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ABSTRACT

There are now engulfing,theofems for topological,
piecewise linear, and differentiable manifolds. Differentiable
engulfing so far was reduced to pilecewise linear engulfing

~using the J. H; C. Whitehead triangulation of a differentiable
manifold and J. R. Munkres'theory of obstructions to the
smoothing of piecewlse-differentiable homeomorphisms. In the
first part of the thesis we observe that the method of proof of
M. H. A. Newman's topological engulfing theorem applies, up to
a local lemma, simultaneously to all three categories of mani-
foidso. We prove this local lemma in the differentiable case
and thus bbtain a differentiable engulfing theorem which has -
a direct proof, Then we solve the problem of the existence of
a stretching diffeomorphism between complementary subcomplexes
of a simplicial complex in Euclidéan spaée which is crucial fér
all applications of engulfing. Next we prove a theorem condérn-
ing the uniqueness of open differentiable cylinders which is
the differentiable analogue of the uniqueness theorem for open

cones. A consequence of this theorem is that if M, and M,

are compact differentiable'manifolds with diffeomorphic

~BR are diffeomorphic, where R

interiors then M£<R and M
denotes. the real line.. Another consequence is that if a 4iff-.
‘erentiable manifold is the monotone union of open differentiable

cells it is diffeomorphic to Euclidean space.

We present several applications of differentiable

engulfing which actually hold in all three categories of manifolds.
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. Our methods are such that they apply aléo to noncompact

manifolds.

Theorem: Let M be a differentiable n-dimensional manifold

and let Uj,...,U, be open subsets of M such that

(-

.Ui = jgl Vi,J’ where each Vi,j Als:open in ' M, C:L‘Vi,'j C.vi;j+1:‘
(M- ClVi,j, Vﬁ,j+l.' Cl vi,j) is ky-connected, with,
. . A . . s ) | m.t
ks $ n- 3 if ki > O,;l.s 1_$ m, J > 1, and BdM c;gl vi,l’

Then, if Ky + ... +k +m>n+ 1, there are diffeomorphisms

hi 'of M onto itself such that hi is the identity on

v

' m
1,15 1|$ 1.$ m, and M= U hi(Ui}.

Q 1=l
‘This theorem has several corollaries. For instance,
if M 1s a k-connected differentiable manifold of dimension n

without boundary, k <n -3 if k >0, and if m > %%%’

then M may be coVéred by m- open differentiabie n-cells.
Using this result, we give a new and direct'proof of the
_ uhiqueness of the differentiable structure of Euclidean n-space

for n > 5. Finally, we prove a general h-cobordism theorem.

Theorem: >Let M be a connected differentiable manifold of
dimension n, n > 5, with_two,connected boundary components

- Ny a.nda'N2 such that the inclusion of 'Ni into M is a homotopy -
equivalence, i = 1,2, Then there is a_diffeomOrphism of

lefo,aa) onto M~ Ny.
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INTRODUCT ION

There are now engulfing theorems for topological,
piecewise linear,‘and differentiable manifolds. Different-
iable engulfing so far was reduced (in [2]) to piecewise
linear engulfing using tpe J.H.C. Whitehead triangulation of
a differentiable manifold ([15]) and J.R. Munkres! theory of
obstructions to the smoothing of piecewise differentiable homeo-
morphisms ([9]). In the first part of this thesis we observe
that the method of proof of M.H.A. Newman's topological engulf-
ing theorem ([10]) applies, up to a local lemma, simultaneously
to all three categories of manifolds. We prove this local
lemma in the differentiable case and thus obtain a different-

iable engulfing theorem which has a direct proof.

After proving this differentiable engulfing theorem,
we prove a theorem, concerning the-existence\of a stretching
diffeomorphism between complementary subcomplexes of a simpli-
cial complex in Euclidean space, which is cruciai for all
applications of engulfing. This solves a problem posed in

[12], p. 502. .

Next we preve a theorem concerning the uniqueness.
of open differentiable cylinders which is the differentiable
analogue of the uniqueness theorem for open (topological) cones

([ 51). A consequence of this theorem is that if- My and M,

are compact differentiable manifolds with diffeomorphic

interiors, then ' M; xR and M, x R are diffeomorphic, where
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R denotes the real line. Another consequence is that if a
differentiable manifold is the monotone union of open differ-

entiable cells it is diffeomorphic to Euclidean space.

We present several applications of differentiable
engulfing which actually hold in all three categories of mani-
folds. Our methods are 'such that they apply also to noncompact

manifolds.

Theorem 5.1, Let M bDe a differentiable n-dimensional mani-

fold, and let U;,...,U, Dbe open subsets of M such that

® .
U. = UV where each Vi,j is open in M, Cl Vi,j c

i 3=1 i, J°
m .
k;y £n-3 if k; >0, 1 <i<m J2>1, and 3M ¢ igivi’l. Then

if k) + ..o + k +m>n+l, there are diffeomorphisms h,

of M onto itself such that h; 1is the identity on C1 Vi 1s

3

— hi(Ui)"

m
1 <{im and M= Uy
i=1

This theorem has several corollaries. For instance,
if M 1is a k-connected differentiable manifold of dimension

n without boundary, kX { n-3 if k > 0, and if m > %;%,

then M may be covered by m open differentiable n-cells.
Using this result, we give a new and direct proof of the unique-
ness of the differentiable structure of Euclidean n-space

for n > 5. Finally, we prove a general h-cobordism theorem.



3.

Theorem 5.3. Let M Dbe a connected differentiable manifold

.of dimension n, n > 5, with two connected boundary components

Nl and N2 such that the inclusion of Ni into M is a homo-

topy equivalence, 1 = 1,2. Then there is a diffeomorphism

of Ny X [0,0) onto M-N,.

1



CHAPTER O

Notation and Fundamental Definitions

In this paper, R will denote the set of real numbers,
I will denote the unit interval [O,l],, R® will denote
Euclidean n-space, H® will denote the half-space

{(Xq,+--,%,) € Bt x>0}, S°71 will denote the unit

(n-1)-sphere in R®, and D" will denote the closed unit
n-ball in R". By the word map we shall always mean a contin-
uous map.  If X 1is a topological space, idX will denote the

identity map of X.

Definition 0.1. If X is a topological space and A < X

is a subset, we say that the pair (X,A) is k-connected if

T (X,A) =0 for all n<k. If A 1is (k-1)-connected and

X is k-connected, then (X,A) is k-connected.

Definition 0.2, Let Y De a metric space with metric d.

If A and B are subsets of Y, the distance, dist (4,B),
between A and B 1is defined to be inf{d(x,y): x ¢ A, y € Bj}.
If X 1is a topological space, and f and g ére méps of X
into Y, the distance, d(f,g), between f and g is defined

to be sup{d(f(x),s8(x)): x € X}.

Definition 0O.3. If K 1is a simplicial complex, .the i-th

barycentric subdivision of KX will be denoted by Bi(K), “and

the n-skeleton of K will be denoted by K(n). If 8 is a

subset of 'lKl, the neighborhood of S in K is defined to




be the subcomplex

N(S,K) = {p € K: o is a face of 3 in K and 3 n S # &3.

Definition 0.4, If A cR®, and f: A -R™ is a map, we

say that f is a C%map if it can be extended to a C%-map

of a neighborhood of A into R™.

Definition 0.5. A C®n manifold M is a locally Euclidean

Hausdorff space With a countable basis and a C®-structure Z.

4 1s a collection of pairs (U,h) satisfying four conditions:

(1) Each \(U,h) ¢ 4 consists of an open set U c M together
with a homéomorphism h which maps U 6nto an open sub-
set of HW.

(2) The coordinate neighborhocds in 4 cover M.

\ -1 n
(3) va (Up,hq), (Up,hy) € 4, then hyhy ~: hy(Up NU,) - H

is a C%-map with nonzero Jacobian.

(%) 4 1is maximal with respect to (3).

The boundary, sM, of M is defined to be the set of
points of M which do not have a neighborhood which is C®%-

diffeomorphic to R,

Definition 0.6. If M is a C%manifold without boundary,

a family of maps f{h,: t € I} (usually written h.) is said

to be C®-isotopy of M if each h, 1is a C“Ldiffeomorphism of

M onto itself, and the map H: M x T - M defined by

H(m,t) = ht(m)' is a C"®-map.



Definition 0.7. A topological space X -is said to be

l-connected at o 1f for each compact set' C € X there is a

compact set D o C such that X-D 1is simply connected.

Definition 0.8. If A, B c R?  are joinable subsets then AxB

dénotes the join of A and B.



CHAPTER ONE

Local C®-Engulfing

2

Lemma 1.1. Let T = {(a,B) € R°: 0 < a < B < 1}. There is

a C™map 6: R xT -R such that if °(x) = 6(x,a,8), then

eg(x) =x 1if x £ (0,1), 92([o,a]) = [0,B] and a}—ecﬂ(x) >0

for all x € R.

Proof: We let 6(x,a,B) be of the form 6(x,a,B) =

x + g(x,a,é). We construct a C%map g: R x T - R such that

if gg(x) = g(x,a,B), then gg(x) =0 if x'ﬁ (0,1),

g(a) =B - a, and —Xx) > -1. See Figure 1.

FIGURE 1

To construct such a map we use the following C®map as a
.building block: 1let ¢: R x T « R be defined by

1 1
X 57 * B
e(x,a,B) = % J e®” “rdt, if x e (a,B), e(x,a,B) =0 if
- a » , ,

x < a, and e(x,a,B) =1 if x > B, where -



s 1,1
c=f et T T-Byy

a

. See Figure 2.
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FIGURE 2

To define gg(x) for x > a, Wwe need a modified version of

the map e¢. We define

(
e(x,a,a +-léé), if x < a+ l%ﬁ s
5: RXT~ R by 6(x,0,B) = ﬁ 1, if a+3Pexc1-LE
| 1e(x,1- 22,1), ir x> 1 - 122,
- Mj:;_.___ - - Te—~ __ See Pigure 3. i
= §x,0,4) _
T I Iy 1 *
FIGURE 3

We define &: R x T - R by e(x,a,B) =

o |-

x ;
f s(t,a,p)dt, where

1
¢ = Joé(t,a,ﬁ)dt > B-a. Now define



(B-a)-e(x,0,a), x< a
g(x,a,B) = | L |
(B-a)-[1-e(x,a,B)], x> a.

g 1is a C® map, and, if x > a,

3eP

g
(%) = (p-a) [- %5(:{,&,5)] > -1. Q.E.D.

The following lemma is Corollary 4.3. of [11], p. 129.

f be n real-valued differentiable

Lemma 1.2. Let fl,..., n

functions of n real variables. Necessary and sufficient

N defined by

conditions that the mepping 1 R® 4 R
f(x) = (fl(x),...,fn(x)) be a diffeomorphism of R™ onto

itself are:

a .
(1) det(gi%) never vanishes

(2) Hﬁrﬁw\\f(xw = .

Theorem 1.1. Let 2" «R™ cR® be an m-simplex, Am=,V*Am—1,

where 4T cBR™' c®", b, =0, and v=(0,...,0,1) ¢ R"
, ) €

3

m-1

lies on the xmfaxis. Let p: R™ - R be the orthogonal

projection. Let A < A be a closed subset such that

A= p_l(p(A)) N A% Let U be an open set in R" such that

m-1

A yUv * 3A c U, and let F Dbe a closed subset of Rn_ such

that P A" cA UV x aAm’l. Then there is a compact set
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id

i

C « R*-F and a C®isotopy hy: R® - R® such that h,

h(x) =x if x £C, and A - h{(U).

Proof:
; 1., n m-1
(1) Let c¢ = 3dlst(R -U, AUV % ap ) > 0. Let
N, = {x e g% dist(x, A y v = m-ly s ¢ and
1 : B ad 2 <},

1

=
f

{x e ;" aist(x, Ay v *aAmfl).z 2c}. Then

1 and N2 are ¢ompact, and N2 c Nl' Further,

p—l(Am- Am—l

-N and if

2

1 m | .
_Ne) N A <U, since o C;U

X € p_l(

"N, n A", then aist(x,A y v o« 38"7) <

aist(p(x),A U v « 38" 1) <c. If N, =g, then 4" U,

‘50 we may let C = @ and hy = id n”; From now on, we’
R .
assume that N, # #. Let d = %dist(Nl,F) > 0.

(2) Let é: Am—l - R be the continuous function defined by

B(x) = ls(x) - x|, where s(x) is the intersection of
the line through x parallel to the xmfaxis with

v % aAm-l’ Let g: Am—l - R be a C‘”—% —appr,oximatioﬂ

A A
to g. If x e N, then g(x) > ¢ and hence
c A c ¢ ¢ i )
g(x) - 5 > g(x) - T - 527 - For each x e N; we define

a "vertical stretching interval'. Let
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vi(x) = x + (g(x) - §)+,

]
=
+
—
e
P o)
)
¥
ol¢
<

v,(x)
.v5(x),# X, and

vy(x) = x - d-v.

Then [vy(x),v,(x)] © U. The stretching interval will

ve [vi(x),vy(x)] and by "stretching" we will map [vy(x),v,(x)]
onto [Vl(x)’VB(x)]’ The interval [vl(x),vu(x)] has length
y(x) = g(xy\— % + 4 > 0. To apply Lemma 1.1, we map the interval
[vi(x),vy(x)] ZIlinearly onto [0,1] such that wvi(x) is

mapped onto O and vu(x) is mapped onto 1. Then vg(x) is

mapped onto a(x)‘=-¢7%cf7 and O onto B(x) = 1L%%§%. Note

“that a(x) < B(x). See Figure 4.
3) Before constructing h we must construct a C -function
t &
W : R® - I with proper compact support.

Let vy g1 . I be a C”function such that

vi(x) =1 if x e N, and

1

Cl(vil((o,l])) c Int Ny = {xe ™ s dist(x,AUv¥aAm'l)>c}

which is open in R™ L,

Consider next the compact set

n)

CO= {X=(Xl,...,X

e R™: p(x) e Ny and -d < x_ < g(x)- £}.

Then C, NF =¢g. Let n= dist(C,, F) > 0. Let
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FIGURE 4
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voi R =R be a C™-function such that 0 < vy(t) < 1,
if t<n, v(0) =1 and \)g(t)=0 if ot > n.

Let 7: R™ - R™ be the orthogonal projection and

let r = pewr. We define

p(x) = vl(r(x»-vg(eﬂx -.w(x>ﬂ) for x e R".

Notice that IH-(x) = O.
m

Let C = {xeR": #(x)eco and Hx—v(x)”_5 g}. Then C

is compact and C N F = ¢g. We note that
cr(uH((0,11))n 7 Hc,) < c.

m

(4) We define hy: R® - R as follows. Let x e R'. If

r(x) e N let h%(x) = X + teu(x).[ {stretching

l}

c®-diffeomorphism with respect to [vl(x),vu(x)]applied

to b - xpl = (D-ten(x) )y + ou(x) x
(- v(x(x)) - 854 L (ryy ot (8(x(x)-§) Dve(0)-51.

If r(x) € Nj, let hi(x)=x . We note that hi is a

Cw- map o

Finally, let ht: R? - R® be defined by

m ) n
ht(x? = (Xl’""xmrl’htﬁx>’xm+l’°"’Xn> for x € R

We compute
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mn

(x) = (1-t* u(x)) + e u(x)@tZEigiii( ?T—Tiﬁj{x -(g(r(x))wn)]) >0

ah

Therefore the rank of the Jacobian of ht is no.

Obviously, \lﬁm Hht(x)ﬂ = c©. By Lemma 1.2, h, 1is a
-0

C®-diffeomorphism. By construction, hy = 1id _,
' R

n(x) =x if x £C, and A" chi(U).

m m-1

Corollary 1.1, Let A7 = vxA n

< R be an arbitrary

m-1

m—simplex, let T be the hyperplane in R spanned

by Am'l, and T" the hyperplane spanned by A%, let

2

p: ™ - ™1 e the projection such that p(v) = b e 12
: A

let A c A" be a closed set such that A = p'l(p(A))ﬂAm,

Al l

let U be an open subset of R™ such that AUv*3A U,

and let F Dbe a closed set. in R such that

FN A c AU v*aAm 1. Then there is a compact set

n

¢ c R%-F and a C®isotopy h: R? - R such that

. . m
h, = 1an, ht(x) =x 1if x £ C, and A < hl(U).
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CHAPTER TWO

 The C -Engulfing Theorem

If a >0, let Cp = {(Xy,...,%,) € B": |x;] < al,

n n
and let Int Cj = {(xl,...,xn} € R': Ixi

| < al.

Definition 2.1. It M is a Cm-n—manifold, a set X cM

is said to be k-dominated if there is a system '{mi} of

Cm—diffeomorphisms mi: C? -~ M such that
'\ | i
(1) X <cu o (mtCp) |
. -1 n .
(2) For each i, o (mi(Cl) N X) c P;, where P, is a

n

k-dimensional subpolyhedron of Cl

The set {@i} is called a Xk-~-dominating system for

X, and each P is called k-dominating coordinate map for X.

Definition 2.2, If M is a C -n-manifold and XK is a

finite simplicial complex, a map f: |K| - M is said to be

locally linearizable if there 1s a system {wi} of (C"-diffe-

omorphisms wi: C? - M such that » -

(1) £(|x]) e U ¥5(Int )
(2) For each i, there is a subdivision ci(K) of KX such

where H., 1s.a subcomplex of

that £ (¢;(cD)) = |mgl, ;

n

1< R™ is linear.

: Hi - C

-1
ci(K}, and ¥ ofllHi
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The set {&i} is called a linearizing system for f.

Note that if f: |K| -~ M is linearizable, then f(|K|) is

k-dominated.

Definition 2.3. If K is a simplicial complex, Y 1is a

topological space, S <Y is a subset, and £, g: |K| » Y

are maps, we say that f and g agree on S if there 1is a

subdivision o(K) of X such that

N(f'l(s),c(K)} - N(g'l(s), o(K)) =W, and £l = sl

It is well known that a topological manifold is an
absolute neighborhood retract, see, for instance, [4], p. 98.
In proving the Cm—engulfing theorem, we shall need the follow-

ing result from homotopy theory:

Lemma 2.1, Let Y .be a metrizable absolute neighborhood

retract with metric d and let ¢ > 0, Then there is &8 > 0

3
such that for every closed subset A of a metric space X and
for all maps f£y,f,: A - Y with d(fl,fg) <8, if f, has
. , : N

has an extension f.: X - Y

an extension @1: X =Y, then ¢ ot

2

A
such that d(%l,fg) < e

Proof': This is Theorem V.3.1 of [1], p. 103.

Theorem 2.1, Let M be a C -n-manifold without boundary,

V an open subset of M such that (M,V) is k-connected,
X <M a closed and Kk-dominated subset such that X-V 1is

compact, k { n-3. Let K be a finite simplicial k-comﬁiex,
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f: |K| = M continuous, L < XK a subcomplex such that fllLl

is a locally linearizable imbedding with linearizing system

Y= {wj} such that each *3 is also a k-dominating coordinate

map for X. Let € > 0. Then there is a map g: |[K| - M, a
compact set C < M, and a ¢®-isotopy ht: M - M such that:

(1) by =idy, hy(x) =x if x € ¢, and hy(V) DX U g(|K]).

(2) eljy) = £l

(3) a(f,g) < ¢ for some fixed metric d on M.

Corollary 2,1, (C*-Engulfing Theorem) If M is a
¢%®-n-manifold without bounddry, v is.an open subset of M
'such that (M,V) is k-connected, X c M is closed and
k-dominated, X;V is compact and vk;g n-3, then there is a

compact set C c M and a C™isotopy h,: M » M such that

h, = idy, h(x) =x if x ¢ C, and hl(v) > X.

Proof: Let K = @ in Theorem 2.1.

Proof of Theorem 2.1, We follow Newman's proof of the

topological engulfing theorem, [10], allowing for differenti-
ability and using the usual method of simplicial collapsing,
instead of collapsing through principal simplices. We divide

the proof into three steps.

For each x € M, we choose a C°-coordinate map

n - . A0
bt C; = M such that x § Mo (Int Cl), and
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(1) if x e f(lLl), by ; b
(2) if x e X-f(|L]), », is a k-dominating coordinate map
for X such that w(C]) N £(|L]) = &

(3) if x £ X u £(|L]), then ux(cﬁ} n(xue(lLl)) = 4.

Step I: Reduction to the case X c V

Let A(m) denote the theorem with the added hypothesis:

U n |
Uu... uxm(Int C;) for some Xq,c..,X, € M.

1)

X-V  p, (Int CF
1

(a) A(l) \implies_ A(m).,

s L £1 < m We use induction on m,
i

Proof: Let “i =
. n m
m> 2. Let X = X-p (Int cl}. Then
Vep(Int U ... Uy Int ¢2), so the hypotheses of
. 1 1 m-1. 172

A(m-1) are satisfied. Thus there is a map g : |K| - M, a

compact set” C, <M, and a c®-isotopy hi': M - M such that

(1) hg =idy, hi(x) =x if x £ C,, and hi(V) >X U g (lx|)

(2) eyljn = £y
(3) d(gm,f) < e/2 : -
1
Now let f! = g V! = hf(V). Then X-V' & p (Int c?),
so A(l) may be applied: there is.a map g: lKI - M, a compact

set C' c M, and a C“-isotopy hi: M - M such that:
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(1) h' = 1id,, hi(x) = x if x £ C', and

e Mo g

ni(vt) > x u g(lx|).
(2) el = £y
(3) a(e,f') < e/2.

Let C=C'UC,, and let h, = hleny. Then

T t ot
(1) hy = iqy, hg(x) = x if x¢c, and hy(V) 2 X u g(lK|).
(2) g'ILI=f'|lL|=gm|lL|=f‘lL('

.(3) d(g:f)\ﬁ d(g:gm) + d(gm:f) <’% +'§ = €.

(b) A(O0) implies A(1).
Proof: Let pw=u4,_, where X-Vcu_  (Int ¢?), Since u
Lfroof: %y X 1 _

is a k-dominating coordinate map for X, u“l(X N u(C?)) c P,
where P 1is a k-dimensional subpolyhedron of C?. If

X, € £f(IL]), 1let F=rU uIP: IK| U P -~ M. Then there is

a subdivision o;(K) of K and a subdivision 02(03) of

2 with a subcomplex H < 02(C§) such that [|H| = P, and

C

= . - n . . - s . .
1 °flcl(L)' cl(L) 02(01) is a simplicial imbedding. If

A € oq(L) and

A, € H are such that f£(4;) = u(s,), identify

Ay and A2, and let K* be the simplicial complex obtained

from o,(K) U H Dy this identification. Let p: oj(K)UH-K*

be the projection. If x, £ £(]Ll), let H bve a simplicial
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- complex in C? such that |H| = P, and let K* = K U H.

Let p: K UH - K* be the identity, and let f = £ U ulp.

~

Let f*: |K*| - M be defined by f = f*.p, and let

L* = p(9 (L) U H), X* = X-p(Int C]

l). Then X* <V, and

f*llL*l is a locally linearizable imbedding, so we may apply

A(O): There is a map g¥*: [K*l - M, a compact set C < M,
and a Cm-isotopy ht: M - M such that:

\,

hy (V) o X* u g*(|x*]).

ht(x) =x if x £ C, and

(2) g*’ IL*I = f“X‘I IL*

(3) a(fx,g*) < e.

Let g = g*opllK

. Then:

(1) ny(V) o x* y g*(|k*|) =
X-u(Int ¢7) U g(1x|) U uw(®) 5 Xy g(!Kl}-
(2) ljpy = ljye t2 x e [Ll, a(x) = g*ep(x) = £op(x)
= f£(x) = £(x).
(3) d(s,f) < e. ' -

Step II: Reduction to the case X c V, and f—l(V) c Int A,

for some A& e K

Let B(2) denote the theorem with the added

hypotheses: X ¢ V and aim N(|K| - £ 3(V),K) < 4, i.e. if
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AeX and f£(Aa) N (M-V) # @, then dim & < ¢.
Let B(4,m) denote B(4) with the added hypothesis:

: f(lK(L_l)l) c V, and there are at most m 4f-simplices

Ai,...,Aé ¢ X such that £(a}) £V, 1 < i <m, and, for each

t-simplex ot e K, if f£(a%) nX # ¢, then £(a¥) c V. wNote

that Af,...,Aé must be principal in K.

(a) B(#,1) dimplies B(4,m) for all m.

Proof: - We use induction on m. Suppose B(4,1) and B(1,m-1)
are true, and the hypotheses of B(¢,m) hold, for some m > 2.
Without loss of generality, we assume that ¢ is so small that

for any e-approximation g: |K| - M to £, if At ek is
an 4-simplex such that g(A&) NX #¢g, then g(a%) cv.

(1) Let X' =k-{af}, L' = L-{af}, £''= £|g1|- By Lemma 2.1,

there is €' > O such that if gt: aa&m - M is an

et-gpproximation to f'IaA&,' then there is an extension
n _

A A
g: 0% =M of g' such that d(f],%g) <. Now

aim N(|K'] - (£1)"H(V),K') < ¢, f'(l(K'Q(&'l)l) c v,

and there at most (m-1) 4-simplices Af3'°‘5Aé—1 € K!

m-1, so the hypotheses of

such that £1(af) gV, 1<1

BE VAN

B(4,m-1) are satisfied. Thus there is a map _g':.lK'{ - M,
a compact set C' « M, and a C"-isotopy hi: M - M -such

that:



(2)
(3)

if‘A;geL, fIAIﬁ:fIA&; if A;g;e’L,.let £l bve an -

approximation to flag which extends g'lsA&.

(11)

(1)

(2)

(3)

(2)
(3)

h! = idy,

hi(V} > XU g’(IK").

L4

g'lle} = f,llL'

d(f',g') < e'.

hé(x) =x if x e C', and

22,

Let f: |K| ~M be defined as follows: fligi = &'

m

ol e

m

Let V= nl(V). Now dim N(|K| - ¥H¥),K) < 2,

?(IK(L'l)l) c %, and there is only one  {-simplex,

At

in K such that f(AY) ¢ V. Thus the hypotheses of

compact set E <M, and a Cm-isotopy H

h, = idy, ht(x) = x if

~

h (V) 2 X U g(lx])..
el iy = g

a(%,8) < 3

Let C=C'uUC, hy

hy = ddy, ht(x) = x if

hl(v) S XU g IKI)‘.

eljny = flhgy

a(f,g) < e.

X

~

£ C, and
ﬁtoh%.' Then
£ C, and

t

'B(¢,1) are satisfied, so there is a map g: |K|'-» M, a

c: M =+ M such that:
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(v) B(2-1) and B(4,m), for all m, .imply B(1).
Préof: Suppose B(2-1) and.B(4,m), for all m, are true,
and the hypotheses of B(L) are sétisfied. Let Oo{K) be
a subdivision of K so fine that if A% ¢ o(K) is an

t~-simplex such that f(A&) NX #¢, then f(A&) c V. Let

KO

{A e o(K): £(8) < V3, Ks =K, U (G(K))(&-l?,

li

. . | lyn
L o(L) ngl, f£'= fl‘Kél° Then dim N(|K| - (f*) (V),K¢)

L 2-1. Let, e' >0 Dbe such that any e¢'-approximation

gt lKéI u ol - M to fIIKé} oL, | can be extended to an

%—approximation g: K| =M to f. The hypothéses.of B(4-1)

are satisfied, so there is a map g": lKél ~ M, a compact set

C! < M, and a C -isotopy h%: M - M such that:

(1) hl = idy, h%(x) =x if .x £ C', and

hi(v) DX Uy g”(]Ké]).

(2) g”'IL(')I = f'||Lgl°

(3) a(£',g") < et. : | .
Let Ag': k!l u |L] - M ve defined by

g'lig) = 8" &'l = fljg), end let f: |K| M be an
(@) . ‘ .

extension of g! such that d(T,f) <5, and if A e o(K)-K],

then £(A) NX=¢. Let V= hi(V).
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For some m, the hypotheses of B(4,m) are

4
satisfied, so there is a map g: lKi - M, a compact set

E c M, and a Calisotopy h,: M - M such that

t:
(1) hg = idy, Ht(x) =x if x € C, and
hl(V) > X U g(lKI)"

=’£: .
(2) &l ‘ILI
(3) a(s,f) < =
Let C=CuUC', h_=h_oh
N\

(1) n_=id

° e ht(x) =x if x £ C, and

n, (V) > X U g(lx]).

o

(3) a(e,f) < 4(g,f) + a(T,£) <5+ 5 = e

Step III: Proof of B(4,1)

In view of Step II, we need only show that B(4-1)
implies B(4,1), 2 £ k, since this proves B(k), and hence
the theorem. Thus We may assume:

(1) Xcv. = | -

£

(2) there is an 4-simplex AV € K such that

K]-£"H(V) < mt(sh).
(3) £(a%) nx=g.
(%) B(4~-1) 1is true.

Let G =K U V*AL, where vt = A%l ig an

(¢+1)-simplex not in K. since (M,V) is k-connected, there:
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A | A
is a map f: |Gl = M such that flIKI = f, and

A 4 2 L
£(v¥3s”) € V. Let H = (K-{A°}) U v¥3r”. Then

: A PR 3
G=HUwa*Y, XU £(|H]) cVv, and X n £(|L n vea*]) =

There are points Kyseeo, Xy €M such that

*N

,?+l)

! n ‘ n L _
f(A c uxl(Iﬂt C;) U «vo Uny (Int Cy)e Let w, =

*w

w2
1

2+1

§uppose f(A ) uxl(Int Cg_l)° Let u =y, .

1

There is a number o such that 0 < a < 1 and

A _ .

£(o") < u(ms ).

(1) xXn u(C?) c u(P), where P. is a k-dimensional sub-

polyhedron of Cn

1+ There is a subdivision o,(G) of G

and a simplicial'complex R lying in C? such that

Ir] = >, (fIILI)—l(u(R)) is a subcomplex of _GO(G) and
ofl(fll l)— (u(R)) <f|lLl) (u(R)) - R is Slmp11Clal.

If A € gO(L), A, € R are such that f(Al) = u(Ag},_

2

identify Al and A2 and let G* be the simplicial complex

obtained from oO(G) Q R by this identifica@iono Let
UO(G) UR o G* be the projection, let

L* = p(o (L) UR), and let f*: [G*| - M -Dbe defined by

fxop = £ U ulp. (If £(l1o,(L)]) N w(P) = ¢ then
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G* = 0,(G) U R).

(ii) By Theorem 4 of [10], there is a map f**: |G*| - M such

that:
(1) f£** and £* agree on M-p(Int Cg)e
(2) g—lof**: lax| - C? ‘agrees with a PL-optimal map in Cg.

(3) f**llL%l = f*ilL*

£

(4) f£x*ep(|H|) €V, and a(fx,f#*) < 5

~(D

Let f!' = f**opllG!: |G| = M. Then:

A .
(1) £' and £ agree on M-pu(Int Cg).

(2) u—lof' agrees with a Pl-optimal map in Cg which is
"in general position" with respect to P N Cg.

A
)£l = 2l = gy

(4) £1(lH]) ¢ v, and a(f',f) < =3

(ii1) Let o0,(G) De a subdivision of o (G) such that

e (o)), oy(e)) F HETHM(E), oy (@) = 0

is optimal and "in general position” with respect to

P N cg in Int c?, and such that oy(G) " oq(H):

there is a sequence {E&+l}s of (4 + 1l)-complexes
' 1,1 i=0 :
n,
such that EYR = g g8t = o (a0, B8 <P g T,
R 1,i+1 1,1 X

1,0 1,s



n, n.-1
&+l) n a, i _ %, %30, i ,

i
A = X; %0, >, and  (oy(H) U El .
s L

(iv) Induction Hypothesis: There is a map g,: el - M, =

t: M -M such

compact set Ci c M, and a c¥-isotopy hi
) . >

that

(1) ny 5 = 1dy, hi,t(x) =x if x £ C;, and

3

,1 . v

hy 1(1) 2 X U gy (loy(m) U (7M.

.'\.

() &ilyo (1) v m(erL(u(e®), op(@))|

= ! -1 :
Hoy(r) v m(e (), oy(e))].
(3) d(eg,71) < H1-27H).
This is clearly true if i = 0.

(v) Induction Step: We have n; < ¢+1 for >i.5 s-1.

Thus W (£r(a, 1) 0 (X U £1(Joy (1) U (oy(s¥ (M 1)))

o Alzi)_ﬂ u(P)) u u_l(f'(A?i)' n £ Icrl.(H)U(cl( A“l))(_*')l)) =

n. '
u‘lof'(ai o (o7(H) U (oy( A“l))(“) UQ, where Q; is

. n,
a subpolyhedron of u—lof“(Ai l) such that

dim Q; < (4+1) + k-n < 2-2.

n, n, n.-1 n,-1
Consider now A & = u"lof’(Ai By, st u—l

it



28.

n.-
and v = u_lof'(xi), let T * be the plane in R
ni-l : ng : " n
determined by By , let T be the plane in R
n, n; ni—l
determined by A ~, and let w7: T - T be the projection

‘ n,

with w(v) =D n -1+ Let A; = A + ﬂwfl(w(Qi)), a subpolyhedron
n, '

of A of dimension £ ¢-1. Let

P, = (f')'l(H(Ai)) = gi'l(u(Ai)), D, = Icl(H) U (B

.]'

1,1

and let Dia = Dy N (f’)'—l(u(cg))a Then 'Dg is a polyhedral

subset of |G

(vi) We now show that there is a continuous map 85478 |G| - M,
a compact set C*¥ ¢ M, and a c”-isotopy hé: M - M such
that

(1) hg = id ’h%(x) =x if x € C*

Mo and

n(hy 1(V)) =X U g54,(D;)
() g linly meert(u(e)), oy ()] =
=y e (R, o (@) |

€ .
(3) d(e;,8547) < e

Proof:  There is a subdivision o,(G) of 4;(G) such that

. a .
gg(Di) and ce(Di) are subcomplexes of 02(G>, and
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' f'lD.a: cz(Dia) - C? is a simplicial map onto a simplicial
i :

complex in cg.‘ Identify o, and b, if A, 8, € B(oy(D;"))
‘and f'(b,) = £'(b,), and let K* De the simplicial complex
obtained from B(o,(D;)) Dy this identification. Let

p: B(oy(Dy)) ~ K¥ be the projection, let f*: |K¥| - M be
defined by £f*ep = gi, and let

L* = p(B(o,(L) N ox(D;) U GQ(Dg))). ‘Then f*llL*I is a -

locally linearizable imbedding. Let V* = h, l(V).

The hypotheses of B(4-1) are satisfied by

K*

, L*, £%, X and V¥ since N(|K*| - (£%)7H(v*),K¥) c Py,

>

and dim P, < 4-1. Thus there is a map g*x: |K*| - M, a

compact set C*¥ ¢ M, and a Cm—isotopy h%: M - M such that:

(1) h¥ = id

Mo h¥(x) = x if x £ C*, and

n§(V*) o X U g*('IK*I).
(2) &*ljpe) = I px)-

(3) d(g*,f*) <_E§¢§. -

Let g.

141t G| - M ve defined by gi+l||Di| = g¥ep,

and gi+1|A&+1 =g.| A4l = f‘iA&+1. Then

iIA
gi+1||L|UZ!N(f'"l(u(cg));ol(G)| -

=)y e u(eR)), oy (@)) [+ 2
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X U g, (Dy) =X UAg*(lK*l) < hx(hy 4(V)).

(vii) Let U = u'l(hiohi,l(V) N u(Int C})), and let

=AU X U e (logm) u (88 ). Then
n, ni—l ni—l

FnAl=Aiuv*aA and A, U v¥38 c U, so

2

we may apply Corollary l.l. There is a compact set

CcR-F and a C®isotopy hi: R* - R" such that
n

. ' . i
h(l) =\\1an, h_l';(x) =x if x £ C, and hi(U) -~ A .

o)

o) UGy UC* andlet hg:M oM

Let C,,.; = w(C
- _ -1 | ‘ -
be defined by htlu(C?) = pohlenw™™, and ht’Meu(Cg)'

Let h,

141, = Pgo(bfen; ¢). Then

-p(cg)”

(1) h = id, h

i+1,0 w Digp (%) =x if x £ c, and -

i+12

I.
1
hip1,1(V) 2 XU g5, (lop(D)] U e ) 5

XU gy (log(m) v (854 (&),

(2) e liLfu (e u(d®), o(e))| =

oty IN(f"l(g(cg)), 01(8)).

_€
i+2

(3) aleg;4y,1") < a(854758;) + dgy, 1Y) <3

+ 51 - 2‘i) = £(1 - o= (3+1)y,
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Thus we have completed the induction step.
(viii) Let g =gl g

: |K] =M, h,=nh C = C,. Then

3
s,t

(1) h,=1idy,, h(x)=x if x £ C, and

n (V) = b 1(V) 5% U gg(loy(1) U (57D ) 5 xu sl i)

(2) | gIlLI = gsllLl = f'IILI =.f||L
(3) d(g,f) < d(e,f') + d(£1,£) <51 - 275) + £ < ..
S 5 5
Thus Case A is proved.
\ |
Case B

For some N, Q(AL+1) c ul(Int Cg) U.;fU uN(Int CI]?)°
(i) There is a number o such that 0 < a < 1 and-
Q(A@*l) c uy(Int CO) U v.. U uN(In£ cq)-
Let o07(G) Dbe a subdivision of G such that for each ‘

L€ cl(AL+l), there is an-integer Jj(A) such that

Q(A) c uj(A)(Int Cg), and ol(G)‘ﬁcuKH): there is a

sequence {EL+1}S ~ of (4+l)-complexes such that -
1,1 i=0 .
: n.

gl = g, gttl =ngl(AL+1), ¥t = Yy a1, wnere
1,0 1,s 7 T1,i41 0 1,4

n. n.¥l | n, on.-1

1 i 4+1 i _ \ A A

by T o= Xy RAg , and (ol(H) UEYT) N4 T o= x, %34

1,i-

1<1ig s-1.
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(i1) Let &' > O be so small that if g: |G| - M is an
' A
¢'-approximation to f, then g(a) < uj(A)(Int CE), for

4+1 ) 1+1 )

all A e gl(A , and, for any subcomplex Q of ap( 0 s

A
‘any e'-approximation g: |Q] = M to fllQl may be

A
extended to an Eg-approximation to f.
2

(iii) Induction Hypothesis: There is a map g lg] - M, a
compact set C; €M, and a c®-isotopy fhi g3 M =M such
. ' s ) .

that:

(1} hi’o = idy, hi,t(x) =x if x £ ¢C,, an?'

g 3() XU g (loy(m) u (57 (H)).

1,1

(@) el =l

: A : .
(3) de;,f) < e(1-277). . -

(iv) Induction Step: We reduce Case B to Case A:

Let V' =h; 1(V), H' = oy(H) U (et (),

1,1
ni-l n,
1 = TR = K1 | I -
K' = H' U Ai , G' =K'y T, f's= 5i|lG'l’,
' ny ni-l
L' = g;(L) N'G'. Then H' N A ~ = x*34, .

Xy £ (lH]) ¢ v', and

n. ' ' '
xne(lnr s f) exne(lnna®l) =g, so the

hypotheses of Case A are satisfied. Thus there is a map



(1)

(2)
)

(1)

(2)
(3)

(1)

(2)
(3)

) A
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g': |G'] =M, a compact set C' c M, and a C°-isotopy

hi: M - M such that S

h! = id,, h!(x) =x if x £ C', and

o = idy hg(x)
X ue'(IK']) eni(v)..

e lpe) = £ gy

a(f',g') < e'.

Let g;. .4 |G|_~ M be defined by & ,4ligi| = &',

A

- (i1
. gi+lllL| = fIILI, and d(gi+1,f) { e(lf2 (1 )}.

h}! eh

Let h. ieh,

itl,t C

£ G441 = C' U Cy. Then:

2

i+1,0 = My Dyyg () =x 1f x £C;py, and

X0 gy (loy(m) u (227 (D)) < XU g (IK D) € hypy 5(V).

~

gi41l)n] = £ljp)-

| A ~(i+1
d(gi+l,f) § e(1-2 ( ?).
This completes the induction.
Let g = 8, C=0Cg, hg= hs,t’ Then i
hy = idy, ht(x) =x if x ; ¢, and

X0 s(x) @ X U g {loy() v (D)) myw).

eljn) = fle
a(g,f) < e.

This proves Case B, and hence B(1,1). Q.E.D.
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. We note that Corollary 2.1 holds for k = O with

no restriction on n.
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CHAPTER THREE

A C”-Stretching Diffeomorphism

Let M= f%a' cR® c R, where m=k + 4 + 1 < n.

We let EL {(o cees0,X 15000, X 0 ,,1) € BT}, “and let L cR"

denote the X -8xis. We assume that K" is situated in R™

‘such that 8% c R, atcE', b, =0, and b, = (0,...,0 ,l)eL.

3

A A

m m-1

Let m: R® »R™, p: R®™ »R™%, and q: R® - L be the ortho-

]

gonal‘projébtiqﬁg and let r = per and s = Q.

" For )\ € R, let Hom(x) {(xl,..., m) e R™: X, >\,

and let H™(A) = {(xq5000,%x) € Rm: X, 2 ).

Lemma 3.1. Let U cR® be an open set and let ¢ > 0 be

such that 34" c U U H "(1-2¢). Let F be a closed set in R" .

e

such that F hﬁAm c 3A™. Then there is a compact set C c R® - F

and a C%isotopy h,: R* - R® such that:

to

(1) h_ = id

o a0’ ht(x) =x if x £ C, and

m m
A" c hl(U) U H, (;—2e).
(2) If T is any linear subspace of R™ which contains Am,

then h. (T) =T for all t e I.
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Proof: Step A: We first construct a "horizontal C"—stretching

diffeomorphism” hf: R® = R™. If m=1, 1let hi = id . We
R

assume that m > 2 for the rest of Step A and further that

l- 2¢ > 0.

(1) Let ¢, >0 be such that 4" n (R™ - H)(2¢,)) € U. If

5 >0, let B’g'l = {x e R : x| < 6}. We choose a

. m -1 -1
fixed 6 > 0 such that if DJ = p “(BY ) n (H"(e,)-Ho(1-¢)),

then DJ < Int A", Let D™ =p }(BI™1) n (H™(2¢,) -H(1-2¢))

m

<:D0

See Figure 5. Finally, let

L

frexofl = 9tx)-¢
Hreadi = gexr-de

FIGURE 5
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C = min{dist(2a™ - HI(1-2¢),R” - U), daist(D],24™)} > o.

n

We wish to construct a C"-isotopy hi: R n

- R and

a compact set C c R™ - F such that:

(1) ny = 1d_ns hi(x) =x if x e C, and

( A"-D™) U C1(3D"™-H"(1-2¢)) « hi(U) U HJ(1-2¢).

1 1

(2) hi'_‘(x) - x e B! for all x e RT and all ¢ e I.

A1, .m
(2) Consider the continuous map g: 7 l(Ho(O) - H"(1) - L) =R

A
defined by g(x) = ||f(x) - s(x)|l, where £(x) is the
point of 3A" 1ying on the ray from s(x) through w(x).
A A ‘
Note that g(x) = g(s(x) + Aer(x)) for all X > 0 and all

X € W*l(HI(;‘(o) - H(1) - L). We construct a C”™-c-approxi-

A -
mation to g| _

" H(H(e,) - HI(1-¢) - L)

with the same

property as follows:

Consider
™2l ey 1-0] = pi({x € R™L: [kl = 1})n(H"(e,)-H(1¢ ),

M- 2)([

:S eo,l-e]'eo R. Let

A
and gl _ :
' sh 2><[e:o,l--e:]

g Sm—2

x[eé,l—e] - R be 'a C"c-approximation to

A
&l m-2

. Let g(x) = E(s(x) + q2dy) for all
S x[eo,l-e , L . rx. -

x e T (e ) - HY(1-¢) - L).
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Now we may construct a "horizontal stretching interval

for each X € w’l(Hm(eo) - H?(l - €¢) - L). Let

() = a(x) + (6x) - )iy

uy(x) = s(x) + (g(x) - 2c)- ; i s

uz(x) = s(x) + 6'ﬂ§%§%ﬂ’

u,(x) =

|
1)
3
+
r\)!o»
iR
. N x .

The stretching interval will be [ui(x),u,(x)] and by
"stretching" we will map [ul(x),ug(x)] onto [ul(x),uB(x)].

A
The length of [u,(x),w(x)] 1is v(x) = g(x)-cmgzg(x)_gc-%'z

> (c+8) - 2¢ - 5 = 2 + 5 > 0, Notice that

[ul(x2,u2(x)] cU if x € Hm(eeo) - Hg(172e) - L, since

dist(ue(x),aAm - H‘;‘(lfee)) 5 ) {ﬂlf(x) - ue(x)\\ _5 3c.

To apply Lemma 1.1, we map the interval [ul(x),u4(x)j

linearly onto the interval [0,1] by a transformation

such that .gi(x) is mapped onto O and uy(x) 1is mapped

() -y () |
I, (o (T 1 -

onto 1. Then u2(x) is ‘mapped onto a(x) =

() -y () |
T GEI=y (7

;-?%iyfand ‘ug(x) is mapped onto B(x) =

¥(x)-3

ETCIR Of course a(x) < B(x).
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(4) Before defining hi, we must construct a ¢*-function .

v: R°

- R with the proper support.
Let Py ? R ~-R be a C™function such that
0 < pp(t) £1 for all t e R, p2(t) =1 if

26, < 5 < 1-2¢, and p,(t) =0 if t e , or t > l-e.

Let C, {er (e, ) H (1-e) Lt Hp(x)H g(x) c} U
(L n (Hm(‘eo) - H‘o“(l-e))). Then co c Int &%, ILet

n = dist(C,,F U 34").

Let py: R =R De a C®-function such that
0 < py(t) <1 forall teR, py(t) =1 if t <0, and
po(t) =0 if > m. "

Let o(x) ==pl(s(x3yp2(2Hx-v(x)H) for x e R, Leﬁ

= Cl(m'l((o,l])) n w’l(Cl(Cé)). Then C is compact,

c.ccC

° , and C NF =g. Note that @(x) does not depend

on

(5) If x e w’l(Hm(eo) - HY1-¢) - L), we let h'(x) )
x + tep(x). [{stretching diffeomorphism Wlth respect to

the inter&al [ui(x) uu(x)] applied to k}fx] =

X + te w(x?t 5(X) ”P‘ 1(szy‘“r(x)”(uusx?:gl(x}>+(v(x?-ul(x))],

: a(x)

otherwise, we let h'(x) = X.
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Obviously, lim ‘Hht(x)ﬂ ©, so to apply Lemma 1,2,
I [0 | :

we need only show that the Jacobian matrix of hé is always

non-singular. By the definition of hf, if Ur(x)H.S-g, then

hi(x) = x, that is, h{ is the identity on a neighborhood of
wrl(L). Thus we need only show that h!] has a non-
t [Rn_'n_-l(L) ]

singular Jacobian matrix.

We perform a coordinate transformation. We define a

¢®-diffeomorphism
N

e: R” - w’l(L) —-R+xsm’2x(Rm’l) L

[

where R, = {t € R: t >0}, "2 = (x ¢ R} |ix|| = 1}, ana |
denotes the orthogonal complement, as follows: if X € Rn-w’l(L),

let e(x) (Hr(x)”, ﬂ—%—%n , X - r(x)). Consider

- -2 ., m-1 m-2_, om-1
H, = ee(h. |  _ Yoe™*: R, xS™ (R ~) ~ R, xS “x(R ~)L.
t ; t Rn_.,n_ l(L) _ + o -+ v

Let ¢ : R, »R, for (u,y) e s™ 2x(R™ 1)L,

t,(u,y)" T+ +
and t ¢ I, be defined by ft,(u y)(w) = Hr(h (e” (w,u,y5>1n.

. -1

-1(Hm( €o) - H-gl(l‘e> - L), then ft (u y_)(W) =

w-t s9( e~ L, w, ) ) [ 6BCT (W U,y )<g(e “’ u,y))eesuy (- 1(w 5,9))-
o oafe” (w,u y)) Y(e™ (w u y)) .
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g(e'l(w u,y)) + ¢ + w)], otherwise f (w) = w.
) 2 ? .. 2 t,(u,y) . .

We must show that the differential of Ht is every-

where nonsingular. To prove this we have only to show that

and all

Ay (u,y) (W)

m-2 m— 1
dw ( )'L,

>0 for all (w,u y) € B+xS
teI. If e l(w u, y) d (Hm(e ) H?(l—e) - L), then

afy (u,y) (W)
dw

= 1. Suppose e M(w,u,y) e 7 H(H"(e,)-H(1-¢)-L).
First we note that g(e"l(w,u,y)) does not depend on w by

the construction of g. Hence a(e” (w u, y)) B(e (w u y))

and Y(e—l(w,u,y)) do not depend on Ww. Further de (z) >0
: . z

for all z € R. We. differentiate:

af

£, (u,y) (W) e 1temf a1 r\B(e Lw,u,y)) ale l(w u,y))-c-w
dw 1-teole (w,u,y)) a(e (w u, y)) y(e” (w u, y)) )

+ 1] > 0.

Thus the rank of the Jacobian matrix of h! is n

5

so by 'Lemma 1.2, h! 1is a C“Ldiffeomorphiém. It satisfies
_ s t

the required properties (1) and (2).

Step B: Next we construct a "vertical -C'-stretching diffeo-

morphism" hg: R® -~ R® such that.

(1) nj = ian, hi(x) =x if x £ C, and
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8" < nJ(ni(U)) U Hy(1-2¢).

(2) hi(x) - x €L for all xe R® and all t ¢ I.

(1) since CL(3D™-H"(1-2¢)) < hi(U), we may let

da = aist(R" - ni(U), c1(aD™ - H™(1-2¢))) > O.
(If m=1, let DY = aD% = L n (8%(2¢ ) - H-(1-2¢))) and
s 1% o
pt'= 1 n (Hl (e) - Hl(l-e )) If m > 2, we assume
O O O O... - ?

that d < 8. We notice that a" - H (2e¢,) < hi(U) by the
construction of h!. Let v = (0,...,0,1) ¢ L.
For each x € R® we define a "vertical stretching

interval®. TLet ) ,

vl(x) = r(x) + e v,

i

vo(x) = r(x) + 2¢,-v,

v3(x) r(x) + (1-2¢)ev,

v4(x) = r(x) + (1-¢)-v.

The "stretching interval" will be [vl(x),vu(x)],_‘
and by "stretching" we will map [vl(x),v2(x)] onto
ivl(x),VB(x)]. The interval [vl(x}5v4(x?] #as length

y = l-e-¢,. To apply Lemma 1.1, we map the interval

[vl(x),vu(x)] linearly onto [0,1] such that-.vl(x)
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" is mapped onto 0 and vu(x) is mapped onto l. Then ve(x)

€
O

K
We note that a < B. See Figure 6.

is mapped onto a = and vj(x) is mepped onto B = X=E,

Y

L
L ¢m”l
4
iy
1’99 /I}N
— 7'”9 Y
s =
‘ ! npwib o
\ /’ o
. lpwois§-d . |
[w" } d— t‘
N
et
e
4

FIGURE 6

(2) Before defining hg we must construct a C“quhction

¥: R® = R with the proper support.

If m= 1, let n = dist(Dé,F). If m > 2, note
m . m .
that D, = C,, and hence dlst(Do,F).s d;st(Co,F) = M.

Let X\ : R ~R bYea c®~function such that 0 < M(E) €1

for all t e R, M(t) =1 if t <0 and N(t) =0 if



3,

il

t>n If m=1, let (x) = r(2x-m(x)|), and let

¢ =7 HDn,) ncr(yt((0,11)).

If m>2, let A\t R -R Dea C®-function such
that o.g xa(t).g 1 for all t ¢ R, xg(t) =1 if
t < 6-d, and (%) =0 if t > 6. Let ¥(x) =

xl(2Hx—v(x)H)ox2(Hr(x)H) for ali x € R%  Note that

Eﬂ—(x) = 0, and

c1(¢"1((0,11)) 0w i(#EYe ) - HY(1-¢)) <.

3) Let x € R®. Similarly as in Step A, we define
3

hiM™(x)=x, + t‘W(X)[Y°eg(—E7—9) + e, - x,1,- and then

hy(x) = (xl,...,xm._l,hgm(-x),xmr’_l,..a,xn)° We compute

4

any™ 3hM(x)
;;E—(x): t
X _ X,

= (1-tey(x)) + t;w(x)e'a(fm:ig) >0
m - ey .

Hence the rank of the Jacobian matrix of hy is n, and

N ys

again 1lim th(x)H = ®. By Lemma 1.2, hg: R® ~ R
% || =0

a C“Ldiffeomorphism onto R™ which satisfies properties

(1) and (2) vy construction.

Combining Step A and Step B, we let h, = hieh{. Then

hy(x) - x e R" for all x e R", so h,(T) =T if T is

a linear subspace of R" which contains A" Q.E.D.
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m K, .1

Ir M = A**AY ¢ R® is an arbitrary' m-simplex in

n

R, 1let E(Am) be the m-dimensional plane determined by Am,

let E(AK,A&) be an (m-1)-dimensional plane in E(A"™)

parallel to the planes E(AY) and E(A!) determined by the

X £

simplices & and A% respectively, and with E(4&F,at) n

mta™ # g, Let HY( A", 4%) be the component or E(A") - E(4F, %)

which contains A%.

Corollary 3.1. Ir A= AK*AL is an arbitrary m-simplex
‘\ . R . .

in R®, U is an open set in' R" such that a4" < U U H (2™, 8%),
. I » m m.
and F 1is a closed subset of R° such that F N A" < 34,

then there is a compact set C c R® - F, and a C™-isotopy

hy: R® - R® such that:

(1) h_ = id h,(x) =x if x £.C, and

n,
© R

m m, m 4
A" < hy(U) U H (87, 48%).

n

(2) If T <R is a hyperplane containing A", then

n(T) =T for all t e I.

Theorem 3.1. Let X be a simplicial complex in Rn, L a

full finite subcomplex of K, and L° = {AcK: A NL =@} the

subcomplex complementary to L. Let U and V be open sets

in R® such that |L| cU and |L°] ¢ V. Let F cR" be a

closed set such that F n |K| < |L] U |1®]. Then there is a
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n

compact set C cR® - F and a C>-isotopy hti R n

- R such

that:

(1) h = ian,' ht(x) =x if x £ C, and |K| chl(U) U V

2) h,(A) = A for all AeK and t e I.
t< .

Proof': If AeK- (LU Lc), then A = &K*AL where AK €L

and AY € L°. For each principlal simplex A € K - (L uL®)

L

let H?(A,A ) Dbe chosen so that A N H?(A,A&) c V. .If

b€ K- (L\U L) is not a principal simplex, then let

Hm( a, oty = n Ho( 3,8%)
b is a pr1nc1pal 81mplex in K-(LUL ) with A<A .

Let B =7F U |L] U |L].

Induction Hypothesis: There is a C -1sotopy h? l R® - R®
and a compact set C cR® - F' such that

m-1 _ . m-1 » ' -
(1) hy ~=41d o, h,"(x) =x if x € C _;, and for all

R

pe k(™) _ogy18), C‘hrf'l(U) U H( A, %y,
(2) h{é”l(A) = A forall . AeK and t e I. -

This is clearly true for m = 1(h) = id _ for all t e I).
| : R -

m

Induction Step: Let there be k= m-simplices Al%"'?gzm € .

k(™) _ (1 U 1®). First note that if A' is a face of 4, then
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(a1, 80%) € HY(8;0%). Hemce 4] c n}"(u) u HO( 853 64)

for 1< J & ky. Let Fy =F' U [feK: &N IntA? = 3,

] . Th . N A% = AT,
l.ﬁJSkm Then FJ AJ 5

" For each J, J-= l,ee., k we apply Corollary 3.1

m.’

with 0 = A?*A?, where A? ¢ L, 6} eL®, F, is the closed

subset, hlf'l(U) is the open subset, and with respect to

n

ng( A?, A‘?). There are isotopies h™29J: R n

- R"” and compact

t

. N B
subsets Cm,,j Cc R - FJ. such that:

m, j . mn, J . |
(1) -ho:J = 1an, ht:J(}Q =x if x £ Cm,,j’ a.nd

o m my,Jj,, m-1 m, Q4 ._‘
Ay < hy? (hy (U)) U Ho(Aj,Aj), J=1,000,k 0

(2) If Tc R® is a hyperplane containing Arg, then

n29(T) =T for all t e I.

We conclude that hp*J(4) = & for all 4 e K and
o &

j'e .
m _ >Tm m,1 . m-1 .
t e I Let hy=h. Mo enp> o™ and Cpo=Cp g UCyq U
e 00 U Cm,km. Then
(1) nl =id ., bi(x) =x if x € Cy, and for all

‘A'e-K(m? - (L U L®), acni(u) U H?(A,A*);

(2) ni(a) =a if AeK and t e I.

If dim K =k, let h, = h'

£ £ and C = C}c' Q.E.p.
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CHAPTER FOUR

Open Cylinders

Theorem 4.1, Let Ml and,M2 be compact connected Cc®-manifolds

and let f: Mjx R~ Mx R Dbe a C®-diffeomorphism such that

M2x{0} c f(MfE{). Then, for any number p > O, there is a

A

c*-diffeomorphism f of MXR onto sz[R such that

A _
flMlx[-p,p] = flMlx[-p,p]° Further, if f(Mix(-op,p)) =

MoX( = 0 i that £ =T .
SX(-00, ]{ we may require tha IMlx(-oo,p] IMlx(-OO,p]

Proof: Qur proof is similar to that used by K. W. Kwun in [5].

(1) There are positive numbers a and b, with a > p, such

that Myx[-b,b] < £(M;x(-a,a)). Without loss of generality,
we may assume that f£(M;x(a+l,00)) N M2x(-oo,b) =g
(otherwise f is replaced by its reflection). ' Let g,

be a C“Ldiffeomorphism of MlXB onto itseif_such that

d

golMlX(R—(—a,a+l)) = 1idy X(R-(-a,a+1))’ and

1
fogb(Mlx(—oo,a]>C:ng(-oo,b). Let f, = fog . Then

| fl(Mlx(-oo,a]) c M2x(-oo,b) and

Mex;-b,b] c fl(Mlx(-oo,a+1)). g

o and all other

¢*-diffeomorphisms used in this proof may be constructed

by using Lémma 1.1,



(2)

K
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Suppose we have constructed a sequence fl’“”fk of

¢®~-diffeomorphisms of MxR into MR such that

£, (My x(-00,a+i-1)) € Myx(-co,b+i-1),
Myx[-b,0+i-1] < £ (M x(-00,8+1)), and

filMlX("(D,a.'i-i-g] = fi-llMlX(—OO,a-l-i-Q]’ i Z 2. Let

h, be a Cm-diffeomorphism of M. XR onto itself such

2
that Iy |y x(-00, b#k=1] T T x(-00  bHe-1]>  #P
hy e k(-I*‘{le(-oo,a,-i-k)) DMex[-b,b+k]. Let g  be a
Cm-diffeomorphism of M1><1R onto itself such that

gk‘Mlx(R-(a+k-1,a+k+1)) = 1y (B-(atk-1,a4k+1)) 209

by e kegK(Mlx{a+k})C Myx(b+k-1, b+k) Let -f) 5 = hy of) g .

Let" f = lim f;. Then M,x(-b,®) < %(Mlxa). Note that
1 e : N : .
Mlx(-oo atl] = °g0°gllM x(-00,a+1]° Hence

-1 -1 = '
hl ofogo Igl°go(Mlx("OO,a'+lJ) flglogO(MlX(-m 2 8.+l]).

Note that gqeg,(M;x(-00,a+l)) o M;x(-c0,a]. Let

“1x -1 -1 | »
¥ = h of o ° . h * =
1 f g, go .T en f IMlX(—p,p) fIMl)((-p, 0)?

and

Myx(-b,00) < £*(M;xR). If £(My x(=,p)) > Myx(-0,0],
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£(x), xeMyx(-,p)
A . .
let f(x) =
£*(x), xeMlx(-p,od).
If f(Mlx(-oo,p)) ifng(—oo,O],‘ f* may be extended in a
manner symmetrical to thé methods of (2) to obtain the

A .
required f. Q.E.D. '

‘Lemma 4.1. There is a C°-diffeomorphism h of [0,1]1x(0,1)

onto (-1,17x[0,1) - [0,1]x{0} which leaves a neighborhood
of {1}x(o,;) fixed.

Proof: Let £: [-1,0] = [0,1] be a C*-function such that
: : : ‘ ar
f|(_1’o) is a C%-imbedding, f(-l) = 1, f(o) =0, (x) <o

and f(x) < -x for -1 < x < O. See Figure 7. We move

{0}x(0,1) onto the graph of fl(-l 0) by means of a horizontal
. i L)
stretching diffeomorphism hl' The obvious linear transformation

which carries % onto O and -1 onto 1 carries O onto

-1
= % and carries f'l(y) onto B(y) = é:ﬁz_tll for all
’ 2

y e (0,1). If (x,y) e [0,1]x(0,1), 1let
ny(xy) = (3 - 3 50(-5(x-3)),v).  Then

n (10,11%(0,1)) = {(x,¥): £ X(y) <x <1, 0 <y < 1.

Ny 'meil_ o , i
._F,'[_—l;o'l) [a,ﬂ ,{’& . )
: FIGURE 7

.

v

¢1,0 : g ¥
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Next we construct a vertical C*-stretching diffeo-

morphism h2

which carries hl([o,l]x(O,l)) onto

(-1,17x[0,1) - [0,11x(0) by moving the graph of f|(_l 0)
) 3

onto (-1,0)x{0}. The obvious linear transformation which

carries -x onto O and -% onto 1l carries £(x) onto

a(x) = f%?%iﬂ and carries O onto B(x) = ——T , for x < 0.

Clearly, a(x) < B(x), since f(x) > 0. If (x,y)ehi([o,l]x(o,l)),
and x € 0, let ée(x,y) =}(x,(x—%>ezgigg%§%)-x?f Ifn_
;(x,y)é{o,l]x(o,l), let hy(x,y) = (x;y). Then hzlhl([o,;]k(o,l)) is

4_0@, and is a dlffeomorphlsm 51nce-——«x %)eag )(Y+X)-x) =

)\ x=%
(x %)e'B (L) L l >0 £
- .——% or all x <0 and all y € R. Further,

hgohl([o,l]x(o,l)) = (-1,1]x[o,1) - [O,l]x{O};

Let h = h,ehy. | ~ QE.D.

1

Corollary %¥.1. Let M; and M, be compact C®-manifolds

such that Int M, ‘and Int M, are C®-diffeomorphic. Then

Mf<R and ngﬂ. are C“Ldiffeomorphic.

Proof: Let £, aMix[-l,oé) - Mi be a C"™-collaring of

oM; in M, (see I8], p. 56), and let Mi = Mi—fi<aMix[-l,O)>,

My = Mi-fi(aMix{-l,l)), i=1,2. We construct a C"-diffeomorphism
h! of Mix(o,l) onto Int Mix[O,l) - MIx{o}. TLet h; De the

c“-diffeomorphism of (M;-Int M{)x(0,1) onto aM;x[-1,1)x(0,1)
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' defined by h,(m,t) = (fil(m),t). Let h be as in Lemma 4.1,
and let Q.- aM.x[o l]x(O 1) - aM.x((-l 1]x[0,1) - [0,1]xf{0})

be defined by h (m X y) = (m h(x, y)) Qi  1eaves é neighborhood
of aMix{l}x(O,l) ‘f1Xed, Let h'- M!x(0, 1)~IntM x[O 1) M’x{o}

be defined by

loh ;°h;, and h!

h"(m -Int 4}) %(0, 1) MY x(0, 1) = -dng(O,l)'

Let g be a C -diffeomorphism of Int M, onto Int M,. Let

-1 -1 | o
D = (hi) °(gXId[O,l]) ohé(Méx(O,l)),c MiX(Oal)' Since
are compact, there is a number a ¢ (0,1) such that
N v
. _ -1 . ?
Mix(a,l) c D, and if we let f = (hé) o(gx1d[o’l)>ohi|D, ‘then
‘ A _ , _
for some b e (0,1), f(Mix(a,l)) - Méx{b}. Then Theorem 4.1
implies that M'x(a,l) is: Cg-diffeomorphic‘to Méxﬁﬁ and

therefore that M;xR is C"-diffeomorphic to M XR. Q.E.D.

Corollary 4.2, If M, and M, are compact C° -manifolds

1 2

such that Int M; is ¢®-diffeomorphic to Int M,, - then

2,

M xR is ¢®-diffeomorphic to M X R

Theorem 4,2, et M be a C =-n-manifold such thét

M= U O? , where O? is an open C%-n-cell in M with
1=1 :

ncon

O3 <041 >

for all i > 1. Then M 1is ¢”-diffeomorphic

to R™.
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Proof: Let fi: R® =M be a lediffeomorphism such that

n

n.—-
£;(RY) = 0f ,

i>1. We may assume that f£.(0) =p e M, 1> 1.
Since M 1is the union of countably many compact sets, we may

[-.)
- further assume that M = U

» lfi(D?) (where D? = {ngnéHxnsiﬂ,

We construct a sequence of C”—diffeomorphisms 8; of R"

into M such that g, = f, gi+1iD? = giIDp, gi(Rn) = O?,
i i -

and gi+l(D?+l)‘: fi+l(D?+1)’ i1 > 1. Suppose that Byseeosdy

are constru&ted. Define Eaq as follows: consider

f

k+l°gk|Rn—{O}? R%-{0} - R™-{0}. By Theorem 4.1, there is a

¢™-diffeomorphism h . : R'-{0} such that
. | ‘ n _on
hk+l|D2—{O} = fk+1°gklnﬁ-{o},’ 1 (R7-{03) = R - {0}, and

n . n

byyg(Dcpy) 2 Dyne Lot g (x) = g(x) if x e Dy,
N n

and g, .4(x) = fk+l°hk+1(x)- if x e R~ - {0}. Then

g = lim fi is a C“Ldiffeomorphism of R® onto M. Q.E.D,

i
The following theorem may bé proved in a similar =

manner:

Theorem 4.3, ILet M be a C“annifold with compact connected

boundary oM. If there are (' -collarings £ dMx[0,m) - M

&
such that M = ‘Ulfi(aMx[O,oo)), and
i=1 & . =



fi(aMxIO,oo)) c fi+l(aMxLO,oo)? ,1>1, then M is

¢®-diffeomorphic to 3Mx[0,00).

54.
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CHAPTER FIVE

Coverings of Manifolds

The following lemma is a consequence of Corollary 2.1:

Lemma 5.1. Let M be a C manifold, and let g: RT - M

be a lediffeomorphism. et P be a k-dimensional sub-

polyhedron of Rn, not necessarily compact, such that g(P)
is closed, and let U © M be an open set such that g(P)—UV
is compact. Let E o> 3M Dbe & closed set such that E C‘U,
and (M-E,U-E) is k-connected. If k¥ <n - 3, there is
a compact sét‘ C c MrE; and a va-diffeémorphism h: M-M .
such that h(U) o g(P), and h(x) =x if x £ C.

Note that hIE = id and, in particular, that h is

E*

" the identity on a neighborhood of 3M.

Lemma 5.2. Let M be a C -n-manifold, let UpsoeosUps

Vise..,V ~De oOpen subsets of M such that ClV; c U; and
(M~ C1V,,U;-C1 vi) ' is k,-connected, if k; > 0, let

kK. £n=-3, L <1< m Let Eiseee, By be closed subsets of

' . m ‘ )
M such that  E; €V, 1 £1<m and M c iSlEi. Let -
g: C? - M be a C™-diffeomorphism and let O < o < 1. If

Ky + oo + kK + m_2 n + 1, there are compact setg. Ciseee,Cp
in M such that. C; N(E; U3M) =¢, 1 <1<m and

Cc®~diffeomorphisms h; of M onto itself such that h;(x) = x,

m
X i n
if x émci, 1<igm and g(ca) c iglhi(Ui).
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Proof: Let G be the simplicial complex determined by a

simplicial subdivision of C? such that Cg. is the set of

n

points of a subcomplex K of G, |N(X,6¢)| < Int C], and

for any simplex 4 € G such that g(A) NE; # @, we have
g(8) v, d.e.: g(IN(HENG)]) <V, 1< 1< m.

Let Ly = K. We construct inductively two sequences

and K - of simplicial complexes as

(x;)

is defined. Let X; = B(L; 5 },

Lgs+vesL

m-1 1""’Kmrl

follows: suppose Li_l

and let L, be the complementary complex of X; in B(Li_l),

1<i<m-1. Then dimL; = n—i—(kl+.o.+ki).‘ Thus

dim Lm"l = n"‘m + l - (kl+ooo+km_l) __<_ kmo Let Km = Lm—l

We”now apply Lemma 5.1 with respect to each Ki' Let
=1 | e e aa )
P, =& (g(IKil) - Cl Vi). Then P, is a k; d}men31onal

polyhedron in Int CJ - g t(c1 v,), g(P,) is closed in
M- ClwV;, and g(P;) - U; is compact, so there are
c®-diffeomorphisms h!: M - M and compact sets C;,’l_g i<m,.
. /
such that hi(x) =x if x £ C;, . and g(Pi) c h{(Ui)o
— "'.l 1 s v
Let W, =g (hi(Ui)), 1 $ i $ m. Then .IKil cW,.
The barycentric subdivisions used in the definitions of Ki

and Li imply that Ki and Li are full subcomplexes of
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B(Li—i)’ 1 <i<m- 1. Applying Theorem 3.1, we construct
inductively a sequence of Cw-diffeomorphisms Smri: C? - C?

- such that Smrf is the identity on

¢} - In(x,6)| U IN(g"H(E;),6)], 1< i<m-1, and
ILm—Ql - Smrl(w —l) U wm 2
ILm—Bl < Sm-e(wmre) U Smfl(wﬁfl) v wm’

\
N\

Kl = Lyl & 8(Wy) U e U S (W q) U

. 'In the notation of

For example, we construct Sm—l

Theorem 3.1, let U = mel, V = Wm’

L=y UB(A): bely, p and g(d) NEy, 40}

g1,

i

L = (A e B(mee): ANL
F= (R - IN(K,6)]) U & (By )

Note that |[L| ¢ W , L is full in B(Lm;g), and
Fnole(n, o)l e Inl v |L6l. Let S,.7 be the h; obtained
in Theorem 3.1.

We 1ift the C%-diffeomorphisms - S; onto M: let

A A :
- —p 1 — o ° "'l 03 n
S, : Mn M be defined by Si(p) =g °8,°¢g (p), if pe g(Cl),

A
and Si(p)

p if p & g(IN(X,G)|), 1< i< m~- 1. Note
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A
that silE. = idg .

Tt follows that g(qg) = g(lk|) <
BE 1 . . .

° oht n
s, hi(Ul) Ueeo US4 hm_l(Um_l) Uhi(u ). Let
A .

- o 3 - = Nt
h; = S;eh!, 1<i<m-1, andlet h =hi. Q.E.D.

Theorem 5.1. ©Let M be a C -n-manifold, and let

Ul,.."U

n be open subsets of M such that Ui = U V.

where Vigj 1s open, c::g_V'j_“j C.vi,j+l’

(M- CLlV, J’Vi,j+1.' Cl;Vi,J) is k;-connected, X, s n - 3,

m .
if Ky > ON §>1, 1<ig<m and 3Mc UlV 1+ Then,
i=

if Ky + eeo tk +m>n+ 1, there are C®-diffeomorphisms

hy: M - M such that

h, | = id. | l1<i<m and M= Uh, 1(U3)e
101V 4 CLV; 2 =77 i=1

s s ) ) -
Proof: Let éj: C? M, J=1,2,... be a sequence'of

. 3 &
c®-diffeomorphisms such that Int M= U gj(Cg). Suppose we
j=1 | |

have constructed m sequences {fi,o’°"’fi,k}y I=1,0ee,m,

of C"-diffeomorphisms of M onto itself such that

k
(c ) © u £, . (V, ,5.), ‘and
j= l J 1=1 i, k i,2k’
f. . N = . . 1< J <k, where £, = 1id,,.
i JIVi,ej~2 1’3'1|Vi,2.-2’ e i,o  TM

J
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We apply Lemma 5.2 with Ei = Cl Vi,ek’ Vi = Vi,2k+l’

U, =V

: @ . .
i i, 2k+2, and g = Sy +1 to get C -diffeomorphisms

f

1,k+1 1 é i $ m, of M onto itself such that
i () < ( ) I |

U g.(CL) ¢ U £, . V. - and f. . = £, .
j=1 J % j=1  LokHLlY Ui, 2k+4270 i,k+1 Vi,ek 13k Vi,2k

Let h.(x) = 1lim £, ,(x) for all x e M. Q.E.D,
1 . k_—om l,k' .

Corollary 5.1. Let M be a k-connected C -n-manifold

without boundary, with k < n - 3 if k > 0. Then, if m > o7 ,

M may be covered with m open ¢®-n-cells.

Proof: Let Up,...,U, De open C"-n-cells in M. Then

(M,U;) is k-connected, so if we let k; =k, 1 <1< m, we

have Kq + ... +k +m=umk +m>n + 1.

Corollary 5.2, Let M Dbe a k-connected C -n-manifold

(with k < n-3 if k > 0) with 4 boundary components

Ny,...,N,, and let f;: N;x[0,00) - M be C"-collarings,
. n-4+1 ® . s
1<ig 4. If m 2 ——9~, there are ¢ C -diffeomorphisms -

hi of M onto itself such that each hi is the identity on

n

aAneighborhood of Ni .and mvC“Ldiffeomorphisms gif R" - M

such that

A L m .
M= iglhiofi(Nix{o,oo))u U g (R7).

i=1
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Proof: (M,N;) is at least O-connected, and ¢ + mk + m > n+l.

Corollary 5.3, Let M be a connected C*-n-manifold, n > 5, °

with two connected boundary components Nl and N2 such that
the inclusion of Ni into M 1is a homotopy equivalence,
i = 1,2. Then there are C"-diffeomorphisms h,;: Nyx[0,00) - M

such that h,(x,0) =x for all x e N;, i1 =1,2, and

M= hl(le[O,GJ)) U h2(N2x£O’OO))'

Corollary 5.4, TLet M be a contractible € -n-manifold

without boundary, n > 5. Then M can be covered with two

open C -n-cells.

Theorem 5.2, Let M Dbe a contractible ¢”-n-manifold without

boundary, n > 5, which is l-connected at o. Then M 1is

c®-diffeomorphic to R™.

Proof: By Theorem 4.2, we need only show that if C c M is
compact, there is a lediffeomorphism s R® - M such that

C c f(Rn). Let fl’fQ: R® - M be CaLdiffeomorphisms such

that M = fl(Rn) U fg(Rn)o Since M 1is a normal space, there

c fg(Rn)

. n
are closed sets Ay, Ay, €M with A; < (R ), Ay

and M = Al U Ago We consider a fixed simplicial subdivision

of R" into a simplicial complex K such that

n

(a) Ci is the set of points of a subcomplex of X, i > 1.
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(b) If A e X and fi(A} NA,#¢, then fl(A) c fe(Rn).

n . 1 .
- Int C;, then diam fl(A) <3, 121

n

(c) If A< Cy g

Let L = N(f;%(4;),K), and, for all 1>1, let
K, = N(£-1(A,;) n ¢®,K). Each K, is a subcomplex of L, and
i 1\ jot/e i P -
=<}
L= U Ki’ Let D o C be a compact set such that M. - D is

i=1

simply connected. Then (M, M-D) is 2-connected, fl(lL(2>l)
is closed (because of condition (c)) and 2-dominated, and
fl(lL(2>|) N D is compact, so by Lemma 5.1, there is a compact

set C, €M and a C”-diffeomorphism hy: M - M with

1

2 . R
fl(IL( )I) c hl(NkD),v and hy(x) =x if x £ C;. Since

Cq

UD is compact, there is an integer 1 > 1 with

' : n n-3 '
¢C,uUDc fl(lKi|)<U fe(ci) NAy Let H be the subcomplex

of B(Ki) complementary to @(Ki(2>)° We have

ﬁ(m52M>chﬂM®L‘

-1 - n -
Let E = fl(IN(fl (£5(c;) n Ag),K)|). By condition

(v), Ec fe(Rn); By condition (c), if A cc?

.~

: ' 3 n N
for ¢ > 1, then dlam(fl(a) U fe(ci) N A2} g diam fl(A) +

. n 1 : n ;
dlam(fg(ci) n Ag) s-z + diam (fg(Ci) N Az?o Therefore

diam E < 2 + diam(f,(C]) N A,). Since E is bounded, there
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is an integer j > i such that f,(Int c?) > B, that is,
- 193 n
if fl(A) n fg(ci) nA,#¢g, then fl(A) c f£,(Int cj).

L n _ o n _.\n
Let M, =M - fe(Cj), and let V, = £, (Int Cp cj).

Then (M,,V,) is (n—2)-§onnected, fl(IHn_BI) nM, is closed

and (n-3)-dominated in My, and £,([H"?|) n (M-V,) is

compact. By Lemma 5.1, there is a compact set Cy & M, and a

© .o . . - . ‘ )
CT-diffeomorphism hyi My - My with he(Vg) S fl(lHn‘ l) n M,

and he(x) =x if x £ C,. We may extend h, to all of M
by letting hy(x) = x 1if x e £,(ch). Then £(|E “3

191
hyefy(Int C50).

' Next we consider two open subsets of R,

-1

.. oL
[SEE 1

‘ n
renyery(RY), end Vo=

ohl(M--D)° We apply Theorem 3.1
with L =H"2 U {8(A): AeK, and A c U} and

L = {Ae B(Ki): ANL =g} CAB(ng})o We let

c -1, n ' n Il
F=|LuL U N(flv(fg(ci) N Ag),K)l U (R - Int Ci+1? and

obtain a compact set C c R™-F and a C®-diffeomorphism
s: R* = R® such that s(x) = x if x ¢ 6, s(A) = A for all

beB(Ky), eand s(U) UV > [K|. Let 5:M M be defined

s(p) = floSofil(p)‘ if pe fl(Rn),' and s(p) = p otherwise.
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Then fl(IKil) uf (c ) NA,ch (M—D) U Suh (R ).

2

(since §0h2|E = id Consequently

B

C; UD Cll(NPD) U Soh (R Yo

Since M- (C; UD) cM - C © hl(M+D), ‘we have

1

=
il

hl(NPD) U seh,ef, (R), or

=
I

(M-D) U hI

1~ N
1 oSohgefg(lR )9

Let f = hjTeSeh,ef,. Then f£(8%) 5D 5C. Q.E.D.

We can stﬁéngthen Corollary 5.3 as follows:

Theorem 5.3. Let M be a connected Cm-n-manifold,* n > 5,

with/two boundary components Nl and N2 such that the inclusion

of Nj into M is a homotopy equivalence, .i = 1,2. Then

there is a C -diffeomorphism of N,x[0,00) onto M - N,.

Proof': Let gy° C;y - M, J=1,2,... Dbe a sequence of

14)
1
¢™-diffeomorphisms such that Int M = U gJ(Cl) Let f,

_ J=1 -

be the C“Ldiffeomorphism hl of Corollary 5.3. We construct

inductively - a sequence f_,f,,f of C”-diffeomorphisms

1’ 2’900
of ’le[o,oo) into M such that-for each J > 1,

J
U (0D« £50mx00,541)), ana £yly ypo g

1=1 = f.J'—i'NlX[Ong
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Let h: Nyx[0,00) - M De a C®-collaring such that

n(N,x[0,00)) N (gj+l(Cg) U £5(nyxo,g+2 1)) = 4. Let

My =M - fj(le[O,j+1))a By Theorem 5.1, there are

Cw—diffeomorphisms Ty and r2 of Mj onto itself which are

the identity on a neighborhood of the boundary of Mj such that

My < rl(fj(le[j+1,j+2))) U rg(h(Ngx[o,oo)),

= f, =
Let fj+llle[O,j+l] flelx[O,j+l]’ j+llle[j+1,a>)

-1
2 °r1°fj’le[j+1,co)°

Then M = f (le[o,j+2)) U h(NQX[O,oo)). Since

J+1

gj+l(cg) N h(NQX[O,OO)) = ¢, we have | .

J+1 0 _ .

U gi(c%) c fj+l(le[O,j+2))° Let £ = lim f.. Then
i=1 J e

M- N, = f(le[o,oo)), Q.E.Dy

Corollary 5.5. If M is a C -n-manifold, n > 5, with

two boundary components N1 and N2 whose inclusions into

XR, and Int M

M are homotopy equivalences, then Nf(R-jNe

are C“—diffeomorphic. It M is compact, then MXR is

c™-diffeomorphic to N,;x[0,1IxR, i = I1,2.
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