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Abstract

The class of Seéueﬁtial spaces aﬁd its successive smaller
subclasses, the Fréchet spaces and the first—countable spaces, ﬁave
~ topologies which are completely specified by their convergent
sequences.--Bgcause sequences have many advantages over nefs, these
topological spaces are of interesﬁ. Special attention is paid to
those properties of first-countable spaces which can or cannot be
generalizedvto Fréchet or sequential spaces. For example, countable
compactness and sequential compactness are equivalent in the lafger
class of sequential spaces. On the other hand, a Fréchet space
with unique sequential limits need not be Hausdorif, and there is
a product of two Frébhet'spaces which is not sequential. Some of
the more difficult problems are connectéd with products. The

- topological product of an arbitrary sequential spaée.and a T3
(regular and Tl) sequential space X is'sequential if and omnly if

X is locally'countaﬁly compact. There are also several results
which demonstrate the ndn—productive nature of Fréchet spaces.

Thé sequential spaces and the Fréchet spaces are precisely
thevquotieﬁté énd continuous pseudo-open images, respectively, of
either (ordered) metric spaceS’br (prderedj'first—countable spaces.
These characterizations follow from those of the generalized

sequential spaces and the generalized Fréchet spaces. The notions
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of convergence subbasis and convergence basis play ‘an important

- role here. Quotient spaces-ére characterized in terms of conver-
gence subbases,_and continuous pseudo-open images in.terms of
convergence bases. The equivalence of hereditarily quotient maps

[ .
and continuous pseudo-open maps implies the latter result.
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Introduction

A first-countable space is a topological space whose open
sets can be.described by its convergent sequences alone. This is
so-b& either of two properties of firét-countable spaces ([16],
Tﬁeorem 2.8):

(1) A set is.open if..and-only-if-each-sequence-which
converges to a point in the set is, itself, eventually in the set.

(2)~ A point lies in the closure of a set if and only
if there is a sequénce in the set convergiﬁg to the point.

For more general spaces, it is often assumed that seQuences are
inadequate and that nets or filters must be used. There are,
however, many topological spéces which do not satisfy the first
”“aﬁiﬁm“ﬁf’bﬁﬁﬁtﬁBTITty“éﬁH“Yét”SéquEﬁcés‘éﬁffice”td”&étermine'0pen
sets. The real line with the integers identified to one point

is an example of such a space,

The topological spaces satisfying (1) are called sequential
spaces and those satisfying (2), Fréchet spaces. Each first-count-
able space, and hence each metric space and each discrete space,
ié both Fréchet and sequential. Moreover, the real line with.the
integers identified is both a Fréchet space and a sequential space.
Consequentiy, since iZ) implies (1) but (1) does not imply (2), -
the concepts of Fréchet space and sequential space provide successive
proper generalizations of first—coﬁntable space. In studying

sequential spaces, one can restrict oneself to sequential convergence.
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Accordingly, since the langqégé of sequences has many advantages
over that of nets, it;is of'intefest~toiknow when .a topological

.:3pace.is-sequential. | |

| A result due to Ponomarev cﬁaracferizes first-countable

’To—spaces as continuous open images of metric spaces. Analogously,

"S.P. Franklin [8] establishes' that the sequential spaces are
precisely the quotients of_either metric.spacés or first—countablé
-spaces, and Arhangel'skiY [2] asserts that "among Hausdorff spaces,
" Fréchet spaces and only these, are continuous pseudo-open images
of metric spaces". (The pseudo-open méps form a class between the.
- open maps and the quotient maps.) In [22], P.R. Meyer extends
Arhangel'skiY's result by eliminating the Hausdorff
ﬁMhypothesiswrﬂthewFrééhetmspaceswarewpﬁecise%ywtheﬂcontinuous
-mépseudo—opén images of either metric spaces or first-countable
" spaces. In order to obtain this result, he introduces the notions
of convergence subBasisFand convergence basis whicﬁ.provide the
foundation for studying topological spaces whose 0penbsets‘are
completely-sﬁecified by any given class of nets.- Meyer's general-
.ized sequential space methods are used‘to derive D.C. Kent's [18]
characterizations of "'spaces in which well ordered nets suffice."
Recently,‘ﬁany‘mathematicians have researched sequential
spaces and generalized sequential spaces. The purpose of.this:

‘thesis ‘is to present the more important of their results in a

~unified theory. The author generaliZes>a few of these results and
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proves numérous statements aséerted:without proof in.the original
papers. |
Chapter l'is an investigation of sequential spaces, their
properties, their characterization as quoﬁients of metric spaces.
or first—countable spaces, and their relation to other topological
' properties. Their relation to the first-countable spaces is of
particular ihterest. It is well-known that countable compactness
and sequentiél cémpactness are equivalent in the class of firsf-
‘countable spaces. Franklin asserts their equivalence in'the larger
class of sequential spéces. Franklin proves thiS'resuit in [8] for
Hausdorff spaces and in [10] for spaces with unique sequéntial
limits. In this thesis, the author provides the proof of the same
-"WVMresultMfarwanbitnanymtgﬁglqgicalwspacesuMWEhe%authorﬂalsawshows
‘that any countable product of countably compact sequential spaces is
countably compact. There are, however, many properties of first-
countable spaces which cannot be generalized to sequential spaces.
For example,»the product of two sequential spaces need not be
sequential., A result due to T.K. Boehme [3] shows that this situa-
tion cannot occur in the presence of suitable compactnessAconditions.-

In addition, E. Michael [23] has proved that for ény T, sequential

3
_Spéce X and sequential space Y,.theitopological product space

X x Y is sequential if and only if X is locally_countaﬁly compact.
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The second éhapter is concerned Witﬁ.Frébhet spaces, their
properties, and their relation to sequential spaces. The character-
ization of sequential spaces is used to prove Arhangel'skiffs
characterization of Héusdorff.Frébhet spaces. In this section, thg
author proves Arhapgel'skif's assertion that the continuous pseudo-
open maps and the hereditarily quotient maps are equivalent. The
author also provides the proof :of a result due to P.W. Harley IiI I12]
concerning the product of two Fréchet spaces. a

Chapter.3 is devoted to Meyer's generalized sequential
space methods and his study of convergencé subbases and m-sequential
spaces. (An m-sequential space is a.space for which m-nets (i.e.,
nets whose directed -set is of cardinality < m) suffice to determine
'<wwclosedMsats"J#wAﬂnew*chanagnenizationmofwthewquotientMtdpologydis
given in terms of con&ergence subbasis. This résult ieads to a
characterization of the m-sequential spaces. The author proves an
analogous result for confinuous pseudo~open images wﬁich lééds'to
Meyer's cha?acterization of m-Fréchet spaces. .

In the last chapter, the author employs many of the
properties of convergence suBBases to investigate weakly sequential
épacgs and.g_— sequential spaces (i.e., ;hose spaces for which well~
prdered nets and well-ordered m-nets, respectively, are sufficient

to describe closed sets). These spaces are characterized in terms of

ordered topological spaces (i.e., those spaces which have the order
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-topology arising from a total ordérl. Finally, there is a brief
coda which demonstrates that the concepts of first-countable
space, Fréchet space, and sequential space are equivalent in

‘products of ordered spaces.



Notation

For the most part, the tefminology and basié notation
used in this thesis follows Kelley [16]. The exceptions are
.listed below. -

(1) X-A={xeX:x¢Al

(2)A For any topological space X and subset A of X,

Anty (A) denotes the interior of A with respect to X .and cl, (A)

is the closure of A with respect to X. Wheﬁ no confusion seems
: possible these will be - abbreviated.to int A and cl A{

3 R ié the set of real numbers, Z is the set of'-:
- integers, Q is the set of rationals, and N ={1,2,3,...} is the
set of natural nuumbers.

(4) w is the first infinite ordinal and Q is the first |
uncountable ordinal.-

(5) For any ordinal d, o+l denotes the set of all
ordinals whicﬁ are less than or équal to o; that is, d+1 is the
successor ordinal of d..

(6) A topological space is said to be firét—coﬁntable,
-or-a first-countable space, if and only if it satisfies the first
~axiom of countabiliéy. Similérly, a topological space is second-
counfable,.or a second-countable space, if and only if.it~satisfies

the second axiom of countability.



- Chapter 1

_Sequential Spaces

Sequences have numerous-advantéges over nets. This is
. so because mény properties-of sequences fail to. generalize to
-nets. -For ekample, a-convérging sequencé and its limit is_compact,,
whereas thié is not :true for nets. Ambng Hausdorff spaces, each
.. convergent sequence (i.e., the union of the sequence and its'iimit)
"satisfigs the second axiom §f countabi1i£y>and'is therefore
metrizable. These facts together with other'prbperties of sequences
not applicable to nets play a critical role in the investigation -
of sequential spaces.
«..Ihis.chapter.is.basically.an.amplification.of .Franklin's
([8], [9] and [10]) survey of sequential spaces. There are,
however, several imporfant results due to Boehﬁe [3] and Michael |

23] related to topological products.

uéélwl-Definition Let~X~be~a»topologicalwspace.

(1) A subset U of X is sequentially open if and only if
~ each sequence in X converging to a point in U is eventually in U.
.(2) A subset F of X is sequentially closed if and only if .

-no sequence in F converges to a point not in F.
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For any topological space, a subset A is closed if and
only if no net in A convergee“to~a‘point-not in A ([16], Theorem 2.2).
Therefore closed sets are sequentiallytelosed'and open sets are

sequentially open. The converses need not be .true.

1.2 Example There are sequentially open sets which are not open

and sequentially closed sets which are not closed.

" 'Proof Consider the ordinal topological space @ + 1 provided with
the order topology. Let S be a sequence in Q‘+ 1 which is not
eventually equal to 2. Then S is frequently in Q and hence there

is a subsequence So of S in Q. But the supremum of So is less
than Q, and therefore 5, canmot converge to §. This implies that

S cannot con§erge to Q. 'Thue a sequence in Q + 1 converges to
_ifkand only if it is eventually equal to . Additionally, a
sequence in  can converge only to avmember of Q. .It follows that
;{Q} is sequentially open and @ is sequentially closed in Q + 1;»

But {Q} is not open and Q is not closed in Q + 1.

©'1.3 Proposition A subset of a topological space is sequentially

open if and only if its complement is sequentially closed.
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:ggggg_'Ika is a sequentially open subset.of a topological space
X and S is .a sequence in X-U converging to k, then'g e X-U.
This is so because otherwise S is eventually in U. Thus X-U
is sequentially closed. Conversely, suppose that F is a sequentially

closed subset of X and let S, be a sequence in X converging to
y € X=F. Then SO is not frequently in F since otherwise there is
a subsequence of S0 in F converging to y £ F. Hence-S0 is event-

‘ually in X-F, and therefore X-F is sequentially open.

1.4 Proposition For any topological space X, the collection of all

sequentially open subsets forms a’topoldgy for the set X.

" 'Proof Clearly, § and X are sequentially open. If‘{U; : a e A}

is any family of sequentially open subsets of X and S is a sequence

in X which converges to x ¢ L]{Ua : ae A}, then x ¢ Ué for some
c ¢ A. Consequently S is eventually in Uc and therefore in
L]{Ua : a ¢ A}. Hence Lj{Ua : a € A} is sequentially open.

Suppose now that U and V are sequentially open, apd 1et'{yn :n e W}

be a sequence in X converging to a point in unv. Then'{yn :n e w
is eventually in both U and V, and there exists n,ny € w with-
.{yn t o i_no}cz U and {yn i n 3_nl}CZ;V. Soy, € U‘r)Vifor al; n >

sup'{no, ni}.- Thus UMV is sequentially open, and the proof is complete.
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1.5 Definition The set of all sequentially open subsets of a

topological space is said to be the sequential closure topology.

1.6 Definition A topological 'space is sequential, or a sequential
gspéce, 1f and only if each.seQuentially open subset is open.

(In view.of .(1.3) .and .(1.5), it is.clear .that -a .topological .space
is séquential if and only if.each,gequentially-closed subset is
closed, or.equivalently, if and only if its‘topology coincides

with the sequential closure topology.).

In first—cohntable‘spaces; a set ié open if'andvonly if
each sequence converging to a point in the set is, itself; eﬁent-
.“““fﬁﬁilywiﬁ“ﬁhe“séf“CFIé];*Tﬁédrém“2?87TW”ThéfEfdré”fifstichﬁtaBie
spaces, and hence metric spaces'énd discrete spaces, are sequential.
On the other hand, by virtue of (1.2), the ordinal space Q + 1
provided with the order topologf is not sequential,

After a few preliminary results, sever;l equivalent

formulations for the notion of sequential space are given.

1.7 Definition Let X and Y be topological spaces, and let T be

the topoloéy on X. The space Y divides X if and only if no topology

Td on X which is strictly larger than T leaves every T-continuous

function from Y into X T&-continuous.



1.8 Proposition ‘Let X and Y be topological spaces, let T he

the topology on X, and let Ta = {BC X : f—l(B) is open in Y for

~each T-continuous function f : Y —> X}. The space Y divides X

if and only if T = Ta.'

~Proof ..Sinece -inverse.set.functions.-preserve-.set.operations, - it

is clear that Td is a topoldgy~on X. Furthermore,'T?C:Td and
every T-continuous function from Y intb X is Ta—continuous. "If
Y divides X,  then TaC: T and so T ='Td. Conversely, suppose that

T, is any topology for X which leaves every T-continuous function

8

from Y into X T -continuous. If g : Y =—> X is a T-continuous

B

function and B ¢ T,, then g‘l(B) is open in Y and hence B € T .

B’

Thus T = T, implies that Y divides X.

1.9 Lerma A mapping f of the ordinal space w + 1, provided with
its order topology, into a topological space X is continuous if

and only if the sequence {f(n) : n e w} converges to f(w) in X.

“Proof If f : w+ 1 ——=> X is continuous and U is any neighbourhood

of f(w), f—l(U) is a neighbourhood of w in w + 1. Then f l(_U).

contains (m, w] = {n : m < n € w} for some m ¢ w. Therefore.’

{f@) : n € Q} is eventually in U and hence {f(n) : n e‘w}.convergés
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to f(w). Conversely, suppose that V is an open“subseﬁfof-X.'
If f(w) ¢ V then ffl(V) =i{n e w f(n) e V} = L}{{h} ine W,
f(n) € V}, which is the union of open subsets of w + 1. If
w) € V,'{f(n) :n e w} is eventualiy'in V and consequently~there 
exists p g w suchvthat f(n) s vaor'each;n > P. Therefo:e
‘f—;LV) = (p,w].U{n 2 p zrnﬂs‘w,menJAngjwismopen«inww +.1. .The

lemma is proved.

©'1.10 Definition A convergent sequence is the union of the
sequence and all of its limit points. (Let S be 'a convergent

'sequence in a topological space X, and let Sd denote the range

of S provided with the relative topology. The topology on S is

the largest topology in which the natural function f : S =-—> So

defined by f(x) = x is open.)

'1.11 Lemma _ Every conﬁergent sequence in a Hausdorff space is
compact and metrizable. -
" 'Proof Let S =‘{xn :n e w0} U{x} be a convergent sequehce in a

Hausdorff space, and suppose that U is an open'coﬁering for S.

Now x € U for some U ¢ U. Furthermore,'{xh i n e w} is eventually
in U and thus x € U whenever n > m for some m € w. For each

n < m choose Un € U such that X € Un' Then {U} L’{Un‘:ym >n e w}
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is a finite subcovering of U for S, and so S is compact. To see

that S is a metric space, let v = S;-{xn : k>n e wl for each
k € w. The collection'{Vn :n s‘d} is clearly a countable
neighbourhood basis at x. Because S is compact Hausdorff and

hence a regular T

1-space, there exists open sets U and V

satisfying x € Ve ¢l V U and xiei U. Consequently

’{Xi} = S-(cl V L){xn :i#n e w, X # ¢l V}), which is open in S.
_ The family '{Vn :ne m}lJ'{{xﬁ} : n e w} is a countable open basis

for the topology on S. Therefore S is a 'second-countable :eguiar

Tl-space. In view of (I16], Theorem 4.17), S is metrizable.

...0bserve..that..there.is.a.metric.for.the .convergent..sequence..S

defined by d(xm, xn) = ]l/m - i/n[ and d(xm,x)f=’l/@.

'1.12 Theorem For any topological space X, properties (1) and

(2) are equivalenf. If X is Hausdorff théy are alsq equivalent
to (3) and (4).
(1) X is sequential.>
(2) w+ 1, provided with its order topolégy, divides X.
(3)‘ Each.;ﬁbset of X which intersects evéry convergent
_sequence in a closed set.is closed; | |
4) Each.subset-of X which intersects every compact metric

subspace of X in a closed set is closed.
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" Proof (1)k<———$ (2) Suppose that U is a subset of X with f—l(U)
open in w -+ 1 for each continuous function f : w + 1 -—-> X. Let

'{xn : n e w} be a sequence in X converging to x e U. Define glw) = x
and g(n) = X for each n € w. Then {g(n) : n ¢ w} converges to g(w)

and it follows from (1.9) that g : w+ 1l —> X is a continuous
function. Thus g_l(U) isban open subset of w 4+ 1 containing w, which

implies that g—l(U) contains (m,w] for some m ¢ w. So x = g(n) e U
" for each n >m+ 1, and héncef{xn :n e w} is eventually in U. There-

fore U is a sequentially open subset of X. If X is sequential, U is-
open and consequently, by virtue of (1.8), w + 1 divides X. ‘
| Assume now that U is a sequentially open subset of X, and
“?iet“f“:*w*+“1w5=ﬂ>wwaé“a“coﬁtinﬁbusﬁfunctibn:"WAc@ord&ngfto“%1?99,
A{f(n) : n £ w} converges to f(w). If f(w) ¢ U then f—l(U) contains
(k,w] for some k ¢ w. So f_l(U) = (R,Q]ljl{n.:'k >n e w, f(nj e U}
ﬁhich is opén in w+ 1. If f(w) £ U, f~l(U) ={new: £f() e U}
is open in w + 1. Therefore f—l(U) is opén in w + 1; then U is open
if o + 1 divides X, - |

(1) <---> (3) Suppose that F is a subset of X, and let

S =V{xn :n e w} U {x)} be a convergent sequence in X. Either FN S

ig finite or infinite. 1In the first case, F N S is obviously compact.

In the second case, F - contains a subsequence of'_{xn :n e wk.
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Therefore, if F is seguentially closed, x € F.. Hence FN S is compact
because (F N S)-U is finite for any open set U containing x. Now

let S_ be a net in F N S converging to y € X. Since F{ﬂ'S is compact,
Sy has a cluster point in FN S. But, the Hausdorff hypothesis
implies that y is the only cluster point of Sy. Evidently,vFIW S

‘is closed. Thus, if a subset of X is sequentially closed, it
“intersects every convergent sequence in a closed set. Conversely,

“if_{xﬁ : n e w} is contained in F, {xn :n e w} is also a sequence

in FN S. If FN S is closed then.X's FN S and hennn x ¢ F.
---Consequently, a --subset of X is sequentially closed if and only if
it intersects'every convergent sequence in a closed set, The |
uMaequivaleneemoﬁnélJﬁandm&agwnowufollowsmimmediately.
- (3) <> (4)‘_Suppose that F is a subset»of X intersecting
every compact metric subspace of X in a;closnd set. According to
(1.11), each convergent sequencevis a compact metric subspace of X.

Therefore F intersects every convergent sequence in a closed set, and

assume that E is a subset of X intersecting évery convergent sequence
in a closed set. Let X be a compact metric subspace of X. Since
-X .is Hausdorff, K»isfélso closed. If .5 is.a sequence in EN1 K
converging to i, then_# ¢ XK. Additionally, x ¢ E becanse EN (s U{x})
-is closed. Thus EN K is.a.Sequentiallj clgsed>subset of the closed
;'~metric subspace K; conséqnently EN K is cloéed; and the proof is

-complete.
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The -elémentary properties of sequential spaces are

summarized in the following theorem.

1.13 Theorem (1) A function f : X ——> Y of a sequential space
X into a topological space Y is continuous if and only if

v{fcxn) :n e w} converges to f(x) whenever'{gn tne Q},converges

‘to x.
(2) Every quotiént.of a sequential spéce is sequential.
(3) The continuous open or closed image of a sequential
space is sequential. |
(4) The cértesian product of seqﬁehtial spaces need not
be sequential. However, if the product is sequential, so is each
" of its coordinate spaces. .
(5) The disjoiﬁt‘topological sum of any family of
sequential spaces is sequential. |
(6) The inductive limit of any family of sequential
spaces is>sequeﬂtial. "
| (7) A subspace of a sequential space need not be:
sequential. An open or closed_subsﬁéce, however, is sequentiai.

(8) Every locally sequential space is sequential.
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‘Proof - (1) The neceésity of the conditioﬁ is true for arbitrary
fopological spaces. if f is continuous and U is an open subset
of Y containing f(%), then»f—l(U) is an open subset of X con;aiﬁ_

ing x. Moreover,.'{xn :n e wh is evéntually\in f-l(U) and so
f(xn) e U for all n sufficiently large. Hencé'{f(xn) :n e w

converges to f(x). Conversely, suppose that V is an open subset

of Y and letA{yn : n ¢ w} be a sequence in X converging to y € f_ICV).
By hypothesis,'{f(yn) : n € w} converges to f(y) and so eventually,
f(yn) e V. But then'{yn :n e o} is eventually in f_l(V). It

follows-that f_l(V) ié a sequentially open subset of X. Then, since

X is sequential, f—l(V) is open and hence f is continuous.
J'w“TZD“”Bet“f"?“X‘—4&9“Y“bé;a“qﬁ8fieﬁt'map‘BT a sequential

spacé X onto a topological space Y. Suppose that U is a sequentially

open subset of Y and that'{xn i n e w} is a sequence in X converging
to x € f—l(U). Then, since f is continuous,'{f(xn) :ne w converges
to £(x) € U..'Consequently'{xn :n e w} is eventually in f—l(U),.which

implies that fhl(U) is a sequentially bpeﬁ subsef of the sequential
space X; Therefore f_l(U)-is open and hgnce; by definition of thé
quotient‘topoldgy, U isAopén..

(3) By (J16], Theo;em 3.8), if f is a continuous open
6r clpsed map of a topological spacé X ontp a space Y,_fhen Y is the
'qﬁotient space relative to f and‘X.- It féllows from part (2) thaﬁ

if X is a sequential space then the image f(X) = Y is sequential.
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(4) An example of a non-sequential product of sequential
épaces will be given in (1.19). To prove the second part of (4),

.vlet X be the ca;tesian product ofrany family‘-{Xa :a ;}A} of

'ftopological spaces. For each ¢ € A let Pc :.X —_— Xc.denote the
projection map of X onto its coordinate space Xc' From the
‘definition of the prodgct topologyfon X, PC is continuous._ Further-

more, according to ([16], Theorem 3.2), the projection of a product

space onto each of its coordinate spaces is open. Hence Pc is a

continuous open surjection. Thus, if X is sequential, part (3)

implies that XC is sequential.

(5) Let X be the disjoint'topological sum of any family.

'{Xa : a e A} of sequential spaces. .If U is not open in X, there
exists ¢ ¢ A éuch that U N XC is not opeﬁ and hence not‘sequentially
open in X, Consequently, there isva point gbelU{W Xc_and a
sequencé in XC-U converging to x with rgspect to Xc and therefore

with respect to X. Then U is not sequentially open aﬁd the
contrapositive of "each sequentially open subset of X being open"
is established;

(6) Assuming that (A, <) is a directed set, let

'{Xa, ¢ p ¢ B b € A; a < b} denote the family‘{Xa i a e A} of

sequential spaces together with the set of continuous maps
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_ ¢ab s Xa _— Xb satisfying the condition : if a < b < ¢ then

b0 = %o © $ap- By definition, the inductive limit of {X_ : a e A}

is the quotient space X/R-where X is the disjoint topological sum
of'{«'Xa :-a £ A} and R is the equivalence relation : two elements

X € Xa’ Xy € Xb in X are equlvalenﬁ if and only if there exists

¢ € A .such that a <.c, b < c and ¢ac(xa) = ¢Bc(xb)‘ it fol;ows
from parts (5) and (2) that X/R is sequential.

(7) The non—heredifary nature of sequential spaces will
be demonstrated in (1.15) and (1.17).- Td prove the second .part
"of-(75; assume first that Y is an open subspace of a sequential
vspace'Xland let U be a sequentially:open subset of f. If

B =“Ixn :'n e &} is a sequence"in'X converging to x € U< 'Y then,

since Y is open; S is eventually in Y, There exists m € w such

~-that x_ ¢ Y for each n > m. Moreover,'{x tn e w} is a-
n - mtn-

B sequénce in Y converging to x € U. Then, since U is sequentially

an P DE w} is eventually in U. This surely implies

open in Y, {x_
that S is eventuaily in U. Hence U is sequentially open and there-
fore open in X.

. .Assume now that Y is a closed subspace of the sequential

‘space X and let F be a sequentially closed subset of Y. Suppose

that S is a sequence in F converging to y with respect to X.
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Bedause_Y is closed in X, y € Y and consequently S converges to y
in Y. Since F is sequentia11y c1osed in.Y,vy\e F. Thus F 1is
sequentially closed in X, and so F = F/) Y is closed in Y.

(8) Let U be a sequentially open subset of a 1ocaily
sequential space X. If G is any sequential neighbourhood of
x € U, int G is sequential by pért (7). Let V= (int G) N U.
It is clear that V is sequentially open and hence open in int G.
But then V is open in X. By hypothesis, there exists a collection

.{Gx : x ¢ U} of sequential neighbourhoods satisfying x ¢ G-
For each x € U, va= (int Gx){1 U is open in X. Therefore
v=(J {Vx : x € U} is open, and (8) is established.

As previously stated, first-countable spaces are
seqﬁential. The following shows that not all sequential spaces

are first-countable.

1.14 Example There is a sequential space which is not first-

countable.

" 'Proof Let.X be the real line R with the integérs 7 identified
to thé point 0. From (1.13.2), X is sequential, Suppose that
'{Ui : i e w} is a countable neighbourhood basis at 0 in X.

Since each.Ui is obviously open in R,.theté exists a collection

'{Vn :.n e w} of open intervals satisfying n € vV CU . For each -
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ne w chbose an open interval I withn e€e I _<C V_. Then

n n¥  n A
{x € R:x <0}U( L){In :n e w}) is an open neighbourhood of 0
in X which does not contain Un for any n ¢ w. Hence X cannot be

first-countable.

A 15 :Example A:subspace.of,afsequentialsspacenneed not be

sequential.

Proof Let X be the real numbers provided with the topoiogy
~ generated by its usual topology and all sets of the form {0}V U
‘where U is a usual open neighbourhood of the sequence

f——— : n € w}. The topology of the real line is altered only

- at"0. For each 6pen subset G of X, {0} U G is open if and only if

{— : n e w} is eventuaily in G. Accordingly, each sequence in

X converging to 0 is either eventually in {0} or eventually in

every neighbourhood of'{;%I :_h € w}, and hence is either eventually

- ———equal -to 0 or a subsequence of {— +l :n e wk.

1) n e w}

Define a subspace Y = {(x, d) :0#xeRYU {( +l’

U {(0, 1)} of the plane. The space Y is the d1$301nt topological sum
of the punctured real line {(x, 0) : 0 # x € R} and the convergent sequénce‘

S D fmewlU (O, D). Since bvot‘h' (G, 0) 1 0 #xeR)
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and {( :n e w U{(, 1)} are first-countable, Y is

+l" b
sequential. The relative topology for Y is generated by sets

of the form {(A+l, 1}, {0, U {(= 1) ; m<n e w}, and

+l’
W-{0}) x {0} where m € w'and U is a usual open subset of the real

lineAR. Let P : Y --—> X be:the surjection defined by

‘P(x;‘y) = x for each (x, y) E“Y."To”esﬁablishfthat‘X“is sequential,
;i£ suffices;to prove that P is a.quotient map. It is first shown

that P is continuous. Let ﬁ be an open subset of X. If 0 ¢ U,

U is open in R and consequent1y~P_1(U)}= (U 8 {0})lJ K%;I, :‘n € w,;%I-e‘U}
is open in Y. If 0 e U, ﬁ =4{0} U G where G is aﬁ open subset of the

real line such that { il :n e w} is eventually in G. Assume

1
lﬁ:i +g#Grwhenever-n- > TE” ~oy o Phen

Ly = (6-(0} x {01) U (00, DI UGy L. 1) in<new)
U {Q§%I, 1) :tm>nc¢ w,.;%I € U}, which is open in Y. ﬁence ?,

is continuous. Now let V be a subset of X such that P-l(V) is open" 

inY.‘IfOtVthenP (v)—{(+l, ):ns'w,;j:ll_-l—e'V}U(V x {0}),

which is open in Y if and only if V is open inR. If 0 eV, (0, 1) ¢ P—l(V)

1) ¢ P (V) for each n > k.

and so there exists k e w such that ( =T

Then P™1(V) = '({(0,.1')} U{(H}—T’ 1) :k<ne w}) U{( 7D tk>neuw,

,.é%I.EIV}(J ((v-{0}) x {0}). Since P— (V) is open in Y,AV}{O} is an.

open subset of the real line containing —%I for eachin > k, and
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consequently V = {0} U (v-{0}) is open in X. Hence P is a quotient

map, ‘and therefore X is sequential.

‘Consider the subspace X- il :n e w}. Because each.
sequence in X- { il :n e w} cohverging to 0 must be eventually

equal .to 0, {0} is sequentially open. But then, since {0} is not

R I R R o .
,open,,X=£E$I i n e w} is a non-sequential subspace of the sequential

space X,

©'1,16 Example (1) The continuous image of a sequential space need

not be sequential.

2) The open and closed image of a sequential space

need not be sequential.

Proof (1) Let (X, T) and (X, Tu> be topological spaces with the

discrete topology and a non-sequential topology on X respectively.

The identity map 1X ¢ X, T) ——> (X, Ta) is a continuous surjection

of the sequential space (X, T) onto the non-sequential space

X, Ta)' In particular, the continuous image of the identity map of

Q + 1, provided with its discrete topology, onto 1tse1f, provided
w1th its order topology, is not sequential. |

(2) Let R be the real line and let X be the topologlcal
vspace of 1. 15) The identity mapping of the first—coontable space

1 -
R—»E;I». n € w} onto the non-sequentlal space X- {— ST ‘P hE Q} is an

open and closed surjection.
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The topological space M of the next example is important

for later reference.

1:17 ‘Example  There is a countable, T4 (normal and 'Tl) sequential

. space with a non-sequential subspace.

Proof ‘Let M = (N x NY N'U{0} with each (m, n) ¢ N x N an
isolated point, where N denotes the set .of.natur'al numf;ers. For
" a basis of neighbourhoods at n e N, take all sets of the form
U {(n, m) :n > q} wheré q € N. D;afine a subset U to be é
A.v.neighf)ourhood of 0 if and only ‘if OeUand U is a heighbdurhood
of all but finitely many natural numbers. Clearly, M is countable
- ..and Hausdorff. To establish that M is normal, let G be an open
.-——gubset o.f M containing the closed subset A. If 0 # A, choose

”"'{m.n eN:nelNN A} such that Vn‘=A }U{t, m) :n> mﬁ} is.

contained in G. Since 0 £ A and A is closed, NN A is finite.

Therefore, V. = [ U {Vn tne NN AX) U [N x N)N A] is open and

wetimA-@NV-C-¢l VC G. Suppose now that 0 € A. Then, choosing

'{mn e N :ne NNG} such that U = {n} U{, m) : m_>_mﬁ} is
contained in G, U= [ U {u ine Nn U [(N x Nyn Al U {0}

‘ds-open and Ac U ccl U CG. Hence M is normal. -
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To prove that .M is sequential, let Ubbe a sequentially
open.subset'of~M. For each x ¢ (N ¥.leﬂ U,'£ e int U since {x}
. ;is~open. For -each x e NN U,'{(k, ml) :me w} is a sequence |
in M converging to %..vTﬁen, since U is sequentially open, there
exists mxls_w such that v ='{x}(J'{(k,'m) : m,z_m%}'is contained
in U. But waisAadnaighbourbood;ofm#,@andwthefeﬁoﬁeﬂx,e,int.U,

If 0 € U then N-U is finite because otherwise N-U contains a

sequence cdnverging to 0. Consequently {0} U (iL){Vx :x e NN'UL)

:is :a-neighbourhood of 0 contained in U. Hence U is open, and so
‘M is sequential.

_Since 0 ¢ clM(N x N), {0} is not open in M-N. If
-n.€ N.such that,ni =.n for.infinitely-many'i-or~there is. no such
LD, fInwthe-firstncase,'{(ni, mi) : i € w} has a cluster point in
“the set {n} U {(n, m) : m e -N}. Indeed, either -there exists m ¢ N
- such that m, =m for infinitely many i or there is no such m. It

follows that the'subsequence'{(n, mi) : i € w} has a cluster point

at either (n, m) or n. Then, since M is Hausdorff,t{(ni, mi) :ie w)

-cannot converge to 0 in the first case. In the second case,

:{(ni} mi) : i € w} has a subsequence in which each point has a

distinct first coordinate. Without loss of generality it can be
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.assumed that the sequencei{(ni, mi) : i ¢ w} has distinct first
..coordinates. Choose a sequence'{ki e N : i ¢ w} such that

ki >_mi' For each 1 ¢ w let vy = {ni}(J {(ni, m) :m > ki},.and

for each n & NF{nio: iew}let U = {n} U {(n, m) : m e N}.
“Then (U {V; :ie o)V (UL :neN{n; :1ewl}) U0}
is a neighbourhood of 0 disjoint from'{(ni, mi) : i e wl.

Accordingly, a sequence in M—N conQerges to O if and only if
it is eventually equal to 0. Therefore {0} is sequentially open
in the subspace M-N, and hence M-N is not sequéhtial.

| The topological space M-N is a countable Hausdorff
space &hich-is not sequential. .The following.shows that such a

space must fail to be locally compact.

1.18 Proposition Every countable, locally compact Hausdorff

space is first-countable (and hence sequential).

2522£> Let X be a countable, -locally coﬁpact Hausdorff space.
Then X is regular; Let x € X. By hypothesis, there exists a
éompact neighbourhood K of x. The subspace K is regular and
éompact. From the régularity condition, there is a collection

u =4{Uy : x#y e X} of neighbourhoods of x satisfying y # cl Uyc: K.

' Clearly {x} = N U. The family B of all finite intersections of



- 27 =
- members .of U is a neighbourhood basis at x. Tﬁis is so because
otherwise there exists an open neighbourhood V of x such that
no member of B is.cbntained in V. But then, the intérsection
of the'cldsed‘subset K-V with»any finité intersection of

{el Uy : y e X~{x}} is non-empty and yet (K-V) N {cl Uy :y e X-{x}} = @;

this contradicts K'being compact. To complete the proof, it is only

necessary to establish that B is countable. Let Ai ={n:1 > n e N}.

There is a one-~to-one correspondence between the set of functions

u=={f : Ai --—> U; f is a function} ‘and the set of all finite

intersections of i elements of U. Consequently the cardinality

of B‘is.less than or equal to the cardinality of LJ'{UAi‘: i e N}.
““The"cérd&naiity*vf‘u‘i”fsmﬁ{§“=”#£ s “and~hence~the “cardinality of

Bis< M = N =K ([16], Theorem 179, page 279).

' Since any countable product of first-countable spaces is

'first—countable, it is natural to ask»if there is an analogous

resultlfor sequential spaces. ‘This quesﬁion is‘answered negatively

‘by'the succeeding example. Indeed, the‘product of two sequential

spaces need not be seqﬁential. The construction used in this

example is slightly different than that derived by Franklin ({8], ;

Example 1.11). Using this construction, it is also possible to

prove that the square of a sequential spacé need not be sequential,
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1.19 Example There is a product of two sequential spaces which

is not sequential.

Proof Let Q' be the rationals Q with the integers identified,
and let X = Q x Q'., The space X is the product of two sequential
spaces but contains a sequentially open set W.which is not open.

To describe W,,let'{xn : n e w} be a.sequence of irrational numbers

less than one converging monotonically downward to 0. For.each .

n e w, let Hn be the interior of the plane rhombus determined by
thé oints (-x_, n), (0, n + l) (x , n)and (0, n ~ 1)' let |
p ) n’ H y - 2 - n, H] 2 b

Jn be the interior of the triangle determined by the points

Y and (1, n - %); and let Kn be the reflection o

o]

G )5 (l,; n o+
of'Jn in fhe y-axis. Tﬁen

W =HUJ UK Uk, ¥y e Rz : ]x|.> x YU {(x, y) ¢ Rz-: y < 0}
n n n n _ _ )

'is an open subset of the plane. Thinking of lJ'{Wh :n e w)asa

subset of the plane with the horizontal integer lines identified, let

W=Xn((U {Wn :'n e w}). (See Figure 1)

TLet P, : X =—> Q and P

1

g X ~==> Q' be the canonical

projectioné, For any open-neighbourhoods.U and U' of 0 in Q and

Q' respectively, le(U)/W P;l(U') is not contained in W because |
- ’ | -1 -1, . 1 1
there exists m € w such that Pl (MmN P2 W'NnNix:m -7 <x<m + E}

is not contained in Wm. Therefore (0, 0) # int W, and hence W is

- not open in X.
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To establish that W is sequentially open, let'{yﬁ i n e wl
.be a sequence in X converging.ts y e.W. If,Pz(y)‘¥_0, convergence
in X is siﬁpiy convérgence.in 0 x Q and,since (Q x Q) N ( L]{Wh: ﬁ e w})
is open in Q x Q,'{yn :-n e w} is evéntual;y in W for this case.
Assuming tha; Ez(y) =0, if gl(y)'# 0 then W can be replaced by a

scaled down version of itself, in W, with y at the symmetric position.
Therefore it can be assumed without loss of generality that

y = (O, 0). NowA{yn :n e w} --=> (0, 0) implies thatA{Pz(yn) : new} > 0

in Q'. But then, if P is the quotient map of Q onto Q' and K is the

set of integers k such't:hat:"[P'—1 ° Pz(yn) :n e w}l is frequently in
U-{k} for each neighbourhood U of k,‘{Pz(yn) : n ¢ w! is eventually

in {0} U V where V is ahy neighbourhood of K. Furthermore, K is

finite because otherwise'{Pz(yn) :n e wl haé a.subsequencé not

converging to 0. To verify that K is finite, let V be a neighbour-

hood of K and supposevthét K =4{kn~: n e.w} Wherg kn < km if and-
only if‘n < m. There is a sequence'{Ii : 1 e w} of openiintervals
satisfying (1) Iit: V, (2) Zn Ii ='{ki}; and (?)‘Iif\ Ij £ @ if
.and only if i'= j. For each i ¢ w there exists n; € w such that

N

y. € Ii' Next, let'{Un :n e w)be a sequence of. open sets
i .

satisfying ki el, < IF{yn;}, and let G be a neighbourhood of Z-K
: i’ »
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disjoint from ,U'{Ii : i ¢ w}. It follows that G U ( L){Un ine€ w})

is a neighbourhood of 0 in Q' disjoint from the sequence

‘{Pz(yni) :ie w}.leherefore,‘{Pz(yni) :1iew}lis a subsedgence
of'{Pz(yn) :n e w} not converging'to 0, and hence K must be finite.
Let-q-= -sup~{k: k-e-K}. ~Since5{Pifyﬁ) ~-n € -w} ~converges-to 0 -in
Q9 and7{P2(yn) +n e w} is eventuallf.in'fO}Lj V.fo? any neighboﬁr-
hobd V of K,l"{yn ; n e w} is eventuélly in

E =.[X N ( L}{Wn o j_q}S] U (Q x {0}). But E is contained in W.

Thus ‘W is sequentially open, and this completes the proof.

. Defining Q' and W as above and thinking of L){Wh-: n e w)

as a subset of the plane with the horizontal integer lines identified
and the vertical integer lines identified, it is not difficult to

see from (1.19) that (Q'"x 9"y N ( L/{Wn :n e w}) is a sequentially

open subsét of Q' x Q' Whiéh is not open. Hence Q' x Q' is not
'sequential,_and therefore the équare of a sequential space need not
be sequential,

After a few preliminary results it will be shown,thaﬁ the
situation described in (1.19) cannot occﬁr in the presence of
éuitable'compactness aﬁd sepafation conditions. First; it ié
convenient to prove that countable compaétness and sequential

compactness are equivalent in sequéntial spaces.  .As is well-known
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([28], Proposition 9.8), these concepts are equivalent invthe 
class of first-countable spacés. Since sequentially compaéf |
spaces are always.countably-compact,‘the following establishes
thgir equivalence in the larger class of sequential spaces.

The proof is provided by the author.

1.20 Theorem Every countably compact sequential space is

sequentially compact.

Proof Let X be éequen;ia1~and countably compact, and suppose

that S ='{xn : nvs.w} is a sequence in X with no convergent
subsequence.-,Let A % LJ {cl,gn :m e wl. If So =‘{yn :ne wk
‘““”T§”é“séﬁ&eﬁce“in“A”cﬁﬁﬁergiﬂg“tb“y;féitﬁérwsaﬁié*frEQﬁeﬂfIy“in

cl X for some m € w, or no sqch m exists. In the first case,

& € ci xmc: A. In the second case, there exists a subsequence
'{yn; : ke Q} éf S, with ynk e cl xnk.' But then"{xnk : k ;'w}

is a subsequence of S converging to y. Thg second case, the:eforé,
cannot occur and so y e A. From this it follows that A is sequentially
closed and hence closed. Since X is countablyycompact; A is
countably éompaét an& consequently S has a'cluster point x'e‘A.

Now x € cl xn'for only finitely many n € w because otherwise S
would have a convergent sequence. Let k € w be such that x ¢ cl'xn

wvhenever n > k. But then, applying the same argument at above,
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U {cl x, > k} is sequentially closed and yet does not contain

its accumulation ﬁoint X.

A result due to Novik [27] demonstrates that the product
6f two cpuntably‘c§mpact spaces need not be couhtably compact.
The foilowing shows that one of the spgceé being sequential is

‘enough.

~1.21 Corollary - The product of two countably compact spaces,

one of which is sequential, is‘countably compact,

. Proof Let'{(xn, yn) :n e &} be a sequence in the topological

product space X x Y of a countably compact space'X and a countably
~wcompact ssequential-space Y. ~-By-virtue2of»(120) ; Y ks gsequentially

compact. Accordingly, the sequence'_{yn : n € w} has a subsequence

'{yn : k ¢ w} which converges to some point y € Y. Since X is countably
" .

compact,‘{xn : k ¢ w} has a cluster point x € X. Then (x, y) is a
k :

cluster point of the sequence'{(xn, yn) :n e wl.

1.22 Corollary Let X be the topological product of any countable

family'{Xn :n e w} of sequential spaces. Then X is countably

compact if and only if each Xn‘is countably compact.
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ngggg- The necessity of the COQditiQn is obvious since the
-»cdntinuous image of a countably compact space is countably
compact ([71, Theorem 11.3.6). To establish that X is

sequentially compact and hence countably compact, 1et'{xn tne wl

..be.a .sequence in X. For each i € w let Pi be the projection map

-of ‘X onto Xi' If each Xn is countably compact then, by (1.20),
- each Xn is sequentially compact. - Hence there exists a éequence

{k

g ¢ 1 € .w} of fu§ct10ns @applng.m into Q such tﬁa?ﬂixk (n)_: n e w}

is a subsequence of {xn :n e w} and {Po(xko(n)) :ne w} is a

convergent subsequence of'{PO(xn) :newl and for 1 <1 e w,

Ww;{ﬁki(ﬁ> : n € w} is a subscquence of {xk () P ° w} and

Ky

'N{Pi‘xki(n)) :n-g-wl is agconvergent subsequence of {Pi(xki_l(n?? n e wk

The sequence'{xk (nj : n e w} is ‘the desired convergent subsequence

of {x :n e w}.
n

1.23 Corollary Let X be an uncountable set, and let 2 denote the
" set {0, 1} provided with the discrete topology. Then the product
* gpace ZX is not sequential.

Proof = Suppose that ZX is sequential. Since any product of compact

- topological spaces is compact, ZX is (countably) compact and hence,

-by,(l.ZO),;sequentially compact. Let f : X ==-=> 2" be a surjection.
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Define a sequencei{#n tn e w in_2xtby xn(a)-= {f(a)](n) for each

o e X. -Let".{xn : k € w} be a subsequence of'{xn :new. Now
Kk . .

L w : o : _
there exists y € 2~ .such that y(nZk)l—,Oband-y(n2k+l) = 1 for

-each k¢ w. Since f is éurjective, f(B) =y for some B € X.

~Therefore, if P *is“the“canonicai“projéction“map“of 2X~ontowthe

B

- B-th coordinate space, then'{PB(xn ) t ke w} cannot converge
“k

since 2 is discrete; clearl'y‘PB(xn

) = x_ (8) = [£(8)] (n) = y(n ).
REES m) = ¥y

‘ thus‘{xn : k € w} does mnot converge, and hence 2% cannot be

sequentially compact. The contradiction shows that 2X must not be

=wgequential.

1.24 Theorem Let X and Y be sequential spaces; and assume that

each point of X has a neighbourhood basis consisting of sequentially

compact sets.: Then the topological product space X x Y is sequential.
Proof Let G be a sequentially open subset of X x Y. To prove that
G is open, suppose that (u, v) € G and let Gv = {x : (x, v) € G}.
Clearly u ¢ Gv' If'{sn :newis a sequence in X converging to

s €6 then'{(sn, v) : n e w} is a sequence in X x Y converging to-

(s, v) € G. Since G is sequentially open,‘{(sn, v) : n e w} is
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-eventually in G, and éonsequently'{sn : n.etw} is eventually in -
Gv. Hence Gv is sequentially open and therefore open in X. By -
hypothesis, there exists a sequentially compact neighbourhood
U of uwith U x {v} contained in G. Let V be the largest subset
of Y such that U x V< Gj that is, V= {z : U x {2z} < G}. 1If
-V is not open, there is a sequ_ence.{yn :n'e w}in Y-V converging
.to y € V. But then, for each n ¢ w there exists»xn € U with
"(xn’ yn) £ G. Since U is sequentially compadt,‘{xn : n.evw} has

-.a subsequence {x : k €.w} which converges to some point x € U.
"It follows that‘-{.(xn A )t k ;‘w} converges to (x, y) € G and
: "k 'k ' ' B

--hence ‘that (xn A ) €-G for ‘all k sufficiently large. The
k k -

contradiction shows that V must be open. Then, since (u, v) ¢ U x VC G,

. {u, v) € int G and so G is open.

-1-+25-Corollary »«(l)mehe»productmofwtwoﬁseduenﬁialwspaces,;one-of'

whiéh is regular and either locally countably compact or locally-

'sequentialiy;compacf, is sequéntigl. | |
-(2) The product of two sequentia1 spaces,_one of which

- is locally compact and either Hausdorff or regular, is sequential.
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Proof (1)' Let X and Y be sequential spaces, and assume that X .
is regular and locally countably compact. Each point x ¢ X has a

countably compact neighbourhood K. Let'{U,a : é‘ewA} be a neighbour-
hood basis at x sqch that each'Ua is a subset of K. Since.X is
regular, for each a ¢ A there existé an open set Va with

X € Va<: cl'Vacj_Ua. Then each‘cl.vVa is.counta§ly_compact and
el Va :ae A} is a bésis of countably compact closed neighbour-~
hoods of x. By virfue of (1.13.7) and (1.20), cl Va is sequential

and hence sequentially compact. Accordingly, each x € X has a

neighbourhood basis {cl V,iace A} consisting of sequentially

f‘wwcompacthubsebsmwwmhe@pneeedingWtheanemmimplieswthat@thewprpduct
space X x Y is sequential. The second part of (1) is now clear
since sequentially compact-spéces are countably compact.
(2) This follows from (1) because évery‘locally.compacf .

Hausdorff space is reguiar and every compact spacé'ié locally
countably compact. -

| As seen in Example 1.19, the product space Q@ x Q' is not
‘sequential; Although both coor&inate spaces @ and Q' are regular,
neither topological épace is locally countably compact. It is
ciear that Q' fails to be loéally countably compact at.0.> The
space Q is not locally countably compact because regular locally
countably compact spaces are Baire spaces and Q is not a Baire-

space ([7], pp. 249—250).
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1.26 Corollary If X and Y are sequential Hausdorff spaces -then

,the,product spaces X x Y and (X x Y)S, pfovided with the usual

»product.topology.and the éequential closure topology respectively,

7

-‘have ‘the same compact sets.

" ‘Proof Since the sequential closure topology is larger than the
. product topology, it isvonly necessary to. show that each compact

" subset of X X Y is compact in (X 'x Y)s. Let‘K be compact in X x Y,
~and let K% = {x : (x, y) ¢ K} and Ky é'{y : (x, ¥) € K}‘be the
--~projectionsvof K into X and Y respectively. The subépaces Kx and'
-~--Ky~are?compact Hausdorff and henge.closed. Thus Kx and Ky are also

s saSequential-specesicrditv-f£ollows Erona(lw25)sthat the.product..space

'Kk'x Ky is sequential. Consequently, the topology induced on K by
-'vKi X Ky is the same as that induced on K by either the usual product

-topology or the sequential closure topology.. Therefore UN K is

open in K whenever U is open in (X x Y)s’ and hence K is a compact
subset of (X x Y)S.

The foregoing corollary is of interest in studying k-spaces.
«w_w(AJtopological space“X is a k-space if and only if a subset A of X
- is closed whenever AN K is closed in K for every compact subset

.K of X.)
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1.27 Proposition "Everyisequential space is a k-space,

EEQEE 'Sgﬁpose that A is a subsét of a éequential space X With‘
‘AN K closed in K for -every éompaét.subseth-of X, Let S be. a
sequence in A converging to X. Since.S‘U.{x} is compact,
AN(sU {x}) is closed.in s .U {x}.- This implies that x & A
nwéndwhencenuhat~AAis~séquentiallyvdlosedﬂ
There are, however, k—spacés]which are hot-sequential.
- For example, the ordinal space  + 1 provided with the order
topology is a k-space which is not sequential. The space Q + 1
is a k-space because it is compact ([7], pp. 222, 162) and the
locally compact spaces are k—épaces ({71, 11.9.3).

In view of (1.26) and (1.27), it is not difficult to
See that the product of two 'k-spaces neéd not be a’k-space. “The
non-sequential space Q x Q' is, in fact, a product of two Hausdorff
sequéntial spaces which is not a k;space; This - is éo because
there exists a non-closed sequentially closed subset A of Q x Q'

-

such that AN K is closed in K for eVery tompact subset K of
x 0'Y .,
@ x 9",
The next two theorems are important results concerning
the product of quotient maps and the product of séqdential spaces

respectively. For each cardinal number m, let Dm denote the
_ discrete space of cardinality m,.let'_Ym be the quotient space

obtained from D_ x [0, 1] by identifying all points in D x {0},
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Cdet 8 ;qu—x,[O, 1] ———> Ym pe.the quotient map, and let yo‘éenote
the point Dm x {0} in Yﬁ. ‘For any topological space X, let lX be

- the identity function on X. (For~ény two functions f ¢ X ——> Z-

and g : Y -——>’Zo, define (f x g){x, v) = (£(x), g(y)) for each

(%, y) € X x Y.)

1.28 Theorem The following properties of a regular space X
are equivalent.
(1) X is locally countably compact..

: (2) lxkx g is a quotient mép for every quotient map g

with sequential domain.

B) h="1, x g, is a quotient map, where m is the

X
smallest cardinal such that each x e X has a neighbourhood basis

of cardinality < m.

Proof (1) -—~--> (2) lLet g : Y -——=> Z be a quotient map with

sequential domain Y, and let f denote the product map 1X X g,

Clearly f is contiﬁuous;’if'A x B 1s a basic open subset of X x Z
then f_l(A.x B) = A x g_l(B), which is open since g is continuous.
Let G be a‘éubset of X:xAZ with f—l(G) open iﬁ X X_Y; Suppose that
(u, v) € G and let re g_l(v). The;e is a basic open set U x V in

X x Y such that (u, r) e U x VC ffl(G). Since X is locally countabiy

compact, there exists a countably compact neighbourhood'K1 of u.-
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Then, since X is regular, there is an open subset Ul of X

cclU cUNZK,. The set K =¢l U, is a

satisfying u ¢ Ul 1 1 v 1

countably compact neighbourhood of u contained in U. Let

E={z¢e2Z:Kx{z}) — G}. Since (u, r) e Kx VC f—l'(G)v,

K x {r}c £2) and 6 DR x {r}) = K x {g(®} = K x {v}, which
 implies that v e E. Iﬁ remains to prove that E is open. But.
since g is a quotient map, it suffices to show fhat'g_l(E) is open.
If_a €Y and K x {a}C f_l(G) then £f(K x {a}) — G, which implies
that K. x g(a) < G and hence that g(a) € E. Thus

g-l(E) ={yeY: K x {y} CZf_;(G)}. Suppose that g—l(E) is not
6pen{ Then, since Y ié sequential, therehis a.sequence

1.

‘{y_ :ne w}in Y—g—l(E) converging to some v € g (E). So

n

K x'{yn}tgff_l(G) for each n ¢ w. Hence there exists a sequence

1

'{xn : n-e w} in K with each (xn, yn) ¢ £ (G). Because K is
countably compact,A{xn : n ¢ w} has a cluster point x € K.~ Then
the sequence‘{(xn, yn) :n e w} has a cluster'point‘(x,,y)'e f—l(G).
. -1 . : ' , ] _
Since f “(G) is open, {(xn, yn) :n e w} is frequently in £ “(G)
L -1 | \ -1
contradicting (xn, yn) f £f "(G) for all n € w. Thus g ~(E) must

be open, and (1) implies ).

(2) -——> (3) Both Dm and [0,.1] are sequential'spacés.
Since Dm is discrete, Dm is iocally_compact Hausdorff and it follows

from (1.25) that Dm'x [0, 1] is sequential. Thus 8 is a quotient

map with sequential domain Dm x [0, 1] and so (2) implies (3).
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(3) —-~> (1). Suppose that X is not 1ocallY-countably

compact at: some point X Let'{Ua tace Dm} be a neighbourhood. -
basis at X . For each a eva, cl Ua is not couﬁtably,compaét
and thus has a countable familyA{Fi : n € N} of distinct non-empty

wwclosed”Suhsetsmsatisfying”thewﬁiniteﬁintersecxionAprqperty.Whose

intersection is empty. Let Ez = f\'{Fi tn>ke N} for each
n e N. It is clear that N {E- :ne N} = § Ea:) ES and
: n ° >’ "n n+1?
.each Ei is closed and non-empty. Thus,,fof each a € Dm there
exists a countable well-ordered family'{Ei : n e N} of distinct
non-empty closed subsets of cl Ua satisfying the finite inter-
section property whose intersection is' empty.
To establish that h is not a quotient map, for each
: e e U Kt by
aeD define S C x‘x (Dm x [0, 1]) by s, = U{En x {(a, n)} :n e N},
- and define S C X x Ym by S = LJA{h(Sa) :ace Dﬁ}. It suffices to
show that h_l(S) is closed in X x (Dm x [0, 1]) and that S is not
closed in X x Ym. Note that (xo, yo) ¢ S since (x, .(a, 0)) # Sa
"for any x € X If Ux V is a neighbourhood of (xo, yo) in X x Ym
then, since X is regular, cl UCC: U for some ¢ ¢ Dm. Thus chdosing
1 -1 : 1 . c 1 :
(e, ) e g MA (e, D) tne N, #hE x (e, DHC WO xVINS;

' the point (c,'%) exists because V is a neighbourhood of Y, and .
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'{E%E-: n € w} converges to 0 in [0, 1]. It follows that

v(xo, yd) € C;XXYm (S) and hence ?hat S is not.closed in X x Yo
'Sincé.Dm is discrete, it remains to prove that

h—l(S)/ﬁ (x x ({é}‘x [0, l]))'is closed in X x ({é} x [0, 1]) for

each g £ Dm. .But since (X X'{(a,'O)})/W Sa = ¢,lh_1(S)/W'(X x ({a} x [0,11))
=5, . Assume that ‘the pdint (x, (a, &)) is coﬁtained'in‘the c¢losure of

Sa with respect to X x ({é} x [0, i]).‘ Since each Ez is ciosed, it

‘ié clear that x € Ei.‘ Then, since {Ei :'n e N} is well-ordefed and

f)"{Ez :ne N} =0, there»is é smallest set E; containing x. It

: followé that a 3_%—because otherwise G x ({a} x (¢ - €, a + €)nl0, 11),"

1 i .
2 — dC ic b h b igqjol fr
where 0 < g < =YCYSH) and G is a neighbourhood of x disjoint from

vy

a

Ep+l ’

is a neighbourhood of (x, (a, a)) disjoint from Sa. Moreover,
since [0, 1] is Hausdorff, a e‘{%-: n < p}. Therefore -

‘(x,(a, a)) € Ez X'{(é,'a)} C:Sa. Thusvh_l(S) is closed in

X x (Dm x [0, 1]), and the proof is.complete,

1.29 Theorem The following properties of a‘T3 sequential space

X are equiﬁalent.
(1) X is locally countably compact.

(2) X x Y is sequential for each sequential space Y.
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3) X x Ym is a k-space, where m is the smallest
cardinal such that each point of X .has a neighbourhood basis of
cardinality < m.

Proof  The proof that (1) implies (2) is given in (1.25), and
..it .is.ebvious .that «(2) -implies .(3)..since meiswsequentialqandzevery

sequential spade is a k~space, By virtue of (1.28), to establish

that (3) implies (1) it suffices to prove that h = 1x x gm.is a

quotient map. First, it is convenient to prove a preliminary lemma.

Let K be a compact subset of X x Ym and let P be the first coordinate
brojection map of X X Ym onto X. if kX x {yo})/ﬁ K =‘¢, h-l(K) = K
A K s E LSO COMPAE T X X DX L0, LT VIR (R ffyg‘})'r\"K”’#'“@ ,

for any a ¢ Dm the set E = (K-(X X‘{yo}))lJ (PX) x {(a, 0)}) is a
compact subset of X x (Dm x [0, l])'because any open neighbourhogd

of (a, 0) in Dm x [0, i] is contained‘in some open neighbourhood of
:yo in me In addition, h(E) = K. It follows that every compaét‘
subset éf X # Ym is tﬁe image under h of a compact subset of

X‘x‘(Dm k-[O,‘l]). Supéose now that 3 is a subsét of X x Ym with
h_l(B) closed in X x (Dm x [0, 1]). Since X x Ya'is a Hausdorff

k-space, to prove that B 1s closed it is sufficient to show that

BN K is compact in K for everybcompact subspace K of X x Ym.
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-But:K ?:h(C)_for some compact subset C of X x (Dm(x [0, 1]). ‘Thus

E = h—l(B)/\'Cvis a compact,sﬁﬁsét of C.' Clearly H(E)»is contained
in BNXKX., IfbeBNKthenb € K and so there exists some a ¢ C
sﬁch that h(a) = b. Furthermore, b e B implies that a ¢ h_l(B) aﬁd
“hence that a ¢ h_l(B){\ C = E. Therefore b = h(a) € h(E) and
‘ coﬁsequently h(E) = BN K. Theﬁ, since E is compact in C and h is
continuous, B:/) K is é compact subset of h(C) = K. Thus B is closed
and h is a quotient map. o

A éharacterizéfion of the sequential spaces follows from
the next theorem.

1.30 Theorem Every sequential space is a quotient of a2 disjoint

topological sum of convergent sequencés.

Proof - Let X be a sequential space. For each x e-X and for each
sequeﬁ;e'{xn : nve w} in.X converging.to X, let S(xn, x)-='{xﬁ :ne w} Lj{ij
be a Hausdo?ff topological space in which each xnvis isolated and thé
sequence'{xn tn e wl coﬁverges to x. Although the élements of

S(xn, x) need not be distinct in X, they are tgkgn to be distinét in

S(xn, x). Thus S(xn; i) is hoﬁeomorphic tow+1 provided with the
vordervtopology. Clearly Stxn, X) is a convergent sequence in S(xn,'x).

Let W be the disjoint topdlogicallsum of all possible S(xn, X).



- 45—
Since for .each x € X theﬁconvergentgsequence'{xn TR =X, m e w} U {x}

is a summand of W, the natural functionvf ! W===> X defined by
f(x) = x is a surjection. In addition,‘f is continuous beééuse.it
“¥s “corntinuous -on each summand. To complefe the ‘proof, it .remains 'to
~establish ‘that f is a quotient‘map. Let U bé a subset of X with

“f—liﬂ)Jqpen iﬁ W. If‘{‘.y‘n fne Q}.is a sequence in X converging to
yeU, ve f_l(ﬁ)/1 S(yn, y).ﬁhich is épen in S(yn, y). Then

'{yn :‘n € w} as a subse; of S(?n, y) is eventually in f-l(U), and
hencei{yn ine w}'as‘a subset of X‘is eveﬁtually in U. Consequently

' U is sequentially open and therefore open in X.

1.31 Corollary A Hausdorff space is sequential if and only if it

is a quotient of the disjoint topological sum of its convergent

- sequences.

‘Proof The necessity of the condition is clear from (1.36). Itris
only necéssary to remark that if X is Haﬁsdorff then W is precisely
the disjoint topological sum of all the convergent sequenceé in X.
Conversely, (1.11) iﬁpligs that each summand of W is a metric space
and hence a sequentiél.space. Then X is sequential by (1.13.5)

~ and (1.13.2).
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1,32'Corpllary . Every'sequential space is the quotient of a zero-

dimensional, locally compact, complete metric space.

Proof It suffices to show that W is a zero~dimensional, locally
compact, complete metric space. Suppose that U is a neighbourhood
basis at y e W. Each U € U_is both opénvand closed in W because

U fmS(xn,>x) is both open and .closed in S(xn, x). Hence W.is
zero~dimensional. According to (1.11), each S(xn, X) is a compact

metric épace.. Obviously W is locally compact.. If dS(x x) is . a
. 0’

“meétric on S(xn, x), then-

f ds(xn’x)(ﬁ, y) if u{’v € S(xn, X)

f%d(gdwi)'?g.

1 o otherwise

is a.metrié on W. Lastly; W is complete by virtue of ([7], Corollary

14.2.4).

1.33 Coroilary The following are eduivalent.
'(l) X is sequential. 
(2) X is the quotient of a metric space.

3) X is the quotient of a first-countable space.

‘Proof - in.view of the preceding corollary, (1) implies (2). . Clearly:
(2) implies (3) because metric spaces are firsf-countable. Since-

first-countable spaces are seﬁuential, (3) implies (1) by (1.13.2).
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1.34'Examp1e' ‘There is a separable sequential space which is not

the quotient of a separable metric space.

Proof Let H be the real numbers provided with the half-open
interval topology. Sets of the form {x : a < x < b} = [a, b)'are
a basis for this topology. Since for each x ¢ H the collection

| {[x,

533? tn e w} is a countable neighBourhood basis at x, H is

first-countable. ‘Then H x H is first-countable and hence seqﬁential.
Thé‘space H x H is aléo séparable because {(x, y) : X, y rationall
"is a countable dense subset. Suppose that H x H is the quotient of
a separable metric space X, and let P : X ——> H x H be the quotient
._ﬁap. According to ([71, 9.5.6), every separable metric space is
.aﬁindelafawmmhuSmXTQSw&inaeléfwandmconséquentiy%80miswHwaH. w$ndeed,

1

if'{Ua : a ¢ A} is an open covering of H x H, {P (Ua) :ae A} is

an open covering of X and hence it has a countable,Subdovering

‘{P_l(Ua ) :n e w}; then'{Ua : a £ A} has a countable subcovering

“n
"{U :new}of HxH
a
n
" Consider the subspace K é'{(x, -x) : x dirrational} of H x H.
For any € > 0 each (x, y) € H x H such that x + y >0, ([x, xte) x
[y, y+e))/ﬂ K # ¢ if and only if (x, y) € K. In additionm, for each
(x, y) € H x H such that x +y < 0, ([x, x+6) x [y, -x-8))N K = ¢

whenever 0 < § < -x -y. Thus K is a closed subspace of the Lindeldf space



H x H. Since K is discrete and uncountable, K is not Lindelof.

.However,”if'{Vé-: a' € A} is an open covering of K,
 TVa : a e AU {(H x H)-K} is an open covering of H x H. Then,

‘since H x H is Lindeldf, ‘there is a countable -subcovering

'{Va :ne w U {(H x H-K} of H x H. It follows that K is
a -

covered by‘{Va

: n € w} and hence that K is LindelSf. The
n - '

contradiction shows that H x H must not be the quotient of ‘a
separable metric space.

It»has been shown that the notion of. sequential space
is neither hereditary nor productive. The‘féliowing is a
characterization of those subspaces and those products of sequential

-spaces which are themselves sequential.

1.35 Proposition For X sequential, let ¢X denote the quotient

map of X* onto X, where X* is the disjoint topological sum of
‘convergent sequences in X as derived in (1.30).

(1) A subspace Y of a sequential space X is sequential
if and only if -1 is a quotient map.

{2) The product of two sequential spaces X and Y is

sequentiél if and only if ¢X.X ¢Y is a quotient map.
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Proof (1) Let Y, = ¢—1(Y) and ¢ = ¢ I . Let g @ Y ——> Y
—_— ¥ . 1 X . X Yl .

x for each x € Y*. Then g is

be the function defined by.g(x)
a quotient map if and only if Y is sequential.. It suffices to
.show that ¢ is a quotient map if and only if .g is a quotient map.

Let U bé a subset of Y. If ¢fl(U)'ié open in Y then‘¢-l(U)/ﬂ S

1

is ‘open in 'S for reach summand S of Y From the definition of the

l.
relative topology on Y it is clear that each convergent sequence

in 'Y is a conﬁergent’séquence in X. Therefore each summand of Y#*

~ is a summand of Yl, and consequently g_l(U) =_¢-l(ﬁ)/ﬁ Y* is open
~ in Y*. Conversely, suppose that g-l(U) is open in Y*, Then

¢—1(U)/\ S = g_l(U)rﬁ S is open in S for each summand S of Yl

which is also a summand of Y*, Let S(xn, x) be a summand of X¥%; .

then S1 = S(xn, x)N Y is a summand Of'Yl' The topological space

Sl is either finite or infinite. 1In the first case, each point of.

S, is isolated and thus S, N ¢-1(U) must be open in S;. Assume

1 1 1

now that the second case occurs. If x ¢ U then
5, N ¢—1(U) ='{xn :n e wk F\¢—1(U) which is certainly open in §,.

If x € U, each sequencé in S, converging to x ¢ Slr\'¢—l(U) is a

1

subsequence {x, : k e w} of'{xn : n ¢ w}. But since
.

¢—1(U)f\ S(xnk; x) is open in S(xng, x),.{xn : k € w} is eventually

k

in Slrﬁ ¢_1(U). It follows that Slrj ¢—1(U) is a_sequentially open
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subset of the first-countable space-Sl. Therefore,¢_1(U) is open
in Yl, and the proof of (1) is complete.
| (2) Since X* and Y* are first-countable, the topological

product space X* x Y% is first-countable and ‘hence sequential.  .Then

”if,h*=.¢X:X ¢Y is a quotient map, X x Y is sequential. To establish

the converse, -assume that X x Y is :sequential and let G be a subset

of X X Y with h—l(G) open in X* x Y#*, Suppose'{(xn; yn) :nE w}

is a sequence in X x Y converging to (x, y) € G. Then (%, y) € h_l(G)
and there exists a basic open subset U x V of X* x Y* such that

1

(x, y) e U x VC h ~(G). Accordingly, UN S(xn, x) is open in

’S(xn, x) and VN S(yn, y) is open in‘S(yn, y). This implies that
the'sequences‘{xn :n e w} and'{yn : n € w} are eventually in U and

V respectively, and hence that (Xn’ yn) € h—l(G) for all n sufficiently

iarge. Therefore (xn, yn) = (¢x(xn); ¢Y(yni) = h(xn,.fn) e G for -
all n sufficiently large, and so G is a séquentially open subéetvof
the sequential space X x Y; Thus G is open and h is a quotient
map.

A first-countable space with unique sequential limits is
Hausdorff since othe;wise it is possible to find a sequence converging
to two disﬁinct points, That is, if x énd y are distinct points -

which cannot be separated by disjoint open sets and'{Un :n e w}

and {Vn : n e w} are countable neighbourhood bases of x and y
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respectively, then the sequence'{xn : n e w}l satisfying x eU NV,

converges to both x and y. The.succeeding examples show that this
result cannot be generalized to sequential spaces.

The'constructiop used in the first ‘example.is based on
Sorgenfrey's [29] well-known result concerning the product of
normal spaces. . It will be shown that the square of the normal

space H is not normal.

1.36 Example There is a sequential space with unique sequential

limits which is nof Hausdorff.

Proof Let H be the real numbers provided with the half—oben
9wwwinverval“ﬁopoiogyuﬂ”Theﬁtgpologd@aimproductmspacewwavHfis

seqpential., If A= {(x, y) : # + y = 1} is the antidiagonal of

H x H, let Aq and A be those points of A with rational and |
irrational coofdinates respgctively. For any € > 0 and each

(x, y) € H x H such that x ; y>1, ([x;'x+s)'x [y, y+e)) N Aqv# )

if and only if (x, y) e Aq; similarly, ([x, x+e) x [y, y+a))f7 Ai 0
if and oﬁly if (x, y) € Ai' And for each (%, y) € H x H such ﬁhat

X % y <1, ([x, k+6)dx‘[y, 1—x—6))f\ A= ¢ whenever 0 %‘6 < i - X =Y.

Therefore Aq and Ai aré’disjoiht‘closedISubsetS“bf'HgXJH;
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To. prove that Aq and Ai cannot be separated by disjoint
open sets, let U be an open neighbourhood of A;. For each

irrational x, let f(x) = sup{e > 0 : [x, xte) x [1l-x, l-xte) < U},
‘Then f is a function on the set of irrational numbers and f is
never zero. The set of irrationals is the countable union of sets

~ of the form {x 2 £(x) _>_»-“—i—} where n ¢ N. 1In the real line R, the

irrationals are of the second category ([7], pp. 249-251) and

consequently there exists m e N such that {x : £(x) > i—}vis not

nowhere dense in R. Hence there is a rational number r which is

an accumulation point of {x : f(x) > I—]['l-}. For any neighbourhood
V of the point (r, 1-r), there exists p € R such that p < %

and [r, r+p) x [1¥r, l-r+p) C V. But there is an irrational

number s e (r-p, r+p) such that [s, s + %) x [1l-s, 1-s + %) cUu..
Then ([r, r+p) x [1-r, 1-r+p)) N (s, s +'I—t-) x [1-s, 1-s + %)) ¢ 0,

and hence TNV # P for every neighbourhood V'of (r, 1-r). ' There-

fore (r, 1-r) € ¢l U, and so Aqn clU+# ¢ ‘for"every neighbourhood

U of Ai'

The set E = (A’q x Aq) U (,Ai X-Ai)' U{(x, x) : x € (H x H)~-
(AiU Aq)} is an equivalence relation in the first-countable space -
"H x H. The quotient space X = (H x H)/E is sequential and Tl but

- not Hausdorff. TLet ¢ : Hx H ———> X be the quotient map, and let
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q = ¢(Aq).and is= ¢(Ai). Then q and i are the only pair of

'distinot points of X which'cannotybe-separated by open.sets,,énd
consequently;if soﬁe sequence in Xbconvergos'tO’two'distinct
points, ithey must be q and i. 4SupposeﬂthatlS.= {xn :n e w}
oonverges to q. Since X is Ti, it can be assumed- that X # i
for all n ¢ w. Again since X is Tl’ if frequently x =q then
§ cannot converge to i./ However, if X, is eventually different
from q, there must be‘some ql'e Aq and'a subsequence So of S
converging to 93 ian x H. Buo tben there is a neighbourhood of

Ai disjoint from So’ and thus S cannot converge to i. Hence X

..has.unigque,.sequential limits.

1.37 Example There is a countable, compact, sequential space

with unique sequential limits which is not Hausdorff.

Proof Let M be the Hausdorff sequential space of (1.17).

Let p be some point not in M and let M =M U {p} with M open

in M1 and where the basic neighbourhoods of p are of the form

{p} U ((N x N)-F) with F the union of the ranges of a finite
number of convergent sequences in M. Since'M is Hausdorff and a

~convergent sequence in M cannot also converge to p, Ml has

unique sequential limits. However, Ml is not Hausdorff because
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0 and p have no disjoint neighbourhoods. It is also clear that

M. is ‘countable and compact. To verify that M

1 :is compact, let .

1
U and V be any open neighbourhoods -of ‘0 and ;p respectively. Then
 N-(UvY V) is finite .and Ml—(U.U V) is the union of the rangeé of
~a finite number of convergent sequences in N x N. But each

’ SequEnce“in‘Ml—(UfU“V)*cbnvergES“to“somE“member‘of‘N:(UWJ‘V).
Hence for any finite collectionf{Un n e N-(UUYV)} of open sets
satisfying n e U, M-(U UV U [ U {U_:ne N-(UU V) is finite.

To see that Ml

is sequential, let V be a sequentially
open subset of M. If p # V, V is sequentially open in the.
sequential space M. Then, since M is open in Ml’ V is also open

in Ml'~ Assume now that p € V. Clearly, V is a neighbourhood of .

_each point in V-{p} because V-{p} is sequentially open in M.
Since any subset {(m, n) :me ACN, n e BCN} contains a sequence

converging to p whenever A is infinite, M1~V must -contain points

of N x N having only finitely many first-coordinates. Thus V
contains a basic neighbourhood of p and so p e int V. Therefore V

~is an open subset of_M1 and consequently Ml is sequential.
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1.38 Proposition‘ (1) A sequential spacélwith udique sequential

limits dis Tl .

(2) If X is a topological space with unique sequential
limits and X x X is sequential, then the diagonal A = {(x,x) : x & X}

of X x X is closed (and hence X is Hausdorff).

Proof (1) For each member y of a sequential spéce Y, the
singleton {y} is sequentially closed and hence closed in Y.

(2) Every sequence in A is of the form>{(xn, xn) ine w}..
Since X has unique sequential limits,'{(xn,'xn) : n e w} converges
to (x, x) if and only if'{xn : n e w} converges to x. Therefore

A is sequentially closed and hence closed in X x X,
It follows from part (2) that the product spaces X x X

and Ml x Ml’ where X = (H x H)/E and M, are the non-Hausdorff

1
- sequential spaces of (1.36) and (1.37) respectively,are not

éequential. If these products were sequential, X and Ml would be

Hausdorff.

After a preliminary resul£ it will be shown that a
séquential space With unique sééuential limits in which each point
has a neighbourhood basis coﬂsisting of countably compact sets is

Hausdorff. The topological spaces X = (H ?<'H)/E and Ml_do not

satisfy this compactness condition. For aﬁyvneighbourhood Uof q
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in X, letv{xn :n e wl be a sequence in U such.that'
1 .
X € (n, nfen)-X»(l—n, l—n+en)(: U where 0 < e, <5 The»sequence
 {xn :n € w} has no cluster point in the.neighbourhood U.  There-

fore U is not -countably compact, and consequently X is not even
“locally countably compact. Suppose now.that V is any neighbour-

hood of p in M Then, since {n+l : n € w} is a sequence in M

1°
converging to 0, V-(N U {0}) is also a neighbourhood of p. it

is clear that there exists m € N such that {(m, yn) :ne w}bis

a sequence in V—(N(J {O}) with Ya = Yk if and only if n = k. But
‘{(m,-y#) : n € w} has no cluster point iq V- (N L[{O}). So V—(NlJ{O}) is not
countably compact, and M1 does not have‘a countably compact

neighbourhood basis at p.

1.39 Proposition A sequential space has unique sequential limitsv
if and only if each countably compact subset is closed (and hence

sequential).

Proof Let X be a sequential space. Suppose X has unique sequential

limits and K is a countably compact subset of X. Let S =A{xn :n e w

be a sequence in K converging to x. Since X has unique sequential
limits,'{x} U range S is sequentially closed and hénce closed in X.

Then if y is a cluster point of S, either y = x or frequently'xn = vy.
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Again since X has unique sequential limits, y = x. Thus x is the 

only cluster point of S, and consequently x ¢ K.. Therefore K is a -

..sequentially closed subset of the sequential space X..

H
H

Assume now that .S is a sequence in X converging to .two

distinct points x and y. Since {x} U range S is compact, {x} U range

.S is clbsedﬁand.Hence”COntaihs‘y.usThis.implies that S is frequently

equal ‘to y. But then {y} is a non-closed compact subset of X.

..1.40 Corollary A sequential space has unique sequential limits

---if -and only if each seqdentially COmpaét subset is closed.

Proof Since every sequentially compact set is countably compact,

the necessity of ‘the condition follows from (1.39). Conversely,

.suppose that S =”{xn': n t.d}vis a sequence in a sequential space

X converging to points x and y. Then {x} U range S is sequentially

~compact because each sequence in the set has a subsequence which is"

-either a subsequence of S or eventually equal to X for some

“ﬂmAe;w."vTherefore;{x}lerangeJS"isJclosed,Aandmconsequently either

y = x or frequently X, =Y. The latter case cannot occur since

fotherwise'{y} is a non-closed sequéntially compact- subset of X.

1.41 Proposition Let X be a sequeﬁtial space with unique sequential

limits. If each point has a neighbourhood basis consisting of

~.countably compact‘sets; then X is Hauédorff.
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Proof Each countably ;bmpact subset of X'is closed (by 1.39),
sequential (by 1.13.7), and hence sequeﬁtially compact (by 1.20).
Thus -each point of X has a neighbourhood basis consisting of‘ 
LSequehtially compact sets, and so (1.24) implies that X x X is

sequential. Then, according to (1.38.2), X is Hausdorff.

1.42 Corollary | If X is a sequential‘space.with unique

sequential limits and each point has a neighbourhood basis
consisting of compact or sequentially compact sets, then X is.

Hausdorff.



Chapter 2
Fréchet-Spéces

'uThe.Frébﬁét spaces form.an:important subclass of the
sequential 'spac‘-es .v;vhich«conta-ins the first-countable.spaces.

The study of Fréchet spaces is closeiy related to that of both
first-countable spaces and‘sequential.spaces. For example, every
subspace of a Ffébhet space is Frébhet»and the quotient of a
Fréchet space‘need"not be Fré?het. On thevofher hand, there is

a Fréchet space with uniqueFEequential_iimité whichvis not

Hausdorff and the product of two Fréchet spaces need not be

- FrEchet. "This chapter emiildtes Frafklifi's~([87, “[9] and [107)

investigation of Fréchet spaces. There are, however,‘sevéral
" results concerned with Arhangel'skiY's [2] study of pseudo-open
maps_and a result due to Harley [12] connected with the product

of Fréchet spaces.

2.1 Definition A topological space X is Fré&het, or a Fréchet

space, if and only if the closure of any subset A of X is the

set of limits of sequences in A.
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In firsf—countable spaces}wa'poiﬁtux is;anﬂgccumulatién
point of a set A'if and'only if there is a'sequengg'in A-{x}
which converges to x ([16], Theorem 238). ‘Tﬁerefore first—counﬁ~
‘able.séaces, and hence metric-—spaces and discrete spaces, are

Fréchet.

2.2 Proposition Every Fréchet space is sequential. However,

there are sequential spaces which are not Fréchet.

"Proof By definition of sequentially closed and Fréchet space,
it is obvious that every sequentially closed subset of a Fréchet
space is closed. Thus every Fréchet space is sequential. On the

vumotherwhandywthewtopo&ogic&lmspacestqandelﬂofmGLaL7)wandv(lw379

respectively are examples of sequential spaées.which are not Fréchet.

" In both spaces, 0 ¢ c1(N x N) but no sequence in N 'x N converges to 0.

2.3 Theorem (1) Every subspéce of a Fréchet space is Fréchet.

(2) The disjoint topological sum of any faﬁily of
fréchet spaces istrébhét. |

(3) Every locally Frééhet'space is Fréchet.

‘(4) if‘A is‘any subset of a Fréghet épace X then Y = X/A’

the topological space X with the points in A identified, is Fréchet.
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Proof (1) Let Y be a subspace of a Fréchet space X and let A

be a subset of Y. Then ch(A) is the set of limits in X of
sequences in A. Hence clY(A) = clx(A)r1 Y is the set of limits '
in Y of sequences in A..

~ (2) Let.X be the disjoint topological sum of thé‘family
‘IXa : a e A} of Frébhetnspaces. Let B bé a subset of X and let B'
be the set of limits of sequences in B. For each ¢ ¢ A, B'N Xc
is the set of limits in Xc of sequences in BN Xc; because XC is
Fréchet, B'n X, is closed in X . Then B' is closed and (2) is

proved.. ‘ .

(3) Let B' be ﬁhe~set.of-limit points. of sequenées in
“””?mawsubsethrqfwaﬁiogai&waréchetwspncemX:“%Férweachﬂx*e“X-B'wthere
is aAneigthUrhood.G of x:which.is_Frébhet; By pért (1), int G
is Fréchet. Let V = (int G)N (x-B'). The intersection (int G) M B'
is the set of limité of Sequences in (int C)IW’B.. Then (int G) N B'
ié closed in the subspace int G, and conséquently V is an open éubéét
of int G. It follows that V is oﬁen in X. By hypdfhesis, thefe

exists a collecti_on'{Gx : x € X-B'} of Fréchet subépaces of X such
'that;éach;Gx is a neighbourhood of x. Each.Vx = (int Gx)f\ X-B")
is open in X. Therefore X-B' = LJ‘{VX : x € X-B'} is open in X

~and so B' is a closed subset;of X; Hence X is Fréchet.
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(4) If g : X ~——> Y is the quotieh; map, let i = g(A).
Let ﬁ"be the éet of 1imit points of sequences in a subset B of Y.
'If ifé-clY(B) then, since X is FréEhet,'clY(B) = ch(F) = B'.
If 41 € clY(B), either.k.s.élX(B) for some k e.A or no such k exists.
’ in the second case, there is a collectioﬁ.{Ux : x € A} of open
subsets of‘Xsatjsfying x a“Ux and er\ B'=\¢.k But then
L){ﬁx :lk e A} is a neighbéurhood_of i disjoint from B. The
pontradictién-ShOQS thgt fﬁe.first case must occur. Thus k € clx(B)

and consequently there exists a sequence in B converging to k.

Hence i € B' and the proof is complete.

2.4 Example (1) There is a Fréchet space which is not first-
'bountable. |
(2) The product of two Fré&het spaces need not be

Fréchet.

35995'1(1) The_reai line with the intégers idéntified is Fréchet
(by 2.3.4)'But does nét satisfy the first axiom of couﬁtability

(by 1.14). |
- (2) >i£‘follows from (2.3.45 that'thé topological space
Q', the ratibnals Qith the integers identified,_is.FféEhet. vThen,
Q.x Q' is the prodﬁct of two Fré&het.spéces which, by (1.19), is

not sequential and hence not fré&hét.v Siﬁilarly, the #quarg Q' x‘Q'

'is not a Fréchet space.
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(1) The open and .closed image of :a Fréchet space

2@5.£xam 1e
“need not be Fréchet.

(2) . The quotient of a Fréchet space need not be Fréchet,

Proof (1) Since every Fréchet space is. sequential and every first-
countable spaéé is ‘Fréchet, the ‘proof of (1) is the same as that
of (1.16.2).

(2) ‘Let X be the topological space of (1.15) and let
A= X—({';%I :n e wtU {0}). For each n € w there is a sequence
'{xg : 1 e w} in A converging to ;%I. By the theorem on iterated
limits -([16], Theorem 2.4), 0 ¢ cl A. However, every sequence in’

X converging to 0 is eventually equal to O or a subsequence of

{—— : n ¢ w}. Hence X is not Fréchet. But X is a ‘quotient of

the first-countable space Y.

/2.6 Definiton A surjeétive function £ : X ~~~> Y of the topological
space X onto the topological space Y is pseudo-open if and only if

for any y £ Y and any open neighbourhood U of f_l(y),'y e int £(U).

2.7 Definition A map f i X ———>Y satiéfying'some property C is

said to be hereditarily C if and only if for each subspace Yl of

f(X) and X1 = f-l(Yl) the "induced map flx : X 5——5 Y satisfies

1 1 ;

property C.
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2.8 Proposition (1) Every open or closed surjection is pseudo-
opeh,
(2) Every continuous pseudo~open map is a quotient map.

(3) Every pseudo-open map is hereditarily pseudo-open.

ggggg - Let f !X ~—> Y be a surjective.maﬁping-éf the.topolégical
space X onto the ‘topslogical .space Y. | | |
, (1) Let'y € Y and let.U‘be.an open.néighbourhood of
f"l(y). if f‘is an open map, y € f(f'l(y)) C £(U) = int £(U).
Thqs open sﬁrjections are pséudo—openﬁ. Supposé now that £ is.a‘
closed map. Then, since X-U is closed and f_l(y)gi X-U, y is not
- contéined in the closed sgf f(X—U); ‘Therefbfe Y-f(X-U) is open and-
consequently; since f(X4U)iD‘f(X)Ff(U), y é Y-f (X-U) C Y-(£(X)-£(U)) = £(U)
implies that'y e int £(U).

| (2) Let V be a subsef of Y;such that f-l(V) is open in X.
For eachvy eV, f-l(V) is'an open néighboﬁrhood,of f_l(y). Then,
since f is pseudo-open, y € int f(f_l(V)) = int \Y ana hence V is open,

(3) The function f-induces a map h : Xl —-—><Yl where Yl

lx. -

f'l(Yl), and h = £
. N 1

is a subspace of Y, X Suppose that f is

1

‘and let U

_pseudo—open. Let y ¢ Y, , be an open neighbourhood of

_h_l(Y) in X,. Then Uy un Xy where U is open in X and

1<: U. Accordingly, y ¢ intYf(U). “But .

1

| f-l(y), =iy U

= (inth_f(U))n Y, = int,

y é'(intY fW)N Y
. . g 1 ) 1

EWN 1) = inchhiul) :

Hence h is pseudo-open.
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2.9 Example (1) There is a pseudo-open map which is not open.
(2) There is a quotient map which is not hereditarily

quotient.

Proof (1) :The quotient map from the real line onto.the.real
1ine with the integers identified is a pseudo~open map which is
:not open. |

| (2) Let X and Y be és in (1.15), and let P be the

quotient map of Y onto X.. If X, = X?{;%I : n e w}, then

. 1
v = Py = {00, DIU L, 0) : 04 x ¢ RIAEE, 0+ n e u)
‘and P induces the mép P, = PIYi. But Pl’is.nqt a quotieﬁt map
sincemgilz{O}} = {(0, 1)} is c?eﬁ‘inlzl and yet {0} is not open
in Xl. | |

The next result was asserted w1thout proof by

Arhangel skiY [2] The proof is provided by the author.

2.10 Proposition A function is continuous pseudo-open if and

-only if it is hereditarily quotient.

Proof Let £ : X -—-> Y be a continuous sufjection, and let

flié flx where Y, is a subspace of Y and X

= f’l(Yl). If U
L _

1 1

1s open in'Yl, U1 =Un Yl for some open subset U of.Y. Then;

. . -1 s | _ 1 o\ o
since f is continuous, f1 (Ul) = fl (ﬁlﬁ Yl) =f (U F\Yl) =

: f_l(U)f\ X, is open in X,.

1 Thus continuous maps are hereditarily
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» ‘continuous. It follows from (2.8) that if f is continuous

-pseudo—openlthen f. is a .continuous pSeudo—open map and therefore

1
a quotient map. Conversely, assume that f is hereditarily quotient.

Suppose 'y € Y and V is an open meighbourhood of f_l(y). Let

w
fl

p = £ U Iy}, Xy = £75(x,) = [x-£ @IV £, and

.’”Then"f2¥(y9f

~fy = fy £ gy = vim X, which~is-open-in X,.
N B .2 N .

Since f, is a quotient map, {y} is open in Y, and thus {y} = G N Yé

for some open.subset G of Y. This implies that G is contained in

f(V) and hence that y ¢ int £(V).

2.11 Proposition Every continuous pseudo-open image of a Fréchet

~wgpace~is-Fréchet.

Proof Let £ : X ——> Y be a continuous pseudo-open function of a
Fréchet space X onto a topological space Y. Let B be a subset of
Y and suppose that y € cl B. If'f—l(y)f\ cl f—l(B) =0,

1

:U = X-cl f-l(B) is an open neighbourhood of £ ~(y). Then, since f A

. iéipseudo—open, y € int £QU)C £(U) = £(X-cl f—l(B)) - f(X—f—l(B))C: Y-B
contradicting y € cl B. Hence there is some xbe'fnl(y)(ﬁ cl f_l(B).

- and, since X is Fréchet, there exists a-sequenceA.{xn : n e w} in
',f—l(B) converging to x. Thus‘{f(xn) : n e w} is contained in B and,
“since f is continuous,~{f(xn) :n e wl converges to f(x) = y. There-

 fore Y is a Fréchet space.
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2.12 Corollary (1) The continuous open or closed image of a

5Fréﬁhet‘3pace is Frééhet.‘
(2) 1If avproduct space is Fréchet, so is each of its

. coordinate spaces.

Proof (1) follows from (2.8.1) and (2.11), and (1) implies (2).
The following is a slight generalization of the
necessity‘condition of Franklin's ?roposition 2.3 ([8]). The

Hausdorff hypothesis is replaced by "unique sequential limits'.

-2.13 Proposition If £ : X =~~> Y is a quotient map of a topological

space X onto a Frébhet“space Y having unique‘sequential limits,

then f is pseudo-open.

EEEQE Let yelY and suppose that U is an open néighbourhood of »
.f_l(y). Assume that y ¢ int £(U). Then y € Y-int f(U) = cl (Y—f(U)),

and consequently there_exiéts a sequence S in Y-£(U) cbﬁverging to ¥. o
Becéuse Y has unique sequential limits, cl (range S) =;{y} U range S.

If F = f-l(S) then, since f is continuous, cl F - él(f_l(S))C: f—l(él S) =
E UGN = £SO U = FULTG). But £ ()C U and

UNnF=4@. This impliesithat f-l(y)f\‘cl F = @ and therefore that

F ié‘closed.A Hence f—lkY—S) = ffl(Y)—f—l(S) = X—F is opeh. - Then,

since f is a quotient map, Y-S is an open neigﬁbourhood of vy, contradicting

- the supposition that S converges to y.
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2.14 Theorem A Hausdorff space is Fréchet if and only if it is
- a continuous pseudo—opén image of the disjoint topological sum

of its convergent sequences.

’ EEEBE Each Fréchet Hausdorff space is sequential»Hausdorff and
henée, by (1.31), -a quotient of the-disjoint topological sum .of
_its convengentésequences. Then, by 12;13), the quotient map
must be pseudo-open. Conversely, for anyuHausdorff space»X‘each
convergent sequence in X is a.metric space and hence a Fréchet

space. It follows from (2.3.2) and (2.11) that X is Fréchet.

2.15 Corollary .Among Hausdorff spaces, the following statemeﬁts
- are equivalent. |

(1) X ié‘a Fréchet spéce;

(2) X is the continuous péeudb-open image of a-metric
space[

(3)» X 1is the contiﬁuous ﬁseudo-open image of a first-

countable space.

Proof By virtue of (1.32) and (2.14), X is the cohtinuous pseudo-
open image of a zero-dimensional, locally compact, coﬁplete metric
.space. Since métric”spaCes are first-countable and first-countable

spaces are Fréchet, (2) implies (3) and (3)vimp1ies (1) by (2.11).
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As previously stated, first-countable To—spaces are

ﬁreciseiy the continuous qpen-images of metric spaces. In view
of (1.36) and (2.14), Franklin posed and apswered negatively the
question of whetﬁer every first—coﬁntable (Hausdorff) space is the
céntinuous open image of a disjoiﬁt topological sum of convergent
sequences. Any such sum is a Baire §§ace as are continuous open
images of Baire spaces ([Sj, p.767). J.de Groot's Corollary is
applicable_here because everykconvergent sequence in a Hausdorff
sﬁéce is metrizable. However,-many spaces are first-countable
v Hausdofff But not Baire spaces.  fhe rétionais 0 is an example of
~sﬁch a topological space. |
An unanswered qﬁestion of Alexandroff asks whether or
1«w@noﬁwmhereWisuawfirst—countabme¥compacthausdorff&spacewwith
cafdinaiity > ¢. The corresponding question for Fréchet spaces

~ is trivially.ansWered by the following.

2.16 Proposition The one point compactification of any discrete

‘space is a Fréchet space.

‘Proof Let X* = X U {»} be the one point compactification of the
discrete space X. For any subset A of X*, « e(El éFA if and only
if A contains iﬁfinitely~ﬁany points. Moreover, any sequence

i{xn :n e w} in A satisfying x =x if and only if n = m converges

to ». Therefore, if « € cl A, A contains a sequence converging:to «.
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If x ¢ (cl A)N X then, since X is discrete, x € A. Hence X%
~is Fréchet.

The topological spaces X = (H ><H)/E and M, of (1.36).

and (1.37) respectively, are sequential spaces with unique

sequential limits which are not Hausdorff. Although Ml is not

Fréchet, the next result shows that X is.

'°2.17 Example There are Frgchet_spaceé with unique sequential

‘limits which are not Hausdorff.

" 'Proof Let Hand X = (H x H)/E be as in (1.36). Recall that

¢ : Hx H --=> X is a quotient map of fhe first-countable space
~upleXsHsonto«the«non-Hausdorff-sequential~space X~which ‘has unique
sequential limits. To establish that X is Fréchet, it suffices
to prove that ¢ is a pseudo-open map. Let‘x £ X and suppose that

)

U is an open neighbourhood of ¢_l(x). If x ¢ X-{q, i} then

¢-1(X) %bx,and for any neighbourhood V of x such that VN A = @,

xeUNV=9¢UNV)C$U). If x = q and G is an open neighbour-

‘hood of A, disjoint from A;, g € $(UN G) = dnt $(UN ¢) ¢ int ¢(U).

Similarly, if x = i then i ¢ ¢(U). Thus ¢ is continuous pseudo-

open and X is Fréchet.
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Let Y be a Frécﬁet space witﬁ.unique sequential limiFs.
It féllows from (1.41) that if each point of Y has a neighbourhood -
basis consisting of countably compact sets, then Y is Hausdorff.
The succeeding example shows that simple compactness is not

enough to ensure that Y is Hausdorff.

2.18 Exémple There is a countable, compact, Fréchet space with

unique sequential limits which is not Hausdorff.

'ggggg_ Let Y = (N x N)lJi{p; q} with p # q and {p, d}fW (N x Ny # 0.
Let each (i, j) € N x N be an isolated point. Fof a basis of |
neighbourhoods of p take all sets of the form {p} U (U {(1,3) : 1,7 e N;
iwz_k}) where k € N, and for q take all sets of the form

'{Q}Llaj{i,_j) : 1, 3 e N; 3 z'ji}) where each ji e N. The topological

space Y is compact because if U and V are open neighbourhoods of p

and q respectively, then Y-(U U V) is finite. It is also cléar.that

Y is not Hausdorff since p and q cannot be separated by disjoint

open sets. Then, since Y-{p, Q} is discrete, -if soﬁe sequence converges
fq two distinct points, they must befp'ahd q. However,a sequenée

;{(in,>jn) :newin N x N can converge to p only when‘{in :ne w
is unbounded, and to ¢ only whenl{in : n e w} is bounded. Therefore

Y has unique sequential limits. It remains to prove that Y is.

Fréchet. Let A be a subset of Y. ‘Each point in Y¥{Q}-has a countable
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neighbourhood basis. Thus for each y € Y-{q}, vy € ¢l A if and.
oﬁly if there exists a sequence in A converging to y. If for each
ieN, AN ({i} x N) is finite, q # ¢l A, If for some i it is
infinite, there is a sequence in A converging to q. Hence Y'is a
Fréchet space. |
The topological product spaces X x X and Y x Y, where

X and Y are the nbn—Hausdbrff Fréchét spaces of.(2.17)‘and (2.18).
respectively, are not Fréchet. In'fact,_these'products are not
even sequential. If these product spaces were sequential then,
by (1.38.25, X and Y would be Hausdorff. Similarly, the spaces

Q x Q" and Q' x Q' of (2.4.2) are products of Fréchet spaces -
which are not sequential. Examplé 2.19 shows that this need

not always be the case. This example also demonstrates that the

term "sequential" cannot be replaced by "Fréchet" in.(1.24) and

(1.25).

2.19 Example There is a product of two Hausdorff Fréchet spaces

which is sequential but not Fréchet. In addition, one of the

spaces is normal, compact, and first—countable.

" 'Proof Let X be the real line with the integers identified, and
let T = [0, 1] be the closed unit interval. Both X and I are’
Hausdorff. Furthermore, X is Fréchet and I is a normal, compact

first-countable space. It follows from (1.25.2) that X x I is -
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.sequential. To see that X x I is not Fréchet, define AC X x I

by A = \J'{An : n’e N} _whereVAn . {(n - %3 %) : k e N}. Then
(0, 0) € cl A since (0, 0) e cl {f@-1, %) :n e N} and

{(n-1, %) :n e NNJC A. But no sequence in A converges to (0, 0)

because no sequence contained in A converges in R x I to (k, 0)

for any k ¢ Z,

2.20 Example The product of two continuous pseudo-open maps

may be a quotient map without being continuous pseudo-open.

Proof Lét X and T be the Hausdorff Fréchet spaces of (2.19).

By (2.13), the quotient maps by : X* ———=> X and $p I% ——> T

are continuous pseudo-open. Since X x I is sequential, (1.35.2)

implies that ¢X x ¢ ¢ X% x I¥ ——=> X x I is a quotient map.

I

However, ¢X X ¢I cannot be continuous pseudo-open because X* x I#*

is first-countable but X x I is not Fréchet.
The next two results, which further illustrate the
non-productive nature of Fréchet spaces, generalize Harley's

Theorem ([12]). The author provides the proof.

2.21 Lemma  The product of two Fréchet spaces, one of which is

discrete, is Fréchet.
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Proof Let X'and Y be Fréchet spaces, and assume that Y is
discrete. Let B be a subset of the topological product space
X x Y, and suppose that (u, v) € ¢l B. Since Y is discrete,
U x {v} is é neighbourhood of (u, V) for any neighbourhood U of
u. bTherefore ved{yeY: (2,y) e B}. Thenu ecl {xe X : (x,v) € B}

and there is a sequence"{u’n :n e w} in {x : (x,v) e B} converging
to u.. The sequence:{(un, v) : n € w} is contained in B and

converges to (u, v).

2.22 Theorem Let X be a Fréchet space. Let A be a subset of

X satisfying the property : there is . a sequence.{Un :ne w}

““8f"bpén”SﬁbSétg“deX”§ﬁEh“ﬁH§f"(I?”U£T:”Uﬁ+i;“123”A”fs‘Cbntainéd

inU = U {Un :ne wt, and (3) AU U is not open. Let X/A

denote the quotient space obtained from X by identifying the

points in A. Then if X is T, and Y is Hausdorff, X,, x Y is

1 /A

Fréchet if and .only if Y is discrete. - If A is closed, the T1

hypothesis may be réplaced by fegularity.

Proof If Y is discrete then, since X/A.is Fréchet (by .2.3.4),

the topological product space X/ x Y is Fréchet (by 2.21).

A

To establish the converse, let i = g(A) where g : X ———> X/A

is the quotient map,'and suppose that y is not an isolated point
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- of Y. Then y ¢ cl1(¥-{y}) and consequently, since Y is Fréchet

(by 2.3.2), there is a sequence'{yn : n e w} in Y-{y} converging

to y. Since Y is Hausdorff, it can be assumed without loss of
generality that the y, are distinct. Let W ='U'{U—(UnlJ A) X'{yn} :n e wk.
Then (i, y) € ¢l W. Indeed, this is so because AU Un being not open
implies that (i, yn) e cl (U—(UnLJ A) x {yn}). -Since X/A x Y is
Fréchet, there exists a sequence'{(rk. sk) : k € w} in W converging
to (i, y). The Hausdorff hypothesis on Y implies that'{sk : ke w}
is a subsequence of {y_: n e w}. Lety =s, for each k £ w.
n n, k

Thus‘{(rk, ynk) : k € w} is a sequence in W converging to (i, y)f

with each T e.U—(UnkL/ A). Since X is Ty (or X is regular and A

is closed), for each k ¢ w there is an open neighbourhbod'Gk of A
Asuch that r, ¢ G . Let U: = Uan (!\-{Gj_: j-f_k}) forveach n,

k e w;_and let my be the 1argest member of w sa?isfying»rk ¢ U(mk~l)'
It follows that ,\J'{Uk : k € Q} is an open neighbourh@od of A
disjpint from the sequén.ce'{rk : k¢ w}.- But then'{rk : ke w}

cannot converge to i which contradicts'{(rk, Yy ) : k € w} converging
k .

to (i, y). Therefore {y} must be open, and the proof is complete.
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Several examples of sequential spaces which are not
Fréchet have'already been given. After another such example, a
characterization of those sequential spaces which are also Fréchet
" follows. The non—Fré;het sequential space M of (1.17) is used

to give a characterization in the Hausdorff case.

2.33 Example There is a compact sequential Hausdorff space

which is not Fréchet.

Proof Let F be an iﬁfinite maximal pairwise almost disjoint
family of infinife subsets of the natural numbefs N (Two.sets U
and V are almost disjoint if and only if UN V is finite). To
establish the existence of F, letAG be the collection of all
ihfinite pairwise almost disjoint families of iﬁfiﬂite subsets -

of N. The set G is partially ordered by set inclusion. Note that
G # ¢§. 1Indeed, for each real number r there is a sequence

'{xz : n € w} of rational numbers converging to r. Then if

f : Q -=—> N is a bijection between the rationals and .the natural

numbers,'{{f(xz) :new:reR}eG. Now, letA{Ea :ae Al

"

be a chain in G and let E V) {Ea : a e A}, For any pair E,
F ¢ E there is some ¢ ¢ A such that E, F ¢ Ec which implies that

ENF is finite. Therefore E ¢ G and consequently E is an upper

bound of the chain‘{Ea :'a € A}, Then, by Zorn's lemma,
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there is a maximal element F of the set G,

Let ¢ = F UN with points of N isoiated and'neighbour;
hoods of F ¢ F thoée subsets of Y containing F and all but finitely -
many points of F, Cleariy Y is Hausdorff. Furthermore, ¥ is locally
compact because F_L/{F}.is a compact neighbourhood of F in ¢. It
Mﬁollowsqﬁrom,(Ll6J,MThéoremﬂ5m21)mthatww*ﬂ=‘¢JJﬂ£ml,“&hedone.point

compactificétion of VY, is a compact Hausdorff space. By definition
"of the topology on Y*, it is clear that « ¢ ¢l N. However, if

'{xn :n e w} is a sequence of distinct points in N then, since F
is maximal,'{xn :n e wlN F is infinite for some F e F and hence
'{xn : n e w} converges to F. Therefore no sequence in N converges

to .2, .and..so.Y%.is.not.Eréchet.

It remains to show that y* is a sequential space. Suppbse
that V is a sequentially open subset of y*, and let x ¢ V. 1If
xe N, xeint V because'{X} is open. If x e F thén, since any
sequence of distinct points in x converges to x; x-V is finite and
hence {x}U {n : nex NV} is a neighbourhood‘of X contained in V.
‘Assume now that x = », Since F L){F} is a neighbourhood‘of FefF
and y*-U is compact for each open neighbourhood U of =, any sequence
of distinct points of F convérges to w.\ Accordingly, V contains all
buf finitely many members of F. Let F-v ='{Fi ; i 5_m} where

m e N. If'{Ui | 5_m} is any finite collection of open sets satisfying

F.C Ui then, since F is maximal, N-[VU (U {Ui s i 5_m})] is finite
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and consequently y*-V is compact. Hence y* being Hausdorff
vimplies that Y*-V is a closed compact subset of . ‘Therefore
V is open whenever « ¢ V. Thus every sequentially open subset
of y* is a neighbourhood of‘each of its points; and so y* is
sequential. |

. Since no sequence in N converges to =, the singleton
{=} is sequentially open but not open in the subspace y*-F.
-Hence Y*-F is a non-sequential subspace of yY*. The next result
.proves that such a subépace must always exist in sequential Spaces

which are not Fréchet.

"2.24 Proposition A sequential space is Fréchet if and only if

it is hereditarily sequential.

“"Proof If a sequential space is Fréchet, every subspace is Fréchet
..and hence sequential. Conversely, if a topological space X is

hereditarily sequential, (1.35.1) implies that oy is a hereditarily
quotient map with Fré&het‘domain. Then ¢X is continuous pseudo-open

and therefore X is Fréchet.
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2.25 Theorem A Hausdorff sequential space is Fréchet if and only

if it contains no subspace which, with the sequential closure

topology, is homeomorphic to the topological space M of (1.17).

Proof Let Y be a subspace of a sequential space X, and let

h:M-——> Ys be a homeomorphism of M onto the subspace Y provided
with the sequential closure topology. If Y # YS, Y is a non~

sequential Subspace of X and hence, by (2.24), X is not Fréohet.

If Y = Ys then, since M-N is a hon—sequential subspace of

M, Y-h(N) = h(M)—ﬁ(N) = h(M-N) is a non-sequential subspace of X.
Again by (2.24), X is not Fréchet.

| Conveirsely, suppose thét X is not Fréohet. Then there
exists a éubset B of X such that ¢l B # B' where B' is the set of
limits of sequences in B. Since X is sequential, there is a

sequence S ='{xi : 1 € w} in B' converging to some point x e€(cl B»-B'.

The sequence S is not frequently in B because otherwise it has a
subsequence in B converging to x ¢ B'. Consequently, it can be

assumed that the x; are distinct and S C B'-B. Then, since

X € B'-B, there exists a sequenceA{xij 2] ¢ w} in B converging

to X, . The Xy (for i, j € w) may be taken all distinct. This is

so because X is Hausdorff and S converges to x; that is, there exists

a family>{Ui : 1 ¢ w} of pairwise disjoint open sets satisfying
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*i € Ui' Since x ¢ B', no sequence conéisting of the xij converges
to x. Thus the topological space YS where the. subspace
Y ='{x} L/{xi :ie N} Lf{#ij : i, j e N} is homeomorphic_tp M.
It is easy to verify that the non-Fréchet Hausdorff

sequential space y* of (2.23) satisfies (2.25). If'{E'i : ie w}

is any collection of pairwise disjoint subsets of N then, since F

is maximal, for each i € w there exists'Fi e F such that Fif\ Ei
is infinite,. Thus'{Fi!\ E, 1 i€ w} is a pairwise disjoint sequence
in F converging to ~. Let'{nij : j € w} be any sequence in Fi(\ E;

such that the nij(j € w) are distinct. Clearly, egchA{nij : ] e w}
'converges to FiﬁEi and the nij(i; j & w) are all distinct. Then,

since no sequence in N converges to =, the subspace

A{w}l)'{Fi(j_Ei tie N}lJ'{nij : i, j € N} provided with the sequential

closure topology is homeomorphic to M.



Chapter 3

Generalized Sequential Space Methods

When a topology is specified by its open sets, the
importance of basis and subbasis is well-known. ' In the same way,
_.the .concepts .of convergence basis_and convergence.subbasis are
prominent in the study of topological spaces whose topologies are
determined by their convergence clesses. Fo; example, one can study
convergence subbases and convergence bases consisting of convergent
sequences in lieu of studying sequentiallspaces'and Fréchet spaces
respectively. The notion of convergence subbasis is also useful in
the investigation of generalized sequential spaces. In this chaﬁter,
‘““the“t0pd&ogicaimspaces“in“which“méneCS“are-adequate“to"describeMopen
.wsets.are examined; these spaces are called m—sequential'(m—FféEhet)

spaces. It will be shown that any topological space can, for

sufficiently large m, be so described.

"3,1 Definition Let X be a set and let C be a class of pairs (S, x)

where S is a net and x is a point in X. The class C is a

p-convergence class on X if and only if it satisfies : If ({xn :n e D},x)eC

and E is a cofinal subset of D, then ({xn :nekE}, x) eC. A

p-convergence class in which all of the nets are sequences is called

a sequential p-convergence class.



- 82 -
Observe that each convergence class ([16], p.74) is a
p-convergence class but the converse need not be true. The

convergence associated with a p-convergence class C on a set X

can be studied topologically by means of the largest topology on X

in which the C-nets (i.e., all of the'nets'in-C) are convergent.

3.2 Theorem Let C be a p-convergence class on a set C. For any

subset A of X, let t-cl A be the smallest set containing A and closed

‘with respect to the formation of limits of C-nets. Then t-cl is a

s

closure operator and hence defines a topology T(t) for X ([16],
Theorem 1.8). This is the largest fopology on X in which,the C-nets

converge.

Proof It is first shown that t-cl is a closure operator. Since

a net is a function on é directed set, and the set is non-empty by
definition, t-cl ¢ is embty..'By definition of t-cl, AC t-cl A for
each subset A of X. Then t-cl A < t-cl(t-cl A). Again by definition
of t-cl, t-cl(t-cl A) is the smallest set containing t-cl A and closed
with respect to tﬁe formation of limits of C-nets. But t-cl A is
closed with respect to the formation of limits of C-nets and s0

t-cl(t-cl A)  t-cl A. Hence t-cl A = t—cl(t-cl A). It remains to

“prove that t-cl(A U B) = (t-cl A) U (t-cl B). Clearly

AUB C(t-cl A) L)(t—cl B) € t-cl(A UB). To establish the opposite

inclusion, let S ='{xn ine D} be a net in (t-cl A) U (t-cl B) with

(S, x) e C. LetD, = {neD: X € t-cl A} and Dy ={neD: x_ e t-cl B}.

A
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Since DAL} Dﬁ = D, either DA or DB is cofinal in D. It can be

assumed without loss of generality that DA is cofinal in D. Then

5, = {xn 1 ne DA} is a subnet of S in t-cl A and (Sl’ x) € C.

(
Hence x € t-cl A C (t-cl A) U (t-cl B) and consequently
(t—ci AU ft-cl B) is closed with respect to the formation of
liﬁits of C-nets.

Let (s, x) € C. If S does not converge to x in (X, T(t)),

there is an open neighbourhood U of x such that S is not eventually

in U. Then S is frequently in X-U énd‘there is a subnet Sl.in X-U
with (Sl, x) € C. But since U is open, X~U = t-cl(X-U) and hence

x € X-U. The contradiction shows that S must converge to x with
. respect to T(t), and hence that each C-net converges in (X, T(t)).

Suppose now that Ta is a topology on X in which the C-nets converge.
If V e T, then for each net pair (S, x) € C such that Sc X-V,

x € X-V. - Thus X-V = t-c1l(X-V) which implies that V ¢ T(t).

/
3.3 Corollary Let X be the topological space provided with the

topology T(t) derived from a p-convergence C. Then X is Tl if and

only if C satisfies : If S =.{xn :n e D} is a net in X such that

xﬁ = x for each n € D and.y # x, then (S, y) £ C.
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Consequently, if C is a sequential p-convergence class

and X has unique sequential limits, X is Ti.
Proof . If X is T, and y # x, S cannot converge to y and so (3.2)
implies that (S, y) ¢ C. Conversely, if S, is a net in {x} and z # X

then, since (So, z) é.C, z ¢ t-cl{x}. Hence {x} is closed and there-

for i .
e X is T1

3.4 Proposition Let X be the topological space provided with the

topology T(t) derived from a sequential p-convergence class C.
Let C(T(t)) denote the class of convergent sequences in X. Then
T =TC(T(EY) 1f C satisfies:

(1) 1If S ='{xn :n e w} is a sequence such that;xn =X

for each n ¢ w, then (S, x) ¢ C.
(2) If S is a sequence and (S, x) ¢ C then there is a
subsequence of S, no suBsequence of which together with x is a member
of C.

(3) 1If (S, x) € C and (S, y) € C then x = y.
Proof It is clear that C < C(T(t)). To prove the opposite inclusion,
suppose that (S, x) # C. By (2), there is a subsequence S0 =A{yn :ne )

of S, no subsequence of which together with x is a member of C. It

can be'assﬁmed without loss of generality that Y, # x for each n ¢ w.
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Either there exists (Sl, z) € C such that S1 is a subsequence of
SO or no such sequence pair exists. In the first case, any C-net
in SlLJ {z} is either a subsequence of Sl or frequently equal to

some point in S Then conditions (2) and (3) imply that SlLJ {z}

1.
is a closed subset of X disjoint from x. In the second case, So
is a closed subset of X disjoint from x. In both cases, S has a

subsequence not converging to x. Hence (S, x) £ C(T(t)).

Another closure operator is defined in the following

proposition,

3.5 Proposition Let C be a p-convergence class on a set X, and

for each subset A of X let c¢~cl A be the union of A and the limits
of those C-nets contained in A. Then if C is a convergence class,
c-cl is a closure operator, and (S, x) € C if and only if S converges

to x with respect to the topology associated with c-cl.

Proof This is given in ([16], Theorem 2.9). 1In the presence of a
convergence class, c-cl is precisely the closure operator described

in that theorem.

3.6 Corollary If Ca and C, are convergence classes on a set X

B

and Tu and T, are the associated topologies, then CaC: CB if and

B

only if Ta:> TB.
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Proof If (S, x) € Ca, S is eventually in each neighbourhood of x

in (X, Ta).' Thus T, T_ implies that S is eventually in each

B

neighbourhood of x in (X, TB) and hence that (S, x) € CB. Conversely,

suppose that CaCZ CB and let U ¢ TB. If (S, x) € Ca and S C X-U,

" then (S, x) € C, and U ¢ T, implies that x € X~U. Therefore X-U

B B

is closed in (X, Ta).and so U ¢ Ta'

3.7 Proposition Let C be a p-convergence class on a set X, and -

let T(t) be the topology for X associated with the t-closure
operator. Then T(t) is the topology with the smallest convergence

class containing C.

- Proof Let C(T(t)) denote the convergence class for (X,.T(t)).
According to (3.2), T(t) is the largeét topology on X in which the
C-nets converge. Then, if T is any topology on X whose convergence
class C(T) contains C, T T(t). The preceding résult imﬁlies that
cwy com. |

If C is a p-convergence class on a set X, then c-cl need
not be idempotent and hence not a closure operator. Let T(c) denote
the topology associated with c-cl Wﬁenéver c-cl(c-cl A) = c-cl A
for each subset A of X. Clearly, c-cl A is a subset of t-cl A, and
it can be a proper subset, Observe that a topological space is -

Fréchet if and only if for each subset A of X, ¢l A = c~cl A with
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respect-to the convergent sequenées in X; similarly, X is sequgntial'
if and only if ¢l A = t-cl A. Tﬁerefore, since not all sequential
. spaces are Fréchet; ¢c-cl and t-cl need not éoincide. In particular,
consider the topological space M of (1.17). As previously observed,
no sequence in N x N converges to 0. Hence c-cl(N x N) = M-{0}
‘whereas t-cl(N x"N) =M.

The t-closure operator, however, éan be constructed

A and for each

inductively by iteration of c-cl. Define A°
B

]

successor ordinal a let A% = c-cl A" where o = B + 1 for some ordinal
B. (B +1 denétes’the ordinal successor of B). If a is a 1imit‘
ordinal define Aa‘= U{AB : B8 < a}. It is clear that AYC t-cl A

for eéch ordinal o, and if A% =.t—c1 A then AB = t-cl A whenever

B > a. For any subset A of X the cardinality of the number éf
iterations of c-cl to obtain t;cl A is 5_2m where m is the-cardinality
of the set X. Theﬁ, since the ordinals are well-ordered, for each

x € t-cl A there is a smallest ordinal n such that x belongg to the

. ' a o
n-th iterate of c-cl on A; that is, x € A" whenever o > nand x £ A

whenever o < n.

3.8 Definition Let C be a p-convergence class on a set X]énd let
A be a subéet of X.

| (1) A point x € t-cl A is said to be of Baire order n
(write ord x = n) with respect to C and A if and only if n is the
smallest ordinal such that x is a member of the.n—th iterate of

cfcl on A.
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(2) The Baire order of a set A (ord A) is defined as

sup {ord x : x e t-cl A}.

3.9 Proposition Let C be a p-convergence class for a set X.

- Then T(t) = T(c) if and only if every subset of X has Baire order < 1.

-Proof - The-tepology T(t)-coincides-with-T(c) -df -and -only if
t-cl A = c-cl A for each subset A of X, which occurs if and only

- if every subset of X has Baire order < 1.

3.10 Definition Let C be a p-convergence class on a topological

space X.
(1) C is a convergence subbasis for X, or for the
‘topdlogy on X, if aﬁd only if the topology on X is the topology with
the smallest convergence class éontaining C. | V
(2) C is a convergence basis for X, or for the topology
on X, if aﬁd only if C is a convergence subbasis for X and every

subset of X has Baire order < 1.

3.11 Proposition Let C be a p-convergence class on a topological

space X.
(1) C is a convergence subbasis for X if and only if
X has topology T(t).

(2) C is a convergence basis for X if and only if X has

topology T(c).
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Proof By virtue of (3.7) and (3.10), (1) is clear.v Then (1)

together with (3.9) implies (2).

3.12 Definition Let m be an.infinite cardinal number. An m-net

-is a net whose directed set is of cardinality < m.

3.13 Definition Let X be a topological space, and let m be an

_infinite cardinal number.

(1) X is m-sequential, or an m—seqﬁential space, if
and only if it has a convergence subbasis in which all of the nets
are m-nets.

(2) X is m—Fréchet, or an m-Fréchet space, if and only

-3 dt-has~as:convergenece~<basis~eonsisting~of-m-nets.

3.14 Proposition (1) EQery nm-Fréchet space is m-sequential.

(2) 1If a topological space is m-sequential then it

is m -sequential whenever m, > m. Similarly, an m-Fréchet space

1 1 -

, ) .
is ml—Frechet if my > m.

Proof  The proof of (1) is obvious because, by definition, every
-convergence basis is a convergence subbasis. Since-every m-net

is an m,-net for m, > m, (2) is also clear.

1 1
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The next two results give several equivalent formulations
. : 7
of the definitions of m~sequential space and m~Frechet space

respectively.

3.15 Pfoposition The following statements about an arbitrary

-topological -space X -are-equivalent.

(1) X is m-sequential.

(2) X has topology T(t) with respect to some p-convergence
class consisting of m-nets in X.

(3) A subset F of X is closed if and only if no m-net
in F converges to a point not in F.

(4) A subset U of X is open if and only if each m-net
"in"X converging to a point'in“U'is eventﬁérly in' U.
(5) - The class C of all pairs (S, x) where S is an m-net

in X converging to the point x is a convergence subbasis for X.

Proof . If X is m-sequehtial then, by definition, X has a convergence

subbasis Cl in which all of the nets are m-nets. According to (3.11),
X has topology T(t) with respect to C1 and therefore (1) implies (2).

If F is a subset of X with no m-net in F converging to a point not

in F, no Cl—net in F converges to a point not in F; consequently

"F = t-cl F =cl F and (2) implies (3). Suppose that U is a subset of
X such that each m-net in X converging to a point in U is eventually

in U. Let S be an m-net in X-U converging to a point x.. Then x €& X-U
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bééause otherwise S is eventually in U.“Thus (3) implies that X-U
is closed and hence that U is open. To establish that (4) implies
(5), let T be any topology for X in which the C-nets convergé.'
Then if V ¢ T, every m-net in X converging to a point in V is
eventuélly in V, and so V is open by (4). Accordingly X has the
'~la£ge§t topology-in.which.the .C-nets.converge. It .follows.from

(3.6) that (4) implies (5). By definition, (5) obviously implies (1).

3.16 Proposition  For any arbitrary topological space X; the

following'are equivalent.

(1) X is m-Fréchet.

(2) The class C of all pairs (S, x) where S is an m-net
“"in"X converging to x is a convergéﬂcéﬂﬁééis‘Tof“X.

(3) The closure of any subset A of X is the sét of limits
of m-nets in A.

(4) X has topology T(c) with respect to some p-convergence

class consisting of m-~nets in X.

Proof IfFX is m-Frébhet, X is m-sequential and hence the ciass C

is a convergence subbasis for X. Moreover, every subset of X has
Baire order < 1. Therefore C is a convergence basis and»(l) implies
(2). It follows from (2) that X has the topology T(c) associated
with C. Consequently (2) implies (4). In.addition, (2) is equivalent
to (3) because for each subset A of X, x € cl1 A if and only if there
exists an m-net in A cdnverging to x. The proof that (4) implies (1)

is clear form (3.11).
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'Tﬁe following corollary together with (3.15) and (3.;6)
shows: |
(1) A topological space is sequential if and only if
it has a convergence subbasis in wﬁich all of the nets are sequences.
(2) A topological.spacejis Fréchet if and only if it

“has a ‘convergence“basis ‘in which -all-of ~the“nets are ‘sequences.

Furthermore, this result implies that e¥8¥y. Fréchet space is

m-Fréchet and that every sequential space is m-sequential.

3.17 Corollary (1) A topological space is sequential if and
bnly if it is }L-sequéntial.
. {2) A ropological space is Fréchet if and only if it

is :}Q—Frééhet.

Proof Since every sequence is_aﬁ }1L—net, thg sequential spaces
and the Fréchet spaces'obyiously satisfy (3.15.3) and (3.16.3) |
respectiveiy. To prove the coﬁverses,.it is fi;s; shown that every -
. ..non-trivial fﬁ—net.haska cofinal sequence. Le‘t"{xn :n e D} be

an }ﬁrnet'and let g : w ~—-> D be a bijection. Because D is a

-directed set, for each k € w there exists n € w.such that g(nk) > g(1)

for every i < k. Tﬁen'{xg(n y k e w} is a-subngt of'ixn :n e D}..

k
Suppose that F is a sequentially closed subset of a topological space
X. Ifs ié an}{;net in F converging to some point x, x € F since

otherwise S has a cofinal sequence which is eventually in X-F. Then
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if X is fﬁ—sequential, F is‘closed by (3.15). Thus (1) is
proved. To complete the proof of (2),‘suppose that A is a subéet
of an }72}Frééhet space X and let x € ¢l A. By virtue of (3.16),
there is an. }é—net in A converging to x. Then, since every non-
trivial '}i,~net has a cofinal sequence, there exists a sequence in
-A.converging..to .x.

In view of (3.15) and (3.16), it is easy to see that many
of the properties of sequential spaces and Fréchet spaces can be
generalized to m-sequential spéces.and m-Fréchet spaces respectively,
by simply replacing '"sequences" with "m-nets'". This is so whenever
those properties of sequences used, can be generalized to m-nets.
Nevertheless, for greater generality it is convenient to state
%resﬁlté”iﬁ“téfﬁ%”GT“a“éﬁnvefgeﬂce%SﬁBbaBTsW6r“a*éonvergence“basis.

-Let C be the class of convergent m-net pairé in a topological
space X. According to (3.15), C is a convergence subbasis for X if
and only if X is m-sequential. However, it is poséible to have‘al
convérgence subbasis which is a proper subset of.C. Although using
a smaller convergence subbasis may increase Baire order, there is an

upper bound.

3.18 Proposition If X is an m-sequential space with any convergence

subbasis, then no element of X has Baire order equal to the least

N + .
ordinal of cardinality m . . (m denotes the cardinal successor of m)
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Proof  Let W, denote the least ordinal of cardinality m'. Then
a is of the form B + 1 for some ordinal B, where wB is the least

ordinal of cardinality m. Thus w, is regular and hence not the

supremum of any set B of strictly smaller ordinals if the cardinality
of B is < m. Assume that A is a subset of X and let x £ cl A.

Since X is m-sequential, there exists an m—net'{xn : n e D} such
that x € cl A and ord X < ord x. Then ord x = sup {ord X ine D},

and consequently ord x < W,

3.19 Theorem Let C be a convergence subbasis for a topological

space X, let Y be a subset of X, and let D be the trace of C on Y.

(Hd.e., D ='{({xn :neD}, x) eC: x € Y for each n ¢ D, x € Y}.)

Then D is a convergence subbasis for a topology on Y which is larger
than the relative topology. This induced topology coincides with
the relative topology on Y if Y is clbsed or open in X. The two |
topolbgies coincide for all subsets of X if and only if C is a

convergence basis.

Proof The épace X has the topology T(t) associated with C, and the
~trace D is clearly a p-convergence class on Y. For each subset A of
Y define u-cl A to be the smallest set containing A and closed with
respéct‘to the fofmation of limits’ of D-nets. By (3.2), u-cl is a

closure operator on Y énd hénce defines a topology T(u) for Y. It
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follows from (3.11.1) that D is a convergence subbasis for T(u).

Furthermore, T(u) is larger than the relative topology on Y

because the D-nets converge in the relative topology and T(u) is

the largest topology on Y in which the D-nets converge.

To establish that these topologies on Y coincide when

Y is closed or open, or when C is a convergence basis, it suffices

to show that the two topologies have the same closed sets. Let

_ FAbeva subset of Y. By definition of the u—closure.operator,

“(t-cl F)N Y

{t-cY PO Y

u-cl FC (t-cl F)N Y. To prove. the opposite inclusion, assume
that x € (t-cl F) N Y with ord x = ) with respéct to C and F,

and proceed by transfinite induction on X. If ) = O,

F°N Y=FNY=sFCu—clF. Ifr=1 then

_Flfﬁ'Y = (c-¢IF)N Y Cukél F. “Thus the proof is

complete for the case in which C is a convergence basis. For x > 1
consider separately the cases Y is closed and Y is open. First,
suppose that Y is closed. Then t-cl FC t-cl Y = Y. By the

induction hypothesis, there exists a net pair ({xn :neDd}) e€C

“with x € (t+c1'F) N Y and ord x, < A for -each n € D. -Consequently

~each x € u-cl F and ({xn : n e D}, x) e D, which implies that

X € u—cl F. Assume now that Y is Open.‘ By the induction hypothesis;

there is a net pair'({yn :n e D}, x) € C with v, € t-cl F and

ord Y, < X for each n € D. Since Y is open and x ¢ Y, the net

7{yh :n e D} is eventually in Y. Thus E={n e D : x € Y} is a.
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cofinal subset of D and so (Iyn :ne¢ E}, x) € D. Therefore

yn € u-cl F for each n ¢ E implies that x € u-cl F.

it remains to show that if the two topologies are the
same then C is a convergence basis. If C is not a convergence
basis for X, there is at least one Baire order 2 situation.
That is, there exists a subset B>of X with # £ t-cl B and

ord x = 2, Let Y =B U {x}. Then x € (t-cl B) N Y but, since

ord x = 2, (c-c1 B)N Y = B and no net in B converges to x ¢ Y.

Thus x ¢ u-cl B'and the topologies are different.

3.20 Corollary Every open or closed subspace of an m-sequential

space is m-sequential. A topological space is m-Fréchet if and
only if it is hereditarily m-Fréchet if and only if it is

hereditarily m-sequential.

EEQQE Let Y be an open or closed. subspace of an m~sequential
space X with a convergence subbasis C consisting of m-nets.
-Accordiﬁg to (3.19), the trace of C on Y is a convergence subbasis
for the relative topology on Y. Hence Y is m-sequential.

It is obvious that every hereditarily m-Fréchet space is
m-Fréchet. éon&erseiy, if X is an m-Fréchet space with a convergence
basis C consisting of m-nets then, by (3.19), for every subspace Y
of X the trace of C on Y is a convergence subbasis for the reiafive"

topology on Y. Thus Y is m-sequential and consequently every
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m-Fréchet space 1is herediparily m—sequentiai. In addition, any
subsbace of an m-Fréchet space is hereditarily m-sequential. It
remains to show that every hereditarily m-sequential space is
m-Fréchet. Assume that X is a hereditariiy m—sequential space
with a convergence subbasis C in which all of t?e nets are m-nets.
- If Y is-a -subspace -of X, -then ¥ -is- m-sequential-and -therefore-has
a convergence subbasis 0 consisting of m—neté. The trace of C

on Y surely coincides with D. The preceding theorem implies that

X . . -
C is a convergence basis for X and hence that X is m-Frechet.

3.21 Proposition If X is the disjoint topological sum of any

family'{Xa : a € A} of topological spaces where each'Xa has a
convergence subbasis Ca’ then C =U{Ca : a € A} is a convergence

subbasis for X. If each Ca is a convergence basis, .so is C.

Proof Let (S, x) e C and suppose that U is an open neighbourhood

of x in X. Thea (S, x) € Ca for some a € A and therefore, since
un Xa is open iana, X € un Xa for all n sufficiently large.

Thus the convergence class on X contains C. Now let T denote the

usual topology on X and let Ta be any topology for X whose
convergence class C(Ta) contains C. If V4T, VN Xc is not open

in Xc for some ¢ € A. From this, it follows that there exists a
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C-net Sl in XC—V converging to.a point y ¢ VN XC. Then, since

\(Si, y) ¢ C and CC C(Ta),'V é.Ta' Consequently, T is the largest

topology on X in which the C-nets converge, or equivalently by
(3.6), T is the topology with the smallest convergence class
containing C. Hence C is a convergence subbasis for X.

gmAssumeanewmthatmeachwcawisﬂa~convergencembasisu To

complete the proof, it suffices to show that every subset of X
has Baire order < 1 with respect to the convergence-subbasis C.

Let F be a subset of X. Then {(c-cl F)N X = c-cl, (F) = cl, (F) =
. a Xa Xa
(c)l B)DN Xa' Therefore (c~cl F)N Xa,is closed in Xa for each

a € A, and hence c-cl F is closed in X,

3.22 Corollary The disjoint topological sum of any fémily of

m-sequential spaces is m-sequential, The disjoint topological

sum of any family of m~Fréchet spaces is m-Fréchet.

3.23 Definition Let C be a p-convergence class on a set X. For

any function with domain X let fC denote the set of all net pairs

({f(xn) :n e D}, £(x)) for ({xn :n e D}, x) e C.
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3.24 Theorem Let £ : X ---> Y be a function of a topological

space X into a topological space,Y, and let C be a convergence
subbasié for X.
(1) The function f is continuous if and only if £C
is contained in the convergence class of Y.
- (2) If f is surjective, fC is a convergence subbasis

for Y if and only if Y is a quotient space.

Proof (1) Let ({f(xn) :ne€ D},.f(x)) e f C. Since C is a -

convergence subbasis for X, each C-net belongs to the convergence

class of X. Accordingly,'{xn : n € D} converges to x in X. Then,
since f is continuous,'{f(xn) : n ¢ D} converges to £(x) in Y.

‘Conversely, let A'be a closed subset of Y and suppose that

({xn +n e D}, x) e C with x € f~1(A) for every n € D. Cleérly
each f(xn) € A. Because A is closed and by hypothesisbff(xn) :n e D}

converges to f(x), f(x) € A.. Thus x ¢ f_l(A) and f_l(A) = t-cl f—l(A).

Then, since C is a convergence subbasis for X, f_l(A)‘is closed. |
(2) By definition, fC is a convergence subbasis for Y

if and only if the topology on Y is the topology with the smallest

convergence class containing fC. According to (3.6) and part (1),

fC is a convergence subbasis for Y if and only if the topology on

Y is the largest topology such that f is continuous.
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3.25 Corollary Every quotient of an m-sequential space is

m-sequential,

giggg Let £ : X ———>‘Y be a quotient map of an m-sequential

. space X oﬁto a topological space Y. The space X has a convergence

subbasis C in which all of the nets are m-nets. It is obvious

~-t‘hat~-'ez:1c'h~-‘~nevt\"paiﬂr**-i~n~~fC’~*--«-i"s~~=an~um--~net:«:-épa«ir. ~Then;wsince;{3.24)

implies that f£C is a convergence subbasis for Y, Y is m-sequential.
Example 2.5 shows that the quotient of a Fréchet space -

need notvbe Fréchet. Consequently, if C is a conVergencé basis

for a topological space X and £ is a quotient map with domain X,

it is only possible to conclude that £fC is a conﬁergence subbasis

for tﬁe Quotient space. However, fC is a convergence basis whgn—'

ever f is continuous pseudo-open.

3.26 Theorem Let f : X -~-> Y be a surjection of the topological

space X onto the topological space Y, and let C be a convergence
basis for X. Then f is continuous pseudb-open if and only if £C

is a convergence basis for Y.

Proof Let Y1 be a subspace of Y and let D be the trace of C on

f—l(Yl). By virtue of (3.19), D is a convergence subbasis for the
‘relative topology on f_l(Yl). If £ is continuous pseudo-open, then

f is hereditarily quotient and so fD is a convergence subbasis for

the relative topology on Yl. Moreover, fD coincides with the trace
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.and hence (3.19) implies that fC is a convergence basis

of fC on Y1 >

for Y.,‘

Assume now that f£C is a convergence basis for Y. Ey
(3.24.1), f is continuous. Let x € Y and let U be an open neighbour-
hood of f—l(y) in X. If f is not pseudo-open, y £ cl(Y-£(U)) and

hence there is a net pair ({f€§n) :n e D}, £(x)) € £ C such that
f(x) = y and each f(xn) € Y;f(U). Consequent.:lyvxn £ U for every
n € D. Then, since x ¢ ﬁ, the net'{xn : n e D} does not converge
to.x in X.. Therefpre ({xn :n e D}, x) £ C and the theorem is

proved by contradiction.

: ' . g £
cisennsDwitnlerCOEOLLAYY o EVETy.ccontdnuous.pseudomopen.dmage..of .an.m=Frechet

s 7z
space is m-Fréchet.

Proof This follows from (3.26) in the same way that (3.25)

followed from (3.24).

3.28 Definition Let m be an infinite cardinél number. A topological
‘space ié m-first-countable, or an m-first—countable space, if and .
“only if each point has a neighbourhood basis of cardinality < m.

(Note that fL ~first-countable and first-countable are equivalent

concepts.)
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3;29‘Proposition If X is a topological space and m is an infinite

- cardinal, then each of the following implies the next.

(1) X is m~first-countable.

(2) X is m-Fréchet.

(3) X.is m~sequential.

(4) For any subset A of X, each point in cl A is in
cl B for some subset B of A with the cardinality of B < m.

(5) X is 2" _Fréchet.

Proof (1) -=—-> (2) Let F be a subset of X and suppose that

x € ¢l F. By hypothesis, x has a neighbourhood basis'{Ua : a.e A}

with the cardinality of A <'m. Defining a < ¢ if and only if

UcC: Ua’ A is a directed set with order <. Because x € cl F, there
exists x, € Ual\ F for each a € A. Then'{xa.: a ¢ A} is an m-net in

F converging to x, and hence X is n-Fréchet.

(2) ---> (3) This is clear since evefy convergence basis
is a convergence subbasis. |

(3) ---> (4) If X is m-sequential, X has a convergence
subbasis C in which all of the nets are m-nets. For x € cl A = t-cl A;
the existence 6f a subset B satisfying (4) is established by trans-
finite induction on thelBaire order A of x with respect to A and C.
If A = 0 then x € A and x € cl {x}. If A = 1, x € c-cl A and there
is an m-net pair (S, x) € C such that S is an m—nét in A converging

"to x. Clearly x € cl1 S and the cardinality of S is < m. By the
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induction hypothesis, there exists an m-net pair»({xn :nebd} x) eC
 with x € cl A and ord X < A for each n ¢ D. Consequently each
X, € cl Bn for some subset Bn_of A with the cardinality of Bﬁ < m.
But then x € cl (lJ'{Bn :n e D)), L/{Bn :neD}CA, and the
. . i . 2
cardinality of .UJ{B : n eD}is <m” =um.

(4) --—> (5) Let A be a subset of X and suppose that
x € cl A. By hypothesis, x € c1 B for some subset B of A with the

cardinality of B < m. If'{Ui :ie I} is a neighbourﬁood basis at

#,.Ui(\ B # @ for évery i € I. Since B has cardinality < m, there

are at most 2" distinct sets Uir\,B‘ Define an equivalence relation
"“Won“I“by“ideutifying*a%and“cﬁwhenever*U:FTﬂngwU:WﬁmB.““EéthMbeWthe

index set I under this equivalence relation. The cardinality of D

is 5_2m. Order D by specifying a < ¢ if and only if'UaZD Uc’ and
for eachn € D choose‘xn € Unf\ B. Then'{xn :n e D} is a 2"-net

in B converging to x.

, there are examples which show that

For the casem = }{o

all of the conditions in the:fpregoing propositionvaré distinct, As
previously observed, the'real line with the integers identified is a
Fréchet space whicﬁ is not first-countable and the'space M of (1.17)
is a sequential spaée which is not Fréchet. The countable space

Q x Q' of (1.19) clearly satisfies (4) but it is not sequential.
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Finally, the ordinal space @ + 1 with the order topology is a .
2#%- ~Frechet space which does not satisfy {4).
The next result is a chara;terization of m-sequential
spaces which generalizes the chafacterization of sequential spaces.

An interesting corollary to this theorem is a characterization of

-m~Fréchet—spaces -which -keads -to-an-extension-of - the-characterization

of Hausdorff Fréchet spaces given in (2.15). The Hausdorff hypothesis

is eliminated.

3.30 Theorem = A topological space is m—sequential if and only if

it is a quotient of an m~first-countable space.

Proof By virtue of {3.25) and (3.25), a quotient of an m-first-

countable space is m-sequential. Conversely, let X be an m-sequential
space with a convergence subbasis in which all of the nets are m-nets.
For each ({xn :ne D}, x) e C,~let S(xh, X) ='{xn :neD}U {x} be

a topological space in which the x ~are taken to be distinct and

kn # x for every n ¢ D, and which has the convergence basis generated

.

by the C-net pair ({xn :n e D}, x). Each X is isolated, and x has

- a neighbourhood basis indexed by the directed set D whose cardinality

is < m. Thus each S(xn, x) is m-first-countable. The disjoint

topological sum W of all such S(xn, x) is therefore m-first—countable

and has, by (3.21), a convergence basis L formed by taking the union
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of the~c6nvergence bases for the S(xn, x). The theorem now follows
from (3.24). The surjection £ : W ———> X defined by f(x) = x is a

quotient map since fE = C,

3.31 Corollary A topological spéce is m—Frébhet if and only if

it is a continuous pseudo-open image of an m-first-countable space.

Proof  The continuous pseudo-open image of an m-first-countable
space is m—FréEheﬁ By (3.29) and (3.27). The converse coincides
with that of (3.30) with the exception that C is a convergence

basis and the fact that fE = C together with (3.26) implieg.f is

continuous pseudo-open.

W3T32”bof8Ilary' " For any topological space”X, the following

statements are equivalent.

(1) X is Fréchet.

(2) - X is a continuous pseudo-open image of a first-
countable space. |

(3) X is a continuous pseudo-open image of a metric

space.,

Proof  According to (3.31) and (3.17.2), (1) is equivalent to (2).
Clearly (3) implies (1). To establish the_opboSite implication,
let X be a Fréchet space with a convergence basis C in which all of

the nets are sequences. Then W has a convergence basis E consisting
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of sequences, and fE = C implies that f is a continuous pseudo-

open map of W onto X. Each summand_S(xn, x) of W is a convergent

sequence in the Hausdorff‘space S(xn, x). _Hence, by (1.32), W
is metrizable.

In general, the product of m—sequgﬁtial or m-Fréchet
-spaces -need -not ~be ‘m~sequential. -Several-examples~for -the-case
m(; fﬂ have already béenzgiven. However, the product of two
m-sequential spaces, one of‘which is such that each point has a
neighbourhood basis consisting of m-sequentially ;Qmpa$F sets, is
m—sequentialf (A topological space is m-séquentially cémpact if
and only if every m-net has a'convergent m-subnet.) The proof of
this resultiis analogous to that of (1.24). The following is a

generalization of (1.23).

3.33 Proposition Let X be the product of any family'{Xa :a e A}

of non-trivial topological spaces (each space has at least one non-
empty proper open set). If the cardinality of A is > m, then X is
not m-sequential. In particular, no uncountable pfoduct of non-

trivial spaces is sequential.

Proof By hypothesié, each coordinate space Xa contains two points,

denoted by 0 and 1, and a néighbourhood of 1 not cohtaining 0. Let

e be the function in X whose a-th value is 1 for each a ¢ A, and
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let E be the subset of X consisting of all characteristic functions
of finite subsets of A. Clearly e € ¢l E. It suffices to prove
that no iteration of m-nets in E can converge to e.  For convenience,
define_tﬁe cozero set of a function f, denoted by coz f, to be the
set {a ¢ A : f(a) # 0O}. The functions in E have finite cozero sets.

.Suppose thatilfn :.n.e.D} is .an m-net of functions converging to f
with the cardinality of each coz fn < m. ‘Since coz £ < Ulcoz fn': n ¢ D},

‘the cardinality of coz f is j_mz = ﬁ. Thus by fofming iterated iimits
of m-nets in E it is only possible to obtain functions whose cozero
sets have cardinality i_m. Consequently, if the cardinality of A
is > m, then the cardinality of coz e is > m and hence no m-net in

(cl E)-{e} converges to e,

3.34 Proposition If X is the product of any familyA{Xa : a e A}

of non-trivial topological spaces, then each point of X has a
neighbourhood basis of cardinality less than or equal to the maximum

r of the cardinality p of A and q = supl{X(Xé) :ae A}, (Write

X(Y) = m if and only if Y is m~first-countable.)

Proof Let x € X and assume thatA{Ui :ie Ia} is a neighbourhood
basis for the a-th coordinate of x with the cardinality of L f_X(Xa).

For each a € A let Pa denote the canonical projection map of X onto Xa'
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Then the set B of all finite intersections of elements in
B = U{{Pa_l(Ul)' ie Ia} :aeA}l is a neighbourhood basis
for x. Since the cardinality of B is < pq < r2 = r, B has

cardinality < Ho- r =r. (See 1.18.‘)



Chapter 4
Generalized Sequential Spaces and their

Properties in Ordered Topological Spaces

The properties of convergence subbasis and convergence
bases are applied, in this chapter, to the investigation of
topological spaces whose open sets are specified by well-ordered

nets.

4.1 Definition A well-ordered net is a net whose directed set

is well-ordered. (A well-ordered m-net is a net whose directed

set is well-ordered and of cardinality < m.)

4,2 Definition (1) A topological space is weakly sequential, or

a weakly sequential space, if and ohly if it has a convergence
subbasis in which ail of the nets are well-ordered.

(2) A topological space is weakly Frébheﬁ, of a weakly -
Fréchet space, if and only if it has a convergence basis cdnsisting

of well-ordered nets.

4.3 Definition Let X -be a topological space, and let m be an

infinite cardinal,
(1) X is m-sequential, or an m-sequential space, 1if

and only if it has a convergence subbasis in which all of the nets
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are well-ordered m-nets.

(2) X is BfFréchet, or an EfFréchet space, if and -
oniy if it has a convergeneefbasisvconsisting of well-ordered
m-nets.

Since sequences are well—orderea }i -nets, these
Ugeneralized.Sequential spaces and generalized Fréchet spaces
clearly contain the sequential and Fréchet spaces respectively.
In particular, a topological space is (sequential, Fréchet) if
.and only if it is ( éﬂ-—sequential, H, 4Fré&het).‘ Observe that
a space is m-sequential if and only if it is both weékly sequential -
and m-sequential. Similarly,'a'topblogical space is EfFréchef if -’
and oniy.if it is both weakly Fréchet and m-Fréchet.

Tﬁe aim'of‘the'first~part of this chgpter is to characterize
"the generalized sequential spaces of (4.2) and (4.3). Their
characterizationsilead to new characterizations of fhe,FréEhet spaces
and the sequential spaces in terms of orderable épaces. To avoid
tedious repetition, the elementary propertiés of thesé generalized
..sequential spaces will not be formally stated. 'Ihe_preceding
'chapter's>survey of convergence subbases greatly facilitates. their

‘study. It is easy to see that the investigation of these spaces is

analogous to that of the m-sequential spaces.
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4.4 Definition (1) A topological space is weakly first—couhtable,

or a weakly first-countable space, if and only if each of its points.

has a well-ordered neighbourhood basis. . (A collectionl{vFa tace A}

of sets is called well-ordered whenever A is well-ordered and
F,C F_ if and only if a > ¢ in A.)
| (2) mAwtopologicalmspacewiswg;finst;countable;ionuan
Effirst—countable space, if and only if each of its points has-a
well-ordered neighbourhood basis of cardinality < m. (Note that
first—countablé,. tL ~first~countable, and Ho—fifst—countable are

equivalent concepts.)

4,5 Proposition (1) Every weakly first-countable space is weakly
- npréchet~and “hencewedkly sequential.
"(2) Every m-first-countable space is EfFréEhet and hence

m-sequential.

Proof Let F be a subset of a weakly first-countable space X and
suppose that x e cl F. By definition, x has a well-ordered neighbour-

hood bésis'{Ua : a ¢ A}. Then, since x € c1 F, there exists a well-
ordered net'{xa : a e A} which satisfies X, € Uar) F and therefore

converges to x. If X is m-first-countable, the cardinality of A is

< m.
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4.6 Example For any uhcountable cardinal m, there is an m-first-
countable space which is not weakly sequential and hence not

m-sequential.

Proof Let D be the family of all finite subsets of a set whose
cardinality is m, and order D by 2O . Then D is a directed set

of cardinality m. Let S ='{xﬁ :n e ﬁ}7CfT§} be a topological space
"in which the x are distinct and xn'# x for evefy n € D, and which
has a convergence basis generated by the net pair ({xn : n e D}, x).
Each X is isolated aﬁd x has a neighbourhbod basis indexed by D.

Consequently S is m-first-countable. However, S is not weakly
sequential because x ¢ cl(s-{x}) and yet no well-ordered net in
S-{x} converges to x. To verify that this is so, suppose that

-{XN(k) : k € K} is a well-ordered subnet of'{xn :n e D}. Choose

a countable collection‘{ni ﬁ i € w} of distinct elements in D.
For.eacﬂ i e'w there exists ki € K such that, if k 3_ki then

N(k):) n, . From the description of D, it is obvious that there is

no supremum of‘{ki S > w}.in k. But then'{ki : 1 ¢ w} is a cofinal
subset of K and hence'{N(ki) : i e w} is a cofinal subset of D.. This

is impossible since L}{N(ki) : i € w} is only a countable subset

of the given set of cardinality m.
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4.7 Definition An ordered topological space is a space which

_has the order topology arising from a total order on the set.
A topological space 1s orderable if and only if some total order
can be imposed on the set relative to which the given topology

coincides with the order topology.

4.8 Proposition Let A be a subset of an ordered topological

space X. If an m-net in A converges to a point x e X-A, then
there is a strictly monotone well-ordered m-net in A converging

to x.

Proof It is first shown that every totally ordered set has a

cofinal well-ordered subset. Let F =A{Fi : 1 e I} be the family

of all well-ordered subsets of a totally ordered set Y. Partially

order F by defining Fi < Fj whenever Fi = Fj or Fi is an initial

. Let C

segment of F,. Note that F, < F, implies that F,C F
. ] i J i j

be a chain in F and supébse that B is a subset of UC. There
exists C € C such that C N B # P, and C'n B has a least element
b since C is well-ordered. The total order < on C implies that
b is the least element of B and hence.that Uc e F. By Zorn's

lemma, F has a maximal well-ordered element Yl. Then Yl is also

a cofinal subset of Y bécause otherwise there exists y € Y--Yl

with no element of Y, greater than y; from this, Yl\JA{y] e F
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contradicting the maximality of Yl.

Let Ao be the intersection of A with the range of the

‘m~net in the hypothesis. The cardinality of Ao is clearly < m.

Let A, = {y ¢ A iy < x} and A

1 = {y ¢ Aty > x}. Since X has

2

- the -order topology, x & cl %i for 1 = 1 or i = 2; assume the

former. The set A1 is directed by the total order inherited from

X, and thus the identity map on A1 is a strictly monotone m~net

has a cofinal well-ordered subset

converging to x. Moreover, Al

A, and the identity map on A, is the desired net.

3 3

stted Theorem . The following.statements.about .an.arbitrary

topological space X are equivalent.
(1) X is weakly sequential.
(2) X is the quotient of a weakly first-countable
orderable spaée.-
--{3) X is the quotient of a'wéakly first-countable space.

(4) X is the quotient of an orderable space.

Proof Clearly (2) implies both (3) and (4). 1In addition, (3)
implies (1) by (4.5.1) and (3.24). It remains to show that

- (1) ===> (2) and (4) ---> (1).
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To establish the latter implication, let £ 1 vy > X
be the quotieﬁt map of an ordered space Y onto a tdpological
space X. Suppose U is a subset of X such that any well—ordered;
net‘converging to a point in U is eventually in U. It suffices
to prove that f_l(U) is open in Y. Let y € f—l(U). If y £ int f—l(U),

there is a netA{yn : n e D} which is disjoint from f—l(U) and

converges to y. Accor&ing té (4.8), it can be assumed that D is
well-ordered. But then'{f(yn) :n e D} is a well-ordered net in
X-U converging to f(y) € U. Hence (4) implies (1) by contradiction.
Assume now that X is a weakly sequential space with a
-convergence subbasis C in which all of the nets are well-ordered

nets. For each-'({xn tnoe D}, x) € C, let S(xn, x) ='{xn :neD'} L{{x}
be a tdpological space in which the x ~are taken to be distinct and

Cx # x for eVgry neD', and'which has the order topology arising

.from the total order defined as follows. Let a Be the leaét element

of D and let D' = (w'xl{ao})kj(z x (D¥{ao})) with w and Z ordered in

the usual way. Totally order D' by specifying (i, n) < (j, m)
whenever n <m or. i < j and n = m. Each element of D' has an

immediate successor, and each element other than (o, éo) has an

immediate predecessor. (Such an order is called a discrete order.)

: - . ' ' ,
Now let x(i,n) X for each (i, n) ¢ D', and totally order S(xn, x)

by defining X, <X if n <m in D' and x < x for each n ¢ D'.
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In the ordered space S(xn, x), each X, is isolated and x has a

well-ordered neighbourhood basis indexed by -a set order isomorphic

to D. Then S(Xn’ x) is weakly first-countable and has a convergence
basis generated by the net pair ({xn :neD'}, x). The disjoint
mtopologicalnsum W of all such S(gnJ x) is also weakly first-countable,

The natural mapping of W onto X defined by x ---> x is a quotient

map because the net pairs,'({xn :neD'}, x) form a convergence

subbasis for X.

1

To demohstrate that W is orderable, let {Sa : é e A} denote
the set of all S(xn, x) and define a discrete order on Z x A in the-

CerrgamerwayassD ' o (Inthisrcasey--Awis-assigned--an~arbitrary. total

.. ..-order with least element ao.) Using the existence of a one-to-one

-correspondence between A and Z x A, this discrete order can be
imposed on A. Let W be totally ordered by specifying x < y whenever

‘X <y in Sa where X, ¥ € Sa’ or a <b in A where x ¢ Sa and y € Sb'
Because of the discrete orderings and the fact that each Sa has a

-greatest element and 'a least element, the order topology on W coin-
cides with its usual disjoint topological sum topology. Thus W is

orderable, and the theorem is proved.
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4.10 Coroliary ‘For any topological space X and any infinite
cardinal m, the firsﬁ three statements are equivalent. If m =}1;
they are also equivalent to (4).

(1) X is m-sequential.

(2) X is the quotient of an orderable Effirstfcountable'
space.

(3) X is théAquotient of an m-first-countable space.

(4) X is the quotient of an orderable metric space.

" 'Proof This is analogous to (4.9). "It is only necessary to remark

that each S(xn, x) is m-first-countable and hence so is W.

.nbe1l Proposition  The following are equivalent.

(1) X is weakly Fré&het.

(2) X is the continuous pseudo~open image of an orderable
weakiy first-countable space."

(3) X is the continuous pseudo-open image of a weakly
first-countable spéée.

(4) X is the continuous pseudo~-open image of an oraerable

space.

Proof Clearly (2) implies both (3) and (4), and (3) implies (1)
by (4.5.1) and (3.26). The fact that (1) ---> (2) follows from (4.9)

in the same way that (3.31) followed from (3.30).
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To prove that (4) ---> (1), let f : Y -—=> X be a
continuous pseudo—openvfunction of an ordered space Y onto a topological
space X. Let A be a subset of X and éupposebthat x € ¢l A, Then

1

some y € f_l(x)(] cl f ~(A). This is so because otherwise there is

an open neighbourhood U of f_l(x) disjoint from f—l(A); from this,
A'NCE(U) =0 cortradicting x € “(¢lA) Vv int f(U). ‘Since Y~is an

ordered topological space, there exists a well-ordered net"{yn : n e D}
in f_l(A) converging to y. Then {f(yn) :n e D} is a well-ordered net

in A converging to f(y) = x.

4.12 Corollary For any topological space X and any infinite

cardinal m, the first three statements are equivalent. If m =iﬁo
they are also equivalent to (4).

(1) X is EfFréEhet.

(2) X is the continuous pseudo-open image of an
orderable m~first-countable space.

(3) X is the continuous pseudo-open image‘pf an
m-first-countable space.

(4) X is the continuous pseudo-open image of an orderable
metric space..

The final results are concerned with the sequential
pr0pérties of ordered topoleogical spaces and the relation betwegn
the notions éf'fifst—countable space, Fréchet space, and sequential.

space in products of these spaces. It is now known that Fréchet
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spaces and sequential spaces are successive proper generalizations
of first—coUntaBle spaées, and that the product of two Fréchet
spaces need not be sequential. For topological spaces which aré

‘products of ordered spaces, the situation is quite different.

4.13 Theorem If X is an ordered topological space, the following

are equivalent, The first three statements are .equivalent whenever
X is a product of ordered spaces.
o (1) X is m-first-countable.
(2) X is m-Fréchet.
(3) X is m-sequential.
(4) X is QfFréEhet.

sl 5Yirs Xod:summsequentdal.

Proof  From (3.29), (1) ---> (2) -=-> (3). Obviously (4) -—;> (5)
—-=> (3) and (4) -—> (2). Furthermore, (2) —--> (4) by (4.8).
It remains to show that (2) --—> (1) and.(3) _—— (2). Assume first
.that X is an ordered topological space.

(2) ——> (1). Let x € X. If x is an isolated point then
x has a neighbourhood basis consisting of the singleton4{X}; Suppose
that x is not isolated but has either an immediate pfedecessor or an
immediate sﬁccessér. In the former case, x € cllfy e X :y > x}. |

By hypothesis, there exists an m—net'{xn :n e D} in {y : y > g}

converging to x. Let A ={y:x<y-« xﬁ}. The collection -
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‘{An :n e D} is a neighbourhood basis at x and the cardinality of

D is < m. .Similarly, x has a neighbourhood basis of cardinality
<-m in the latter case. Suppose now that x is not isolated and has
neither an immediate successor nor an immediate predecessor. By

hypothesis, there is an m-—netA{xn :n e D} converging to x with
X, <x for each n. There is also an m-—net"{yn :n e E} converging
to x with each y > x. The open sets {z : x <2< yﬁ} where

(n, m) € D x E form a neighbourhood basis for x .and the cardinality

of D x E is i.mz = m.

(3) —~-> (2). Suppose Fhat the nets Sn ='{¥2 b En}
converge to x and § =A{xn :n e D} converges.to i,'with the
cardinalities of E and D < m. It suffices to construcp an m-net
in the union of the ;anges of the.nets Sn converging to x. According

to (4.8), it can be assumed that all of the given nets are strictly.
monotone and directed by ordinal numbers. Either S is increasing

. or decreasing, and the nets Sn are elther frequently increasing or

_fréquently decreasing with respect to the directed set D; that is,

the nets Sn aré frequently (increasing, decreasing)vif and only if
for each p € D there exists q > p such that Sq is (increasing,

decreasing). There are four cases to consider. First, assume that

the nets Sn are increasing and the net S is decreasing. Since X > X
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R . n .. n .
for each n, there is i(n) e En w1th,xn > X3 (n) > x. Then {xi(n) :n e D}

is the desired m-net; it converges to x because it is bounded above by
the net $ which converges downward to x. For the second case,'suppose
that all of the nets are strictly increasing. Let D' denote the set
of all isolated ordinals.in D.. Clearly D' is a cofinal subset of D;
for each n elD the successor ordinal n + 1 is isolated. Then

X

1 <%y for each n € D', and there exists i(n) ¢ En satisfying

n 1. T, ' -
X0-1 < Xi(n)® It follows that {Xi(n) :neD'} is an m-net converging

to x. The remaining two. cases are similar to the first and second
cases. This.completeé the proof for the case in which X consists of
one ordered space.

-*”wm“kssumemnowwthatQX%iéwtheMproductwoﬁmanywﬁamilyé£xa-4«a~ewAJ

.-of ordered topological spaces. It is only nécessary to prove that
(3) implies (1). By virtue of (3.33), the cardinality of A is < m.

Then, since each Xa is m~sequential and hence m-first-countable,

(3.34) implies that X is m-first-countable.

4.14 Corollary If X is the product of any familyA{Xé : a e A} of

non-trivial ordered m-sequential (or equivalently n-Fréchet) spaces,
-then X is m—seduential (or equivaiently m-Fréchet) if and only if

‘the cardinality of A is < m.
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Proof If X is m-sequential then, by (3.33), the cardinality of
A is ¥ m and hence < m. To establish the converse, observe that

each X; is m~first-countable by the preceding theorem. Then if the

cardinality of A is < m, in view of (3.34), X is m-first-countable.

4.15 Corcllary 'An ordered topological space is wedKly Frechet

if and only if it is weakly sequéntial.

Proof This is the same as (3) <——-> (2) of (4.13). 1In this case,

the cardinalities of D and En are.not important.

4.16 Example There is an ordered topological space which is not

egeakly first=eointgble [ "Moreover, “for “any“uncountable “cardingl-m,

an m-first-countable ordered space need not be m~first-countable.

Proof Let X = (o + 1) + w* where o is the initial ordinal of
cardinality m and &* has the reverse order to that of w. By

definition, X has the order : x < y if

a) x,yeo+l and x <y in a + 1,
or b) x, y € wk and x < y in w*,

or ) xea+1l - and y e w*.
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Let X have tﬁe order topology arising from this total order. It
is clear‘that X is m~first~countable. To establish that X is‘not
- weakly first-countable and hence not Effirst—countable, assume the

opposite and 1et'{Ua :ace A} bea Qell—ordered neighbourhood basis

at fhe point a. Obviously o has neither'an immediate predecessor
f\Por an immediate successor. For each a ¢ A,,,let.,x_a be the least |
eiement of (a + 1)N Ua’ and let Y, be the greatest element of

w* N Ua' The range ofA{ya tace A} is surely cbuntable and, since
A{Ua*: a € A} is well-ordered, thefe are less thay m elements in the
range of‘{xa : a € A} associated with each element in the range of

'{ya : a ¢ A}. The supremum ofA{xé : a ¢ A} is therefore less than o,

and so {xa : a £ A} cannot converge to a.
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