sequence contained i n A converges i n R x I to (k, 0) 

for any k e Z. 

2.20 Example The product of two continuous pseudo-open maps 

may be a quotient map without being continuous pseudo-open. 

Proof Let X and I be the Hausdorff Frechet spaces of (2 .19) . 

By (2.13), the quotient maps <|>x : X* > X and cf> : I * > I 

are continuous pseudo-open. Since X x I i s sequential, (1.35.2) 

implies that tb x <j) • X* x I * > X x I i s a quotient map. 
X i 

However, <f> x A cannot be continuous pseudo-open because X* x I * X X. 

i s f i r s t - c o u n t a b l e but X x I i s not Frechet. 

The next two r e s u l t s , which further i l l u s t r a t e the 

non-productive nature of Frechet spaces, generalize Harley's 

Theorem ( [12]) . The author provides the proof. 

2.21 Lemma The product of two Frechet spaces, one of which i s 

d i s c r e t e , i s Frechet. 
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Proof Let X and Y be Frechet spaces, and assume that Y i s 

discrete. Let B be a subset of the topological product space 

X x Y , and suppose that (u, v) e c l B. Since Y i s discrete, 

U x {v} is a neighbourhood of (u, v) for any neighbourhood U of 

u. Therefore v e {y e Y : (x,y) e B}. Then u e c l {x e X : (x,v) e B} 

and there is a sequence '{û  : n e to } in {x : *(x,v) e *B} converging 

to u. The sequence {(u n > v) : n e t o } i s contained in B and 

converges to (u, v). 

2.22 Theorem Let X be a Frechet space. Let A be a subset of 

X satisfying the property : there i s a sequence {U^ : n e to } 

''"o'f open subsets of X such that"""(T)""U^C."*u
n+1 >' (2) A i s •contained 

in U = U {U : n e t o } , and (3) A U U i s not open. Let X / A n n r /A 

denote the quotient space obtained from X by identifying the 

points in A. Then i f X is ^ and Y i s Hausdorff, X^A x y i s 

Frechet i f and .only i f Y is discrete. If A i s closed, the T^ 

hypothesis may be replaced by regularity. 

Proof If .Y i s discrete then, since i s Frechet (by 2.3.4), 

the topological product space X ^ x Y i s Frechet (by 2.21). 

To establish the converse, let i = g(A) where g : X > 

i s the quotient map, and suppose that y is not an isolated point 
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of Y. Then y e cl(Y-{y}) and consequently, since Y is Frechet 

(by 2.3.2), there i s a sequence {y^ : n E co} in Y-{y} converging 

to y. Since Y i s Hausdorff, i t can be assumed without loss of 

generality that the y n are distinct. Let W = -U {U-(UnU A) x {yn} : n E co}, 

Then ( i , y) E c l W. Indeed, this Is so because AU being not open 

implies that ( i , y^) e c l (U-(U n U A) x {y n}). Since X^A x Y i s 

Frechet, there exists a sequence {(r^, s^) : k E to} in W converging 

to ( i , y) . The Hausdorff hypothesis on Y implies that {s^ : k E to} 

i s a subsequence of {y : n E co}. Let y = s, for each k E co. n Jn n, k k 

Thus {(r, , y ) : k E to} i s a sequence in W converging to ( i , y) k n k 

with each r, e U-(Un U A). Since X i s T, (or X is regular and A 
k k ± 

i s closed), for each k E to there i s an open neighbourhood of A 

k such that r, t G, . Let U = U D ( H {G. : j < k}) for each n, k k n n j — 

k e co; and let m̂  be the largest member of to satisfying r ^ i U^m^_i-j« 

It follows that U (U : k E to} is an open neighbourhood of A 
™k 

disjoint from the sequence {r^ : k E to}. But then {r^ : k E to} 

cannot converge to i which contradicts {(r, , y ) : k E to} converging 
K. II. 

k 
to ( i , y). Therefore {y} must be open, and the proof i s complete. 
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Several examples of sequential spaces which are not 

Frechet have already been given. After another such example, a 

characterization of those sequential spaces which are also Frechet 

follows. The non-Frechet sequential space M of (1.17) is used 

to give a characterization in the Hausdorff case. 

2.33 Example There is a compact sequential Hausdorff space 

which i s not Frechet. 

Proof Let F be an i n f i n i t e maximal pairwise almost disjoint 

family of i n f i n i t e subsets of the natural numbers hi (Two sets U 

and V are almost disjoint i f and only i f UH V is f i n i t e ) . To 

establish the existence of F, let G be the collection of a l l 

i n f i n i t e pairwise almost disjoint families of i n f i n i t e subsets 

of W. The set G is partially ordered by set inclusion. Note that 

G ^ 0. Indeed, for each real number r there i s a sequence 

{x^ : n E co} of rational numbers converging to r. Then i f 

f : Q > W i s a bijection between the rationals and the natural 

numbers, {{f(x ) : n e co} : r e R} e G. Now, let {E : a £ A} 
Vi 3. 

be a chain in G and let E = U {E : a E A}. For any pair E, 
cl 

F £ E there is some c e A such that E, F e E which implies that 

c 

E O F i s f i n i t e . Therefore E E G and consequently E is an upper 

bound of the chain {E : a E A}. Then, by Zorn's lemma, 
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there i s a maximal element F of the set G. 

Let i() = F U N with points of W isolated and neighbour­

hoods of F E F those subsets of ty containing F and a l l but f i n i t e l y 

many points of F. Clearly ty is Hausdorff. Furthermore, ty i s local l y 

compact because F U {F} i s a compact neighbourhood of F in It 

...follows-.from ..(.[,16.].,. JTheorem 5.21) -that •= 4-..U .{•«*>•}., ...t-he-one -point 

compactification of ty, i s a compact Hausdorff space. By definition 

of the topology on ty*t i t is clear that °° e c l W. However, i f 

{x n : n e to} i s a sequence of distinct points in W then, since F 

is maximal, {x : n E to} f l F i s i n f i n i t e for some F e F and hence n 

{x^ : n E to} converges to F. Therefore no sequence in W converges 

,„to .^and—so l.̂ *.,.is.„not,.iEr.echet. 

It remains to show that ty* is a sequential space. Suppose 

that V i s a sequentially open subset of ty*, and let x E V. If 

x e W, x E int V because {x} is open. If x e F then, since any 

sequence of distinct points in x converges to x, x-V is f i n i t e and 

hence {x} U {n : n e x O V} is a neighbourhood of x contained in V. 

Assume now that x = 00. Since F U {F} is a neighbourhood of F E F 

and ty*-\] is compact for each open neighbourhood U of °°, any sequence 

of distinct points of F converges to °°. Accordingly, V contains a l l 

but f i n i t e l y many members of F. Let F-V = {F i : i <_ m} where 

m E W. If {U^ : i _< m} i s any f i n i t e collection of open sets satisfying 

F . d U. then, since F i s maximal, U-[V.U ( (J {U : i £m})] i s f i n i t e 
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and consequently IJJ*-V is compact. Hence TJJ* being Hausdorff 

implies that ifj*-V is a closed compact subset of i f i . Therefore 

V is open whenever » e V. Thus every sequentially open subset 

of i s a neighbourhood of each.of i t s points, and so i s 

sequential. 

. Since no sequence in hi converges to •», the singleton 

{<»} i s sequentially open but not open in the subspace i p*-F. 

Hence ^*-F is a non-sequential subspace of ty*. The next result 

proves that such a subspace must always exist in sequential spaces 

which are not Frechet. 

2.24 Proposition A sequential space i s Frechet i f and only i f 

i t is' hereditarily sequential. 

Proof If a sequential space i s Frechet, every subspace i s Frechet 

and hence sequential. Conversely, i f a topological space X i s 

hereditarily sequential, (1.35.1) implies that 6^ i s a hereditarily 

quotient map with Frechet domain. Then -$ is continuous pseudo-open 
A 

and therefore X i s Frechet. 



2.25 Theorem A Hausdorff sequential space i s Frechet i f and only 

i f i t contains no subspace which, with the sequential closure 

topology, i s homeomorphic to the topological space M of (1.17). 

Proof Let Y be a subspace of a sequential space X, and l e t 

h : M > Y g be a homeomorphism of M onto the subspace Y provided 

with the sequential closure topology. If Y ̂  Y , Y i s a non­

sequential subspace of X and hence, by (2.24), X i s not Frechet. 
If Y = Y then, since M-W is a non-sequential subspace of s 

M, Y-h(W) = h(M)-h(W) = h(M-W) i s a non-sequential subspace of X. 

Again by (2.24), X i s not Frechet. 

Conversely, suppose that X i s not Frechet. Then there 

exists a subset B of X such that c l B ̂  B' where B' i s the set of 

limits of sequences in B. Since X i s sequential, there i s a 

sequence S = {x_̂  : i e co} in B' converging to some point x e(cl BVB'. 

The sequence S i s not frequently in B because otherwise i t has a 

subsequence in B converging to x t B'. Consequently, i t can be 

assumed that the x. are distinct and S C B'-B. Then, since 
l 

x^ e B'-B, there exists a sequence {x^ : j e co} In B converging 

to x^. The x ^ (for i , j e to) may be taken a l l distinct. This i s 

so because X i s Hausdorff and S converges to x; that i s , there exists 

a family {U. : i e to} of pairwise disjoint open sets satisfying 
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e U\. Since x.-̂ .B', no sequence consisting of the x^ converges 

to x. Thus the topological space Y where the subspace 
s 

Y = {x} U (x. : i e W} U {x. . : i , j e hi} is homeomorphic to M. 1 xj 

It i s easy to verify that the non-Frechet Hausdorff 

sequential space ty* of (2.23) satisfies (2.25). If {E^ : i c co} 

i s any collection of pairwise disjoint subsets of hi then, since "F 

i s maximal, for each i e co there exists F. e F such that F.H E. 
' x x x 

i s i n f i n i t e . Thus {F^H E. : i e w} i s a pairwise disjoint sequence 

in F converging to °°. Let in±^ 3 E co} be any sequence i n E^ 

such that the n i j (j E w) are distinct. Clearly, each i^^j : j e co} 

converges to F^ D E^ and the n ^ ( i , j e co) are a l l distinct. Then, 

since no sequence in hi converges to «>,• the subspace 

{<»} U {F^O E_̂  : i e hi} U {n^j : i , j e hi} provided with the sequential 

closure topology i s homeomorphic to M. 



Chapter 3 

Generalized Sequential Space Methods 

When a topology is specified by i t s open sets, the 

importance of basis and subbasis i s well-known. In the same way, 

.the ...concepts ...of ,,cony.er,genc.e „b,asis.„and ..convergence...subbasis .are 

prominent in the study of topological spaces whose topologies are 

determined by their convergence classes. For example, one can study 

convergence subbases and convergence bases consisting of convergent 

sequences in lieu of studying sequential spaces and Fre'chet spaces 

respectively. The notion of convergence subbasis i s also useful in 

the investigation of generalized sequential spaces. In this chapter, 

--•the'"topological "''spates ̂  

sets are examined; these spaces are called m-sequential (m-Frechet) 

spaces. It w i l l be shown that any topological space can, for 

sufficiently large m, be so described. 

3.1 Definition Let X be a set and let C be a class of pairs (S, x) 

where S i s a net and x i s a point in X. The class C i s a 

p-convergence class on X i f and only i f i t satisfies : If ( { x
n
 : n e D},x)eC 

and E i s a cofinal subset of D, then ({x : n e E}, x) e C. A 

n 

p-convergence class in which a l l of the nets are sequences i s called 

a sequential p-convergence class. 
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Observe that each convergence class Q16] , p..74) i s a 

p-convergence class but the converse need not be true. The 

convergence associated with a p-convergence class C on a set X 

can be studied topologically by means of the largest topology on X 

in which the C-nets (i.e., a l l of the nets in C) are convergent. 

3.2 Theorem Let C be a p-convergence class on a set C. For any 

subset A of X, l e t t - c l A be the smallest set containing A and closed 

with respect to the formation of limits of C-nets. Then t - c l i s a 

closure operator and hence defines a topology T(t) for X ([16], 

Theorem 1.8). This i s the largest topology on X in which the C-nets 

converge. 

Proof It is f i r s t shown that t - c l i s a closure operator. Since 

a net i s a function on a directed set, and the set i s non-empty by 

definition, t - c l <f> i s empty. By definition of t - c l , A C t - c l A for 

each subset A of X. Then t - c l A C t - c l ( t - c l A). Again by definition 

of t - c l , t - c l ( t - c l A) i s the smallest set containing t - c l A and closed 

with respect to the formation of limits of C-nets. But t - c l A i s 

closed with respect to the formation of limits of C-nets and so 

t - c l ( t - c l A) CZ t - c l A. Hence t - c l A = t - c l ( t - c l A). It remains to 

prove that t-cl(A U B) = ( t - c l A) (J ( t - c l B). Clearly 

A U B C ( t - c l A) U ( t - c l B) C t - c l (A U B) . To establish the opposite 

inclusion, l e t S = {x : n e D} be a net in ( t - c l A) U ( t - c l B) with 
n 

(S, x) e C. Let D A = {n E D : X r e t - c l A) and D g = {n E D : X R E t - c l 
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Since D.U D_ = D, either D. or D„ is cofinal in D. It can be A B A B 

assumed without loss of generality that is cofinal in D. Then 

S.. = {x : n e D.} is a subnet of S in t - c l A and (S,, x) e C. 1 n A 1 

Hence x e t - c l A C" ( t - c l A) U ( t - c l B) and consequently 

( t - c l A) U ( t - c l B) i s closed with respect to the formation of 

limits of C-nets. 

Let (S, x) e C. If S does not converge to x in (X, T(t)), 

there i s an open neighbourhood U of x such that S i s not eventually 

in U. Then S i s frequently in X-U and there i s a subnet Ŝ  in X-U 

with (S^, x) e C. But since U i s open, X-U = t - c l (X-U) and hence 

x e X-U. The contradiction shows that S must converge to x with 

respect to T(t), and hence that each C-net converges in (X, T(t)). 

Suppose now that T^ i s a topology on X in which the C-nets converge. 

I f V e T^ then for each net pair (S, x) e C such that S C X-V, 

x e X-V. Thus X-V = t-cl(X-V) which implies that V e T(t). 

/ 

3.3 Corollary Let X be the topological space provided with the 

topology T(t) derived from a p-convergence C. Then X i s T^ i f and 
only i f C satisfies : If S = {x : n e D} i s a net i n X such that 

n 
x = x for each n e D and y f x, then (S, y) £ C. 
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Consequently, i f C i s a sequential p-convergence class 

and X has unique sequential limits, X i s T^. 

Proof If X is and y ̂  x, S cannot converge to y and so (3.2) 

implies that ( S , y) £C. Conversely, i f S q is a net in {x} and z ̂  x 

then, since (S Q, Z) £ C, z £ t-cl{x}. Hence {x} is closed and there­

fore X is T 1. 

3.4 Proposition Let X be the topological space provided with the 

topology T(t) derived from a sequential p-convergence class C. 

Let C(T(t)) denote the class of convergent sequences in X . Then 

' T = C(T'(t)') i f C s a t i s f i e s : 

(1) If S = {x : n e to} i s a sequence such that x = x 

n n 

for each n e to, then ( S , x) e C. 

(2) If S is a sequence and ( S , x) £ C then there i s a 

subsequence of S, no subsequence of which together with x i s a member 

of C. 

(3) If ( S , x) e C and (S, y) e C then x = y. 

Proof It i s clear that C<lC(T(t)). To prove the opposite inclusion, 

suppose that ( S , x) £ C. By (2), there i s a subsequence S q = {y^ : n e to} 

of S, no subsequence of which together with x i s a member of C. It 

can be assumed without loss of generality that y 4 x for each n e to. 
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Either there exists ( S ^ , z) e C such that is a subsequence of 

S q or no such sequence pair exists. In the f i r s t case, any C-net 

in S^U {z} is either a subsequence of or frequently equal to 

some point in S^. Then conditions (2) and (3) imply that U {z} 

is a closed subset of X disjoint from x. In the second case, S 
o 

is a closed subset of X disjoint from x. In both cases, S has a 

subsequence not converging to x. Hence ( S , x) £ C(T(t)). 

Another closure operator is defined in the following 

proposition. 

3.5 Proposition Let C be a p-convergence class on a set X, and 

for each subset A of X let c-cl A be the union of A and the limits 

of those C-nets contained in A. Then i f C is a convergence class, 

c-cl i s a closure operator, and ( S , x) e C i f and only i f S converges 

to x with respect to the topology associated with c - c l . 

Proof This is given in ([16], Theorem 2.9). In the presence of a 

convergence class, c-cl is precisely the closure operator described 

in that theorem. 

3.6 Corollary If C^ and C^ are convergence classes on a set X 

and T and T„ are the associated topologies, then C C C. i f and a 3 a 3 

only i f Ta^> T . 
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Proof If (S, x) e C^, S i s eventually i n each neighbourhood of x 

in (X. T ). Thus T.CT T implies that S i s eventually in each a 0 a 

neighbourhood of x i n (X, T.) and hence that (S, x) e C . Conversely, 
p p 

suppose that C C C„ and let U e T„. If (S, x) e C and S CI X-U, 

then (S, x) E C c and U e T Q implies that x e X-U. Therefore X-U 
""p P 

i s closed in (X, T ) and so U e T . 
a a 

3.7 Proposition Let C be a p-convergence class on a set X, and 

let T(t) be the topology for X associated with the t-closure 

operator. Then T(t) Is the topology with the smallest convergence 

class containing C. 

Proof Let C(T(t)) denote the convergence class for (X, T(t)). 

According to (3.2), T(t) i s the largest topology on X in which the 

C-nets converge. Then, i f T i s any topology on X whose convergence 

class C(T) contains C, T O T ( t ) . The preceding result implies that 

C(T(t))CC(T).-

If C i s a p-convergence class on a set X, then c - c l need 

not be idempotent and hence not a closure operator. Let T(c) denote 

the topology associated with c-cl whenever c - c l ( c - c l A) = c-cl A 

for each subset A of X. Clearly, c - c l A i s a subset of t - c l A, and 

i t can be a proper subset. Observe that a topological space i s 

Frechet i f and only i f for each subset A of X, c l A = c-cl A with 



respect to the convergent sequences in X; similarly, X i s sequential 

i f and only i f c l A = t - c l A. Therefore, since not a l l sequential 

spaces are Frechet, c - c l and t - c l need not coincide. In particular, 

consider the topological space M of (1.17). As previously observed, 

no sequence in hi x W converges to 0. Hence c-cl(W x hi) = M-{0} 

whereas t-cT(W x hi') = "M. 

The t-closure operator, however, can be constructed 

inductively by iteration of c - c l . Define A° = A and for each 
ct 6 

successor ordinal a l e t A = c-cl A where a = B + 1 for some ordinal 

8. ( 3+1 denotes the ordinal successor of 3). If a i s a limit 

ordinal define A a = U {A^ : 3 < a}. It i s clear that A a C t - c l A 

for each ordinal a, and i f A a = t - c l A then A^ = t - c l A whenever 

3 _> a. For any subset A of X the cardinality of the number of 

iterations of c-cl to obtain t - c l A i s <_ 2 m where m i s the cardinality 

of the set X. Then, since the ordinals are well-ordered, for each 

x e t - c l A there Is a smallest ordinal n such that x belongs to the 

n-th iterate of c - c l on A; that i s , x e A whenever a _> n and x i A 

whenever a < n. 

3.8 Definition Let C be a p-convergence class on a set X and l e t 

A be a subset of X. 

(1) A point x e t - c l A is said to be of Baire order n 

(write ord x = n) with respect to C and A i f and only i f n i s the 

smallest ordinal such that x is a member of the n-th iterate of 

c-cl on A. 



(2) The Baire order of a set A Cord A) i s defined as 

sup {ord x : x e t - c l A}. 

3.9 Proposition Let C be a p-convergence class for a set X. 

Then TCt) = TCc) i f and only i f every subset of X has Baire order <_ 1. 

Proof The ̂ topology T(t) coincides-with-'T-(c-) — i f -and -only i f 

t - c l A = c-cl A for each subset A of X, which occurs i f and only 

i f every subset of X has Baire order <_ 1. 

3.10 Definition Let C be a p-convergence class on a topological 

space X. 

Cl) C is a convergence subbasis for X, or for the 

topology on X, i f and only i f the topology on X Is the topology with 

the smallest convergence class containing C. 

C2) C i s a convergence basis for X, or for the topology 

on X, i f and only i f C i s a convergence subbasis for X and every 

subset of X has Baire order _< 1. 

3.11 Proposition Let C be a p-convergence class on a topological 

space X. 

Cl) C is a convergence subbasis for X i f and only i f 

X has topology TCt). 

(2) C i s a convergence basis for X i f and only i f X has 

topology TCc). 
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Proof By virtue of (3.7) and (3.10), (1) i s clear. Then (1) 

together with (3.9) implies (2). 

3.12 Definition Let m be an.infinite cardinal number. An m-net 

i s a net whose directed set i s of cardinality <_ m. 

3.13 Definition Let X be a topological space, and let m be an 

i n f i n i t e cardinal number. 

(1) X i s m-sequential, or an m-sequential space, i f 

and only i f i t has a convergence subbasis in which a l l of the nets 

are m-nets. 

(2) X i s m-Frechet, or an m-Fre'chet space, i f and only 

..-if. -it-^as^a 1^ 

3.14 Proposition (1) Every m-Frechet space i s m-sequential. 

(2) If a topological space i s m-sequential then i t 

is m^-sequential whenever m̂ >_ m. Similarly, an m-Frechet space 

is m^-Frechet i f > m. 

Proof The proof of (1) is obvious because, by definition, every 

•convergence basis i s a convergence subbasis. Since every m-net 

is an m.-net for mn >_ m, (2) i s also clear. 
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The next two results give several equivalent formulations 

of the definitions of m-sequential space and m-Frechet space 

respectively. 

3.15 Proposition The following statements about an arbitrary 

-topological space X-are-equivalent. 

(1) X is m-sequential. 

(2) X has topology T(t) with respect to some p-convergence 

class consisting of m-nets in X. 

(3) A subset F of X i s closed i f and only i f no m-net 

in F converges to a point not in F. 

(4) A subset U of X is open i f and only i f each m-net 

"in X converging to a point lri""U i s eventually in U. 

(5) The class C of a l l pairs (S, x) where S is an m-net 

in X converging to the point x i s a convergence subbasis for X. 

Proof If X i s m-sequential then, by definition, X has a convergence 

subbasis in which a l l of the nets are m-nets. According to (3.11), 

X has topology T(t) with respect to and therefore (1) implies (2). 

If F i s a subset of X with no m-net in F converging to a point not 

in F, no C^-net in F converges to a point not in F; consequently 

F = t - c l F = c l F and (2) implies (3). Suppose that U Is a subset of 

X such that each m-net i n X converging to a point in U i s eventually 

i n U. Let S be an m-net in X-U converging to a point x . Then x e X-U 
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because otherwise S i s eventually in U. Thus (3) implies that X-U 

i s closed and hence that U is open. To establish that (4) implies 

(5), l e t T be any topology for X in which the C-nets converge. 

Then i f V e T, every m-net in X converging to a point in V i s 

eventually in V, and so V i s open by (4). Accordingly X has the 

largest topology i n -which-the .C-nets-converge. .It .follows ..from 

(3.6) that (4) implies (.5). By definition, (5) obviously implies (1). 

3.16 Proposition For any arbitrary topological space X, the 

following are equivalent. 

(1) X i s m-Frechet. 

(2) The class C of a l l pairs (S, x) where S i s an m-net 

"in X converging to x i s a cohvergerice"'basisJ ¥ or X. 

(3) The closure of any subset A of X is the set of limits 

of m-nets in A. 

(4) X has topology T(c) with respect to some p-convergence 

class consisting of m-nets in X. 

Proof If X i s m-Frechet, X i s m-sequential and hence the class C 

i s a convergence subbasis for X. Moreover, every subset of X has 

Baire order <̂  1. Therefore C i s a convergence basis and (1) implies 

(2). It follows from (2) that X has the topology T(c) associated 

with C. Consequently (2) implies (4). In addition, (2) i s equivalent 

to (3) because for each subset A of X, x e c l A i f and only i f there 

exists an m-net in A converging to x. The proof that (4) implies (1) 

i s clear form (3.11). 



The following corollary together with (3.15) and (3.16) 

shows: 

(1) A topological space is sequential i f and only i f 

i t has a convergence subbasis in which a l l of the nets are sequences. 

(2) A topological space i s Frechet i f and only i f i t 

'has a convergence "'basis i n which a l l "of "the "nets are sequences. 

Furthermore, this result implies thkt.'eyiery Frechet space i s 

m-Frechet and that every sequential space i s m-sequential. 

3.17 Corollary (1) A topological space i s sequential i f and 

only i f i t is /^-sequential. 

(2) A topological space i s Frechet i f and only i f i t 

i s U -Frechet. 

Proof Since every sequence i s an h{o~net, the sequential spaces 

and the Frechet spaces obviously satisfy (3.15.3) and (3.16.3) 

respectively. To prove the converses, i t i s f i r s t shown that every 

•non-trivial /^-rnet has.a cofinal sequence. Let {x n : n e D} be 

an }-jo-net and l e t g :. to '> D be a bisection. Because D i s a 

directed set, for each k E to there exists n^ E to such that g C 1 1 ^ ) ^_ g C O 

for every i < k . Then {x , N : k E to} i s a subnet of {x : n E D}. 
- g ( n k ) n 

Suppose that F i s a sequentially closed subset of a topological space 

X. If S i s an hj-net i n F converging to some point x, x e F since 

otherwise S has a cofinal sequence which i s eventually in X-F. Then 



i f X i s ^ - s e q u e n t i a l , F is closed by (3.15). Thus (1) i s 

proved. To complete the proof of (2), suppose that A i s a subset 

of an |y -Frechet space X and let x e c l A. By virtue of (3.16), 

there i s an /^-net in A converging to x. Then, since every non-

t r i v i a l • rj -net has a cofinal sequence, there exists a sequence in 

,A...converging,,to x.. 

In view of (3.15) and (3.16), i t is easy to see that many 

of the properties of sequential spaces and Frechet spaces can be 

generalized to m-sequential spaces and m-Frechet spaces respectively, 

by simply replacing "sequences" with "m-nets". This i s so whenever 

those properties of sequences used, can be generalized to m-nets. 

Nevertheless, for greater generality i t i s convenient to state 

"result's ih^terWs**'^ . 

-Let C be the class of convergent m-net pairs in a topological 

space X. According to (3.15), C is a convergence subbasis for X i f 

and only i f X i s m-sequential. However, i t is possible to have a 

convergence subbasis which is a proper subset of C. Although using 

a smaller convergence subbasis may increase Baire order, there i s an 

upper bound. 

3.18 Proposition If X i s an m-sequential space with any convergence 

subbasis, then no element of X has Baire order equal to the least 

ordinal of cardinality m . (m denotes the cardinal successor of m) 
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Proof Let to denote the least ordinal of cardinality m~*\ Then 

a i s of the form 8 + 1 for some ordinal 3, where to is the least 
p 

ordinal of cardinality m. Thus to^ i s regular and hence not the 

supremum of any set B of s t r i c t l y smaller ordinals i f the cardinality 

of B i s _< m. Assume that A is a subset of X and let x e c l A. 

Since X is m-sequential, there exists an m-net {x n : n E D} such 

that x e c l A and ord x < ord x. Then ord x = sup {ord x : n e D} n n ^ n 

and consequently ord x < ">a-

3.19 Theorem Let C be a convergence subbasis for a topological 

space X, l e t Y be a subset of X, and l e t V be the trace of C on Y. 

(i.e., V = {((x n : n e D}, x) e C : X r e Y for each n e D, x e Y}.) 

Then P i s a convergence subbasis for a topology on Y which is larger 

than the relative topology. This induced topology coincides with 

the relative topology on Y i f Y i s closed or open in X. The two 

topologies coincide for a l l subsets of X i f and only i f C i s a 

convergence basis. 

Proof The space X has the topology T(t) associated with C, and the 

trace V i s clearly a p-convergence class on Y. For each subset A of 

Y define u-cl A to be the smallest set containing A and closed with 

respect to the formation of limits'of P-nets. By (3.2), u-cl i s a 

closure operator on Y and hence defines a topology T(u) for Y. It 
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follows from (3.11.1) that V i s a convergence subbasis for T(u). 

Furthermore, T(u) i s larger than the relative topology on Y 

because the P-nets converge in the relative topology and T(u) i s 

the largest topology on Y in which the P-nets converge. 

To establish that these topologies on Y coincide when 

Y i s closed or open, or when C i s a convergence basis, i t suffices 

to show that the two topologies have the same closed sets. Let 

F be a subset of Y. By definition of the u-closure operator, 

u-cl F CZ ( t - c l F) p| Y. To prove.the opposite inclusion, assume 

that x e ( t - c l F) H Y with ord x = X with respect to C and F, 

and proceed by transfinite induction on X• If X = 0, 

( t - c l F) H Y = F° H Y m F fVY = F C u-cl F. If X = 1 then 

"(t-cT F) Pi Y =~r 1 n' Y = ( c - c T T ) r T T C ti-cl F. Thus "the proof i s 

complete for the case in which C is a convergence basis. For X: > 1 

consider separately the cases Y i s closed and Y i s open. F i r s t , 

suppose that Y i s closed. Then t - c l F C. t - c l Y = Y. By the 

induction hypothesis, there exists a net pair ( { x
n

 : n e ^W, e C 

with x n E ( t - c l F) H Y and ord X r < X for each n E D. Consequently 

each x e u-cl F and ({x : n e D}, x) e V, which implies that n n 

x e u-cl F. Assume now that Y i s open. By the induction hypothesis, 

there i s a net pair ({y : n e D}, x) e C with y E t - c l F and r Jn 'n 

ord y < X for each n E D. Since Y i s open and x e Y, the net •'n 

{y : n E D) i s eventually i n Y. Thus E = {n £ D : x e Y} i s a 
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cofinal subset of D and so ({y n '• n e E}, x) e V. Therefore 

y^ e u-cl F for each n e E implies that x e u-cl F. 

It remains to show that i f the two topologies are the 

same then C i s a convergence basis. If C is not a convergence 

basis for X, there i s at least one Baire order 2 situation. 

That i s , there exists a subset B of X with x e t - c l B and 

ord x = 2. Let Y = B U {x}. Then x e ( t - c l B) H Y but, since 

ord x = 2, (c-cl B) n Y = B and no net in B converges to x e Y. 

Thus x £ u-cl B and the topologies are different. 

3.20 Corollary Every open or closed subspace of an m-sequential 

space i s m-sequential. A topological space i s m-Frechet i f and 

only i f i t i s hereditarily m-Frechet i f and only i f i t i s 

hereditarily m-sequential. 

Proof Let Y be an open or closed subspace of an m-sequential 

space X with a convergence subbasis C consisting of m-nets. 

According to (3.19), the trace of C on Y i s a convergence subbasis 

for the relative topology on Y. Hence Y i s m-sequential. 

It i s obvious that every hereditarily m-Frechet space i s 

m-Frechet. Conversely, i f X i s an m-Frechet space with a convergence 

basis C consisting of m-nets then, by (3.19), for every subspace Y 

of X the trace of C on Y i s a convergence subbasis for the relative 

topology on Y. Thus Y i s m-sequential and consequently every 



m-Frechet space is hereditarily m-sequential. In addition, any 

subspace of an m-Frechet space is hereditarily m-sequential. It 

remains to show that every hereditarily m-sequential space i s 

m-Frechet. Assume that X i s a hereditarily m-sequential space 

with a convergence subbasis C in which a l l of the nets are m-nets. 

If Y i s a 'subspace of -X, -then -Y -is- m-sequenti-a-L- -and - therefore -has 

a convergence subbasis V consisting of m-nets. The trace of C 

on Y surely coincides with V. The preceding theorem implies that 

C i s a convergence basis for X and hence that X i s m-Frechet. 

3.21 Proposition If X i s the disjoint topological sum of any 

family {X : a E A} of topological spaces where each X has a a a 

convergence subbasis C , then C =U{C : a e A} i s a convergence 
Si SL 

subbasis for X. If each C is a convergence basis, so i s C. 
Si 

Proof Let (S, x) E C and suppose that U i s an open neighbourhood 

of x in X. Then (S, x) e C for some a E A and therefore, since 
cL 

U f l X i s open in X , x E U H X for a l l n sufficiently large, a a n a . 

Thus the convergence class on X contains C. Now let T denote the 

usual topology on X and l e t T^ be any topology for X whose 

convergence class CCT )̂ contains C. If V £ T, V D X £ i s not open 

in X for some c E A. From this, i t follows that there exists a 



- 98 -

C-net in X£-V converging to a point y e V Pi X c > Then, since 

(Sn , y) e C and C C C ( I ), V £ T . Consequently, T i s the largest X ex ct 

topology on X in which the C-nets converge, or equivalently by 

(3 .6) , T is the topology with the smallest convergence class 

containing C. Hence C i s a convergence subbasis for X. 

- •Assume -now -that - each -C^.is- a -convergence-.basis.. To 

complete the proof, i t suffices to show that every subset of X 

has Baire order <̂  1 with respect to the convergence subbasis C. 

Let F be a subset of X. Then (c-cl F) f) X = c- c l (F) = c l (F) = 
a A a A a 

(cl F) D X . Therefore (c-cl F) fi X i s closed in X for each a a a 

a e A, and hence c-cl F i s closed in X. 

3.22 Corollary The disjoint topological sum of any family of 

m-sequential spaces i s m-sequential. The disjoint topological 

sum of any family of m-Frechet spaces i s m-Frechet. 

3.23 Definition Let C be a p-convergence class on a set X. For 

any function with domain X let fC denote the set of a l l net pairs 

({f(x n) : n e D}, f(x)) for ({X r : n e D>, X) e C. 
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3.24 Theorem Let f : X > Y be a function of a topological 

space X into a topological space Y, and l e t C be a convergence 

subbasis for X. 

(1) The function f i s continuous i f and only i f fC 

i s contained in the convergence class of Y. 

(2) If f is surjective, fC i s a convergence subbasis 

for Y i f and only i f Y is a quotient space. 

Proof (1) Let ({f(x ) : n e D}, f(x)) e f C. Since C i s a n 

convergence subbasis for X, each C-net belongs to the convergence 

class of X. Accordingly, {x^ : n e D} converges to x in X. Then, 

since f i s continuous, ( f ( x n ) : n e D} converges to f(x) in Y. 

Conversely, "let A be a closed subset of Y and suppose that 

({x^ : n e D}, x) e C with x^ e f ''"(A) for every n e D. Clearly 

each f ( x
n ) £ A. Because A i s closed and by hypothesis {f(x n) : n e D} 

converges to f(x), f(x) e A. Thus x e f '''(A) and f \ A ) = t - c l f ^"(A). 

Then, since C i s a convergence subbasis for X, f "'"(A) is closed. 

(2) By definition, fC i s a convergence subbasis for Y 

i f and only i f the topology on Y is the topology with the smallest 

convergence class containing fC. According to (3.6) and part (1), 

fC i s a convergence subbasis for Y i f and only i f the topology on 

Y i s the largest topology such that f i s continuous. 



- 100 -

3.25 Corollary Every quotient of an m-sequential space i s 

m-sequential. 

Proof Let f : X > Y be a quotient map of an m-sequential 

space X onto a topological space Y. The space X has a convergence 

subbasis C i n which a l l of the nets are m-nets. It i s obvious 

that each net "pair 'in -f C -is 'an-m-net-'pair. Then,-since "(3.24) 

implies that fC i s a convergence subbasis for Y, Y i s m-sequential. 

Example 2.5 shows that the quotient of a Frechet space 

need not be Frechet. Consequently, i f C i s a convergence basis 

for a topological space X and f i s a quotient map with domain X, 

i t i s only possible to conclude that fC i s a convergence subbasis 

for the quotient space. However, fC i s a convergence basis when­

ever f is continuous pseudo-open. 

3.26 Theorem Let f : X > Y be a surjection of the topological 

space X onto the topological space Y, and let C be a convergence 

basis for X. Then f is continuous pseudo-open i f and only i f fC 

i s a convergence basis for Y. 

Proof Let Y^ be a subspace of Y and let V be the trace of C on 

f "^(Y^). By virtue of (3.19), V i s a convergence subbasis for the 

relative topology on f ^"(Y^). If f i s continuous pseudo-open, then 

f i s hereditarily quotient and so fV i s a convergence subbasis for 

the relative topology on Y 1. Moreover, fV coincides with the trace 
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of fC on and hence (3.19) implies that fC i s a convergence basis 

for Y . . • 

Assume now that fC i s a convergence basis for Y. By 

(3.24.1), f i s continuous. Let x E Y and let U be an open neighbour­

hood of f "*"(y) in X. If f i s not pseudo-open, y E c l (Y- f (U)) and 

hence there i s a net pair ({f(x n) : n e D}, f(x)) E f C such that 

f(x) = y and each f ( x

n ) e Y-f(U). Consequently x n £ U for every 

n E D. Then, since x E U, the net {X r : n E D) does not converge 

to x in X. Therefore ({x^ : n E D}, X) £ C and the theorem i s 

proved by contradiction. 

>3...27~>,Cor,ollar.y...aEy 

space i s m-Frechet. 

Proof This follows from (3.26) i n the same way that (3.25) 

followed from (3.24). 

3.28 Definition Let m be an inf in i te cardinal number. A topological 

space i s m-first-countable, or an m-first-countable space, i f and 

only i f each point has a neighbourhood basis of cardinali ty <_ m. 

(Note that Ho -first-countable and first-countable are equivalent 

concepts.) 
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3.29 Proposition If X i s a topological space and m i s an in f in i t e 

cardinal, then each of the following implies the next. 

(1) X i s m-first-countable. 

(2) X is m-Frechet. 

(3) X i s m-sequential. 

(4) For any subset A of X, each point in c l A i s in 

c l B for some subset B of A with the cardinality of B <̂  m. 

(5) X i s 2m-Frechet. 

Proof (1) > (2) Let F be a subset of X and suppose that 

x e c l F. By hypothesis, x has a neighbourhood basis {U : a e A} 

a. 

with the cardinality of A <_m. Defining a < c i f and only i f 

U C U , A i s a directed set with order <. Because x e c l F, there 
C 3. exists x e U n F for each a e A. Then {x : a e A} i s an m-net in a a a 

F converging to x, and hence X i s m-Frechet. 

(2) > (3) This is clear since every convergence basis 

i s a convergence subbasis. 

(3) > (4) If X i s m-sequential, X has a convergence 

subbasis C in which a l l of the nets are m-nets. For x e c l A = t - c l A, 

the existence of a subset B satisfying (4) i s established by trans-

f in i te induction on the Baire order X of x with respect to A and C. 

If X = 0 then x e A and x e c l {x}. If X = 1, x e c - c l A and there 

i s an m-net pair (S, x) e C such that S i s an m-net in A converging 

to x. Clearly x e c l S and the cardinality of S i s <_m. By the 
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induction hypothesis, there exists an m-net pair ({x^ : n E D}, X) E C 

with x^ E c l A and ord x^ < X for each n E D. Consequently each 

x E c l B for some subset B of A with the cardinality of B < m. n n n J . n — . 

But then x E c l ( U {B : n e D}), L/{B : n E D} C A, and the 
n n 

2 
cardinality of . N {.B : n E J)} i s < .m = m. 

n — 

(4) > (5) Let A be a subset of X and suppose that 

x E c l A. By hypothesis, x E c l B for some subset B of A with the 

cardinality of B <̂  m. If {U\ : i e 1} i s a neighbourhood basis at 

x, U^H B 0 for every i e I. Since B has cardinality <_ m, there 

are at most 2 m distinct sets U^H B. Define an equivalence relation 

• • -"on '-I "by atLd~eiit;±fying . - Let D'b e-the 

index set I under this equivalence relation. The cardinality of D 

is £ 2 m. Order D by specifying a < c i f and only i f U 3> U , and 
cl C 

for each n e D choose x E U fl B. Then {x : n E D} is a 2 m-net 

n n n 

in B converging to x. 

For the case m = M e , there are examples which show that 

a l l of the conditions in the foregoing proposition are distinct. As 

previously observed, the real line with the integers identified i s a 

Frechet space which i s not first-countable and the space M of (1.17) 

i s a sequential space which is not Freshet. The countable space 

0, x of (1.19) clearly satisfies (4) but i t i s not sequential. 
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Finally, the ordinal space Q + 1 with the order topology i s a 
H 

2 ° -Frechet space which does not satisfy (4). 

The next result i s a characterization of m-sequential 

spaces which generalizes the characterization of sequential spaces. 

An interesting corollary to this theorem i s a characterization of 

•*m-Fr^chet-'&paees -whieh-leads^t'0^n-^x-tj«&sien'-"e€'>-t'he^eha>rac-ter~'ization 

of Hausdorff Frechet spaces given in (2.15). The Hausdorff hypothesis 

i s eliminated. 

3.30 Theorem A topological space i s m-sequential i f and only i f 

i t i s a quotient of an m-first-countable space. 

Proof By virtue of (3.29) and (3.25), a quotient of an m-first-

countable space i s m-sequential. Conversely, let X be an m-sequential 

space with a convergence subbasis in which a l l of the nets are m-nets. 

For each ({x : n E D}, x) e C, l e t S(x , x) = {x : n e D} U {x} be n n n 

a topological space in which the x^ are taken to be distinct and 

x •/ x for every n e D, and which has the convergence basis generated 

by the C-net pair ({* n '• n e D}, x). Each x n is isolated, and x has 

a neighbourhood basis indexed by the directed set D whose cardinality 

is <_ m. Thus each S( x
n> x) is m-first-countable. The disjoint 

topological sum W of a l l such S(x n, x) i s therefore m-first-countable 

and has, by (3.21), a convergence basis E formed by taking the union 
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of the convergence bases for the s(x n> x) . The theorem how follows 

from (3.24). The surjection f : W > X defined by f(x) = x is a 

quotient map since fE = C. 

3.31 Corollary A topological space i s m-Frechet i f and only i f 

i t i s a continuous pseudo-open image of an m-first-countable space. 

Proof The continuous pseudo-open image of an m-first-countable 

space i s m-Frechet by (3.29) and (3.27). The converse coincides 

with that of (3.30) with the exception that C i s a convergence 

basis and the fact that fE = C together with (3.26) implies f i s 

continuous pseudo-open. 

3.32 "Corollary For any topological space "X, 'the "following 

statements are equivalent. 

(1) X is Frechet. 

(2) X i s a continuous pseudo-open image of a f i r s t -

countable space. 

(3) X is a continuous pseudo-open image of a metric 

space. 

Proof According to (3.31) and (3.17.2), (1) i s equivalent to (2). 

Clearly (3) implies (1). To establish the opposite implication, 

let X be a Frechet space with a convergence basis C in which a l l of 

the nets are sequences. Then W has a convergence basis E consisting 
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of sequences, and fE = C implies that f i s a continuous pseudo-

open map of W onto X. Each summand . S ,(x , x) of W is a convergent 

sequence in the Hausdorff space S(x n, x). Hence, by (1.32), W 

i s metrizable. 

In general, the product of m-sequential or m-Frechet 

•spaces -need not -he -m-sequential. -SeveraT<examples"f or -the-case 

m = Ha have already been given. However, the product of two 

m-sequential spaces, one of which is such that each point has a 

neighbourhood basis consisting of m-sequentially compact sets, i s 

m-sequential. (A topological space i s m-sequentially compact i f 

and only i f every m-net has a convergent m-subnet.) The proof of 

this result i s analogous to that of (1.24). The following i s a 

generalization of (1.23). 

3.33 Proposition Let X be the product of any family {X : a e A} 

a. 

of non-trivial topological spaces (each space has at least one non­

empty proper open set). If the cardinality of A i s > m, then X i s 

not m-sequential. In particular, no uncountable product of non-

t r i v i a l spaces is sequential. 
Proof By hypothesis, each coordinate space X contains two points, 

£1 
denoted by 0 and 1, and a neighbourhood of 1 not containing 0. Let 

e be the function i n X whose a-th value i s 1 for each a e A, and 
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let E be the subset of X consisting of a l l characteristic functions 

of f i n i t e subsets of A. Clearly e e c l E. It suffices to prove 

that no iteration of m-nets in E can converge to e. For convenience, 

define the cozero set of a function f, denoted by coz f, to be the 

set {a e A : f(a) ̂  0}. The functions in E have f i n i t e cozero sets. 

.Suppose that Xf^ :„n.e..D.}. is,„.an m-net of functions .converging to f 

with the cardinality of each coz f < m. Since coz f CZ U{coz f : n e D}, 
J n — n 

2 
the cardinality of coz f i s < m = m. Thus by forming iterated limits 

of m-nets in E i t i s only possible to obtain functions whose cozero 

sets have cardinality j< m. Consequently, i f the cardinality of A 

i s > m, then the cardinality of coz e i s > m and hence no m-net in 

(cl E)-{e} converges to e. 

3.34 Proposition If X is the product of any family {X& : a e A} 

of non-trivial topological spaces, then each point of X has a 

neighbourhood basis of cardinality less than or equal to the maximum 

r of the cardinality p of A and q = sup {X(X ) : a e A}. (Write 
cl 

X(Y) = m i f and only i f Y is m-first-countable.) 

Proof Let x e X and assume that {U. : i e I } i s a neighbourhood i a 

basis for the a-th coordinate of x with the cardinality of I <_X(X ). 
a a 

For each a e A let P denote the canonical projection map of X onto X . 
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Then the set B of a l l f i n i t e intersections of elements in 
- l a 

B = ^{{P (Un) : i e I } : a e A} i s a neighbourhood basis 
2 

for x. Since the cardinality of B i s £ pq <_ r = r, B has 

cardinality <_ • r = r. (See 1.18.) 



Chapter 4 

Generalized Sequential Spaces and their 

Properties in Ordered Topological Spaces 

The properties of convergence subbasis and convergence 

bases are applied, in this chapter, to the investigation of 

topological spaces whose open sets are specified by well-ordered 

nets. 

4.1 Definition A well-ordered net i s a net whose directed set 

i s well-ordered. (A well-ordered m-net i s a net whose directed 

set Is well-ordered and of cardinality _< m.) 

4.2 Definition (1) A topological space i s weakly sequential, or 

a weakly sequential space, i f and only i f i t has a convergence 

subbasis in which a l l of the nets are well-ordered. 

(2) A topological space i s weakly Frechet, or a weakly 

Frechet space, i f and only i f i t has a convergence basis consisting 

of well-ordered nets. 

4.3 Definition Let X be a topological space, and le t m be an 

in f in i t e cardinal. 

(1) X i s m-sequential, or an m-sequential space, i f 

and only i f i t has a convergence subbasis in which a l l of the nets 
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are well-ordered m-nets. 

(2) X is m-Frechet, or' an m-Frechet space, i f and 

only i f i t has a convergence basis consisting of well-ordered 

m-nets. 

Since sequences are well-ordered H 0-nets, these 

generalized sequential spaces and generalized Frechet spaces 

clearly contain the sequential and Frechet spaces respectively. 

In particular, a topological space i s (sequential, Frechet) i f 

and only i f i t i s ( ^ -sequential, H0 -Frechet). Observe that 

a space i s m-sequential i f and only i f i t i s both weakly sequential 

and m-sequential. Similarly, a topological space i s m-Frechet i f 

and only i f i t i s both weakly Frechet and m-Frechet. 

The aim of the f i r s t part of this chapter is to characterize 

the generalized sequential spaces of (4.2) and (4.3). Their 

characterizations lead to new characterizations of the Frechet spaces 

and the sequential spaces in terms of orderable spaces. To avoid 

tedious repetition, the elementary properties of these generalized 

.sequential .spaces will.not be formally stated.. .The. preceding 

chapter's survey of convergence subbases greatly f a c i l i t a t e s their 

study. It i s easy to see that the investigation of these spaces i s 

analogous to that of the m-sequential spaces. 
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4.4 Definition (1) A topological space is weakly first-countable, 

or a weakly first-countable space, i f and only i f each of i t s points 

has a well-ordered neighbourhood basis. (A collection {F & : a e A} 

of sets i s called well-ordered whenever A i s well-ordered and 

F C~ F i f and only i f a > c in A.) a c 3 

(2) .A .topological -space ,is„m-:f.ir.s.t-coun.tahle,, .or..,an 

m-first-countable space, i f and only i f each of i t s points has a 

well-ordered neighbourhood basis of cardinality <_ m. (Note that 

first-countable, H0 -first-countable, and \\
0
-iirst-countable are 

equivalent concepts.) 

4.5 Proposition (1) Every weakly first-countable space i s weakly 

"*"" 

(2) Every m-first-countable space i s m-Frechet and hence 

m-sequential. 

Proof Let F be a subset of a weakly first-countable space X and 
suppose that x e c l F. By definition, x has a well-ordered neighbour­
hood basis {U : a e A}. Then, since x e c l F, there exists a well-

a 

ordered net {x : a e A} which satisfies x e U f) F and therefore a a a 

converges to x. If X is m-first-countable, the cardinality of A i s 

< m. 
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4.6 Example For any uncountable cardinal m, there i s an m-first-

countable space which is not weakly sequential and hence not 

m-sequential. 

Proof Let D be the family of a l l f i n i t e subsets of a set whose 

cardinality i s m, and order D by Z2> . Then D i s a directed set 

of cardinality m. Let S = {x : n e D} XJ {x} be a topological space 

in which the x are distinct and x £ x for every n e D, and which n n J ' 

has a convergence basis generated by the net pair ({x^ : n e D}, x). 

Each x^ i s isolated and x has a neighbourhood basis indexed by D. 

Consequently S i s m-first-countable. However, S is not weakly 

sequential because x E cl(S-{x}) and yet no well-ordered net in 

S-{x} converges to x. To verify that this i s so, suppose that 

{x„,„ v : k e K} i s a well-ordered subnet of {x : n e D}. Choose N(k) n 

a countable collection {n. : i E to} of distinct elements in D. 
i 

For each i E to there exists k e K such that, i f k j> k^ then 

N(k )25n^ . From the description of D, i t is obvious that there i s 

no supremum of {k^ : i e to} in K. But then {k^ : i E to} i s a cofinal 

subset of K and hence {N(k_̂ ) : i E to} is a cofinal subset of D. This 

i s impossible since U {N(k_̂ ) : i E to} is only a countable subset 

of the given set of cardinality m. 
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4.7 Definition An ordered topological space is a space which, 

has the order topology arising from a total order on the set. 

A topological space is orderable i f and only i f some total order 

can be imposed on the set relative to which the given topology 

coincides with the order topology. 

4.8 Proposition Let A be a subset of an ordered topological 

space X. If an m-net in A converges to a point x e X-A, then 

there i s a s t r i c t l y monotone well-ordered m-net in A converging 

to x. 

Proof It i s f i r s t shown that every totally ordered set has a 

cofinal well-ordered subset. Let F = {F^ : i e 1} be the family 

of a l l well-ordered subsets of a totally ordered set Y. P a r t i a l l y 

order F by defining F. < F, whenever F. = F. or F. i s an i n i t i a l 
& i j i j l 

segment of F.. Note that F. < F. implies that F.C F,, . Let C J 1 J i j 

be a chain in F and suppose that B i s a subset of UC. There 

exists C e C such that C fi B ^ 0, and C H B has a least element 

b since C i s well-ordered. The total order < on C implies that 

b i s the least element of B and hence that U C e F. By Zorn's 

lemma, F has a maximal well-ordered element Y^. Then Y^ i s also 

a cofinal subset of Y because otherwise there exists y e Y~Y^ 

with no element of Y greater than y; from this, Y1 \J {y} e F 
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contradicting the maximality of Y^. 

Let A q be the intersection of A with the range of the 

m-net in the hypothesis. The cardinality of A ^ is clearly <̂ m. 

Let A . = {y e A : y. < x} and A „ = {y E A : y > x}. Since X has 1 o ^ 2 ^ o 

the order topology, x e c l Â , for i = 1 or i = 2; assume the 

former. The set A ^ i s directed by the total order inherited from 

X, and thus the identity map on A ^ i s a s t r i c t l y monotone m-net 

converging to x. Moreover, A ^ has a cofinal well-ordered subset 

A ^ and the identity map on A ^ i s the desired net. 

4.9 Theorem , ^.^^^ 

topological space X are equivalent. 

(1) X i s weakly sequential. 

(2) X is the quotient of a weakly first-countable 

orderable space. 

•- (3) X is the quotient of a weakly first-countable space. 

(4) X i s the quotient of an orderable space. 

Proof Clearly (2) implies both (3) and (4) . In addition, (3) 

implies (1) by (4.5-1) and (3.24). It remains to show that 

(1) > ( 2) and (4) > (1). 
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To establish the latter implication, let f : y > X 

be the quotient map of an ordered space Y onto a topological 

space X. Suppose U is a subset of X such that any well-ordered 

net converging to a point in U is eventually in U. It suffices 

to prove that f "̂ (U) i s open in Y. Let y e f "^(U). If y £ int f "*"(U), 

there is a net {y : n e D} which is disjoint from f "''(U) and .n 

converges to y. According to (4.8), i t can be assumed that D i s 

well-ordered. But then {f(y ) : n e D} i s a well-ordered net in 
n 

X-U converging to f(y) e U. Hence (4) implies (1) by contradiction. 

Assume now that X i s a weakly sequential space with a 

convergence subbasis C in which a l l of the nets are well-ordered 

nets. For each ({x : n e D}, x) e C, let S(x , x) = {x : n e D'} U {x} 
n n n 

be a topological space in which the x n are taken to be distinct and 

x n ^ x for every n e D', and which has the order topology arising 

from the total order defined as follows. Let a be the least element 
o 

of D and let D' = (w x {a o»(J(Z * (D-{aQ})) with w and Z ordered i n 

the usual way. Totally order D' by specifying ( i , n) < ( j , m) 

whenever n < m or i < j and n = m. Each element of D' has an 

immediate successor, and each element other than (0, a Q) has an 

immediate predecessor. (Such an order i s called a discrete order.) 

Now l e t X,. N = x for each ( i , n) e D', and totally order S(x , x) (i,n) n ' J n' 

by defining x < x i f n < m in D' and x < x for each n e D'. J b n m n 
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In the ordered space S(x , x), each x i s isolated and x has a . n n 

well-ordered neighbourhood basis indexed by a set order isomorphic 

to D. Then SCx^, x) is weakly first-countable and has a convergence 

basis generated by the net pair ({x^ : n e D'}, x). The disjoint 

...topological,,sum W .of a l l such S.(x , x) i s also weakly first-countable 

The natural mapping of W onto X defined by x > x is a quotient 

map because the net pairs (i^n '• n e D'}, x) form a convergence 

subbasis for X. 

To demonstrate that W i s orderable, let {S :• a e A} denote 
a 

the set of a l l S(x , x) and define a discrete order on Z x A in the 

n 

"same'-'way ••*as*tD1. -"'(In^th-^ 

-order with least element a Q.) Using the existence of a one-to-one 
correspondence between A and Z x A, this discrete order can be 

imposed.on A. Let W be totally ordered by specifying x < y whenever 

x < y in S where x, y e S , or a < b in A where x e S and y E S, . J a a a J b 

Because of the discrete orderings and the fact that each has a 

greatest element and a least element, the order topology on W coin­

cides with i t s usual disjoint topological sum topology. Thus W i s 

orderable, and the theorem i s proved. 
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4.10 Corollary For any topological space X and any i n f i n i t e 

cardinal m, the f i r s t three statements are equivalent. If m = H0 

they are also equivalent to (4). 

(1) X is m-sequential. 

(2) X i s the quotient of an orderable m-first-countable 

space. 

(3) X i s the quotient of an m-first-countable space. 

(4) X i s the quotient of an orderable metric space. 

Proof This i s analogous to (4.9). It i s only necessary to remark 

that each S(x , x) i s m-first-countable and hence so is W. n — 

4.11 ,P,roppsit ion The ..fallowing are .equivalent. 

(1) X is weakly Frechet. 

(2) X i s the continuous pseudo-open image of an orderable 

weakly first-countable space. 

(3) X i s the continuous pseudo-open image of a weakly 

first-countable space. 

(4) X i s the continuous pseudo-open image of an orderable 

space. 

Proof Clearly (2) implies both (3) and (4), and (3) implies (1) 

by (4.5.1) and (3.26). The fact that (1) > (2) follows from (4.9) 

i n the same way that (3.31) followed from (3.30). 
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T o p r o v e t h a t (A) > (1), l e t f : Y > X b e a 
c o n t i n u o u s p s e u d o - o p e n f u n c t i o n o f a n o r d e r e d s p a c e Y o n t o a t o p o l o g i c a l 
s p a c e X . L e t A b e a s u b s e t o f X a n d s u p p o s e t h a t x e c l A. T h e n 
s o m e y z f ̂ ( x ) D c l f "'"(A). T h i s i s s o b e c a u s e o t h e r w i s e t h e r e i s 
a n o p e n n e i g h b o u r h o o d U o f f ^ ( x ) d i s j o i n t f r o m f ^(A); f r o m t h i s , 
ATI ' f ( U ) = '0 c o n t r a d i c t i n g x e " ( c l "A)'"fY""±n't f ' ( t l ) . S i n c e Y i s a n 
o r d e r e d t o p o l o g i c a l s p a c e , t h e r e e x i s t s a w e l l - o r d e r e d n e t { y ^ : n e D} 

i n f "'"(A) c o n v e r g i n g t o y . T h e n { f ( y ^ ) : n e D} i s a w e l l - o r d e r e d n e t 
i n A c o n v e r g i n g t o f ( y ) = x . 

4 . 1 2 C o r o l l a r y F o r a n y t o p o l o g i c a l s p a c e X a n d a n y i n f i n i t e 
c a r d i n a l m , t h e f i r s t t h r e e s t a t e m e n t s a r e e q u i v a l e n t . I f 
t h e y a r e a l s o e q u i v a l e n t t o ( 4 ) . 

( 1 ) X i s m - F r e c h e t . 
( 2 ) X i s t h e c o n t i n u o u s p s e u d o - o p e n i m a g e o f a n 

o r d e r a b l e m - f i r s t - c o u n t a b l e s p a c e . 
( 3 ) X i s t h e c o n t i n u o u s p s e u d o - o p e n i m a g e o f a n 

m - f i r s t - c o u n t a b l e s p a c e . 
( 4 ) X i s t h e c o n t i n u o u s p s e u d o - o p e n i m a g e o f a n o r d e r a b l e 

m e t r i c s p a c e . 
T h e f i n a l r e s u l t s a r e c o n c e r n e d w i t h t h e s e q u e n t i a l 

p r o p e r t i e s o f o r d e r e d t o p o l o g i c a l s p a c e s a n d t h e r e l a t i o n b e t w e e n 
t h e n o t i o n s o f f i r s t - c o u n t a b l e s p a c e , F r e c h e t s p a c e , a n d s e q u e n t i a l 
s p a c e i n p r o d u c t s o f t h e s e s p a c e s . I t i s n o w k n o w n t h a t F r e ' c h e t 
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spaces and sequential spaces are successive proper generalizations 

of first-countable spaces, and.that the product of two Frechet 

spaces need not be sequential. For topological spaces which are 

products of ordered spaces, the situation i s quite different. 

4.13 Theorem If X i s an ordered topological space, the following 

are equivalent. The f i r s t three statements are equivalent whenever 

X i s a product of ordered spaces. 

(1) X i s m-first-countable. 

(2) X i s m-Frechet. 

(3) X i s m-sequential. 

(4) X i s m-Frechet. 

.^4^-)M^XMi&am-3S.e.queatial. 

Proof From (3.29), (1) > (2) > (3). Obviously (4) > (5) 

— > (3) and (4) > (2). Furthermore, (2) > (4) by (4.8). 

It remains to show that (2) > (1) and (3) > (2). Assume f i r s t 

that X i s an ordered topological space. 

(2) > (1). Let x e X. If x is an isolated point then 

x has a neighbourhood basis consisting of the singleton {x}. Suppose 

that x i s not isolated but has either an immediate predecessor or an 

immediate successor. In the former case, x e c l {y e X : y > x}. 

By hypothesis, there exists an m-net {x n : n E D} in {y : y > x} 

converging to x. Let A = { y : x _ < y < x } . The collection 
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{A^ : n e D} i s a neighbourhood basis at x and the cardinality of 

D i s _< m. Similarly, x has a neighbourhood basis of cardinality 

<_ m in the latter case. Suppose now that x i s not isolated and has 

neither an immediate successor nor an immediate predecessor. By 

hypothesis, there i s an m-net {x^ : n e D} converging to x with 

x < x for each n. There i s also an m-net {y : n e E} converging n n e ° 

to x with each y > x. The open sets {z : x < z < y } where 

(n, m) e D x E form a neighbourhood basis for x and the cardinality 

of D x E i s < = i . 

(3) > (2). Suppose that the nets S = {x" : i E E } 
r r n i n 

converge to x n and S = {x n : n e D} converges to x, with the 

cardinalities of E and D < m. It suffices to construct an m-net 
n — 

in the union of the ranges of the nets S n converging to x. According 

to (4.8), i t can be assumed that a l l of the given nets are s t r i c t l y 

monotone and directed by ordinal numbers. Either.S i s increasing 

or decreasing, and the nets S n are either frequently increasing or 

frequently decreasing with respect to the directed set D; that i s , 

the nets S^ are frequently (increasing, decreasing) i f and only i f 

for each p e D there exists q ̂  p such that S^ i s (increasing, 

decreasing). There are four cases to consider. F i r s t , assume that 

the nets S are increasing and the net S is decreasing. Since x > x 
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for each n, there i s i(n) e E with x > x V / N > x. Then {x7, N : n e ' n n i(n) — i(n) 

is the desired m-net; i t converges to x because i t is bounded above by 

the net S which converges downward to x. For the second case, suppose 

that a l l of the nets are s t r i c t l y increasing. Let D' denote the set 

of a l l isolated ordinals in D. Clearly D' i s a cofinal subset of D; 

for each n e D the successor ordinal n + 1 is isolated. Then 

x , < x for each n e D', and there exists i(n) e E satisfying n-1 n ' n ° 

x , < x n, It follows that { x V / . : n e D'} i s an m-net converging n-1 i(n) i(n) e " 

to x. The remaining two. cases are similar to the f i r s t and second 

cases. This completes the proof for the case in which X consists of 

one ordered space. 

• -: >a -e-'-A<} 

a. 

of ordered topological spaces. It i s only necessary to prove that 

(3) implies (1). By virtue of (3.33), the cardinality of A i s <_ m. 

Then, since each X & i s m-sequential and hence m-first-countable, 
(3.34) implies that X i s m-first-countable. 

4.14 Corollary If X i s the product of any family {X : a e A} of 

Si 

non-trivial ordered m-sequential (or equivalently m-Fre'chet) spaces, 

then X i s m-sequential (or equivalently m-Frechet) i f and only i f 

the cardinality of A i s < i . 
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Proof If X i s m-sequential then, by (3.33), the cardinality of 

A i s / m and hence <_m. To establish the converse, observe that 

each X is m-first-countable by the preceding theorem. Then i f the a 

cardinality of A i s < m, in view of (3.34), X is m-first-countable. 

"4.15 "Corollary "An ordered topological space i s weakly Frechet 

i f and only i f i t is weakly sequential. 

Proof This i s the same as (3) < > (2) of (4.13). In this case, 

the cardinalities of D and E n are not important. 

4.16 Example There i s an ordered topological space which i s not 

~ >'w *'ahy*uncouhtabie 'cardlnai -m, 

an m-first-countable ordered space need not be m-first-countable. 

Proof Let X = ( a + 1) + t o * where a i s the i n i t i a l ordinal of 

cardinality m and t o * has the reverse order to that of t o . By 

definition, X has the order : x < y i f 

a) x, y E a + 1 and x < y in cc + 1, 

or b) x, y e t o * and x < y in t o * , 

or c) x e a + 1 and y e t o * . 
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L e t X have the order topology a r i s i n g from t h i s t o t a l o r d e r . I t 

i s c l e a r tha t X i s m - f i r s t - c o u n t a b l e . To e s t a b l i s h tha t X i s not 

weakly f i r s t - c o u n t a b l e and hence not m - f i r s t - c o u n t a b l e , assume the 

o p p o s i t e and l e t {U : a e A} be a w e l l - o r d e r e d neighbourhood b a s i s 

a 

a t the p o i n t a . O b v i o u s l y a has n e i t h e r an immediate predecessor 

nor an immediate s u c c e s s o r . For each a e A , l e t x be t h e l e a s t 
a 

element of (a + 1 ) D U , and l e t y be the g r e a t e s t element of 
cl H 

to* n U . The range of {y : a E A} i s s u r e l y c o u n t a b l e a n d , s i n c e a a 

{U : a E A} i s w e l l - o r d e r e d , t h e r e are l e s s than m elements i n the a 

range of {x & : a E A} a s s o c i a t e d w i t h each element i n the range of 

{y : a £ A } . The supremum of {x 5 a E A} i s t h e r e f o r e l e s s than a , 
3- cl 

and so {x : a E A} cannot converge to a . 

> 
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