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ABSTRACT

In this thesis we are concerned with obtaining an
| integral representatlon of a class of nonlinear additive
rand biadditive functionals on function spaces of measurable
functions and on Lp—spaces; p>0. The associated

'meesure space 1s essentially atom-free finite and g-finite.

Also we are concerned to the extend the presence
of atoms in a measure space complicates the,representation‘

theory forifunctionals of the type under consideration~here;

A ClaSS'of‘nonlinear transformations on Lp—spaCes,
1<p< ®, called Urysohn operators. [11] taking measurable
functions to'meaSurable functions is studied and we describe

an integral representation for this class when the associated

meaSure space 1s an arbitrary c—finite”meaSure spaCe'and this -

characterization extends our previous results where the

,'measure space considered was atom—free.'
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SECTION 1

 INTRODUCTION

Some results of A. D. Martin and V. J. Mizel [1]

on an integral representation of non—linear.additive_fgncﬁ;onals

~defined on vector spaces of real-valued measurable functions

‘have been extended by R. V. Chacon and Friedman [4];
Friedman and M. Katze [3]; and by V. J.‘Mizel [8]. We shall
give a unified account of these results and -shall make precise

:somevof the results and shall make some generalizations.

‘In Section 2 we give the terminology and notations
of measure theory. ‘An atom in a measure space.is also defined

and we prove some theorems that we will need later on. Coroy

‘ The essential pért of SectiohIB»obtains the resglts
of fl] in this more general'setting'and we also prove necessary
and sufficient conditions>for the intggrai-répresentation of'
ponlingai additive functionals ﬁnderiﬁafious continuity con-n

ditions. | | -/

In Section 4, we construct the integral_repfesentation

of an;additive functional on L (u)-spaces for p > 0 and

P
then we establish some necessary ‘and sufficient chditiohs for
- the inbegral representétion of non-linear additive functionais

on Lj-spaces for 1 <p< «.

In Sébtion.S;'we glve scme_examples on integral



representations and in Section 6 we establish analogous integral
-representaﬁions of nonlinear biadditive functionals. More
precisely we establish ﬁeeessary‘and sufflcient conditions for
a bladditlve functlonal F defined on the Product XlxX2 of
prescribed subspaces X o= M1 X c M2 to permit an integrel

representation where Ml and 'M2 denote vector spaces of

real-valued essentially bounded measurable functions on (X,5,0).

In Section 7_we describe integral representations for

a class of nonlinear functionals and nonlinear transformations|

\,
~

° on the spaces 'LP(X),, (1 < p < ») associated with an arbitra?y\‘
. . . , . L o
" o-finite measure space (X,T,u) . The class of functionals

considered here differs_from those consildered in [l],'[2];'f3]
and [4]'and'its“Study 1s mainly motivated by its close eonnection

with nonlinear integral equations in [li]. - Our characteriiation

extends'earlierlresults in [l] and [2].



SECTION 2 | S
' PRELIMINARIES

We assume here some of the usual axioms of set theory

and we use [l],l[2], [3], [4] and [8] as standard references

except for some notatiohs‘and'definitions which we' give below.

',Throughout this thesis we will use the following ébbreviations

i

for the phrase "if and only if"

"~iff 1"
"yt instead of "For évery"
gt for - - "There exiéts"\
M ~ for B | “beloﬁgs to"
'"w;l.o}g."'fbf -? .x ‘."without loss of generélity“
‘"w.r;t." fdr‘- { - "with resﬁect*to“”“and o
" 'fd? o ~"such that" . x,. . - v

"s.t.

(ST SRR S DN
~N O Ul =W

no

AB = {x€ A and x ¢ B}

We will uée the followilng convections

b- dendteS-theAéﬁpty‘set;

R denctes thelreal line.

R* = R U-{e} U {-»} the extended real line.

{Xi ?___l = {Xl)‘xgs ceoe :Xn}

A{Xi}ieJ = {xi , i—? J} where J ~denotes an index seb\‘

~

Let X be any set.

ALY



2.8 P(X) = all subsets of X .
2.9 A denotes the closure of A, AcCX.
2.10 A” = X~A .

Let f Dbe a function and A be a set.

2.11 flA] = {y: vy = f(x) for some x e A}

2.12 f-l[A] {x : y=f(x)  for some y e A}

i

Unless otherwise mentioned, in this section, X will
. be an arbitrary nonempty class with elements x,y,.... and-

E,F,A,B,.... .will be subsets of X .

2.13 : A nonempty c1asé ,2- of subsets of X is called o
a ring if EUF , E-F € £ whenever E,F € ¥ and 1s called a
c-ring'if 8 En € ¥ whenever En € T ¥ nel.

n=1

2.14 Definition. A ring ¥ of subsets of X 1s called an

algebra if ije'f and a o-ring. % of subsets of X is called

: ' /
a o-algebra 1f X € T . '

2.1.5 Remark. . Let & ©be an arbiﬁfary’ family of subsets of X .
Let 8(&) denote the intersection of all o-algebraé of subsets

of X that contain & .

8(e) "is also a o-algebra and is the smallest'c-algebra

of subsets 6f X containing €& .



2.16 Definition. If X 1s a topological space, let 8(X) Pe

1

the smallest o-algebra of subsets of X that contains every
open set. Thenlﬁhe members of R(X) are called th% Borel sets

- of .X .

. : o
! | ! !
2.17 Definition. If #cP(X), a set function @ -on ¥ 'is

|
a function on ¥ to R¥* written as ¢ : ¥ - R* ‘is addltl‘
if VY A,Be ¥, ANB = ¢ , we have HW(AUB) = u(A) + u( wherl

¥ 1is any family of subsets of X .

2.19 Definition. An additive set function u : P(X) - [0,«]

is called an outer measure 1f the folloWing'hoid:

(1) u(d) =0 and
(11) w(E) < T_wu(E;) whenever Ec .U E, € X,
. ‘ iel . : : iel

and W 1s called a measure iff

(1) u(d) =0 and

(11) wp(E) =" T u(Ei) whenever E = U E, © X and
L : lel . : / lel

B, N By = ¢, 1L

2.20 Definitlon. We will use caratheodory outer measure Mo

|
[

for which we have: ‘ ' N

A set A C.X 1is p-measurable iff ¥ Ec X , {
u(E) = u(ENA) + u(ENA™) . |

i



5.

2;21 Definition. If u is a measure on X » then we denote,

by Mu the set {A : AcX and A is u-measurablel.

2.22 Definition. If.for'evefy A e Mu , u(A) < ® then u is

called a finite measure: ™

2.2% Definition. ‘M 1is called o-finite if V A e M, , T a
: \

sequence A ) T of sets in M, such that A ﬁlAn and%
nel | o

W(Ay) < ¥ melI.

]f

5.24 Definition. Let A C_Xv then the measure uA(E) = u(ANE)~

on X is called the restriction of u by A . !

. S 4 3
In future we will take‘ X = (X,Z,g) as a measure '
space whefe X is a néhempty,class of elemeﬁts'and z .is a

v nonempty class of measurable subsets of X which is a qﬁaigeﬁra

and W is.a_measufe.on[’(x,z) .

2;25,Definition} Let _(X;Z,u)/ be a measure space. Aeys

is called an atom if ~u(A) £+ 0 and'if Be L , BCA thén&

either u(B) = 0 or u(B) = u(a) .

A space (X,Z,u) will be called an atomic space ;f?

every subset of X that beloﬁgs io- ¥ 1s an atom.

1
N

2.26 Lemma. Let (X,Z,u) De a finite measure space and E f T,




0 < u(E) < ® s.t. neither E nor any of its u-measurable sub-
sets 1s an atom, then E contains subsets of arbitrarily

small positive'meésure.

gzéggz Since E ddes not contain any atoms, theré exists

F c EI,'F €% s.t. E=FU (E-F). and u(F) > 0 , u(E-F) > 0 .
Hence one of 'F and E-F , call it Fl ,'éatisfies “ | |
u(Fl) < %H(E).' Now since F; 1s not an atom, continuing
with the abo&é_meﬁhod fo-decomposition, it follows that E hasl

subsets of arbitfarily small positiVe‘measure.

2.27 Lemma. If (X,E,u) 1s a finite measure space then there o R

. . [- -]

is a countable family {Ai} of atoms of X' s.t. if A = U A,
’ n ) i=1

then C = X~A 1s atom free and X = AUC is a decomposition of

X into atomlc and atom-free parts.

.122992: Since X 1is a finite measure space, any atdm AcX
is of finite measu;é. By 1dentifying the_u-almost equal atoms,-
we get that~the"different atomsiarevdisjoint. So the total
number of diffefent atqms.contained in "X 1is at most countable,

. - -]
say AqsA ... . Let A= UA, and C = X~A then clearly
1285 A T

¢ is atom-free and the decompositioh is p-almost unique.

2.28 Definition. - X'= (X,E,u) has the strong interdediate
value property\if 'Y S e 2 and YV real number a‘, |
0<a<ulS) 4 Aesx,AcS s.t. ul(d) =a . o '*



2.29 Theoren. A'meaSure space X has the strong intermediate

value property i1ff it is atom free.

[For Proof, seé "Set Functions", by Hahn and Rosenthal

Chapter_l, §5.6.1

2.%0 Definition. (X,T,u) has the weak intermediate value |
property iff ¥V real nﬁmber~ a, 0<axfwuX ,% Aecx,

AcCc X, s.t. u(A) =a.
2.31 Theorem. (2. Nehari). Let (X,Z,d) Dbe a countable discrete

measure space.? Let my 2> My 2> be the measures of atoms
of X . Then. (X,Z,u) has the weak intermediate Value progerty
iff m < I m no=1,2,3,... - |
=~ X ’ Al ] P
- k=n+l 7L | o _ : T\\

- 2.32 Defihitioni Let (X,ZT,M) Dbe a measure space, then ‘,‘

f : X = R* is measurable iff ¥ c e R*, {x: f(x).<clezx.'

x) _ 1

xeEB . 3
0 x¢E is called the character-

2.33 Definition;;'_xé

Comm

/

istic function. ’

2.34 Theorem. Xg -1s measurable iff E. € T .

Definition. A function f : X - R¥ which has only a

finite set C1sCps---5C, of values and“for which f_l(éi) =§_'

{s : seX, f(s) =,ci} € T 1s called a'Simple'function.

2.35 Lemma. ~Let f : X - R* be measurable, then there exists




’ 9.
77T 77 a sequence . {fn} of simple functions s.t. £, . If £>0
— “ﬁ“the“s§QﬁeﬁEe {fn} can be constructed s.t. O‘ﬁ fnviifn+l]g
' Y¥n. ‘ Lo
[For proof see Taylor 1

2.%6 Definition:

Two real valued functions f,g are equi-
measurable if V Borel set S on ‘(-m;w)'g'ffl(s) and g'l(

S)
are measurable and have equal measure.

‘2.37 Definition.

Let (X,ZI,u) be a finite measure space. |
Let f be a bounded measurable function with inf f(x) =m ,
sup -f(x) =M .

X

- Let Mb > M . If A = {yo’yl”f"Yn} is a part- !
ition of Im,MOJ sand By = {x: yj_l_g‘fSX} < vyl s
J = 1,2,...',1'1 o Define

,
I

8(8) = Ty, qu(E) | |
~-. 8(A) = T E. o "
o 5 leyj—l U‘ 3’ , '

| | 0
s() = By us) i
p) = R
leyj 9; o j\\
oma(X) < 8(a) < 8(8) < Mop(X) . Thén : | ‘
sup 8(A) = inf S(A R

Y= [ £ dui="[7Fdyu.
A A _-IX ' |

Beforé\We finish this section, we prove some lemmas

which we shall need later on in Chapter 5 and for proofs we
shall follow [1].

-




which implies that T (¢4 di) { =‘J Y, ( e J) 5
o : ‘ €

ieNl

¢ontradictionetQ‘INlUN2 + ¢,;

Hepcew N, = N, ;T¢ .

10.

2.38 Lemma. -Let m ,m2,m3,... .be,a sequence.of positive
numbers s.t. > 2 Z m_ , n=121,2,...
. ™n k;n+1 k : ,"

Let cl,GQ,.,. and d d 3,...?-be two Sequencee

of real numbers having values '—1, 0O or 1-. Then ;
T c.m, = Z d,m, only if ¢, =d, , 1 =1,2,... i
121 i 5 1 i i i i

Proof': Let N; be the set of integers's‘t 'ci—di > 0 for

1 e N; and N2 be the set of integers s.t. ‘,di—ci > 0 for

1eN, . We claim that Nl = N2_='¢ .

Suppose'nbt ~ i.e. N,UN, L. TLet i, De the
lsmallest integer in. NlUN2 . . Thus io ?.Nl or 10 ?-NQ but
not to both. '

.Suppose ib € N1 . Now if ie N1 end J.E N2 5
then fci*di and dj-cj .are eithe? _2 or 1 .

= R -
Thus Y (c,-d,)m, >m, > 2 T > 2 (d -c,)m,
Cdemy P =t " T 3= jen, 4 373
1.e. (c > ©.(a ,
1, i_'JN(JJ)J
, _ ' . S - T ®
.But by hypothesis we have that Z ec,m, = d,m
rr | , Lol b1 l 1™ i

which 1s a



11.

2.39 Lemma.,‘ Let {mn}n>l -be a sequence of positive numbers

© ) :
~s.t. for n‘z_no_z l,m >2 % my . Let V. be the vector
. O Ci=n4l . \

space of all real sequences s : 8158554« ‘such that - \:
. .<<A. . I l!
T smy < e Let S be the subspace of V consisting of‘ﬁ\\
121 a
_those sequences s s.t.. I sm = I sjmj ‘whenever \,
N ieI ‘ jeJd - 1 '
T om, = ¥ m, . !
teI *  geg I

_Then the ‘algebralc dimension of S is- infinite.

Proof: TLet H = {(I,3), INT =4¢ , I and J are subsets of

the integers} .

(a) . s.t. . Im = Tm
' lel 1 Jed J

For a positive number n_  s.t. 1 <n_ <n, (a) can

be writﬁen uniquely as
né . N ® : . , N

(b) iEl cymy =Ai=é;+lcimi whe?e cy has the value “1}9
orl, 1= i,e;... ) ) | | .

The right hand side of (b) is uniquely determined, if

it is determined, when the left hand side 1is givén.

Thus there are a finite number of relations (b) which
are valid as is the number of relatibné'of (a) which p;oves
that H 1s finite. “
(e) ‘ Conéiaer the system of equagions‘ Toxm = T x.m,
' teI % jeg 9 J

].
!



12,

(1,J) € H .
" where the unknown'sequénce X ' XysKpseoo is a member of S .

The system (c) is finite since H 1s finilte. So suppose that

(c)'has exactly k equations where k can be zéro also.

In any case-if K ié‘a subset of the integers con-
taining exactly 'k+1 members.then'theré.iS'a honZero éolution

- Sg of (c) whose support is a subset of K .

Now.1f {Ki}i>l' is a‘séquéncé_of disjoint subsets.of

k+1 integers:eéch; then ‘SK »Sg ;.., is an infinite family of
' . - : 1 72 . = '
independent solutions: of (é)'._ Hence dim S = o .
: 1 o | .
i .
\
\




a.e. if {x : f(x) + g(x)} € T and has H-measure zero. .

SECTION 3

 REPRESENTATION OF ADDITIVE FUNCTIONALS ON THE
VECTOR SPACES OF REAL-VALUED MEASURABLE FUNCTIONS

j
Let (X,Z,u) be a measurable space with T a o-

algebra of subsets of X .

-

3.1 Definition. Let f,g : X = R* , then we say f(x) = g(x)
\

3.2 Definition. -~ A function f 1s said to be essentially

boundeq if ¥ a finite;POSitive.ConStant C s.t. : B l

u{x : |£(x)] >c} =0 i.e. £ 1is bounded a.e .

3.% Definition. A sequence {fn};_l of funetions which ar?"

finite a.e areVSaid to converge a.e to a function f(x),fwhicﬁ

is finite a.e. if E = {x : fn(x) A £(x)} € T and u(E) =0 .

P A

3.4 Definition. A sequence ‘{fhlgzl of measurable functions

’iSfEéidMEE'éthé}ge in measure to a measurable fﬁnction' f W;f

¥ &> 0 we have 1im u({x e X : [fn(x) ;'f(x)l > 8})L= 0 and

. n“@.
u ,
we write fn £ .
Example: Theré\exist.sequences of functions that converge in

measure and do not.converge a.e. Let X_='[o,1] and ¥ Dbe

all Lebesgué méasurable subsets of X . For each inﬁeger



Ford

n e I‘,.defihe“ ' : 3 i - \

£ = ¥rj  J4lq where n'=2¥ +.3,0< j< 2K

n = g, oyl o =

| ok 7ok - '
]

~Then A({x : [f (x)] > &}) 5_3E- 0 as n-w V.'§>0.
2 - '

‘Thus £, % 0 . But on the other hand, if x e {0,1] , the

sequence {fn(x)} converges nowhere on [0,1]
Throughout this.seCtion, we denote by M the vector 
space of real-valued measurable functions on (X,¥T,u) where

two functions are identical when they are equal a.e.

3.6 Definition. - A real-valued function F on a subspace of |,

M is called an additive functional if
(1) F(x+y) = F(x) + F(y) for x,y e M s.t.
u{supp x‘ﬂlsupp v} =

b (44) F(x)'%"F(Y)‘ if X,y are equimeasurable functlons

i.e. if for every Borel set B in‘ R

w(x"1(8)) = u(y ()

In this section we will construct an integral‘
representation of a nonlinear additive functional F defined
"on different subSpaces of M undér various continuity con-
‘ditions on F' when the underlying measure?spacé (X;Z,u) is

atom free. : - ) - o |
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Let B = B(X,T) = L_(u) = {all essentially bounded

real=valued measurable functions}. o

]
.

A3.7 Definition. A set function ¢ 1is said to be pn-absolutely

continuous if given € > 0 ¥ 6 > 0 's.t. for E€ T ,
u(E) <8  |o(B)] <€ .

For the following theorem, we will' follow the methods

" instead

given [1] and we will use 'Fxn - X boundedly © a.e
of sayingthat X, = X a;e"and there exists a'positive conStaPt

c s.t. [xnl < c and |x| <e

3.8 Theorem. Let (X,z,u) Dbe a finité atom-frée»meaéure spgce
for which u(X) £ 0 . If an additive functional F : B-— R. - o
' 'satisfiés the condition: (1) X, = X boﬁndedly a.e implies.;
.F(xn)-a F(x) . '-Then:theré exlsts'a unique continuous funétiéﬁ
f:R=1R s.t. £(0) =0 and VxeB . o ‘l"ﬁ

CF(x) =] (e BRGNS \'

Proof: (a) Let C, € B be the constant function -a for

a e'(‘f:”)

-
-
1

F(Cy) oy
Défine f(a) = uEX?' s ac€ g-m,m) . If &y = 2

(reals) then C;; - C, boundedly, so 'F(Can? ~F(Ca) by con- g

tinuity of F ;: Thus f(a ) = f(a) i.e.

f 1is continuqus.




Now supp'CO =b . Thus'if x € B then .
supp x N supp C, = ¢ which implies that

F(x) = F(C, + x) = F(C_) + F(x)

i.e. F(C,) = O and thus £(0) = O .

If there is an f ‘satisfying this theorem then it is unilque J

since for a + 0 we have F(C_) = [ feC_ du = f(a)-u(X)
. a X a ,

" Now it remains“to show that o ;
j £(x(t))d(ut) V xeB. o

5

' v S | o S
If S e, for fixed & e (-=,o) , define )
. o ‘ ’ |

o(8) = 9 (S) = F(axg)

¢ 1s finite valued set function V¥ S e I and satisfles:
(b) o is additive on % . "_/‘
For if §,,8, € T and 51 ns = ¢ then

9(S,US,) = F(ax, ) = Flaxe + 8%« )
1°%2) = 5, US,, &%, %s,)

_ Flax L F . ' ' n Can =. (
F(axf}) + (ayse)‘ ( sgpp éxsl supp ax82 )
= ¢(51) + 9(8,) - | |
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(¢) @ 1is countably additive on ¥ .
. , {

If S5, €I 's.t. Sn_¢'¢ then' axs' -0 boundedly 50 i

n

l

0(S,)) = F(ays ).~ F(CO) 0 which implies- that ¢ 1s count-
ably additive on T .
(d), o 1is p- absolutely continuous.
Since ‘u(X) < , it suffices to show that ¢( S) = O whenever
M(S) =0 .

If'vu(S).= O then since a¥g and C, are equi-
measurable, it follows that ¢(S) = F(axg) = F(C ) = 0 .

o(S) | (axs)“

(e) u(sT = u(S is defined V S € ¥ with H(S) + 0 and.

is a real—valued function p on (O;u(X)]v s.t.
9(S) = p(u(s))u(s) ilandf sp(s) + rp(f) = (sgfr)p(s.+r),
- for ,r,sv, r+s € (O;u(X)]

In fact let O <'s < u(X) and C( ) {sezx: u(s) = s}-;

Since. X is atom-free, + ¢

If S,R e C(s) , then ajS‘ and 9xR’faré equimeasurable,

so Flaxg) = Flaxg) . Hence
Flax.) = Pax,) e
3523 = u(:? = ’_ﬁ;ﬁ§— = 1 g) which implies that 2%_%

is independent'bf S € C(s) R and hence

a)(s _' o (S) \ o -
£(a) = ey ﬁsrwg = o(s)

S e C(s) which
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pfoves that g) 'i1s a real-valued function of p .on ]

- (0,u(x)]

To prove the last.equality,'we have that X 1s atom-

free, there is an S e T with p(S) = s . Since f
Again since the |
' I

0 < s+r < u(X) ,, r < u(X) - s = u(X-38)

space 1s atom-free, ¥ R e T , R cCX-S s.t. M(R) =r and

\

(S) + @(R) .andy

(
)
(

since SNR = ¢ , it follows that ¢(SUR) =

(S) =r+s 1

\Y
since o(8) = p(u(S))u(s) and w(RUS) = u(R) +
u(R) , and sé(

we have p(u(SUR))(SUR) = p(u(8))u(S) + p(u

+ .
R)

)
(r+s)p(r+s) = Sb(s)‘+ fp(r) . - “
o N

(f) p 1is continuous. ' - - l
For this let {Sn} bg a monotonic decreasing sequence of reaﬂ‘

numbers in (0,u(X)] with s, = S . Since X 1is atom-free ¥

€T, S,c s, with !

2 1

S, € ¥ with u(sl).= s¢ and S2

»‘Therefore'there exlsts a monotonic sequence S ;

n
S, € T with u(§n) = s, and e Sy € 8p1 € --0 €8y
s ~ ® . T - / . .
"Let S ="NS_ . Since “(Sl) < ® , 1t follows that
o n=1 . S : i
, | B
w(S) = 1im u(S, )=1im s = s > 0 -and since ¢ 1s countably,
T n n . o
additive, A , - | k
™ 'cp(Sn) = ¢(S)
o B 9<Sn) fggs) (8) ] '
so lim p(sn) =lrj-;_m H'(—S—r—l-y = s =~ u(s L= P(S‘)‘ .



. . ?
A similar argument shows that p(sn) - p(s) when s,

- increases to s . Thus p 1s continuous. C :

(g). o 1is constant.

19.

Let s € (O,u(X)] . Since X is atom-free @ X C X, s.t.

[

h(X,) = s . Furthermore there is X

It follows that ‘if s, =

<X, s.t. op(Xy) ===

, . nei .
and so on, ¥ X, C Xi 1 .with .u(Xi) === 35 ,

disjoint and u(Sy) = u(Xi;l - Xi) = u(Xi_l) - u(Xi) =

n-i+lsv_ n-is
n n .

8484 = b 1r 14 3.

s .
=qn l.e. H(Si) =

But siﬁce (r-+s)p(r-ks) = rp(r) + sp(s) we have

sp(s) = (§-+-%‘+ «v.. n times)p(

/

N g
il
B

. S|m
o
N
[
g
n
©
Py

If now %-s e (0,u(X)] where m and n are non-

negative integers, (n £ 0) then

Mooy o S oSy .8
n SP(ES) = 7 P(n) f oy p(

~

N

Blw

i.e. p(% s) = p(%) = p(s) , -and since

get that p isiconstant°

YL

g
n

p 1s continuous, we

4-—M%), m terms .
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(h) p=py, =f(a) V- ae (-=,)
. . - Flax) . | o |
. .Since f(a) = X pa(u(X))‘e pa(u(s)) '8 €T . We have

(1) If x e B and if ‘x is a simple function then
F(x f f(x(t))d u(t) .~

Let 5,8, S, be a partition of X into measurable sub- |

2,'00,

-.sets and xl,xgg;..,xn be the values which X assumes on
these subsets. Thus X =T X, ¥ and since x,X have

mutually disjoint supports, this implies that

. n ' n . o | : v
'F(X)L= ile(#iXSi) B 1Ei¢xi(si) - (si)+opxi(ugsi}>“(si?

T 2(x)u(s;) = [ 2(x(8))a u(s) .

Thus the theorem is true for F defined on simpieb
, o /
functions.

(3) Now ¥ x e B, ‘we show that F(x I £ ( t))d u(t

Since V X € B s there'exists a sequence {xn} of simple ‘l

|

functions s.t. x, = x boundedly a.e. and since F |i1s con-
. tinuous 'F(xn)‘le(X) . Thus by Lebesgue domlnated convergence
—~theorem, we have f f(xn(t )d u(t If(x (t) .

e S 1" i
| - | - | § i



From now onward we willlprove the necessary and.
sufficient conditions that an additive functional F defined
on a prescribed subspace BcM permits a representation of

the form, F(x) = j (fex)du V x €.X where f : R- R 1is ié
X T - |
' ' {\\

| uniquely determined by F . We will associate these theorems
“wilth finite or o-finite atom-free measure space (X,E,u) and"'

we shall follow very closely [2] for proofs. L

3.9 Definition' Let (X, T be the measure space. For

every E € £, we denote the total variation of 4 on E by

VM(E- , defined as VH(E = Sup E lu l where the SUpremum
A ‘ i=1 : )

1s taken over all finite sequences {Ei} of‘disjoint sets in

<

T with E; SE. M 1s sald to be of bounded variation Lf;
vu(X)v< o and u 1is said to be of bounded variation on a set
Eer if v (E)<a.

i,

E
Let f,g : X - R, the relation "f-g is a null

function" is an equivalence'relation. - Let [f] . denote the

) . / L N
class of functions from X -~ R which are equivalent to f

and let P[X] = P(X,T,u) . denote the set of all such sets [f] .

 3.10 Definition. Let X 'be any topological space. The -

totally measurable functions on X are the functions in the
closure of:simpie functions in F(X) and we shall denote them -

| by 'IM(X) 'o\‘ L ..
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It is proved in Dunford and Schwartz in Lemma III 2.12
that if x 'is totally measurable function and if f is a con-
_tinuous function on R then fox 1is totally measurable -
function and also in III.2.ll that the totally measurable

functions form a closed linear subspace of P(X)

%.11 Theorem. Let (X Z,u) be a finite atom-free measure
space and let F be an additive functional on B = L_(H)

Then'the following conditions are equivalent. ‘ o T
(2) Xy =X boundedly in measure =% F(xn) - F(x) and

(2f)“ F(x) = jx(ffi)du v xeB o (*j

with the repreeentingufunotion £ satisfying the conditions

“that £ is continuous and f£(o)==

Prooff Let xn“~ X. boundedly a.e.. Then since '(X z u) 1%

‘a finite measure space, X, = X in'measure'so (x ) - F(x)
therefore by Theorem 3 8, I a unique continuous func 1on f 5
if(0) = 0 s.t. S

F(x) = IX fox du V. xe B. \

Conversely, suppose f : R~ R 1is continuous and

f(o.)%o- N

Define F on B =1L_(u) by F(x) = [ (fex)du



|
- - ‘ | |
Since f(o) =0, ¥ X,y € B s.t. u{supp x N supp y} = Ol

|

. we have  F(x-Fy) - F(x) 4 f(y) . | ’ | T

. Now claim that: X, =X boundedly in measure impli

that F(x ) = F(x) ¥ x,,xeB . o -

Let .{xn] be a sequence in B s.t. x - x in

|

measure ang ]xnl <c, |x] <c for some positive constant c .

Since xn;x are totally measurablé and f 1is continuous, it

follows that fex, and fex are totally measurable and

L fex, = fex  1in measure and foxn s, fox are bounded. Therefore

by Lebesgue:dOminated convergence theorem

lim F(x) = 1im [(£ex (t))du(t) = [fex(t)au(t) = F(x)
n n ' . . .

1
!
by
{
|
{
|
|
|

"

Now we take the case of a;e;'convergence which 1is ‘hot

necessarily bounded and convergence in measure.

Ly

3.12 Theorem. Suppose (X,T,u) 1is a finite atom-free measure '

space and F 1s-an additive functional on M . Then the

-~

~,following cbnditions'are equivaignt:

(3) xi - X a;e. = F(xﬁy_ﬂF(x).'and

F(X) = ijoX du | | '(*)

VvV x'e€ B, where f 'satisfies the conditions

(a) £ 1is continuous and f(o) = 0 and

(b) Range (f) “is bounded,‘t

~

st.
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Proof: Suppose F. 1s an addltive functlonal on M which

satlsfles the given condltion and let Fl = F/Lm(u),, L (u) M |
andﬂsince for any sequence {x }n>1 in L_(u) with X X
‘a.e. and ]xnl <c ¥ n and |x| <c where ¢ 1s some
positive constant, we have by Theorem 3.8 that there exists a
unique continuous function f : R = R s.t. f(Q) 0 and

‘ Fl(x) = F(X),= fx(fox)du Y X ¢ Lm(u)

To prove (b), suppdsé that range (f) 1is unbounded.

There exists a sequence {rn} in R s.t. lrnl - » and |

1 ﬁ.ff(rn>1” © . Since thé measure ‘space is‘atom—ﬂree, there
exists a_se?qenge {8} » B, eI and B, cB J b s.t.
u(x '
w(B.) =
n f T

Let = T ¥ X_ 1s measurable and hence e M
’xn - n’By > "n. v . | *n A
and.since Bn_¢ b, x =0 a.e. and gincg X, € Lm(u) » We have

n
= [(fox )du

r
n

‘ X
£(r) 3 -4 ux) ko
F(xn) A Flo) =0 ‘which is a contradiction. Hence fange (f)

is bounded. o o

Now let  x € M Dbe any function. There exists a

' sequence ‘{Sn} Of.simp;eifunctions s.t. s, =X :a.egiand
.since f 1is continuous, fosn_~ fox a.e.'where ]fosn[ »
|fex| < ¢ for some pésitiveréonstant c . Thus by Lebeégue

convergence theS}em; [fox dy = 1lim f(fosn)du = 1lim F(Sh) = F(x)

Conversely, let f satisfy-(a) and (b). Define
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F:M=R by F(x)=[(fex)du .

F exlsts and 1s real-valued because f 1s continuous

and range (f) 1s bounded; and since f(

o) = 0 , we have that

F i1is additive.

| Let '{xn} € M. be a sequence s.t. X, = X a.e.,
xeM. Since f 1s continuous, fox, , fox € M and
foxn - fox  a.e., by’Dominated Convergence Theorem 1t follows

 that F(x,) = F(x) . | o - Q.E.D.

Since convergence a.e. in a finite measure space implies

convergence in measure, we have

3.13 Corollary. ‘Let‘ F be an additive functional on M with

(X,2,u) a finite atom-free measure space. Then F satisfies

.the'continuity condition (4): X, =X in measure implies’
F(xn) - F(x) 41iff (*) holds with f satisfying (a) and (b) in
Theorem 3,12. -

7

(The Proof is similar to the above theorem.)

A_if the space (Xzz,u) is o-finite and u(X) = »

then the above theorems become:
3.14 Theorem. . The additive functional F on L_(u) or M .
satisfies condition (3) in 3.12 or condition (4) in 3.13

respectively iff F =0 .



Proof: Case (1). Let A€ T be s.t. p(a) = (X-—A) =
“Since (X,Z,u) 1s atom—free q Al’AQ €T, A ﬂA = ¢ s.t.
A].UA = A and U(Al = H(Ae ‘ = ® ,
If r is any constant then rxA,, rXA . and r'A |
o : ' 1 2i

are équimeasurable. Sinc'e‘,er'A = rXA.UA =X, + Xy anq
' . . 172 1 2

u{supp’rXAl.n SuPP_rXAQ} ;.O we have, by the additivity of F,

that F(rxA) = F(rXAi) +_F(rXA2)‘= 2F(rXA5‘,(by equimeasurability)

and which implies that F(rxA) =0 .

Case (ii). Assume that for any A e T , u(A) < » , there exists .
Ayshp 5 Ay 2 Ay wh ‘
infinite measure and A = A1~A2 , then again by the additivity -

whiéh together with their complements are of

of F , we have F(rXy) = O when u(A) < ®» J/ - Hence i x is
a simple function, then F(x)v= O . "Nowif X is a countable

valued function for which each vaer'has support and complement

of infinite measuye; then as above.we get that F(x) = 0 .

- w



SECTION 4

REPRESENTATION OF-ADDITIVE_FUNCTIONALS ON LP SPACES

4.1 Definition. For 0 < p <o, LE(X) ;'{all real-valued

measurable functions f on X s.t. || f Hp = ([ I£Pap < =} .
‘ X |

For 1 <p << =o, P is a Banach.space,but this is no longer .
true for 0O<Kp<Kl, for the.triangle inequality does not |

"hold for 0 < p < 1l . But instead we have:

i

4.2 Proposition. Let 0 < p <1 and let .X = Lp[o,'l] then

-

() Deeell, <2 el « el .
(b) If for any two funqﬁions f;g.e'X ;'d(f;g) = flff;glpdp .

then 'd 1s a metric where d(f,g) = 0=>f =g a.e.
Proof:  Firstly we show

(1) ‘i‘2p_l(l-+xp)'2_(lﬂ+x)pf for 0<p< 1
Let  £(x) = 2P7H(14xP) = (14x)P

-and fj(x) ;,ep;l.p Pl p(l-+x)p"l =0 = 2Xx =1 + x
l.e. x =‘l. : ' .
and f“(x) = 2p-l.p(p¢-i)xp—?v- p(p-—l)(l-#x)pee
(1) = p(p-1)[2P72 2P 2] ¢ o

~

1 ‘is a maximum point for f£(x) and f£(1) =0 .

Hence x



Thus we have 2°H(14+xP) > (1+x)P .

1

- | 21y I |

"(2) We show that 2 ¥ “(14+x)> (1 +x@)YP ror 0 < p<l.
- o o2(=-1)" o : B |
Let g(x) =2 ® -(1'+X)'—“(1+xp)l_/p | 1
W | 1.1 o | | |
and g'(x) =2 P - % 1+ pxP Lo |

--——1.e. & = (1+x)xP i.e. 4 =xP 41 or x = (%)l/p

Also™ g"(x) = -[(%—1)A(1+xP)P Py (p-1)xP7%(14xP)P 1]

Hence Xx = (%)l/p s a minimum point for g(k) and we have (2).

Now for the proof of i(a). Assume that |f(x)| £ 0., then

—

e +e@IP < s P L+ gl |
| < 'f(X)fp'; p0-1 ¢! +M) . /b& (1)
T If(x')lp- )
<P )P 4+ [g(x)]P) |
le+ell® = [12(x) + e(x)[Pau < 227H 12 0x) [Pausf |1 (x) | Pap]
= @2 I 4 ls 11P) |
\
\

Suppose that | £]] £ 0, then
(A . ) ’ !

..\'




r:l: .

Ieselly <2 <Hpr+HgnP 1/P=el LN PN {[ i i/z
| | L lell g
1‘%" - (5‘ ) llgll o I
<2 Flelly - 2T a e w |

=2 T(llelly + el |

Dewel, <@ Azl + sl
(p) If d‘<'f',g> = Ilgf*“—,e;lpdu , then
(1) a(e,e) > 0 and a(e,2) = 0 .
| .(ii)e d(f;g);; o‘ ;;: lf = g a;e; )
(111) a(z,8) - a(j;;;f) . ) 1

<2 l(lf af? + lh—glp b oy (1

I

Let f,g,h € X, then d(f,g) = [|f-g|Pau=[|s- h+h—g

[le-n[Pau + [|n-g|Pau - d({‘f—,h)_ v a(n,g)

Hence d 1s a metric on X

. /
So, for

| %i'l N . .
N2 e Il Il

' linear'tOpologiCal space.

]ffl-+f 2[[ ] and we have that X is
It follows from the theorems of
D. H Hyers [9] and J. V. Wehausen [10] that such a 11near top-

ologlcal space \Lp in which the neighbourhoods of a point . fo
1

are spheres ofhradius € }hOr,.can‘be given an equivalent

Frechet metrie:"'This suggests that~while-meny theorems on -
. ) -/ : : )

0<p<1l, we have somewhat?weaker condition

a
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Banach spaces which can be applied to the space LE(X) with
p>1 - may fall to hold in spaces where 0« D < 1 ; there may
still remaln many theorems on Frechet spaces and pseudo normed

‘spaces which may be applicable.

' e
In general iﬁ appears that the class of linear i ‘
'funcoionals is a subclass of the class of additive functionals.
But M;M. Day [7] has shown that 1f the underlying measure space
is atom;free then any linear functional on IP s 0<p <1l 1s
identically zero, which proves that almost no resulﬁs dependiﬁg

on the use of linear functionals can be usefully applied to

these spaces.

In this section we filrstly give the proof of the 3
theorem of N.-Friedmam and M. Katz [3] which is the general%f
representation theorem for an additive functional defined oﬂ'
Lp ,.p'> o, Which reduces to the stendard representasiom’theorem

'
1y

for linear functionals when p > 1.

-The methods ﬁsed in the proofs will be the same as

in [4]. * N -

Let M be the vector space of all real-valued functions
defined on . X and for each f € M there is defined & number
| £]] > 0 which may be regarded as a generalized norm. We

consider a corresponding space M; and say that:

\\'

" 4,3 Definition.  F : M - M' is an ADDITIVE TRANSFORMATION if

- . l



- 31,

(l) Contlnulty v 'E > 0 _and k > 0 . & 6 = é(k E) sft,
HfH<k,HgH<kam Hfgll<6 HF  -N@ng

for f,g e M .

(2) Boundedness: —V k> 0 & H=Hk) s.t. [[f] <k
| 7(e) I < H

(3)"Adqitivity; F(f;kg) = F(£) + F(g) 1f £(s).g(s) = O

for s € X..

Let (X,Z,u) be a finite atom-free measure space and

M= L,(X,Zp) , p> 0.

4.4 Theorem. - F 1s an additive functional on L, iff |

F(f) = [ K(f(s),s)a(s)dn , £ e L
. X . : '
-—~—where (i) K(O,s)
S e (4T K(x,s) 15 a measurable function of s ¥V -x .
(111) K(x,s ) 1s a continuous function of x f?r

.adu - a.a.8 .’ VA

(iv) v k>0 % H=H(k) s.t. [x] <b implies
]k (x,s) l < H for adu - a.a.s . |
S (v)y if F(f(s)) = K(f(s),s)a(s) then F 1is a trans-

‘_-formation from Lp to Ll .

Proof of the Lémma 1s given in Lemma y, 12 next and condition (v)'
follows by utilizing the conditions (1) and (é)'of Def1nit10n1

¥.3 for F. / | -



4.5 Definition. Let (X,%) be.a measurable space. An

extended‘reglfvalued‘set functi9n M defined on £ 1s called

a signed measure if 1t satisfies the following:

(1) assumes at most one of the values 4o, -0

(11) (o) = 0

) ) -] K- . . :
C(141)  u(u Ei) = Z'u(Ei) for any sequence E, of disjoing
1 11 b ‘ ‘ ]

,'meaSurable_sets-Where_the equality taken means thak
, .

the series on the right convérges absolutely if
u(UVEi) < » and that it properly diverges otherwise;

. ‘ : T

4.6 Definition. If W 1is a signed measure theﬁ [ulE =

uT(E) + u () is called the total variation of u where pt

and ¢ are called the positivé and negative‘variations of wu .

:l4.7 Definition. A measure v 1is éaid to be absolqﬁely con-
tinuous with respect to a measure W if v(A) =0 .Vl set A for
which u(A)i; 0 . | | |
. ‘ ./
4.8 Lé@@g. v on e'(QQ,m) there éxiSts a function X, (s) ;
which is a measurableﬁfuncfion of s and is.uniquelyvdefihe%

|

up to u-null sets s.t;'_
(a) Ko(s)'ﬁ o,  seX
(b) ) ‘F(hyBT\=.jBKh(s)dp , Beg

Proof: Define; uh(B)f='F(hx§) . Cleariy uh(¢) =v03.
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Conditions (1), (2) and (3) tn .5 imply that w, 1s a signed
- measure and since luhl(E = uh(E) + uh(E) <.» for each set

Ee X “h 1s of finite variation on XY .

Finally if u(B) =0, Be T u f K (s)an =0

' u, 1is absolutely continuous w.r.t. U . ‘Hence by Radon— :

. ‘ ' |
Nikodym Theorem, there exists a function Kh that satisfiles

(&) and (b) . - . ) - " - | "\\.

4.9 Remarks. (1) If F is linear then we have c ‘

uy(®) = Floxg) = BF(xg) = howy(B) , Be

and hénce Kh(s) = hKi(s)'; s e X .

-~ (2) Let.'Khes) = Ky(h,s) , then we have

o F(hXB f K hxé ),8)au Be?l. | :

| | i
4.10 Lemma.: There exists a kernel X(x,s) and d ®satisfy-
: - : / .. ) i ‘ '

ing (i) - (iv) of TheOrém 3.4,

Proof: By Lemma 11 in [4], it can be shownlthat K,(x,s) in
4.9 (2) is continuous in x for W - a.a.s. Next by the proof
of Lemma 12 in [4]; we can obtain K and o to fulfil the

requirements.

4,11 Remark. if ‘F 1s linear, then_



T I | i3k

F(hxg) = hF(xg) and we have that

o K(k;s) .x_ and * a(s) = Ki(sj .

Now the following lemma ylelds the proof of the Théorém.

For each f'e Lp' define
= [ K(f(s),s)asdu .
X . .. : '

.12 Lemma. Fy(f) = F(f) , felL .

- Proof:  Since a'simple function f 1is a finite'linear combin—
—_— |

ation of characteristic functions, by the additivity of F ﬂ

we have that, if f is a s:mple functlon, then ' \ v

Now suppose that & b > O s.t; le(s)] <b . Thefe_
‘exists a sequence’ {r,} of simple functlons,.i[fn(s)l <b , \‘.

s.t. fp = f a.e. and lim [|f - £l =0. “Hence by the :

continuity of F , we have 1lim F(fn) = F(f) and since .K(x,s)
- isa cbntinuous'function of x for :adu - a.a.s , we have that

1lim K(f (s) _(s) = K(f(s) a(s) for W'~ a.a.s. and sincey
n s . . . .
BN < b lK(f (s s)] < H = H(b) .  Hence by bounded con-

vergence theorem, we get that - , | o 2

i

I
1im Fl(fn) = lin f K(f, (s) s)a(s j K(£(s),s)a(s)du = E(F)
n - )

t




| I
i 8
and since Fy(f, ) = F(f) , it follows that F,(f) = F(f)
bounded f .

AN
Ul

for

Finally consider f e Lp and let E = {s : K(f(é),s)'
_ 'a(é) >0} and G = {s : K(f(s),s)a(s) < Q}'.

To make f bounded, we define

£ (s) = f(s) if lf(s)l < n and

Hy
N
O
~—
it
o

Hence by condition (1) in 3.3; we have

‘lim F(f,) = F(f) , and since £, 1s bounded,

,

Fo(£,) = F(r) .

|

Let A, = {s :f(s)] <n}, E =ENA, F_ =0GNA_ |

. . / N i
fn,l = XEnf and fn,2 - Xann

we nave |l £ [lj < Il £l , nence [l£ Loll, <Ml £ll,, 1 =1,2

By condition (2) in 4.3, we have
F(Ey ) = .YXK(fn,i;), <B(Iell,) 1=1,2.

Therefore F<fn,i) = IXK(fn’i(s),s)q(s)du i=1,2 are

uniformly bounded in n and we can write
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F(fn,i?.= IXK(fn;l(s);s)q(s)du = jE K(f(g),s)a(s)du
4 _ " |

and by Lebesgue monotone convergence theorem, we have

b

lim F(f );,.-Kf_,_ du .
in F(£, 1) = [ K(2(s),8)a(s)a

Similarly  lim F(f_ ) = [ K(f(s)js)a(s)dn
' ‘ n n,2 G T

n

n

Therefore F(f) = lim F(f

) = 1im[F(fﬁ’l)-kF(fn,2)} =;Fl(f) .-

Q.E.D.

Now_iﬁ the'following theorems we again prove the

~ integral representation of anvadditiVe.functional on -Lp—f' S
spaces, 1 < p < = , under different continuity conditions on
F.;;when the underlying measure space_is atom-free and finifé

“or o-finite. . For this'purpose we shall follow [2].

4,13 Theorem. ©Let (X,T,u) be a finite atom-free measure
space. F 1is an additive functional on "Lp(u) 1 <p<eo,
then the following are equivalent: (3): X, = X a.e. i%?ﬁF(xn) -

F(x) and

(-x-) . . F(x) =\r (foX)du ¥ xeL
. X : .

.

o(1)

where f satisfiles the conditions:
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(a) £ 1is continuous and f(o) = 0. . - ’
o : l (
(b)) range (f) is bounded. | { | .

L
3t

. Proof: Let f satisfy the continulty condition ( ) and also

condition (b) ..... Then-as-in Section 2, if F : L (u) - R is a

functional defined by F(x) = [ (fex)du Vv x e Lp u)‘, it 1s
| SO X - o

a well-defined additive fﬁnctional énd if satisfles condition

(3): x, = x: a.e. F(xn) - P(x) .. Conversely, if: F is

an additive functional on’ Lp(u) which satlsfies the contin-

uity condition (3) then tor a sequence {xn} c Lm(u)V s.t

X, = X e, x el (u) “and .lxnl, {x] <b for some constant

b > 0, we have that ' Fy _‘F/L’(ud.also”satisfies (3) . Then
. ‘o ' e .

fhere-existsva séquencé {r)} s;t.j‘[rnl‘; © and . JV

1< |f( (r, Y| A a..fﬂ~By;thelstrong intermediate value property

q a decrea51ng sequence {B,1 of measurable sets s.t. " -j

.u(Bn) = TéTYZjT'f Let X, _,rann . X, € M -and(_xn. O a.e.

However, sipce X, € L_(4) , we have F(xn) I(fox du =+ u(X) .

whiqh'contradicté that Flx, - O/. Thus range (f) is bounded

I

Now ‘as usual, for x &€ M , there exists a sequence |

|

tinuity of f , foS = feX boundedly a.e. Thus fex e Ll(ug\\ -
and ‘f(fox)QQ = 1im j(fosn)dg = lim F(S ) = F(x) . The .

I
| o~ T a
uniqueness of f follows from Theorem 3.8 by applying it to |

AN

Fp - - | o Q.E.D. .

{sn} of simple functions s.t. .Sn - X a.e. and by the con-

i
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Since (X,Z,u) is a finite measure space, bonvergence

ca.e. impliés ¢convergence in measure,; we have

4,14 Corollary. If Conditionl(B)'in Theorem 4.13 is -replaced

by a condition (4) x, * x in méasure ==$IF(xn)_~'F(x) , then

the above theorem 1s still true.

If the underlying meéasure space (X,T,u) is atom-

it
-O

free o-finite and p(X) = o then we prove‘ﬁhat F o=

4.15 Theorem.. If (X,%,u) 1is o-finite, u(X) =« and F s

'an;additive'functiona1 on ‘Lp

satisfies cgndition (3) in Theorem 4.1% iff F =0 .

(W) , L<p<ao, then‘lF.'

Let X = ‘xixA_l__,__"i'f‘j;j,Alg £ and 0 < u(A) < .

x, e .Lp'(u)“..‘ | | ]

Since. (X,zsu)'jis'atom—free, we can find a sequénée'-{An}n>l,

Ain'Aj =¢ , 1 & j*‘and~;Ai e ¥V 1>1, sit:

Thus %ﬁ =ﬁ§nxAn for n > 2 and xlvvare equimeasurable and P

for this sequencel'{xn}' we have that’ xﬁ'~ O a.e.

However since F 1s additive, we have that

F(x, ) = F(xy)  1s constant.

>



F(x) = O for functions x where u(supp X) < =

By (3)'of'3.12; it follows that’ F(x) =0 ¥V x e L_(u) T~

The converse i1s vacuously true. N Q.E.D.

4,16 Remark. " M. M. Day has proved thét any linear functionali
on LE(X)‘, 0<p<1l is idéntically zero, where i .is

Lebesgue measure and (X,T,u) ié*atom#free, but from Theorems
3.14% and 4.15 we have seen that for 1 <'p < =, any nonlinear
additive functional F on Lo(w) that satisfies (3) of |

E
o

)
i
1.

Theorem 3.12 is identically zero when the underlying meaSurew
a I

space (X,T,u) is atom-free o-finite and u(X) = o

Now for analogue of CorOliary'4.14 in’the5dlfinite

case, Wwe have _ o SRR ; -

4.17 Theoren. :Let' (X,T,u) be a o-finite atom-free measure

space and suppose Wf(X) = o . Let 'F be an:additive functional
on Lp(u) ,1<p<e. Thén the following conditions are
equivalent;

(%) Xﬁ'g X in measure = F(xn) - F(x) and
(*) F(x) = [ (fex)dn Vv x G'Lp(u) with an f satisfying: '
. X . . - - _ -
'\, N ‘ i
R . . : . , o |
(a*) £ is continuous and - f[-h,h] = 0 for some h> 0 .

Je
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‘Proof: -Let Be T, 0< u(B) < ® and let yg be the
trestrictlon of u to B . TLet v ='yxB , v« fp(u) . l
Deflne FB on Lp(uB)v by FB(Y).Q F(y') where F is an
additiVé.functionéi'dn"_Lp(u)-; 1<p<w. Fg is a well-
defined functional and satisfies (4). Hence by Corollary 4.1k

we have.
Fp(y) = IXfoy du  where f : R-= R 1is éontinuous,,

f(o) = 0 and fange (f) is bounded.

Now we claim that this £ determined by Fg -is independent of
B elE . For if C € E and O < u(C) < Q(B < » , we have by
the strong intermediate value property that, there ex1sts SR
BI e T ;_Bl c B. s-t. 'u(Bl) = u(C) . Since -for any real’ -
numbE} r , TXBI y rxé' dfevéquiﬁeééurable; We have that i?

f,g represent Fyp and Fd then

FngBl)'z F(fxc>'=£?Fb<prl>‘;'chrxc>

/
7

£(r)u(B) = s(r)u(e)
f(r) g(r)  1-6: f =ig‘si§pé u(c) = u(Bi)ré‘ol’

-

‘Hence if X. € Lp(u)‘, u(supp x) ¢ o thén with f determihed‘

abovevwe have ~ - ‘ _ . 1
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|
. | N
F(x) = [ (£ox)au = [(fex)an ¥ x e Ly (k) » |

supp (x)
‘ . u(supp x) < e .

Now if f does not satisfy condition (a)*, then there exists
a null sequence {ah} of reals s.t. f(dn) £0 Y n, where

a sequence {an} is called null if it converges to zero.

t
'
e

As in‘Théorem 4.15, let {Ai}i>l be a sequence of

1
!
I
i
i
|

palrwise disjoint sets Ai € ¥ -s.t.

w(Ay) = u(Al):< © , ¥V i> 1.

Therefore by the addivity of . F , for any integer m , We'have_

R ) = m e, ) = m f(a Julay)

1
Let x =a ym where we choose m s.t.
- A, . .
(1) 1F(xg)] 201
(11) . essf sup'lxnI;= lan[ /

0} and

it

where ess.sup [xn(t)[ = inf {M : p(t :j[xn(t), > M)
since X -0 in‘measure we have contradiction, for

f(in) # Oi=,F(o) . Hence f satisfiesi(a)* .

Let E; At e X ¢ [|s(t)] ZA%} and for'arbitrafy X € Lp(h)
—n—. . v \\ . N - L - - N

let x, = XXg. . Thus u[supp (xn)]'=‘u(El)'< o and Xn." x

O T
o - ‘ ' - .n»

in measure



by Lebesgue's 1imit'thebrem, we have A \

. F(x) = 1im F('xn); [ f-(xxEl)dg | . '.
, , -2
|

and since for h chosen in (a)* we have for all. n .with -

Z¢h by (a)* that fexyy = fex , it follows that

[

n.

Conversely, let f satisfy (a)* and (b). For

(4) we have as above that 'V integer m s “(El).< w!

x € Ly

o
1 v

and (a)* gives that ¥ m s = <h, fex = fo(xxE ) which

I

m
‘together with (b) implies that fex 1is' dominated by a bounded|

.. function with supp. C'E1 .

m
£(x) e Ly(u) and so F(x) = [(fex)du is defined ¥
X € Lp(u). and is additive. Now suppose x, = X 1in measure,
we have Y m > O ) | |
v M
(1) KX, ———> XXg
m , . m

-

H

: W re B o
(i1) xanl_____f_> XX iwhereh EL =X - El
om m

= W

Fix'Am s.t. l-< h .
. om, 2
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Also we see that conditions (a)*'énd](b) imply conditions (a)

“and condition (b) that range (f) is bounded.

‘We have by Corollary 4.l4 and with the choice of m |

that (i) implies (iii)

f(f?xﬁin)du ”‘I(f°XXE )du =‘j(f°x)du - F(x).,"

=
= -

and if ﬁe tak‘e_cn,h = {t c El . Ixﬁ(t)ljzlhjé{t : [xn(t)—x(t)lzgi .
m ' ’ '

we have by (a)* that supp (fex Xo ) < C -and by (1i) we have-
; : , : - n E1 n,h :

. .. -Iﬁ
that - u(C

n,h) “AO.’

Hence the boundedness of range (f) implies that for
are dominated uniformly by

1 : o,

m . ' :

n> 1l , the functions fex Xg
.2 _ n

bounded functions with support < Cn n which impiies
. 3 -

) [retag =0

- ' m

/

Thus by (iii) and (iv) we have that
lim F(x ) = I[fo(xan )+ fe(x g )]ldu
n 1 T

m i m

11 f. di 4 1im [fe 4
- 1in .f[ (anE_l)] o nm j‘ (xanl), o

B

m

2 P(x) . o | . Q.E.D.
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4,18 Theorem. Let (X;%,u) be a finite atom-free measure i
p(.u).',l_<_p<°°-§§
Then - F satisfies (5): x, —- x in Lp norm =% F(x ) - F(x) ,

space and- F an additivé'functional on L

R

4ff (*) holds with an f satisfying

- conditions

 (a) f 1is.continuous and f(o) =0 : RN

(c)' ff(r)]jﬁ.k(l + |r])P :V r e R énd.sbme"K > 0

Proof: Since convefgencévin Lp-norm'implies convergence in
measure 1in a-finite measure space, for - F an‘additive fundtional

“on L_(k) and 'Fi ='F/LI(Q) we have as in Theorem 3.8 that

P
F(x) = ﬁi(x) = [(fex)du ¥ x ¢ L_(u), where f satisfies (a).
‘Now suppose f does not satisfy (c). =~ Then there exists a'i '

“sequence {fn} c R é.t;i.lf(rn)l > n(l + ’rn[)p . Let

{Bn}' be a sequence of sets. in X s.t. - Bn € ¥V n and
1 L - | |

u(B,) f-T;z;;3Te(?) .»:

Sin0§ Ilrannlpéu = lrn[pu(én) = |r |P Tgiing-u(X)
. ‘“,rpu(X)
e n : Lo -
Rl )P <= u(X) 0

we have_that rann - O. in Lp-norm.

But  F(ryxg ) =J(fer xg Jdu = f(rn)an) = + u(X) £ 0 which
, n - n o

. contradicts the.continuity or F .- Thus f satisfies (c).
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Now if ‘B = P ]x(t) [ < cl}. and B = X~B
- condition (c) implies that there exists constants ci"and Ky
s.t. for |r| > cy » [E(r)] < k[rlp : Thus} Ifox[ 1s bounded
on B enq If (xxﬁ)[ < KIXXB,p , and since x € Lp(u) we can o

\

select a sequence {xn} cL (u) s.t.. X, = X a.e.’ because |

‘Lm(u) is a dense subset of L (u) . o o %

Thus by the continuity of " F and by previous theoJems

1

' we have that F(x) = lim F(xn) 11m f(re xn)du if

i

fex, = fex € Ll(u)

'Now by the continuity of f ' and the fact that x -~ x
a.e. we have Sfex = fex a.e. Also by (c) d constants K

and‘lMl s.t. for |t > K, |f(t)] < Mlltlp
Thus from (i)'we have (1): v e>o0 T '(e) >0
s;t. for {u(?) < 6’(€) we get I lfox ldu <€ V n>1 whlch
. is valid for tffe) - min {6( ), 2Kl} , where we let _i
Ky = lt7 f ,,.':' . ’ o o :
 Thus for the case p = 1 , by Vitali's Theorem, ﬁe

have, for finite measure space (X,I,u) that Tox, = fox e Ll(u).

Hence we have the required'representetion (*7).

Conversely if £ R.4'R satisfies (a) and (c) then the functional

F(x) = Ix(fox)du' is well-defined and has'the_additive property.
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Now if a sequence {xn}nZl.c Lp(u) is such that

Il x, - % ”p'*AO , ‘then as above, for every Subsequence {xml
of {xn} Which'converges pointwise as well as in norm, we have
that Fox, = fox € Li and since every norm convergent sequence

in Lp(u) converges in measure, it.contains'an a.e. convergent

subsequence.

"It follows that every subsequence of {foxn}nll

contains a subsequence which converges in Ll-:norm to fex .
Hence {fex 3,51 ‘itself conVerges_t6 'f8x in Ly’ norm and
hence u

lim F(x,) = lim fxfyxndp'= jxfax dp = F(x) .

n | n

<

~ An analogue to the above theorem, when the space 1s

o-finite, is

4,19 Theorem. Let (X,Z,u) be a o-finite atom-free measure
space with u(X) = = and let F/ be an additive functional on .
Lp(u) . Then the following conditions are equivalent:

5 X, = X in Lp norm == F(xn) - F(x) and

(*) F(x) = f%(fox)du V- x éALp(H)‘ with ' f satisfyihg
cbnditions L :‘  » , | |
(a) f 4is continuous and f(o) = 0

(a) ]f(r)] S,k]rlp 'Y r €e R and some K> O .




7 |

Proof: If F 1is an additive functional on Lp(U) which
satisfies condition (5) then by Theorem %4.17 for all functional

Fy obtained from F defined by Fy(y) = F(yxg) » 0 < u(B) < =

there exists a unique continuous function f : R - R which
satisfies (a) and (c¢) by Theorem 4.18. . We claim that f

satisfies (d).

Suppose not. Thénlthere'eXists a null sequence

| _zero. . 5 nla |P
{a,} of non-zero reals s.t..:lf(an> > n[anl .

Let {B,} be a sequence in X s.t. B € T and

n
‘since ' (X,I,u) is atom-free, we have u(B,) = — 1
£(a)]
St [la xg [Pau f' 1Pu(B) = | jp I < et 0
nce X U = |d u = |Q_.|F — i
n~"B - n AN 0 n P . »
| n : Jf(e )] nle [P
4we haVé_th?tj {anXBg};C Lp(U);_and i anBnJ[p -0 .

However F(aan ) # 0 = F(o) which contradicts (5). This
. : 1 :

‘establishes (d).

Now for the representation of F , we have for -

~defined in Theorem 4.17 that if

X e Lp(p) ‘and for E,

*n = xxEn then " || x, = x Hp - 0 and [xnlJi Ix] . Thus for
this sequence {xn} » fex = fex a.e. andlby (a) ,

»_lf°xnl.£ K|x|P e Ly (n) .

By Lebesguegdominatéd cohvergence theorém, we have that

F(x) ;“1im:F(xn) = lim [fo(xxg Jdu = [(fox)du .
.- n - n n I
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‘For the converse we need only show the continuity

Property (5) of F', tor the conditions (a) and (d) on- F -

(w) .

define F(x) to be an additive functional on Ly

Appealing again to the Vitali's Theorem, if x_ - x
in L norm, then there exist subsequences {Xm} s.t.
Il x, - x ”p - 0 as well as x *.X a.e. and for such sub-
sequences, by the continuity of f we have that foxm - fox

a.e. Thus_Vitali‘s Theorem ensures that every subsequence of

{foxn} contains a subsequence {foxm} which’Copvergeé’to

 fex in "L, norm and hence the sequence {f°xn}ﬁ3; itself

converges to fe.x 1in Ll norm.

Hence '11@ ﬁ(xn) = lim j(foxn)du = [(fex)du =lF(x)
' n . . n ‘ _ .



SECTION 5.

- EXAMPLES AND.COUNTER EXAMPLES ON
| REPRESENTATION OF ADDITIVE FUNCTIONALS

o

Let B = L;(u); be the set of all essentially bounded
real-valued measurable functions on X. ‘Let F:R=-R be.AK\

continuous for which :f(o)jﬁ o . For'every' ¥ € B, consider
=_IX(f'X(t)du(t) , mmmtem e (*).‘

F 'satisfies : - : ' | o S
[ 4

u(supp_x'ﬂ supp y) = 0 and’ f(o) = 0 , we have Flx4y) =

5.1 (a) - If .x,y have disjoint support, then since

-fw«ff-F(x) + Fﬁy)

5.1 (b) Ir {x } is a Sequence in B s.t. x - x‘a e. dhé

]xn] le < Ml for some pos1t1ve constant .MI thenl
'F(xn).ﬂ F(x) since f(x ) o f(x a.e. and [f(x )] < sup f(y)=>
- n
' e ]y LC .|
by Lebesgue'd dominatedICOnvergence theorem‘that
linm F(x,) = l:Lm [t (x (t))du j‘f(x(t) du(t F(x)

= P is continuous.

5.1 (e¢) If x;y € B s.t. X,y are;eqﬁimeasuréble, then



50.

F(x) = F(y) . For if x,y are equimeasurable then_so are

- £(x) and f£(y) and hence o |
F(x) = [ f(x (¢ ))au(t j £(y(t))au(t) = F(y)

In this section we will be concerned to the extent\

to which Properties 5.1 {(a), (b), (c)} characterize fﬁnctionals

of the type (*). , ) ‘j\\

, - . |
Our first*éxample‘shows that Theorem 3.8 is false %.
. if the underlying measure space (X,Z,u) d4s atomic and we,shélll

follow néinly V.. J. Mizel and A. D. Martin [1] 4n this section.

- 5.2. Examglé;o“Let”'X = (1,2}, = = {all measurable subsets o

)

X} .  Let ‘u be the measure ‘on-. (X,T) defined by (1) = my
.u(2)—m2;ml+m I

For X e B(X,T) , lét x(i) = x, , 1 = 1,2,
Por each X € B(X £) define the functional F by

F(x) = f (x:L m o+ fo(x 2) , Where f. : R- R are continuous

and 'fy(0) =0 for i =1,2, -

(n)-q x(o)_boundadly

O)’;implies that ‘ : T~

Thus by. the continuity condition of R, if x

and xén)

(< )my = £,y 2, (xf ) -

{
2

'F(x(n)) - fl(x(n))ml + 1, o=

For additivity of F : . .



51.

(1)~ if xl,kg € B s.t. ’supp xl‘h sUpp X, = ¢ then if
| e (1)
Xy 0 , and x2.¥ O then Xy =Xy 'x(;) and
DX, = xé )X(2) where u(l) = s u(2) = m, |

implies that F(xi'+vx2) = F(xl)'+ F(xg)‘.

-(ii)' Since my % m2 , two proper subseéts of X have equal
~measure iff they are equal, which implies’that'

x,y € B are equimeasurable iff x =y . .

And.ginéé -ml é pfw:: x(W)'é‘xl},=tQ{WA{'y(W) = xi} i,e;.

{w: x(w) = xl} = {w : y(w) = xl} implies that x =y . '
. | ]

It follows that X,y iére équimeasurable'iff X =y s% F(x) =1F(y).
~_ Now if'the theorem is to hold true we would have for % ome. cofin
tinﬁoug;fgnptipn_>f :]RMaRN_,_f(O)_:vQ..that o o _"'+g
' 1 I
‘ I}
. R ' ' . ' N
F(x) = fl(xl)ml_+ fa(xg)m2 = f(xq)m + f(xg)mg'.' g

But if x; = 0 for some x then

Similarly f; =T . But it is not'necesgéry that

1 '='f2 always. . | R o Q;'E.D!.‘“

So we have seen in the sbove example that, presence |
of atoms in the.measure space makes thé"RépreSentatiOn (*)

faiSe.
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5.% Theorem. I1f X = (X, Z,u) 1s a finite measure space and:
X AUC 1S the decomp081tion of X into atomlc and atom frée

parts then the.suff1c1ent-cond1t10n for Theorem 3.8 to hold

‘true. is that, for every atpm'fAi  of  X, u(Ai) < u(c) .
P?oof: CIf x € B(X,;) » let x = xXA“ and X, = XXq and
hence x = x, + X, which by the additivity of F dimplies that

E(x)'; F(xa) +xF(kc> | [v supplxa'n Supp X, = &j

‘Now C = (C,T,u) becomés‘an atom-free measure space when y
is restriéted tb"C'and‘i%s-measurable subsets, and in the séme

way we may take’ xé as a member of ‘Bc = B(C,Z,u) .  Hence:

as in - Theoren 3 8, & it : R= R continuous. s. t.

o) = T (e)au(t) ='fcf<x(t>>au<t>

vF(xC

Now Al,AQ,;.. are atoms of X and any measurable

: functlon is constant on each Ai with'value Xy s 1= 1,2,
If u(Ay) =m , 1=1,2,... , then ¥ xc¢ B(X,%) ,
'x. € B(A,T,u) and since A = U A | -
. : . 1

a iv 
. a @ ©
Rlxg) = F(T %, ) = FQn B oxny )= dim F(E g )
- n S ot .
and since f XXy, = I X4X%p boundedly‘we have . .

n : ' n ' ©
1im (T x.v.) = 1lim ¥ F(x ce=c T Cf (7 )
n»w.nsl 1%ag noe 1 QS‘iXAg 1 'ifxl)ml



where fi(y) = ————— and fi(Q) =——— =0 as in

Theorem 3.8 .

Now if we can show that £, =f V 1 =1,2,... , chon X

F(x,) =T £(x) my = IAf(X(t))du(t)

H 8

i.e. if x'e B'= B(X,Z,u)

I

then F(x) ; F(xa) + F(xc) fAf(x(t))du(t)-+ff(x(t))du(t).

= feGe(e)aw(e)

and hence the theorem follows .'

"So we now show that f =1, 1 =121,2,... .

Since .p(Ai) < u(C) , by nonatomicity of C , 4 5, €T,

$; €C s.t. u(sy) =wu(Ay) , 1 =1,2,... , and hence for every

real number a , aXg and aXpy are equlmeasurable and it |
e ' '

, i
follows -that

So ~féf(axsi)du - jcf(a)xsigp = f(a)u(si) =_f(a)u(Ai) = f(a)m;

~ and since m, >0,

f.(a) = f(a) V real a .

»Q,ELD.'
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' We give an example to show . that the conditlon glven
in Theorem 5. 3 is not necessary for the theorem to hold true.
It may be»possible that the atom-free part of X 1s empty

while its atomic part is nonempty.

| 5.4 Example. -Lét X =1{1,2,3,... } , T = all méasurable sub-

Coe

‘sets of X and let the measure u be defined on T by

1 .
_p(n) :;ﬂ sy N o= 1,2,3-,...

So here C = the atom—free'part is empty but we show‘

that the theorem still holds. true.

For x € B , take x(n) = X, - The functional F

which satisfies'5.l'(a)'andSSLl (b) can be defined by

| o £ (%))
' F(X) = Z, n nn,
: n=l" 2
| s 1. e 1 . -
Now since —& =" T - , the sets S = {n} and
.2 k=n+l 2 ,

Tn-= {n+l;'n+2,;;. } have the same measure and hencé for'any
o ' /- : ' .
real a € (-o,o) axg and- axT' are equimeasurable and Y n

n ‘ n
) = Blaxg ) 2 - § X
- F(ax = F(ax — = T =
- Sn- . Tn~ o ken4l 2k
E © fk ‘
Also then =T T z X which implies by subtraction that
k=n 2
f f f
n -~n-1 n .
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and hence the Theorem 5.3'is still»tfue.
5.5 Lemma. ',Lét' X ={1,2,3,... } vand'define u(n) = m,
where m, is a positive number s.t. for every n = 1,2,...

m ' | ' _ ' : .
: > > then r m = I m, =—» I =J and hence
"n k_n+l koo iel = jeg | .
two subsets of X = (X,Z,u) have the same measure only if they

are equal.

Proof: Assume that INJ = ¢ and claim that IUJ = § .
Suppose IUJ + ¢ , let ng = min (I,J3) and thus ho'e I or
| n, € J and not- to both. = Let no'e I, ° Then

'Y m; Z.mn > T me > > I mj and therefore Z m., > = m,

ieI o kgl T ged | 0 fert - Jed I

which is a contradlctlon
HenCe'I:J:cb.

So two subsets of X have equalvmeasure only if they
are eQual;“ It fOllOWS'tﬁat tﬁo real messurable functions afe
equimeasurable only if they afe équal and as in EXample_S.Q,
Condition-S.l (¢) is vacuously saﬁisfiéd‘and hence every fﬁnctipnal

F s.t. o - - ' !

satisfies Theorem 3.8 provided fl( )‘_ f(x,t) 1is continuous in

x V teT and 'f(o,f) = 0  and the- series (l) converges

~



56;‘

uniformly and absolutely, for :anl » ¥ n, to be uniformly ]

' bounded.

Hence for‘this (X;Z,u),,Theorem 3.8 is not true..

S o !

The next theorem, 5.5, glves a necessary condition.

for Theorem 3.8 to hold true for a éountably‘infinite discrete
: ’ \

measure space.

|

5.6. Theorem. Let X = (X,T,u) be the countably infinite;

discrete measure space and my > m, > o >... be the measures |

- of the atoms of X . Then a necessary condition for Thedremi
3.8 to be true is that for infinitely many n , m, <2 X m.\ o
L | | T ken4l © |

Proof: Suppose condition (2) is false for all but a finite
number of n and take n_ > 1 (where n, ¢hosen is the same!
as in Lemma 2.39) s.t. ¥ . n>n , m > 2 I e (3)
, - o n k=n+1mk I
Let % = {all functionals F ‘on, B(X,T,u) which satisfy 5.1 (a),
5.1 (b), 5.1 (c)} .

Then for every real-valued function f

1 ? R - R

\,

satisfies 5.1 (a) 1ff f,(0) =0 ¥ 1 =1,2,... and satisfies -

5.1 (b) 1ff - T fi(ai)m. converges uniformly and absélutély'



5T

for ai in ény‘compact set of R-. | And lastly F satisfies

5.1 (¢) iff'Y a e (-=,») , the sequence {fi(a)}i>l ;satisfies

that £ fom, = T fm., for (I,J) ¢ H | Cemzieo(5)
fer 1Y yeydd T T : -_»i
‘ ' ¥

as in Lemma 2.39. o : | ‘ K ﬁ\\

. | . - . T |
~Let G © & be the set of those functlionals F for which |
» | |

We claim that ¥ = G for the above theorem to be

true.

Let K be a finite subset of the positivé integers

"containing k+1 integers where k. is the number of equatibns

[

in 2.39 (c) . Let ({S;};,; be the solution of 2.39 (c) whos

support is K and let g ¢ R- R be a continuous function ?

.which vanishes only at zero. -

Let . f; =S8 for 1 =1,2,... o
so £, + £, for i L _ S——C
. @ E X ’ / ‘ Lo .
Then F = % fimi satisfies (5) above and also 5.1 (a),

5.1 (b) and 5.1 (c) and hence F e ¥ and by (6), F &.G which

contradicts our assumption. ' ' ' . Q.E.D.

The following'example shows that the condition.in
Theorem 5.6 is not sufficient. Even the strong condition of
~ Theorem 2.31 which is equivalent to the'weak'intermediate value

property, is sufficient iff r > 1 where O < r < 1 and’
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5.7 Example. Let p> 1 be an integer. (3)® = r 1lies
‘between ‘3 and 1 ’
Since r also satisfies oxP -1 =0 e (T)

it is an algebraic number of degree _p

Since = T rp+kp = —~ = 1 for +P % —4———-(8)'
k=0 1-r? .

we have for any. i = 1,2,... that

1. ¢ rp+kp+i =
- k=0

Let X = {1;2;(;.‘} and  p(i) =‘r} = (éLE—)l/p‘-_-'m:.L , We have
that my > m, 3 ... and also that -

[+ <]

< ' m .
mTl_k:n-}-lk

So X satisfiesﬂthe weak intermediate value property provided
that p > 1 . . . I |
We claim that Theorem 3.8 does not holdvfdr this

X = (x{z,u) .

For if F =

-8

firi is a functional on B which
1=1 — ‘ B

satisfies condifions 5.1 (a), 5.1 (b) and 5.1 (c) then by (9)

above, 1f gy =-f;r" =fm , 1 =1,2,... , then



J -
= = T - .
»gi kzogp+kp+i k=1 gkp+1 glog
’ |
Cip = k§2gkp+i _____ ‘11)

and subtracting.(ll) from (10), we get .' o o

| g
| _ - &
€1 ~ Bi4p T Biip =P Biyp T T

l.e. £, =f, for 1 =1,2,...

‘Thus £ .. and hence F can be.completely‘determined

p+l’fp+2"

if fl’f2”"’fp are_knOwn.

We claim now that fl’fg""’fp are. arbitrary con-
~ tinuous functions on ‘R and fi(o) =0 for, 1=1,2,...,0 -

Now V (I,J) € H as in Lemma 2.39,

T rt o=y rd SR ————=(12)
Cdel Cojed ' ' . )
implies T At o= s £,rd . ‘ [ (13)
iel Jjed , S
h

Dividing'by.the-lowest power 'r  of r , (12) and

(13) can be written as

and - f. = T ec.f v  3 ' e 15)
' .h k=l k“h+k . : g .



: » S 5 ) |
Furthermore (14) becomes 1 = < dkrk —=—==(16)
| LT k=1 5 '

- e e o |
" Where dk = I —?%?B.rk for kX =1,...,p where we use the

n=o0 2

fact that k =.a va+ bk _and in .the :same way by using the period-

k
dicity Of.function”seQuenqe fl’fe"" , (15) can be written as -

o]

=, kT nax®

T d koo T LLan.
k=1 . : - A

Since r satisfies a unique irreducible polynomial

of degree p , by comparing (2) and (16) we get that

dy = df = ... = d =0 and

k=1

~and since 2r® =1 i.e. dprp =1 , relation (12) reduces to

h A 4D

r = 2r and (17) reduces to

h=1,2,..., ) Q.E.D.
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SECTION. 6

REPRESENTATION OF BIADDITIVE FUNCTIONALS

6.1 Definition. If X,Y are two sets then

XxY = {(x,y) : x e X, y € Y} is called the cartesian product

. of X and Y.

5.2 Definition. If AcX and B <Y then AxB ¢ XxY and

any set of the form AxB ‘is called a rectangle.

~

~ Let '(X’Sl’“l)~ and (Y,Sg,ug) be measure spaces
where 51 ‘and‘S2 are o-algebras of subsets of"X and Y

‘respectively.

6.3 Definition.. A set of the form AxB where A € Sy ,

B e 32 1s called s measurableurecténgle.

6.4 Definition.” 'If E c XxY , for x e X and v e Y ,

, : / .

define
Ex = {y : (x,¥) ¢ E}

B = (% : (x,y) € E} .

~
N

L ~and EY are called the Xx-sections and y-sections respect-

ively of E and E cY, B cX .



6.5 Tneorem. If E e §;xS,, then E e S, and EY € 8

- for x e X and y e Y .

6.6 Definition. With each function f on XxY¥ and with
each x € X we associate a function fx defined on Y by

f

x(y) = f(x,y) . Similarly Y is the function defined on

X by £7(x) = £(x,¥)

5.7 Theorem. Let f ©be an SleQ—measurable function on -

XxY . ‘Then

(a) ¥ xeX, fx is an Sz-méasurable'function. : \\
. - : SN

(b) ¥ ye¥ , Y is an Sl—ﬁeasurable function.

6i8 Theorem.. Let: (X,Sl,ul) and (Y, Se,ug) be o-finite
_measure spaces. - “Suppose E e Sle2 . If @(x) =;u2(EX§ s i

v (y) = l(Ey) V. xe X,y € Y , then o .is Sl-meaqﬁrable
: .
and is SQ—measurable and f @dul deuQ and since

/

. l_HQ(EX),#HfYXE(¥5Y)du2(y? Vox eX

we have that : 1”' .o : : \

‘deui )F XE(X y)dug( = f dug (¥)] xg(x,¥)duy (x)
L BT

1

5.9 Definition. = If (X;,5,,u;) for 1 =1,2, are o-finite

measure spaces and if E e S;xS, then define



_ _ Yy
-y xup) (E) —.IXMQ(EX)dul(x) = IYul(E )di, ()
 The product ulxué' of measures u, and W, is also a measure.

(For Proof see P. R. Halmos) and also that p xu, is o-finite.

In this section we prove the integral representation
of biadditive functionals when the associated measure space 1is
finite non-atomic and for this purpose we shall follow cloSely

the proofs in [2]. -

Similar results hold when the undeflyihg'measure
" space 1s o-finite non-atomic but we shall restrict ourselves

to' the finite non-atomic measure space only. .

5.10 Definition. Let (Xy,S;,u;) , 1 =1,2 be two measure E
spaces and let M, be the space of measurable functions on Xi .
If‘.Bi is a vector subspace of Mi for 1 =1,2, then a
functional N on B;xB, is said to be biadditive if N(-,y)
and N(x,-). are additive for every function y e B, and
x € By respectively. .
/

The results for biadditive functionals are analogous.'\ 

to the ones proved for additive functionals in Section 2. We '

.shall.establish the necessary and sufficient conditions that a

biadditive functional N defined on the product- leB2 of

ﬁrescribed subspaces B1 c MI R B2 c M2‘ permit a représenﬁatibn o

of the form | - .]

'

Y



O\ ——
=

T

e (%) N(xy,%,) = [ ¢( 15X d(ulxug) for all x, e B. ,
_ Xo XXy

» - e e - - l 2

where ¢ 1is a unique continuous real-valued function on R2 .

5.11 Definition. A function -¢ is said to be separately

continuous if ¢(x,-) and ¢(4,Y) are continuous V x,y € R .

6.12 Rema;k. if @(x,y) 1s continuous in both variables

separately'then 1t may not be continuous in both variables

Jjointly.
L Xy 2
. _ ) A 0
Example. Consider ¢(*,y? = X2+y2 5 x= + y° &
0] 3 X.2‘+ y2 = 0 ‘

Now o(o,y) =0 , vy £ 0 . Therefore

Il
o

11m ~o(o ,y) =0 = @(o,yo) and since o(0,0)
Nt SR - - - - x

I
I

lim @(O)y) @(039)
y—0 . T !

Hence o 1is continuous for all y and by symmetry

’t
|
!
j

it is continuous for all x also.

But  lim o(x + ¢ 0, o) =0
X=0 .
\'y-’o

Il

For let (x,y) =~ (o0,0) -along the line ¥

mx . . Then




N
(o

lim  o(x,y) = =5 +0
X=0 - - l+m
Njad®

Hence the given functionvis»discontinuous_at (o,Q) .

|
5.1% Theorem. Let (X;>8;545) 1 =1,2, be . finite non-
atomic measure spaces and let- N 'be a biadditive functional

on Lm<u1)'X_Lm(U2)‘ Then N satisfies condition:

(1,1) {Xn - x Dboundedly a.e. => N(xn,y) -~ N(x,¥) ¥ y € B,

Y, = ¥ Dboundedly a.e. N(x,yn) - N(x,y) ¥ x e B

1

|

iff (**) holds with a representing function o satisfying}'

1
1

.
(a,a): ¢ 1s separately continuous and ¢(c,0) = ¢(0,d) = 0

v C,dGR, t
and . ) . : ’ .

(b,b): ¢ is bounded on every subset of R- . ,

Proof: Let xi“e Lm(ul) . Then N(xl,-) is an ‘additive
functional which satisfies condition (1): N(xl,-) is con-
tinuous and N(xl,o) = 0 and hence by Theorem 3.8, there exists

a unique continuous function T

R-R, f_ (0) =0 , s.t.
X3 S ’

N(xl,xg) = Q (f#lofg)dgg ¥ x, €L (ug) QQ}QQQ(lj
§ 5 < el L

o



- O\
(O)}

Define © : R- - R by

N(exq»dxy).

?( 1( X1) gxl (Oxp) = ul(Xl)gQ(Xg) -----=(2)

Since N 1is biadditiVe, (1,1) implies that @ 1is separatel&

continuous.

Let Ei be the disjoint measurable sets in X, . For a

1
. l 3 3 : k
flxed X, € Lm(ug) and for Qach 31mpl§ funct;on X, = Elc Xg|
we have by the biadditivity of N that
k ) “k ' . o
N( £ Co¥m 5X,) = T N(C.Xm »X,) --=-==(3)
i=1 FUEyTTRT g AR T | o
‘If each c, = c; and ul(Ei)Az pl(El)‘ then‘we
get
N( lX E E b 2) = kN(clel)xg) . TTE (u')
—l , L \ o
S k. e |
and henceAlf {Ei}i=l is a:partltion of Xl then
. : E.) L
. ) 1- U-l( 1 .
N(Clel,XE) = E'Ngclxl,xg? = EZTKIT N(Cle;Xg?, ----- (5?'.

If gl(F) is an integral multiple of ul(Xl) then from (1)
we have N ( CXF, = f £, du2 .
2

A,

By (5),and (1)



N(CXF:ﬂ)'= EITX{)'N<CX13') = EITXI) Ul(Xl?U2<X2)¢§C3')

l.€e N(CXF: ) = “1(F)ME(X2)CP(C} )
i (Fhup(Xp)e(e,-) = [ £, o(-)du,
e X 7
2
l.e f ( ) = Ul(F)w(c: ) ““““ (6)

for F e S , s.t. ul(F) is an integral multiple of ul(Xl),

As inij 8(g ); by applylng the(a?d1tiv1ty again, (5) implies
. b (F
_that (6) is true whenever ﬂlTXT is a rational number also

and hence the continuity of N dimplies that (f) is true in

general. | | o |
' Now (3) can be written as . $
4 K : kou (B;) k u. (E, )
. M. 1Y7i
N TeCi X 5 Xs) =T = N(CiXqsX,) =% . (f oX
1o TECTRI T (K TR Ty ul(xl)x RO
. . {
K . 4
= Z Hl(El) f"/@(c ’X2)dU2 —————— (7)
1= : .
X2
k -
= [ o0 2 ceyxg »xp)d(uyxuy)
} i=1 .
RS R |

which proves the representation (**) when‘ xl‘€_Lw(ul) is a

simple function.




|
i

i

68.

To prové that (**) holds in general,.we prove firstly

that o satisfies (b,b)

is separately continuous, K;* s Lagx
assumption both . Ay = {K, : I < K3

are unbounded.

‘z 9. L 1 and Y 6., < %0 for

1 d - pna Y n

.. Choose a sequence of points

inductJon as follows:

i - : '
. ' -1
’Choose G s.t. .Kc1> 491

Let {E1}1>1 and - {FJ}J>l

measurable sets in Xl and X2 resp

n> 1.

Suppose ¢ 'does not satisfy (b b) . There
a rectangle @ = {(c d) : ]c]_i Ky [d] < K } s.t. .o
is unbounded on Q_. For fixéd. c*,d*,llet
o% =, mMax [@ c*: d)[ and  Lgy = ‘max-]¢(c,d*fl; S
| a] <K, o o elgxy 7

arg well-defined.

and A, s-{Ld :

'{(Ci;di)}i>l in

”and'.d |

1 s.t.

!@(ci,dl)L =-Kcl In general, having chosen (ci,di)
1 <1<n-1, choose ¢, so that
on-1
-1P n+l 1
Kc > 26n z &d e. + 2 en n where
n 1=1 .
n-1 . n-1 . 1-1
,dng_(%)ZKzlei+22"iz&de +n
' i=1  °1 i=1 j=1 J J
and then choose 4, s.t. l¢(cn,dn)[ = Kcn

be”éequence of di

ectively s.t..

exists

(ch)

ince o

But by

la] < Kl
Let {ej}_ be a séquehce of positive'numbers s.t.

for

sjoint
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w (B;) = 2_1“1(X1)_,, and pQ(F.> = e.ug_(xg) .- Let

J J
X, = % d. X €L | . S
2 7 55y Ny 2 € Dulip) < |
_ . o N n | o
Also, the sequence of functions Xy = Z C. XE and the function,
; =1 . L \
' . n o
X ='l§lc XE are in le(ul) and. Xp =Xy boundedly a.e. l
”Thus N(xl,xg) - N(xl;xg? as n - o .
Now consider the integral representatioh for..N(xl,xQ) !
which we have established when X4 or x2 is a simple ' :] ;

function, we have that - ‘

o - N( ) = Jo( T c.x T d.xe )A(H, xu,)
R J 2 %i%E, J.ZlJFJ.“_'“l 2 |
= . d E F.)  mmmeom
5 ?leg0 850 (B Jup (Fy) = (®)
Also we have that for each 1 <i<n,
‘r“<"><><>‘; T ey 2 he (X ), (X,
T oolc,,d.)u MA(F /2 4,2 T8 (X Jus(X
J_l ;. 1 2 " J ~ 321 dJ J lm L1 2” 27
| <o tr. 2 - pla hu (X )u,(X.)
= c; 2 1‘X1 Holfp/
——————— (9) |
. _i'
and | T o(c,3d.)u (B (F.)] < ¢ K. 27%g.u (X us(X,)
st l)ug..J il 61 dTiiriTeran
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‘Hence from (8), (9) and (10) we have that

| J>l S -
12 a(og55)0 0 (8, Dy (6y)]
- | T g(ec 9 u Mo (X
=1 21 + e
n-1 8, : t
>IK, 8, - T4 85 - K, 5127 g (X uy(X,) B
n J=1 73 n’ ‘ %
-n—l[ . - i-1 : el] _3 ‘( ) ( ,)
- TIK, 0, + Z 2, 8.: + 2 B ITIN .S
i=1 Ci i j=1 dJ J c 2 M1 17re '2%.
>n
which contradlcts the fact that N(x X3, é - N<X1’X2)
Hence o has property (b?b).
Now for.(**) to hold in general, let x; e Lm(ui) . Theré"
exists a»sequence {x?}_c Lm<“1) of simple fﬁnétions, s.t.
X7 ﬂ.xl boupdgdly a.e. - | T |
Hence we have that - / :
. ’ - n ’
N( X X, ) = lim N(Xl,x ) = Lim ooy sx,)d iy xup)
nme D A - '
1772 \
----- (11)

Y X, eﬂLm(u2>
Now by the separate continuity of ¢ and the-property

(b‘b) we have that the functions h = o(x X1» 2) DX XX, - R

converge boundedly pointwise to h = ¢(xl, ) outside a set



T1.

|

of the form (NjxX,)U(X;xN,) where. N; are null sets in .Xi;'
| v AL

!
i

» Hence by the Lebesgue dominated convergence theorem\

"we have from (11) that : ' B
|

N(xy,%,) = [ ¢(3l{xé)d(ulxu2) Vv x; € L,(kq) and

Xy XX,
X, € Lm(ug)

and this proves (**).

Conversely, let N(xl,xg) = I m(xl,xg)d(ulxug)_

where .¢ satisfies (a,a) and (b,b).
From the steps 1eading to (11) we have that a finite valuedi |

N above is well-defined and that it satisfies (i,l) follows

.from the proofs in Section 2.

5.14 Remark. It is clear from the proof of the above theorem

that it still holds i1f (1,1) is replaced by condition

(2,2) xn'ﬂ X boundedly a.e., Yy *‘y boundedly a.e.

N(xn,yn) *’N(X,Y) and (a,a) is replaced by condition:
(a,a); 1 @ 1s Jointly continuous and o(c,0) = o(0,d) = O

N i

V ¢,d € R .



T2.

‘Sihce ih a totally finite measure space, convergence
boundedly a.e. implies convergence boundedly in measure, we
. - ‘ , - . |
have D , |

1

\ :

L : ]
. 5.15 Corollary. Let (Xi,Si,ui) .be as in Theorem 5.13, andﬁ\\
let N -be a biadditive functional on Lw(pl)wa(ug)'. - Then

N ;satisfies_condition:

(3,3) X, - x boundedly in measure => N(xn,y) - N(x,y)
| ) ‘ | . V y e BQ‘ |
¥, = Y Doundedly in measure = N(x,yn)_~‘N(x?y)

¥V x ¢ Bl

or

(4,4) - 'X,.= X boundedly in measure, ¥, = ¥V “boundedly in

' measure == N(xn,yn) -~ N(x,y) , iff (*¥) holds with a

@ : R 4 R having the properties (a,a) or (a,a)l and (b,b). -

Proof: We need only show that if » satisfies (a,a) and (b;b}
then N satisfies (3,3). Suppose x? - x; boundedly in

measure then there exist :subsequences {x?} of {x?} s.t.

x?’a X boundedly a.e. and Theorem 5.13_implies that for all .
such subsequences @(x?,xg} - m(xi,XQ) in Ll(ulXue)—norm and

by the same argument every ‘subsequence of -{m(x?,xg)} contains

a subsequence qonverging_to m(xl,xe) in Ll(ulxue) norm'and

this implies that {w(xﬁ,xe)]_ itself‘convergés to m(xl,xg) in

Ll(ulxug) norm.aﬁd‘hénce by Lebesgue limit theorem
'N(Xﬁ’xi) - N(xl;xé) | '



em .n -
Similarly N(Xl’x2) - N(xl,xg} . . Q.E.

5.16 Theorem.  Let (Xi5si’ui) be as in Theorem 5.13. Then
a biadditive functional N on Lm<“1)XLm(“2) satisfies

condition: .

.

X, = X a.e. =i?_N(xn,y) ~ N(x,y)‘ for all y € X,

(5,5)
Yy, =Y a.e. =9 N(x,yn) - N(x,y) for all x e %1

|

2

iff (**) holds with a ¢ : R = R satisfying (a,a) and

(b,b), = is bounded on finite strips of the following
1t @ i

types for all h > O,

1
Sy

- Uesd) ol <nd, 2= ((e,a) + fe] < n)

Proof: Let ¢ satisfy (a,a) and (b,p); and let
| N(x19xg) = f @(Xl;x2>d(UlXU2)
L XlxX2

It is juét a,foutine Verificatioﬁ,.that the bounded convergepcé

theorem implies that N satisfies (5,5). .

Conversely,'let .N be a biadditive functional on

L, (1 )L (1,) satisfying (5,5). Then N also satisfies

(1,1). Hence there exists a unique function o : R® - R

~

satisfying condition (a,a) and (b,b) s.t. (**) hOlds forvall

(xy5%5) € T (WM, () -



7L,

Now we claim that ¢ satisfies (b,b)l - _>|

Suppose not.  Then there exists a strip

Si = {(cyd) : |d] < h} ‘or a strip Si: = {(c;d) : [c] <n'}
. S 1. 2 ‘ . .
s.t. ¢ 1is unbounded on Sh or Sh' .- Suppose that o is,

unbounded on Si . As'before, let {ei}iz; be a sequence\~

of positive reals s.t. £ 8, =1 and T 8. <38 ,n>1
: ' |

1t iyn4l T T TR ;
‘ | . ' .
We choose a sequence of points {<Ci’di)}ill in ?h
inductively as follows:. _ g g ,ﬁ\\
Let X, = max [g(c,d)| , Lty = sw |o(c,d)] . ‘A
]dl<n : —@<c<w !

Since ¢ 1s separately continuous, K, 1s welldefined and

t

by the continuity condition (3) of Theorem 4.13 on N(‘,dXQ) 5
13 1s finite..

Since ¢ 1s unbounded on Si s KC and Ld are
unbounded functions of ¢ and d , [d] < h . Choose cy

s.t. K. >.4 871 and then take d. e [-h,h] s.t.
, _ Cy — 1 ) N 1 .

fm(cl,dl)l = K, Having chosen {(ci,di)} 1 ﬁ_i s_n—l >

1
’ o O n-1 - -
select c s.t. XK. > 2 e“l T o8.4, 4+ n‘2n+le—l' and then: |
: Cq - n i™¥d n oL
l . i:l i ) A . N f
choose d_ s.t{\ ,m(ch’dn),i= Kcn "- For {Fi}ill a disjoint

sequence of meqsﬁrable sets such that-'u2(Fj)'seju2(X2) , let
x, = £ d.x ‘X, € L (uy) . - ~ .
2 1 J FJ > T2 T e 2’
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Let {Ei} be a neéted sequence of measurable sets

in X, s.t.
ul(Ei.) = 2 ul(Xl)
As in Theorem 5.13%, if x:rLl = c Xg then ' Co

n o : : o |
,N(Xl,xg)zn Ul(x.l)ug(xg) . .

And since xi - 0 a.e., the continuity of N implies that
n
. N(xl,x2) -0 .

Hence we have a contradiction which establiéhes

the property (b,b)l for o .

5.17 Corollary. Since in a totally finite measure space, -

convergence a.e. implies convergence in measure, the above

theorem is true if condition (5,5) is replaced by condition:

(6,6)  x,=x ae, ¥, -y a.e. N(x,,¥,) ~ N(xy) .

~
.- .

‘ Since the above theorems are true for n = 2 , these

"are true for.h-additive’functionals for n finite.

1.




SECTION 7

REPRESENTATION OF NONLINEAR TRANSFORMATIONS

. ON IP-SPACES

Let T. be a‘subsetEof the n-dimensional space R™

s.t. u(T) < » ,  where ‘u is the Lebesgue ‘measure.

i

7.1 Definition. A real valued function ¢ : TxR = R is
said to be of.Cératheodory type for T , denoted by O € Car(

if it satisfies.
(a) o(t,*) : R=» R 1is continuous for a.a - t € T .
(b) e@(-yc) ¢ T = R is measurarable for all ¢ € R .

7.2 Remark. If T = (T,Z,u) 1is a o-finite measure space

and if M(T) denotes the clasgs. of real-valued measurable

functions on X then since for each simple function x , the

function ‘¢ox defined by (pex)(t) = o(t,x(t)) belongs to

M(T) and since for each X ¢ M(T) , there exists a sequence

"{xn} of simple functions cohvefging‘to X , it follows by

using 7.1(a) that ex € M(T)

~

7.3 Defihition;: We'denotewby A , the operator deﬁined on

the.set of real functions on T by ' , Lok

S

Au(s) = ols,u(s)] where o ¢ CAR (T) .| i

T)
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|
i
1

In the beginnirnig of this section, we shall be mainly |
interested in the pfoperties of. the operator A for the case.
when it acts from a space 1 to Lpg. for py,p, > 1 and

for this purpose we shall follow M. A.‘Krasnoselskii”[ll]. ’

Towards the end ofuﬁhis section we shall state twov
theorems by V. J. Mizel [8] which prove‘thelintegral repres-
entation of nonlinear transformations on.LP—spaces a?d also')
ektend,bur éarlier results of integral representatioﬁ of non—j
linear functionals defined essentially for atom-freelfinite- !

or o-finite.measure spaces.

T i
. | i1 }
7.4% Lemma. (V. V. Nemytskii [12]). ;
Let G Dbe a set of finite measure. Then the
operator A transforms every sequence {un(s)} > 8 € G -=—=(1)

which converges in measure into a sequence of functions which

also converges in measure.

Proof': Suppose that the sequence {u (s)} converges in

measure to uo(s) for s e G ./ Let

Gy = {seG s.t. for given €>0 , luo(s)—u(s)[ < g =

lols u(s )] -o(s,u)] < €.. G € G, ©Gy ... , and the
continuity of the function o(s,u) w.r.t. u for a.a. -

s € G implies 'that

B0 = (@) v=p dim w(G) = u(@) ----(2)



‘and hence, given n.> 0 , & ki s.t.

u(G ) > u( ) - n/2 .
. O

et F. = {s e G: |Ju(s) - u (s) <_££—'. Choose N s.t.
‘ oM’ n ko

“(Fn)~> u(G) -1 forall n>N . Consider:the sequence of

and let =
= {s € G : [m[s,uo(a)]‘4‘¢{s,un(8)]l < € .
Then we have that G nFn © D, and it follows that

k
o

u(Dn) > u(G) - n and since € and m are arbitrary,-this

completées the proof.

7.5 Definition. Let d(x,y) = || x-y || for x,y ¢ LP , then

a sequence {thk in P converges strongly to x € P oir

L

1im d(X x) = |l x;-x H
Ti—co ]
~ . pl p2 :
7.5 Theorem. If A P - L transforms every function in
into a function in L (py 5P, > 1) then A is contin-
uous. o |

Proof: Case (i).  Suppose u(G) < = .
e ~ | : p | _ .
Let @ be the zero function in the space L L . Assume that

A8 = 6 and we show that the operator A is continuous at the



zero - 0 . Y‘Suppose it is ﬁot'continuous at 9 . Then there

: : Py o : ' '
exists a sequence mn(s) eL T (n = 1,2,... ) and mn(s)_§

convérges strongly to 6 s.t.
IGIAmn(S)l ds > a  (n=1,2,... ) =-=-n- (3

for some positive number a .

e Py S i
Assume that T [ ley(s)] “ds < = ()
‘ n=1 G ’

We construct by.induction,'a sequence'of numbers .8k R .
functions mnk(s) and sets. Gy cG¢ (k =1,2,... ) s.t. the

- following conditions are satisfiled:

(a) g <7 &
) oule) <e
@I 18 (o] °>Za

3

(d) TFor any seﬁ DcG, p(D) <2 i1

P 4o, () Bes < 5.

We suppose that &, = u(a) ,“mnl(S) = ml(s) ; Gl‘z G ..

If- e, , ¢nk(s)\ and G have been constructed, then for

8k+1 » We select a number s.t. condition (d) is satisfied,

which is possiﬁlefby virtue of the absolute convergence of the
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_ | D -
integral [ |A ) (s)] 24s , and hence condition (a) is also
G k.

satisfied, since the funétionv mn'(s) satisfies condition (c).
k '

By Lemma 7.4, it is possible to find a numbe? N

and a set Fk+l c G S°tf

&, (s)] < [%]l/pe_ for s € By ----==(5)

k41

.With, U-(G') - M(Fk-l-l) < 81{-{—1 . _———-—,—(O)

Let Gy, =G - F 4 Then condition (b) is satisfied by

(6).  #lso by (3) and (5).

. . . ) N . ” . ‘ e
. P ‘ P '
[ [A.@n (s)] 24s = [la O (s)] 245 -
. kil s e
kAL . L P S
| Polte, (9917 a < xS ue)
F Dpq1 B SulG
el
> .
= 3 a | .
and this satisfies condition (c). o \
. Consider the sets D_=G_ - U G, (k = L 2yuee)i
o k T Tk jekql T >e0
By (a)_ghqﬁ(b)_we have. that. ) ,
e - ——“. _ . ) ' |
) © . . : . N | o ; I
(U &)<z e <28 (R =1,2,.00) —mmemm 7)
1okl T T i=kq1 t kL e : : S .
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- Define the function ¥(s) Dby
o  (s)  if s e D (k=1,2,...)
o) if s é U D
Cod=1l

From (c), (d) and (7) we have for k =1,2,... that

o e o Do P
Sl y(s)] Pas = [ lag, () 2> [ |ag (s)] Pas -
k : ' k. -
D D G
| 8 g ()] 2as > 2 e (9)
R
| | Py ’ . Pp |
By (4), ¥ € L'~ and by hypothesis A §y e L © . But (9)

D, | o , o )
shows that A ¢ ¢ I © .  Since D.nD. =¢, 143, 1t follows

| | D p -
that jGIA ¥(s)] Pas > zl ) [A ¥(s)] 2ds = » , and this
‘ o o k= D

contradiction proves that the operator A s.t. Ap =296, is

continuous at 8 .

-

Now we prove. in general/that 'A is continuous at
1

u. € L

° Consider the function g(s u) = f[s,uo(s)+u] -

fls;u (s)] for s e G and u e (—w,m)

The éperator A,  determined by the function g(s,ﬁ)
where Aju(s) = gls,u(s)] satisfies the condition that |

Ale'= 8 and we have ‘proved that it is contlnuous at the point

p .
1 —
u, € L~ - - . X
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Case (ii). Suppose that u(G) = o .
. ' - l

 Assume w.l.0.g. that the operator A is discontinuous

at ) e and Ae = e . A LR-TE-1] i 0 - *

wwmem ==---Ag in Case (i), assume that ‘¢h(s) € Lpl'(n =1,2,. .)

is a sequence of functions s.t.

IGIA mn(s)]pgds > a (n ='l;2;...) ~=---(10)

for some positive number a .

- . - - L
Assume also that = T f ]mn(s)] las ¢ ©  —moeo (11)
- n=1 G . . o .

Again we construct by induction, a sequence of functions '

@nk(s) and sets D < G. (k =vl’2’°f') s.t.
(8) (D) <= , DD, '=¢ 14 ’
‘ Po & .
(v) j‘D |8 o, (s)] “ds > 3 (k = 1,2,...)
. Tk k : ' ,
We let mh (s) = @l(s)/ and construct D, by g
: 1 4 ‘ . 1 o

virtue of (10). -

 Having éonstructedlwn (s) and ‘D, we see by (a)

k.

|
|
i
1

w ‘ ’ I
~that p( UD;) < e and by Case (i) in which welave proved the~
i=1 . : S _ E
. . S : | l
continuity of A for u(G) < » , we can find an integer n, |
S-to ‘4.



kf '1A1¢nk l(s)ipgds <2  - - .;;;;;(l?)
a1 o T

U Di
i=1

and then we can find a set Gy 4 > u(Gk+l) { ® ,.s.t.

Let D, =G, - U D, , condition (a) is satis-

{ o |
and it follows from this that the function ¢ (s)

‘ satisfies
k+1 ‘

rcondition.(b). B

/

S i S /

 Again define a function y(s) . as in (8), then by

LN i ! p ' p | ‘ 1y
(11) we see that § e L' L and by hypothesis Ay e¢ L 1|.  Blt

e Ty ' L P
by condition (b), we have that Ay ¢ L < .

This contradiction proves the theorem.
An operator is said to be bounded if it transforms

any set which i$ bounded (in the sense of norm) into another



{
Bh.
| , .
bounded Set. We know that a linear operator -A 1s continuous
iff it is bounded.  But for a nonlinear operator, the notions
of continuity and boundedness'are<independent of one another.:
. : '«\
7.7 Example. C onsider the space {2 of numerical sequences‘
B A . |
© = {(y5Css---} with norm defined by , ' \

L

loll = = g21% . o~
i=1

Let F Dbe a functional in &2 defined by
F(g) = =(lgg] - 1)-1

where the sum extends over those values of the ihdex i,
depending on o , for which [gi] > 1. .For each element
v € 1? there 1s a finite number of such values of the index:'
The function F(p) 1is continuous and it is bounded- and inAf%ct
equal to zero on the sphere |l o || < 1 and it is not boundeh

on any sphere_with radius larger than one.

The above example 'shows that the boundedness of a
nonlinear Qperatpr does not in general follow from its con-

tinuity.

7.8 Theorem. “Suppose that the operator A transforms every

function in L'ly into a function in L ° (pl,p2 > 1). Then

the operator A is bounded.
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We can assume w.l.o0.g. -that A6 = ¢ . Since: A is

- continuous at 8 'by Theorem 7.6, there exists an‘ r>0 s.t.

o P, D p o
[ le(s)] ldsi r T implies [ Tap(s)] 24s <1 ----(1k%)
G C G : C A :
L : pl" 1 o
Suppose that wu(s) e L and nr ~ < |[ul]
. pl . . - . . V . .
(n+l)r =, n is an integer. Let Gl’Ge’f"’Gh+l be a
A | 5 5 . A
partition of G s.t. [ |u(s)] Las <r o= l 2,...,n+l)
- G, | -
i

So wh

T

en |l Au(s) || = {leAu<a>lp9ds}- Pa pllullPr, 4P

we have by (14) that

7.9 Definition. Let T = (T,%,u) be a o-finite measure

i [Au(s) ] %as < Z Jlau(s)] “ds < n+1-
G | 1=1 "o,

space.

p-cla

satisfies @ox € L

7.10 Theorem.  If A : L

A function o ¢ Car (T) is said to be in Caratheodory

(T) rfor x e LP(T) .

Py

p
1.7

is an operator pl,p2 > 1

defined on T by Au(s) = fls,u(s)]. where f e Car (T) , th%n

where- -

I£(s,u)] < al(s) + blulp1 P2 N (15) |

b -is-a-positive constant and -a(s) e L = .

ss for. T , denoted by o € Car®(T) for 1 <p < » , if-it

:

\




Proof: By T heorem 7.8, we ean find a positive number b s.t.-

S Py P,y Py
[ 1£(s,u(s)]| “ds < » 2 Las <1

whenever [ |u(s)]
T

p1/Ps

°1/%2 if [f (s,u) [>bju]

f(s,u) - b[u[
{ -

/pp

Define o(s,u) = 5

o - | . | if ]f (s,u) l<b[u]

We have that l¢(s,u)lp2 < [f(s,u-)]p2 - bpglul if m(s,u) ¥ 0

‘ : p
Consider an arbitrary function u(s) e L 1 and let

H
I

{s e T: m[s,u(e)] > 0}

D . ' o
Let | lu(s)] 1ds = n+e where n is an integer and

0 < ¢ < 1. The set T" can be partitioned into n+l  sets

T LTy, s.t. [ Ju(s)] Plis <1 1-1,2,... .00

Ti‘

Then f‘lf[s,ﬁ(s)]fpgdsli IT+If[s,u(s)jlp2ds

Let {Tk} be a sequence of sets of finite measure s.t.

Ty €T, ¢ ... and T = | UlTk . ~ Since @(s,u)' is continuous

w.r.t u at almost all s e'T s We can define a sequenCe:
{uk(s)};=l of functions defined on almost all T s.t.
w (s) =0 when s ¢ T, and

¢[s,uk(s)].= max  o(s,u)
-k<u<k ‘
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So 'uk(s) e L 1 and we set
a(s) = sup o(s,u) = lim‘m[s,uk(s)] _
~olu< e : Koo . o !

(156) and Faton's lemma implies that

f la(s 24s < sup f [ s'uk(s)[pﬁds < bp2 ..A
a(s) e Lp2
o | o
Since a(s) = sup of(s,u) > sup {|f(s,u)]- blu1p1 pE} Lk
~@{u<e T —edU<e TN

Py/Ps

we have that |f(s,u)]| i_a(S) + blu] for s e T, : %
' |

U e (-w,0) .

7.11 Remark. Let T = (T,f,u) be a finite atom-free measure' °

spece. It follows from the above theorem that o ¢ Carp(T)

1<p< e iff |o(s,u)] < a(s) + blul®? for some a ¢ Ll(T) .

7.12 Definition. For s e S, t e T and ue (-»,®) , the |

nonlinear integral operator A deflned by
,_A®<S) = fTK[S,t,m(t)]dt _____ (17)

is called P. S. Uryson's operator and it takes measurable

functions to measurable functions where. S,T are Lebesgue

measurable subsets of R and K : SxRxT - R is a real'valﬁed

function which 1s measurable on SxT for each fixed wvalue of



asl

its second argument and continuous on R for almost all argu—:'

ments . in SxT .

7.1% Remark. Let C(S) ‘denote the class of:conﬁipuous,H - N

functions defined on S , then an important subclass of (17)

is the class of Uryson's operators whose range ié in .C(S)
‘where S‘ is compactl This subclass.included the.case in which
the kernel ¢ . is independent of its first afgument SO thaﬁ'

the operator A reduces tc a real-valued functional F

- defined by

"In this.séctién, we charactérize4for_ail o-finite
measufe‘space T = (T,%,4) and all combact'Hausdorff spaces,
the nonlinear transformations A : IP(T) - C(S) , L <p <=
" which have the form (l?)vand also in particular, we chafécterize
functioﬁals on' Lp(T) of the form given in (18). - This later-
charactérizatiOnMeXtéﬁds our ear;ier results of A. D. Martin
and V. J. Mizel [1] and V. J Mizél and K. Sundaresan [Qj.given

in previous sections, concerning functionals of the form

B0 = § e(x(8))au(e) -----(29)

defined essentially on nonatomic o-finite measure spaces.

Let T = (T,%,u) be a finite measure space.
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7.14 Lemma. Let F be a real-valued functional on LP(T)

1<pc« o , which satisfies.

P =

X,y =0 a.e. : K :

(i) P(x+y) - F(x) - F(y) = C, = constant, whenever

(11) F is uniformly continuous relative to L” norm on!

each bounded subset of L%(T)

(iii) F is continuous relative to P norm, if p < e
and 1s continuous w.r.t. bounded a.e. convergence

if p = » , then for every real number h , the set

~ function vy, defined by vh(E) = F(hXE) , for

E e€ S 1is a u-continuous measure.

Proof: By téking» Fl = F + CF which is a functional of the

same type as F with Cy = 0 , condition. (i) reduces to the

‘case where Cp =0 i.e. F(x+y) = F(x) + F(y) whenever

Xy =0 a.e.

. 0 A |
Now '\gh(d>) = F(hxcb) =0. Let E =UE, , and
: : : 1

J
and hence

E; NE = ¢ fog i 4 J then E, -7 E implies hXEn - hyg
Vh(En_) = F(hXEn) - F<hXE) = Vh(E) .

Hence Vh 1s a u~continuous measure on T .

A
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Now we state the following theorems by V. J.‘MiZel (8]
that prove the integral representation‘of nonlinear trans-

fofmationslon_Lp—spaces s 1 {p < =.

7.15 Theoremn. Let T =_(T,Z,p) be a finite meaéure space and
let F be a real-valued functional cn Lp(T) , 1 <p <o,

that satisfies

(i) F(X+y)‘— F(x) - F(y) = constant = Cp whenever

xy =0 a.e.

(ii) F is uniformly continuous relative to L% norm on
each bounded subset of L¥(T)

(11i) F 'is continuous relative to Lp—norm, if p< e and
is contifiuous w.r.t. bounded a.e. cénvergence if.
.pzco. |
Then_there exists a function ¢ e Car®(T) s:t. V‘Y

(%) | F(x) = -Cp + fTwsx du for x e LP(T)

’
s

where o can beﬂtaken to.satisfy

(a) ©(0,") =0 a.e. and is unique wp to sets of the form

RxN with N a null set in T . "l' L

and for

Conversely, Y mls'Carp(T) satisfying (a)
eévéry Cp e R, (*) defines a functional satisfyiﬁém(a);;(ii),

and (11i).o —e-. N
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The 'above results extend to o-finite measure spaces;
and the proof for p = « ig as it is and for p < = it is ”

valid if the phrase'”bbunded subset of LT(T)" is replaced by

bounded subset of L”(T) which is supported by a set of finitg'..

measure.

'7.17 Theorem. Let.'T = (T,E,u) be a finite measure space-

and 1et A @ LP(T) = C(S) , 1 § p4§Nw be a transformation where
S 1is a compacﬁfHéusdofff spééé. ‘SuppOSe A :satisfiéé the |
_conditions |

(ia) Alx+y) = A(x) + A(y) whenever x.y = 0  a.e.

(iia) A" is uniformly continuous relative to L norm on |
:}each bounded Subéet of Lm(T),. |
(iiia) A is continuous relative to"Lp norm if p < ® and -
| is continuous w.r.t. bounded a.e. convergenéé if
‘p‘= ® . Then there exists a transformation B
® : S car?(T) s.t. |

Z/

(%) A = oo au .

The transformation w' can be taken to satisfy

(a) ©(s)s0 =0 a.e. ¥V se8S, ih which case © 1s unique
for each s -up\td-sets-of the form RxN. with N ‘a null set
in T . Mofébver; ‘v has the following additienal properties:.
Y

(b) The mapping s = o(s)ex ¢ L™(T) ~1is weakly continuous

v x e LP(T)
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(c) Thé mapping x = ¢(s)ex 1is uniformly continuous relative

to L7 norm on each bounded subset of L%(T) , uniformly in 's.
(d) The mapping x = @(s)ox  is weakly continuous omn Lp(T)'

ok

- lim f (m(S)oXn)du - 0 uniformly in. s and n
(E)-0 "E ' ' :

lf p:: © .

Conversely every transformation ot S - Car®(T)
1 <p< e, satisfying (a), (b), (c¢) and (4a) determineé,by

means of (¥*) a transformation
A : IP(T) - ¢(s)
satisfying (ia), (ila) and (iiia).

The above result also extends to o-finite measure
spaces. _Fof P =« , 1t 1is Vaiid if the. following condition

is added.

(e) If X, ™ X boundedly a{e;; then for any sequence

Ey 9 [ (o(s)ex, )du - O uniformly in s and n . ﬂ
l_\b > .JE . Xn | \
l . ‘ .

Co ' . B 1
For p < o , it is valid if the phrase "bounded subset
: : |

of L°(T) " 4is.replaced by "a set of finite measure”.
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The prdof in Theorem 7.15 utilizes the Lemma 7.14

and the representation (%) is then established by use of the

Vitali convergence.

The converse utilizes the Lemma 7.4 by Nemytskii'ih

[12] and Bénach—Saks Theoren.

The last theorem, 7.17,'utilizes Theorem 7.15 and

Vitali~Hahn-Saks Theorem on dohvergence,of‘measures.
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