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ABSTRACT

A commutative ring is called coherent if the intersection of
any two finitely generated ideals is finitely generated and the annihilaﬁor
ideal of an arbitrary element of the ring is finitely generated.

Pierce's representation of a ring R as the ring of all global
sections of an appropriate sheaf of rings, k , is described. Some
theorems are deduced relating the coherence of the ring R to eertain
properties of the sheaf k . The sheaves from the above representa—
tion for R{X7 and RYTG+7‘I , where R 1is a commutative von Neumann
regular ring and G is a linearly ordered abelian group, are calculated.
Applications of the above theorems now show that RVX7 is coherent and

yield necessary and sufficient conditions for RYYC+WT to be coherent.
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Introduction

In this thesis all ring have unity, all modules are unital,
and all non-zero ring homomorphisms preserve the identity. Except in
the introduction all rings are commutative. Some terminology is now

introduced.

(Definition) Let R be a ring. A left R-module M is finitely
presented iff there exists an exact sequence of left R-modules
0+K>F>M>0 where F and K are finitely generated and F

is free.

(Definition) A ring R 1is left coherent iff every finitely generated

left ideal is finitely presented. |
Corresponding definitions may be made with respect to ;ight

modules and right ideals. A left coherenf commutative ring is said

to be coherent. The following definition allows an internal descrip-

tion of coherent rings to be given.

(Definition) Let R be a ring.

a) R has property a) iff the intersection of any two finitely
- generated left ideals in R 1is finitely generated.

b) R has property b) iff the intersection of any two principal

ideals is principal.
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c) R has property c) iff for any r ¢ R the left-annihilator
ideal of r (l.ann (r) = {s ¢ R : sr = 0} ) is finitely generated.
d) R has property d) iff for any re¢ R l.ann (r) is generated
by an idempotent.
e) R has property e) iff any finitely generated left ideal in
R is principal.

The concept of a coherent ring was introduced by Chase in
[4]. He showed that for any ring R direct products of families of
flat right R-modules are flat iff R is left coherent. The following

is part of theorem 2.1 from that paper:

Theorem: A ring R 1is left coherent iff it has properties a) and c).

Ih view of this various combinations of properties a) - e)
can be used either to generalize, define, or ;pecialize the concept of
coherence. Some elementary properties of finitely presented modules
and (left) coherent rings appear as exercises in Bourbaki [1].

The following are examples of left coherent rings:

i) " Any left Noetherian ring.
ii) . Any left semi-hereditary ring.
iii) As a particular case of ii), any von Neumann-regular ring.

(A ring R 1is von Neumann regular iff for each r € R there exists
r' ¢ R such that rr'r=1r .)

iv) Let '{R&} be a directed system of left coherent rings such
that if a < o' then R« is a right flat R -module. Then

1im (Ra) = R 1is a left coherent ring.

>

v) Let R be a left Noetherian ring and '{Xa} be a finite

or infinite set of indeterminates commuting with themselves and elements



of R . Then FYTXGFW , the ring of polynomials in the indeterminates
Xa with coefficients from the ring R , is left coherent.
vi) Let the notation be as in v). Then RTT{X&}TT , the ring
of formal power series in the indeterminates X with coefficients
from the ring R , is left coherent.
Exémples i), ii), and iii) are easily verified. In addition,

any semi-hereditary ring has property d). Example iv) is from
Bourbaki (ex 11, p. 63 of [1]). Example §j follows from iv) and the
Hilbert basis theorem since
Rlzx&ﬂ = lim ({RTX

>

.X&] :n is a natural nmumber and {X

l”‘ l,-no

Examples v) and vi) are similar.

There is some evidence to indicate that, from a homological
point of view, left coherent rings are a reasonable generalization of
left Noetherian rings in the sense that they, rather than left Noetherian
rings, are the appropriate concept. For example Chase's characterization
of left coherent rings in terms of right flat modules may be viewed as
a generalization of exercise 4 p. 122 of [3] which states that the
direct product of a family of right flat modules over a left Noetherian
ring is.righf flat. The fact that 1.gl.dim (R) = r.gl.dim (R) where
R 1is left and right Noetherian is a special case of the following
result about coherent rings: if R is a left (right) coherent ring
and M 1is a finitely presented left (right) R-module then
PAM) = w.dim (M) . (l.gl.dim (R) denotes the left global dimension
of R, r.gl.dim (R) denotes the right global dimension of R ,

Pd(M) denotes the projective dimension of M and w.dim (M) denotes
the weak dimension of M .) In particular cylic left (right) modules
of a left (right) Noefherian ring are finitely presented. To specia-

lize this to the Noetherian case the following result is used: for any

X YC {X1H .
n o,

e



ring R l.gl.dim (R) = sup {Pd(M) : M is a cyclic left R-module} .
A similar result holds on the right. Thus if R 1is left and right

Noetherian we have

l.gl.dim (R) = sup {Pd(M) : M is a cyclic left R-module}

= sup {w.dim (M) : M is a cyclic left R-module} < w.dim (R) < r.gl.dim (R)

By symmetry we also have r.gl.dim (R) < l.gl.dim (R)

In view of the proceeding it is reasonable to enquire as to
whether or not coherent rings are a generalization of Noetherian rings
with respect to non-homological properties. It is known that if R is
left Noetherian so are RfX7 and RIX17 . This suggests the following
two questions. First, for what coherent rings _R is RrX71 coherent?
Second, for what coherent rings R is RFFGtFW coherent where Rrrd+11
denotes the ring of formal power series with coefficients from R
and positive indices from the linearly o¥dered abelian group G 7
These questions are answered in this thesis for R din the category
of commutative von Neumann regular rings.

For the rest of the introduction R denotes a commutative
von Neumann regular ring. 'Let S be a commutative ring. The following
fact is crucial in proving all theofems in this thesis. There exists
a Boolean space X and a sheaf K over X of in&ecomposable rings
such that S 1is isomorphic to the ring of all global sections of K
over X . This representation of S 1is described in more detail in
§0. In 81 (1.7 and 1.13 in particular) properties a), b), ¢), d), and
e) for S and the weak global‘dimension are related to certain algebraic
properties of the staiks of the sheaf K and to certain properties of

the global sections of K over X . In §2 the sheaf associated with
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RFX71 is calculated. It then follows from §1 that RIX1 has proper-
ties a), b), ¢), d), and e) (and thus is coherent) and that
w.gl.dim (R[XT) = 1 . Now let § = R[[G 7. 1In §3 a preliminary
study of the structure of K 1is made and used to show that § has
property c) (or d)) iff the Boolean ring of idempotents of R is X -
complete (see 3.3 of this thesis) where A - is an ordinal depending
on G .

In sections 4,5, and 6 the stalks of K are calculated
for various R and G in sufficient detail to establish (via 1.7 and

1.13) that the following conditions are equivalent:

i) RFFG+'T} has property a).
ii) RrrG+'r] has property b).
iii) RFFG+17 has property e).
iv) w.gl.dim (RFTGTTT) < 1 .

If G 1is not isomorphic to the integers the above conditions
are satisfied iff R 1is a finite direct sum of fields, (See §4).
If G is isomorphic to the integers then the above conditions are
éatisfied iff R has a partial form of self-injectivity called f<‘
- self-injectivity. (See sections 5 and 6.) In sections 6 and 7 it is
shown by examples that both of the following implications are false:
first, RITXT] has.property a) (or an equivalent) - RITXTT 'has
property c). Second, .RFFXWj has property c¢) = RTX31] has property
a). If R dis a Boolean ring the second implication does hold while
the first does not.

It should be noted that these results are not in total agree-

ment with the following theorem of Jensen (pp. 238 and 239 of [6]):



For a Boolean ring R the following are equivalent:
1) R 1is self-injective.
2) w.gl.dim (RFTG+'Tp = 1 and Rﬂ'G+1“] is coherent, for any
linearly ordered group G .
3) RrTG+‘T1 is coherent for any linearly ordered group G .
If R 1is atomic (as a Boolean algebra) then 4) is equivalent
to the preceeding conditions.
4) w.gl.dim (RYTG+77) = 1 for any linearly ordered group G .
Soublin (in [10] ) gives an example of a commutative
coherent ring T such T[X7] fails to have property a) and thus fails
to be coherent. Soublin's example and the results of this thesis on
RITX77 suggest thatrin non~homological settings it is misleading to

think of coherent rings as being a generalization of Noetherian rings.
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Representation of rings by sections of sheaves

All results in this thesis (except for 0.11, 0.17, and 0.18)
are paraphrased from part one of [8].

In this section R denotes a commutative ring with unity.
It should be noted that in this thesis all rings are commutative with

unity. Let X be an index set and '{MX : x e X} be a family of

ideals in R such that N (MX) = 0 . Then R may be represented
xeX
as a subdirect product of the kx where kx = R/MX . However such

. a representation gives little information about R unless there is

a reasonable way of determining which subring of (GDW)(kX) is
xeX

isomorphic to R . Pierce in [8] shows that if X and '{MX : x e X}
are appropriately chosen this can be accomplished by topologizing X

and k = Lj(kx) in such a way that {0 ¢ (Gan)(kx) : x 3k is

xeX xeX

continuous} is a subring of (EBW)(kX) isomorphic to R . In this
xeX

situation the kx are ali indecomposable rings. This can also be
expreséed by saying that there exists a sheaf k(R) of indecomposable
rings over a topological space X(R) such that R 1is isomorphic to
the ring of all global sections pf k(R) over X(R) . The construc-
tion of the topological space X(R) and the sheaf k(R) , along with

some basic definitions and results, is outlined below.
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(Definition) Sheaves of Rings:

8.

Let X be a topological space.

Suppose that for each x ¢ X a ring kx with zero 0X and

identity lX is given., Assume

k N ky =¢ for xFy .

Let k= U (kX) . Let 7 k + X denote the map such that
xeX '
if re kx then 7(r) = x . Assume that k is topologized in

such a way that the following three axioms are satisfied.

i) If r e k there exist op

X such that r e U and 7 maps

Cii) Let k + k , denoting {

have the topology induced by the
Then fhe mapping r > -r on k
(r,s) > rs and (r,s) > r + s

iii) The mapping x ~ lX on

en sets U in k énd N in

{/ homeomorphically onto N .
(r,s) € k x k : n(x) = n(s)} )
product topology in k x k
to k and the mappings
on k+ k to k are continuous.

X to k 1is continuous.

When these axioms are satisfied k is called a sheaf of rings

over X , The rings kx are called the stalks of the sheaf k .

The pair (X,k) 1is called a ringed space.

(Definition) Isomorphisms of Ringed Spaces: Let (X,k) and

(Y,S) be ringed spaces. An isomorphism of (X,k) onto (¥,S)

is a pair (A,u) where X is a

and uw 1is a homeomorphism of §

homeomorphism of X onto Y

onto k such that p  maps

Sk(x) isomorphically onto kx for each xe X . (X,k) and

(Y,S) are isomofEhic iff there exists an isomorphism of (X,k)

onto (Y,S) .
(Definition) Subsheaves: Let k be a sheaf of rings over the
topological space X . A subset k' of k is called a sub-

sheaf of k if k' is open in

X and for each x ¢ X



k'N kx is a subring of kx . It is easily verified that

k' 4dis also a sheaf of rings over X when given the topology
induced by k
The concepts required to determine a subring of (& ﬂ)(kx)
xeX

using the topologies on X and k are now introduced. It

should be noted that (QDW)(kX) = {g : X Sk and for each
xeX

x e X w(o(x)) = x} .

(Definition) Sections: Let (X,k) be a ringed space and let

Y be a subspace of X .

i) A section of k over Y 1is a continuous map o : Y > k

such that w(o(x)) = x for all x e Y . The set of all sections
of k over Y is denoted T(Y,k) . The elements of T(X,k)
are called the global sections of k over X . To say that an

element ¢ e T'(Y,k) can be extended to a global section means

that there exists o' e T(X,k) such that o' y= 9 -

ii) Define pointwise addition and multiplication on T(Y,k)
using ithe addition and multiplication in the stalks. Then
F(Y,k) is a ring.
1ii) For any o e T'(X,k) let S(o) = {x e X : o(x) $ 0.} and
let Z(o) = {x e X : o(x) = 0%} .
iv) Let U be a subset of X that is both open and closed in
X . Define wU : X >k by wU(x) = lX when x ¢ U and
wU(x) = 0X when x e X - U . Then wU e I'(X,k) . This
notation will be used frequently in this thesis.

The topologies on X and k allow the following relation-

ship to be established amongst elements of TI(X,k) .
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0.5) (lemma) Let (X,k) be a ringed space. Suppose that x e X
and o, 17 € T'(X,k) are such that o(x) = t1(x) . Then there

exists NX , a neighborhood of x , such that

This result is used to show that certain properties of a

stalk kx hold "locally" as well.

0.6) (Corollary): Let (X,k) be a ringed space and let o & I'(X,k)
Then Z{(s) is open and S{(g) is closed in X

0.7) (Definition) Boolean Spaces: Let X be a topological space.
i) A subset U of X 'is clopen iff it is both open and closed
in X .
ii) X 1is totally disconnected iff it has a basis consisting of
clopen sets.
iii) X 1is a Boolean space iff it is compact, Hausdorff, and
totally disconnected.

Sheaves used in this thesis will be over Boolean spaces.

The next proposition asserts that Boolean spaces have a very
special form of compactness. |

0.8) (Proposition) Let X be a Boolean space. Then X has the

partition property. That is to say if '{Na} is a covering

of X by open sets there exists '{Pl,...Pn} , a finite

collection of clopen subsets of X , such that:
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i) For 1 <1 <n there exists an a, such that Pigg Na .
i
ii) P.n Pj =¢ for i% 3 .
. n ’
iii) U (Pi) =X .
i=1

The collection '{Pl,...Pg is called a partition of X

.refining the cover ‘{Nd}

(Definition) Reduced Ringed Spaces: A ringed space (X,k)

is a reduced ringed space iff

i) X 1is a Boolean space
ii) For each x e X kx is an indecomposable ring.
It should be noted that if (X,k) is a reduced ringed

space and '{Pl,...,Pn} is a partition of X then the map

n
r(x,k) -~ O 7 (Pi,k) such that
i=1 :
n
o - o is an isomorphism,
i=]1 Pi

This, along with 0.8, allows one to show that certain "local"
properties are actually '"global' in the sense that they are
also properties of TI'(X,k) . We will frequently derive
properties of I (X,k) from those of the kx using 0.5 and 0.8.

The following two results will also be useful.

(lemma) Let (X,k) be a reduced ringed space and let Y
be a closed subset of X . Then each element of T(Y,k)

can be extended to a global section.
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In 83 we shall see that certain partial forms of self-injecti-
vity for the ring T(X,k) may be defined by asserting that an

analogue of 0.10 holds for certain open subsets Y of X .

0.11) (lemma) Let (X,k) be a reduced ringed space and x ¢ X .

Then k_ sCim (I (u,k))

>
eU and U 1is clopen in X

Proof: It is a standérd fact about sheaves that
kX = 1im (T(U,k)) . The lemma follows from this

.+
xeU and U dis open in X

since X 1is a Boolean space and thus the set of clopen neigh-
borhoods of =x is cofinal in the set of all neighborhoods of

X

0.12)  (Definition) Regular Ringed Spaces: A reduced ringed space

(X,k) 4is regular iff for each x e X kx is a field.

0.13) (lemma) Let (X,k) be a regular ringed space and let
o e T(X,k) . Then S(o) and Z(o) are both clopen in X .
Pierce's construction of the reduced ringed space (X(R),k(R))

such that R is isomorphic to T(X(R),k(R)) dis now outlined.

0.14) (Definition) i) Define: B(R) = {e ¢ R : e2 = e} . Note
that <B(R), +',*> is a Boolean ring where e +' f=e+ f -2 e £ .
ii) Let X(R) be the set of maximal ideals in the Boolean

ring B(R). For any e ¢ B(R) 1let X(e) = {MeB(R) : e & M}



13.

Let X(R) have the topology induced by {X(e) : e e B(R)} .

It is well known that X(R) is a Boolean space. In fact

{X(e) : e ¢ B(R)} 1is a clopen basis for the open sets in X(R)

iii) If M e X(R) let M={re: reR and e e M} . It
may be verified that M is an ideal in R . Thus R/M is
a ring. Further, (R/M)N (R/N) = 6 1if M + N .
iv) For any M e X(R) let ky(R) = (R/M) . Let

k(R) = U(kM(R)) and let 7 : k(R) » X(R) be defined such that
‘ MeX (R)
ﬂ_l(M) = kM(R) .

v) TFor any r € R let o ¢ X(R) > k(R) be defined by

or(M) =r+Me¢g kM(R) for any M e X(R) . Topologize k(R)

by letting '{Gr(U) : r e R and U is open in X} be a basis
for the open sets. It is readily seen that for each r € R

o & T(X(R),K(R) .

vi) Let R° denote (XR),k(R))

vii) For any reduced ringed space, (X,k) , let (X,k)* denote
r(x,k) .

viii) Define ?iR : R > I'(X(R),k(R)) by TQR(r) =0

(Proposition) i) jLR : R TER),kR)) = (R°)* is a ring
isomorphism.

ii) The correspondances ° and * are inverse, one-one, and
onto between the family of isomorphism'classes of rings and the
family of isomorphism classes of reduced ringed spaces.

iii) The ring R is von Neumann regular iff (X(R),k(R)) is

a regular ringed space. Similarly a reduced ringed spaée (%,k)
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0.18)

14.

is regular iff (X,k)* is a von Neumann regular ring.

iv) Let (X;k) be a reduced ringed space. For each x € X
let MX = {0 ¢ B((X,k)*) : o(x) = 0} . The map X - X((X,k)*)
giyen by x ~» MX is a homeomorphism,

It is possible to define morphisms of ringed spaces. The
correspondances ° and * may then be extended to categorical
equivalences. However these morphisms are in general somewhat
complicated. They may be avoided in this thesis through use of

the following proposition.

(Proposition) Let R be a subring of the ring S such that
B(R) = B(S) . Then clearly X(R) = X(S) . Let k ='{Ks(r) :re R} .

*
Then k dis a subsheaf of k(S) such that -RS : R~ (X,k)
R

is an isomorphism. Thus R° and (X,k) may be identified.

Let (X,k) = R° . Let xe X .
i) The map R - kx- given by r - or(x) is an epimorphism.

ii) As an R-module under this epimorphism kx is flat.

Proof: 1) This is easily checked.
ii) It follows from the remark immediately after 0.9 that T (U,k)
is projective if U 4is clopen. The result now follows from 0.11.

Q.E.D.

(Theorem) Let (X,k) = R®° . Then

w.gl.dim (R) = sup {w.gl.dim (kx) : x e X}
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Proof: To show that sup'{w.gl.dim (kx) : x e X} < w.gl.dim (R)
the following fact (paraphrased from ex. 10 p. 123 of [3]) will

be used: Let S -+ T be a ring homomorphism such that T is

flat as an S-module and let A be an S-module. Then

w.dimT(AQDS T) f_w.dimS(A) where any T-module is given the
S-module structure induced by the homomorphism S -+ T . When this

is applied in this proof A will be a T-module and S - T will

e

be onto so that we will have A®S T =2 A as T-modules. Thus
w.dimT(A) = w.dimT(AQDS T) i_w.dimS(A) . It follows from this )
that w.gl.dim(T) < w.gl.dim(S) . By O.l7_and the preceeding
comment it thus follows that w.gl.dim(kx) < w.gl.dim(R) for
each x ¢ X

To complete‘the proéf suppose that n 1is an integer such that
w.gl.dim(kx) < n for each .x e X . Let A and B be arbitrary
R-modules and m > n an integer,

szo facts will be used. First, for any x ¢ X (Torﬁ(A,B))QQ kx
= TormX Al kX , B @)kx) =0 . Second if C is an R-module
such that C @)kx =0 for all xe X then C=0 . The lemma
is completea by using these two facts with C = Torﬁ(A,B) . The
first fact follows from the hypothesis on m and a paraphrase of
exefcise 11 p. 123 of [3]. The paraphrase is true essentially
because each kx Ais flat as an R-module. The second fact is

actually just a restatement of the proposition (1.7 in [8]) that

N@C) = 0 . This implies that the natural map
MeX(R)

C » (®r) (C/MC) is a monomorphism.
MeX(R)

t
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Let M e X(R) . Then

1k

C® I, = CQ (Lim (r'(U,k))) = lim (C @I (U,k)) (/)
- ->

(xeU and U is clopen)(xeU and U .is clopen)

Thus if C kX =0 for each x ¢ X we must have C = 0
Q.E.D.
The preceeding tﬁeorem is true essentially because each
stalk kX is a direct limit of direct summands of R and the

R . . .. .
functors TorM( , ) commute with direct limits. Since the

functors Extﬁ( » ) do not necessarily commute with direct
limits it is not suprising that there is no analogue of theorem
0.18 for the ordinary global dimension of R

Theorem 0.18 provides a means of calculating the weak global
dimension of R from those of the stalks. No anaiogue of this
holds for arbitrary subdirect products. For instance the ring
I of integers is a subdirect product of the fields I/M such
that M is a maximal ideal in I . However the I/M all have
weak global dimension zero yet w.gl.dim(I) =1 .

An elementary method for constructing examples of ringed

spaces is now given.

(Definition) Simple Sheaves: Let X be a topological space

and let S be a ring. Let S have the discrete topology.
Let k = X x S have the product topology. For each x g X
let kX = {x} xS . Then k is a sheaf of rings over X

called the simple S sheaf over X
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81
Coherent rings
In this section R will denote a commutative Ring with
unity and (X,k) will denote R° . Some results will be obtained

relating properties a), b), c), d), and e) for the ring R with cer-

tain properties of the reduced ringed space (X,k) .

1.1) (Proposition): Consider the following conditions:
i) R has property c).
?i) R has property d).
iii) For any 1 e I'(X,k) , S(%) is clopen.
iv) k is a Hausdorff space. |
Then ii) - i) and iii)<—>iv). If each kx is an integral

domain then each of i), ii), iii), and iv) are equivalent.

Proof: ii) » 1i): This is obvious.

iidi) »iv): By 0.14.v) for any ¢ e I'(X,k) and xe X ,
sets of the form O(NX) where Nx is a clopen neighborhood of
x form a basis for the neighborhoods of o(x) in k . Suppose
that k is not Hausdorff. Thus, since X is Hausdorff, there
exist two points on the same stalk, say kx , that can not be
separated by open sets. Thus there exist o and T (see 0.17)
in T(X,k) and x € X such that 0(x) + T(x) yet fqr any
clopen neighborhood of x,Nx , there exists y € NX such that
o(y) = T(Y)» . Thus S(o - 1) is not open.
iv) - ddii): Sﬁppose there exists 1 € I'(X,k) such that S(T)

is not clopen. Then S(t) 1is not open (see 0.6) so there
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exists x € S(t) such that for each clopen neighborhood of x,

N, NN (X -5(1)) % ¢ . Then o (x) =0 + 17(x) yet for each
x’ X op X
N there exists v e (o6, N )N t(N_)) . Thus k 1is not Hausdorff.
X 0R X X
Now suppose that each kx is an integral domain. Since

R = I'(X,k) R can be replaced with TI(X,k) for the rest of this

proof.
i) » didii): Let T ¢ P(X,k) be such that l.ann(t) = Z F(X,k)ri
n . i=1
S(t)e X - U (S(Ti)) since the k are domains. Let
i=1 x
n .
xe (X~ U(S5(1.))) and suppose t(x) =0 . Find N , a
. 1 X X
i=1
n
clopen neighborhood of x , such that NXZQ;(X - U S(Ti))
' i=1
(see 0.6) and y ¢ NX implies 1(y) = 0y Then wN e l.ann(t)
n . x
yet wN ¢ z I“(X,k)Ti . This contradicts the choice of the T4
X i=1
n . ’ n
and yields X - U (S(Ti)) CS(t) . Thus S(1t) =X-~- U (S(Ti)) .
i=1 i=1

Since the support of a section is always closed this establishes
that S(t) 1is clopen.

iii) » ii): Now let 1 e I'(X,k) be such that S(f) is clopen.
Since the kX are integral domains, ¢ e l.ann(t) <> S(0) C

X - S(t) . Thus, if o ¢ l.ann(1) , o = Yix-s(D) € F(X’k)'w(X—S(T))'

w(X—S(T)) e T(X,k) since (X - S(t)) 4is clopen. Hence l.ann(t)
is generated by an idempotent.
Q.E.D.
In order to relate properties a), b), and e) for the ring
R. with certain properties of the sheaf (X,k) it is necessary
to have some lemmas allowing ideals in R to be studies in terms

of the k .
X
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1.2) (Definition): For I an ideal in R and x ¢ X let
I ='{oa (x) ¢+ ag I} .

It is clear that each IX is an ideal in kx and that if
I is finitely generated as an R-ideal then each IX is finitely

generated as a kx—ideal.

(1.3) (lemma): Let I and J be two ideals in R and xg¢ X .

Then (I N J)X = IX(\ Jx .

Proof: Clearly (I F\J)x g;IX P\JX . Now let gc(x) e Ixfﬁ JX .
Thus there exist ae¢ I and b e J such that oc(x) = %(X) =
cb(x) . Find NX , a clopen neighborhcod of x such that

o . Find e e R such 0, = ¥y . Then

N X

o] =9 _ 0 =y 0 =0 so ea ebe INJT .

Thus 0_(x) = ¥y (9, G) =0 (0o, () =0, (e (1NN .

X
Thus I NJ S((INJ) . Hence I NI = (I NJ) .
X X . X X X X

Q.E.D.

1.4) (lemma): Let I and J be two ideals in R
i)~ Let Or , for some 1 ¢ R , be such that or(x) £ IX for
all xe€ X . Then r e I .

ii) If Ix = JX for all xe X then I =J .
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Proof: i) For each x ¢ X find aX ¢ I such that
daX(x) = cr(x) and find Nx , a clopen

neighborhood of x such that va_ V{NX : x e X}

N
X

N
X

is an open cover of X so that by the partition property there
exists ‘{Pl,...Pﬁ} , a partition of X dinto clopen sets, such

that each Pjg; some Nx from the cover. TFor each 1

J
(1 <1i<mn) Ilet e, € R be such that O, = wP . For any
i i
x € X X & some Pj so
n n
(o0 I e.-ax.)(X)= z "’P,(-X)'Ga (%) =0, (x) =0r(X)
i=1 i i=1 i X, X,
1 J
n
Thus r = L e.‘a e I
. i x,
i=1 i

ii) Suppose that IX.= Jx for all x e X . Let ae I .
Then for all x e X ca(x) € IX = JX so by i) a e I . Thus
I€J . Similarly J &€ 1I

Q.E.D.

It is clear that if I 1is a finitely generated R-ideal
then each IX is a finitely generated kx—ideal. The converse
is not in general true. For example suppose that X contains
a non-isolated point, ¥y , and that each kx is a field. Let
I=1{reR: or(y) = Oy} . Then each I, is a principal ideal
in kx yet I dis not finitely generated as an R~ideal. The

next two lemmas are partial converses.
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(lemma) Let n be a positive integer and I an ideal in R

T e T(X,k)

such that for each x e X there exists T s s
1,x n,X

and NX a neighborhood of x such that for any vy e NX
x(y)} generates Iy . Then there exists a sub-

b

set of R containing n or fewer elements that generates I .

Proof: '{Nx : x ¢ X} where the N are as described in the

hypothesis is an open cover of X so that by the partition property

there exists '{Pl,...Pm} , a partition of X dinto clopen sets
such that each PiS; some NX from the cover. Find a; € R
_ “m n
(1 <i<mn) such that o = I 1, ¥ . Let J= I R-a,
- - a, . i,x,."P , i
i j=1 3j i=1
for any x € X, x € some Pj' so that
n m
J o=z (kx(_z Ti,X..wP.)(X))
i=1 j=1 j 73
n
= % (k7T (x)) = IX .
1=1 H Jl
n
Thus by 1.14 I =J= I R+a, .
. i
i=1

(lemma) et I be an ideal in R such that for each x € X

. - . BN
there exists a positive integer n(x) , Tl,x""Tn(x),x e T(X,k)
and NX , a neighborhood of x , such that for any vy ¢ Nx

'{Tl,x(y),...rn(x)’x(y)} generates IX . Then I is finitely

generated as an ideal in R .

i
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Proof: '{NX : x ¢ X} where the NX are as described in the
hypothesis forms an open cover of X so that by the partition
property there exists '{Pl,...Pﬁ} , a partition of X into

clopen sets, such that Pj C some NX from the cover. Let

3 n
n = sup {n(xi) : 1 <1i<m} . Define Ty = .Z Ti’x.‘wP'
j=1 i 3
Q<1 f_n) where it is understood that g T 0 for
- j
n(xj) < i<n . Then for each x e X '{rl(x),...rn(x)} generates

IX so by 1.5 I 1is generated by some subset of R containing
n or fewer elements.
Q.E.D.
The next proposition applies the foregoing to obtain various
algebraic conditions on the kX that are sufficient to imply

that R has some of properties a), b) and e).

(Proposition) Suppose that forveach x g X kX has éroperty

e . Then: i) R has property e).

ii) If each kx is an integral domain then R also has proper-
ties a) and b) and w.gl.dim(R) <1 .

iii) If R has property d) then R is semi-hereditary.

Proof: 1) It suffices to show that the ideal I = Ra + Rb is
principal where a and b ¢ R are arbitrary. Fix arbitrary

) - K . .
x g X Then IX kxoa(x) kxcb(x) is a finitely generated
ideal in kx so there exists c, € I (for simplicity ¢ will

denote c, ) spch that kxca(x) + kxob(x) = kxcc(x) . Thus



and t, € R such that

there exists 1, s, tl’ 2

T cr(x)oa(x) + cs(x)cb(x) = oc(x) ;s and

I ca(x) = otl(x)oc(x) and ob(x) = otz(x)cc(x)

Since there are only finitely many equations above there exists

NX , a neighborhood of x such that for any ¥y ¢ NX

I' o (Mo, (¥) + o (y)o, (y) =0o _(y) ; and

1 = =
' o () otl(y)dc(y) and o, (y) otz(y)cc(y)
Conditions I' and II' combine to show that whenever
yelN kyoa(y) + kycb(Y)‘= kyoc(y) . Thus, by lemma 1.5,
I is principal.

ii) The following fact will be used in this proof: If D

is an integral domain with property e) and x,y,w € D are

such that 0 =D + D =D then 5—, X~, and XL e D
X y W w’'w w
and D A D =D Q§ etcetera denotes the element
X y @9@ w
W

x-(wal) in the classical ring of quotients for D .) This
is analogous to the situation in Euclidean domains.

Lét R have property e). Then properties a) and b)
are equivalent for R . Therefore it suffices to show that

for any a,b e R, IN J is principal where I = Ra and

J Rb . Let C= S(oa)(\ S(Ob) . C 1is closed in X

Rc . Since

By i) find c¢ € R such that Ra + Rb
kxoa(x) + kxob(x) = kxoc(x) for all x € X it follows from

the opening remark that x e C dimplies that
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ca(x) g, (x) ; a,(x)a, (x) . ;
g (x) ' o x)’ an o (x) E_ x 0
(o} [ C
ca(X)cb(X)
(kxoa(xD(\ (kxcb(X» = ka—j;;(;T**“) .

Now I shall show that the maps 0,30g" C -~ k given by

T
o (x) g, (x)
g (x) = a and o_(x) = b are continuous. For
o o (x) B cC(X)
o, (0
arbitrary x e C find r ¢ R such that ca(x) = GC(X) = or(x)
Thus Ga(x) = or(x)'cc(x) . Pick a neighborhood of =x, NX ,

such that y e N implies o (y) =o_(y)o (y). Hence y € CN\N_ implies
X a r C X

oa(y)
o (y) = =0 (y) . Thus o =g Since o
@ . r NAC  TlNnc t
X X
is continuous at x  so is Oa . Since C 1is closed in X

we may assume without loss of generality that Oy € I (X,k)
(See 0.10). Similarly OB is continuous and may be viewed as a

member of T (X,k) . Observe that 5%

Since C and S(Guob - GBOa) are disjoint closed sets in the
Boolean space X there exists a clopen set P such that

< - il
C &P and S(oadb oBoa) € X P

Thus caob

Define o€ T (X,k) by Gm(x) = ca(x)ob(x) = OB(x)oa(x)
for x ¢ P , and gm(x) = 0 for x ¢ P . This is continuous
since P is clopen. Observe that by its construction

a, (x)o, (x)

Om(x) = OC 0

for x € C and cm(x) = (0 for x ¢ c .

Thus, using the opening discussion and 1.3, for x ¢ C
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. Ga(x)ob(x)
(Rm)x B kxgm(x) - kx( Oc(x)__)
= kxoa(x)r\ kxob(x) = Ix!\ JX = (I f\J)X
For x ¢ C R) =0=1 aJ =(NJ_ . Thus by 1.4

Rm =1l nNnJ= Ra N Rb

To see that w.gl.dim(R) < 1 the following fact_(from thm.
4.1 of [4] will be used: If S dis a semi-hereditary ring then
w.gl.dim(S) <1 . Since for each x ¢ X kx is an integral domain
it follows that principal ideals in a kX are projective so each
kx is semi-hereditary. Hence w.gl.dim(R) = Sup'{w.gl.dim(kx) :
x € X} <1 .
iii) Supposé that R has property d). Since by 1) it has
property e) it suffices to show that the principal ideals of R
are projective. Let: a € R be arbitrary and find e € B(R)
spch that 1l.ann(a) = Re. Then

0 >Re »Re@®R 2 R+Ra~>0

(1-e)
(where r - r.a ) is a split exact sequence so that Ra is
projective. q.E.D.
(Definition) A ring S 1s local iff it has a unique maximal
ideal.

In proposition 1.13 we use 1.7 to find a homological condition
on R that, if each kX is a local ring, is sufficient for

R to have conditions a), b) and e).
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First three lemmas about local rings are needed.

(lemma) Let S be a commutative ring. The following condi-
tions are equivalent: 1) S 1is a local ring.

ii) All nonunits of § are contained in a proper ideal M
iii) The nonunits of S form an ideal.

iv) For r and s €S r + s dis a unit implies that either

r is a unit or s 1is a unit.

Proof: i) <= ii) < iii) is proposition 5 from §2.2 of [7].
i) <= iv) is essentially the same as exercise 7 from &2.2 of

[7].

(Corollary) Let S be a commutative local ring. Let 0 = a e S

and x € S be such that xa =a . Then x 1s a unit.

Proof: Rewrite xa = a as (l1-x)-a =0 . Since a + 0
this shows that 1-x 1is not a unit. Then by 1.9 iv) x 1is
a unit since x + (1-x) =1 .

Q.E.D.

(lemma) Let S be a commutative local ring with zero divisors.

Then w.gl.dim(S) > 1 .
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Proof: Find a, b non~zero in S such that a.b =0
I shall use exercise 5 from chapter 6 of [3] to show that
the canonical map Sa®S Sb-—-;Sa®S S = Sa is not a monomor-
phism so w.dimS(Sa) >0 , Since 0 -~ Sa - S +(S/Sa) > 0 is
an exact sequence of modules this would show w.dimS(S/Sa) > 1
and hence w.gl.dim(S) > 1

Suppose thaf: Sa®s Sb > Sa®s S is a monomorphism.

Thus, since a.b =0, ace Sa and b e S there exists

b 2

(by the exercise) rja € Sa and sj e § (1 < j < some integer n )

such that: 1) a =

Mg

(r.a s)) ; and
521 303
ii) sjb =0 for 1< j<n.

98 . n

" from i) get a = (I r.s,) a so that by 1.10 (: «r.,s,)

j=1 373 je1 373

is a unit. Thus by 1.9 iv) some r.,s., 1s a unit and hence

sj, is a unit. This is a contradiction since sj,b = 0 vyet

b+ 0 . This contradiction establishes that 5Qg 8, >S5, @S

is not a monomorphism so w.gl.dim(S) > 1 .

Q.E.D.
(lemma) Let S be a commutative local ring. Then:

i) w.gl.dim(S)

In

1 dimplies that S 1is an integral domain.

ii) w.gl.dim(S)

)

1 implies that S has property e).
Now suppose that S 1is also semi-prime. That is to say
s'=0->s=0 for each positive integer n and s € S

Then:

iii) S has property e) implies that w.gl.dim(S) < 1

Proof: i) This is just a restatement of 1.11.

ii) Let w.gl.dim(S) <1 . 1In theorem 4.2 of [4] Chase has
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shown that if D dis an integral domain then D is semi-heredi-
tary iff w.gl.dim(8) <1 . It thus follows from i) that S
is semi-hereditary. It is well known that if a ring is local

all its finitely generated projective modules are free. Let

0 + I be a finitely generated ideal in S . Then I is pro-
iective and hence free. Thus there exists '{al,...an} , a free
basis for I . If n =1 we are done. Suppose n > 1

Then a, « a, - a, =,a, = 0 , This contradicts our choice of

2 1 1 72

'{al,...an} . This contradiction establishes n =1 . Thus

I is principal so that S has property e).

iii) Tet S be semi-prime with property e). It suffices to
show that S 1s an integral domain since then every principal
ideal would be projective. Since S has property e) this
would establish that S is semi-hereditary and thus w.gl.dim(S)
Let a,b ¢ S be such that a $ 0, b £+ 0 , yet ab =0

Find ¢ € S such that Sa + Sb = SC . Hence find x,y,r,s € S
such that ra + sb =c¢ , a = x¢, and b = yc. Hence
(rx + sy)c = ra>+ sb = ¢ so by 1.10 rx + sy is a unit.

Thus by 1.9 either rx or sy dis a unit. Suppose without
loss of generélity that rx 1is a unit. Then so is x .

xb” = xycb = yxcb = yab = 0 . Thus, since x is a unit,

b =0 so b =0 . This contradiction establishes that S

is an integral domain.

. Q,E.D.
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(Proposition) Let each kX be a local ring. Then:
i) w.gl.dim(R) < 1 dimplies that R has properties a),
b) and e).

ii) If R has property d) then w.gl.dim(R) < 1 dimplies
that R 1is semi-hereditary.
Now suppose that R 1is semi-prime. Then:
iii) If R has property e) then w.gl.dim(R) <1 .
iv) If R has property e) then R also has properties a)

and b).

Proof: i) Suppose that w.gl.dim(R) <1 . By 0.18

w.gl.dim(R) = éup'{w.gl.dim(kx) : x e X} . Thus for each x € X
w.gl.dim(kx) <1 so that by 1.12 kx is an integral domain

with property e). By 1.7 this establishes that R has properties
a), b) and e).

ii) - This follows from i) and 1.7. iii).

iii) Fix an arbitrary x e X . First note that kx is semi-
prime. To see this suppose theré exists O + oa(x) > kX and a
positive integer n such that (oa(x))n = 0 . Choose NX , a
clopen neighborhood of x , such that (oa(y))n = Q0 for any

y e NX . Choose~ e ¢ R such that o, = wNX . Then

(o, GN" = (wNy<y>ca<y>)“ =0 foramny yeX and o, (x) =
wNX(X)ba(x) = oa(x) so that O % ea € R yet (ea)? =0 .

This contradicts the hypothesis that R 1is semi-prime and thus
establishes that kx is semi-prime, Now let R have property e).
Then for each x ¢ X kx also has property e) and hence, by 1.12
iii), w.gl.dim(kx) <1 . Thus w.gl.dim(R) = sup'{w.gl.dimkX :

XgX}il.
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iv) This follows from iii) and 1).
Q.E.D.
In order to apply 1.7 and 1.13 to a particular R it will be
necessary to compute the sheaf (X,k) . The following lemmas

will be used for such a computation in §5.

(Definition:) Let XA be a cardinal. 1) A set UEX 1is a

~A-set 1ff there exists a family of clopen subsets of X

{Ua} such that U = g(Ua) and ]{Ua}l <A
ii) (X,k) has the A-extension property iff for any A-set

U and o ¢ T'(U,k) there exists o' ¢ T'(X,k) such that

iii) (X,k) has the unique AX-extension property iff it has
the JA-extension property and for any A-set U and

g, o' € T(X,k) , cl = o')

U - 0!

= L P
o .U .

U iij
(lemma) Let (X,k) have the unique A-extension property
and U= U(U)) where '{U&} is a disjoint family of clopen

o
sets such that I{Ua}! <A . Let I be a finitely generated

ideal in R and r € R be such that or(U) £ Iu for all u e U

Then o (x) € 1 for all x e U .
T X

Proof:. - Let ayseeedy generate I ., Then for each x € X
o, (x),...oa (x) generates IX . For each o let e, € R
1 n
be such that o, = wU . For each « Ie is generated
o a a
by alea,...anea . Also - orea(x) = or(x)ced(x) = or(x)an(x)

€ (Ix)oea(x) = (Iea)x for any x € X so by 1.4 re € Iea
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Thus there exists s. ,...S8 € R such that
1,a n,o

n

s, a,e . For each i (1 < i < n) define 1, : U=> k

jop Lol - T = i

by Ti(x) =0 a(x) where o 1is chosen such that x ¢ Ua .
3 i,

Since the U are disjoint the T; are well-defined. Since
o
the Uu are open, for arbitrary x e U, X € Some Ua and

Ua is a neighborhood of x such that | = 94 » 80 T,

"is continuous at x . Thus Ty € r(u,k) .

For arbitrary x e U find Ua such that x ¢ Ua .  Then
n
o,.(x) =0 X, ) =0 Ko, ) =0 )= 1 o (x)0_ (x)
o o o 1=1 i,o i o
n n
= 'Z Oy ’(X)Ga.(x)wU (x) = ‘Z Ti(X)Ga‘(X) . Thus
i=1 "i,qa i a i=1 i
n
o = (Z T,0_) . Since (X,k) has the X-extension property
r , ia, : .
U i=]1 i 0

we may assume that all the sections in the above equation are global.
Since (X,k) has the unique Xi-extension property
n n

, SO for x e U or(x) = (iilTi(x)oai(x) € IX .

Q.E.D.

(lemma) Let (X,k) , I, U, and 4{U&} be as in the hypothesis
of 1.15. Let b ..b_ ¢ R be such that o, (u),...o0, (W

m bl bm
generates Iﬁ for all ue.U . Then o (x),...,cb (x) generates

b1 m

1’

I for all xe U .
X

Proof: Let J = Rb . Then by hypothesis Ju = Iu for all

1 i

[ =]

uelU . Let a.eJ be arbitrary. Then for all ue U
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Oa(U) € Iu . Since I 1is finitely generated we have, by 1.15,
o (x) el for all xe U . Thus J NI for all xe U .
a X x X
Since J 1is finitely generated we also have IX(\ JX for all
xe U .
Q.E.D.
In order to apply 1.16 it is necessary to obtain some informa-

tion about the existence of disjoint families of clopen sets.

(lemma) i) Let U be an 7@\ - set in X . Then U can be
expressed as the union of a coutable disjoint family of clopen sets,
ii) Let U be open in X . Then there exists a disjoint
family of clopen-subsets of X ;{V&} , such that V = U where
V=1U({) .
o

o

Proof: i) This is a standard construction. Since U 1is an

j\5| ~ set we have U = U(Ui) where»'{Ui} is an appropriate
i

countable family of clopen sets. Define Ué = U and for
_ o

t o - ' i ' ) Al
0O <negl let Un Un U?Ui) . Then U g(Ui) and {Ui}
0<i<n i
is a disjoint countable family of clopen sets.
ii) Let S = {F : F is a disjoint family of clopen sets such

that We F>W U} . S 1is partially ordered by inclusion,

é; . If C is a chain in S it is easily checked that U(F) ¢ S
FeC

so that by Zorn's lemma S has a maximal element, say M ='{Va} .
Then V}z U for if there existed x e U - V there would exist,
since U is open, NX<; U - V@; U - V a neighborhood of x .
Thus M k){NX} would belong to S , contradicting the maxi-

mality of M . Thus we have VC USV Hence V =1 .

Q.E.D.
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It’should be noted that if U is a A-set the set V
obtained in 1.17 ii) need not be a A-set. Since X is
clopen it is a 2-set. I shall show that if X is dinfinite
there exists an open set V of the form V = U(Vu) (where
‘{Va} is a disjoint family of clopen sets) sucg that V= X = X

yet V dis not a 2-set. Suppose X 1is infinite. Since X

is compact there exists x e X such that {x} is not open.

Let U=X-{x} . Then U=2X . Obtain '{Va} a disjoint

U(V,) U such that V=TU=X=X
a
V 1is not a 2-set for if it were it would be closed and we would

I

family of clopen sets and V

have V=V =10=X , a contradiction.

.
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§2

Coherence of R[ XM

Throughout this section R will denote a commutative von
Neumann regular ring and S will denote the polynomial ring RVX7|
(X,K) will denote S° . Clearly B(R) = B(S) . Thus by 0.16) R°
may be identified with (X,k) where k 1is a sub-sheaf of K such
that TKS . : R~»TI(Xk) 1is an isomorphism. Since R 1is von Neumann

regular (X,k) 1is a regular ringed space. (see 0.15).

2.1) (lemma) i) For each xe X , K = leXW
ii) For each x ¢ X ‘KX is an integral domain with property e).

n .
1ii) For ( % ain) e S
i=1

o i
(o' % a, X Y(x) =
i=1 i

™~

o} (x)-Xl , where
a,.
1 i

KX and k£XT are identified.

Proof: i) Refer to the basic definitions given in 0.14. An
arbitrary point in X 1is actually a maximal proper ideal in
B(R) . Then K, = RIXT/RTX]'M = (R/R-MTX]= kM(R)Yx“\ = kMYx’\
ii) Since each kx is a field (R is von-Neumann regular)
this result is immediate from 1i).

iii) It is clear that under the identification KX = kxyx‘]

o} i(x) = X% is identified with 1 * X = lX . X' . The result

X .
now follows from the fact that 0(*)(x) : S > KX = kQ‘XW is a
homomorphism.

Q.E.D.
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(Proposition) w.gl.dim(S) = 1
Proof: It is well known that if T 1s a Noetherian ring then
w.gl.dim(T) = gl.dim(T) . (see ex. 3 p. 122 of [3].) It is
also well known (Chapter IX Theorem 7.11 of [3]) that if F 1is
a field then gl.dim(F|X]) =1 , and F{X1 is Noetherian.
Thus, by 2.1. i) and 0.18

w.gl.dim(S) = Sup'{w.gl.dim(KX) i xe X} =1
(Theorem) RIX1 = S is a semi-hereditary ring with properties
a), b), c), d), and e).
Proof: It follows from 2.1 i1i) and 1.7 that S has properties

n , »

a), b), and e). Let (I a -Xl) = s ¢ S be arbitrary. Since

R is von Neumann regular and the a; ¢ R , therefore each S(oa )

. n n i
is clopen. Thus S(os) = S( ¢ o, KXY = N (S(ca )) dis clopen

i=1 i i=1 i

i

so by 1.1 S has property d) (and therefore c)). The result now

follows from 1.7 iii).
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+
Representation of R{VG ™71 by sections of sheaves

In this section R will denote a commutative von Neumann
regular ring and AG an abelian linearly ordered group. The next lemma
will be needed to define and work with RIFG+'T1 , the ring of formal
power series with coefficients from R and indices from

+
G ={geG:g 3-0G} .

(lemma) Let U and V be well-ordered as subsets of G+ .
Then: i) U + V is well-ordered as a subset of G+

ii) U’Q V is well-ordered as a subset of G+ .

iidi) Fo£ any g ¢ G there are only finitely many u ¢ U and

v ¢ V such that u+v=g .

Proof: i) Let ¢ $ SE& U+ V . Let u; = the least element of
{fugUj;u+ve$S for some veV} . Let vy o= the least
element of {v e V : uy + v g S} . If uy + vy is the least
element of S we are done. Otherwise let u, = the least element
of {ueU:u+ve$lS and u+v w, +v;} and let v, = the
least element of {v e V : u, + v e S} . By the construction of
Ups Ups Vy s and v, we have u; <y, and vV, < Voo If

u, + v is not the least element of S we continue as above and

2 2

either obtain un + vn as the least element of S for some
natural number n or vi+l < vy for all natural numbers i .
The latter would yield a subset '{vi} of V with no least

element contradicting the fact that V is well-ordered. Thus

S has a least element so U + V is well-ordered.
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ii) Let U' =U X {0} and V' =V X {0} . Then UwvV cU' + V'

Since U' and V' are obviously well-ordered the result follows
+

from 1). A direct proof without reference to G is also easy.

iii) Suppose that there are infinitely many wu & U such that

u+ v =g for some vegV . Let u, = the least element of
{fueU: u+v=g for some Vv e V} . Let vy be the element
of V such that Uy + v, =8 - By supposition {fueU:u> uy

and u+ v =g for some v e v} + ¢ so we may choose u, its

least element and vy € V such that u, + Vv, =8 - By construc-

tion > so < v . Continui is wa u, and v,
u, > ug v, 1 ntinuing th y o u, 5

are defined for each positive integer i such that Ui > uy

v, < v, . Thus {v.} V contains no least element. This
i+l i i
contradicts the fact that V is well-ordered.

Q.E.D.

(Definition): The ring RTFG+TJ of formal power series with

. . . -+
coefficients from R and indices from G

Eq

a) RTTG+77 consists of all formal sums of the form I r, "X

+ . .
where the T, € R , the g, € G » N0 g appears twice, and

 {ga} is a well-ordered subset of G+ .

8a ha +
b) Two elements, £ r, - X and I s, X e RTG ] , are
equal iff
i) r, + 0 > there exists hB such that hB = 8, and
r, = Sg
ii) Sg + 0 - there exists g, such that g = hB and
r =8
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¢) (Remark) 1In view of 3.1 ii) any two elements of RYFG+'11 ,

g hy g
z r, X% and I s X , can be rewritten as & r& x ¥ and

g B

. : + o
) sL\X H respectively, where {g&} G is a common set of indices

that is well-ordered. Thus, given any finite subset F of RYTG+TT

we may choose  {ga} , a well-ordered subset of G+ such that

g
each element of F has the form I ra - x for appropriate

r, ¢ R . This will be done without comment when required. Since

, +
a union of infinitely many well-ordered subsets of G  need not
be well-ordered no similay simplification is possible when F is

infinite.
g g

+
In d), e), and f) let T r * X and & s X * ¢ RITG 71 .

o
8, g, g,
d) Addition: Let (T rd X )+ & sd X 7)) = Z(rd + sa)X

e) Multiplication: Let 4{h'}
. B8

8, 8, h

z r, X (e s, X 7y =1 tB X

each t =(Zr ‘s>.
B o
+g =h
Ba gu B

By 3.1 iii) the definition of any tB involves only a finite

sum. By 3.1 1) '{hé} is well~-ordered as a subset of G+ S0
hB +

z tg X 7 ¢ RITG T

f) Notation: 1) Since '{g&} is well-ordered we may assume

 {ga} + {g,} . Then let
B

where

without loss of generality that it is indexed by an ordinal in an
order preserving way. vThat is to say there exists an ordinal X
such that g : A > G+ given by a - ga for o < A 1is a strictly
monotonically increasing map. It will often be assumed without

comment that '{ga} is indexed this way.
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ii) If G 1is the group of integers then G+ = }\?O is already
well-ordered. Thus any element of RTrG+'V\ can be written in

the form 3 ri . X1 .

O<ic< /.\}o
iii) To conform with tradition, 1f G 1is the group of integers
then RFVG+17 will be denoted RITXT] . ‘
Throughout the section S will denote RYfG+7‘] and (X,K)
will denote S° . Clearly B(R) = B(S) . Thus by 0.16 R may
be identified with (X,k)* where k is the subsheaf of K such

that ﬁ\S : R > I'{X,k) 4is an isomorphism. Since R is von Neu-
R

mann regular (X,k) is a regular ringed space.

The analogue of 2.1 i) for (X,K) does not hold. In fact
it will be shown that there is a canonical epimorphism
K e—kXYFG+T_] and that this is an isomorphism if x dis an
isolated point in X ., Lemmas 3.1 and 3.2 are working lemmas for
studying this and other structural fécts about the Kx

g

: o g, &
(Lemma) For (I rd X ) eSS, SCz rd X

A
) = TG, )
o

Proof: I shall prove the equivalent fact:
o] gd int.
2z xr X % = (0(2(o, ))) :
a o

From the definitions (see 0.14) a point in X is actually a

maximal proper ideal in B(R) = B(S) and for M eX

Ea

Ky = R\TG—'—‘]'[./RT\'G-*-”H.M and ky = R/R.M . Let M e 2(°z r, X ).

g, + g
Then % r X RIT6¢'1I.M so & r X

8
Z(rae)x % for some e ¢M . Thus each r(’x(= r(‘le)g RM

g
¢ = (Tr X e =
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X(1-e) (see 0.14) is a neighborhood of M such that

M' ¢ X(1l-e) <> e ¢ M' . Thus M' ¢ X(l-e) » each r, =Tt R-M'
> each o (') =0-H eN(@©, ) . Thus Me (o, y)) Rt
a o T o o
Conversely let M ¢ (ﬂ(Z(cr ) ' . Then there exists a
o o

neighborhood X(1-e) of M (for appropriate e e B(R)) such

that M' ¢ X(1-e) - M' ef\(Z(or }) . In terms of sections this
a a ,
says that oe(M') =0 or.(M') = 0 for each T . Thus for
a
1 1 -— 1 1 —_— 1] ~
any M' ¢ X , o M') = or.(M ) oe(M ) = Or'e(M Y for each
o} o} ga
r « Thus ¥ = r e for each r’ . Hence . r * X =
a @ g a a
o o _ o + o, g
Z(rde)X (z r X Yee ¢ RITG'I)*'M . Thus M ¢ Z(oZ ra'X a) .
Q.E.D.
g g

(Lemma) let T raX a and I SaX “ ¢S and let x e X be

. . g - g -
arbitrary but fixed. Then (GZr a) (%) (OZSaX a) (x) iff

+ X
o

]

there exists NX , a neighborhood of =x , such that .

os’ for each o . X
o
N
X

Proof: Since jks : S > T (X,K) is an isomorphism it suffices to

show that ( ga)(x) = 0 4iff there exists NX , a neighborhood

Ovr X
[

of x , such that a. = 0 for each ra . The lemma now

follows from 3.1.
Q.E.D.
The algebraic structure of the Kx's is related to the
topological structures of X and K and these are related to
the algebraic structure of R . To establish these relationships

more precisely some concepts, related to 1.14, must be introduced.

From 3.3 to 3.8 T will denote a commutative ring, (Z,n) will
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denote T°, Z' an arbitrary Boolean space, and A an arbitrary

cardinal.

(Definition) i) 2Z' is A-extremally disconnected iff T is
clopen for each A-set U .

ii) z' is ektremally disconnected 1ff it is ﬁ—extremally
disconnected for each cardinal ﬁ .. That is to say Z' is
extremally disconnected iff T is clopen for each open UL Z'

iii) Z' has the A-disjointness property iff for U and V

A-sets in Z2' , UnV=¢>UnV=¢

iv) Z' has the disjointness property iff it has the u-disjoint-

ness property for each cardinal u . That is to say, Z' has the

"~ disjointness property iff for any open subsets of Z' , U and V ,

UNV=¢->00NV=29 .

v)_ _An ideal I din T is a i—ideal iff there exists ‘{ta} [
generating I such that l{td}] < A

vi) T dis A-self-injective iff for each A-ideal I and

fe HomT(I;T) there exists f' ¢ HomT(T,T) such that £f' 1= f .
vii) (Remark) T is self-injective 1iff it is ﬁ—self—injective
for each cardinal ﬂ .

viii) Suppose thét T 1is a Boolean ring and that T has the
partial ordering induced by its Boolean ring structure. That is
to say for s,t € T sf;.<—> s.t =5 . Then T 1is A-complete
iff Sup'{t&} e T (i.e. exigts) for any '{td} C. T such that

[{e M <r .



42.
The elementary relationships amongst the above concepts will

be found in lemmas 3.4 - 3.9.

(Lemma) Let Z' be A-extremally disconnected. Then 2' has

the A-disjointness property.

Proof: Suppose that U and V are open subsets of Zf such that
U dis a X-set, UNV =94 , yet there.exists xe UNV . Since
U is open find NX , a neighborhood of x , such that NX cT

Since x ¢ V there exists v e NX(\ V'g.ﬁ'm V . Since v e V and

NX and V are open there exists NV E}NX/W V , an open neighbor-
hood of v . Since v e U there exists ue UN NV . This
contradicts Un V= ¢ . Thus UnV=¢ . In particular this

will be true if V is a A-set.

(Lemma) Let Z' have the disjointness property. Then 2Z' 1is

extremally disconnected.

Proof: Let U be an open set in 2' . Then U and (2'-U)
are open sets in 2Z' such that UN (Z2' - U) = ¢ . Hence
ﬁ'f\(x - ﬁ) = ¢ . Thus, given x ¢ U there exists a neighbor-
hood N_ of x such that N (X - U) = ¢ . Thus N & b

so U 1is open and hence clopen.
Q.E.D.
The above proof can not be generalized to show that if 2!
has the A-disjointness property then Z' is ~A-extremally

disconnected since a set UC Z' may be a A-set while (Z' - 1)
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is not. In §7 it will be shown that for each cardinal u there
exists a Boolean space with the p-disjointness property that is

not J\@‘vextremally disconnected.

(Lemma) i) Let (Z,n) have the JX-extension property. Then

Z has the A-disjointness property.

ii) Let (Z,n) have the extension property. Then Z 1is

extremally disconnected.

Proof: i) Suppose that U and V are A-sets in Z such that

UNV =¢ yet there exists xe UNV . Define 1 e I'(Uv V,n)
by 1t(x') =0 for x'eU and (x') =1 for x' eV . Since

(Z,n) has the A-extension property find ' e T'(Z,n) such that

1 . = . T - .
Ty v =T ¢ T(x) 0 since x e U . Also t(x) 1 since

x ¢ V . This contradiction establishes that UN V = ¢
ii) This follows from i) and 3.5.

Q.E.D.

(Lemma) i) T dis A-self-injective -~ (Z,n) has the X-extension
property.

ii) Let T be von Neumann regular. Then T is A-self-injec-
tive <> (Z,n) has the A-extension property.

iii) Let T be a Booléan ring. Then Z has the A-disjointness

property <—> (Z,n) has the X-extension property <—> T 1is

- A-self-injective.
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Proof: i) Suppose that T is J-self-injective. Let U =
U(U,) where the U  are clopen in 2' and 1{Ud}| <A . lLet
o .

7 € I'(U,n) be given. Let I = {o & I'(Z,n) : S(o) ¢ some union

of finitely many U&} . Then I is a A-ideal in T(Z,n)
generated by '{wU‘} . Define f ¢ Hom (I, T(Z,n)) as follows:
o M (Zsn)

for any o0 e I let f(0)(x) = o(x)1(x) when x e U and £(o)(x)
= 0 when x é U . Since S(o) 4is a closed subset of the open
set U there exists a clopen set V 'such that S(o)& V& U

f(c)‘v is continuous because o and T are, f(o) 0

v v (Z-V) ~

so that is also continuous. Since V 1is clopen this establishes
f(o) € IT(Z,n) . It is easily checked that f£ is a homomorphism.

Since T = I'(Z,n) d1s A-self-injective find £' ¢ Hom (I'(Z,n), I'(Z,n))

r(Z,n)
such that f£' - f‘ . Then f£'(1l) ¢ I'(Z,n) . TFor any x ¢ U
find d such that x ¢ Ua . Then wU eI and £f'(D)(x) =
A Yy o= EM L)) - (E°Q -y NG =
a a

_ a
¢UdCx)T(x) = 1(x) . Thus £'(1) s =T -

Let (Z,n) have the. X\-extension property. Let I be an
ideal in T generated by '{éa}gg T where l{ea}| < X . Since
R is von Neumann regular we may assume without loss of generality

that the e, are idempotents. Let f ¢ HomT(I,T) be given.

Let U = U(S(Gea)) . U is a 2x-set, Define T : U->n by

o
T(x)==o%(gi)(x) where g ; S(Gea) . To see that 1 1s well-
defined suppose that x ¢ S(Geu) n S(OeB)' : Then Of(ea)(x) =

B8 T B.

B Gf(e )(X)-Oed(x) = Of(eg) . To see that ¢ 1is continuous on

B

Of(ea)(X) RS () = O'f(e Yy - e (x) = cf(ea.eB)(X) - Gf(es).ea(x)
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U note that if x ¢ U then x ¢ some S(ce ) and
a
Y

= S0 is continuous x and
T S(oea) Uf(ea) S(oea) N T tlnuous at

T e I'(U,n) .

Choose 1' € T'(Z,n) such that <’ L Choose t e T
such that o, =T . Define f' ¢ HomT(T,T) by f£'(s) = s.t
for any s ¢ T . Then for any ea, Gf'(eq) = Oeat = GEaT .

Thus if x e S(o_ ) TE1 (e )(X) =0, (O1(x) =0, (x)cf(e )(x)
o o o 0 o
= O'f(e )(X) and if x 4: S(Oe ) > Gf'(e )(X) = Oe xX)1(x) =0
a o o “

=0, (x)'of(e )(x) = Of(e )(x) . Therefore cf'(e ) = Uf(e )

a a o v o o
S0 f'(ea) = f(eu) . Since {eu} generates I this establishes
£ = f . Thus T is A-self-injective.

The converse was established in 1i).

iid) Since T is a Boolean ring each . for xe¢ Z 1is a
field satisfying the polynomial identity X2 - X=0 . Thus
each n, is the two element field '{Ox,lg} . In view of ii)

and 3.6.1) it suffices to show that.if Z has the JA-disjointness
property then (Z,n) has the Xx-extension property. Let 2
have the X-disjointness prope%g;.> :

Let U = E(Ua) where the Ua are clopen in Z and
l{Uu}] <X . Let 1t e I'(U,n) be given. By the introductory
remark, x ¢ U implies that T(X).= 0 or 1 . For each o
let Va = {x ¢ Ua : 1(x) = 0} and Wa = {x ¢ Uq : t(x) = 1}

Then Va and Wa are open complements in U . Thus they
a

are clopen subsets of the space U where Ua has the relative
o

Topology induced by Z . Thus, since the Ua are clopen in 2
so are the V and W . Let V=U() and W=10M) .
o o o © .

Then V and W are J)-sets in Z such that VAW =4 .

3
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Thus, by hypothesis, VA W= ¢ . Hence there exists a clopen
set C such that V&€ C and WAC = ¢ . Let ' = wc . Then
t' ¢ I'(Z,n) is such that <1’ p =T

Q.E.D.

The following lemma is crucial in applying the concept of the

~A-disjointness property to investigate the structure of (X,K)

(Lemma) Let. 2' have the A-disjointness property. Then

for any A-sets U and V , Un V = Tn vV

Proof: let U = U(Ua) and V = U(VB) where the Ua and

. o B
VB are clopen in 2' and l{Ua}i < X and l{V8}| <X

UnV g'ﬁ AV is true in general. If TAV= ¢ there is

nothing to prove. Suppose x e UnV . Let FX denote the

set of all clopen neighborhoods of =x . FX is directed under
2 and is a basis for the neighborhoods of =x . Let
d=N ¢ F . Observe that UANN = U{U AN ) and
x x x o« b
VAN =0U(V, "N ) so that UN N and VNN are )\ -sets,
X g B X : X X

Clearly x e (Un NX) NN NX) so that by the hypothesis there

exists an element, say x , in (Un NX)lﬁ (V0 NX) .

d
'{xd : d e FX} is a net on UN V converging to x . Thus
xe UNV . Hence UNV 2 UnV so
UnV = TNV .
Q.E.D.

The foregoing lemmas are summed up in the following propo-

sition about R and (X,k) .
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(Proposition) i) R is A-self-injective <-> (X,k) has the

~A-extension property.

ii) R is A-self-injective - B(R) is JA-self-injective.
iii) B(R) dis A-self-injective <= X has the A-disjointness

property.

iv) B(R) is A-self-injective -» U NV = U 6V whenever U
and V are A-sets in X .
v) If R is self-injective so is B(R)

vi) B(R) (as a Boolean ring) is A-complete <—> X 1is

- A-extremally disconnected.

vii) B(R) 1is ~A—complete - B(R) is A-self-injective.

Proof: i) This is just a restatement of 3.7.ii).

ii) Let R A-self-injective. Then by 3.7.i) (X,k) has the

~ A-extension property so that by 3.6.i) X has the A-disjointness

property. Since B(B(R)) = B(R) it follows from the basic de-
finitions (see 0.14) that X = X(R) = X(B(R)). Thus by 3.7.4iii)
B(R) is A-self-injective,

iii) As in ii), X(B(R)) X . Thus this follows from 3.7.iii).

Il

iv) As in ii), X(B®R)) X . Let B(R) be i-self-injective.
Then by iii) X has the M-disjointness property. The result
now follows from 3;8.

v) This follows from ii) since a ring is self-injective iff

it is ﬁ—self—injective for each cardinal u .

vi) This result is standard. It follows via a trivial altera-

tion of 22.4 in [9]. Thié alteration is required because the

definition of A-completeness is slightly different in this thesis.,
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vii) This follows from vi), 3.4, and 3.9.iii).
Q.E.D.
The next lemmagives some insight into the difficulties

involved in studying the algebraic structure of the Kx's .

(Lemma) i) There is a (canonical) epimorphism
+._
fX : KX - kgT—G 77} for each x ¢ X .
ii) For x ¢ X the epimorphism fX is an isomorphism if
x 1is an isolated point in X .

iii) If X dis infinite there exists =x ¢ X such that fX

is not an isomorphism.

Proof: i) TFor each x ¢ X define f by £ (o g ) =
— g x X @
Zoa_(x)'X % ., 1t follows from 3.2 that each fX is well-
. o

defined.

ii) Let x be an isclated point in X . Then {x} is

a neighborhood of x . Suppose £ (o g ) =0 . Then

X o
ra X
_— o int.
each o, (x) = 0 and, since {x} dis open, x ¢ ((\(Z(ca )D)) .
o _ o a
Thus by 3.1 (o g Y(x) =0 .
o
Zaa-X

iii) Let X be infinite. First I must show that since X

is infinite there exists an fY?\—set that is not closed.

Since X 1is compact and infinite there exists y ¢ X such

that {y} is not open. Thus X- {y} is not closed. By 1.17.ii)

find '{Va} , a disjoint family of clopen sets such that U(V ) =
[0

X - {y} =X . Since X - {y} is not closed there are infinitely

many A{Va} . Pick '{Ui} , a countably infinite sub-family of

'{Va} . Let U= U(Ui) . Then U is an jVﬁ‘—set. Since

1
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the Ui are open U is not compact and thus is not closed
in X . Thus there exists x € X such that x € U yet

A + ) i
X ¢ any Ui . Let g( ) : j\\‘ -~ G be a strictly monotoni-

cally increasing function and for each i let e, € R be such
. g.
that o, = wU . Then let s = (Zei'X 1) € S . Hence
i i g
£.(x) = Iy, (%)X =0 vyet 0,(x) 0 (by 3.1) since
i

X € U(Ui) = U(S(Oei)) . Thus fx is not an isomorphism.
i i ’
Q.E.D.
If each fX in 3,10 had been an isomorphism then each

errG+j1 = K, would immediately be an integral domain for which

the lattice of .ideals was linearly ordered under inclusion.

(Each kx is a field.) Thus each KX would have been an integral

domain with property e) so that S , by 1.17.ii), would have
been a ring with properties a), b), and e). However, it will
be possible to show that-undef certain circumstances each KX
is an integral domain (even though éome fX are not isomorphisms)
for which the lattice of ideals is linearly ordered, and that
under other circumstances S has none of properties a), b) and
e).

The following concept will be used to investigate the
algebraic structure of the Kx's .

&y

(Definition) Let s =% aaX e S . For any x ¢ U(S(oaa))

a
let valx(os) = the least element in '{ga : caa(x) + 0}y .
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Proof: i) Let Valx(c) =g

50.

&y &
(Lemma) Let s = (ZaaX )e S , t= (ZbaX ) eSS |,

U = U(S(Ga )) , V= U(S(ob )) sy o=0_ 5, T = o, and xeU

s
o a o a
i) valX(o) =g implies that there exists Nx , an open
neighborhood of x , such that y ¢ NX > Valy(c) i_gB .
ii) If G is the group of integers then valx(c) = gB implies

that there exists NX , an open neighborhood of x , such that

N =+ wval (g) =
ye N y( ) 8g

iii) Let z ¢ X and g ¢ G+ be such that for each open neigh-

borhood of z, Nz , there exists u g Nztﬁ U such that

Valu(o) =g . Then 2z ¢ U and valz(o) =g .
iv)  Suppose that x ¢ UNV . Then

valx(or) = Yalx(o) + valX(T) .
v) Let 2z ¢ S(t) . Then for any Nz , an opén neighborhood
of 2z , there exists Vv ¢ sz\ v .
vi) et z ¢ U . Then o¢(z) d1is not a zero—diviéor in KZ .
vii) Let z ¢ S(¢s) . Then for each Nz , an open neighborhood

of z , there exists u ¢ Nz such that o(u) dis not a zero

divisor in Ku

g Then oaB(x) + 0 . Since

R 1is von Neumann regular find NX , an cpen neighborhood of x

such that vy ¢ NX -> oaB(x) + 0 . By the definition of valy(c)

this shows that N - val <
Yy e N, y(O)_gB

ii) Let G be the group of integers. Then s may be written

. i , +
in the form s = Zai'X where the 1 ¢ G . Let

valx(g) =n . Let Nx = S(gan) - ('U (S(oai))) . Clearly NX
i<n
is a neighborhood of x such that y e Nx > valy(o) =n .

b
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iii) By hypothesis =z ¢ S(oaB) . Since S(gas) is closed
this yields oaB(z) + 0 so z ¢ U and valz(c)'_<__g8 .
Suppose valz(o) < g . Then by i) obtain NZ , an open

neighborhood of 2z , such that y ¢ Nz - valy(o) i_valz(g) < gB .

This contradicts the hypothesis that there exists y' ¢ N

z
such that val g) =
v (o) 8g
. e Y - =
iv) Let st = I <, X . Let valx(a) gy and valx(r) Bgr -
Then
‘8A < 8y qak(x) =0 and
g < gB. - obk(x) =0 . Also,
oau,(x) % 0 and GbB'(X) % 0 . DNote that
ocp(x) = (GZ aa°b6)(x) =3 oaa(x)'obe(x) .
' +g_=h
+g_=h &
gagsu o B n
Th = £ h < + d
us ocu(x) 0 or y ga, gB, an
ogc (x 0 for h = + Consequentl
e £ S8 T g q y
valx(OT) = 8y + 86' = Valx(c) + Valx(T)
v) This is trivial since by 3.1) S(¢) = v .

vi) Since 1 1is aribtrary it suffices to show that if v (z) + 0
then o (z) 1(2) + 0

Let z e §(r) . Since z e¢ U find g ¢ G+ such that

valz(o) g . By i) find Nz , a neighborhood of 2z , such

that vy ¢ Nz - valy(c) <g . Let N; be an arbitrary neigh-
borhood of 2z . Then by v) there exists y ¢ Nz(\ N; and

g' ¢ G' such that val () = g' . Since y e N, find

tH

+
g'eG such that valy(c)

g" . Hence (by iv)
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so that, by 3.8, U(S(Gaa))/\ U(S(oba)) = U(S(oaa)) P\U(S(oba))
a a a a

Thus it suffices to show that U(S(caa)) ﬁ\U(S(cba))Q;‘U(S(OCU)) .
But this follows immediately from 3.12.1iv).

Conversely, suppose that each KX is an integral domain
yet X does not have the X-disjointness property. That is to
say there‘exists a cardinal AT <A and families of clopen
sets, '{Ua’: a < A'} and .{Va ta < AT} such U NV =24 yet

ﬁ'r\v-# ¢ where U= U (U) and V= U (V) . In view
a<x' @ a<A’

of the hypothesis on G there exists a strictly monotonically

+
increasing function g ) : A\' > G . For each a < A': let
e, and fa e_R be such that wU =0, and wv =0,
a a a
gOt ga — —
Let s = 1I eaX and t =12I faX Let xe U ANV Since
UNnV=¢ it is easily seen that GS(X) Gt(x) = (0 . Since

x e U and x e V it follows from 3.2 that OS(X) + 0 and
ot(x) + 0 . Hence Kx is not an integral domain. This contra-

dicts the assumption that KX is an integral domain. Thus X

has the A-~disjointness property.

(Proposition) Let X be the smallest cardinal such that G
is a A-group. Then the following are equivalent:

i) S has property c).

vii) S has property d).

iii) B(R) is A-complete.
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Proof: ii) » i): This is obvious.
iidi) - 4i): Suppose B(R) 1is A-complete. Then by 3.9.vi)
X 1is JX-extremally disconnected. Hence by 3.4 X has the

~A-disjointness property so that by 3.14 each KX is an integral

Ba

domain. Let s = (I aa-X ) € S . Then by the hypothesis on A
1{g&}| < A so that U = U(S(oa )) is a X-set. Hence S(os) =T
is clopen in X . Thus,aby l.i, S has property d).

i) » idii): Suppose that X d1s not AX-extremally disconnected
(i.e. B(R) is not A-complete) yet S has property c).

Since X 1is not extremally disconnected find V{Ua sa <A},

a family of clopen sets indexed by some cardinal X' < X , such

that there exists x e U N (X - U) where U U (Uu) . For

a<i’
each o < A' let e, €5 be such that by T 0. - By the
. o o
hypothesis on X there exists a strictly monotonically increasing
-+ gu
function g( ) : A > G . Let s = T eX €8 . I shall

o<!

show that l.ann (s) dis not finitely generated as an ideal in

S . Suppose that there exists tl,...tn g S such that
n

l.ann (s) = ¢ S'ti . Let NX be a neighborhood of x
i=1 '

Since x ¢ (X - U) there exists vy ¢ Nx such that v ¢ (X - U) .
That is to say there exists vy ¢ NX such that cs(y) =0
Thus w ¢ l.ann (s) where W 1s a clopen. set chosen such that

y ¢ W and ol =0 and w is chosen such that ¢, =0o
W

Hence, there exists 1i'(l<i'<n) such that valy(ct y=0 .
i'

Since there are only finitely many ti's there exists

j(1<j<n) such that for each neighborhood, N; , there exists



3.16)

55.

y' e N; such that valy,(ot ) =0 . Thus by 3.12.1ii)
k|
valx(ot ) = 0 . Hence (by 3.12.vi) o, (x) 1is not a zero
J J
divisor in K.X . Since x¢ U, os(x) + 0 . This is a

contradiction since o (%) =0 (x) =0 ((x)0o (x)
0s tj's tj S

Therefore 1l.ann (s) is not finitely generated.
Q.E.D.
The following lemma will be used to investigate the ideal

structure of the K , .
XS

(Lemma) Let A be an ordinal and let s = (Z aaxga) e S

an x ¢ X be such that valX(os) = OG . That is to say .

g, = OG and oao(x) + OX . Then there exists t = (T bUX “) € S
such that

os(y)'ct(y) = 1y for all y e S(o )

o
Proof: Let N = S(oa ) . Since R 1is wvon Neumann regular this
o h
is clopen in X . Define t = (T qu u) £ S as follows:
Let o, (y) = (o (y))_l for vy eN and o, (y) =0 for
b a b y
o o o)
y ¢ N . Let h_ = OG . For some ordinal & assume that
Ob and h are defined for all ordinals u < 8§ in such a
u H
way that:
h
1 (z bx"es
. u<é H

ii) The smallest g ¢ G+ - {0} such that z a1, (y')caa(y') + 0

U
+g =
hugag

1

for some y' ¢ N is an upper bound to '{hu’: u <8} .
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If no such g exists, since '{hu tu <6} +'{gd T a <.X}

is a well-ordered subset of G , it follows that:

iii) 9 (y)oa (y) =1 for all y e N ; and
0 o :

iv) I oy (y)'ca (y) =0 forall ye N and any g >0 .
u a : h
In this case let t = ¥ b -X M. It follows from
p<(§
iii), iv), 3.2 and the fact that N is open that

at(y)'os(y)v= ly for all y e N .

If such a g does exist let

¢ (y) =(-3 oy (y)caa<y))'(0a ont

bs u o
h tg =g
and p<g§
. h
for y ¢ N and cb(y) = 0y for vy ¢ N . Then I qu s

u<&+1

satisfies i)vandbii) above with § + 1 din place of § .

Continue by transfinite induction until the g of ii) does no
exist.
Ba 8y
(Coroilary) let s=(aX D, t=(bX ") eS8, 8y > 8,
o o 1 2

x ¢ X , and the clopen neighborhood of x, NX s, be such that

v € NX a—valy(os) = gal, -gOL2 = val(ct) . Then there exists

1 —
s' ¢ S such that os,(x)os(x) = ot(x) .

t

e G,
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Proof: Since a < @) >0, (y) =0 for ye NX we may (by 3.1)

assume without loss of genezality that a, = 0 for a < oy
$imilarly we may assume that ba = 0 whenever o < o Let
(8,8, )
"= Ia X L Then val (o) = 0 . Thus, by 3.16,
find t' ¢ S such that ot,(x)cs”(x) = lX . Let
ga_gal

s' = (& ba-X )*t' . It may then be verified that

ogr (o (x) =0, (x)
The following result is standard.

(Corollary) Let R be a field. Then S 1is an integral domain
and the lattice of ideals in S 1s linearly ordered. That is
to say, if I and J are ideals in S then either I <& J or

JC&I

Proof: Since R is a field B(R) = {0,1} so X(R) = {x} where

x = {0} . Then k_= (R/R°0) = R and K=(S/5.0) =5 . We
shall show that KX is an integral domain with a linearly ordered
lattice of ideals. 8ince X contains only one point it clearly
has the disjointness property so that by 3.14 and 3.9 it is an
integral domain., To show that the lattice of ideals in KX is
linearly ordered it suffices to show that for any s,t € S such

. . : . C.
that cs(x) and ot(x) + 0 , either i) KXOS(X)_~ Kxct(x) or

ii) Kxot(x) - Kkos(x) .

MY At
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Since X 1is discrete there exists g, and gB € G such that

valX(os) =8, and valx(ot) =g Suppose 8, j_gB . Then

g -
by 3.17, since {x} is open, there exists s' e S such that
os,(x)'as(x) = ot(x) . Thus i) holds. If 8g < 8, then simi-
larly ii) would hold.

Q.E.D.

(Theorem) Let R be a finite direct sum of fields. Then S
has properties a), b), ¢), d), and e), S is semi-hereditary

and w.gl.dim(S) <1 .

Proof: Since: R 1is a finite direct sum of fields B(R) and
hence X = X(R) are finite. Since X dis Hausdorff this implies
that each x e X is isolated. Thus by 3.10 each K _= ké—rG+'1’\.
Since R 1s von Neumann regular each kX is a field so by 3.18
each KX is an integral domain for which the lattice of ideals
is linearly ordered. Such domains have property e). Since X
is finite it is extremally disconnected. The theorem now follows
from 3.9, 3.15, and 1.7.
Q.E.D.
The next lemma will allow 1.13 to be used to investigate

the algebraic structure of - § .

(Lemma) i) S 4is semi-prime.

ii) For each x e X Kx is a local ring.
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Proof: i) This is obvious since R is semi-prime.

Ey &
il) Let x e X and s =( aaX Yy and t = (Z baX ) € S be

such that os(x) + ot(x) = lX . Then o, (x) + oy (x) = lX where

-

o o

8, = OG so either oao(x) + OX or cbo(x) + 0X . Suppose with-

out loss of generality that o, (x) + 0 . Then valx(ca) = 0G 80
o

that by 3.16 ca(x) is a unit in KX . Thus KX is a local ring.

Q.E.D.
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+
§4 The structure of R when R[[G 1] is not

coherent and G % I , the integers.

In this section R will denote a commutative von Neumann
regular ring, G a linearly ordered abelian group that is mot isomorphic
to the additive group of integers, and S the ring RFFC+“TT . (X,K)
will denote S° and as in §3 k , a subsheaf of K , is chosen sugh

‘that 7&8 : R > TI'(X,k) 1is an isomorphism.
R

4.1) (Lemma) R dis a finite direct sum of fields iff X dis finite.
Proof: Let R be a finite direct sum of fields. Then clearly
B(R) is finité'so that X = X(R) = the set of maximal proper
ideals of B(R) is.also finite.
Now let X ='{xl,...xn} be finite. Thus each '{xi} is
clopen in X so that it is easily checked that the map
n - n

R » T ok given by r -+ I o _(x,) is a ring isomorphism.
i=1 i i=1 ° 7

Q.E.D.

The structure of § when R is a finite direct sum of fields
was discussed in 3.19. Therefore it will be assumed for the rest
of this section that X dis infinite. It will be shown that S
is not semi-hereditary, w.gl.dim(S) > 1 , and S has none of

properties a), b), and e).

I~
N
~

(Lemma) There exists '{Ui s i s_ﬁ?o } , a disjoint family
of clopen sets in X , such that there exists x e U - U where

U= ? (Ui) .
i
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Proof: This was established in the proof of 3.10.4i1).

Q.E.D.

(Lemma) There exists g( ) : }g?o - G+' , a strictly monotonically

increasing function, and g € G such that each 8 <g .

+ . .
Proof: Either G - {0} contains a least element or it does not.

First suppose that it does contain a least element, say 8,

Then, by the group structure of G ={geG:g>h} contains

Th
e ‘- A
a least element for any h e G . For any i e (\ , let 841
be the least element in Tg . The map () :3\9; > G is
’ i
not cofinal for if it were then + 1 +-i_gi would be an isomor-

phism between the additive group of integers and G . By construc-
tion the map i - 8, is strictly monotonically increasing.

+
Now suppose that G - {0} does not contain a least element.

Pick g and g; € G such that 0 < gé <g . For any 1 ¢ jyi
3 - 1 3 s 2 A\l - t 1
assume that g; 1is defined and pick Bi41 such that 0 < Biip < By
= g - g . .
Let g4 g g; - Then each 8 < g and the map i - g; 1is

strictly monotonically increasing.
Q.E.D.

For the rest of this section let g , the 8y U , the Ui s

and x be as described in 4.2 and 4.3. For each 1 ¢ J\Rg
g

let e, € R be such that o =y . Let s. ==Z%e.'X > and
i e, U, 1 i
i i
52 =x® . Let I = S.s1 , and J = S.s2 . Then I and J
are principal ideals in S . We shall show that I ™~ J is not

finitely generated. Lemma 4.2 asserts that since X is infinite
it contains a point x that, in a fairly particular way, fails
to be isolated. I shall use this fact to show that if I N J 1is

finitely generated then there exists an element t € S such that
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some infinite subset of {g - gi} is a subset of its set of
indices. Since such a subset contains no least element this

would contradict t e S .

(Lemma) INJ is not finitely generated.

Proof: Suppose that IMJ dis generated by '{tl,...tn}g; s .

By 1.3 for each x e X (INnJ) =1 NJ so that
X X X

'{ot (x),...at (x)}_ generates Ix/ﬁ JX . Suppose that vy e some

1 n
U, . Then valy(osl) =8 8= valy(osz) and U; 1is a neigh-

i

borhood of y so that by 3.1 and 3.17
I nJ = (Ko . N (Ko =Ko .
y y ( y Sl(y)) ( g 82(y)) v 52(y)

Hence there exists an 1i' (1 < i' < n) such that wval (ot ) =g
il

Since x ¢ U and there are only finitely many ti's there exists

i (1 < j < n) such that for each neighborhood N of x there
] I be

exists y ¢ NX such that Valy(ct ) =g . For each positive
- m

integer m M (X—Ui) is a neighborhood of x so there exists
‘ i=1

i >m and y_ e U, such that wval (o ) =g . But t, =

m — m i v t. J

m m j
t.sl for some t £ S since tj e I = S.sl . Then

valy (ot) = valy (Gt.) - valy (cs ) =g - 84 for each m .,
m m 3 m 1 m

Thus {g - g; m EJ\EZ} is a subset of the set of indices for
m .

t . Since it has the inverse order of an infinite well. ordered-
set it is not well-ordered. This contradicts t € S and thus
establishes that I N J 1is not finitely generated.

Q.E.D.
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(Theorem) S is not semi-hereditary, w.gl.dim(S) > 1 ,

and S has none of properties a), b) and e).

Proof: It follows from 4.4 that S has neither property

a) nor property b). The rest follows from 1.13.

Q,E.D.
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55 A condition for RI{X771 to be coherent

In this seFtion R will denote a commutative von Neumann
regular ring that is _f\i -self-injective and S will denote RU{X1
Let (X,K) denote S° and choose k , a subsheaf of K , such that

P\s : R~>T(X,k) is a ring isomorphism.
R

Since R 1is f\i ~self-injective it follows from 3.9 that
(X,k) has the ‘;<i ~extension property, X has the fYﬁ ~disjointness
property and B(R) is j\a -self-injective. Since the additive group
of integers is an \fQi -group but not an j\z —group it follows from
3.14 that each K is an integral domain. These facts and the results
of §1 will be used to show that for each x € X the lattice of ideals
of Kx is linearly ordered so that KX has property e). It will
then follow from 1.7 that w.gl.dim(S) < 1 and S has properties

| a), b), and e).

!

5.1) (Lemma) i) (X,K) has the _fYa -extension property.

ii) (X,K) has the unique j\a -extension.property.

Proof: i) Let U be an fﬁa -set and let T & I'(U,K) be
given. Let i > 0 be a fixed but arbitrary integer. Define

T, + U=+ k as follows:. For xe X find s = (& a, -XJ) e S
i X 3,x

such that 1(x) = ¢ (x) and let Ti(X> = (oa Y(x) . It
®x i, x
follows from 3,1 that Ti(X) is independant of the particular
s, € S such that 1(x) = o (x)
X
Temporarily fix arbitrary x e U . To see that each T,

is continuous at x note that since Os is continuous at x
X
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there exists qug.U , a neighborhood of x , such that

yeN »1(y) = crsx(y) . Hence y e N > 1,(y) = (Gai x) y) .
’

Since o, is continuous at x so is T, Since (X,k)

1,

P

X
has the jk\\ ~extension property find a; € R such that

[0
a

*lu
>0 . Let s =712 ai'X

Perform the above construction for each integer

Il
-~

i

Now I shall show that O = 1 . Pix arbitrary x e X

U

and choose NX§; U a neighborhood of x such that

ysNX+r(y)=oS (y) . Thus yeNX+(0a Y(y) = (o ) ()

. a,
x i,x i,y
for all 4 . Thus o = T, = (o ) for all i
2y iy %i,x

N X ’ N

X X
Hence by 3.2 1(x) = os(x) . Since x e U was arbitrary this
establishes Os = 1 , Thus (X,K) has the _FQ: -extension

U
property.

ii) Note that for any o ¢ I'(X,K) S(o) = V for some f*h -
set V .,
\§> .
Let U be an J\X, -set in X and let Ogs O, € rX,K) be

such that o . Find an Jx?, -set V such that

S(cs - g, ) = V . UnV= ¢ since 0 Therefore

U U

TNV = ¢ since X has the }*ﬁ ~disjointness property. Thus

o] =0
*lv Yo

. In view of i) this shows that (¥X,K) has the

unique JYﬁ —~extension property.

Q.E.D.
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(Lemma) i) Each KX is an integral domain.

ii) For each x e X the lattice of ideals in K* is linearly

ordered.
Proof: i) This was established in the opening remarks of this
section.
ii) It suffices to show that for any s,t ¢ § and x g X

. c - . .
either KXGS(X)__ KXct(x) or Kxot(x) __Kxcs(x) . Fix arbitrary
s,t € S and let I = S8.s +S5.t . It clearly suffices to show

that for any x ¢ (S(os)(\ S(ct)) IX is either generated by
cs(x) or by ct(x)

i i

Suppose s = % ai-X , t =32 bi'X , V= U(S(ob )) and
i i
U= Q(S(oa’)) . U and V are ~>(ﬁ -sets. For any integers
i i
m>0 and n >0 let Cm,n = (S(oa )y - q (S(ca')))(ﬂ (S(Gb )
m O§}<m i n
- U (S(s, ))) . Since R 1is von Neumann Regular each. C
0< b. m,n
<j<n 3j
is clopen in X . Let W = {xe UnV:val (c) < val (o )}
s X s x Lt
= m s . [
and Wt {xeUNV valx(ot) :_valx(cs)} Then
WS = U(Cm,n) and Wt = U<Cm,n) so that Ms and Wt are
O<m<n<e 0<n<m<e

\}Vﬁ -sets., Clearly ws N wt = ¢ and wS U w£ = UnV . Thus

Wstﬁiﬁt = ¢ (X has the f*\ disjointness property) and by 3.8
Ws U Wt = WS V] Wt =UnNnv=unvs= S(Os)(\ S(Ot) . Let
X € S(os){\ S(ct) . Then x belongs to exactly one of W; or

. i W .
wt First suppose x ¢ s For any y ¢ WS y € Cm,n

for some integers m and n such that 0 <m<n . Cm n is
-7 3



w

67.

- a neighborhood of y such that y' e Cm 0 implies that

>

Valy.(ds) =m<mn = Valy.(ct) . Thus by 3.17 there exists
s' ¢ S such that os,(y)os(y) = ot(y) . Hence os(y) generates

I
Y

set it can, by 1.17,be expressed as union of a countable disjoint

. , . P
Kygs(y) + Kyot(y) for any vy ¢ Ws . Since ws is an j*\l

family of clopen sets. Since x ¢ Wg it now follows from 1716

that os(x) generates IX . Now suppose X ¢ Wt . It similarly
follows that ct(x) generates IX

Q.E.D.

(Theorem) S has properties a), b), and e), and w.gl.dim(S) < 1 .
Also, the folléwing properties are equivalent:

i) B(R) is }\a -complete.

ii) S has property c)

iii) S has property d)

iv) S 1is semi-hereditary

v) S is coherent,

Proof: By 5.2 each KX is an integral domain whose lattice of

ideals is linearly ordered. Such rings have property e). Thus
by 1.7 S has properties a), b), and e) and w.gl.dim(S) <1 .
i) <—> ii) <—> idii): Since the additive group of integers

is an, j\ﬁ ~group but not an fk? -group this follows from 3.15.

iv) —> wv): This is trivial since every semi-hereditary ring is
coherent.

iii) —> iv): This follows from 1.7.iid).

v) —> ii): This 1s trivial sinée every coherent ring has property c).

Q.E.D.
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§6

A necessary condition for RI[XT) to be coherent

In this section R will denote a commutative von Neumann
regular ring that is not jYﬁ self-injective and S will denote
RITX1 . (X,K) will denote S° and k the subsheaf of K such

that TRS : R+ TI(X,k) is a ring isomorphism. Since R is not
R

f&f -self-injective it follows from 3.9 that there exists U , an

j\ﬁ -set, and T € I'(U,k) such that Tt can not be extended to a

global section. U and <t will retain this meaning throughout §6.

[e)]
-
~—
N
&
=
=]
j)
~

i) There does not exist t1' ¢ I'(U,k) such that

ii) Suppose that Y ¢ U is a set of points such that for any

x ¢ Y there exists T, € Iy v {x},k) such that T =T

U

-0

Then there exists 1' ¢ I'(U v Y,k) such that T'IU =T

iii) There exists x € U - U such that there does not exist

v e I'(U v {x},k) such that r = T
x x

U
Proof: i) Suppose that such a 1' exists. Then since U is
closed in X there exists <" ¢ I'(X,k) such that 1" 7= T'
Hence T"IU = 1 . This contradicts our choice of T .

ii) Note that if x ¢ U and T T; e T(U v {x},k) are such

1

that = then TX = TX since x ¢ U and k is

it
-

*ly U
Hausdorff. (It follows from 0.15 and 1.1) that k is Hausdorff).

Define ' : Uu Y >k by t'(u) = 17(u) . for u e U and
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T'(x) = TX(X) for x e Y ~-U . Clearly ' g =T It must

now be shown that +t' is continuous. If x'e¢ U then 1' is con-

tinuous at x because T 1s and U 1is open in X . Let
xe¥Y~-U . Find a_ € R such that 1'(x) = o, (x) . Thus
X
TX(X) = 1'(x) = o, (x) has a neighborhood basis consisting of
X

sets of the form o, (UX) where UX .is a clopen neighborhood
ps

of x . Thus, since T is continuous, there is a clopen
i ¢, N ' - .
neighborhood of x, % ° such that rX(Nx{W (U v {x}H) __oaX(NX)

Hence v ¢ Nx/\ U implies that 1(y) = TX(Y) =0 (y) . Then

for any ye YN NX o, is a continuous map

X

(U v {yHh n N)

extending T . Since y e Un NX and k 1is Hausdorff

Un N
X
it follows that <'(y) = 1_(y) = o, (y) . Since o, is continuous
Y X x
this establishes that +t' 1is continuous at x . Thus

' e T(Uv Y,k) .
iii) Suppose that for each x ¢ U there exists T, € T(U v {x},k)

such that T =T Then apply ii) with Y = U and obtain
U .

' e P(ﬁ,k) such that =<' U = 1 , This contradicts i). Thus
the lemma is established.

Q.E.D.

For the rest of this section let x ¢ U be such that T can

not be extended to an element in T'(U v {x},k) . Since U is an
SX\-set find (by 1.17) {U, : i > 0 is an integer) , a dis-
joint family of clopen sets, such that U =.U(Ui) . For each 1

1
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Oe = WU

and ri e R such that
i i

cr.(x) = r(x) when x ¢ Ui and or;(x) = 0 when x & Ui .

i i

The e, and r, exist since the Ui are clopen. Let s; =

£ r,X and s, =1 eX Let I =S.s, and J = S.s, .-
i 2 i 1 2

I and J are principal ideals. It will be shown that I NJ

is not finitely generated by showing that I F\Jx = (I f\J)X

is not.

(Lemma) Let c¢,,c

1’72

e S

1 1

Then there exists Ty e T(U v {y},k) such that Ty

X

» the integer n > 0 , and ¥y e U

be such that o, (Y)GS (y) = o, (y)oS (y) and valy(oC ) =n .

2 2 1

i
=

U

Proof: Find N s, a neighborhood of y , such that
ZL00L v ,

1] . 1 - 1 t =
o, (v )GS ") 9. (y )OS (y'Y and valy,(oC ) n for any

1 1 2 2 1

e N Let ¢, =% a Xi and | =Zb xt Let y'eUNN
vy € y 1 i €2 i ) yoE X
be arbitrary but fixed., Find m such that y' ¢ Um . Since

Um is a nedighborhood of y' it follows from 3.1 and the defini-

. 1 —_ t
tions of the g and e that g (y') = (o m)(y Y and
1 r X
_ m
o. ') = (o Y(y') = o.m(y') . Hence
] X
2 m
e X
m
(o Y(y') = (o Yy') = (o s Y'Y = (o ACAD
i+m €151 €% i+m
L a.r X L b.*X
. “im A1
i i
T — 1 : 1 '
Thus (o ar Yy = oy (y') . Since y' ¢ S(o a )
n m n n

(valy.(cC ) = n) and (') = o (v') this establishes

1

m



Proof: Since s_°s
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1]
oy "

t(y') = —5L . Since y e U P\Ny is arbitrary and

o, (0N
1l

ye U F\Ny this implies that 1 can be extended to a member
Ty of T( v {y},k) by setting Ty(u) = 1(u) for uel

oy (¥)
_ n
and Ty(y) = —

o, )

n

(Lemma) IX a JX % 0

e I NJ therefore o (x)os (x) =

172 1 )
1o} (x) e I NJ) =1 nNJ . Thus it suffices to show that
5.8 x x X
172
o (®o (x) + O . For any ye U, y e some U, so
1 s, i

valy(cS Yy =1 = valy(oS ) and by 3i12.Vl) o

(o, &) +0
1 ) 2 2

1

Since x ¢ U and any section has closed support this establishes

osl(x)osz(x) + 0o .

Q.E.D.
Let tlsl’ "'tnsl ¢ I J be such that each of
o, XNo_ x), ...0. (x)o (x) 1is none zero. It will be shown
t s ot s
1 1 n 1
in lemmas 6.4 - 6.6 thaf the elements O, (x)oq (=), ERLN (x)cs (x)

1 1 n 1
do not generate I N J - .
- X x

For each integer m > 0 let

Vm = {y ¢ X : for some j(1 <j <m) Valy(ot Y =m+ 1 and
. N
valy(ot ) <m holds for no i (I <1i <n)}
i —
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Since there are only finitely many ti's it follows from 0.15

that each Vm is clopen.

Let Y =U v (U (UE)) . It follows from 6.2 and 6.1.ii)
m
that T may be viewed as a member of T(Y,k) . Let m >0 be

an integer. Since ﬁ'r\Vm is closed T may be viewed

UAnvV
m

as a global section. Pick fm € R such that (cf Y(x) =
m

T A Vm)(x) for x ¢ Vm and (Gfm)(x) =0 for x ¢ Vm

(

Pick v € R such that o, = wv . It may be verified that
m m

for any integer i > 0 and m > 0

0f Ge. = (va >Ipu. B wV (Twu.) - Ov ‘Gr.
m i m i m i m i

so that fpe, = v r. . This may be used to show that
. i m i

(z fmxm)(z eiXi) = (3 vam)(Z riXi) . let s, = (z fmxm)(z eiXi)

3
. Then s, e INJ . Thus o () el 0OJ
3 s X X
3
It will be shown in lemma 6.5 that o (x) d4s not in the ideal
3

generated by the O, (x)oS (X)y oo 9. (x)cS &) .

1 1 1 1

(Lemma) Let N be a neighborhood of x . Then there exists

an integer m > 0 such that NN UNV_ + ¢ ,
- X m

Proof: Suppose that for each m NXKW U F\Vm = ¢ . Let

M= {yeX: valy(ot ) =0 for some i (1 < i <n)} . Since
i



o

6.5)
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there are only finitely many ¢t,,

i'sg ° M is clopen. It follows

from 6.2 and the choice of x that x é M ., Let N; = (X~M) N Nx .

Then N; is a neighborhood of x such that valy(ct ) = m fails,
i
for each integer m > 0 and i(l < i <mn) , to hold. Since
N; N U is open it thus follows from 3.12.v) that N; NnNUCcC Z(ot )
i
for each i (1 < i <n) . Clearly X - ﬁ) N NX Q'Z(os )
1

Thus UN (X - U AN <Z(c. o ) so that by 3.1 o. (x)o_ (x) = 0
X ti Sl ti Sl

for each 1 (1 <1 <mn) . This is contrary to the hypothesis so

the lemma-is established.

Q.E.D
n
(Lemma) O (x) ¢ 'Z kXot'(x)cS (x)
3 i=1 i 1
Proof: Suppose that the lemma is false. Then find Al, ..._An e S
and Ng , @ neighborhood of x , such that ¥y ¢ NX implies that
n
o (y) = 2 (o, (Mo, (y)o_ (¥y)) . By 6.4 find an integer m
s . A t. s
3 i=1 - "i i 1
and a vy ¢ NX/\ Un Vm . Then vy ¢ Uj for some j so by 3.12.1iv)

and the definitions of Sy and Sy and the above equations it

follows that

+ j = inf{v ‘ H i = m |
m+ j valy (083) Z_lnf{valy (oti osl) l<i<n} =m + 1 + j

This contradiction establishes the lemma.

Q.E.D.
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(Corollary) i) Ix(w JX is not finitely generated
ii) KX is not coherent.

11i) If B(R) is X, -self-injective then K is an integral

domain that is not coherent.

iv) INnJ is not finitely generated.
Proof: i) This follows immediately from 6.5.
ii) This follows immediétely from 1i).

iii) This follows from ii) and 3.15.
iv) There is an epimorphism S - KX given by s - Os(x) . The
image of I N J wunder this map is (I f\J)x = IX{\ JX . The result

. now follows from i).

(Theorem) i) S Thas neither properties a) nor b).
ii) S does not have property e).

iii) S 4is not coherent.

iv) § 1is not semi-hereditary.

v) w.gl.dim(S) > 1

Proof: i) This was established in 6.61iv).
ii), idid), div), v): These now follow from 1), either directly or
via 1.13.
Q.E.D.
We now construct a von Neumann regular ring R"  such

that R"{{X7] has properties c) and d) but not property a).

Let X' be an infinite Boolean space. Find x ¢ X' and an

f\%—set U in X' such that x e U~ U . Let S' be the
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simple GF(4) sheaf over X' where GF(ZH) is the field with 2"
elements. Let S" be the subsheaf of S' such that S; = GF(2)
and S; = S; for x + y . Let R"=TX',S") . It is easily
seen that S" does not have the j\a\—extension property so that

by 3.9 and 6.7 R"({XY does not have property a). If X' is
chosen to be f\a ~extremally disconnected it follows from 3.15 that

R'TTX1}  does have properties c) and d).
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§ 7
Example of a Boolean ring R that is
A —self-injective but is not j\ﬂ ~complete.
In this section let ) be a fixed but arbitrary Cardinal
such that A i_.}e} . Identify ) with the least ordinal of cardinality

A

In this section we construct a Boolean space X with the

A —disjointness property that is not f\h —extremally disconnected. R
is constructed by letting R = T'(X,k) where GF(2) is the two element
field and k d1s the simple GF(2) sheaf over X . It follows from
3.9, and 5.3 that R 1is the required Boolean ring, w.gl.dim(R{fX77NL 1

~RITX711 has properties a), b}, and e), yet RITX1l has neither»property
c) nor d).

X 1is constructed to be a one point union of the form
X= (v W/P~q) where Y and W are Boolean spaces and the fixed
points pe Y and q ¢ W are identified. Y and W are constructed
such that they have the A—disjqintness property and ¢ ¢ Qﬂw(V) - V)
for any A~-set V in W . This results in X having the jA-disjoint-
ness property. Y and W are also constructed such that gq 1is not
isolated in W and theré exists an j\i -set N din Y such that
P e QJY(N) - N) . Thus X can not be j\ﬁ -extremally disconnected
for N is an j\a ~set in X such that q ¢ QJX(X~dX(N))r\c!X(N) S0
that ch(N) is not open in X .
First the space W 1is constructed. If W =»(A + 1) then

g = A would be as described above., However .(A + 1) does not even

have the A-disjointness property. Let S =r1((} + 1),5) where § is

{
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the simple GF(2) sheaf over (A + 1) . W is actually constructed to
be X(T) where T turns out to be the X—completion of the Boolean ring
s .

Let Q be the complete ring of quotients of § . Q 1is
a self-injective Boolean ring so that by 2.4 of [6] it is complete. For
any subset F of Q let VY F denote the least upper bound of F in..Q
and let AF denote the greatest lower bound of F in Q . For any,
g,r € S let qvyv r denote \k{q,r} and q A r denote A{q,r} . The
following facts will be ﬁsed.

=T

eSS, 1, <1, <> TLV T, =T, <—> LA T2 1

2

<—> T,'1, = T

1Ty <> S(1y) & 8(r,) <> 2(1,) & 2(7))

1
ii) Let I be an index set, '{aa : ae I} be asubset of Q and b e Q
Then \/{aa Vb:ael}= (V{aa :oe Il)vb . Also, 1 —‘V{aa o e I}

= A{1 - aa s o e I} .

iii) Let I and J be index sets and '{aa g P OE I and B8 € J} be a
b
subset of Q . Then
/{a :ae I and e J} = Vvivia taelI}:Bed .
\VA 0,8 nd B V{vi o, 8 e I} : B }
iv) Let r ¢ Q . Then there exists subsets of S,F and F' , such

that r = VF =AF"'" .

The firsf of the above facts is obvious and the second and
third are from [8]. The.fourth is from 2.4 of [6j.

Let T = {t ¢ Q : there exists '{ra : a <A}& S such that

e=Vi{r : o<}



7.1) (Lemma) Let '{tB : B <A} be a subset of T . Then

\'/{tB:B<.>\}éT .

Proof: By the definition of T there exists {t _: a < A and

a,B

B < A} , a subset of S , such that tB =\f{Ta o < A} for

s B

each 8 < A . Thus V{tB B < A} = V{V{Ta o <A} B <A}

B
b
= V{Ta gt @ <A and B <A} eT

Q.E.D.

In particular if s,t € T then s yt e T

7.2) (Lemma) Let‘{Ca : o <A} be a family of closed subsets of
(A + 1) such that, for each o < A, A ¢ C, - Then there exists
C , a clopen subset of (X + 1) , such that Ca £ C for each

a < A yet A ¢ c .

Proof: For each o < XA let da be the least upper bound for

Ca in the ordinal A + 1 . Since each Cu is closed we have

each d <A . Let d be the least upper bound for ‘{da o <A}
It follows from the choice of the ordinal A that d <X . Let
C=1{8 ¢ (X + 1) : 0 < B <d} . Then C 1is the required clopen
subset of (A + 1) .

Q.E.D.

7.3) (Lemma) Let .{Ta : a < A} be a subset of S such that

Ta,(k) = 0 for some a' < A . Then (dea: a <A} e T .
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Proof: Let L= {peS:p i_each Ta} .

It follows from fact iv) that VL = A{Ta: o < A} . it remains

to show that VL ¢ T . Let U= U (s(p)). It follows from fact

i) in the opening remarks to this gzgtion that U'EZS(TG,) . Since
S(Ta,) is closed and does not contain X it follows that ]U] <A

Thus there exists A{Na o <A} , a family of clopen subsets

of (A + 1) , such that U= U (Na) . It thus follows from
. o<A

fact 1) that {0 e S : o > each y } ={oc € §: 0 > eachp e L}
o
This establishes via fact iv) and the definition of T that
/\{Ta: o < A} =VyL = V{wN ta<AleT
o

Q.E.D.

(Lemma) Let ’{TU : o < A} be a subset of S such that Tu(k) =1

for each o <X . Then f\{ra: o <Al e T

Proof: By hypothesis '{Z(ra) :a <A} dis a family of closed

subsets of (A + 1) such that for each o < A X ¢ Z(Ta) .

By 7.1 find C , a clopen subset of (X + 1) , such that each

Z(Ta).g C yet A i C . Let D= (x+ 1) -C . Then for each
= . | . B 1 . = .

Ty 0 Ty (Ta wc) v ¥y Each (Tu wc)(k) 0 Thus by

7.3 and the comment after 7.1

A{Ta o <A} = A{(ra-wc>\¢ Pt @ < A} = (YﬁTa'wi a<AHD vV yyeT.
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7.5) (Lemma) Let A{Ta : o <A} be a subset of S . Then

/\{Ta:a<_>\}eT .

Proof: This follows immediately from 7.3 and 7.4.

Q.E.D
7.6) (Lemma) If te T then 1 -te T .
Proof: Suppose that .{Ta : a < A} is a subset of S such
that V{r :a < Al=t . Then
[0 : .
1-t=1- (V{Tu s o <Al = N1 - T, o <A} eT
Q.E.D

~

.7) T 1is a A-complete Boolean ring. Clearly S 1is a subring of T

Proof: It is well known that this follows from 7.1, the comment

immediately after 7.1, and 7.6.

Q.E.D.
et W= X(T) . Let f : W > X(S8) be defined by £f()
= MmN S for each maximal proper ideal M din T ., Then £ is
a continuous onto map. (This is a well known fact about Boolean

algebras. The map f 1is actually the function X(T) = X(S)
induced by the inclusion map S - T . See §11 of [9].) Since
T is A-complete, W dis A-extremally disconnected, and thus

W has the A-disjointness property.
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(Lemma) There exists exactly one q € W such that £(q) =X .

Proof: Since f d1is onte it suffices to show that at most one

such q exists. Under the identification (A + 1) = X(S) the
point A corresponds to the ideal Mi = {0 €8S : o(x) = 0} .
(See 0.15.1iii.) Thus it suffices t§ show that the elements of M
are uniquely determined where M is an ideal ig T such that

A

subset of S

MAS =M . Let t = V{Ta : o < A} where ‘{Ta o< A} ds a

First suppose that for each a < A A ¢ Ssz) . Then by
7.2 find C , a clopen subset of (A + 1) , such that each
S(t,)) ©C yet A4 C . Then Voe M, M . Since
t=vV{r, o <A} <y, we have t = t'y,eM

Now suppose that there exists a' < X such that X e S(ra) .
Then t ¢ M for if t ¢ M we would have Tyt = (Ta,'t) eMNS
= gl . This would contradict Ta‘(x) + 0

Q.E.D.

For the rest of this section let ¢ denote the unique point

in W such that £(q) = A

(Lemma) i) q dis not isolated in W .,
ii) There does not exist a X-set V in W such that

g e (el (V) - V) .

Proof: i) Suppose that q is isolated in W . Then W - {q}

is compact. Since f : W -+ (A + 1) is onto and f—l(x) = {q}

it follows that £(W - {q}) =x (A + 1) . Thus X is a
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compact subset of (A + 1) . This is a contradiction since A
is a limit ordinal.

ii) Suppose fhat the lemma is false. Thus there exists

'{Ca :a <A} , a family of clopen subsets of W , such that

for each a <X q & C vyet q ¢ clw( U (C)) . Then each
a o< o

f(Ca) is compact in (A + 1) and thus is closed. It follows

from 7.8 that for each a < A, A ¢ f(Cx) . Then

A= £(@) e £(ely, (U (C)))
<A

S ey (£C U (€))

e T NCICROI

Since for each a < A f(Cu) is closed and A ¢ f(Ca) this
contradicts 7.2,
Q.E.D.

Let Y be the Stone-Czech compactification of the set N
of natural numbers where N has the discrete topology. For the
rest of this section let p denote a fixed but arbitrary element
in (clY(N) -N) ., Let X= (Y wu W/p~q) be the one point union
of Y and W in which p and gq ave identified. Y and W

may each be topologically identified with a subspace of X in

such a way that YuUW=X and YN W ='{p} ='{q}

(Lemma) i) if x e (Y - {p}) then '{NX : NX is a neighborhood
of x in Y} is a neighborhood basis for x in X . If

x e (W —'{Q}) then '{NX : Nx is a neighborhood of x in W}
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is a neighborhood basis for x din X . If x =p = q then
"{N_ UN_ : N_ is a neighborhood of p in Y and N_  is a

% q P . q
neighborhood of q in W} is a neighborhood basis for x in X
ii) If U CX then ch(U) = clY(U NY) v clw(U N W)

iii) X 1is a Boolean space,.

iv) The set of points isolated in X 1is dense in X .

Proof: 1) This is straightforward to check.

ii) This can readily be checked using 1i).

iii) That X dis Hausdorff and totally disconnected follows
from 1). X is compact because it is a continuous image of the
disjoint union of Y and W . The disjoint union of two
compact spaces is clearly compact.

iv) The following fact (paraphrased from p. 28 example A of
[9]) will be used: a Boolean ring A 1is atomic if and only if
X(A) has a dense subset consisting only of isolated points. It
follows from this that S is atomic for {a + 1 : a < A}
consists only of isolated points and 1s demse in (X + 1)

It follows readily from this and the definition of T that T
also is atomic. Thus clw(N‘) = W where N' denotes the set
of points that are isolated in W . Since N consists only of
points that are isolated in Y it follows from i) that Nu N'
consists only of points that are isolated in X . Note that

i = ' =Y U =
ch(N v NY) clY(N) v clw(N ) Y W=X .
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(Lemma) X 1is not jka -extremally disconnected.
Proof: It follows from 7.10i) that N dis an fyi -set in X

It follows from 7.10ii) that ch(N) =Y . Since p = q 1is

not isolated in W it follows from 7.10i) that Y is not open

in X
Q.E.D
(Lemma) X has the \-disjointness property.
Proof: W has the )-~disjointness property since T is
~A-complete and W = X(T) . It is established in [5] that the

Stone-Czech compactification of an extremally disconnected

space is extremally disconnected. Thus Y is extremally

disconnected so that by 3.4 it has the A-disjointness property.
Let '{Uu :a <A} and ‘{Va : a < A} be families of clopen

subsets of X such that Un V =¢ where U= U (Ua) and

<A
V= U (V) . For each a < A
o< & <
let A =UNnY, B =V nY ,
o a o o
C =UNW,and D =V N W
o o a o

Let A= UMA),B= UB), C= U() ,and D= U (D)
<A o o<A o <A @ . a<A @

Then A and B are x—sets in the space Y such that

ANB=¢ and C and D are )-sets in the space W such
that CND=¢ . Thus clY(A)(\ clY(B) = ¢ and
clw(C)f\ clw(D) = ¢ . Note that by 7.10 ii? ch(U) =

ch(A Ucg = clY(A) J clw(C) and ch(V) = ch(B U D) =
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clY(E) U clw(D) . Thus ch(U) F\ch(V) =
(clY (A)(‘\clY () U(clY a) (‘\clw (D))U(clw (C)f\clY (B)) u(clw(C)/\clw (D))

Hence ch(U)r\ ch(V) = (clY(A) A clw(D))\) (clw(C) r\clY(B))
It now suffices to show that clY(A) f\clw(D) = ¢ and

clw(C)(W clY(B) = ¢ . There are three cases to be considered.

For the first case suppose that p é U and p ¢ V . Then
P ¢ C and p i D so by 7.9 ii) »p ¢ clw(C) and p ¢ clw(D)
(Recall that Y and W are identified with subspaces of X

and in X p =q .) Hence

ch(C)lﬂ Y

= clw(C)(\ Y = ¢ and
ch(D) NY = ch(D)/\ Y =¢ . Thus
’ < =
clY(A)!\ clw(D)_~ Y P\clw(D) ¢ and
clw(C)/ﬂ clY(B) g;clw(C)r\ Y = ¢
For the second case suppose that p e U . Then p i v
since UNV = ¢ . Suppose without loss of generality
that p e U0 Then B C Y - UO and Y - UO is clopen in

Y so that ¢l (B) €Y ~ T and hence ¢l (B) "W = ¢
. Y

0.
Similarly ¢l (D)N Y = ¢ . Thus cl,(A) necl (D)< Y N cl,(D)
= ¢ and clw(C) F\clY(B) < WA clY(B) = ¢

For the third case suppose that p ¢ V . This is similar to

the first case.

Q.E.D.
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7.13) (Theorem) i) There exists a Boolean space X that has the
~A-disjointness property but is not ‘f<i ~complete.
ii) There exists a Boolean ring R such that R dis atomic,
A-self-injective, but not fkﬂ -complete.
iii) Let R be as in ii). Then w.gl.dim(RV{X\1) <1,
R{YX11 has properties a), b), and e), jet RfTXW\  has neither.

property c) nor d).

Proof: i) X has already been constructed.
ii) The construction of R given X was described in the
opening remarks to this section. That R is atomic follows
from 7.10 iv) and the fact that X(R) = X . The rest of ii)
follows from i) and 3.9.
iii) This follows from ii) and 5.3.
Q.E.D.

T. Crammer has observed in private communication that
(Y - N) in the relative topology as a subspace‘of Y is a
Boolean space with the fYﬁ —-disjointness property that is not
j\a,—extremally disconnected. Since (Y - N) has no isolated
points it follows, similar to 7.13, that there exists an atomless
Boolean ring R' such that R' is }kﬂ -self-injective but
is not j\a -complete. Again, w.gl.dim(R'fTX171) <1 , R'ITIXM
has properties a), b), and e), yet R'fTX7]] has neither property

c) nor d).
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