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ABSTRACT

Perron's method of defining a process of integration is through
the use of major and minor functions. Many authors have adopted this method
to define various integrals. In Chapter I, we give a very general abstract
theory by first defining an abstract "derivate system" and then the cor-
responding Perron integral. We show that this unifies all the integral
theories of Perron type (of first order) known to us, in addition tﬁe abstract
theories of Pfeffer [26] and of Romanovski [29] are contained in our theory

as particular cases.

Chapter II is devoted mainly to the study of Burkill's CnP - integral.
We know that the CnP - integral is based on the theorem that if M is

Cn - continuous in [a,b] , CnDM(x) > 0 almost everywhere and -C DM(xX) > - «
~ n

nearly everywhere in J[a,b] , then M is monotone increasing in [a,b] .
Burkill's original proof of this, [6] , contains an error and we give it a
new and correct proof. We also give a correct proof of Sargent's theorem that

if a function is CnP - integrablé, then it is CnD - integrable, [32] ;

the original proof contains a gap.

A scale of symmetric CP - integrals and a scale of approximately

mean~continuous integrals are obtained in Chapter II1 and in Chapter IV,



iid.

respectively. The first one is more general than Burkill's CP - scale,
while the second one is more general than the GM ~ scale defined by Ellis.

Some other comparisons of various integrals are also given.
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INTRODUCTION

Various integrals defined for functions with domains in the real
line have been generalized so as to apply to functions with domain in some
abstract space. For example, the Lebesgue integral has been defined on a
abstract measure spacé (see Saks [30]); the integral of Riemann type on the
" division space (see Henstock [11] and McShane [24]); the integral of Denjoy
type on the Romanovski space (see Solomon [37]); the integral of Perron on
certain topological spaces [26]. One of our purposes is to give a very general
setting for Perron integrals. A so-called derivate system is defined in
section 1, Chapter I, and then an integral theory of Perron type is obtained
in the following sections. Doing this, we unify all the integral theories

of Perron type, eg. the classical Perron integral, the CnP -, SCP -,

AP - integral of Burkill's [4] - [7], the MZ - integral defined by
Marchinkiewicz and Zygmund [21], Kubota's AP - integral [19], and also the
GMn -~ integral defined by Ellis in [9] . For a good review of these integrals,
we refer to James [l4] and Jeffery [16]. In addition, we show that the P -
and R - integral of Romanovski's in [29] and the integral of Pfeffer in [26]

can also be obtained from our theory.

In the theory of integrals of Perron type it is of interest to
define more general concrete integrals. Thus the SCP - integral is more
general than the CP - integral; Kubota's AP - integral is more general than

Burkill's AP - integral, the GMn - integral is more general than CnP - integral.



We obtain via our general theory a scale of symmetric Cesaro-Perron
integrals (SCP - scale) and a scale of approximately mean—céntinuous
integrals (AMP -~ scale); this we do in Chapter III and IV, respectively.
The SCP - scale is more general thgn the CP - scale of Burkill, while
the AMP - scale is more general than the mean-continuous scale due to

Ellis.

The comparibility of these integrals is then studied. We prove
that the SCP ~ integral and the MZ - integral are in fact equivalent, and
in section 5 of Chapter III the relation of the symmetric Pn+1 -
integral (James [13]) and our SCnP - integral is investigated. An ACP -
integral and an AP2 - integral are defined and proved to be equivalent in
section 3, Chapter IV. This generalizes the result [3] for n =1 that

nt+l

the CnP - integral and the P - integral are equivalent.

Chapter II is devoted to the CnP - integral. A gap in Burkill's
original paper [6] is filled, and so is one in Sargent's paper [32]. We know

that the theory of the CnP - integral is based on theorem 2.2 in [6].

However, the proof there is defective; see line 9 on page 546. We supply
a proof of this theorem based on some concepts in [32]. Sargent has defined

a CnD - integral and proved that it is equivalent to the CnP - integral.
* .

But there is a defect in her proof that a C P - primitive is ACG (in

CI-1 ~ sense). We give a complete proof, which is simpler than the one given

recently and independently by Verblunsky in [38].



We close this introduction with some remarks about the notations
used;
A n B denotes the relativé difference when A and B are sets}
the symbol € to indicate inclusion, not necessarily proper;
for real numbers a, b with a < b , we denote by [a,b] , ]a,b[ the closed
and open interval, respectively; and {a,bl , Ja,b} denote the half-open intervals;
'by Theorem II. 3, we mean Theorem 3 in Chapter II, and similarly section I.5,

etc., If only Theorem 3 is quoted, we mean Theorem 3 of the same chapter.



CHAPTER I. THE GENERAL THEORY

Perron's method of defining a process of integration is through
the use of majorants and minorants (see Saks [30]). Many authors have
adopted this method to define wvarious integrals; As a typical example for
our general theory in this chapter, we quote Burkill's definition of major

" functions for his SCP - integral in [7] .

If f dis a function defined on [a,b] , a function M is called
a SCP - major function of f on [a,b] with base B (where B is a

subset of [a,b] with measure b -a and a , b € B) if

(a) M is C - continuous in B , and SC --continuous in Ja,b[ ;
(b) .§EPM(X)‘Z_f(X) almost everywhere in [a,b] ;

(c) SCDM(x) > - » except for a countable set of points;

() Ma) = 0 .

For the definitions of C - and SC - continuity, and also SCDM(x) ,

see section III 3, below.

Firstly, we generalize the domain of the functions to an abstract
space X with a distinguished family o of subsets of X . Secondly, we
generalize the base B to the concept "base mapping B " , condition (a)

to the "legitimate mapping'", the. derivate SCD to the abstract "derivate
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operator", condition (¢) to the so-called "inequality property'. Then
a "derivate system'" is defined and a naturally corresponding integral
of Perron type arises. The finite additivity of the integral is established
and a convergence theorem similar to that of Lebesgue dominated convergence

“

theorem is obtained.

From this general theory, we obtain the integral theory of
Romanovski [29]) and of Pfeffer [26]. A differential property and a character-
ization of integrability is obtained for the abstract integral in the case

that domain of the function is the real line.

§1. SETTINGS.
Suppose X 1is a given set, o -a:given collection of subsets of

X .and ACX . Define Ty by
/

o, ={A" | A'e o, A' €A} .

1.1 DERIVATE OPERATORS.

let Ae o , B be a subset of o U be a semi-vector space

A b

of (set) functions defined on B8 , where by a semi-vector space V we mean

10 Fp€ v impligs o, F) + aF, & V for all real numbers oy

that F ,@2 >0 .

A lower derivate operator on V is a mapping D with domain V x A such

that for each v e V , and for each x € A , the image D(v,x) =_Dv(x) is

an extended real number, and satisfying the following axioms:



(P1) for all xe A, D(0,x) = 0 ;

(D2) for all x e A, Vs VY,

e V ,._Q(v1+v2,x) z_'P_(vl,x) + 2(v2,x)

whenever the addition on the right hand side makes sense;

(03) for all xe A ,velV, d >0 , D(ov,x) = aD(v,x) ;

(D4) for all x e A, D(-v,x) < - D(v,x) whenever both v and -v are

in V.
For each ve V, x € A, defining D(-v,x) = -D(v,x) ,
we call U the upper derivate operator corresponding to D . Letting
V={v | -ve TV}, we see that V x A is the domain of D . It is easy

to see that 7 has properties (D1) - (D4) of which the meaning is immediate.
Furthermorc, for v o VYN UV |, Div,x) > D(v,x) , Diav,x) = aD(v,x) for all

xe A and a <0

If D(v,x) and D(v,x) are equal, we say that v is D - differ-
entiable at x , and the common value, denoted by D(v,x) or Dv(x) is
called the D - derivative of v at x ; for example, clearly D(0,x) =0

for all x e A .

1.2.  BASE MAPPINGS.

let A e o . A subset B8 of OA will be called a base in A

if Ae B and for each A' ¢ 8 there exists a finite set of disjoint

Ai e B with Ai/\ A' = ¢ for each i and Lin « A' = A . By a base
i

mapping on o we mean a mapping B on o such that for each Ae o , the



image B(A) is a collection of bases in A satisfying the following axioms.

(B1) Bl ’ 62 e B(A) dimplies B]_n 82 e B(A) .
(B2) B € B(A) and A' e B imply Byr = {A'" | A" €8 and A''<C A'} £ B(A")

(B3) B, € B(Ai) »A; eo for i=1,2 and A~ Ay =9 5 A vA,eo0

. . — t | ! T4 =
implies that B, @ 8, = {A] v A} | A eB, for'i=1,2, and

T T
Alu A2 € 0} € B_(Alv Az) .

" 1.3. LEGITIMATE MAPPINGS.
Let F be an extended real-valued (set) function defined on
Y , a collection of subsets of X . F is said to be superadditive on vy

if F(LlAi) > X F(Ai) for every finite collection '{Ai} of disjoint sets
i i

from vy for which t“,Ai € vy and the additions L F(Ai) make sense.
i 1

F 1is defined to be subadditive if and only if -F is superadditive. If F is both

superadditive and subadditive, we say that F 1is additive.

Given a base mapping B on o let M be a mapping such that for
each A e o , B e B(A) , the image M(A,B) is a semi-vector space of real-
valued functions superadditive on 8 . If M satisfies further the following
axioms, we say that M is a legitimate mapping on o with base mapping B

(M1) For any B8 « B(a) with B8, CB8, , M(A,sl)n M(A,Bz)’ .

10 By



(M2) For any B8 e B(A) and any A'e B8 ,

Mca , BY | A" = {M ] sA,I Me M(A , B)} & M(A' Bys) -

as in (B3) , if M e M(a, , 8) for i=1,2,

(M3) For A, , A .

1By 0 By s By

i ry _ ' '
then M12 € M(A1 g,/A.2 s Bl ® 82) , where M12(A ) = Ml(Al) + M2(A2)

for any A' = A\ A! in B

e [ TR
1 9 & 82 with Ai € Bi for i 1, 2.

1

(M4) M, =M, on B and M e M(A , B) implies that M, e M(A , B)

1 2 2

(M5) M(A , B) 1is closed under uniform sequence convergences in B .
(i.e. if FneM(A,s) for n=1,2,3, ..., and F_>F

uniformly in B8 , then F ¢ M(A , B8) .)

1.4. INEQUALITY PROPERTIES.
By an inequality property on set functions we mean a property
T satisfying the following axioms.

(Ti)- If F1 and F2 are two set functions defined on a domain vy and

if both Fl and F2 satisfy the property I on vy , then.

alFl + a2F2 satisfies I on vy whenever ulFl + a2F2 makes

sense, where ay and a, are non-negative real numbers.

(fﬁ) If a set function satisfies I on domains Yl , Y2 respectively,

it does so on Yy Y, and YineYgy -

(I3) If F, and F, are two set functions on vy with F

1 2 >F and

1 2

F2 satisfies I on Y , then Fl satisfies I on vy .



If I is an inequalify property, we denote its dual property
by I and by this we mean that F satisfies I 1if and only if -F
satisfies I . We will come across two kinds of inequality properties in
the examples considered later; one is defined by means of inequalities

containing the lower derivates of functions; the other is defined by means

of inequalities containing the function values.

1.5. DERIVATE SYSTEMS.
Let N be a fixed collection of subsets of X closed under

countable set unions, (i.e. E e N for n=1,2, 3, ..., imply

that (J En e N) . . For convenience, we say that a property P(x) is true
n
almost everywhere (a.e.) in A if it is true for all x din A except at most

for points of a set in N .

Given a legitimate mapping M on o with a base mapping B ,

and an inequality properties I , suppose that for each A e o ,

on M(aA,8) .

B € B(A) , there exists a lower derivate operator QA

B

If the following axioms are satisfied, we say that (M',.Q , B, N, I

is a derivate system on o .

(DM1) For A, eo , A €0 ,M,eH(Ai,s),i=1,z,M - M

1 2 Al i

on Bl/\ 82 , one has QA

i

™, , x)=D M, , x) for each
181 1 A8y 2

X € A2 .
A(Qﬂé) If Me M(A , B) with VQAB(M s X) 2 0 almost everywhere in A~

and M satisfies the inequality property f', then M >0 on B8 .
4 1 '
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Note that by axiom (Qﬂi) , we can always (without any

ambiguity) write D(M , x) instead of ,QAB(M , X)
§2. THE INTEGRAL.
Given the set X , and o ~a collection of subsets of X ,'

we let Pz (M, D

=

B ,N, I) be a derivate system on © ; if we need
"other derivate systems on o0 we will denote them by
-1

, 21 , Bl R Nl . Il) etc.

2.1. MAJOR AND MINOR FUNCTIONS.
let Ae o, Be B(A) , and f be an extended real-valued

function defined and finite almost everywhere in A . A function M is

a P - major function of f on A with base B8 , written M ¢ ﬂ?(A , B) , if

(1) Me M, B) ;
(M2) DM, x) > £(x) almost everywhere in A ;

(M3) M satisfies I .

A function m is a P - minor function of f on A with base

'B , written m € Mf(A yB) , if - me ﬂ;f(A s B) . We will write

M, 8) ={-M| Me M(A, B)} . It is easy to see that m ¢ Mf(A , B) if

and only if
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(ml) me M(A, B) ;
(m2) 5(m,x) < f(x) almost everywhere in A ;

‘(m3) m satisfies I .

The following lemma is fundamental for our theory.

LEMMA 1. For M E.M£(A , B)Y ,me Mf(A s B , M- m is superadditive

and non-negative on B . In particular, M(A) > m(A)

Proof. It is trivial that M - m E‘H(A , B) , so that M- m is

superadditive on B . As f is finite almost everywhere, it follows from
(ﬁ?) » (m2) and (P2) that D(M-m , x) > D(M,x) - D(m,x) > O almost
everywhere in A . Moreover, M - m satisfies I by M3) , (m3)

and (I1) . Hence, M~ m>0 on. B by (Qﬂé) , and the'proof is completed.

2.2. THE DEFINITION OF THE INTEGRAL.
If both ME(A , B) and Mf(A s, B) are not empty and
inf{M(A) | M e Mf(A , B)} = sup {m(A) | m e Moa, 8)} 4+ o,

then we say that £ is P - integrable on A with base B8 , and the

B
common value, denoted by (P) - f f , is called the P - integral of f
A

on A with base B . The set of all P ~ integrable functions on A with

base B will be denoted by P(A , B)

The following lemma is an immediate consequence of lemma 1.
LEMMA 2. f € P(A, B) if and only if for each € > 0 there exist

Me M (A, B)me M (A, B8) with M(A) - m(A) <e .
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LEMMA 3. Let Bl s 82 e B(A) with 61 C.82 . If feP(a, 82) ,
then f e P(A , Bl) and two P - integrals are equal. In particular,_

if B, B' ¢ B(A) and feP(A,B) , feP(A, 8", then
1]

B B
® -[f=@® -] f£.
A A

Proof. This 1s immediate from M1) , (Qﬂi) and (B1)

Henceforward, we can often without any ambiguity leave the

base unspecified.

2.3. ELEMENTARY PROPERTIES OF THE INTEGRAL.

THEOREM 1. P(A , B) 1is a vector space and the‘ P - integral is linear

on P(A , R)

Proof. First, we prove that if f ¢ P(A , B) then af ¢ P(A , BR) for each
real number o . For a =0 , it is trivial from (P1) . Suppose that

@ >0 . By (D3) and A(f%) , it follows that M e4ﬁf , M S‘Mf =>

aMe Maf , om E_Maf . Hence aof e‘P(A , B since oM(A) - am(A)

can be made arbitrarily small with M(A) - m(A) . The equality faf = aff :
follows from the inequalities  om(A) j_faf <o M(A) . For a <O, the
proof is similar.

Secondly we prove that if fi e P(A,B) for 1=1, 2 then

£, +£,eP(A,8) and [(f +£,) = [t; + [£, . This follows from

(D2) and (D2) , and the proof of the theorem is completed.
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THEOREM 2. If f e P(A, B) and A' € 8 . Then f e P(A', BA,)

Furthermore, if A A, e B with Allﬂ A2 = ¢ and A, v A, = A, then

1’ 72 1 2

f £=f £+ £.
A A7 A,

" Proof. If Me Hf(A , 8) , then M | By e Ma' By1) by (M2)  and

(Qﬁl) . Similar results hold for minor functions. By lemma 2, for each
€ >0 , there are suitable major and minor functions M , m respectively
with M(A) - m(A) <e . By lemma 1, M - m is superadditive and non-
negative on B , so that M(A') - m(A') < M(A) - m(A) < ¢ . Thus, by

lemma 2, f € P(A' , BA')

We now prove that f f = f f + f f .,
A AL

2

[ £=dnf0M(R) | Me M (A, B)} > dnf{M(A) + M(4) | Me M (A, B)}
A

> inf{M; (4)) + M,(4,) | M,oe Mo(4; sAi) for i =1, 2}

> inf{M, (4)) | M, o6 Mo(a) BA‘i)} + inf{M, (A,) | My e M (8, , 8, )

2
= f £ + f f , where the first inequality follows from the super-
Ay )

additivity, while the second one follows from (ﬂé) « Similarly, using

minor functions, it follows that [ £ < f £+ f f , completing the proof.

A A1 A2

THEOREM 3. If f ¢ P(Ai R Bi) for i =1, 2 , where Al nA

|
R=

5 =

and A A, €0, then feP(A LA, , B8 ®8) and / £

IR

2

[ £+ f £.
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Proof. This is immediate from (B3) , (M3) , (Qﬂi) and Theorem 2.

THEOREM 4. Let F e M(A , B),‘_M(A » BY and satisfy both I and I.
If DF(x) exists and is finite almost everywhere in A , then OF ¢ P(A , B)

and [ D F = F(A)
A

Proof. It is clear that F ¢ HbF(A , B) F‘MDF(A » B) , and the conclusion
follows from lemma 2.
We close this subsection by remarking that if f = g almost

everywhere in A and f ¢ P(A, B) , then g e P(A , B) and the integrals

of f 1is equal to the integral of g’

2.4, PRIMITIVES.

If f e P(A, B8) , then by Theorem 2, we see that £ & P(A' , BA,)
for each A' ¢ B . Define F(A') =/ f for each A' ¢ B . F is called
Al

the primitive of f on A with base 8 . By Theorem 3, we know that

F is additive on B., so that it is easy to obtain

THEOREM 5, Let f ¢ P(A , B) with primitive F , and M E‘ME(A , B) ,
m e Mf(A‘, ) . Then M~ F , F - m are both superadditive and non-

negative on B .

LEMMA 4. If f ¢ P(A, B) with primitive F , then there exists a

sequence \{MR}CMf(A , B) and a sequence A{mk}C.M_f(A , B) such
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1 1 1 1 ] l
that OiMk(A)—F(A)<-E and Of—F(A)_mk(A)<I€ for

each A' € B .

Progf. This is immediate from Theorem 5.

THEOREM 6. If F 4is a primitive of f ¢ P(A , B) , then
Fefl(a, 8)p M(a, B)

Proof. This is immediate from lemma 4 and (M5)

The following general comparison theorem is a direct consequence
of the definition of the integral.

THEOREM 7. Let P, = (—1 ,D. ,B., , N, , I.) be a derivate system on ¢
i - i i i

C N2 , that each

for 1 =1, 2 . Suppose that Hl(A , B)CZE#(A s B) Nl

function satisfying fi satisfies Eé , and that Ql(M;x)Aj_QQ(M,X) for

each Me Mi(A, B) , then P (A, B)CPI(A, B) and (P) - [ = ®)) - [£

for each f ¢ Pl(A , B)

§3. CONVERGENCE THEOREMS.
With some further reasonable restrictions on the derivate system
P=(M ,D,B,N,TI), we will now obtain some convergence theorems for

our integral similar to those for the Lebeégue integral. Throughout this

section, we assume that .M(A , B) satisfies the following additional axioms.
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If fn is a sequence of functions defined on a domain E , by fn + £
we mean that fn(x) + f(x) as n >« for each x ¢ E and fn(x) < fn+1(x)

for each n and for each x ¢ E .

M5y 1f '{Mﬁ}c M(A , B) and Mn 4+ M, then M e M(A , B)

(Qﬂ:’») For M e M(A , B) with M>0 on B, D(M,x) >0 for all x e A .

REMARK. It is clear that (Q_MB) is a very natural axiom, however axiom

(M5') seems to be too much of a restriction. However, in the particular
examples in 1atef chapters, the "interval" functions in M(A , B) are
obtained from the '"point" functions, so that the functions in M(a , B)

will then be addiiive raiher than (')uly superadditive. If every function

in M_(A , B) 1is additive, then (MS') follows from axiom (—MS) . To see
this, let Mn'e M(A ,8) for n=1,2,3, ..., and M 4+ M. We have to

prove that M e M(A , B) . It is clear that M(A") > Mn(A') for all A' € B ,

and that M 1is additive on B . Thus, M - Mn is non-negative and additive

on B , so that M(A) - Mn(A) > M(A') - Mn(Af) > 0 for each A' e B .

Now, as Mn(A) + M(A) , for each e > 0 there exists a positive integer n,

such that 0 < M(A) - Mn(A) <e for any n >n, . Hence

A

0 < M(A') - M (A") <e for each n>n, and for each A' e 8, i.e.

A

Mn converges to M uniformly on 8 . That M € H(A s B) then follows

from axiom (MS) .
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THEOREM 8. Suppose that fn ,» £ are functions defined and finite

almost everywhere in A and fn e P(A,B) for n=1,2,3, ...,

and fn(x) 4 f(x)A almost everywhere in A . Then f ¢ P(A , B) and

in f£ = /..
n

Proof. First, note that if g(x) < h(x) almost everywhere in A and
'g ,heP(A, B), then fg < fh . This follows directly from the definition
of the integral. |

Now, let Fn be the primitive of fn for n=1, 2, 3,
Then by Theorem 6, Fn e M(aA s B),ﬁ‘MﬁA , B) . TFor each € > 0 , choose

i B €,,0
M o€ an(A , B) such that O i-Mh>_ Fh < /27 for n=1,2,3, ...,

which is possible by lemma 4. In 8 , let N, = M1 , and for

1
n-1 _
n>2,N =M + 'Z (M;-F,) . Then N_ e M(A, 8) and N >M
i=1
Furthermore, Nn+l = Mn+l + Nn.- Fn
Z-Mﬁ+l + Nn - Fn+l since Fn S-Fn+l
N .
__Nn since Mﬁ+l z-Fn+l

Thus, N + N in B . By (M5') , Ne Mo, 8) . By (I3) , N satisfies

I since Mn does and N :-Nn-i Mn . Moreover, by (D2) and (2@3) , it

o

easily follows that OD(N,x) > f(x) almost everywhere in A . Thus, we have

proved that N ¢ ﬂ?(A , B) . Furthermore, since

n-1 , n n-1 e i
N (A) <M A+ ) 28 <F(a)+ 2%+ ] f/2
n " i=1 n i=1
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one has

inf {M(A) | M e Mf(A , B)} < N(A) < lim F_(8) + ¢ .
n

As € 1is arbitrary, we see that

inf (M(8) | M e M (A, B)} < Lim F_(4)
n

Similarly, using minor functions, one can prove that Mf(A , B)

is not empty and

sup {m(a) | m e_Mf(A , B)} > lim Fn(A)
n

Thus, by lemma 1, f ¢ P(A , B) and ff = l1lim Fn = lim ffn , completing
n

the proof.

THEOREM 9. Suppose that fn , £ are functions defined and finite almost

everywhere in A , and fn e P(A,B) for n=1,2,3, ... . Further,

suppose that 1im inf fn(x) = f(x) almost everywhere in A . 1If
n

inf {M(A) | M ¢ M, ¢ P

n

(A, B)} > == , then
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inf (M(A)[M e M_(4,8)} < lim dnf. [ £ .
o n A

Proof, Let gn(x) = inf fk(x) almost everywhere in A ., Then
k>n
f, > g for each k >n and gn(x) + f(x) almost everywhere in A

Hence, inf {M(A)|M ¢ Mg (A,8)} < inf {M(A)|M ¢ ﬂé (A,8)} for k >n since

n k
because f, > g we have that M (A,B) i (A,B) . Thus,
‘ k — ®n fk g,
inf {M(A)|M ¢ Mé (A,8)} < inf f fk for n=1,2,3,...

n kzp A

Hence

lim [inE{M(A)|M e Hg (A,8)}] < lim dinf [ £ .
n ' n n A

Now, as gn + f and inf {M(A)|M € ﬂé (A,B)} > == , following
1

an argument similar to that in the proof of theorem 8, one proves easily

that

lim [inf {M(A)|M e Mg (4,8)}] > inf (M(A)[M e M_(a,8)}
n n

and the proof is hence completed,

THEOREM 10. Suppose that h, g, fn e P(A,B) and g(x) f_fn(x) < h(x)
almost everywhere in A for n =1,2,3,... . If £ is a function defined
and finite almost everywhere in A with 1lim fn(x) = f(x) almost every-

n .
where in A , then f ¢ P(A,8) and. [ f = lim f f_
n
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= - = - = - < <
Proof. Let ¢n fn g, ¢=f-g,¥v=h-g . Then O —-¢n <
almost everywhere in A , so that 0 < inf ¢n < sup ¢n < ¢ -almost

n

every in A , Hence inf'{M(A)]M € M&n o (A,B)} > == and
-'n

£
n

sup {m(A)|m € Msu

P ¢n (A,B)} < oo

n
By Theorem 9 and its dual, we see that

a = inf {M(A)[M e M (A,8)} < lim inf [ ¢_ ,
¢ - n 4 D
b = sup'{m(A)lm e M, (A,B)} > lim sup f )
¢ - n A"
as ¢n(x) + ¢(x) almost everywhere in A . By lemma 1, we have a >b ,
and since in any case 1lim sup > lim inf |, . ¢ € P(A,B) and

f ¢ = lim f %n

Now, f = ¢ + g , so that by theorem 1, we see that £ e P(4,R)

and f f = 1lim f fn ,» completing the proof,
n
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84, SOME GENERAL INTEGRALS AS PARTICULAR CASES.

We have mentioned in the introduction of this. chapter that
the integrals of Perron type defined by Romanovski [29] and by Pfeffer

[26] can be obtained from our general theory. We now consider this point.
4.1 ROMANOVSKI'S INTEGRALS.

. In [29], Romanovski defines an abstract space, which is called
Romanovski space by Solomon in [37]. These spaces of Romanovski contain,
as special cases, the Euclidean spaces of any dimension., We now give the
definition of a Romanovski space and show how the P - and R - integrals,
defined by Romanovski on this space, can be obtained from our general
theory.

A triple (X,o0,0 ) 1is a Romanovski space if X 1is a second
countable, locally compact metric space, § a non-negative countably addi-
tive set function, finite on Borel sets with compact closure in X and
positivé on non—empty open sets, ¢ a distinguished family of subsets of
X satisfying ten axioms. For a precise description of these axioms, we

refer to [29], [37].

Let N = the family of all subsets of X with zero -measure,

9

B(A) ='{0A} for each A e ¢ . Then it is easy to see that B is a base

mapping according to the definition in section 1.

Let F be a function defined on OA . Define
]
DF(x) = lim inf —&) o
- A'€O' U(A ) .
A

xeA
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where B denote the closure of B in X . We say that F satisfies

I'on A if DF(x) > - » except perhaps for points of countably many
boundaries of sets in ¢ ., We define F to be AC on A if for each

€ > 0 there exists 6 > 0 such that ZIF(Ai)l< ¢ whenever 2 u(Ai) < §
i i

for any finite and disjoint {A }¢ o For any subset E of A ,
o i

A .

let F (A") = F(A") if A'AEf4¢ ,
=0 if NAE=¢ .
F is said AC on E if FE is AC on A . Then F dis ACG on A

if A is a countable union of sets on each of which F 4is AC ,

Let F (A') = F(A') if F(A') <0 ,
=0 if F(A') >0

then F is said to be ACG on A if F  is ACG on A .

It is obvious that I and ACG defined above are both inequality
properties as defined in section 1,

F is said to be continuous from interior on A 1if for each
A' ¢ A and € >0 , there exists & > 0 such that A" CA' and
p(A' -~ A") <§ imply [F(A') - F(A")| < e .

Let H(A,UA) = M(A) ='{F]F is additive on o) and is continuous
_ from interior on A} , and P = (M;Q,B,N,E), R = (M;Q,B,N,AQQ) . Then
it follows easily from lemmas on page 92 and page 95 in [29] that both
P and R are derivate systems on ¢ . The P-integral and R-integral
are just those defined by Romanovski in [29]. By the theorem on page 77
[29], we see easily that both P- and R-integral have differential proper-

ties as given in thereom 11 in next section, Whether there is a result

similar to thereom 12 for the P-integral is an open question. The proof
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of theorem 12 depends on the Zahorski function on the real line, so if such
a function could be constructed on an arbitrary Romanovski space, the

question could be settled.

4,2 THE PFEFFER INTEGRAL.
We recall Pfeffer's setting [26] and show how his integral of

Perron type is obtained.

Let X be a topological space and X~ = X V'{w} be the one-
point compactification of X . For AC X ,'X denote the closure of A in
X 3 for A¢c X", A denote the closure of A in X¥ . TFor each
X € X 4, choose once and for all a local base Px of neighborhoods of
x 1din X% such that the cardinality of Fx is the smallest cardinality
of local bases at x . Further, assume that for each x ¢ X, U <X

for each U e T .
X

Let ¢ be a pre-algebra of subsets of X such that FX co
for each x ¢ X . Also, assume that there is a fixed integer p > 1 with

the property that for each U ¢ r, there are disjoint sets Ul - U2 o v
2 377

%
Up from o for which {/ U; ,=UnZX . By A we shall denote
s ® . _ @ i :
i=1 n
the system of all sets A ¢ ¢ such that A & Ui » Where
i=1

Ui € U{lex e X} for i=1,2,3,...,n .

Let G be a function defined on ¢ , non-negative and additive

on 0 , and finite on A ,
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For each x € X » a certain family KX of nets .{Bulu e T,C}C g
is associated, where T 1is a cofinal subset of -PX . This mapping

is assumed to satisfy six axioms, see [26].

For a function defined on o » and for x ¢ X , let

A
#F(x,A) = inf {lim inf F(Ba)'!{Ba} e X,(0,)} , where
(¢}
K (o) = {{B } ¢ R _[{B } c;.oA} , and  *F(x,4) = #(F/6) (x,A) . If A

is fixed, we write #F(x) = #F(x,A) , *F(x) = *F(x,A) .,

Let 'H(A,OA)== M(a) ='{F|F is superadditive on Oy and there
exists a countable set ZF such that #F(x,A) > 0 for each

X € ZF S{o} and #(-G)(x,A) 2_0' for each x ¢ ZF} .

Let N = the family of all countable sets in X , and
B(A) =-{0A} . F is said to satisfy the inequality property I on A

if *F(x) > -» for all point in A ~ Z Let P = (M,%,B,N,T) .

F
Then it follows from lemma 5.9 in [26] that P is a derivate system on

6 . The P-integral is just that defined by Pfeffer in [26].

Whether this P-integral has a differential property reqﬁires

~ further investigation.
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§5. FURTHER PROPERTIES OF THE INTEGRAL ON THE REAL LINE.

Before studying some special cases, we are going to obtain
a differential property of the integral and a characterization of inte-
grability and also a very general integration by parts formula for an
abstract derivate system on the real line., A different proof of the con-

vergence theorem 10 is also given.

Throughout this section, let X be the real line, ¢ the
family of all bounded half-open intervals like [a,b[ , N the family of

all subsets of Lebesgue measure zero. For each function defined on Oy

and for each x ¢ A , let D(F,x) = lim inf EXL%fE[l ,» the ordinary lower
xg[a,b]
[a,b[eoA

derivate of ¥ at x .
Let P ='{I;Q,B,N;f} be a derivate system on ¢ satisfying (Qﬂﬁ) and
the following additional axioms,

(D5) Each DM is Lebesgue measurable.

(D6) D(M,x) > D(M,x) . | ‘

We also assume that for each B8 ¢ B([a,b[) , the set

B= (/A is of measure b-a , where A denote the end points of the
Aef A

interval A . Also, we assume that each M ¢ M([a,b[,B) is additive

on B . Then the interval function M on B is _in one-to-one correspondence
° . ’ 3 *
. to the point function M on B as follows

M*(x) M([a,x[) for each x ¢ B ~ {a} ,

= 0 for x =a ,

% * :
M([x,y[) =M (y) - M (x) for each [x,y[ ¢ B
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- Should no ambiguities arise, we will not distinguish the interval functions
4 %
M on g and the point functions M on B . Furthermore, we may call

B a base in [a,b] . Note that by the remark at the beginning-of section 3

(M5') is also satisfied.

THEOREM 11. Suppose that f ¢ P(A,B8) with primitive F . Then 0DF(x)
exists and is finite almost everywhere in A ,

Proof. Let k,eg be arbitrary given positive numbers. By lemma 2,
there exist M ¢ ﬂ}(A,B) , M € Mf(A,B) such that M(A) - m(A) < ke ,

and also M(A) - F(A) < ke . Let Eo be the set of points x for
which at least one of the following inequalities DM(x) > f(x) ,

Dm (x) < f(x) fails to hold. Then EO is of measure zero. Observe that
by theorem 6, F ¢ M(A,B) so that M -Fe M(A,8) . Hence by 05) ,

QﬂM-F) is measurable, so that the set E of points x iﬁ A on which

k
.Q(M-F,X) > k 1is measurable. We prove that p(Ek) < ¢ as follows, where

p is the Lebesgue measure on the real line.

Let R(A') = M(A') - F(A') for each A' ¢ g and Rl(A') = R(A'")
for A' ¢ B , R,(A') = sup R(A") for A' €0, ~ B . Then
: 1 " A
A 80A1

Rl e M(A,B) by M&) , and R is non-negative on Therefore,

1 %A
: D(Rl,x) , and hence D(Ri,x) by (D6) , exists and is finite almost

everywhere in A , and (L) -~ f D(Rl,x)dx = (L) - f D(Rl,x)dx f.Rl(A) =
A A

R(A) = M(A) - F(A) < ke , where (L) denote that the integral concerned
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is the Lebesgue integral. But

(D) = [ pRL® = (1) - [ DR L,0dx > (1) - [ D(R,xdx > ku (E)
A A1 E 1 ok

, k
so that ¢ > u(Ek) , which is what we want to prove.

Now, for x § E M E , D(F,x) > DOx) - D(R,x) > £(x) ~ k
As k and ¢ are arbitrary, it follows that D(F,x) Z;f(x) almést every-

where in A .,

In a like manner, using minor functions, we can prove that
5F(x) i_f(x) almost everywhere in A ., Then it follows that DF(x)
exists and PDF(x) = £(x) almost everywhere in A , completing the proof,
COROLLARY 1, If f ¢ P(A,B) , then f is measurable in A

COROLLARY 2. If £ e P(A,B8) , M e M_(A,8) , me M _(A,B) , then

DM(x) and Dm(x) exist and are finite almost everywhere in A

Suppose that the above derivate system P satisfies in
addition the following two axioms. Then we c¢an obtain a characterization
of integrability similar to that of McGregor in [22].

(M6) Each function M continuous in. [a,b] belongs to Ml[a,bE,B)
in the sense that the function M*([x,y[) = M(y) - M(x) for

[x,y[eo [a,b[ belongs to HK[a,b[,B) .
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(14) Let C ¢ N be closed un@er finite set unions. A function F
satisfies the inequality property I if and only if DF(x) > == except

perhaps for points of a set in C .

For convenience, we say that a property P(x) is true nearly
everywhere (n.e;) in A if P(&) is true for all x in A except at
most for points of a set in C . Note that the property T defined in
(I4) is a inequality property, but.not every inequality property can be

defined in this way.

THEOREM 12, Let f be a function finite almost everywhere in A = [a,b[ .
Then £ ¢ P(A,B) if and only if for eéch € >0 , there exist functions
T,t such that

(1) TeMA8) ) te A ;

(ii) DT(x) , Pt(x) exist n.e. in A and are finite a.e. in A
(ii1) 4= § Dt(x) < f(x) < DT(x) $ -» n.e. in A ;

(iv) T(A) - t(A) < g .

Proof. It is clear that the conditions are sufficient. To see that

the conditions are necessary, let f ¢ P(A,8) . Then for each € >0 ,
take M e M(4,8) , m e M(A,8) with M(A) - m(A) < ¢/2 , which is
possible by lemma 2. By corollary 2 to theorem 11, DM(x) , and Dm(x)
exist and are finite a.e, in A , 'Let E be the subset of A where

at least one of M , m fails to have a finite D-derivative. The set

E is of measure zero, so that there is a set E., of measure zero and of

1

type Gé such that E ('El CA
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Let w be a point function defined on [a,b] with the following
properties: .
(1) w dis AC on [a,b]
(2) w is differentiable in the ordinary sense;
3) w'(x) =40 for x ¢ B,
4) 0 :_w'(x) < 4o for x ¢ [a,b] . El R
(5) w(a) =0 and w(b) < e/4 .
That such a function exists is well-known; see Zahorski [40] or McGregor [22],

As w is continuous in [a,b] the corresponding interval function on

s also denoted by w , belongs to Ma,B) by (Me) . Let

A
T=M+gw, t=m=-w . Then Te M(A,8) and t e M(A,B) .

Let C be the set of points x on which QM(X) > - fails
to hold, For x ¢ E, ~ C . DI(x) > DM(x) + Dw(x)z+> , so that

1
DT(x) = 4= > £(x) . For x e A . [EllJ C] , DM(x) exists and is finite,

so that PT(x) exists and is finite, and DT(x) = DM(x) + Dw(x) > DM(x) >

£(x)

Similarly, Dt(x) exists n.e. in A and {w + D(t,x) < £(x)
a,e. in A . Furthermore, T(A) - t(A) = M(A) + w(A) - m(A) + w(A) <e .,
Thus, T,t satisfy all the required conditions, and hence the proof is

completed.

COROLLARY ., Let P1 =‘fﬂ;21,B,N,i} be another such derivate systemvon
g with DlM(x) = PM(x) n.e. in A whenever one of DlM(x) , DM(x)
exists n.e. in A . Then P(4,B8) = Pl(A,s) and- two integrals of -the

same function are equal.
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By theorem 12, we see that

(A) we can use the [~derivatives instead of D-derivates in the defini-

tion of major functions and minor functions;
(B) the "almost everywhere" in (M2) and (m2) can be replaced by

"nearly everywhere".
Statement (B) is well-known for mest of the particular integfals of
" Perron type while statement (A) is due to McGregor [22] for the classical
Perron integral. The proof here is essential that of [22], For a similar
result for the Pn—integral, see Bullen [3]. We will use theorem 12 and its
corcllary to prove the equivalence of the SCP-integral and the MZ-integral

in chapter III.

If the derivate system does not satisfy some extra conditionmns,
one can not get any reasonable integration by parts formula; but with some
reasonable mild restrictions, which are unfortunately hard to check in

particular cases, we obtain the following theorem.

THEOREM 13, let f ¢ P([a,b[,B) and U be a bounded non-negative
point function on [a,b], such that U'(x) exists and is non-negative a.e. in [a,b],
and such that the following inequalities make sense for each M s.W&([a;b[,B) s

m ng(['a,b[, g .

DOMU) (x) > MU' (x) + Ux)DM(x) a.e. in [a,b] ,
D@u) (x) < mEx)U'(x) + Ux)Dm(x) a.e. in [a,b] ,
D(MU) (x) > == n.e., in [a,b] ,

DmU) () < 4 | n.,e, - in [a,b] .
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Then if F is the primitive of f , fU + FU' ¢ P([a,b[,B) , and

(fu + FU') = F([a,b])U([a,b])
[a,b]

If, in addition, FU' ¢ P([a,b[,B8) then so is fU and

- £0 = F([2,b[)U([a,b]) - | FU'
[a,b] [a,b]

. Proof. Under the hypotheses, one can easily see that if M.e Mf , then

MU ¢ MfU+FU' Also,

» and if m e M. then mUe M. .

MU([a,b]) - mU([a,b]) is small when M(Ja,b[) - m([a,b[) is small.

Hence the required result follows easily.

Now, we are in a position to give another proof of theorem
10 for the derivate system P on ¢ satisfying the additional axioms

(Qﬂ3) s (05), (P6) and (M6) , and also that a function F satisfies

I whenever DF(x) > -» except perhaps for a countable set of points.,

LEMMA 5. If a function is L-integrable, it is P-integrable and two
integrals are equal,

Proof. By theorem 7, that if a function is Perron integrable

(see section II.1), it is P-integrable and two integrals are equal, It
is well-known that if a function is Lebesgue integrable, it is Perron

integrable and two integrals are equal, The conclusion then follows.

LEMMA 6. Let f(x) > 0 almost everywhere in [a,b] . Then £ is

L-integrable on [a,b] if and only if f 1is P-integrable on [a,b] with

a base B e¢ B([a,b[) .
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Proof, The one implication is given by lemma 5, To prove the other

implication, let f be P-integrable on [a,b[ with a base B . Since

|f] = £ almost everywhere in [a,b] , it follows that |f| is also
P-integrable on [a,b] with base B . Clearly, the zero function
0 e‘MIfl ([a,b][,B) . Let M ¢ m1f|([a,b[,B) . Then by lemma 1,

M(= M - 0) is monotone increasing in B ., Define Ml(x) = M(x) for

X e B, Ml(x) = sup M(t) for x ¢ [a,b] - B . Then M1 is mono-
teBn[a,X]

tone increasing in [a,b] , so that Mi(x) is L-integrable on [a,b]
and hence so is DM since Mi(x) = DM(x) almost everywhere in [a,b]
by (Qﬂi) and (P6) . As f is measurable by corollary 1 to theorem 11,
it follows that f is L-integrable on [a,b] since ]f(x)| < M)

almost everywhere in f[a,b] . The proof is hence complete

COROLLARY, Let fl be P-integrable on [a,b[ with base B , and

f2 be L-integrable on [a,b] and f1 2.f2 almost everywhere in [a,b],

Then fl is also L-integrable on [a,b] .

THEOREM 10°'. Let g,h,fn(n = 1,2,3,...) be P-integrable on [a,b] with

a base B , and g(x) 5-fn(x) < h(x) almost everywhere in [a,b] for

each n , and 1lim fn(x) = f(x) almost everywhere in [a,b] . Then f
n

is P-integrable on [a,b] with base B and ff = 1im ffn
n
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Proof. Since O f_fn(x) - g(x) < h(x) - g(x) almost everywhere in [a,b] ,

both fn - g and h - g are L-integrable on [a,b] by lemma 6. By

Lebesgue dominated convergence theorem, we have lim (L) -f(fn—g) = (L) -f(f—g)

n
Hence, by lemma 5, lim (P) - f(fn-g) = (P) - f(f—g) . Now, g 1is P-
integrable, so that ? = (f-g) + g 1is also P-integrable and
linm (P) - ffn = (P) - ff , completing the proof.
n

We close this section by remarking that Kubota'é abstract

integral of Perron type [17], is a particular case of the integral in
this section. In fact, taking B(A) ='{0A} , N = {4} and the inequality
property I to mean DF(x) > = , one gets Kubota's setting and his
integral if axiom (D4) is repléced by the equivalent axiom:
(D4") Qﬁvl+v2)(x) = Dvl(x) +‘2V2(X) whenever the ordinary derivative

Dvl(x) exists.

Axioms (D4) and (D4') are equivalent in the sense that one follows

from the other by axioms (02), (DP3), (06) and the corresponding properties

@D2), P3) and (D6) . Incidently, note that Kubota did not assume

axiom (P5) explicitly. However, in proving a result corresponding to
our lemma 6, he did use implicitly (see the second last sentence in his
proof of theorem 3.8 [17]) our corollary 1 to theorem 11, and axiom (D5)

is essential in the proof of this corollary.
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CHAPTER II. THE CnP-INTEGRAL

The CnP—integral was first defined by Burkill in [5], [6]..‘
Since then, many authors have shown an interest in thisAintegral; see
for instance Bosanquet [1], James [13], Kubota [18], Sargent [31] -~ [34];
and'Skvoréov 1351, [36]. We ﬁiil‘show how “to -obtain the CnP—integral
from our general theory, and also state an integration by parts formﬁla,

which will be used extensively in Chapter III.

| The theory of CnP—integral based on theorem 2(below). There is
a defect in Burkill's original proof in [6] (see line 9, page 546). This de-
fect was noted recently and independéntly by Verblunsky in [38]. We give a
new and correct proof of this theorem..? For different proofs of stronger results,

we refer to Sargent [31] and Verblunsky[39].

Sargent has defined a C D-integral [32] equivalent to the
CnP-integral. However, there is a defect in her proof for theorem 4
(below)i This has also been given a correct proof recently and independently
by Verblunéky in [38]. We supply another proof, which seems simpler and
ﬁore direct, in the sense that we do not appeal to the deep de la Vallee

Poussin decomposition theorem used by Verblunsky.

Throughout this chapter, as in section I.5, X 1is to be the
real line, ¢ the family of all bounded half-open intervals like [a,b[ ,

N  the family of all subsets of Lebesgue measure zero., For each A e o ,
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let B(4) ='{0A} . It is easy to see that B is a base mapping.
Legifimate mappings and derivate oﬁerators will be defined later. Onge

a derivate operator D is defined, a fqnction F will be said to satisfy
the property I if and only if DF(x) > -= except perhaps for a-
countable set of points. Note that for all the derivate operators used,

the property T defined above is an inequality property.

As we have noted in section I.5, corresponding point functions
and the additive interval functions will not be distinguished if this causes no

ambiguities,

§1 THE CLASSICAL PERRON INTEGRAL.
The classical Perron integral is the CO—P—integral of the next
section. We single it out in this separate section because by doing so, we

can make the induction arguments in next section clearer.

For each A = [a,b][ , let MO(A) ='{M|M is additive on Oy

and the corresponding point function is continuous in [a,b]} . Let

CODM(X) or DM(x) be the ordinary lower drivate of M at x ., Then

it is easy to show that P0 = (MO,Q)B,N;E) is a derivate system satisfying
all the additional axioms (QM3) » (05), (Ds6), (Me), (14) in section I.5,
and also (M5') 4in section I.3. The Po—integral is just the classical

Perron integral; see [23], [30].
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From theorem 1.6, for Po—integral, we see that the Po—
primitives are continuous. Moreover, it is well-known that a Po-
L. % %
primitive is ACG (see Saks [30]), and conversely an ACG  function
is a Po—primitive of its D-derivative. It is also well-known that

' can be replaced

in the definition of major functions, "DM(x) > -= n.e.'
by "DM(x) > -» everywhere' without affecting the generality of the

resulting integral. An integration by parts formula for the Po—integral

reads as follows.

THEOREM 1, Let f ¢ PO([a,b[) and g be of bounded variation on [a,b] .

Then fg ¢ P ([a,b[) and

Jo f8 = F(A)g(a) - [, F(t)dg(t) ,

where A = [a,b] , and F is the Po—primitive of f and the integral

in the right hapnd side is the Stieltjes integral,

This theorem will be used later. For the proof, we refer
to Saks [30], McShane [23], or Gordon and Lasher [10], who provided a more

direct proof from the definition of Po—integrals.

The following notions will be used and extended later. For
an additive interval function F on G[a b suppose that the correspon-
b
ding point function F is Po—integrable in a neighborhood of x € [a,b].

For h f 0, x+ h in the neighborhood, write Cl(F;x,x+h) =-% ( f F,
x,h)

where (x,h) = [x,x+h]" if h > 0, = [x+h, x[ if h <0 . Then F
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is said to be C,-continuous at x if 1lim C F;x,x+h) = F(x) ; and
1 1
0
SC.-continuous at x ¢ Ja,b[ if 1lim {C,(F;x,x+h) - Cl(F;x,x—h)} =0 ,

1 0+ 1

and SCl—continuous at a or b if it is Cl—continuous there.

We end this section by remarking that SPO = dﬁtgg,B,N,E) is also

M (x+h)-M(x~-h)
2h >

a derivate system on ¢ , where SDM(x) = lim inf
>0+

the symmetric lower derivate of M at x ., This can be checked easily

noting the recent result due to Mukhopadhyay [21],

PROPOSITION. If SDM(x) > 0 a.e. in [a,b] and SDM(x) > -~ n.e.

in Ja,kl , then M is monotone increacing in [a,b] , where M

is a continuous function on [a,b] .

The SPO—integral is more general than the Pé—integral, and might be more
suitable for application to the trigonometric series (cf. [7] or section
III.6). We may consider this SPO—integral as the first of the SCP-scale

of integrals defined below in chapter III,

82, THE CnP—INTEGRAL.

We define a scale of derivate systems on ¢ by induction

as follows. For each J[a,b[ , let M!([a,b[;o Mi(la,bl) =

[a»b[) =

MM is C,-continuous in [a,b]l} , and for each M e M*([a,b[) and

Cl(M,x,x+h) - M(x)
h/2 '

for each x ¢ Ja,b] , let ClDM(x) = 1lim inf That

— h0
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the ‘Pl = dZ‘,ClD,B,N,ib is a derivate system on ¢ follows easily

from lemma on page 316 and lemma on page 319 [5];

Suppose that for =n > 2 , the derivate system

P = Wn"l

1 ,Cn_lD,B,N,E) has been defined, For each M ¢ Pn_l([a,b{)

and for each x ¢ [a,b] , h $ 0 with x + he [a,b] , let

n x+h n_lM
C (M;x,x+h) = = (B__.) - jx (x+h-t) (£)de .

=

Then M is said to be Cn-continuous at x 4if 1lim Cn(M;x,x+h) = M(x)
h->0

Let Mn([a,b[) ='{M|M is Cn—continuous in [a,b]} , and for each M

C (M;x,x+h) - M)
h/n+1

define C DM(x) = lim inf
_n_ hO

Then it can be shown that Pn ='{Mn,CnD,B,N,f} is a derivate system on

—

¢ . The Pn—integral is in fact equivalent (see Bosanquet [1]) to the

CnP—integral of Burkill inm [5], [6].

That the Pn defined above is in fact a derivate system is easy.
to check. We only prove the following theorem, of which the significance

has been mentioned in the introduction.

THEOREM 2. Let M be Cn-continuous in [a,b] and CnDMCx) >0

————

a.e. in Ja,b] and C, DM(x) > ~» n.e. in [a,b] . Then M as a

point function is monotone increasing in [a,b] .
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To prove this, we recall some notions introduced by Sargent

*
in [32]. For n>1 , a function F is said to be ACn on a set

——

E 4if it is Cn_lP-integrable on an interval containing E , and if for

each € > 0 there exists a & > 0 such that

inf {Cn(F;ar,x) - F(ar)} > —¢
r ar<x<br

J dinf {F(b) - C_(F;b_,x)} > -¢
r a <x<b r n r
r b
for all finite sets of non-overlapping intervals '{[ar,br]} with end

points in E and such that. E (br-ar) < 6 . The concept AC: is
by

defined in a similar way. If F is both ACi and ACg s then F 1is

——

said to be AC; . Applying the method in the proof of theorem I in

[32], lemma IV in [32] reads as follows.

LEMMA 1, Let F be Cn-continuous in [a,b] , and CnDF(x) > = n,e.

in Ja,b] . Then [a,b] 1is the union of a countable closed sets over each
of which F is AC: .

Generalizing the concept of AC functions (see Saks [30]), we
say that a function F 1s AC on a set E if for each € > 0 there

exists a § > 0 such that z'{F(br) - F(ar)} > -¢
r
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for all finite sets of non-overlapping intervals '{[ar,br']} with end points
in E and such that. Z(br—ar) <38 . AC  is defined in an obvious way.

These notions AC and AC were first introduced by J. Ridder in [28].

Following parts of the argument used in the proof of lemma III

in [32], we have

LEMMA 2, Let F be Cn_lP—integrable on [ec,d] , and

W = min{inf[C_(Fic,x) = F(c)] , inf[F(d) - C_(F;d,x)]1} .
Then there exists a constant q independent of c¢,d such that
F(d) - F(c) > -aW

Proof of THEOREM 2. By lemma 1 there exists a sequence -{E-k} of

closed sets with union [a,b] and on each of which M is AC;‘l .

By lemma 2, M is AC on each E k=1,2,3,... =

k 3
Let A be the set of points in J[a,b] such that if x ¢ A ,

then there is no interval containing x on which M is monotone increasing.

Then A 1is closed and hence by the Baire category theorem, if A is

not empty there is an interval [%,m] and an integer k such that

A \l2m[ is not empty and 'A(\ [2,m] = Ekf\ [2sm] . As M is AC
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on Ek » M is AC on A ,\[z,m] . As M is monotone increasing on each
of the intervals contiguous to A Al2,m] w.r.t. [2,m] , by the Cn—

continuity of M , it follows that M is AC on [2,m] .

Now, letting ¢ > 0 be given, we prove that for each x & [f,m]

with CnDM(x) > 0 , there exists a sequence of points xi with X, > X

A MM |

t-x —

for which > - , Suppose to the contrary that

X,X
1

for all t with t -x< § forany 6 >0 , Then for 0< h< § ,

one has

X+h
(n:iin Geth-£) "7 1(e) - M(x))de
h -
X+h
< P ™ e (eae = e
h

so that CnDM(x) < -e¢ , contradicting to CnDM(x) >0 ,

— ——

Let G be the set of points in [&,m] such that for x ¢ G ,

CnDM(x) >0 . Then the measure of G is m-2 . By the above asser-

——

tion, for each x ¢ G we can take a sequence of intervals ]x,xi[ with

: _ M(xi) - M(x)
X, -=X >0 for which > - ¢ . This associates a Vitali
i xi-x

family of intervals with each point in G . Hence by the Vitali covering

theorem, there is a finite mutually exclusive set {]x ,xi[} of the

i
family with . Z(xi - xi) > (m~-2) - n, n arbitrary, for which



42,

12 Bx)) =MD} > e | &) -x) .

Let {] tj.,t:!‘[} be the subintervals of [&m] complementary

to the set '{[xi,xij} . Then . Z(t:; - tj) <n . Hence, as M is AC
3 .

in [&m] , one has, for sufficiently small _n' »

M(m) - M(9) 3_12 PMGx]) - M(x)) 3+ 12 {M(th) - M(tj)}»

> -€ Z(xi - xi) -€ > -¢ [(m-g) - n - 11 .

As ¢ 1s arbitrary, one concludes that M(m) > M(9)

If 2 <c<d<m , it can be shown in the same way that
M(d) >M(c) , so that M is monotone increasing in [%m] . This is
a contradiction since A N ]%m[ is not empty. Thus, we conclude that
A 1is empty. Therefore, for each x ¢ [a,b] , there is an interval con-
taining x such that M 1s monotone increasing in the interval. By
Heine-Borel theorem, there is then a finite set of such intervals covering

[a,b] and it then easily follows that M is monotone increasing in {a,b] ,

completing the proof.

We remark that it is well-known that M(a) < M*1(a) and

,.CnDM(x) _<___Cn+lDM(x) for each M ¢ Mn(A) , X €A , for each n = 0,1,2,

35¢.¢. 5 where. ‘CoD =D , Hence by theorem I.,7, we have the consistency

—————

of the Pn—scale (or CnP—scale) starting from the classical Perron integral

(i.e. Po-integral in §1).
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The following integration by parts formula will be needed

in the next chapter. For a proof, see Burkill [6].

x
THEOREM 3. For a <x <b , let F() = (Pn) - f £(t)dt , and
a

€, & £
X 1 .72 n-1
Gn(x) = f f f cse f g(En)dEn dgn-l ce e dgz‘dgl ’
a a a a .

where g 1is of bounded variation in Ja,b] . Then fGn € Pn([a,b[)
and

B B B
®) - fa(fGn) (t)dt = [FGn]a— ¢ ;) - fa(FGn_l) (t)de ,

where a< o< 8<b ,

§3, THE CnD—INTEGRAL AND THE CnP—INTEGRAL.

In [32], Sargent has defined the CnD—integral by induction.
The COD—integral is just the special Denjoy integral, which is equivalent

to the Po—integral in §1. For n >1 , assuming that Cn D-integral

-1
has been defined and is equivalent to the Pn_l—integral (i.e. Cn_lP—
<ntegral in Burkill's notation), the CnD—integral is then defined.as
follows., A function f on [a,b] is CnD—integrable on [a,b] 1f there
is a fun;tion F Cn-continuous in [a,b] and ACnG* on J[a,b] such

*
that CnDF(x) =f®x) a,e, in [a,b] , That F is ACnQ on [a,b]

means that there is a sequence of sets with union [a,b] such that
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*
F is ACn (see §2) on each of the sets.

Sargent proved that the Pn-integral is more general than the
CnD—integral; see theorem XI in [32]. In the proof of the converse, that
the CnD—integral is more general than (and hence of course equivalent to) the
Pn—integral, theorem VIII [32], we noticed that there is a defect since the
'set En (defined there) depends on the choice of ¢ , so that the argu-

ment breaks down. The purpose of this section is to supply a correct proof.

THEOREM 4. Let f be Pn—integrable on [a,b] with primitive F . Then

*
F 1is ACnG on [a,b] .

Proof. Given €, > 0 , by lemma I.2., there exist a Pn-major function
M and a P -minor function m_ such that M (b) - m (b) < ¢ , and
o n o o) o o

also Mo(b) - F(b) < €, F(b) - mo(b) < ey

By lemma 1, there exists a sequence '{Ei} of closed sets such

* —
~that M.o is ACn and m is ACn on each E , k=1,2,3,... , where

_n k
U EE = [a,b] .
k
For fixed k = 1,2,3,... , let ]Cr’dr[ be the contiguous
*
intervals of E° in [a,b] . As M is AC on ED , we have
k (o] n k
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(@D) z inf '{Cn(Mo;crx) - Mo(cr)} ; —
. r ¢ <«x<d :
T r
(2) Y inf '{Mo(dr) - Cn(Mé;dr,x)} > —w

r ¢ <X<d
r r
and similarly,
(3) | ’ g sup'{Cn(mo;cr,x) - mo(cr)} < 4o,

(4) Z sup {mo(dr) - Cn(mo;dr,x)} < 4o
Suppose that c. < x < dr . Then
C,(Fic »,x) = F(c ) = C (M 5¢c ,x) - M (c)
X
n

- .(x—t)n_l{Mo(t) - F(0) )t + M (c) - Fle)

(x—cr)n c,
> C (M e ,x) - M (c) - M (d) - F(d)I}+ (M (c) - Flc)}

since M-F is monotone increasing in [a,b] by theorem I.5. It follows that

2 inf {Cn(F;cr,x) - F(cr)}
r cr<x<dr

>} inf {C_ (M jc_,x) - M (c)} - {1 (b) - F(b)} > ~=
r

by (1) and the fact Mb(b) - F(b) < €y

Similarly, using (2), (3), (4), we have

o

; inf'{F(dr) - Cn(F;dr,x)} > - Z sup‘{Cn(F;cr,x) - F(Cr)} < 4w

and g sup {F(dr) - Cn(F;dr,x)} < 4 ., Hence we have
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(5) Z sup ]Cn(F;cr,x) - F(cr)l < 4
r

(6) Y sup |F(d) - C_(F;d ,x)| < +o
. r

Now, we show that F is AC on each EE . First, note that by
lemma 2, we have that M, is AC and m is AC on EE » so that

there exists a constant A such that Z'{Mo(xi) - Mo(xi)} > -A and
: i

o ] _ ' . . ! ] iy .
g {mo(xi) mo(xi)} < A for any finite set {[xi,xi]} of non-overlapping

intervals with end points in E; . For such finite set'{[xi,xi]} we have
[ - - 1 — .
0 < X{Mo(xi) Mo (x,)} E{mo(xi) m ()} <M (b) - m (b) < e

since Mo -m is monotone increasing and non-negative. Combining the

above inequalities, we have for any relevant set '{[xi,xi]} s

- A< TOMG)) - M (k)Y < A,

A-e < Z{mo(xi) mo(xi)} < A , so that we have

(7) Both M and m are BV on E
o o) . k

We prove further that

(8) if M ¢ M?([a,b]) , M E M;([a,b]) , then both M and m are BV on

e}
B
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This in fact follows from M = m + (M ~ mo) and m = MO - (M0 - m)

since M and m are BV on 0 by (7), and as M - m and M- m
o} (o} k [ 0.

as both are monotone in [a,b], they are also BV on E;

We have noticed that MO is AC on E; and m is AC on Eﬁ

With the result (8), we prove further that

(9 if Me M:([a,b]) , m e Mi([a,b]) , then M is AC and m is AC
on EE .

To see this, let '{]cr,dr[} be the intervals contiguous to EE in [a,b].

, _ o . ..
Define M%(x)-— M(x) for x on Ek , and on each ]cr’dr[ M, is defined

such that the graph of M*. is the 1linear segment joining the points

(cr,M(cr)) and (dr,M(dr)). . Then it is -easy to see that M, is Cn—
~continuous in [a,b] and CnDM*(x) > =» n.,e. in [a,b] . Hence by lemma 1

and lemma 2. M, is Qggp——;; [a,b] , that is [a,b] = TU Ek » and M,

is AC on each Ek , Where Ek is closed. Also, M, isk BV in [a,b]

since M is BV on EE by (8). Let G(x) = M*(x) - (D) fx M;(t)dt

a

Then . G as a difference of an (ACG) function and an AC function is
itself (ACG) . Furthermore, G'(x) =0 a.e. in [a,b] . Hence, using
the Baire's category theorem and the Vitali covering theorem, it can be shown

that G is monotone increasing in [a,b] and hence is also non-negative in
% .

[a,b] . Therefore, M*(x) - (L)f M;(t)dt > 0 for each x in [a,b] , and
a .

' .
X
i
M*(xi) - M*(Xi) i.f M, (t)dt for any [xi,xiq C [a,b]
*3
x
As f M,(t)dt is AC on [a,b] , it follows that M, is AC on [a,b] .
a
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As M =M, on E; » it follows that M is AC on EE . Similar argu-

ments hold for Pn-minor functions, and (9) is hence proved.

Now, we are in a position to prove that

0

(10) , F is AC on Ek

To do this, let € > 0 be given. Choose M ¢ Mf s M € Mf with
M(b) - m(b) < €/2 . Then for each finite set '{[xi,xi]} of nonoverlapping

intervals in [a,b] , we have

0 < JOIGx)) = M(x)} - Iim(x}) = m(x)} < M(b) - m(b) < e/2.

Y {m(x)) - m(x)} < Z{F(Xi) - FGx) < Z{M(xp - M(x,)}

since M~-m , M~-F , F-m are all non—-negative and monotone increasing

. o .
in {a,b] . TFor such relevant {[xi,xi]} , 1f xi,xi € Ek , and if
Z(xi - Xi) is sufficiently small, by (9), we have
Z{M(xi) - M(xi)} > -e¢/2 and Z{m(xi) - m(xi)} < ef2

Combining all the above inequalities gives
-e < J{F()) - F(x)} < e

so that F is AC on Eﬁ , proving (10).
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As the Cn_lD—integral and the Pn_l—integral are equivalent by

' *
induction hypotheses, it follows from (5), (6) and (10) that F is ACn

on Ei by theorem II in [32]. As k dis arbitrary and U EE = [a,b] , it

%
follows that F is ACnG on [a,b] , completing the proof of theorem 4.

We remark that the technique used in this chapter is motivated
By studying the paper [16], where the ClP-integral was investigaged in

great detail.
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CHAPTER III

A SCALE OF SYMMETRIC CP-INTEGRALS AND THE MZ~INTEGRAL

Burkill has defined a SCP-integral in [7], which is more suitable
for application to the trigonometric series than the CP-integral. Although
‘this SCP-integral has been investigated by many people, no scale correspon-
ding tobthe CP-scale has appeafed in the literature. One of our purposes
in this chapter is to use the general theory developed in chapter I to

give an SCP-scale of integrals.

As a preliminary, we prove some lemmas concerning the de la valiée
Poussin derivatives in section 1 and state two well-known theorems concerning
n-convex functions in section 2., The results essential to the definition
of our scale of integrals are proved in section 3. After developing the
SCnP~integral in section 4, section 5 is devoted to its connection to the

James symmetric Pn+l—integral scale [13].

. By the MZ-integral, we mean thé integral defined by Marcinkiewicz
and Zygmﬁnd in [21]. This MZ-integral solves the coefficient problem of
the convergent trigonometric series. Burkill also used the SCP-integral
to solve the same problem, However, in his proof, he used an integration
by parts formula, which remains unproved up to now. We prove in the last
section that the MZ-integral and the SCP-integral are in fact equivalent.

This implies that the SCP-integral does solve the coefficient problem.
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s
§1. THE SYMMETRIC de la VALLEE POUSSIN DERIVATIVES.

Let F be a function defined on a bounded closed interval
fa,b] , and x ¢ Ja,b[ . If there are constants 80,32, ...,BZY,(rzp),

depending on x but not on h such that

h2k

z 2r
Boy 75y = o(h™)
kZO 2k (2k)!

S(FGeth) + F(x-h)) -

as h >0 , then BZr is called the symmetric de la Vallée Poussin
(s.d.1.V.P.) derivative of order 2r of F at x , and we write

By = DZrF(X) . It is clear that if Dsz(x) exists, so does DZkF(x)
for k =0,1,2,...,r-1 ,. and DZkF(X) = BZk
If DZkF(x) exists for 0 <k <m-1, (m>1) , define

sz(x,h) = sz(F;x,h) by

h2m 1. m~-1 n2k
(2) T sz(x,h) =3 {F(x+h) + F(x-h)} - k-Z-O T Dsz(X) s
and let
D F(x) = lim sup 6, (x,h) ,
2m ) hs0 2m A
(3)
D, F(x) = 1lim inf 6, (x,h) . .
2m hs0 2m

Then a finite common value for Dsz(x) and szF(x) implies that .Dsz(x)

exists and equals this common value.
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In a similar way, the odd-ordered s.d.l1.V.P. derivative is defined

by replacing (1) by

r 2k+1
' 1 _ _ _ h" 2r+l
a" 2{F(x+h) F(x-h)} kzl Bor+1 (2k+1) ! o(h )
as h >0 . Similar changes can be made in (2), (3).

The following lemma is an extension and generalization of lemma
4, (i) in [33]. For a partial converse in the non-symmetric case, see

lemma 10 in [21].

LEMMA 1. Let H be a function and H'(x) = G(x) in a neighborhood
of X, - If for some n , DnG(xO) exists, then Dn+1H(xo) exists and

is equal to DnG(xo)

Proof. The proof is by induction on n . To see that it is true for

n =1 , consider for sufficiently small h > 0 ,
0, (3% ,h) = 2ol [Hex +h) + B (x-h)] - H(x )}
277 h2 2 o o 0
In order to apply l'HSpital's rule, let
1 h2
£(h) = F[HGe+h) + H(x -h)] - H(x ) » g(h) = o=

Then f(h) -+ 0 as h > 0 since H 1is clearly continuous in a neighbor-

hood of X, o Also, g(h) 0 as h >0 . Furthermore, g'(h) =h + o ,
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£1(n) _ H'(xo+h) - H'(xo—h) ) G(xo+h) - G(xo—h)

and TRy T 2h - 2h ’
which approaches to DlG(xo) as h >0 . Hence

lim OZ(H;xo,h) = DlG(Xo) , which is what we want to prove.

Now, suppose that the conclusion of the lemma is true for n < r ,
where r > 2 . Then we prove that it is also true for n =71 as follows.
Suppose r 1is even, r = 2m say. As Dsz(xo) exists, so does DZkG(xo)

for 0 <k <m -1 , and hence by the induction hypothese, D2k+lH(Xo)

exists and equals D2kG(xo) for 0 <k <m=1 . Consider

m-1 . 2k+1

] D
oo (2KHDT T2kl

(2m+1)!

h2m+l

(W3 ,h) = (G ) - H(x -h)] - H(x )}

Comtl

Applying 1'HOpital's rule, one gets

1im ©
h-+0

A similar argument will give the case for r odd.

2m+l(H;xo,h) = DZmG(Xo) , Which complete the proof for even r .

Note that, in particular, we can apply lemma 1 to the case that
H 1is the Lebesgue integral of a continuous function G in some interval.

Following James [13], we say that a function F is n-smooth at

0 . By a similar argument

x if D _F(x) exists and 1lim ho (F;x,h)
n-2 n
h»0
in the proof of lemma 1, one has

LEMMA 2. Let H be a function and H'(x) G(x) 1in a neighborhood of X

Then H is (n+l)-smooth at X, if G is n-smooth at X
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LEMMA 3. Let H be a function and H'(x) = G(x) in a neighborhood of
X, o Then for n >1 ,

4) A D G(x ) 2.B;+1H(Xo) z-2n+lH(xo) >

n o G(xo)

D
—n

whenever On(G;xo,h) makes sense.

Proof. By lemma 1, if Gn(G;xo,h) makes sense, so does On+l(H;xo,h)

The inequalities (4) then follow from the inequalities (cf [12], p. 359).

. ' 1
lim sup f,gz; > lim sup fgg; > lim inf fggg > lim inf f,g:;
ho 8 hso 8 o 8T nso 8
for suitable cheices of £ and g
?

52, SOME PROPERTIES OF n-CONVEX FUNCTIONS.

For the definition of n-convex functions, we refer to the papers
mentioned below. The first result we wént, due to James [13], [15] but
is ﬁroved in a more complete form by Bullen [2], gives a set of conditions .
which are sufficient for a function to be n-convex. The second result gives
some important‘properties of an n-convex function. Before stating these,

we recall some concepts.

- A function F defined on [a,b] is said to satisfy the condition

. ) in [a,b] if

Zr)
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.
b

(a) F is continuous in [a,b]

(b) DZRF exists, is finite and has no simple discontinuities in J]a,b[

(c) F is 2r-smooth at all points in Ja,b[ except perhaps for points

of a countable set.

Similarly, the condition (C2r+1) is defined, so that the condition (Cn)

makes sense for all integer n > 2

A linear set is called a scattered set if it contains no subset

that is dense-in-itself. Note that the union of two scattered sets is also

scattered [20]. f

If it is true that

T hk
F(xth) - F(x) = E o —_ + o(hr) as h-+20
k=1 .

k!

then dk (1 <k < r) is called the Peano derivative of order k ‘of F

at x wr1tten» oy ='F(k)(x) , where @150y eeey O are constants

-+ depending on x -only, not on h ~. It is clear that if F(k)(x) exists,
so does DkF(x) and two are equal. But the converse is_not‘tfue in

j geﬁérél. B

P o- St : PR PUCTEE PR 4 “ ey aele T et L

If F pdsseées Peano deriya?ive )

-;T-Yr(F;x,h)'; f(x+h) ;MF(XS -
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Then define Fkr),+(x) = lim sup +v(F;x,h)

h-»0+

E(r),+ s ﬁkr),- ’-E(r),— are similarly defined, and th?“_

F(r) 40 F(r) _ are defined in a usual way.
s s

- THEOREM 1. (cf.[2], theorem 16). Let F satisfy the condition (Cn)
in [a,b] and

(i) 5£F(x) > 0 almost everywhere in Ja,b[ ;
(ii).- 5£F(x) > ~» for x e Ja,b[ ~ S, S a scattered set;

(iii) lim sup h © (F:;x,h) > 0 > 1lim inf h 6 (F:x,h) for x e S
n == n :
x+0 h~>0

Then F 1is n-convex in [a,b]

THEOREM 2. ([2], theorem 7). Let F be. n~convex in [a,b] . Then

(r)

(i) 'F exists and is continuous in [a,b] for 1 <r<n -2 |,

where F(r)(x) denote the ordinary rth derivétivg of F at x

(1) both Fpy oy 5 Feoay o

(111) F gy = #®™2)> | ang Flao1y - =

(iv) F(n—l)(x) exists at' all except a countable se;;éfiﬁoint$£«;;n »

are monotone increasing in [a,b]l ; _
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§3. THE SCr—DERIVATIVE AND THE SCr—CONTINUITY.

Let r>1,F be C (i.e. Pr— of chapter II)-integrable

1
on [a,b] , x ¢ Ja,bl , Cr(F;x,x+h) as defined in chapter II, and

r—lP

r+l.
Ar(F;X’h) = "i_h_— {Cr<F;sz+h) - Cr(F;sz—h)} ’
SC_D F(x) = lim inf A_(Fsx,h) .

X h=0

The notations SCrD s SCrD then have the obvious meanings. We call
SCrDF(x) , 1f exists, the symmetric Cesaro derivative of order r of

F at x , or simply SCr-derivative of F at x .

If 1im {C_(F;x,xth) - C_(F;x,x~h)} = 0 , F is said to be
r Tr
h~»0+

SCr—continuous at x .. It is clear tﬁat F is SCr—continuous at x
whenever it is Cr—continuous at x , and SCrDF exists and equals
CrDF(x) whenever CrDF(x) exists. But, neither of the converses is
true. It is also easy to check that SCrDF is measurable (cf. theorem 8

below).

LEMMA 4. For r >0 , let F be Cr-continuous in [a,b] . Then

F has no simple discontinuities in [a,b] . In particular, every CrP—
primitive of a function on [a,b] has no simple discontinuities in f{a,b] .
Proof. For r = 0 , the result is immediate sinée the Co—continuity

is just the ordinary continuity. For r > 1., suppose that X, € ]Ja,b] ,

and  lim F(x) = B . Then for each € > 0 , there exists & > 0 such that
X+X—
0



58‘

B-¢ < F(x) < B+ ¢ for xo - 8§ < x < xo s
or

B-¢e¢<F(x)<B+c¢ for X, - h < x < X,
where h 1is such that 0 < h < § . Hence

(B-) (x =x ) 1 < FGo) (e tn) T < (Bre) Geox ) T

for X, - h <x < X, which implies that

.B - ¢ 5_5;'(Cr_1P) - f (x—xo+h)r_lF(x)dx <B+e¢
h x =h

for 0 <h <§ , so that 1lim Cr(F;xo,xo—h) =B .

h0+
lim Cr(F;xo,x -h) = 1im C (F;xo,x—h) . Hence F(xo) =B .
h+0 © ho0+ | -

But F(xo)

Similarly, if X € [a,b[ , and 1im F(x) = B' , then
: x6x0+

F(xo) =B' . Hence F has no simple discontinuities in [a,b] .

The last statement of the lemma is now immediate since by'theorem

I.6, every CrP—primitive is Cr—continuous.
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LEMMA-5. For n >0 , let F be CnP—integrable on [a,b] , and for

x € [a,b] , let

N .
(c® - [ F(nde ,

‘Gn(X) = .

’ p.4
G (x) = (C,P) - fa G(dt , 0<k<n-1,
G(x) = Go(x)

Then (i) G 4is continuous in [a,b] ;

(ii) if F is SCn+ ~continuous at x , then DnG(x) exists and

1
= : n : -
Dn- G(x) = Gn—2k(x) for 0 <k 5_[2] , and G is (n+2)-smooth at x ,

and On+2(G;x,x+h) = An+l(F;x,h) 3

(iii) if F is Cn+l—cont1nuous at x , then G(n+l)(x) exists and
G(k)(x) = Gk(x) for 0 <k <n+1 , where G g =F
Proof. (1) 4is immediate since G 1is just a COP—primitive.

For (ii) and (iii), note that by integration by parts,

(nt+l) ! _
ol {G(xth) - G(x)

n
)
h k=1

ok
Cn+l(F;x,x+h) P Gk(X)} s

(5)

n k ‘
%ii—r)l}q ey - 66 - ) ¢ )
~h k=1 )

I

Cn+l(F;x,x—h)
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for h * 0 with x+ h e [a,b] . Hence for n even, say n = 2m ,

(5e) Cn+1(F;x,x+h) - Cn+l(F;x,x—h)
m) ! mo 2k
- D (6Geth) + Glx-h) - 2 ] BT S}

h k=1

and for n odd, say n=2m+ 1 |,

(50) Cn+l(F;x,x+h) - Cn+1(F;x,x—h)
2k+1
L (2m2) 1 Gty -2 § B
) {6Geth) = G(x-h) - 2 kZO a1 ot

For both cases, if F is -continuous at x , then DnG(x) exists

SCn+1
alw) = n ; -
and Dn—ZkG(X) = Gn—2k(x) for 0 <k 5_[2] , and G 1is (nt2)-smooth

n
2

more, On+2(G;x,h) = An+l(F;x,h) , proving (ii). (iii) follows from the

at x , where [%J = the greatest integer less that + 1 . Further-

equality (5).

REMARK. If D__, G(x) =6 for 0<k<[3] ,and G is (nt2)-

-2k )

smooth at x , then F is —continuous at x ., This is clear since

SCn+l ‘
replacing Gn—Zk(x) by Dn—2kG(X) in (5e) and (50) one has that

2

m h On+2 (G;x,h) .

Cn+1(F;x,x+h) - Cn+1(F;x,x—h) =

-
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LEMMA 6. For n >0 , let F be ‘CnP—integrable on [a,b] , and

SCn+1—continuous in Ja,b] , and Gn be defined as in lemma 5. If

If (a) SCn+1DF(x).Z 0 a.e. in [a,b]

(b) SCn+1DF(x) > = for x e lJa,b[~ S , S , a scattered set,

then G is (n+2)-convex in [a,b]

Proof. This is immediate since by lemma 5, (ii), and lemma 4, G satisfies

all the conditions in theorem 1 with n + 2 replacing n .

THEOREM 3. For n >0 , let F be CnP—integrable on [a,b] and

SCn+l—cont1nuous in Ja,bl . If

(a) SCn+lDF(x) >0 a.e. in [a,b] ,

(b) SCn+1DF(x) >~o for x € Ja,b[ ~ S , S scattered,

(¢) F is Cn+l—cont1nuous in B [a,b) ,

then F 1is monotone increasing in B .

Proof. Let G be defined as in lemma 5. Then by lemma 6, G is (n+2)-

G(n+l)

convex in [a,b] , so that by theorem 2, (iv), and hence

G(n+l)

exists at all except a countable set of points. By theorem 2, (ii),

G(n+l) is monotone increasing where it exists. Thus the condition (c)

and lemma 5, (iii) imply that F is monotone increasing in B .-
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THEOREM 4. For n>0 , let F be CnP-integrable on [a,b] , and

X e Ja,b[ . If F is -continuous at X, s then F . is

SCn+l SCn+2—_

continuous at LI and
* — e
SCn+lDF(xo) Z_SCn+2DF(x°) Z_SCn+2DF(x0) Z_SCH+1DF(XO)

" Proof. Note first that F is P-integrable on [a,b]_ by the

Cn+1

consistency of the CP-scale. Let, for x ¢ [a,b] ,

. x ‘
Gn(x) = (CnP) - fa F(t)dt ,
x
Gk(x) = (CkP) - fa Gk+1(t)dt for 0 <k <n-1 ,
x .
Hn+l(x) = (Cn+lP) - fa F(t)dt ,
X . .
Hk(x) = (CkP) - fa Hk+l(t)dt for 0<k<n

X
Then My () = G G) for 0 <k <cn and H () = (L) - [ 6 (0)de

By lémma 5), (ii), G0 is (n+2)-smooth at X, » SO that Ho is (nt+3)-
smooth at X by ‘lemma 2. Hence by the remark following lemma 5, F is
SCn+2—continuous at X, - The inequalities * follow from lemma 5 and

lemma 3, completing the proof.

THEOREM 5. Let '{Mk} be a sequence of SCn—continuous functions in Ja,bl ,
and each Mk is C _-continuous in a set B [2,b] with a,b e B and
n

the measure of B is b - a . Suppose that Mk(x) +>M(x) as k » o
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uniformly in B . Then M is SCn—continuous in Ja,b[ and Cn—continuous
in B .
Proof. Given € > 0 , choose k such that for all x ¢€.B ,

]M(x) - Mk(x)| <-%e . For each ¢ ¢ B , choose § > 0 such that

1 S,
ICn(Mk;c,c+h) - Mk(c)l < 3¢ whenever Ihl < 8§ with x+ h e [a,b] .
1 .
Then ICn(M;c,c+h) - Cn(Mk;c,c+h)| < 3¢ 5 80 that ICn(M;c,c+h) - M(c)l < €
‘whenever lhl < § with x + h ¢ [a,b] , proving that M is Cn—continuous

at ¢ .

That M is SCk-continuous at each point c¢ ¢ Ja,b[ is proved
in a similar way, only replacing Mk(c) » M(¢) in the above argument by

Cn(Mk;c—h,c) and C_(M;c-h,c) , h now being restricted to c + h e [a,b] .

§4, THE SCnP—INTEGRAL.

Let X be the real line ¢ the family of all half-open intervals,
N the family of all subsets of measure zero. For each positive integer n

and each lower derivate operator . SCnD s T; is defined by

SCnDF(x) > —» except perhaps for a scattered set of points. We are going

to consider "point functions' instead of "interval functions", so that by a
base B in [a,b[ , we mean that B ¢ [a,b] and a,b € B and the measure
of B is b ~ a . Throughout this section, we will consider the base

mapping to be the another extreme case B(A) = the family of all bases in A .
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For each interval [a,b[ and each base B in [a,b[ , let

SMn([a,b[,B) ='{M|M is Cn—cqntinuous in B and

SCn~continuous in Ja,b[} .

Define o _
SCnP = (SM ;SCnD,B,N,In) .

Then by theorem 3, and theorem 5, it is easy to check that SCnP
is a derivate system on o , which furthermore satisfies the

additional axioms (D5), (06), (M6), (I4) 1in section I.5, and
also (M5') . Therefore, we obtain a SCnP-integral for n=1,2,3,... ,
a scale of symmetric CP-integrals. It follows from theorem I.7 that this

" scale is more general than the scale of Burkill's CP-scale in chapter II

since SM™D M™ and SCnDF(x) Z_CnDF(x)

— ee—

As for the (CP-scale, we have the consistency theorem for our

scale.

THEOREM 6. If £ is SCnP—integrable on [a,b[ with base B , then f

P-integrable on [a,b[ with base B .

is also ,SCn+l

Proof. This is immediate from theorem 4 and theorem I, 7.

REMARKS.

¢)) Note that the definitions o SC.P-integral and Burkill's SCP-integral

1
(see [7] or section 6 below) have different families C in (I4)-scattered
sets and countable sets respectively. However, the two integrals are equivalent.
For, letting Ml be a Po—primitive of M , one has SCDM(x) = DZMl(x) .

Hence from the remark by James at the end of [15], the set of points x
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where SCDM(x) = - is a Gc set and, if at most countable, it must be
scattered.

(2) Burkill in [7] listed an integration by p;rts formula for the SCP—
integral and stated that the proof followed from that given for the CP-
integral in [5]. This‘is not true since the proof in [5] used essentially

the following inequality
CD(MG) (x) > M(x)G'(x) + CDM(x)G(x) ,

but we do not have a similar inequality for the SCD-derivate. For example,

P
let M(x) = x ° . for x>0 ,

~%
(-x) * for x <0 ,

k for x =0 , where k 1is any constant,

and let G(x) = -x . Then

SC,D(MC) (0) = ~ 1} -k = M(0)G'(0) + (sc,DM(0))G(0) .

Thus, whether the formula for SCP-integral in [7] is true remains an open
question. Burkill in a recent letter to me agreed with this and said that
the same point had been made to him by a young Russian mathematician some

years ago.

If such an integration by parts formula exists for the SClP-

integral, then one can use this to define the SCZP-integral instead of

using the ClP—integral. Then a more general scale would be obtained by

induction. Such a scale would be useful in application to the Cesaro

summable trigonometric series.
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85. THE SCnP—INTEGRAL AND THE Pn+1—INTEGRAL.

As we mentioned in the introduction of this chapter, in this section
' . . s . nt+l |
we are going to investigate the relation of the P “~integral and the

SCnP—integral.

By Pn+l—integral, we mean the modified symmetric one as in [15].

For convenience, we give the definition of its major functions here.

Let f be a function defined almost everywhere in [a,b] , and

let ags i=1,2,3,..., ntl , be fixed points such that a = ay < a, < 440 <

a <a ;4= b . A function Q is called a Jn+1—maJor function of f£

over (ai) if

(a) Q satisfies the condition (C ,.) din [a,b] (cf §2);

n+l

(b) 2n+1 Q(x) > f(x) almost everywhere in [a,b] ;
(c) Qn+lQ(x) >=» ., x¢e la,b[ . S, S a scattered set;

(d) Q(ai) =0 for 1i=1,2,3,...,n+1 .

THEOREM 7. Let- f be’ SCnP—integrable on [a,b[ with base B . Then

n+l | . _ ' -
f 4is P T-integrable over (ais,c) , where a = al.< a, < vea < a, < a1

b, ce [a,b] . Moreover, letting
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X
F (x) = (SCP) - [ £(t) ,xeB ,
a
. X .
F () = (CP) - ja Fiap(0)dt , x ¢ [a,b] , 0k <n-1 ,
F=F
‘ one has for as <ec < as-'_1 5 -
s C ) n+1
% - = - .
-1° £()d €= Fe) - ] Ale;a)F(a)
(a.) . i=1
i
where X(c;ai) = 1 (c—aj)/(ai—aj) is a polynomial in c¢ of degree at

jti
most n

Procf, et M be a SCnP—major function of f on f{a,b[ with base B ,

t t2

t
X 1 - n-1
G(x) = (C_P) - fa(clp) - fa(czp) - ja e (C_P) - fa_ M(t )dt de o ...dt,dt

Then by lemma 4 and lemma 5, G satisfies conditions (a), (b), (c) in the
above definition. Hence if we set

: n+l
Qx) = 6(x) = ] A(x3a,)6(a)
C4=1

then Q is a ’Jn+1—major function of f over (ai) « Similarly, a
SC P-minor function m yields a J_,.-minor function
n nt+l
: n+l
q(x) = g(x) - ) Arlxza))gla,) ,
. i=1 o

where g 1is defined similar to G .

1 271
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For € >0 , if we choose M , m such that

' n+l
M®) - m(b) < ¢/[1 + z (c;ai)](b—a)n , then the corresponding Q , q have
, i=1

Q) - q(e)] < ]6(c) - gle)| + ] |x(cs2)| |6(a)) - g(ai)l Ze
Hence, the Pn+l—integrability of f follows.

The equality * follows as above by using the property that
Fn can be uniformly approximated in B by a sequence of SCnP—major or
minor functions.

COROLLARY 1. ¥ (x) exists for each x in B and D F(x) exists

(n) “n-1
for each x ¢ Ja,b[ . Furthermore, F(n) = Fn on B , and DkF = Fk
on la,b[ Zfor k =0,1,2,...,n~1 , where F , Fk are those in theorem 6.

Proof. By theorxem I.6, Fn is Cn-continuous in B and SCn—continuous in

la,b[ ', so that the required results follow from lemma 5.

COROLLARY 2. There exists a function which is P" l-integrable on

[a,b] but not SCnP—integrable on [a,b]

Proof. This is similar to that of Cross in [8%] for n=1 . 1In

fact, if n is odd, let F(x) = x cos-i for x + o ,
0 ~ for x=0 3

if n is even, let F(x) = x sin-% for x + o ,

0o for x =0 .
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In either case, let f(x) = F(n+l)(x) for x-+ 0 ,

0 for x + o .
Then Dn+lF(x) = f(x) for all x , including x =0 , and as shown by
James in [13], f is Pn+l—integrab1e over any interval containing O
However f dis not SCnP~integrable over [o,b[ for amny b >0 . For
otherwise, it would follow from corollary 1 that F(n)(O) exists. But

' not even F(l)(O) exists.

COROLLARY 3. Let f be periodic with period 2b , b >0 . For

n>1 , let m= [—%l] . Then if f is 'SCnP—integrable on

[-2(m+D)b , 2(n-m)b[ with base B , one has

n+l
n m+l) f

£(t)d_, .t = (SCP) - [ £(t)de ,

(2b) [-b,bl

where (ai) = (-2(m+1)b , -2mb , ~-2(m~-1)b , ..., -2b, 2b, 4b, ..., 2(n-m)b)
The proof, exactly similar to that of Cross in [8] for the unsymmetric case,

is omitted.

REMARKS. (i) Skvorcov [36] has pointed out that a function Pz—integrable
over two abutting intervals is not necessarily Pz—integréble over their
union. We give an example to show that Pn+l—integral has the same property
for n>2 . Let F be as defined in corollary 2. Consider the function

(n+1)

f defined by f(x) = F (x) for x € ]0,%] s

0 : for x ¢ [—%,0] .
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where i =2 if n is odd and i =1 if n is even. Then (cf [13])

f is Pn+l—integrable over [- %30] with Pn+l—primitive G=0 on

[- %30]< , and Pn+l—integrable over [0,%ﬂ with Pn+l-primitive F on
[0,%] . For n=1 , it is well-known (cf [8%*%*]) that f is not P2—

. ii sy
integrable over [-—3;1 . We show that it is also the case for n > 2 .
- Z

Suppose, to the confrary, that £ is Pn+1—integrable over
[-%3%] with Pn+l—primitive H . We show that first H(l) _(0) and
3
then H(l) +(0) exists. Note that on [-%,0] , H-G is a polynomial
b}

of degree n at most ([13]), and so is H~F on -[Of%] . Hence both

(H-G)(l)’_(O) and (H—F)(l),+(0) exist, As (0) exists, we see

G(l) [

that H(l) (0) exists, To see that H (0) exists, note first that
-

(1) ,+

M-H is (nt+l)-convex on [- %3%] (cf. [13]) for any Jn+ -major function

1
M of f on [~ i3%] , so that Dn-lH(O) exists since H =M - (M-H) .

In particular, DiH(O) exists, where i =2 if n is odd and i =1
if n is even, If it is 1 =1 , then H(l),+(0) exists since H(l),_(O)

exists, If it is i =2 , then H is smooth at 0 , so that H 0)

(1) ,+

(0) exists, Thus, we have proved that both (H-F) 0)

exists since H
(l)a"

and H(l)’+(0) exist. Then it follows that F

(1),+

(1) +(O) exists, a

contradiction, and our proof is hence completed.
(ii) Unlike that for Pn+1—integral, note that our SCnP—

»./'

integral has the "additive" property by theorem I.3.
+
(iii) Necessary and sufficient conditions for a function p" L
integrable over two abutting intervals to be Pn+l—integrable over their

union are under consideration. Note also that the comparison to Taylor's

' AP-integral might be interesting (cf. [8%%]),
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§6. THE MZ—INTEGRAt AND THE SCP-INTEGRAL,

Throughout this.section, X, g, B, N, will be the same as in
section 4, and once a derivate operator [ is chosen, T will be defined
by DF(x) > -« except for a countable set of points. We show how to obtain
using our general theory the MZ-integral of Marchinkiewicz and Zygmund
[21] and the SCP-integral of Burkill [7], and then prove that they are in

fact equivalent.

For each Po—integrable function M (see section II.1) on

[a,b] , and for each X ¢ Ja,b[ , let

h
BsM(x) = lin inf &+ lim inf [ ZORW=MGow) g,
hs0+ T 0+ e 2

and also

M{x+u) - M(a) du
u

h
BsM(a) = 1im inf %—1im inf f
h~0+ g0+ €

h
BsM(b) = lim inf % lim inf | M(b) ;M(X"U) du
h~»0+ e~>0+ €

These are called the lower Borel derivates. We have

THEOREM 8, BsM is measurable.

. h
Proof. First, note that the function ¢(M;x,h,e) = f

€

M(x+u) - M(x-u) d
2u s

is continuous in x . For, by the second mean value theorem (see [29],

[16]), there exists T with € < T j_h such that
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¢ (M;x+Ax, h,e) —¢ (M;%,'h,€)

1. T+AX et+Ax T ' e+Ax '
= EE—{I M&x+u)du - f M(x+u)du ?‘f M(x-u)du + f M(x=u)du}
T € T-Ax €
| heax T4Ax h T-Ax |
+ = {f M(x+u)du - | M(x+u)du - f M(x-u)du + [ M(x-u)du} .
2h
h T h-Ax T

Note that T .depends on Ax . However, as the Po—primitive as a point
function is continuous in the closed interval concerned, it is uniformly
continuous there, ﬁence each integral in the right hand side of the above
equality tends to zero with Ax ., Hence ¢ (M;x+Ax,h,e) » ¢(M;x,h,¢e)

as Ax -+ 0 , proving the continuity of ¢ in x ,

Now, let o®(M;x,h) = 1im inf ¢(M;x,h,e) . Then ¢ is
e~>0+
measurable in x since ¢ is continuous in € . Furthermore,

¢(M;x,h) is continuous in h since by simple calculations,

h+Ah

MGetw) = MGWy, L 0 as ah o+ 0

o (M;x, htah) = | o .

h

Hence Bs M(x) =1lim inf l-<I>(M;x,h) is measurable in x , completing
- W0+ O

the proof.

THEOREM 9. Let B be a base in [a,b] and M be a function defined

on [a,b] such that M is Cl—continuous in B and SCl4continuous

h M(x+u) - M(x—u)d
u
2u

in Ja,b] , and furthermore lim
e+0+ ¢

or infinite) for all x except perhaps for a countable set of points,

exists (finite
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h + 0 with x +h ¢ [a,b] . If BsM(x) > 0 almost everywhere in Ja,bf
and "BsM(x) > -» except for a countable set of points, then M is

monotone increasing in B .

Pxoof. Let Ml be the Po-prﬁnitive of M . Then by lemma 30 in [21],

ﬁéMl(x) 3_§§M(x) zﬂgsM(x) except for a countable set of points, where
' Ml(x+h) + M, (x-h) - 2M(x)
2 L]

ﬁle(x) = 1lim sup Hence, as a point function,

h»0+ h

Ml is convex in [a,b] by theorem 2, and so M is monotone in B since

Ml'(x) = M(x) for x in B by the C,-continuity of M in B ,

1

completing the proof.

Now, we are in a position to define the MZ-integral as well
as the SCP-integral. For each base B in [a,b[ let SM([a,b[,B) =
MM s C1~C0ntinuous in B and SC,-continuous in la,b[} s (i.e. the
Eﬁl of section 4) and

h M(x+u) - M(x-u)
2u

SMR([a,b[,B) = {M[M ¢ SM([a,b[,B) and lim
e~>0+ e
exists (finite or infinite) except perhaps for a countable set of pointsl} .

du

Define SCP = (EM',sch,B,N,'f) » SCP, = (sMR,sch,B,N,T) , MZ = (SMR,QS,B,N,T) .

It is easy to see that both SCP and SCPR are derivate systems on ¢
That MZ is also a derivate system on ¢ follows easily from theorem 8
and theorem 9, Thus, we can define the SCP-, SCPR- and MZ-integrals.
The SCP-integral is just that of Burkill's in [7], while the MZ~integral

is just that of Marcinkiewicz and Zygmund in [21] except that the latter -

was defined by using Lebesgue integrals instead of the Po—integral.
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REMARK., . It is easy to see that all the derivate systems SCP , SCPR

and MZ satisfy the extra axioms in section I.4, except that a\d—ﬁ([a,b[,B)
may not contain éll the functions continuous in [a,b] . However, the
function w wused in the proof of theorem I.12 belongs to SMR ([a,bl,B)

so that all the results in section I.4 are applicable to the SCP-, SCPR—,
and MZ-integral. To see that w glgﬂﬁ([a,b[,B)‘ » we need only show

h
that lim f Eﬁziﬂgzi—giﬁ:gl du exists (finite or infinite) except perhaps
e~-0+ €

for a countable set of points. In fact, for x ¢ [a,b] - E; > w'®) is

W) - wx-u)

finite, so that —- is bounded for small u ; for x ¢ E

2u 1’
w - W{x—
w'(x) = 4, so that (x+u)2u (x-u) is positive for small u ; in both
h
w - W(x-
cases, we see that 1lim f (Getu) (x-u) du exists.,

e*0+ € Zu

Now, we establish two lemmas, which will be used to prove the

main result of this section (i.e. theorem 10 below).

LEMMA 7. Let M ¢ SMR([a,b[,B) . Then BsM(x) exists

if and only if SClDM(x) exists,.

Proof. Let Ml be the Po—primitive of M . Then it is easy to see

that SC;DM(x) = DM, (x) and SC;DM(x) = D,M,(x) and so the conclusion

5follows from lemma 28 in [21];

LEMMA 8. Let M e SM([a,b[,B) and SC,DM(x) exist n.e. in [a,b] .

Then M e SMR([a,b[,B)
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t
Proof. Let SchM(Xo) exist and let y(t) = f '{M(xo+u) - M(xo~u)}du
o
For 0<k<h ,
h M(x +u) ~ M(x _-u) h |,
° 2 du = migldu
k 2u Kk 2u

h
JL ot v, P e
=2 0y kT fk 7 dul

- by integration by parts. By the SC ~continuity of M , iékl.+ 0

1
as k> 0+ . For SClDM(Xo) finite, Eﬁ%l is bounded for small
u .
u ; for SClDM(x) =40 Or =—-o , iﬁ%l . is of constant sign for small
u

u . In all cases, one sees that

h h M(x +u) - M(x -u)
lim f ﬂﬁ%l du exists, so that 1lim f @ 7a 9 du
k»0+ k u >0+ k

exists (finite or infinite), completing the proof.

THEOREM 10. The SCP- , SCPR— and MZ-integral are all equivalent.

Proof. By lemma 7, one sees that the cofollary to theorem I1.12 applies
to the derivate systems SCPR(=P) and MZ(=P1)' » so that the SCP -~
integral and the MzZ-integral are equivalent. To see that they are also
equivalent to the SCP-integral, note that by theorem I.7, the SCP-
integral is more general than the SCPR—integral. It remains to show

- that the MZ-integral is more general than the SCP-integral. To do
this, let f be a SCP-integrable function. Applying theorem I.12

to the derivate system SCP , one obtains for f an appropriate . _:-
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SCP-major function T and an appropriate SCP-minor function t . Then
by lemma 8 and lemma 7, one sees that T, t are respectively relevant
MZ-major and minor functions for f , so that it is MZ-integrable,

completing the proof.

We have remarked that the integration by parts formula for
SCP~integral stated by Burkill in [7] remains unproved. Hence his proof"
of theorem 5.2 in [7] (- the SCP-integral solves the coefficient problem
for the convergent trigonometric series) Breaks down. However, this
theorem remains true by our theorem 10 since it has been proved in [21]
that the MZ-integral solves the coefficient problem. We remark that
the proof in [21], without using integration by parts but using formal
multiplication of series (also see James' P2—integra1), applies to the

SCP-integral too.
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CHAPTER IV

AN ACP-INTEGRAL AND A SCALE OF
APPROXIMATELY MEAN-CONTINUOUS INTEGRALS.

Many authors have generalized the continuous classical Perron
dintegral to integrals that are approximately continuous; see, for example,
Burkill [4], Kubota [19]. It would be nice if one can generalizg the
Burkill's CnP~integral in the same way. We are only able to do so for
n=1 . One of our purpose in this chapter is to obtain such an ACP-
integral, and then using a method due to Bullen in [3] to obtain an

2 . . , .
AP ~integral, and prove that they are equivalent in some suitable sense.

Ellis [9] has defined a scale of mean-continuous integrals, of
which the definition is simpler in the sense that the approximate derivative
is used for all orders of this scale. With the same idea, we will obtain.

a scale of approximately mean-continuoﬁs integrals, which is more general

than and seems more natural than (§1 below) the scale of Ellis.

§1. ON THE MEAN-CONTINUOUS FUNCTIONS.

We prove that the mean continuity scale of Ellis is just Burkill's
. scale of Cesaro continuity (theorem 1 below), which gives a motivation for

a more natural approximately mean-continuous integral (section 2).

The GM-integral scale [9] starts from a function integrable

in the general Denjoy sense (see Saks [30]). Ellis called such a function
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x+h

F Ml—continuous if %~f F(t)dt - F(x) as h-> 0 for each x . By
X

theorem 1 below, this is just a Cl-continuous function, and hence is
special Denjoy integrable. This is why we say that the Ellis integral

seems somewhat unnatural in the sense that it starts from the general

Denjoy integrable functions.
We recall that the Mn—continuity in [9] was defined in the
same way as the Cn—continuity (cf section II.2) except that the GMn_l—

integral was used instead of the CnPFintegral.

THEOREM 1. A function is M -continuous in an interval if and only

=]

if it is Cn—continucus in the interval,

1

This has been proved by Sargent in [33], page 120. However,
we give another proof here.

Proof. Note that the GMh_ -integral is more general than the C_ _.P-

1 n-1

integral, so that a Cn-continuous function is Mﬁ—continuous. To prove
the converse, let F be Mn—continuous in [a,b] . Then F is GMﬁ—l-

integrable on [a,b] , and

n x+h n-1
= (M ) - [ (eth-t) TUR(D)dE = F(x) + o(1)

h X

as h-~>0 . Let

X
F () = (@ _)) - fa F(t)dt ,

X
F (x) = (6M) = fa F 4 (dt for 0 <k <n=-2 .
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Then, using the integration by parts formula for the GMk—integral, one

gets that

+h ' -
X n-1 hk

1
PERIACO R

n-1 _
W eM_ ) fx (eth-t) " F(E)dt = F_(xth) =~ F_(x) - kzl

Hence as h > 0 ,

n

n a—

Fo(x+h) = Fo(x) + z Fk(x) + o(h’) , where Fn =F
; k=1

It then follows that F is the nth Peano derivative of Fo . As

F0 is continuous, it follows from lemma 11.1 of James [13], that F

is Cn—continuous in [a,b] , completing the proof.

§2. A SCALE OF APPROXIMATELY CONTINUOUS INTEGRALS.

This scale will be defined inductively. In a manner analogous
to the definition of the Cy-mean, the Mn—mean of a function F 1is defined
to be

: n b n-1
M (F;a,b) = ———— [ (b-t) ~F(t)dt
n n
(b-a) a

for any positive integer n , where the integral in the definition of
Ml—mean is the general Denjoy integral, and the integral involved in the

definition of Mn—mean for n 3_2 is the AMn—

lP—integral defined below.

The function F is said to be AMh—continuous at xo if
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applim M_(Fix,xth) = F(x ) ,
h-0

where ‘''applim" means'approximate limit" (cf Saks [30]).

A function F is (ACG) on a set E if E can be covered
by a countable sequence of closed sets on each of which F is AC
(see section 1I.2). Note that (ACG) 1is an inequality property as

defined in section I.1.

let X, g, N be as in section I.4, and for each A e ¢ , let

B(A) ='{oA} « For each positive integer n , and for each A ¢ ¢ let

AMn(A) = AMn(A,oA? =‘{M|M is AMn—continuous in A} ,

and for each M , and each x , let

M(x+h) - M(x)
h

ADM(x) = applim inf
h~0_
x+heA

—

Let AMhP = (AMn, AD, B, N, (ACG)) . Then we are going to show that

AMnP is a derivate system on ¢ , so correspondingly we have an AMnPf
integral for n = 1,2,3,.;. , thus obtaining a scale of approximately mean
continuous integrals. The integral in the definition of Mn~mean for n > 2

is in the sense of AMh_ P-integral. Thus, in defining the AMnP—integral

1

for n >1 , we assume that AMn- P-integral has been defined with some

1

properties, where the AMbE-integral is taken to be the general Denjoy

integral (see remark at the end of this section).
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We remark that we might define in a similar way another scale
of integrals starting from the AP-integral of Burkill [4]. However, doing

this, we are unable to prove the consistency of the scale.

That AMnP is in fact a derivate system on o© follows easily

-

from theorem 2 and theorem 3 below.

THEOREM 2. For n=1,2,3,... , if F 1is AMh—continuous in [a,b]
and (ACG) in [a,b] with ADF(x) > 0 almost everywhere in [a,b] , then

F is monotone increasing in [a,b] .

Proof. This follows from the 'usual proof of moﬁotonicity (cf. the proof
of theorem II.2) by applying the Baire category theorem, the Vitali

covering theorem and the following lemma.

LEMMA 1. For n =1,2,3,..., let F be AMh—continuous in [a,b] and
monotone. increasing in }a,b[ , then F is monotone increasing and

continuous in f{a,b] .

Proof. First, we prove that F(a) < F(x) for each x ¢ Ja,b] . Suppose
to the contrary that F(a) > F(xo) for some X, € Ja,b] . Let

e = F(a) - F(xo) . Then € >0 and F(a) - F(t) > F(a) - F(xo) > ¢f2 for
all t ¢ ]a,xo] since F is monotone increasing in Jla,b[ . Hence for

each X ¢ ]a,xo] .

| . |
M (Fia,%) = —2— (4t _P) [ -0 lE(Dd
(x-a) a

X .
<=2 @p) - [ OV E@ - e/2dt = Fa) - /2.,
(x-a) i a
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so. that applim Mn(F;a,x) < F(a) - €/2 < F(a) , a contradiction of the
x*rat
fact that F is AMn—continuous at a .

Similarly, one can prove that F(b) > F(x) for each x ¢ [a,b] ,

and hence F is monotone increasing in J[a,b] .

To show that F is continuous in [a,b] , suppose to tﬁe
contrary that F 1is not continuous at X, for some x0 e [a,b] .
Note that F(x0+) and F(xo—) exist (only one of them exists if
x, =a or b) since F is monotone in J[a,b] . Again, by the

monotonicity, either F(xo—) < F(xo) or F(xo) < F(xo+) . Suppose that

F(xo) < F(Xo+) , and let T =F(x 1) - F(xo) >0 . Then Dy a similar

calculation to the one above, we have

applim Mn(F;xo,x) 3_F(xo) +T/2 >F&x) ,
x>x5t ' °

a contradiction, If F(xo) > F(xo—) ,.a similar argument can be given.

Thus F 1is continuous at each point of [a,b] .

Note that in the above arguments, we use the .-:v 7w fhems
property that if fl’ f2 are both AMn_lP—lntegrable with fl i.fz s
then ffl i_ffz . Thus, the proof of this lemma is completed by the

following theorem, which we prove by induction,
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be AMnP—integrable on Ja,b[ and f. < f

(AM_P) - [ f@)dt < (AM_P) - [ f(t)dt . n=0,1,2,3,...

2
almost everywhere in [a,b] . Then
b b
a a
Proof. The assertion is true for n =

0 , since the AMOP—integral is

just the general Denjoy integral. Suppose that the assertion is true for

n=k~1,k>1 . Then the assertion is also true for n = k by the

definition of AMnP—integral, and the proof is then completed by induction.

THEOREM 3. For n=1,2,3,... , let
continuous functions such that FP -+ F

F is AMn—continuous;

Proof. We only prove it for n =1 .

a similar proof can be given.

Let ¢ ¢ [a,b] , and given

{Fk} be a sequence of AM -

uniformly in

For n>1

[a,b] . Then

, using Theorem (> ,n-1),

€ >0 , choose k so that

IFk(x) - F(x)| < %e for all x in Ja,b] . Then by theorem (<,0) ,

we have IMl(Fk;C,C+h) - Ml(F;c,c+h)| < %E

~if h >0 with ¢+ he [a,b] . As

k 1

F.  1s AM. -continuous at c¢ ,

the set E. of points x for which IMl(Fk;c,x) - Fk(c)l > %t

1

has zero density at ¢ . For each x ¢ El and X near c¢ , we have
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IMl(F;c,x) - F(o) |

< IMl(F;c,x) - Ml(Fk;c,x)l + lMl(Fk;c,x) - Fk(c)l <e .,
As € 1is arbitrary, we see that F is AMl-continuous at ¢ , completing

the proof.

The general properties of our AMnP—integral follow from the
general theory in Chapter I, In addition we prove the consistency of

this scale.

lP—integrable function is also

AMnP—integrable and two integrals are equal.

THEOREM 4. If n>1 then an AMn—

Proof, For n=1 , let £ be AMOP—integrable with primitive F .
Then F being continuous is AMl—continuous. It is then easy to see

that F is both an AM.P-major and -minor function of f and the

1
proof is then completed.

Now, suppose that it is true for n=k , k >1 . We prove
that it is true for n=k+ 1 ., To do this, by theorem I.7, it suffices
to show that if F is AMk—continuous, then F 1is AMk+1—continuous.

As F is AMk—continuous, it is AMk_lP—integrable and hence it is
AMkP—integrable and two integrals are equal by induction hypotheses.
The AMk+l-continuity‘of F then follows by applying the integration by

parts formula, which we will prove below, (Theorem 5).
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X
THEOREM 5. Let F(x) = (AM P) - [ £(t)dt , and
| | a

x 1 72 n-1
G_(x) = fa fa fa e fa g(t)dede , ... deyde) , for x e [a,b]

where g 1is continueous and of bounded variation. Then fGn is AMnP—

integrable over [a,b] and

8 8 8
[ (g6 )(t)dt = [Fe] - [. F6__,(t)de
o [+ o

for a<a <B<b

Proof. We only prove it for n =1 . The general case can then be

proved by induction.

Without loss of generality, we suppose that g (and hence Gl)

is non-negative in [a,b] . Let M be an AMlP—major function of f£

on [a,b] , we are going to show that MG

1 is an AMlP—major function

of Fg + £G To do this, we have to show that MG is AM_-continuous,

1 1 1
(ACG) in [a,b] and éQﬁMGl) > Fg + fG1 almost everywhere in Ja,b] .
That MG1 has the last two properties is trivial. We prove that MGl

is AMl—continuous as follows.

It is clear that MG1 is AMbP—integrable. Using the integra-

tion by parts formula for the AMOP—integral, we have
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x+h x+h - X+h

1 1
My (MG sxxth) = [ Mep =& [(FE @] -[  Fel
x 0x X

t

where Fx(t) = f M(u)du . Hence

x .

1 1 .xth
Ml(MGl;x,x+h) = E‘Fx(x+h)Qfx+h) - & fx Fxg .

As G1 is continuous and M is AMl—continuous, one has

applim %‘Fx(x+h)Gfx+h) = M(x)Gl(x)
h>0

x+h
Ix Fg~+F (x)g(x) =0 as h>0 .

=l [

Fxg is continuous so that

Hence applim M

l(MG sx,x+h) = M(x)Gl(x) + 0 = M(x)G, (x) , proving
hoO 1 1

that MG1 is AMj-continuous at x

A similar argument for an AM.P-minor function proves that

1
B8
Fg + fG1 is AMlP—integrable and fa (Fg+fg2 = Fan

Now, by theorem 1.6, ¥ is AM1~continuous in [a,b] , so

that ¥ 1is general Denjoy integrable, and hence so is Fg . Hence

Fg is AMlP-integrable, so that £G, = (Fg + fGl) -~ Fg 4is AM.P-

1 1

integrable, by theorem I.1l. “Furthermore,

B B B
f fG1 = qu - f Fg , completing the proof.
o o a
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THEOREM 6. The AMnP—integral is more general than the GMn—integral

of Ellis in [9].

Proof. It is true for n =0 , from the definition. Suppose that

it is true for n =%k , k >0 . Then we prove that it is true for
n=k+1 . To this end, let f be GMk+l~1ntegrab1e. Then there
exists a Mk+1—continuous (ACG) function F such that ADF = f

almost everywhere. Thus by the induction hypotheses, F is AMkP—
integrable and hence AMk+l—continuous. Hence, it is easy to see that

F serves as both AMk+1P—maJor and -minor function of f , and hence

f is AMk+lP-1ntegrab1e and (AMk+lP) - ff = (GMk+l) - f f , completing

the proof.
We end this section by the following remarks.

REMARKS. (i) Instead of starting from the general Denjoy integral,
we can start from the AP-integral, where AP 1is a deri&ate system
defined by AP = e, AD, B, N, (ACG)) , where M° is the legitimate
mapping defined in‘section IT.1, i.e, e Aa) =.{M|M is continuous in
A} . However, one can prove that in fact this AP-integral is equiva-
lent to the general Denjoy integral.

(ii) For n=1,2,3,,.. , let Mn(A) =>{M|M is Mn—continuous
in A} , and let MP = {M", AD, B, N, (ACG)} . Then MP isa
derivate system. The MnP—integral can be proved to be equivalent to

Ellis GMn—integrai, which was defined by a descriptive method of

Denjoy's.
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§3., AN ACP~INTEGRAL AND AN APZ—INTEGRAL.

For each general Denjoy integrable function F ,'let

Ml(F;x,x+h) - M(x)
h/2 ’

ACD F(x) = applim inf
h~>0
and let I be the inequality property defined by ACD F(x) > -«
for all x ., Let ACP = é;gf’ ACD, B, N, I) , where Z&I , By N
are defined as in section 2., Then, it can be checked that ACP is
a derivate system on ¢ ., This ACP-integral is just a special case
of Ridder's CPapp—integral in [27]. We will prove that the ACP-inte-

gral is equivalent to an APz—integral defined below in the sense of

Before defining the APz-integral, we prove a lemma,

F(xth) - F(x),

Let TF be function such that ADF(x) (= apﬁlém o ) exists,
>
and define AD, F(x) = applim inf Feth) - F(&x) - F () , and
=2 h>0 h?

similarly for AD2 F(x) .
LEMMA 2. et F be continuous such that ADF(x) exists for each x
in [a,b] and KféF(x) >0 4in [a,b] . Then F is convex in [a,b]
v . 1 2 .
Proof. Let Gn(x) = F(x) + o X for x in [a,b] , n=1,2,3,...
— — 1 .
Then Aqugx) = AD2F(x) + ;-> 0 . We prove that Gn is convex in

[a,b] , so that F , the limit of Gn , is also convex in [a,b] ,

and the proof will then complete .
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To show that Gn is convex in [a,b] , suppose to the contrary
that Gn is not convex in [a,b] . Then there exists an interval

[a,B8] & [a,b] such that the function

(-)6_(o) = (x-a)C_(B)
B-a

H(x) = Gn(x)-

is sometimes positive in {a,8] . As H(o) = H(B) = 0 , the continuous
"function H assumes a positive maximum in ]d,s[ at x = say. Then
we have H(xo) z.H(x) for each x ¢ [a,B] and A DH(xO) =0 , so

that KBZH(XO) <0 ,

which contradicts the fact that AD. H(x ) = AD.G (x ) > 0
: ; 2 o 2 no

Now, using the modified approach to the Pn—integrals used
in [3], we define an APZ-integral. let f be a function defined on
[a,b] . Then a function M continuous in [a,b] is called an AP2—
major function of f on [a,b] if
(a) ADM(x) exists and is finite for each x in [a,b]
(b) AQQM(X) > f(x) almost everywhere in [a,b] ;
(c) AQZM(X) > =0 fdr each x in [a,b] ;
(d) ADM(a) = 0 = M(a)
If -m is an APZ—major-function of -f on [a,b] , then m 1is called

an APz—minor function of f on [a;b]‘ .
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LEMMA 3. let M be an APz-major function and m an APz—minof
function of £ on [a,b] '+ Then M-m is non~negative and convex

on [a,b] .

Proof. let G=M-m . Then G is continuous in [a,b] , ADG(x)
exists and is finite for each x in [a,b] , éQQG(x) >0 for

x € [a,b] ~ E , where E is of measure zero, and AD,G(x) > —» for each

2
x ¢ [a,b]

Let El be a GG set of measure zero with EC ElC [a,b] ,

and let w be the function used in the proof of theorem I.12 with /4

replacing e/b-a , and write

X
v ) = (L) [ w(®dt
a

then wé(x) w(x) , we is continuous, ADwe(x) = wé(x)

égzwe(x) = 4o for each x € E w, and O j_we(x) < e

For each € = / , and define G =G+ ¢ .
€ n n

= b

s Write wn
Then by lemma 2, Gn is convex in [a,b] , so that the limit function
G 1is convex in [a,b] . That M-m is non-negative follows from the
convexity and the conditions M(a) - m(a) = 0 = ADM(a) - ADm(a) ,

completing the proof.
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In ecase that £ has both APz—major functions M , and APZ—

minor functions m on [a,b] , and sup m(b) = inf M(b) % o, we

m M
say that f is APz-integrable on [a,b] , and the common value, denoted
b
by (4p%) - f f£(t)dt , is called the AP’-integral of £ on [a,b]

a
It follows from lemma 3, that if £ is APz—integrable on [a,b] , so

is on each [c,d]C [a,b] .

THEOREM 6. f is ACP-integrable on [a,b] if and only if £ is

x
APZ-integrable on [a,b] . TFurthermore, if F(x) = (APZ) - f f(v)dt ,
a

. X
then ADF(x) exists and ADF(x) = (ACP) - f f(t)de ,
a A

X u
F(x) = (D) - [ (ACP) - [ £(t)dt du .
a a
Proof. We will only prove the first assertion, since the proof of the
last one being similar to that in section III.5.
(i) Suppose that f is ACP-integrable on [a,b] . Let M

be an ACP-major function of £ on [a,b] , and

X
6(x) = (D) - [ M(t)dt
a
Then G 1is continuous on [a,b] with G(a) = 0 and ADG(x) = M(x) ,
ADG(a) = M(a) = 0 , AD,G(x) = ACDM(x) , so that G is an AP%-major
function of £ on [a,b] . A similar result holds for minor functions,

and the APZ—integrability of £ follows.
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(ii) Suppose that f 1is APz—integrable on [a,b] . Let G
be an APz—major function of £ on [a,bj . Then ADG(x) exists
and is finite on [a,b] , so that ADG(x) is Denjoy integrable with
G as a primitive. Furtherﬁore, ADG(a) = 0 , ADG 1is ACl-continuous
in [a,b] , and ACD(ADG)(x) = ADZG(X) , 50 that ADG 1is an ACP-major
function of £ on [a,b] . A similar argument for the minor functions

completes the proof.
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