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ABSTRACT 

Perron's method of defining a process of integration i s through 

the use of major and minor functions. Many authors have adopted this method 

to define various integrals. In Chapter I, we give a very general abstract 

theory by f i r s t defining an abstract "derivate system" and then the cor

responding Perron integral. We show that this unifies a l l the integral 

theories of Perron type (of f i r s t order) known to us, in addition the abstract 

theories of Pfeffer [26] and of Romanovski [29] are contained in our theory 

as particular cases. 

Chapter II is devoted mainly to the study of Burkill's Ĉ P - integral. 

We know that the C P - integral is based on the theorem that i f M is 
n ° 

C - continuous in [a,b] , C DM(x) > 0 almost everywhere and C DM(x) > - °° n n — n 

nearly everywhere in [a,b] , then M is monotone increasing i n [a,b] . 

Burkill's original proof of this, [6] , contains an error and we give i t a 

new and correct proof. We also give a correct proof of Sargent's theorem that 

i f a function is CnP - integrable, then i t is CnD - integrable, [32] ; 

the original proof contains a gap. 

A scale of symmetric CP - integrals and a scale of approximately 

mean-continuous integrals are obtained in Chapter III and in Chapter IV, 



i i i . 

respectively. The f i r s t one is more general than Burkill's CP - scale, 

while the second one is more general than the GM - scale defined by E l l i s . 

Some other comparisons of various integrals are also given. 
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1. 

INTRODUCTION 

Various integrals defined for functions with domains in the real 

line have been generalized so as to apply to functions with domain in some 

abstract space. For example, the Lebesgue integral has been defined on a 

abstract measure space (see Saks [30]); the integral of Riemann type on the 

division space (see Henstock [11] and McShane [24]); the integral of Denjoy 

type on the Romanovski space (see Solomon [37]); the integral of Perron on 

certain topological spaces [26]. One of our purposes is to give a very general 

setting for Perron integrals. A so-called derivate system is defined in 

section 1, Chapter I, and then an integral theory of Perron type is obtained 

in the following sections. Doing this, we unify a l l the integral theories 

of Perron type, eg. the classical Perron integral, the CJ? - , SCP - , 

AP - integral of Burkill's [4] - [7], the MZ - integral defined by 

Marchinkiewicz and Zygmund [21], Kubota's AP - integral [19], and also the 

G-4 - integral defined by E l l i s i n [9] . For a good review of these integrals, 

we refer to James [14] and Jeffery [16]. In addition, we show that the P -

and R - integral of Romanovski's in [29] and the integral of Pfeffer in [26] 

can also be obtained from our theory. 

In the theory of integrals of Perron type i t i s of interest to 

define more general concrete integrals. Thus the SCP - integral i s more 

general than the CP - integral; Kubota's AP - integral i s more general than 

Burkill's AP - integral, the GM - integral is more general than C P - integral. 
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We obtain via our general theory a scale of symmetric Cesaro-Perron 

integrals (SCP - scale) and a scale of approximately mean-continuous 

integrals (AMP - scale); this we do in Chapter III and IV, respectively. 

The SCP - scale is more general than the CP - scale of B u r k i l l , while 

the AMP - scale is more general than the mean-continuous scale due to 

E l l i s . 

The comparibility of these integrals i s then studied. We prove 

that the SCP - integral and the MZ - integral are in fact equivalent, and 

in section 5 of Chapter III the relation of the symmetric pn+"'" -

integral (James [13]) and our SC n
p ~ integral i s investigated. An ACP -

2 

integral and an AP - integral are defined and proved to be equivalent in 

section 3, Chapter IV. This generalizes the result [3] for n = 1 that 

the CnP - integral and the pn+"^ - integral are equivalent. 

Chapter II is devoted to the CI? - integral. A gap in Burkill's 

original paper [6] is f i l l e d , and so i s one in Sargent's paper [32]. We know 

that the theory of the CnP - integral is based on theorem 2.2 in [6]. 

However, the proof there is defective; see line 9 on page 546. We supply 

a proof of this theorem based on some concepts in [32].. Sargent has defined 

a CnD - integral and proved that i t is equivalent to the Ĉ P - integral. 

But there is a defect in her proof that a C P - primitive i s ACG (in 
n 

C^ - sense). We give a complete proof, which i s simpler than the one given 

recently and independently by Verblunsky in [38]. 



We close this introduction with some remarks about the notations 

used; 

A ^ B denotes the relative difference when A and B are sets; 

the symbol C to indicate inclusion, not necessarily proper; 

for real numbers a, b with a < b , we denote by [a,b] , ]a,b[ the closed 

and open interval, respectively; and [a,b[ , ]a,b] denote the half-open intervals 

by Theorem II. 3, we mean Theorem 3 in Chapter II, and similarly section 1.5, 

etc. If only Theorem 3 i s quoted, we mean Theorem 3 of the same chapter. 
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CHAPTER I. THE GENERAL THEORY 

Perron's method of defining a process of integration i s through 

the use of majorants and minorants (see Saks [30]). Many authors have 

adopted this method to define various integrals. As a typical example for 

our general theory in this chapter, we quote Burkill's definition of major 

functions for his SCP - integral in [7] . 

If f i s a function defined on [a,b] , a function M i s called 

a SCP - major function of f on [a,b] with base B (where B i s a 

subset of [a,b] with measure b - a and a , b £ B) i f 

(a) M i s C - continuous in B , and SC --continuous in ]a,b[ ; 

(b) SCpM(x) >_ f(x) almost everywhere in [a,b] ; 

(c) SCDM(x) > - °° except for a. countable set of points; 

(d) M(a) = 0 . 

For the definitions of C - and SC - continuity, and also SCDM(x) , 

see section III 3, below. 

F i r s t l y , we generalize the domain of the functions to an abstract 

space X with a distinguished family a of subsets of X . Secondly, we 

generalize the base B to the concept "base mapping B " , condition (a) 

to the "legitimate mapping", the. derivate SCP to the abstract "derivate 



operator", condition (c) to the so-called "inequality property". Then 

a "derivate system" i s defined and a naturally corresponding integral 

of Perron type arises. The f i n i t e additivity of the integral i s established 

and a convergence theorem similar to that of Lebesgue dominated convergence 

theorem is obtained. 

From this general theory, we obtain the integral theory of 

Romanovski [29] and of Pfeffer [26]. A differential property and a character 

ization of integrability i s obtained for the abstract integral in the case 

that domain of the function is the real line. 

§1. SETTINGS. 

Suppose X is a given set, a -a given collection of subsets of 

X and A C X . Define a by 
/ 

o A = {A' | A' e a , A' CA} . 

1.1 DERIVATE OPERATORS. 

Let A e a , B be a subset of a , V be a semi-vector space 

of (set) functions defined on 6 , where by a semi-vector space V we mean 

that F-ĵ  , F 2 e V implies cx̂ F.̂  + ô F,, c£ V for a l l real numbers aj_»a2 — 0 

A lower derivate operator on f is a mapping with domain 1/ * A such 

that for each v e V , and for each x e A , the image JZ(v,x) =Jlv(x) i s 

an extended real number, and satisfying the following axioms: 



(VI) for a l l x e A , £(0,x) = 0 ; 

(£2) for a l l x e A , w± , v 2 e V ,.£(v +v2,x) >. 'V(v ,x) + £(v 2 >x) 

whenever the addition on the right hand side makes sense; 

(£3) for a l l x . A , v e 1/ , a > 0 , £(av,x) = a£(v,x) ; 

(£4) for a l l x e A , £(-v,x) <_ - £(v,x) whenever both v and -v are 

in V . 

For each v e V , x e A , defining P(-v,x) = -£(v,x) , 

we c a l l V the upper derivate operator corresponding to £ . Letting 

V_ = {v | -v e \/} , we see that J/ x A is the domain of V . It is easy 

to see that V has properties (Dl) - (#4) of which the meaning is immediate. 

Furthermore, for v c V{) V_ , P(v,x) l£(v,x) , T>(csv,x) = a£(v,x) for a l l 

x e A and a < 0 

If £(v,x) and t?(v,x) are equal, we say that v is V - d i f f e r -

entiable at x , and the common value, denoted by P(v,x) or Vv(x) is 

called the V - derivative of v at x ; for example, clearly t?(0,x) = 0 

for a l l x e A . 

1.2. BASE MAPPINGS. 

Let A e a . A subset B of a^ w i l l be called a base in A 

i f A e 3 and for each A1 e 6 there exists a f i n i t e set of disjoint 

A. e 3 with A. A A' = <f> for each i and ijk. o» A' = A . By a base 
x 

mapping on a we mean a mapping B on a such that for each A e a , the 
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image 8(A) is a collection of bases i n A satisfying the following axioms. 

(81) e L , S 2 e 8(A) implies 3 ^ 3 2 e 8(A) . 

(82) 3 e 8(A) and A' e 3 imply 5 , = {A" | A" e 3 and A' ' «C A*} e B(A') 

(83) 3 i e B(A i) , e a for i = 1 , 2 and A.̂  /•% k^ = <j> , A^ ̂  A 2 e a 

implies that ^ « B = {A' ̂  A' I A', e 3. for i = 1 , 2 , and 1 2 1 2 1 x l 

k^v k2 e a} e B(k±K/ A 2) . 

1.3. LEGITIMATE MAPPINGS. 

Let F be an extended real-valued (set) function defined on 

Y , a collection of subsets of X . F is said to be superadditive on y 

i f F((e/A.) _> £ F(A.) for every f i n i t e collection {A.} of disjoint sets 
i 1 i 1 1 

from Y for which [I A. e Y and the additions E F(A.) make sense. . x . 1 x i 

F i s defined to be subadditive i f and only i f -F is superadditive. If F is both 

superadditive and subadditive, we say that F i s additive. 

Given a base mapping 8 on a l e t M be a mapping such that for 

each A e a , 3 e 8(A) , the image M(A,3) is a semi-vector space of real-

valued functions superadditive on 6 . If M satisfies further the following 

axioms, we say that M is a legitimate mapping on a with base mapping 8 

(Ml) For any 3 X , 3 2 a 8(A) with ^ C B 2 , MCA.B^ ̂ ) M(A,32) . 
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(M2) For any 3 e 8(A) and any A ' e 3 , 

M(A , 3) | A* = {M | B | M e M(A , 3)}^M ( A * , g ). 

(M3) For A. , A0 , B. , $_ as i n (B3) , i f M e M(A. ,3.) for i = 1 2 1 2 i l l 

then e yj &2 , $± « B2> , where M^CA1) = M ^ A p + M 2(Ap 

for any A ' = A ^ V J A^ i n 3-̂  ® B 2 with A^ e 8 for i = 1 , 2 . 

(M4) K± = M2 on 3 and ^ e M(A , 3) implies that M2 £ M(A , 3) . 

(M5) M(A , 3) is closed under uniform sequence convergences in 3 • 

(i.e. i f F^ £ M(A , 3) for n = l , 2 , 3 , . . . , and F r F 

uniformly in 3 , then F e M(A ,3) •) 

1.4. INEQUALITY PROPERTIES. 

By an inequality property on set functions we mean a property 

I satisfying the following axioms. 

(11) If F^ and F 2 are two set functions defined on a domain y and 

i f both F^ and F 2 satisfy the property I on y , then 

a^F^ + a 2 F 2 satisfies I on y whenever a - | ^ i + a2^2 m a ^ e s 

sense, where ct̂  and are non-negative real numbers. 

(12) If a set function satisfies I on domains y , y^ respectively, 

i t does so on y ^ Y J and Y 1 ^ Y 2 

(13) If F^ and F 2 are two set functions on Y with F^ _> F 2 and 

F 2 satisfies I on Y > then F^ satisfies I on Y • 
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If I i s an inequality property, we denote i t s dual property 

by I_ and by this we mean that F satisfies I_ i f and only i f -F 

satisfies I . We w i l l come across two kinds of inequality properties i n 

the examples considered later; one is defined by means of inequalities 

containing the lower derivates of functions; the other i s defined by means 

of inequalities containing the function values. 

1.5. DERIVATE SYSTEMS. 

Let W be a fixed collection of subsets of X closed under 

countable set unions, (i.e. E^ e W for n = 1 , 2 , 3 , ... , imply 

that (J E e W) . For convenience, we say that a property P(x) is true 
n 

almost everywhere (a.e,) in A i f i t is true for a l l x in A except at most 
for points of a set in W 

Given a legitimate mapping M on a with a base mapping B , 

and an inequality properties I , suppose that for each A e a , 

3 E B(A) , there exists a lower derivate operator 1?̂  on M(A,3) • 

If the following axioms are satisfied, we say that (M , V_ , B , hi , I) 

is a derivate system on a . 

(PMl) For A± e o , A2 £ oA , M± e M(A± , 3 ±) , i = 1 , 2 , MJ - M2 

on ê y-v 3 2 , one has ^ (M.̂  , x) = g (M£ ' x^ f o r e a c h 

x e A 2 . 

(PM2) If M e M(A , 3) with ^ ( M , x) > 0 almost everywhere in A 

and M satisfies the inequality property I , then M >_ 0 on 3 . 
4 1 i 
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Note that by axiom (PMl) , we can always (without any 

ambiguity) write V(K , x) instead of P (M , x) . 
- —Ap 

§2. THE INTEGRAL. 

Given the set X , and a a collection of subsets of X , 

we let P = (M , V_ , 8 , W , I) be a derivate system on a ; i f we need 

'other derivate systems on a we w i l l denote them by 

P 1 = (M 1 , V1 , 8 1 , W]_ , I 1) etc. 

2.1. MAJOR AND MINOR FUNCTIONS. 

Let A e a , 0 e 8(A) , and f be an extended real-valued 

function defined and f i n i t e almost everywhere in A . A function M i s 

a P - major function of f on A with base 3 , written M e M^(A , 3) 

(Ml) M e M(A , 3) ; 

(M2) P(M , x) _> f(x) almost everywhere in A ; 

(M3) M satisfies I . 

A function m is a P - minor function of f on A with base 

3 , written m e M.(A ,3) , i f - m e M ̂ (A , 3) • We w i l l write 

M(A , 3) = (- M | M e M(A , 3)} • It is easy to see that m e M^(A , 3) 

and only i f 
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(ml) m E M(A , 3) ; 

(m2) V(m,x) f(x) almost everywhere in A ; 

(m3) m satisfies I_ . 

The following lemma is fundamental for our theory. 

LEMMA 1. For M e M (A , 6) , m e (A , 8) , M - m is superadditive 

and non-negative on B . In particular, M(A) >_ m(A) . 

Proof. It is t r i v i a l that M - m e M(A , B) , so that M - m is 
superadditive on B • As f is f i n i t e almost everywhere, i t follows from 

(M2) , (m2) and (Vl) that P(M-m , x) _> t?(M,x) - P(m,x) >_ 0 almost 

everywhere in A . Moreover, M - m satisfies I by (M3) , (m3) 

and (II) . Hence, M - m _> 0 on 3 by (VM2) , and the proof is completed. 

2.2. THE DEFINITION OF THE INTEGRAL. 

If both M^(A , 3) and M^(A , 3) are not empty and 

iriff M(A) | M E M (A , B)> = sup {m(A) j m E (A , 3)} + + 0 0 , 

then we say that f is P - integrable on A with base 3 , and the 
8 

common value, denoted by (P) - / f , is called the P - integral of f 
A 

on A with base 3 • The set of a l l P - integrable functions on A with 

base 3 w i l l be denoted by P(A , 8) • 

The following lemma is an immediate consequence of lemma 1. 

LEMMA 2. f E P(A , 3) i f and only i f for each e > 0 there exist 

M £ M (A , 8),m E Mf(A , 3) with M(A) - m(A) < E . 
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LEMMA 3. Let $ 1 , 8 2 c 8(A) with ^ C ̂  . If f e P(A , 3 2) , 

then f e P(A , B^) and two P - integrals are equal. In particular, 

i f 3 , 3' e 8(A) and f e P(A , 3) , f e P(A , 3') , then 
3 3' 

(P) - / f = (P) - / f . 
A A 

Proof. This i s immediate from (Ml) , (VMl) and .(81) . 

Henceforward, we can often without any ambiguity leave the 

base unspecified. 

2.3. ELEMENTARY PROPERTIES OF THE INTEGRAL. 

THEOREM 1. P(A , 3) is a vector space and the P - integral is linear 

on P(A , 3) • 

Proof. F i r s t , we prove that i f f e P(A , 3) then af e P(A , 3) for each 

real number a . For a = 0 , i t is t r i v i a l from (jPl) • Suppose that 

a > 0 . By (£3) and (V3) , i t follows that M e M , m e M => 

a M E M , . , a m e M . Hence af e P(A , 8) since aM(A) - am(A) af — a f 

can be made ar b i t r a r i l y small with M(A) - m(A) . The equality /af = a/f 

follows from the inequalities am(A) <_ /af _< a M(A) . For a < 0 , the 

proof i s similar. 

Secondly we prove that i f f^ e P(A , 3) for i = 1 , 2 then 

f 1 + f 2 e P(A , 3) and / ( f + f
2 ) = / f i + / f2 ' f o l l o w s f r o m 

(V2) and (T>2) , and the proof of the theorem i s completed. 
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THEOREM 2. If f e P(A , 3) and A' e $ . Then f e P(A' , $ ,) . 

Furthermore, i f A^ , A^ e 3 with A^ ̂  = <j> and i ; = A , then 

/ f - / ( + / 

Proof. If Me M (A , 6) , then M | 8 , e M(A* , 8.,) .by (M2) and 

(PMl) . Similar results hold for minor functions. By lemma 2, for each 

e > 0 , there are suitable major and minor functions M , m respectively 

with M(A) - m(A) < E . By lemma 1, M - m is superadditive and non-

negative on 8 , so that M(A') - m(A') <_ M(A) - m(A) < £ . Thus, by 

lemma 2, f e P(A' , 8 A i ) • 

We now prove that J f = J f + / f » 

/ f = inf{M(A) | M £ M (A , 8)} >. infiMCA-j) + M(A2) | M £ M (A , 8)} 
A 

>. inf{M 1(A 1) + M 2(A 2) | M± e M f(A ± , 3 A ) for 1 = 1 , 2 } 
i 

> in'f{M1(A1) | M1 E M f(A x , 8^)} + inf{M 2(A 2) | M£ £ M f(A 2 , 8 a )} 

= / f + / f , where the f i r s t inequality follows from the super-
A l A2 

additivity, while the second one follows from (M2) . Similarly, using 

minor functions, i t follows that / f .1 / f + / f > completing the proof. 
A A^ A2 

THEOREM 3. If f E P(A ± , 8 ^ for i = 1 , 2 , where A± n A 2 = cjt 

and A ^ A e a , then f E P(A. ̂ A , , M 80) and / f = / f + / f 



1.4. 

Proof. This i s immediate from ( 8 3 ) , ( M 3 ) , (PMl) and Theorem 2. 

THEOREM 4. Let F e M(A , g) ̂  M(A , g) and satisfy both I and I . 

If £>F(x) exists and i s f i n i t e almost everywhere in A , then VF e P(A , g) 

and / D F = F(A) . 
A 

Proof. It i s clear that F z Mpp(A , g) ̂  Mpp^ » 3) » a n ^ t n e conclusion 

follows from lemma 2. 

We close this subsection by remarking that i f f = g almost 

everywhere in A and f e P(A , g) , then g e P(A , g) and the integrals 

of f i s equal to the integral of g . 

2.4. PRIMITIVES. 

If f e P(A , 3) , then by Theorem 2, we see that f e P(A* , g^,) 

for each A' e g . Define F(A') = / f for each A' e g . F is called 

A' 

the primitive of f on A with base g . By Theorem 3, we know that 

F i s additive on g. , so that i t i s easy to obtain 

THEOREM 5. Let f e P(A , g) with primitive F , and M e Mf(A , g) , 

ra e M^(A', g) . Then M - F ,'F - m are both superadditive and non-

negative on g . 

LEMMA 4. If f e P(A , g) with primitive F , then there exists a 

sequence {M^}CM^(A , g) and a sequence {m̂ } C M^(A , g) such 
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that 0 ̂ l^CA') - F(A') < - and 0 < F(A') - m^A') < - for 

each A' e 8 . 

Proof. This i s immediate from Theorem 5. 

THEOREM 6. If F is a primitive of f e P(A , 8) , then 

F e M(A , 8 ) A M(A , 8) . 

Proof. This i s immediate from lemma 4 and (M5) . 

The following general comparison theorem i s a direct consequence 

of the definition of the integral. 

THEOREM 7. Let P. = (M1 , V. , B. , N. , I.) be a derivate system on a 
1 T 1 1 1 

i —o 
for i = 1 , 2 . Suppose that M (A , 8) C M (A , 8) , , that each 

function satisfying 1^ satisfies 1^ , and that T?̂ (M,x) -_<_ V^Qi,*.) for 

each M e M^A , 8) , then P^(A , 8) C P^(A , 8) and (P ) - / f = (P̂ .) - / f 

for each f e P^A , 8) . 

§3. CONVERGENCE THEOREMS. 

With some further reasonable restrictions on the derivate system 

P = ( M , P , 8 , W , I ) , we w i l l now obtain some convergence theorems for 

our integral similar to those for the Lebesgue integral. Throughout this 

section, we assume that M(A , 8) satisfies the following additional axioms. 
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If f is a sequence of functions defined on a domain E , by f + f . 

we mean that f (x) -> f(x) as n -* 0 0 for each x e E and f (x) < f ., (x) n n — n+1 

for each n and for each x e E . 

(M5') If {M }CZ M(A , 6) and Mn + M , then M e M ( A , 8 ) . n 
(PM3) For M £ M(A , 8) with M >_ 0 on 3 , fl(M,x) _> 0 for a l l x e A 

REMARK. It is clear that (PM3) is a very natural axiom, however axiom 

(M5') seems to be too much of a restriction. However, in the particular 

examples in later chapters, the "interval" functions in M(A , 8 ) are 

obtained from the "point" functions, so that the functions in M(A , 8 ) 

w i l l then be audi Live rather than only superadditive. If every function 

in M(A , 8) is additive, then (M5 1) follows from axiom (M5) . To see 

this, let M £ M(A , 8 ) for n = l , 2 , 3 , . . . , and M + M . We have to n > > > > n 

prove that M £ M(A , 8) . It is clear that M(A') > M (A') for a l l A' e 8 , 

— n 

and that M is additive on 8 • Thus, M - M̂  i s non-negative and additive 

on 8 , so that M(A) - M (A) > M(A') - M (A') > 0 for each A' e 8 • 
n — n ~ 

Now, as M^(A) + M(A) , for each e > 0 there exists a positive integer n^ 
such that 0 <̂  M(A) - M (A) < £ for any n >_ n . Hence 

0 < M(A') - M (A') < e for each n > n A and for each A' £ 8 , i-e. — n — A 

M̂  converges to M uniformly on 8 • That M e M(A , 8 ) then follows 

from axiom (M5) . 
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THEOREM 8. Suppose that f , f are functions defined and f i n i t e 
n 

almost everywhere in A and f e P(A , B) for n = l , 2 , 3 , . . . , 
n 

and f n ( x ) * f ( x ) almost everywhere i n . A . Then f e P(A , 8) and 

lim /f = / j. . ' n ' f n 

Proof. F i r s t , note that i f g(x) <_ h(x) almost everywhere in A and 

g , h e P(A , B) , then /g < /h . This follows directly from the definition 

of the integral. 

Now, let F^ be the primitive of f for n = l , 2 , 3 

Then by Theorem 6, F e M(A , 8) />M(A , 8 ) • For each e > 0 , choose 
n ' * — 

M e M, (A , 8) such that 0 < M - F < e/2 n for n = 1 , 2 , 3 , ... , n t — n n n 

which is possible by lemma 4. In 8 , l e t N^ = M̂  , and for 
n-1 _ 

n > 2 , N = M + J (M.-F.) . Then N e M(A , 8 ) and N > M . — n n V I l n n — n i=l 

Furthermore, N,_ = M , - + N - F n+1 n+1 n n 

> M . - + N - F t 1 since F < F , n 

— n+1 n n+1 n — n+1 

> N since M ., > F ,, 
— n n+1 — n+1 

Thus, N + N in 8 . By (M51) , N e M(A , B) • By (13) , N satisfies n 

I since M does and N > N > M . Moreover, by (V2) and (VM3) , i t n — n — n — — 
O 

easily follows that P(N,x) >̂  f(x) almost everywhere i n A . Thus, we have 

proved that N e M^(A , 8 ) • Furthermore, since 

n-1 . n-1 
N (A) < M (A) + I G/2 1 < F (A) + e/2 n + £ e/2 1 

n — n , u- — n i=l i=l 
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n 
= F (A) + I E/2 1 for n = 2 , 3 , 4 , ... , 

n i=l 

one has 

inf {M(A) I M e IMA , B)} < N(A) < lim F (A) + e r — — n n 

As e is arbitrary, we see that 

inf {M(A) | M e M f(A , B ) } £ lim F^A) 
n 

Similarly, using minor functions, one can prove that M^(A , B ) 

is not empty and 

sup {m(A) | m e M (A , 8 ) } 1 lim F (A) n n 

Thus, by lemma 1, f e P(A , B ) and / f = lim F = lim / f , completing ' n n n 
the proof. 

THEOREM 9. Suppose that f , f are functions defined and f i n i t e almost n 

everywhere in A , and f e P(A , 8 ) for n = 1 , 2 , 3 , ... . Further, 

suppose that lim inf f (x) = f(x) almost everywhere i n A . If 
n 

inf {M(A) I M e M. _ . (A , g)} > -~ , then inf r n n 
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inf {M(A)|M e Mf (A, 3)} <_ lim inf : / f 
n A 

Proof. Let g (x) = inf f , ( x ) almost everywhere in A . Then n , K. k>n 
f i > 8 for each k > n and g (x) + f(x) almost everywhere in A k — n — n 
Hence, inf {M(A)|M e M (A, 3)} <_ inf {M(A)|M e M (A, 8)} for k _> n since 

8 n fk 
because f. > g we have that Mr (A,8)ClM (A,8) . Thus, k — n f. g k °n 
inf {M(A)|M e M (A,8)} ± inf / f f c for n = 1,2,3 

8 n k>n A 
Hence 

lim [inf{M(A)|M £ M (A,8)}] < lim inf f f 
n n n A 

Now, as g + f and inf {M(A)|M e M (A, 8')} > -°° , following n 83̂  

an argument similar to that in the proof of theorem 8, one proves easily 

that 

lim [inf {M(A)|M e M (A,8)}] > inf {M(A)|M £ Mr(A,8)> , g ~~ f n en 

and the proof i s hence completed. 

THEOREM 10. Suppose that h, g, f e P(A,8) and g(x) <_ f n(x) <_ h(x) 

almost everywhere in A for n = 1,2,3,... . If f is a function defined 

and f i n i t e almost everywhere in A with lim f (x) = f(x) almost every-
n 

where in A , then f e P(A,8) and J f = lim J f n 
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Proof. Let < ) > = f - g , c j > = f - g , i j i = h - g . Then 0 <_ <j>n <_ ifi 

almost everywhere in A , so that 0 <_ inf c)> <_ sup <j> <_ almost 
n n 

every in A . Hence inf {M(A) |M e M. . , (A, 3)} > -°° and ' m i <p n n 

sup (m(A) Im e M , (A,3)} < +°° ~ ' —sup <p n n 
By Theorem 9 and i t s dual, we see that 

a H inf {M(A)|M E M\ (A,g)} < lim inf / (J) , 
n A 

b = sup {m(A)Im e M (A, g)} > lim sup / m 
— 9 ~ A N r n A 

as 9 N ( X ) <K X) almost everywhere in A . By lemma 1, we have a ^ b , 

and since in any case lim sup >_ lim inf , <J> z P(A, 8) and 

/ 9 = lim / 9 N . 

n 

Now, f = 9 + g , so that by theorem 1, we see that f e P(A,8) 

and j f = lim J f , completing the proof, 
n 
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§ 4 . SOME GENERAL INTEGRALS AS PARTICULAR CASES. 

We have mentioned in the introduction of this chapter that 

the integrals of Perron type defined by Romanovski [29] and by Pfeffer 

[26] can be obtained from our general theory. We now consider this point. 

4.1 ROMANOVSKI'S INTEGRALS. 

In [29], Romanovski defines an abstract space, which i s called 

Romanovski space by Solomon i n [37] . These spaces of Romanovski contain, 

as special cases, the Euclidean spaces of any dimension. We now give the 

definition of a Romanovski space and show how the P - and R - integrals, 

defined by Romanovski on this space, can be obtained from our general 

theory. 

A t r i p l e (X,a,u ) is a Romanovski space i f X i s a second 

countable, locally compact metric space, u a non-negative countably addi

tive set function, f i n i t e on Borel sets with compact closure i n X and 

positive on non-empty open sets, a a distinguished family of subsets of 

X satisfying ten axioms. For a precise description of these axioms, we 

refer to [29], [37] . 

Let N = the family of a l l subsets of X with zero y-measure, 

B(A) = {a.} for each A e a • Then i t i s easy to see that B i s a base 

mapping according to the definition in section 1. 

Let F be a function defined on a. . Define 
A 

DF(x) = lim inf 
A eaA 

X E A ' 
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where B denote the closure of B in X . We say that F satisfies 

I on A i f DF(x) > - °° except perhaps for points of countably many 

boundaries of sets in a .We define F to be AC on A i f for each 

e > 0 there exists 6 > 0 such that £ |F(Ai)| < e whenever £ u(A.^) < 6 

for any f i n i t e and disjoint {A.}<2 • F° r a nY subset E of A , 

let F E(A') = F(A') i f A' n E f $ , 

= 0 i f A'^ E = <|) . 

F i s said AC on E i f F„ is AC on A . Then F i s ACG on A 
E 

i f A i s a countable union of sets on each of which F i s AC 

Let F _(A') = F(A') i f F(A') < 0 , 

= 0 i f F(A') >_ 0 ; 

then F i s said to be ACG on A i f F is ACG on A 

It is obvious that I and ACG defined above are both inequality 

properties as defined in section 1. 

F i s said to be continuous from interior on A i f for each 

A' <_ A and e > 0 , there exists 6 > 0 such that A" C A' and 

y(A' - A") < <$ imply |F(A') - F(A") | < e . 

Let M(A,oA) = M(A) = {F|F is additive on and is continuous 

from interior on A} , and P = (M,D,B,N,Y), R = (M,D,B,W,ACG) . Then 

i t follows easily from lemmas on page 92 and page 95 in [29] that both 

P and R are derivate systems on a . The P-integral and R-integral 

are just those defined by Romanovski in [29] . By the theorem on page 77 

[29], we see easily that both P- and R-integral have dif f e r e n t i a l proper

ties as given in thereom 11 in next section. Whether there i s a result 

similar to thereom 12 for the P-integral is an open question. The proof 
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of theorem 12 depends on the Zahorski function on the real line, so i f such 

a function could be constructed on an arbitrary Romanovski space, the 

question could be settled. 

4.2 THE PFEFFER INTEGRAL. 

We recall Pfeffer's setting [26] and show how his integral of 

Perron type is obtained. 

Let X be a topological space and X~ = X ^ {°°} be the one-

point compactification of X . For A C X , A denote the closure of A in 

X ; for A C X~ , A denote the closure of A in X~ . For each 

x e X~ , choose once and for a l l a l o c a l base of neighborhoods of 

x in X~ such that the cardinality of i s the smallest cardinality 

of local bases at x . Further, assume that for each x e X , U C X 

for each U e r 
x 

Let a be a pre-algebra of subsets of X such that ^ x C ° 

for each x e X . Also, assume that there i s a fixed integer p >_ 1 with 

the property that for each U e r there are disjoint sets U , U_ . . . 
1»°°, 2,co, 

U from a for which (£/ U . = X . By X we shall denote 
P»°° i=l 1 , 0° 

n 
the system of a l l sets A e o such that A C U U . , where 

i-1 1 

U i e ^ { r
x ' X e X } f o r 1 = 1 , 2 , 3 n * 

Let G be a function defined on a , non-negative and additive 

on c , and f i n i t e on X 
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For each x e X , a certain family K of nets {Bu u e r,C} 
x 

is associated, where T is a cofinal subset of T . This mapping 

is assumed to satisfy six axioms, see [26]. 

For a function defined on , and for x e X , let 

//F(x,A) = inf {lim inf F(B )'I{B } e K. (o.)} , where a • a A A a 
K (a.) = {{B } e K | {B } cJ. o. } , and *F(x,A) = #(F/G)(x,A) . If A 

.A. /i. Ct X Ct i\ 
is fixed, we write #F(x) = #F(x,A) , *F(x) = *F(x,A) . 

Let M(A,o ) = M(A) = {F|F is superadditive on a. and there A A 
exists a countable set Z such that #F(x,A) > 0 for each 

r — 

x e 7, t J { « > } and #(-G)(x.A) > 0 for each x e Z „ } . F — r 

Let W = the family of a l l countable sets in X , and 

B(A) = {o-̂ } . F is said to satisfy the inequality property I on A 

i f *F(x) > -«> for a l l point in A ~ Z . Let P = (M,*,B,W,T) . 
r 

Then i t follows from lemma 5.9 in [26] that P i s a derivate system on 

a . The P-integral i s just that defined by Pfeffer in [26]. 

Whether this P-integral has a diff e r e n t i a l property requires 

further investigation. 
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§5. FURTHER PROPERTIES OF THE INTEGRAL ON THE REAL LINE. 

Before studying some special cases, we are going to obtain 

a d i f f e r e n t i a l property of the integral.and a characterization of inte-

grability and also a very general integration by parts formula for an 

abstract derivate system on the real l i n e . A different proof of the con

vergence theorem 10 is also given. 

Throughout this section, l e t X be the real line, a the 

family of a l l bounded half-open intervals like [a,b[ , N the family of 

a l l subsets of Lebesgue measure zero. For each function defined on 

and for each x e A , l e t D(F,x) = lim inf H d a > M ). t h e ordinary lower 
— r i _ i b-a xe[a,b] 

Ia,b[eo A 

derivate of F at x 

Let P = {M,P,B,N,I} be a derivate system on a satisfying (PM3) and 

the following additional axioms. 

(V5) Each Vti i s Lebesgue measurable. 

(P6) fl(M,x) >.D(M,x) . 

We also assume that for each 8 £ 8([a,b[) , the set 
B = L/ A is of measure b-a , where A denote the end points of the 

Ae6 

interval A . Also, we assume that each M e*M([a,b[,8) i s additive 

on 8 • Then the interval function M on 8 is in one-to-one correspondence 

.'to the point function M on B as follows 

M (x) = M(Ia,x[) for each x e B ~ {a} , 

= 0 for x = a , 

M([x,y[) = M (y) - M (x) for each [x,y[ e 8 . 
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Should no ambiguities arise, we w i l l not distinguish the interval functions 

M on 3 and the point functions M on B Furthermore, we may c a l l 

B a base in {a,b] . Note that by the remark at the beginning-of section 3 

(M5*) i s also satisfied. 

THEOREM 11. Suppose that f e P(A, g) with primitive F . Then t?F(x) 

exists and i s f i n i t e almost everywhere in A 

Proof. Let k,e be arbitrary given positive numbers. By lemma 2, 

there exist M e AL(A, 8) , m e MC(A,B) such that M(A) - m(A) < ke , 
f —x 

and also M(A) - F(A) < ke . Let E q be the set of points x for 

which at least one of the following inequalities _PM(x) >̂  f (x) , 

ftn(x) <_f(x) f a i l s to hold. Then E q i s of measure zero. Observe that 

by theorem 6, F e M(A,8) so that M - F e M(A}8) . Hence by (V5) , 

P(M-F) is measurable, so that the set E ^ of points x in A on which 

P(M-F,x) >_ k i s measurable. We prove that u (E^) < e as follows, where 

u i s the Lebesgue measure on the real l i n e . 

Let R(A') = M(A') - F(A') for each A1
 e 8 and R^(A1) = R(A') 

for A 1 e 8 , R,(A') = sup R(A") for A' e a. ~ 8 . Then 
i A II A 

A"eoAi 

Rĵ  e M(A, 8) by (M4) , and R 1 is non-negative on aA • Therefore, 

D(R1,x) , and hence P(R1,x) by (P6) , exists and i s f i n i t e almost 

everywhere in A , and (1) - / P(R ,x)dx = (L) - / D(R ,x)dx <̂  R^(A) = 
A A 

R(A) = M(A) - F(A) < ke , where (JL) denote that the integral concerned 
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is the Lebesgue integral. But 

(L) - / p(R l 5x) = (/.)-/ £(R ,x)dx > (L) - / P(R1,x)dx > ky (E, ) , 
A A 1 E. k 

k 
so that £ > v(Ej^) , which is what we want to prove. 

Now, for x i E, U E , fl(F,x) > P(M,x) - P(R,x) > f(x) - k . k o — — 

As k and e are arbitrary, i t follows that P(F,x) > f(x) almost every

where in A 

In a like manner, using minor functions, we can prove that 

PF(x) <_f(x) almost everywhere in A . Then i t follows that PF(x) 

exists and PF(x) = f(x) almost everywhere in A , completing the proof. 

COROLLARY 1. If f e P(A,3) , then f is measurable in A . 

COROLLARY 2. If f E P(A,g) , M e Mf(A,g) , m e Mf(A,8) , then 

pM(x) and Pm(x) exist and are f i n i t e almost everywhere in A 

Suppose that the above derivate system P satisfies in 

addition the following two axioms. Then we can obtain a characterization 

of integrability similar to that of McGregor in [22]. 

(Mfr) Each function M continuous in.. [a,b] belongs to M([a,b[,8) 

in the sense that the function M ([x,y[) = M(y) - M(x) for 

[x,y[£a r , r belongs to M([a,b[,$) L a, b L 
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(14) Let C £_ hi be closed under f i n i t e set unions. A function F 

satisfies the inequality property I i f and only i f PF(x) > -°° except 

perhaps for points of a set in C 

For convenience, we say that a property P(x) is true nearly 

everywhere (n.e.) in A i f P(x) is true for a l l x in A except at 

most for points of a set in C . Note that the property I defined in 

(14) i s a inequality property, but not every inequality property can be 

defined in this way. 

THEOREM 12. Let f be a function f i n i t e almost everywhere in A = [a,b[ 

Then f e P(A,3) i f and only i f for each e > 0 , there exist functions 

T,t such that 

(i) T e M(A,B) , t e M(A, 3) ; 

( i i ) t?T(x) , pt(x) exist n.e. in A and are f i n i t e a.e. in A ; 

( i i i ) + 0 0 j Pt(x) <_ f(x) ^PT(x) \ -°° n.e. in A : 

(iv) T(A) - t(A) < e . 

Proof. It i s clear that the conditions are sufficient. To see that 

the conditions are necessary, l e t f e P(A,8) . Then for each E > 0 , 

take M e W(A,g) , m e M(A,8) with M(A) - m(A) < e/2 , which i s 

possible by lemma 2. By corollary 2 to theorem 11, £>M(x) , and Pm(x) 

exist and are f i n i t e a.e. in A . Let E be the subset of A where 

at least one of M , m f a i l s to have a f i n i t e P-derivative. The set 

E i s of measure zero, so that there i s a set E^ of measure zero and of 

type G such that E C E- CA . 
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Let to be a point function defined on [a,b] with the following 

properties: 

(1) to is AC on [a,b] ; 

(2) u i s differentiable in the ordinary sense; 

(3) to ' (x) = +» for x e E 1 ; 

(4) 0 <_ CJ ' (x) < +» for x e [a,b] E 1 ; 

(5) a)(a) = 0 and w(b) < e/4 , 

That such a function exists i s well-known; see Zahorski [40] or McGregor [22]. 

As ixi is continuous in [a,b] the corresponding interval function on 

0 ^ , also denoted by to , belongs to M(A, B ) by (M6) . Let 

T = M + CJ, t = m - a) . Then T e M(A,g) and t e M(A,B) . 

Let C be the set of points x on which P_M(x) > -» f a i l s 

to hold. For x e E 1 ~ C . £T(x) ^PMfx) + Du)(x)£+» , so that 

PT(x) = +=° ̂  f (x) . For x e A .» [E U C] , PM(x) exists and i s f i n i t e , 

so that PT(x) exists and i s f i n i t e , and PT(x) = PM(x) + Dio(x) >_ PM(x) >_ 

f(x) . 

Similarly, Pt(x) exists n.e. in A and +°° =f= P(t,x) <_ f (x) 

a.e. in A . Furthermore, T(A) - t(A) = M(A) + OJ(A) - m(A) + OJ(A) < e . 

Thus, T,t satisfy a l l the required conditions, and hence the proof i s 

completed. 

COROLLARY. Let P = {M.P-pB.N, 1} be another such derivate system on 

o with P^MCx) = PM(x) n.e. in A whenever one of P.jM(x) , PM(x) 

exists n.e. in A . Then P(A,8) = P ^ A . B ) and two integrals of the 

same function are equal. 
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By theorem 12, we see that 

(A) we can use the ^derivatives instead of P-derivates in the d e f i n i 

tion of major functions and minor functions; 

(B) the "almost everywhere" in (M2) and (m2) can be replaced by 

"nearly everywhere". 

Statement (B) is well-known for most of the particular integrals of 

Perron type while statement (A) is due to McGregor [22] for the classi c a l 

Perron integral. The proof here i s essential that of [22] . For a similar 

result for the P n-integral, see Bullen [3]. We w i l l use theorem 12 and i t s 

corollary to prove the equivalence of the SCP-integral and the MZ-integral 

in chapter III. 

If the derivate system does not satisfy some extra conditions, 

one can not get any reasonable integration by parts formula; but with some 

reasonable mild restrictions, which are unfortunately hard to check in 

particular cases, we obtain the following theorem. 

THEOREM 13. Let f eP([a,b[,B) and U be a bounded non-negative 

point function on [a,b], such that U'(x) exists and i s non-negative a.e. in [a,b], 

and such that the following inequalities make sense for each M e M^([a,b[,B) > 

m e JWp(['a,b[, g) . 

P(MU)(x) > M(x)U' (x) + U(x)PM(x) a.e. in Ia,b] 

U(mU) (x) < m(x)U' (x) + U(x)"Pm(x) a.e. in [a,b] 

P(MU) (x) > — C O n.e. in [a,b] 

P(mU) (x) < n.e. - in [a,b] 
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Then i f F i s the primitive of f , fU + FU1 e P([a,b[,3) , and 

/ (fU + FU') = F([a,bI)U([a >bI) . 
Ia,M 

If, in addition, FU' E P([a,b[,8) then so i s fU and 

/ fU = F([a,b[)U([a,b[) - / FU' . 
[a,b[ [a.bl 

Proof. Under the hypotheses, one can easily see that i f M e , then 

MU E M f u + F U? » and i f m e Mf then mU e M f u + p u, . Also, 

MU([a,b[) - mU([a,bf) is small when M([a,b[) - m([a,b[) i s small. 

Hence the required result follows easily. 

Now, we are in a position to give another proof of theorem 

10 for the derivate system P on a satisfying the additional axioms 

C P M 3 ) , C P 5 ) , (P6) and (M6) , and also that a function F satisfies 

I whenever JJF(x) > -<» except perhaps for a countable set of points. 

LEMMA 5. If a function is I.-integrable, i t is P-integrable and two 

integrals are equal. 

Proof. By theorem 7, that i f a function is Perron integrable 

(see section II.1), i t i s P-integrable and two integrals are equal. It 

i s well-known that i f a function is Lebesgue integrable, i t i s Perron 

integrable and two integrals are equal. The conclusion then follows. 

LEMMA 6. Let f(x) ^ 0 almost everywhere in [a,b] . Then f i s 

I-integrable on [a,b] i f and only i f f is P-integrable on [a,b[ with 

a base B E B(Ia,b[) 
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Proof. The one implication i s given by lemma 5. To prove the other 

implication, l e t f be P-integrable on [a,b[ with a base B . Since 

|f| = f almost everywhere in [a,b] , i t follows that |f| is also 

P-integrable on [a,b] with base B . Clearly, the zero function 

0 e M|f| ({a,b[,B) . Let M e M|f|([a,b[,B) . Then by lemma 1, 

M(= M - 0) is monotone increasing in B . Define M^(x) = M(x) for 

x e B , M (x) = sup M(t) for x e [a,b] ~ B . Then M̂  i s mono-
teBO[a,x] 

tone increasing in Ia,b] , so that M|(x) is L-integrable on [a,b] 

and hence so is VH since Mj(x) = ??M(x) almost everywhere in [a,b] 

by (PMl) and (£6) As f is measurable by corollary 1 to theorem 11, 

i t follows that f i s L-integrable on [a,b] since |f(x)| £ #M(x) 

almost everywhere i n [a,b] . The proof is hence completed. 

COROLLARY. Let ^ be P-integrable on [a,b[ with base B , and 

be L-integrable on [a,b] and f^ >̂  almost everywhere in [a,b]. 

Then f ^ i s also L-integrable on [a,b] . 

THEOREM 10*. Let g,h,f (n = 1,2,3,...) be P-integrable on [a,b] with 
n 

a base B , and g(x) <_ f n ( x ) _̂ h(x) almost everywhere in [a,b] for 

each n , and lim f (x) = f(x) almost everywhere in [a»b] . Then f 
n 

is P-integrable on [a,b] with base B and /f = lim /f ' ' n n 
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Proof. Since 0 <_ f n(x) - g(x) £ h(x) - g(x) almost everywhere in [a,b] , 

both f - g and h - g are L-integrable on [a,b] by lemma 6. By 

Lebesgue dominated convergence theorem, we have lim (L) - J ( f -g) = (i-) -/ (f -g) • 
n 

Hence, by lemma 5, lim (P) - /( f -g) = (P) - /(f-g) . Now, g i s P-
n 

integrable, so that f = (f-g) + g is also P-integrable and 

lim (P) - /f = (P) - /f , completing the proof, 
n 

We close this section by remarking that Kubota's abstract 

integral of Perron type [17], i s a particular case of the integral in 

this section. In fact, taking 8(A) = {o.} , W = {<}>} and the inequality 

property I to mean £F(x) > -°° , one gets Kubota's setting and his 

integral i f axiom QM) i s replaced by the equivalent axiom: 

( P 4 ' ) P(v^+v 2) (x) = Dv^(x) + _P_v2(x) whenever the ordinary derivative 

Dv^(x) exists. 

Axioms ( I M ) and 0 P 4 ' ) are equivalent in the sense that one follows 

from the other by axioms (V2) , (_P3) , (V6) and the corresponding properties 

( P 2 ) , ( P 3 ) and (V6) . Incidently, note that Kubota did not assume 

axiom (05) e x p l i c i t l y . However, in proving a result corresponding to 

our lemma 6, he did use implicitly (see the second last sentence in his 

proof of theorem 3 . 8 [17]) our corollary 1 to theorem 11, and axiom (£5) 

is essential i n the proof of this corollary. 
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CHAPTER II. THE C P-INTEGRAL 
n 

The C^-integral was f i r s t defined by Burkill in [5], [6]. 

Since then, many authors have shown an interest in this integral; see 

for instance Bosanquet I I ] , James [13], Kubota [18], Sargent [31] - [34], 

and Skvorcov [35], 136]. We w i l l show how to obtain the C P-integral 
n 

from our general theory, and also state an integration by parts formula, 

which w i l l be used extensively in Chapter III. 

The theory of C^P-integral based on theorem 2(below). There is 

a defect in Burkill's original proof in [6] (see line 9, page 546). This de

fect was noted recently and independently by Verblunsky in [38]. We give a 

new and correct proof of this theorem.:'* For different proofs of stronger results, 

we refer to Sargent [31] and Verblunsky!39]. 

Sargent has defined a C^D-integral [32] equivalent to the 

C P-integral. However, there is a defect in her proof for theorem 4 n r 

(below) . This has also been given a correct proof recently and independently 

by Verblunsky in [38]. We supply another proof, which seems simpler and 

more direct, in the sense that we do not appeal to the deep de l a Vallee 

Poussin decomposition theorem used by Verblunsky. 

Throughout this chapter, as i n section 1.5, X is to be the 

real line, a the family of a l l bounded half-open intervals like [a,b[ , 

W the family of a l l subsets of Lebesgue measure zero. For each A E a > 



35. 

let B(A) = io^} . It is easy to see that B is a base mapping. 

Legitimate mappings and derivate operators w i l l be defined later. Once 

a derivate operator V_ is defined, a function F w i l l be said to satisfy 

the property I i f and only i f jPF(x) > -°° except perhaps for a 

countable set of points. Note that for a l l the derivate operators used, 

the property I defined above i s an inequality property. 

As we have noted in section 1.5, corresponding point functions 

and the additive interval functions w i l l not be distinguished i f this causes no 

ambiguities. 

§1 THE CLASSICAL PERRON INTEGRAL. 

The classical Perron integral i s the C -P-integral of the next 
o 

section. We single i t out in this separate section because by doing so, we 

can make the induction arguments in next section clearer. 

For each A = [a,b[ , let M°(A) = {M|M is additive on 

and the corresponding point function i s continuous in [a,b]} . Let 

C^DMCx) or JJM(x) be the ordinary lower drivate of M at x . Then 

i t i s easy to show that P q = (M°,D,B,W,I) i s a derivate system satisfying 

a l l the additional axioms (PM3) , (£5), (£6), (M6), (74) in section 1.5, 

and also (M51) in section 1.3. The P Q-integral is just the classi c a l 

Perron integral; see [23], [30]. 
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From theorem 1.6, for P -integral, we see that the P -
o o 

primitives are continuous. Moreover, i t is well-known that a P^-

primitive is ACG (see Saks [30]), and conversely an ACG function 

is a P -primitive of i t s D-derivative. It i s also well-known that o 

in the definition of major functions, "DM(x) > -<» n.e." can be replaced 

by "i)M(x) > -°° everywhere" without affecting the generality of the 

resulting integral. An integration by parts formula for the P Q-integral 

reads as follows. 

THEOREM 1. Let f E P ([a,b[) and g be of bounded variation on [a,b] 
o 

Then fg e P ([a,b[) and 

JA fg = F(A)g(A) - / A F(t)dg(t) , 

where A = [a,b[ , and F is the P o-primitive of f and the integral 

in the right ha nd side is the Stieltjes integral. 

This theorem w i l l be used later. For the proof, we refer 

to Saks [30], McShane.[23[, or Gordon and Lasher [10], who provided a more 

direct proof from the definition of P -integrals. 
o 

The following notions w i l l be used and extended later. For 

an additive interval function F on o r , r > suppose that the correspon-
Ia,bl 

ding point function F is P Q-integrable in a neighborhood of x e [a,b]. 

For h 4 0 , x + h in the neighborhood, write C,(F:x,x+h) = — . [ F , 
(x,h) 

where (x,h) = Ix,x+hJ i f h > 0 , = [x+h, x l i f h < 0 . Then F 
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is said to be C -continuous at x i f lim C (F;x,x+h) = F(x) ; and 

SC -continuous at x e ]a,b[ i f lim {C (F;x,x+h) - C (F;x,x-h)} = 0 , 
1 h+0+ 

and SC^-continuous at a or b i f i t i s C^-continuous there. 

We end this section by remarking that S P q = (M,J3D,B ,W, I) is also 
J . v. r,™.,, \ -,J • r M(x+h)-M(x-h) a derivate system on a » where SDM(x) = lim mf rr , 

h+0+ h 

the symmetric lower derivate of M at x . This can be checked easily 

noting the recent result due to Mukhopadhyay 121], 

PROPOSITION. If j>DM(x) >_ 0 a.e. in [a,b] and SDM(x) > -co n.e. 

in [a,b] » then M is monotone increasing in [a,b] , where M 

i s a continuous function on [a,b] 

The SP o~integral i s more general than the P-integral, and might be more 

suitable for application to the trigonometric series (cf. [7] or section 

III.6). We may consider this SP Q-integral as the f i r s t of the SCP-scale 

of integrals defined below in chapter III. 

§2. THE C P-INTEGRAL, n 

We define a scale of derivate systems on a by induction 

as follows. For each Ia,bl , l e t M 1([a,b[,a r , r) = M*([a,b[) = 

{M|M i s ^-continuous in [a,b]} , and for each M e M*([a,b[) and 

C (M,x,x+h) - M(x) 
for each x e ]a,b] , le t C^MCx) = lim inf r-j^ • 
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the = ( M ^ J C ^ D . B S W J I ) is a derivate system on a follows easily 

from lemma on page 316 and lemma on page 319 [5]. 

Suppose that for n > 2 , the derivate system 

P =-,(MN~1,C ,0,3,^,1) has been defined. For each M e P ,([a,b[) n-1 n-1 n-i 

and for each x e [a,b] , h ̂  0 with x + h e [a,b] , let 

x+h 
C (M;x,x+h) = — (P ,) - f (x+h-t) n - 1M(t)dt . n , n n-i J 

h x 

Then M is said to be C -continuous at x i f lim C (M;x,x+h) = M(x) 
_ n h*o n 

Let M n([a,b[) = {M|M is C -continuous in [a,b]} > and for each M 
1 n 

C (M;x,x+h) - M(x) 
define C DM(x) = lim inf — 

_n_ h^ 0
 h / n + 1 

Then i t can be shown that P = { M N » C D,B»N>I} is a derivate system on 
n n 

a • The P^-integral i s i n fact equivalent (see Bosanquet [1]) to the 

C J ? - integral of Bur k i l l in [5] , [6] . 

That the P^ defined above i s in fact a derivate system i s easy 

to check. We only prove the following theorem, of which the significance 

has been mentioned in the introduction. 

THEOREM 2. Let M be C -continuous in Ia,bJ and C DM(x) > 0 
n n — 

a.e. in Ia,b] and C N DM(x) > -<» n.e. in [a,b] . Then M as a 

point function i s monotone increasing in [a,b] 
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To prove t h i s , we r e c a l l some notions introduced by Sargent 

i n {32] . For n > 1 , a function F i s said to be AC on a set 

E i f i t i s C P-integrable on an i n t e r v a l containing E , and i f f o r 

each e > 0 there e x i s t s a 6 > 0 such that 

I i n f {C (F;a ,x) - F(a )} > -e , n r r r a <x<b r r 

I i n f {F(b ) - C (F;b ,x)} > — E 

r a <x<b r n r 
r r 

f o r a l l f i n i t e sets of non-overlapping i n t e r v a l s {[a ,b ]} with end 

points i n E and such that J (b -a ) <_ 6 . The concept AC* i s 

defined i n a s i m i l a r way. If F i s both AC* and AC* , then F i s 
J n n 

said to be AC* . Applying the method i n the proof of theorem I i n 

[32], lemma IV i n [32] reads as follows. 

LEMMA 1. Let F be C -continuous i n [a,b] , and C DF(x) > n.e. 
n _n 

i n Ia,b] . Then [a,b] i s the union of a countable closed sets over each 

of which F i s AC* . 
n 

Generalizing the concept of AC functions (see Saks [30]), we 

say that a fun c t i o n F Is AC on a set E i f f o r each E > 0 there 

e x i s t s a 6 > 0 such that J (F(b ) - F(a )} > -e 
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for a l l f i n i t e sets of non-overlapping intervals ([a^b^]} with end points 

in E and such that J ̂ r
- a

r ^ <5 . AC i s defined in an obvious way. 

These notions AC and AC were f i r s t introduced by J. Ridder in [28]. 

Following parts of the argument used in the proof of lemma III 

in £32], we have 

LEMMA 2. Let F be C^P-integrable on [c,d] , and 

W= min{inf[C (F;c,x) - F(c)] , inf[F(d) - C (F;d,x)]} . — n n 

Then there exists a constant a independent of c,d such that 

F(d) - F(c) >_ -aW . 

Proof of THEOREM 2. By lemma 1 there exists a sequence {Efc} of 

closed sets with union [a,b] and on each of which M i s AC* . 
n 

By lemma 2, M i s AC on each E , k = 1,2,3,... , 

Let A be the set of points i n Ia,b] such that i f x e A , 

then there i s no interval containing x on which M i s monotone increasing. 

Then A i s closed and hence by the Baire category theorem, i f A i s 

not empty there i s an interval I&>m] and an integer k such that 

A f\]£,m[ i s not empty and A ^ [£,m] = E f c ̂  [£>m] . As M is AC 
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on , M i s AC on A ^ [Ji,m] As M is monotone increasing on each 

of the intervals contiguous to A ^l£,m] w.r.t. l£,m] , by the C -

continuity of M , i t follows that M is AC on [J£,m] 

Now, letting E > 0 be given, we prove that for each x E [£,m] 

x) > 0 , 
M(x.)-M(x) 

with C DM(x) > 0 , there exists a sequence of points x. with x. -+ x n — n r x x 
M(t)-M(x) 

for which ± •—— > -e . Suppose to the contrary that <_ -e 
X 

for a l l t with t - x < 6 for any 6 > 0 . Then for 0 < h < 6 , 

one has 

/ X + h ( x + h - t ) n - 1 ( M ( t ) - M(x))dt 
h x 

, , n x+h , 
1-^nTT / (-+h-t) n- 1(-e(t-x))dt = - E , 

h x 

so that C DM(x) < - e , contradicting to C DM(x) > 0 , n — n — 

Let G be the set of points in l£,m] such that for x £ G , 

C^DMCx) >_ 0 . Then the measure of G is ra-Z . By the above asser

tion, for each x E G we can take a sequence of intervals ]x,x^[ with 

M(x±) - M(x) 
x J - x -> 0 for which > - E . This associates a V i t a l i 

i x^-x 

family of intervals with each point in G . Hence by the V i t a l i covering 

theorem, there i s a f i n i t e mutually exclusive set {]x_^,x_I[} of the 

family with J ( x | - x./) > (m-l) - n, n arbitrary, for which 
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T (M(x!) - M(x.)} > -e y (x! - x.) . . i i L l l l 

Let {]t^.,tj[} be the subintervals of f^m] complementary 

to the set {Ix.,xjj } . Then £ ( t | - t.) < n . Hence, as M i s AC 

in [ J2,m] , one has, for sufficiently small n » 

M(m) - M(£) x[{M(x!) - M(x.) } + \ {M(t!) -M(t.)} 
i 1 1 i J J 

>_-£ (̂x_! - x.̂ ) - £ ^_-e [ (m- £) - n - 1 ] 

As e i s arbitrary, one concludes that M(m) >_M(£) 

If & < c < d <_jn , i t can be shown in the same way that 

M(d) >_M(c) , so that M is monotone increasing in [ £,m] . This i s 

a contradiction since A (\ ] £,m[ is not empty. Thus, we conclude that 

A i s empty. Therefore, for each x e fa,b] , there i s an interval con

taining x such that M is monotone increasing in the interval. By 

Heine-Borel theorem, there is then a f i n i t e set of such intervals covering 

Ia,b] and i t then easily follows that M i s monotone increasing i n [a,b] , 

completing the proof. 

We remark that i t is well-known that M (A) (A) and 

CnDM(x) <_Cn+1DM(x) for each M e M^A) , x eA , for each n = 0,1,2, 

3,... , where. CQD = D , Hence by theorem 1.7, we have the consistency 

of the P -scale (or C P-scale) starting from the c l a s s i c a l Perron integral n n 

(i.e. P o-integral i n §1). 
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The following Integration by parts formula w i l l be needed 

in the next chapter. For a proof, see Burkill {6J . 

THEOREM 3. For a <_b , l e t F(x) = (P ) - / f( t ) d t , and 

x Kl 52 5 n - l 

a a a 

where g is of bounded variation in Ia,bJ . Then fG e P n([a,b[) 

and 

8 6 8 
(P ) - / (fG )(t)dt = [FG ] - (P ) - / (FG )(t)dt , n ' n n n-± J n-1 

where a < a < 8 < b , 

§3. THE C D-INTEGRAL AND THE C P-INTEGRAL. n n 

In .[32], Sargent has defined the C nD-integral by induction. 

The C QD-integral i s just the special Denjoy integral, which i s equivalent 

to the P -integral i n §1. For n > 1 , assuming that C .D-integral o — n-1 
has been defined and i s equivalent to the P ,-integral (i.e. C ,P-

n-1 n-1 
Integral i n Burkill's notation), the C^D-integral i s then defined.as 

follows. A function f on [a,b] is C nD-integrable on [a,b] i f there 
\k 

is a function F C -continuous in [a,bl and AC G on la.bj such 
n n 

ff that C DF(x) =f(x) a.e. in [a,b] , That F is AC G on [a.b] n n 
means that there i s a sequence of sets with union Ia,b] such that 
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F i s AC (see §2) on each of the sets, n 

Sargent proved that the P^-integral i s more general than the 

C^D-integral; see theorem XI in [32]. In the proof of the converse, that 

the C^D-integral i s more general than (and hence of course equivalent to) the 

P -integral, theorem VIII [32], we noticed that there i s a defect since the n 
set (defined there) depends on the choice of e , so that the argu

ment breaks down. The purpose of this section i s to supply a correct proof. 

THEOREM 4. Let f be P-integrable on [a,b] with primitive F . Then 
* 

F i s AC G on [a,b] n 

Proof. Given E Q > 0 , by lemma 1.2., there exist a Pn-major function 

M and a P -minor function m such that M (b) - m (b) < e , and o n o o o o 
also M (b) - F(b) < e , F(b) - m (b) < e o o o o 

By lemma 1, there exists a sequence {E°} of closed sets such 
* —* o that M i s AC and m is AC on each E, , k = 1,2,3,... , where o n o n k 

U E° = [a,b] . 
k K 

For fixed k = 1,2,3,... , l e t ^ r » ^ r t ke t' i e contiguous 
o * o intervals of E, i n [a,b] . As M i s AC on E, , we have k o n k 
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(1) Y inf {C (M ;c x) - M (c )} > L , 1 n o r o r r c <x<d r r 

(2) Y inf {M (d ) - C (M-;d ,x)} > -° L , o r n o r r c <x<d r r 

and similarly, 

(3) I sup {Cn(mQ;cr,x) - m o(c r)} < +=° , 

(4) y sup {m (d ) - C (m ;d ,x)} < +=° , L o r n o r r 
Suppose that < x < d^ . Then 

C (F;c ,x) - F(c ) = C (M ;c ,x) - M (c ) n r r n o r o r 
x _ 

- - " - / ( x - t ) n X{M (t) - F(t)}dt + M (c ) - F(c ) 
x-c ) c r r 

> C (M ;c ,x) - M (c ) - {M (d ) - F(d )} + {M (c ) - F(c )} — n o r o r o r r o r r 

since M-F i s monotone increasing in [a,b] by theorem 1.5. It follows that 

I inf {C n(F;c r,x) - F(c r)} 
r c <x<d r r 

> y inf {C (M Jc ,x) - M (c )} - {M (b) - F(b)} > -° — u n o r o r o r 
by (1) and the fact M (b) - F(b) < e 

o o 
Similarly, using (2), (3), (4), we have 

I inf {F(d r) - C (F;d ,x)} > -« , \ sup {C (F;c x) - F(c )} < +» , 
r r r 

and 1 sup {F(dr> - C n(F;d r,x)} < +=° . Hence we have 
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(5) I sup |C n(F;c r,x) - F(Cy.') | < +» 

(6) I sup |F(d ) - C n(F;d r,x)| < +» 
r 

Now, we show that F i s AC on each E° . F i r s t , note that by 

lemma 2, we have that M is AC and m is AC on E.° , so that 
o — o k 

there exists a constant A such that 7 {M (x!) - M (x.)} > -A and V o l o i l 

7 {m (x!) - m (x.)} < A for any f i n i t e set {[x.,x!]} of non-overlapping 
7 O 1 O 1 1 1 

intervals with end points in E^ . For such f i n i t e set {[x^,x^]} we have 

0 < Y{M (x!) - M (x.)} - y{m (x!) - m (x.)} < M (b) - m (b) < e — ^ O 1 O X ^ o x o i — o o o 

since M q - mQ is monotone increasing and non-negative. Combining the 

above inequalities, we have for any relevant set {[x_^,x^]} , 

- A < y{M (x!) - M (x.)} < A + e , 
u o i o l o 

- A -£ < y{m (x!) - m (x.)} < A , so that we have 
o L o 1 o 1 

(7) Both M and m are BV on E° . 
o o k 

We prove further that 

(8) i f M e M^([a,b]) , m e M^([a,b]) , then both M and m are BV on 

K • 
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This in fact follows from M=m + ( M - m ) and m = M - (M - m) 
o o o o 

since M and m are BV on E? by (7), and as M - m and M - m o o k J * o o 
as both are monotone in [a,b], they are also BV on E° 

We have noticed that M is AC on E.° and m is AC on E.° 
o — k o k 

With the result (8), we prove further that 

(9) i f M e Mj([a,b]) , m e Mj([a,b]) , then M is AC and m is AC 

on E,C 
Jk ' 

To see this, let {]c ,d [} be the intervals contiguous to E° in [a,b]. 

r r K 

Define M^(x) = M(x) for x on E° , and on each Jc^d^f M̂  i s defined 

such that the graph of M̂  i s the linear segment joining the points 

(c r,M(c r)) and (d^MCd^)) . Then i t is easy to see that MA i s C -

continuous in [a,b] and C DM. (x) > -<» n.e. in [a,b] . Hence by lemma 1 
n * 

and lemma 2. M̂  is (ACG) in [a,b] , that is [a,b] = U E^ , and MA 

k i s AC on each E, , where E, i s closed. Also, M. is BV in [a,b] — k k * x 
since M i s BV on E° by (8). Let G(x) = M^(x) - (L) / M^(t)dt . 

a 

Then G as a difference of an (ACG) function and an AC function is 

i t s e l f (ACG) . Furthermore, G'(x) = 0 a.e. in [a,b] . Hence, using 

the Baire's category theorem and the V i t a l i covering theorem, i t can be shown 

that G is monotone increasing in [a,b] and hence is also non-negative in 
x 

[a,b] . Therefore, M^(x) - ( L ) J M^(t)dt >̂  0 for each x in [a,b] , and 
a 

x! M*(xj_) - M A(x ±) L j 1 M;(t)dt for any [x.,xp C [a,b] 
x. 

l 
X 

As / M].(t)dt is AC on [a,b] , i t follows that M̂  i s AC on [a,b] 
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As M = M. on E_° , i t follows that M i s AC on E° . Similar argu-* k — k 
ments hold for P^-minor functions, and (9) is hence proved. 

Now, we are in a position to prove that 

(10) F i s AC on E° . 

To do this, let e > 0 be given. Choose M e , m e with 

M(b) - m(b) < e/2 . Then for each f i n i t e set {[x̂ ,x_̂ ]} of nonoverlapping 

intervals in [a,b] , we have 

0 <_ £{M(x.p - M( X i)} - £{m(xj) - m( X i)} £ M(b) - m(b) < e/2. 

1 {m(x\) - m( X i)} < I( F ( X p - F(x.)} < j>{M(x*) - M(x.)} 

since M - m , M - F , F - m are a l l non-negative and monotone increasing 

in [a,b] . For such relevant {[x.,x!]} , i f x.,x! e E° , and i f 
I X X X K. 

£(x!̂  - x^) i s sufficiently small, by (9), we have 

£{M(x.p - M(x±)} > -e/2 and £{m( Xp - m(xj.)} < e/2 . 

Combining a l l the above inequalities gives 

-e < I {F(xp - F( X i)} < e , 

so that F i s AC on E° , proving (10). 
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As the C n_jD-integral and the P n_^-integral are equivalent by 
* 

induction hypotheses, i t follows from (5), (6) and (10) that F is AC 
n 

on E° by theorem II in [32]. As k is arbitrary and U E° = [a,b] , i t 

follows that F is AC^G on [a,b] , completing the proof of theorem 4. 

We remark that the technique used in this chapter i s motivated 

by studying the paper [16], where the C^P-integral was investigaged i n 

great detail. 
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CHAPTER III 

A SCALE OF SYMMETRIC CP-INTEGRALS AND THE MZ-INTEGRAL 

Burk i l l has defined a SCP-integral i n [7], which i s more suitable 

for application to the trigonometric series than the CP-integral. Although 

this SCP-integral has been investigated by many people, no scale correspon

ding to the CP-scale has appeared in the literature. One of our purposes 

in this chapter i s to use the general theory developed in chapter I to 

give an SCP-scale of integrals. 

As a preliminary, we prove some lemmas concerning the de l a Vallee 

Poussin derivatives in section 1 and state two well-known theorems concerning 

n-convex functions in section 2. The results essential to the definition 

of our scale of integrals are proved in section 3. After developing the 

SC P-integral in section 4, section 5 i s devoted to i t s connection to the n 
James symmetric P -integral scale [13]. 

By the MZ-integral, we mean the integral defined by Marcinkiewicz 

and Zygmund in [21]. This MZ-integral solves the coefficient problem of 

the convergent trigonometric series. Burkill also used the SCP-integral 

to solve the same problem. However, i n his proof, he used an integration 

by parts formula, which remains unproved up to now. We prove in the last 

section that the MZ-integral and the SCP-integral are in fact equivalent. 

This implies that the SCP-integral does solve the coefficient problem. 
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§1. THE SYMMETRIC de l a VALLEE POUSSIN DERIVATIVES. 

Let F be a function defined on a bounded closed interval 

[a,b] , and x e ]a,b[ . If there are constants B .••,B_.,(r>0), 

depending on x but not on h such that 

1 r h 2 k •> 
- {F(x +h) +F(x-h)} - J Q B 2 k - ^ T T =o(h 2 r) 

as h -»• 0 , then § ^ i s called the symmetric de l a Vallee Poussin 

(s.d.l.V.P.) derivative of order 2r of F at x , and we write 

&2r

 = D 2 r F ^ * I C i s c-'-ear t n a t i f I>2 r
F( x) exists, so does D^FCx) 

for k = 0,1,2,...,r-l ,.and D 2 kF(x) = B 2 k • 

If D 2 kF(x) exists for 0 <_ k <_ m - 1 , (m >_ 1) , define 

6 2 m ( x , h ) = 6 2 m(F;x,h) by 

,2m 1 m-1 , 2k 
( 2 ) W! 92m ( x' h ) = 2 { F ( x + h ) + F ( x " h ) } " I (2k)! D2k F ( x> > 

and l e t 

(3) 

D 2 mF(x) = lim sup &2 (x,h) , 
h-*0 m 

D_ F(x) = lim inf 6 „ (x,h) 
— 2 m , n 2 m h-K) 

Then a f i n i t e common value for D„ F(x) and D„ F(x) implies that D„ F(x) 
2 m — 2 m 2 m 

exists and equals this common value. 
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In a similar way, the odd-ordered s.d.l.V.P. derivative is defined 

by replacing (1) by 

r 2k+l 

d') |{F(x +h) - F(x-h)} - J g 2 k + 1 - o ( h 2 r + 1 ) 

as h -> 0 . Similar changes can be made i n (2), (3). 

The following lemma is an extension and generalization of lemma 

4, (i) i n [33]. For a partial converse in the non-symmetric case, see 

lemma 10 in [21]. 

LEMMA 1. Let H be a function and H'(x) = G(x) in a neighborhood 

of x . I f for some n , D G(x ) exists, then D MH(x ) exists and o n o n+1 o 
is equal to D G(x ) n o 

Proof. The proof i s by induction on n . To see that i t i s true for 

n = 1 , consider for sufficiently small h > 0 , 

0 , (H;x ,h) = % i [ H ( x +h) + H (x-h)] - H(x )} . I o l o o o h 

In order to apply l'Hopital's rule, l e t 

1 hZ 

f(h) = i[H(x o+h) + H(x o-h)] - H( X q) , g(h) = f j - • 

Then f (h) -»• 0 as h -> 0 since H i s clearly continuous in a neighbor

hood of x . Also, g(h) 0 as h -*• 0 . Furthermore, g'(h) = h =}= 0 , 
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H'(x +h) - H'(x -h) G(x +h) - G(x -h) 
and f ( h ) 0 -° ° 0 

g*(h) 2h 2h 

which approaches to D..G(X ) as h -»- 0 . Hence 
1 o 

lim 0„(H;x ,h) = D,G(x ) , which is what we want to prove. 2 o i o 

Now, suppose that the conclusion of the lemma is true for n < r , 

where r >_ 2 . Then.we prove that i t is also true for n = r as follows. 

Suppose r i s even, r = 2m say. As D„ G(x ) exists, so does D., G(x ) 
2m o 2k o 

for 0 < k < m - 1 , and hence by the induction hypothese, D„, ,,H(x ) — — J r > 2k+l o 

exists and equals D G(x ) for 0 < k < m - 1 . Consider 
<£iC o 

< W H ' > V h ) " 7 2 m ^ ^[H(x o +h) - H(x o-h)]- I ^ I ) T D 2 k + 1H(x o)} . 
h k=0 

Applying l'Hopital's rule, one gets 

lim 0- ,.(H;x ,h) = D„ G(x ) , which complete the proof for even r , _ 2m+i o 2m o h->0 
A similar argument w i l l give the case for r odd. 

Note that, in particular, we can apply lemma 1 to the case that 

H i s the Lebesgue integral of a continuous function G in some interval. 

Following James [13], we say that a function F i s n-smooth at 

x i f D -F(x) exists and lim h© (F;x,h) =0 . By a similar argument 
h+0 n 

in the proof of lemma 1, one has 

LEMMA 2 . Let H be a function and H'(x) = G(x) i n a neighborhood of X Q 

Then H is (n+1)-smooth at x i f G i s n-smooth at x 
o - o 
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LEMMA 3. Let H be a function and H'(x) = G(x) in a neighborhood of 

x . Then for n > 1 , o — 

(4) D G(x ) > D , H(x ) > D t 1H(x ) > D G(x ) n o — n+i o n+1 o n o 

whenever 0 (G;x ,h) makes sense. 
n 

Proof. By lemma 1, i f 0 (G;x ,h) makes sense, so does 0 ,.(H;x ,h) 
n o n+1 o 

The inequalities (4) then follow from the inequalities (cf [12], p. 359) 

n. f'(h)- ,, f(h) . r f(h) .. . e f'(h) lim sup — T T T T > lim S UP —7TC > lim i n f —7TT > lim l n f i \ 
h+0 8 ( h ) - h -0 g ( h ) ~ h+0 8 ( h ) ~ fr*0 8 ( H ) 

for suitable choices of f and g 

§2. SOME PROPERTIES OF n-CONVEX FUNCTIONS. 

For the definition of n-convex functions, we refer to the papers 

mentioned below. The f i r s t result we want, due to James [13], [15] but 

is proved in a more complete form by Bullen [2], gives a set of conditions., 

which are sufficient for a function to be n-convex. The second result gives 

some important properties of an n-convex function. Before stating these, 

\.e r e c a l l some concepts. 

• A function F defined on [a,b] is said to satisfy the condition 

(C, ) in [a,b] i f 
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(a) F is continuous in [a,b] ; 

(b) ^2k^ exists, is f i n i t e and has no simple discontinuities in ]a,b[ 

for 0 <_ k. <_ r - 1 ; 

(c) F is 2r-smooth at a l l points i n ]a,b[ except perhaps for points 

of a countable set. 

Similarly, the condition (C_ is defined, so that the condition (C ) 
zr+1 n 

makes sense for a l l integer n >_ 2 

A linear set i s called a scattered set i f i t contains no subset 

that i s dense-in-itself. Note that the union of two scattered sets i s also 

scattered [20]. 

then (1 <̂  k <_ r) i s called the Peano derivative of order k of F 

at x , written a, = F,,.(x) , where a, ,a 0, a are constants 
k (k) 1 2 r 

depending on x only, not on h . It is clear that i f F ^ ( x ) exists, 

so does D^F(x) and two are equal. But the converse i s not true in 

general. *~ . . 

If i t is true that 

F(x+h) - F(x) = I 
k=l 

r 

If F posseses Peano derivative F (k) (x) 1 < k < r - 1 

write 
r-1 

Y_(F;x,h) = F(x+h) - F(x) - £ .(x) 
k=l v ' 
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Then define F, . ,(x) = lim sup y(F;x,h) 
t r ; s h-K)+ 

F, \ , > F , N j F / . are similarly defined, and -(r),+ ( r ) , - - ( r ) , - 3 

F, N , , F, N are defined in a usual way. (r),+ ( r ) , - 3 

then 

THEOREM 1. (cf.[2], theorem 16). Let F satisfy the condition (C n) 

in [a,b] and 

(i) D^F(x) >_ 0 almost everywhere in ]a,b[ ; 

( i i ) D F(x) > -» for x e ] a , b [ ~ S , S a scattered set; 
n 

( i i i ) lim sup h 0 (F;x,h) > 0 > lim inf h 0 (F;x,h) for x e S . 
x+0 n ~ ~ h+0 

Then F i s n-convex in [a,b] 

THEOREM 2. ([2], theorem 7). Let F be n-convex in [a,b] . Then 
(r) 

(i) F exists and i s continuous in [a,b] for 1< r < n - 2 , 
/̂ \ til 

where F (x) denote the ordinary r derivative of F at x 
( i i ) both F,, , F, n are monotone increasing in [a,b] ; ... 

tic—X) ,— vn—i.) ,+ 

( i - ) - ( F ( n _ 2 ) ) + ' a n d F ( n - D , - = < F < n " 2 ) j : j 
(iv) F^ n (x) exists a f a l l except a countable set of points. 
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§3. THE SC -DERIVATIVE AND THE SC -CONTINUITY, r r 

Let r >_ 1 , F be C^^P (i.e. P^ 0 f chapter II)-integrable 

on [a,b] , x e ]a,b[ , Cr(F;x,x+h) as defined in chapter II, and 

r+1 
Ar(F;x,h) = — {Cr(F;x,x+h) - Cr(F;x,x-h)} , 

SC D F(x) = lim inf A (F;x,h) . • • 
— — h+0 r 

The notations SC^D , SC^D then have the obvious meanings. We c a l l 

SCrDF(x) , i f exists, the symmetric Cesaro derivative of order r of 

F at x , or simply SC^-derivative of F at x 

If lim {C (F;x,x+h) - C (F;x,x-h)} =0 , F is said to be 
h-*0+ r r 

SC -continuous at x . It is clear that F i s SC -continuous at x r r 
whenever i t is C -continuous at x , and SC DF exists and equals r ' r M 

C DF(x) whenever C DF(x) exists. But, neither of the converses is r r ' 
true. It i s also easy to check that SC^DF is measurable (cf. theorem 8 

below), 

LEMMA 4. For r >_ 0 , l e t F be C^-continuous i n [a,b] . Then 

F has no simple discontinuities in ta»b] . In particular, every ^P-

primitive of a function on [a,b] has no simple discontinuities i n [a,b] 

Proof. For r = 0 , the result i s immediate since the C -continuity 
o J 

i s just the ordinary continuity. For r >_ 1 , suppose that X q e ]a,b] , 

and lim F(x) = B . Then for each e > 0 , there exists 6 > 0 such that 
x-*x-o 
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or 

B - e < F(x) < B + e for x - 6 < x < x , 
o o 

B - e < F(x) < B + e for x - h < x < x , 
o — o 

where h is such that 0 < h < 6 . Hence 

(B-e)(x -x + h ) r _ 1 < F(x)(x-x + h ) r - 1 < (B+E)(x-x +h) r~ 1 

o — o — o 

for x - h < x < x , which implies that o — o r 

x 
o B - E < — (C , P ) - / (x-x +h) r F(x)dx < B + e — , r r-1 J . o — h x -h o 

for 0 < h < <5 , so that lim C (F;x ,x -h) = B . 
h-K)+ r ° ° 

But F(x ) = lim C (F;x ,x -h) = lim C (F;x ,x-h) . Hence F(x ) = B 
° h+0 r ° ° h->0+ r ° ° 

Similarly, i f x E [a,b[ , and lim F(x) = B' , then 
x-»x + o 

F ( X Q ) = B' . Hence F has no simple discontinuities in [a,b] 

The last statement of the lemma is now immediate since by theorem 

1.6, every C P-primitive i s C -continuous. _ " 
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LEMMA-5. For n >_ 0 , let F be C P-integrable on [a,b] , and for 
n 

x e [a,b] , let 

x 
G n(x) = (CnP) - / F(t)dt , 

a 

x 
G k(x) = (CkP.) - / G k + 1 ( t ) d t , 0 < k < n - 1 , 

a 

G(x) = G (x) . o 

Then (i) G i s continuous in [a,b] ; 

( i i ) i f F is SC . n-continuous at x , then D G(x) exists and 
n+1 n 

D G(x) = G (x) for 0 < k < [•"-] , and G is (n+2)-smooth at x , n— ik n-zk — — I 

and 0n+2(G;x,x+h) = A n + 1(F;x,h) ; 

( i i i ) i f F i s C -continuous at x , then G, ,., N (x) exists and 
n+1 (n+1) 

Goo(x) = G k ^ f o r 0 — k — n + 1 ' w h e r e G
n + i = F • 

Proof. (i) is immediate since G i s just a C oP-primitive. 

For ( i i ) and ( i i i ) , note that by integration by parts, 

n k 
C n + 1(F;x,x+h) = ( n^'{G(x+h) - G(x) - £ G^x)} , 

h k=l 
(5) 

n k 
C (F;x,x-h) = (n+1iii {G(x-h) - G(x) - I G, (x)} 
n+l (-h) n + 1 k=l k ' k 
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for h =j= 0 with x + h e [a,b] . Hence for n even, say n = 2m , 

(5e) C n + 1(F;x,x+h) - C n + 1(F;x,x-h) 

(2m+l)! m «-2k 

{G(x+h) + G(x-h) - 2 I - ^ r r y G (x)} ; ,2m+l » / • - v - " / - L ( 2k)! "2k1 

h k=l 

and for n odd, say n = 2m + 1 , 

(5o) C n + 1(F;x,x+h) - C n + 1(F;x,x-h) 

„ m ,2k+l 
" tG(x+h> - G(x"h) " 2 X W W » h k-U 

For both cases, i f F i s SC .--continuous at x , then D G(x) exists 
n+1 n 

and D G(x) = G „, (x) for 0 < k < [—] , and G is (n+2)-smooth n—2K. n—2K — — 2 

at x , where [̂ ] = the greatest integer less that ~ + 1 . Further

more, 0n+2(G;x,h) = A n +^(F;x,h) , proving ( i i ) . ( i i i ) follows from the 

equality (5) . 

REMARK. If D G(x) = G 0 1 (x) for 0 < k < [£] , and G i s (n+2)-n -2k n -2k — — 2 

smooth at x , then F i s SC ..-continuous at x . This i s clear since 
n+1 

replacing G (x) by D 0 1 G(x) i n (5e) and (5o) one has that n—2K n—2K 

C n + 1(F;x,x+h) - C n + 1(F;x,x-h) = ̂  h © n + 2 (G;x,h) . 
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LEMMA. 6. For n > 0 , let F be C P-integrable on [a,b] , and 
— n 

SC . -continuous in ]a,b[ , and G be defined as in lemma 5. If n+1 n 
If (a) SC n + 1DF(x) >_ 0 a.e. in [a,b] , 

(b) SC n + 1DF(x) > -*o for x £ ]a,b[ ~ S , S , a scattered set, 

then G i s (n+2)-convex in [a,b] 

Proof. This i s immediate since by lemma 5, ( i i ) , and lemma 4, G satisfies 

a l l the conditions in theorem 1 with n + 2 replacing n 

THEOREM 3. For n >̂  0 , let F be C^-integrable on [a,b] and 

SC .,-continuous in ]a,b[ . If n+1 

(a) SC L 1DF(x) > 0 a.e. i n [a,b] , n+I — 
(b) SC n + 1DF(x) > -oo for x e ]a,b[ ~ S , S scattered, 

(c) F i s C ..-continuous in B [a,b] , 
n+i 

then F i s monotone increasing in B 

Proof. Let G be defined as in lemma 5. Then by lemma 6, G i s (n+2)-

convex in [a,b] , so that by theorem 2, (iv), G^ n + 1^ and hence ^(n+^) 

exists at a l l except a countable set of points. By theorem 2, ( i i ) , 

G, - v i s monotone increasing where i t exists. Thus the condition (c) V.n+1; 
and lemma 5, ( i i i ) imply that F is monotone increasing in B 
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THEOREM 4. For n >_ 0 , let F be CMP-integrable on [a,b] , and 

x p ]a,b[ . If F is SC ..-continuous at x , then F i s SC , o n+1 o n+2 
continuous at x , and o 

* SC ..DF(x ) > SC ,0DF(x ) > SC .0DF(x ) > SC ..DF(x ) . n+1 o — n+2 o — n+2 o — n+1 o 

Proof. Note f i r s t that F i s C^^P-integrable on [a,b] by the 

consistency of the CP-scale. Let, for x e [a,b] , 

3n(x) = (CP) - / F(t)dt , 

3fc(x) = (CfcP) - / G f c + 1(t)dt for 0 <_ k <_ n - 1 , 

x 
H n + l ( x ) " ( C n + l P ) " / F ( t ) d t > 

a 

x 
V x ) = ( Ck P ) " / Hk+l ( t ) d t f o r ° £ k £ n 

a 

Then H. (x) = G, (x) for 0 < k < n and H (x) = (L) - f G (t)dt k+i K — — o ' o 

By lemma (5), ( i i ) , G i s (n+2)-smooth at x , so that H i s (n+3)-
o o o 

smooth at X q by lemma 2. Hence by the remark following lemma 5, F is 

SC ,„-continuous at x . The inequalities * follow from lemma 5 and n+2 o 
lemma 3, completing the proof. 

THEOREM 5. Let D e a sequence of SC^continuous functions in ]a,b[ , 

and each is C^-continuous in a set [a,b] with a,b e B and 

the measure of B i s b - a . Suppose that M^x) M(x) as k <» 
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uniformly in B . Then M is SCn-continuous in ]a,b[ and C^-continuous 

in B . 

Proof. Given s > 0 , choose k such that for a l l x e B , 

|M(x) - M^(x)| < -̂ e . For each c E B , choose 6 > 0 such that 

|Cn(Mk;c,c+h) - M^Cc)! < -|e whenever |h| < 6 with x + h E [a,b] 

Then l-C (M;c,c+h) - C (M, ;c,c+h)| < -̂ e , so that |c (M;c,c+h) - M(c) I < e 1 n n K . 3 n 
whenever |h| < 6 with x + h e [a,b] , proving that M is C^-continuous 

at c 

That M is SC^-continuous at each point c E ]a,b[ is proved 

in a similar way, only replacing ^ ( c ) > M(c) in the above argument by 

Cn(M^;c-h,c) and C^(M;c-h,c) , h now being restricted to c + h E [a,b] 

§4. THE SC P-INTEGRAL. n 

Let X be the real line a the family of a l l half-open intervals, 

W the family of a l l subsets of measure zero. For each positive integer n 

and each lower derivate operator SC D , I i s defined by 
n n 

SC^DFCx) > -» except perhaps for a scattered set of points. We are going 

to consider "point functions" instead of "interval functions", so that by a 

base B in [a,b[ , we mean that B C [a,b] and a,b e B and the measure 

of B is b - a . Throughout this section, we w i l l consider the base 

mapping to be the another extreme case B(A) = the family of a l l bases in A 
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For each interval [a,b[ and each base B in [a,b[ , l e t 

SM^ta.M.B) = {M|M is (^-continuous in B and 

SC -continuous in ]a,b[} n 
Define — — _ 

SC P = (SM.SC D,B,W,I ) . n n n 
Then by theorem 3, and theorem 5, i t i s easy to check that sC nP 
is a derivate system on a , which furthermore satisfies the 
additional axioms (V5), (P6) , (M6), (14) in section 1.5, and 

also (M5') . Therefore, we obtain a SC nP-integral for n = 1,2,3,... , 

a scale of symmetric CP-integrals. It follows from theorem 1.7 that this 

scale is more general than the scale of Burkill's CP-scale in chapter II 

since SM n^ Mn and SC DF(x) > C DF(x) . 
n — n 

As for the CP-scale, we have the consistency theorem for our 

scale. 

THEOREM 6. If f is SC^-integrable on [a,b[ with base B , then f 

i s also SC n +jP-integrable on [a,b [ with base B 

Proof. This i s immediate from theorem 4 and theorem I, 7. 

REMARKS. 

(1) Note that the definitions cf SC^-integral and Burkill's SCP-integral 

(see [7] or section 6 below) have different families C in (I4)-scattered 

sets and countable sets respectively. However, the two integrals are equivalent. 

For, letting M̂  be a P Q-primitive of M , one has SCDM(x) = D2M^(x) 

Hence from the remark by James at the end of [15], the set of points x 

http://SM.SC


65. 

where SCDM(x) = -<» is a G set and, i f at most countable, i t must be a 

scattered. 

(2) Burkill in [7] list e d an integration by parts formula for the SCP-

integral and stated that the proof followed from that given for the CP-

integral in [5]. This i s not true since the proof in [5] used essentially 

the following inequality 

CD(MG)(x) > M(x)G'(x) + CDM(x)G(x) , 

but we do not have a similar inequality for the SCD-derivate. For example, 

le t M(x) = x 2 for x > 0 , 
(-x) * for x < 0 , 

k for x = 0 , where k is any constant, 

and let G(x) = -x . Then 

SC D(MG)(0) = -» £ -k = M(0)G'(0) + (SC^MCO))G(0) . 

Thus, whether the formula for SCP-integral in [7] is true remains an open 

question. B u r k i l l in a recent letter to me agreed with this and said that 

the same point had been made to him by a young Russian mathematician some 

years ago. 

If such an integration by parts formula exists for the SC^P-

integral, then one can use this to define the SC2P-integral instead of 

using the C^P-integral. Then a more general scale would be obtained by 

induction. Such a scale would be useful in application to the Cesaro 

summable trigonometric series. 
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, 1 1 

§5. THE SC P-INTEGRAL AND THE P -INTEGRAL, n 

As we mentioned in the introduction of this chapter, in this section 

we are going to investigate the relation of the P^^-integral and the 

SC nP-integral. 

TiH~X 

By P -integral, we mean the modified symmetric one as i n [15] 

For convenience, we give the definition of i t s major functions here. 

Let f be a function defined almost everywhere in [a,b] , and 

let a^, i = 1,2,3,..., n+1 , be fixed points such that a = a^ < a^ < ... 

a < a ,- = b . A function Q i s called a J , -major function of f n n+1 x n+1 
over (a.) i f l 
(a) Q satisfies the condition (C ,,) i n [a,b] (cf §2); 

n+1 
(b) P^+-j_ Q( x) ̂ .f(x) almost everywhere in [a,b] 

(c) I) +]Q(x) > -oo , x e ] a,b [ «. S , S a scattere< 

(d) Q(a.) =0 for i = 1,2,3,...,n+l . 

THEOREM 7. Let f be SC nP-integrable on [a,b[ with base B . Then 

f i s P n + 1-integrable over (a.,;c) , where a = a 1 < a _ < ... <a < a ,n 

I' 1 2 n n+1 
b , c e [a,b] . Moreover, letting 
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x 
F n(x) = (SCnP) - / f(t) , x e B , 

a 
x 

F k ( x ) = ( C k P ) " / F k + l ( t ) d t ' X ? [ a ' b ] ' ° - k - n " 1 

a 

F = F o , 

one has for a < c < a ,, , s — s+1 

c n+1 
* (-1)S / f ( t ) d n + 1 t = F(c) - I X(c;a )F(a.) , 

(a ±) n i=l 

where X(c;a^) = n (c-a.)/(a.-a.) i s a polynomial in c of degree at 

most n 

Proof. Let M be a SC^F-major function of f on [a,b[ with base B , 

and let 

t, t„ t . x 1 2 n-1 
G(x) = (C P) - / (C.P) - / (C„P) - / ...(C .P) - / M(t )dt dt ....dt.dt. o ' l  4 l  J n—1 ' n n n-± 2. ± a a a a 

Then by lemma 4 and lemma 5, G satisfies conditions (a), (b), (c) in the 

above definition. Hence i f we set 

n+1 
Q(x) = G(x) - I X(x;a )G(a ) , 

i=l 1 

then Q i s a J n +^-major function of f over ( a j ^ • Similarly, a 

SC P-minor function m yields a J , ..-minor function n J n+1 

n+1 
q(x) = g(x) - I X(x;a )g(a.) , 

i=l 1 -

where g i s defined similar to G 
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For e > 0 , i f we choose M , m such that 
n+1 

M(b) - m(b) < e/[l + £ (c;a.)](b-a) , then the corresponding Q , q have 
i=l 1 

l'Q(c) - q(c)| < |G(c) - g(c)| + I |A(c;a.)| |G(a.) - g(a.)| < e . 

Hence, the P^ ^ - i n t e g r a b i l i t y of f follows. 

The equality * follows as above by using the property that 

F R can be uniformly approximated in B by a sequence of SC^P-major or 

minor functions. 

COROLLARY 1. F, - (x) exists for each x i n B and D ,F(x) exists (iU n-1 
for each x e ]a,b[ . Furthermore, F, s = F on B , and D, F = F. 

(n) n k k 
on ]a,b[ for k = 0,1,2,...,n-l , where F , F^ are those in theorem 6. 

Proof. By theorem 1.6, F i s C -continuous i n B and SC -continuous in J n n n 
]a,b[ , so that the required results follow from lemma 5. 

COROLLARY 2. There exists a function which i s P n + 1-integrable on 

[a,b] but not SC^P-integrable on [a,b] 

Proof. This i s similar to that of Cross in [8*] for n = 1 . In 

fact, i f n i s odd, l e t F(x) = x cos for x 4 0 , 

0 for x = 0 ; 

i f n i s even, let F(x) = x sin ̂  for x ={= 0 , 

0 for x = 0 . 
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In either case, let f(x) = F^n+"^'(x) for x =f= 0 , 

0 for x =f= 0 . 

Then D n +^F(x) = f(x) for a l l x , including x = 0 , and as shown by 
T1*T"1 

James in [13] , f i s P -integrable over any interval containing 0 

However f i s not SC^P-integrable over [o,b[ for any b > 0 . For 

otherwise, i t would follow from corollary 1 that F ^ ( 0 ) exists. But 

.not even F ^ ( 0 ) .exists. 

COROLLARY 3. Let f be periodic with period 2b , b > 0 . For 

n >_ 1 , l e t m = [^rp] . Then i f f is SC^P-integrable on 

[-2(m+l)b , 2(n-m)b[ with base B , one has 

O /" . f < t ) d n + l f c " < S Cn P ) " J . f ( t ) d t • (2b) (a i) l-b,b[ 

where (a ±) = (-2(m+l)b , -2mb , -2(m-l)b , -2b, 2b, 4b, 2(n-m)b) 

The proof, exactly similar to that of Cross in [8] for the unsymmetric case, 

i s omitted. 

2 
REMARKS. (i) Skvorcov [36] has pointed out that a function P -integrable 

2 
over two abutting intervals is not necessarily P -integrable over their 

n+1 

union. We give an example to show that P -integral has the same property 

for n >̂  2 . Let F be as defined in corollary 2. Consider the function 

f defined by f(x) = F ( n + 1 ) ( x ) for x e ]0,-] , 0 for x e [—,0] , 
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where i = 2 i f n is odd and i = 1 i f n is even. Then (cf [13]) 

f is P n + 1-integrable over [- — ,0] with P n + 1-primitive G = 0 on 
IT 

[- — ,0] , and P n + 1-integrable over [0,—] with P n + 1 - p r i m i t i v e F on 
ir IT 

• 2 
[0,-] . For n = 1 , i t is well-known (cf [8**]) that f is not P -

TT 
integrable over [-—,—] . We show that i t is also the case for n > 2 

TT TT — 

Suppose, to the contrary, that f is P n + 1-integrable over 

t-^1,—] with Pn+"'"-primitive H . We show that f i r s t H / 1 N (0) and 
IT ir K-i) ,-

then H.,.,. ,(0) exists. Note that on [-̂ -,0] , H-G is a polynomial v.iy,+ TT 

of degree n at most ([13]), and so is H-F on [0,—] . Hence both 
TT 

(H-G).. _(0) and (H-F) . (0) exist. As G . (0) exists, we see \ i / , \1/ ,+ (1/ ,— 
that H. . (0) exists. To see that H,..* ,(0) exists, note f i r s t that v , — ( i j > + 
M-H is (n+l)-convex on [- —,—] (cf. [13]) for any J , -major function 

TT IT n+1 
M of f on [- —,—] , so that D nH(0) exists since H = M - (M-H) . 

TT TT n-1 
In particular, DJI(0) exists, where i = 2 i f n is odd and i = 1 

i f n is even. If i t i s i = 1 , then H...... ,(0) exists since H,.... _(0) 
\l/,+ \ i / , — 

exists. If i t is i = 2 , then H i s smooth at 0 , so that h Q ) + ^ 

exists since (0) exists. Thus, we have proved that both ( H - F ) ^ + 

and H,.... .(0) exist. Then i t follows that F , - v ,(0) exists, a v.l^,+ v.1;,+ 
contradiction, and our proof is hence completed. 

( i i ) Unlike that for p n + 1 - i n t e g r a l , note that our S c
n
p~ 

integral has the "additive" property by theorem 1.3. 

( i i i ) Necessary and sufficient conditions for a function p n + 1 -
n+1 

integrable over two abutting intervals to be P -integrable over their 

union are under consideration. Note also that the comparison to Taylor's 

AP-integral might be interesting (cf. [8**]). 
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§6. THE MZ-INTEGRAL AND THE SCP-INTEGRAL. 

Throughout this section, X , a, B, hi, w i l l be the same as in 

section 4, and once a derivate operator V is chosen, I w i l l be defined 

by J?F(x) > -co except for a countable set of points. We show how to obtain 

using our general theory the MZ-integral of Marchinkiewicz and Zygmund 

[21] and the SCP-integral of Burkill [7], and then prove that they are in 

fact equivalent. 

For each P Q-integrable function M (see section II.1) on 

[a,b] , and for each x e ]a,b[ , let 

„ \ i . . 1 -i • • r I-** M(x-fu) - M(x-u) , I5sM(x) = lim inf — lim i n f J — du , 
h->0+ e-»0+ e 2 U 

and also 
r> \ u • c 1 i • • c M(x+u) - M(a) , BsM(a) = lim inf r- lim inf J du 

h->Of e->0+ e
 U 

„ N , . . _ 1 , . . j- M(b) - M(x-u) , BsM(b) = lim inf — lim inf J — * - du . 
h^0+ e-*0+ e

 U 

These are called the lower Borel derivates. We have 

THEOREM 8. _BsM i s measurable. 

Proof. F i r s t , note that the function <f)(M;x,h,e) = j M ^ x + U ^ ^ M ^ x u^ d u 

e 

is continuous in x . For, by the second mean value theorem (see [29], 

[1 6 ] ) , there exists T with e < T < h such that 
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9 (M;x+Ax,h,E) -9 (M;x ,h,£) 

, T+Ax e+Ax T e+Ax 
= -r-{/ M(x+u)du - / M(x+u)du - / M(x-u)du + / M(x-u)du} 

T e T-Ax e 

^ h+Ax T+Ax h T-Ax 
+ — {/ M(x+u)du - / M(x+u)du - / M(x-u)du + / M(x-u)du} 

h T h-Ax T 

Note that T depends on Ax . However, as the P^-primitive as a point 

function i s continuous in the closed interval concerned, i t is uniformly 

continuous there. Hence each integral in the right hand side of the above 

equality tends to zero with Ax . Hence 9(M;x+Ax,h,e) -> 9(M;x,h,e) 

as Ax -y 0 , proving the continuity of 9 in x 

Now, l e t $(M;x,h) = lim inf 9(M;x,h,e) . Then $ is 

measurable in x since 9 is continuous in e . Furthermore, 

$(M;x,h) i s continuous in h since by simple calculations, 

$(M;x,h+Ah) - f h + A h M(x+u) - M(x^ul d u ^ 0 a s A h ^ 0 . 
h 2 U 

Hence j?s M(x) = lim inf — $(M;x,h) is measurable in x , completing 
h+0+ h 

the proof. 

THEOREM 9. Let B be a base in Ia,b[ and M be a function defined 

on [a,b] such that M i s C--continuous in B and SC -continuous 
h 

in ]a,b[ , and furthermore lim j .̂(x+H,)— M ( x HZju exists ( f i n i t e 
e->0+ e . 

or infinite) for a l l x except perhaps for a countable set of points, 
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h =}= 0 with x + h e [a,b] . If _BsM(x) >_ 0 almost everywhere in ]a,b[ 

and ~JBsM(x) > _°° except for a countable set of points, then M i s 

monotone increasing in B 

Proof. Let be the P o-primitive of M . Then by lemma 30 in [21], 

D^M^Cx) >_ BsM(x) > JBsM(x) except for a countable set of points, where 
_ M1(x+h) + M (x-h) - 2M(x) 
DJ1 (x) = lim sup - . Hence, as a point function, 

1 1 h+0+ h 

M^ is convex in [a,b] by theorem 2, and so M is monotone in B since 

M^'(x) = M(x) for x in B by the C^-continuity of M in B , 

completing the proof. 

Now, we are in a position to define the MZ-integral as well 

as the SCP-integral. For each base B in [a,b[ let SM([a,b[,B) = 

{M|M is C^-continuous in B and SC^-continuous in ]a,b[} , (i.e. the 
— 1 
SM of section 4) and 

SMR([a,b[,B) = {M|M e SM([a,b[,B) and lim / M ( x + U ) ~*("*~^- du 
e->0+ e 

exists (f i n i t e or infinite) except perhaps for a countable set of points} 

Define SCP = (SM, SC^D, B, W,T) , SCPR = (SMR, SC^.B.W,!) , MZ = (SMR, Bg,B,W,T) . 

It i s easy to see that both SCP and SCPR are derivate systems on a 

That MZ i s also a derivate system on a follows easily from theorem 8 

and theorem 9. Thus, we can define the SCP-, SCPR- and MZ-integrals. 

The SCP-integral i s just that of Burkill's in [7], while the MZ-integral 

i s just that of Marcinkiewicz and Zygmund in [21] except that the latter 

was defined by using Lebesgue integrals instead of the P Q-integral. 
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REMARK. It is easy to see that a l l the derivate systems SCP , SCPR 

and MZ satisfy the extra axioms in section I.4> except that SMR([a,b[,B) 

may not contain a l l the functions continuous in [a,b] . However, the 

function to used in the proof of theorem 1.12 belongs to SMR([a,b[>B) 

so that a l l the results in section 1.4 are applicable to the SCP-, SCP^-, 

and MZ-integral. To see that to e SMR([a,b[,B) , we need only show 

that lim f — ^ i ^ L - i i l du exists (finite or infinite) except perhaps 
e-0+ e 

r. . _> t0 

f i n i t e , so that 
w(x+u) — w(x—u) 

w'(x) = +00, so that — 2 ^ — l s positive for small u ; in both 
„ , «. , . f h a(x+u) - ̂ (x-u) , . t cases, we see that lim j — du exists. 

£-0+ £ 2 U 

Now, we establish two lemmas, which w i l l be used to prove the 

main result of this section (i.e. theorem 10 below). 

LEMMA 7. Let M e SMR([a,b[,B) . Then BsM(x) exists 

i f and only i f SC^DM(x) exists.* 

Proof. Let M, be the P -primitive of M . Then i t i s easy to see 1 o r J 

that SC1DM(x) = D M (x) and SC^DM(x) = D~2M (x) and so the conclusion 

follows from lemma 28 in [21], 

LEMMA 8. Let M e SM([a,b[,B) and SC;LDM(x) exist n.e. i n [a,b] . 

Then M e SMR([a,b[,B) . 
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t 
Proof.. Let SC.DM(x ) exist an d let ^(t) = / {M(x +u) - M(x -u)}du 1 o 1 o o o 
For 0 < k < h , 

h M(x +u) - M(x -u) h . 
/ — * = ° — d u - / ^ u 
k 2 U k 2 U 

_ l n.(k.) . r h ] f e M d l l i 
" 2 1 h k + J. 2 Q u ' 

k u 

by integration by parts. By the SC^-continuity of M , ~* 0 

as k + 0+ . For SC.DM(x ) f i n i t e , is bounded for small 
1 o 2. 

( ) u 

u ; for SC^DM(x) = -H» or -» , 2 ^ s °^ constant sign for small 
u 

u . In a l l cases, one sees that 

h . . h M ( X Q + U ) - M ( X Q - U ) 

lim / ^ 2 du exists, so that lim / - du 
k+0+ k u k+0+ k U 

exists ( f i n i t e or i n f i n i t e ) , completing the proof. 

THEOREM 10. The SCP- , SCP - and MZ-integral are a l l equivalent. 

K 

Proof. By lemma 7, one sees that the corollary to theorem 1.12 applies 

to the derivate systems SCPT1(=P) and MZ(=Pn) , so that the SCP -

integral and the MZ-integral are equivalent. To see that they are also 

equivalent to the SCP-integral, note that by theorem 1.7, the SCP-

integral i s more general than the SCP D-integral. It remains to show 

that the MZ-integral i s more general than the SCP-integral. To do 

this, l e t f be a SCP-integrable function. Applying theorem 1.12 

to the derivate system SCP , one obtains for f an appropriate : _1 •• 
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SCP-major function T and an appropriate SCP-minor function t . Then 

by lemma 8 and lemma 7, one sees that T, t are respectively relevant 

MZ-major and minor functions for f , so that i t is MZ-integrable, 

completing the proof. 

We have remarked that the integration by parts formula for 

SCP-integral stated by Burkill in [7] remains unproved. Hence his proof 

of theorem 5.2 in [7] (- the SCP-integral solves the coefficient problem 

for the convergent trigonometric series) breaks down. However, this 

theorem remains true by our theorem 10 since i t has been proved in [21] 

that the MZ-integral solves the coefficient problem. We remark that 

the proof in [21], without using integration by parts but using formal 
2 

multiplication of series (also see James' P -integral), applies to the 

SCP-integral too. 



CHAPTER IV 

AN ACP-INTEGRAL AND A SCALE"OF 
APPROXIMATELY MEAN-CONTINUOUS INTEGRALS. 

Many authors have generalized the continuous classical Perron 

integral to integrals that are approximately continuous; see, for example, 

Bu r k i l l [A], Kubota [19]. It would be nice i f one can generalize the 

Burkill's C^P-integral in the same way. We are only able to do so for 

n = 1 . One of our purpose in this chapter is to obtain such an ACP-

integral, and then using a method due to Bullen in [3] to obtain an 
2 

AP -integral, and prove that they are equivalent in some suitable sense. 

E l l i s [9] has defined a scale of mean-continuous integrals, of 

which the definition i s simpler in the sense that the approximate derivative 

is used for a l l orders of this scale. With the same idea, we w i l l obtain 

a scale of approximately mean-continuous integrals, which i s more general 

than and seems more natural than (§1 below) the scale of E l l i s . 

§1. ON THE MEAN-CONTINUOUS FUNCTIONS. 

We prove that the mean continuity scale of E l l i s i s just Burkill's 

scale of Cesaro continuity (theorem 1 below), which gives a motivation for 

a more natural approximately mean-continuous integral (section 2). 

The GM-integral scale [9] starts from a function integrable 

in the general Denjoy sense (see Saks [30]). E l l i s called such a function 
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1 x+h 
F M -continuous i f — / F(t)dt -»• F(x) as h -> 0 for each x . By 1 h J 

x 

theorem 1 below, this i s just a C^-continuous function, and hence i s 

special Denjoy integrable. This is why we say that the E l l i s integral 

seems somewhat unnatural in the sense that i t starts from the general 

Denjoy integrable functions. 

We recall that the M^-continuity in [9] was defined in the 

same way as the C^-continuity (cf section II.2) except that the ^ n _ j _ ~ 

integral was used instead of the C^P-integral. 

THEOREM 1. A function is M -continuous in an interval i f and only 
n 

i f i t i s C -continuous in the interval. n 

This has been proved by Sargent in [33], page 120. However, 

we give another proof here. 

Proof. Note that the GM̂  ^-integral i s more general than the C^ jP-

integral, so that a C -continuous function is M -continuous. To prove " n n 
the converse, let F be M -continuous in [a,b] . Then F i s GM .-' n n-1 
integrable on [a,b] , and 

x+h n 

— (GM .) - / (x+h-t) n - iF(t)dt = F(x) + o(l) . n n-1 J 

h x 

as h -> 0 . Let 
x 

Fn (x) = (GM ) - / F(t)dt , n-1 n-1 J 

a x 
F k(x) = (GM̂ ) - / F k + 1 ( t ) d t for 0 <_ k <_ n - 2 

a 
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Then, using the integration by parts formula for the GM^-integral, one 

gets that 

-7— 0 7 (GM^) / (x+h-t) " F(t)dt = F o ( x f h ) - F o(x) - J ^ F^) . 
X K—X 

Hence as h -> 0 , 

n 
F (x+h) = F (x) + V F, (x) + o(h ) , where F = F . o o , u. K n k=l 

th It then follows that F i s the n Peano derivative of F . A s o 
F i s continuous, i t follows from lemma 11.1 of James [13], that F o 
i s C -continuous in [a,b] , completing the proof. 

§2. A SCALE OF APPROXIMATELY CONTINUOUS INTEGRALS. 

This scale w i l l be defined inductively. In a manner analogous 

to the definition of the Cn-mean, the M -mean of a function F i s defined 
" n 

to be 

b 
M (F;a,b) = — 2 — • / ( b - t ) n _ 1 F ( t ) d t 

n (b-a) n a 

for any positive integer n , where the integral in the definition of 

M̂ -mean is the general Denjoy integral, and the integral involved in the 

definition of M -mean for n > 2 i s the AM ..P-integral defined below, n — n-1 & 

The function F i s said to be AM -continuous at x i f 
n o 
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applim Mn(F;x,x+h) = F ( X Q ) , 

where "applim" means"approximate l i m i t " (cf Saks [30]). 

A function F i s (ACG) on a set E i f E can be covered 

by a countable sequence of closed sets on each of which F is AC 

(see section II.2). Note that (ACG) i s an inequality property as 

defined i n section 1.1. 

Let X, a, N be as in section 1.4, and for each A e a , let 

B(A) = {a A ' For each positive integer n , and for each A e a l e t 

AMn(A) = AMn(A,a^) = {M|M is AMn-continuous in A} , 

and for each M , and each x , let 

.™,/ s , . • ̂  M(x+h) - M(x) ADM(x) = applim inf —* J— 
h-»0_ 
x+heA 

Let AM P = ( A U N , AD, 8, N, (ACG)) . Then we are going to show that n — 
AMnP i s a derivate system on a , so correspondingly we have an AMnP-

integral for n = 1,2,3,... , thus obtaining a scale of approximately mean 

continuous integrals. The integral in the definition of M̂ -mean for n. >_ 2 

is i n the sense of AM̂  ^P-integral. Thus, in defining the AM^P-integral 

for n > 1 , we assume that AM ,P-integral has been defined with some — n-1 

properties, where the AM oP-integral i s taken to be the general Denjoy 

integral (see remark at the end of this section). 
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We remark that we might define in a similar way another scale 

of integrals starting from the AP-integral of Burkill [4]. However, doing 

this, we are unable to prove the consistency of the scale. 

That AM̂ P i s in fact a derivate system on a follows easily 

from theorem 2 and theorem 3 below. 

THEOREM 2. For n = 1,2,3 i f F is AMn-continuous in [a,b] 

and (ACG) in [a,b] with ADF(x) >_ 0 almost everywhere in [a,b] , then 

F is monotone increasing in [a,b] 

Proof. This follows from the usual proof of monotonicity (cf. the proof 

of theorem II.2) by applying the Baire category theorem, the V i t a l i 

covering theorem and the following lemma. 

LEMMA 1. For n = 1,2,3,..., let F be AM r-continuous in [a,b] and 

monotone increasing in ]a,b[ , then F is monotone increasing and 

continuous in [a,b] 

Proof. F i r s t , we prove that F(a) <_ F(x) for each x e ]a,b] . Suppose 

to the contrary that F(a) > F(x ) for some X q e ]a,b] . Let 

e = F(a) - F(x ) . Then e > 0 and F(a) - F(t) > F(a) - F(x ) > e/2 for o — o 

a l l t e ]a,x o] since F is monotone increasing in ]a,b[ . Hence for 

each x e ]a,x o] , 
x 

M (F;a,x) = — (AM ,P) / (x-t) n - J-F(t) dt n . sn n-i J 

(x-a) a 
x 1 

< — (AM P) - / (x-t) n - J"(F(a) - e/2)dt = F(a) - e/2 , , 
x-a) a 
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so that applim M (F;a,x) <_ F(a) - e/2 < F(a) , a contradiction of the 
x->a+ 

fact that F i s AM -continuous at a , 
n 

Similarly, one can prove that F(b) >_F(x) for each x e [a,bl , 

and hence F i s monotone increasing i n Ia,bJ 

To show that F is continuous in [a,b] , suppose to the 

contrary that F is not continuous at X q for some X q e [a,b] . 

Note that F(x +) and F(x -) exist (only one of them exists i f o o 
X q = a or b) since F is monotone in [a,b] . Again, by the 

monotonicity, either F ( X q - ) < F ( X q ) or F ( X
Q ) K F ( X

D + ) • Suppose that 

F(x ) < F(x +) , and let T = F(x l) - F(x ) > 0 . Then by a similar o o o o 
calculation to the one above, we have 

applim M N (F;x o,x) > F ( X q ) + T/2 > F ( X Q ) , 
x+x0+ 

a contradiction. If ^ C X
Q ) > F C X

O - ) ,.a similar argument can be given. 

Thus F i s continuous at each point of [a,b] 

Note that in the above arguments, we use the •'.;•>>=•?' 

property that i f f., f. are both AM .P-integrable with f, < f„ , 
1 2 n—1 1 — 2 

then J f ^ <_ jf^ ' Thus, the proof of this lemma is completed by the 

following theorem, which we prove by induction. 
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THEOREM (<^n) Let f 1 , f 2 be AM nP-integrable on Ia,b[ and f £ f 2 

almost everywhere i n [a,b] . Then 

b b 
(AM P) - / f(t)dt < (AM P) - / f(t)dt . n = 0,1,2,3,... . 

a a 

Proof. The assertion i s true for n = 0 , since the AM oP-integral i s 

just the general Denjoy integral. Suppose that the assertion i s true for 

n = k - l , k > _ l . Then the assertion is also true for n = k by the 

definition of AM P-integral, and the proof is then completed by induction. 

THEOREM 3. For n = 1,2,3,... , let 

continuous functions such that F, ->• F 
k 

F i s AM -continuous, n 

Proof. We only prove i t for n = 1 . 

a similar proof can be given. 

{F, } be a sequence of AM -k ^ n 
uniformly i n Ia,b] . Then 

For n > 1 , using Theorem (>_ ,n-l) , 

Let c e Ia,b] , and given e > 0 , choose k so that 

|F k(x) - F(x)| < -je for a l l x in Ia,b] . Then by theorem (£,0) , 

we have iM^F ^ C j C+h) - M1CF;c,c+h) | < - J E 

i f h > 0 with c + h e [a,b] . As F^ is AM^-continuous at c , 

the set E^ of points x for which |M^(FkJC,x) - F]j^c) I > "3 s 

has zero density at c . For each x ^ E 1 and x near c , we have 
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|M1(F;c,x) - F(c) | 

<_ ^ ( F j c . x ) - M 1(F k;c,x)| + ^ ( F ^ c ^ ) - \Cc) | < e . 

As E is arbitrary, we see that F i s AM^-continuous at c , completing 

the proof. 

The general properties of our AM nP-integral follow from the 

general theory in Chapter I. In addition we prove the consistency of 

this scale. 

THEOREM 4. If n > 1 then an AM ..P-integrable function i s also 
— n-1 

AM^P-integrable and two integrals are equal. 

Proof. For n = 1 , let f be AM QP-integrable with primitive F 

Then F being continuous i s AM^-continuous. It i s then easy to see 

that F i s both an AM^P-major and -minor function of f and the 

proof is then completed. 

Now, suppose that i t i s true for n = k , k >_ 1 . We prove 

that i t i s true for n = k + 1 . To do this, by theorem 1.7, i t suffices 

to show that i f F is AM^-continuous, then F i s AM^+^-continuous. 

As F Is AM^-continuous, i t i s AM̂  ^P-integrable and hence i t is 

P-integrable and two integrals are equal by induction hypotheses. 

The AM^^-continuity of F then follows by applying the integration by 

parts formula, which we w i l l prove below, (Theorem 5). 
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THEOREM 5. Let F(x) = (AM P) - / f(t)dt , and 
a 

G (x) = / / / ... / g(t )dt dt ... dt_dt. , for x e [a,b] n J J J J n n n-1 2 1 a a a a 

where g i s continuous and of bounded variation. Then fG i s AM P-
n n 

integrable over [a,b] and 

B 8 8 
/ (fG n)(t)dt = [FG] - J FG n_ 1Ct)dt 
a a a 

for a < a < 8 < b . 

Proof. We only prove i t for n = 1 . The general case can then be 

proved by induction. 

Without loss of generality, we suppose that g (and hence G^) 

is non-negative in Ia,b] . Let M be an AM^P-major function of f 

on Ia,b{ , we are going to show that MĜ  i s an AM^P-major function 

of Fg + fG^ . To do this, we have to show that MĜ  i s AM^-continuous, 

(ACG) i n Ia,bJ and ADCMG^ >_ Fg + fG 1 almost everywhere in Ja,b] 

That MĜ  has the last two properties i s t r i v i a l . We prove that MĜ  

i s AM^-continuous as follows. 

It i s clear that MĜ  i s AM oP-integrable. Using the integral 

tion by parts formula for the AM P-integral, we have 



. x+h. x+h x+h 
M1(MG1;x,x+h) = ± / MG1 = £ l O y ^ C t ) ! F x g J , 

t 
where F (t) = J M(u)du . Hence 

x 

x+h 
M1(MG1;x,x+h) = £ Fx(x+h)G](x+h) - | J F x g . 

x 

As G^ i s continuous and M i s AM^-continuous, one has 

applim f F (x+h)GXx+h) = M(x)G, (x) . 
h-K) h X 1 1 

± x+h 
F g i s continuous so that — J F g -* F (x)g(x) = 0 as h -> 0 
X ft. X X 

X 

Hence applim M1(MGn;x,x+h) = M(x)G 1(x) + 0 = M(x)G n(x) , proving 
h+0 

that MG^ i s AM^-continuous at x 

A s i m i l a r argument f o r an AM P-minor function proves that 
3 3 

Fg + f G 1 i s AMjP-integrable and / (Fg+fGj) = FGj 

Now, by theorem 1.6, F i s AM^-continuous i n [a,bj , so 

that F i s general Denjoy integrable, and hence so i s Fg . Hence 

Fg i s AM-jP-integrable, so that f G 1 = (Fg + f G ^ - Fg i s AM.jP-

int e g r a b l e , by theorem 1.1. "Furthermore, 

3 3 3 
/ fG^ = FGjj - / Fg , completing the proof, 
a a a 

http://AM.jP-
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THEOREM 6. The AM nP-integral is more general than the ©^-integral 

of E l l i s i n [9]. 

Proof. It i s true for n = 0 , from the definition. Suppose that 

i t i s true for n = k , k > 0 . Then we prove that i t i s true for 

n = k + 1 . To this end, let f be GM^^-integrable. Then there 

exists a M^^-continuous (ACG) function F such that ADF = f 

almost everywhere. Thus by the induction hypotheses, F is AM̂ P-

integrable and hence AM^^-continuous. Hence, i t is easy to see that 

F serves as both AM^^P-major and -minor function of f , and hence 

f is AM^-jP-integrable and (AM^P) - Jf = (GM^) - / f , completing 

the proof. 

We end this section by the following remarks. 

REMARKS. (i) Instead of starting from the general Denjoy integral, 

we can start from the AP-integral, where AP is a derivate system 

defined by AP = ($°, AD, B, W, (ACG)) , where M° is the legitimate 

mapping defined i n section II.1, i.e. M° (A) = {M|M is continuous in 

A} . However, one can prove that i n fact this AP-integral is equiva

lent to the general Denjoy integral. 

Cii) For n = 1,2,3,,.. , l e t M^A) = {M|M is M^continuous 

in A} , and l e t M P = {W1, AD, 8, N. (ACG)} . Then MP is a ' n — ' n 

derivate system. The M^P-integral can be proved to be equivalent to 

E l l i s GM n~integral, which was defined by a descriptive method of 

Denjoy's. 
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§3. AN ACP-INTEGRAL AND AN AP ̂ -INTEGRAL. 

For each, general Denjoy integrable function F , l e t 

M (F;x,x+h) - M(x) 
ACD F(x) = applim inf — 

h+0 h / 2 

and l e t I be the inequality property defined by ACD F(x) > 

for a l l x . Let ACP = (AM1, ACD, 8, W, T) , where AM 1 , B, W 

are defined as in section 2. Then, i t can be checked that ACP is 

a derivate system on a . This ACP-integral is just a special case 

of Ridder's C P ^ - i n t e g r a l in {27]. We w i l l prove that the ACP-inte-
2 

gral i s equivalent to an AP -integral defined below in the sense of 

theorem 6 below. 

2 

Before defining the AP -integral, we prove a lemma. 

Let F be function such that ADF(x) (= applim F ( x + h ) —F(x). exists. 
i i * - A T\ s \ -,. . c FCx+h) - F(x) - hADF(x) , and define AD- F(x) = applim inf — L , and 

h-H) h 
similarly for AD2 F(x) . 

LEMMA 2. Let F be continuous such that ADF(x) exists for each x 

in [a,b] and AD2F(x) >_ 0 in [a,b] . Then F is convex in [a,b] 

1 2 
Proof. Let Gn(x) = F( x) + x for x in [a,b] , n = 1,2,3,... 
Then AD„G(x) = AD_F(x) + — > 0 . We prove that G is convex in / n z n n 

fa,b] , so that F , the limit of Ĝ  , i s also convex in [a,b] , 

and the proof w i l l then complete . 
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To show that G i s convex in [a,b] , suppose to the contrary n 
that G i s not convex in [a,b] . Then there exists an interval n 
[a,B] C [a,b] such that the function 

(B-x)G (a) - (x-a)G (B) 
H(x) = G ( x ) ~ " n 

n B-a 

is sometimes positive in [a,B] . As H(a) = H(B) = 0 , the continuous 

function H assumes a positive maximum in ]a,Bt at X q say. Then 

we have H ( X q ) >_ H(X) for each x e [a»B] and A D H ( X Q ) =0 , so 

that A D 2 H ( x Q ) <_ 0 , 

which contradicts the fact that A D „ H ( X ) = A D . G (x ) > 0 
2 o L n o 

Now, using the modified approach to the P n-integrals used 
2 

in [3], we define an AP -integral. Let f be a function defined on 
2 

[a,b] . Then a function M continuous in [a,b] is called an AP -

major function of f on [a,b] i f 

(a) ADM(x) exists and i s f i n i t e for each x in [a,b] ; 

(b) AD̂ ,M(x) >̂  f (x) almost everywhere in [a,b] ; 

(c) AD̂ ,M(x) > - o o for each x in [a,b] ; 

(d) ADM(a) = 0 = M(a) . 
2 

If -m i s an AP -major function of -f on [a,b] , then m i s called 
2 

an AP -minor function of f on [a,b] 
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2 2 LEMMA 3. Let M be an AP -major function and m an AP -minor 

function of f on [a,b] . Then M-m is non-negative and convex 

on [a,b] 

Proof. Let G = M-m . Then G is continuous in [a,b] , ADG(x) 

exists and i s f i n i t e for each x in [a,b] , AD^GCx) >_ 0 for 

x e [a,b] ~ E , where E is of measure zero, and AD^GCx) > -» for each 

x e [a,b] 

Let E n be a G. set of measure zero with E C E. C [a,b] , I o x 

and let u> be the function used in the proof of theorem 1.12 with E/4 

replacing e/b-a , and write 

x 
* (x) = (L) / <o(t)dt ; 

a 
then if»'(x) = (JJ(X) , 1 S continuous, ADiJ/ (x) = ip'(x) 

£ £ £ £ 

exists and is f i n i t e for each x , AD^if^Cx) = o)'(x) >_ 0 , 

AD^^g (x) = +50 for each x £ E , and 0 <_ ̂ e ( x ) JS e 

For each E = ~ , write = i|/ , and define G = G + 
h n £ n n 

Then by lemma 2, Ĝ  i s convex in [a,b] , so that the lim i t function 

G i s convex in [a,b] . That M-m i s non-negative follows from the 

convexity and the conditions M(a) - m(a) = 0 = ADM(a) - ADm(a) , 

completing the proof. 
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2 2 In ease that f has both AP -major functions M , and AP -

minor functions m on [a,b] , and sup m(b) = inf M(b) f +j° ,. we 
2 m M 

say that f i s AP -integrable on [a,b] , and the common value, denoted 
2 b 2 by (AP ) - / f(t)dt , i s called the AP -integral of f on [a,b] 

a 2 

It follows from lemma 3, that i f f i s AP -integrable on [a,b] , so 

is on each [c,d] C. [a,b] 

THEOREM 6. f is ACP-integrable on [a,b] i f and only i f f i s 
2 2 X 

AP -integrable on [a,b] . Furthermore, i f F(x) = (AP ) - / f(t)dt , 
x a 

then ADF(x) exists and ADF(x) = (ACP) - / f(t)dt , 

x u 
F(x) = (P) - / (ACP) - / f(t)dt du . 

a a 

Proof. We w i l l only prove the f i r s t assertion, since the proof of the 

last one being similar to that i n section III.5. 

(i) Suppose that f i s ACP-integrable on [a,b] . Let M 

be an ACP-major function of f on [a,b] , and 

x 
G(x) = (P) - / M(t)dt 

a 

Then G i s continuous on [a,b] with G(a) = 0 and ADG(x) = M(x) , 
2 

ADG(a) = M(a) = 0 , AD_2G(x) = ACDM(x) , so that G i s an AP -major 
function of f on [a,b] . A similar result holds for minor functions, 

2 
and the AP -integrability of f follows. 
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( i i ) Suppose that f i s AP -integrable on [a,b] . Let G 
2 

be an AP -major function of f on [a,b] . Then ADG(x) exists 

and i s f i n i t e on [a,b] , so that ADG(x) is Denjoy integrable with 

G as a primitive. Furthermore, ADG(a) = 0 , ADG is AC^-continuous 

in [a,b] , and ACD (ADG) (x) = AD2G(x) , so that ADG is an ACP-major 

function of f on [a,b] . A similar argument for the minor functions 

completes the proof. 
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