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ABSTRACT

In this paper we present a theory of cylinder méasures
from the viewpoint of inverse systems of measure spaces. Specificaliy,
we conéider the problem of finding limits for the inverse system of

‘measure spaces determinéd by a cylinder measure ﬁ over a vector'
space‘ X .
h For any subspace £ of the algebraic dual X* such that
(X,8) 1is a dual pair, we establish conditions on ﬂ which ensure
tﬁe existence of a limit measure on Q' .

For any regular £opology G on @ ,_finer than the topology
of pointwise convergence, we give a necessary and sufficient condition
on y - for it to have a limit measure on Q Radon With respect to G

We introduce.the concept of a weighted system in a locally

" convex space. Whep X is a ﬁausdorff, locally convex épace, and . Q
'is the topologicai dual of X , we use this concept in defi§ing
further conditions under which .will have a limit measure on ;

b

h respect to G .

cr

Radon wi
We apply our theory to the study of cylinder measures over
Hilbertian sﬁaces and lp-spaces, obtaining significant extensions

and clarifications of many previously known results.



iid.

TABLE OF CONTENTS

Pages
INTRODUCTION 1
CHAPTER 0: PRELIMINARIES 3
1. Set-theoretic Notation 3
2. Outer Measures and Integrals 4
3. Radon Measures 6
4. Induced Radon Measures 6
CHAPTER I: CYLINDER MEASURES OVER VECTOR SPACES 9
1. Inverse Systems of Measure Spaces 9
2, Cylinder Measures over Vector Spaces 16
3. Non-topological Limit Measures 20
4, Radon Limit Measures : A 33
5. Finite Cylinder Measures 45
CHAPTER II: CYLINDER MEASURES OVER TOPOLOGICAL VECTOR SPACES 52
1. Notation : 52
2. E-tight Cylinder Measures 54
3. Limits of Continuous Cylinder Measures 64
4. Induced Cylinder Measures ' 74
CHAPTER III: APPLICATIONS o . 77
1. Preliminaries ' : 77
2. Hilbertian Spaces . ' 82
3. Nuclear Spaces , 94
5. #&P-spaces. - 101
APPENDIX: ' : 114
1. Special Measures on Finite-dimensional spaces 114
2. Positive-definite Functions on Vector Spaces 126
3. CM-spaces 133
4, Examples : 144

BIBLIOGRAPHY: 153



iv.

ACKNOWLEDGEMENTS

I wish to thank Dr. Sion for his invaluable guidance
throughout the writing of this thesis. I wish to thank also
Dr. Greenwood and Dr} Scheffer for their helpful suggestions. Finally,
I would like to thank Miss Barbara Kilbray for her accurate typing of

this thesis.



~ INTRODUCTION

Cylinder measures were first introduced independently by

I.M. Gelfand (Generalized random processes, [10]) and K. Ito (Sta-
tionary random distributions [15]) as a more-general'kind of stochastic
process.(J. Doob [7]), and arise naturally in probability theory when
one defines a stochastic integral ([4] p. 137, [7] p. 426, [15] p. 211).
On the ogher hand, the demands of theoreti;al physicé (in éarticular,
‘quantum field theory and statistical mechanics) have led to a considerable
interest in the theory of integration over function spaces ([13],
I.M. Gelfand and, A.M, Yaglom [12], I. Segal [43]), where the integrals
considered are defined with respect to some cylindef measure (e.g. as
in L. Gross [13] p. 53-54). |

In the study of cylinder measures researchers have concen-
trated on two main approaches: in oné, a cylinder measure is viewed
as a‘lineaf map on a vector space into the space of measurable functions
on some probability space (Gélfand [10], Ito [15], Gelfand and Vilenkin
[11] Ch. IV , FerniQue [9j); in the other, it is vigwed as a set
function on a family of cylinder sets of a vector space § (Minlos
[25], Gelfand and Vilenkin [11] Ch. IV, Prohorov [33], Badrikian [1],
L. Schwartz [{39]). Inherent in.both approaches is the notion of an
inverse (or projéctive) system of measure spaces ([25] p. 293, [11]

p. 309, [33] p. 409, [1] p. 2, [39] p. 832, [9] p. 34).



In this thesis we view a cylinder meaSuré as an inverse system
of measure spaces indexed by the finite dimensional subspaces of a
vector space X . Moreo#ef, we do so without any a priori choice of
the "target" space §Q on which the limit measure is to live. The
basic problem of finding a limit of the system on a space § of linear
.functionals is then analyzed with variable & in ChapterlI. The
key idea there is to examine the measure theoretic size of £ in
relation to the algebraic dual X* . To this end the notion of
”almost”.sequential maximality is introduced.

Next, in Chapter II, we consider the more standard problem of
finding a Radon limit méasure on @ when X 1s a topological vector
space and § 1is its topological dual. When X 1is Hausdorff and
locaily convex, by introducing the concept of a weighted system in X ,
we establish a condition for the existence of such a Radon limit in
terms df the ﬁotion of continuity with respect to a weighted system.

In Chapter III we aﬁply the theory of Chapter II to the
study of cylinder measﬁres over Hilbertian, nuclear, and‘ 2P~spaces,
thereby extending and clarifying several previously known results.

In the appendix we 'establish mainly technical results used

in the proofs of Chapter III and present several counter—examples.



CHAPTER 0

PRELIMINARIES

1. Set-theoretic Notation.

In this work we shall use the following notation..

(1) @ is the empty set.
For any sets A and B ,
A~B=1{xeA:x¢B} .
w is the set of finite ordinals.
R is the field of real numbers.
RN={teR:t>0)
¢ is the field of complex numbers. .

In proofs we shall abbreviate "such that" to "s.t."

(2) For any set X and familyb  of subsets of X ,

YH= v B, [[H= 0 u ,
HeH HeH

P(H) = {H'e H : H' 1is countable, disjoint, and ||H' = ||H} .
For any AcX ,

HlA={HnA: HeH} .
{ is a compact family iff for any H'< H ,

if ACH'. is finite => f 4 ¢ , then MH' + 0 .



For any topology G on X ,

K(G)_='{K C X : K is closed and compact in G} .

(3) For any set X and A ¢ X ,
lA :xe X~ 1e€ if x e A E
0e€ if xe X~ A .
For any f : X » f s, BCY
flA: xe A+ £f(x) e Y |,
flA] = {f(x) : x ¢ A} ,
f7[B] = {x¢e X : £(x) ¢ B} .

For any sets X and Y, Ig¢XxY ,xeX,ye¥Y ,

{y e Y : (xy) ¢ I}

H
il

{x e X : (X,Y)-e 1} .

=~
[

2. Outer Measures and Integrals.

Our measure-theoretic approach is essentially that of

Caratheodory, as given by M. Sion in [44] and [45].

(1) For any set X and Caratheodory measure n on X ,
Mn is the family of n-measurable sets.

n is an A-outer measure iff Ac;Mn , and for any Ac¢c X ,
(&) = inf{n(A") : AcA' cA}

n is an outer measure iff n d1s aan M -outer measure.
n

Throughout this work all measures considered will be outer measures.

P



n is the Caratheodory measure on X generated by 1 and A
iff

A is a family of subsets of X with @ ¢ A ,

T:A ~ R+ with vT(@) =0 , and for any B& X ,

n(B) = inf{ ¢ <(H) : He A is countable, B C:[JH} .
" Hefl -
(X,n) is a measure space iff X 1s a set and n 1is an outer

measure on X
(2) Integration.

We observe that for any measure space (X,n) , P(Mn) is directed
by refinement.
In general, we shall be considering complex-valued functions on X |,
and therefore also complex-valued integrals. However, we point out that

+
for any n-measurable f : X > R ,

]

lim £  (inf f[B])'n(B)

f fa
n PeP(Mn) BeP

1l

1im ' (sup LB *'n(®) .
PeP(Mn) BeP ’

Further, for.any f : X =» R+ , the outer integral

fﬁm = 1lim I (sup £[B])"n(B)
. PeP(M ) BeP

is a well-defined point in R U {=} .



(3) Raddn Measures

In this paper, many of the measures we consider will in
fact be Radon measures. We éive the relevant definitions below.

For any set X and topology G on X ,

n is a G-Radon measure on X iff

(i) n 1is a G-outer measure on X ,

(11) K e K(G) => n(K) <=. ,
and for every G ¢ G ,

. (iii) n(G) = sup{n() : K= G, K e K@GY .

For any G-Radén measure n on X ,

supp n = support of n o .

(4) Induced Raddn Measures

Let Y be an abstract space. FYor any finite measure space
(X,n) and T : X->Y ,
Tin] 1is thevCaratheodory measure on Y generated by
-1 : -1
noT and {AcY : T [A] ¢ Mn} .

We shall use the following lemmas.
Lemmas
(1) TFor any A ¢ M

T{n] °’

Tla] e M and therefore T[n](4) = n(T-l.[A]). .



(2) For any space Z and U : Y =+ Z

U[T[n]] = (U o T)[n]

(3) If X and Y are topological spaces, T is continuous, and n

is Raddn, then T[n] is Raddn.

Proof of Lemma 4.1. Let

A= facy : T Al e M)

First we note that for all A ¢ A
-1
T[n](A) = n(T "[AD

Let A ¢ MT . Since A is a o-field and T[{n] is an .

[n]
A-outer measure, there exists A' ¢ A s.t.

AcA' and T[nl(A) = T[nl(a")

If T[nl](A) = 0 then

(1) 0 < n(r A < n@ AT

T[n](A") =0
In general, since T[n](Y) < »
T[nl(A" ~A) =0

and therefore by (1),

1

n(TYAY A1) =0 and TV

A.' - A € M
[ ]

1

A = rhar) < T A <Al e M

The second assertion now follows immediately from the fact that

TnljA=n., 17" . B



Proof of Lemma 4.2. We need only observe that, by 4.1 above,

Bz (UL.D B e Mn} ={3cz:U[B] ¢ MT[H]} ’

and for any Bc Z s.t. (U °T)—l[B] € Mn s

n (U . OB = i ED . i

Proof of Lemma 4.3. Let A ¢ MT[n] and € > 0 ., By Lemma 4.1,

~1
T "[A]l e M s
: n
and therefore, since n is a finite Radén measure, there

1

exists a compact K c T [A] s.t.

A A - n®) < e

Then T[K] ¢ A is compact and

Tln](A) - Tl (®) < n(@ (A = n(®) < e

Hence, since ¢ > 0 was arbitrary,
(1) T[nl(A) = sup{T[nl(C) : CCc A is compact}
Since TIn] is finite it then also follows that

T[n](A).= inf {T[n](G) : G :>A  is open} ,
and since T[n] 4is an outer measure we therefore conclude
that for all BE Y ,
(2) TInl(B) = inf {T[n](G) : G DB is open}

consequently T[n] is Raddn. i



CHAPTER I

CYLINDER MEASURES OVER VECTOR SPACES

As indicated in the introduction, we shall treat cylinder
measures as being special inverse systems of measure spaces (Choksi
[6]). 1In the following section we introduce the basic notions and

results that we shall require about such systems.

1. 1Inverse Systems of Measure Spaces.

Throughout this section,
F is an index set directed by a relation <
For any E e F |

(XE,UE) is a measure space,

For any E and F in F with E< F ,
Y ; XF +_XE is surjective,
with

r. . being the identity map.

Ko jacadd



1.1

oy

(2)

10.

Definitions

X ) is an inverse system of measure spaces relative

F* VP reF

to the maps rE,F s

iff, for any E,F , and -G in F with E < F < G

>

“E,6 = 'E,F ° 'F,¢ °

and, for all A ¢ My

-1
rE,F[A] £ MF ,

ip (g plAD = up(®)

Let be an inverse system of measure spaces relative
g vp)per | 7 easure sp

to the maps rE,F

If § dis a set, and for each F e F ,

Py Q - XF is surjective, then, we call (Q,&) a

limit relative to the maps pF of the given inverse system of

measure spaces, 1ff for each E and F in F with E < F

P~ g ° Pr

and,

§ 1s an outer measure on § such that for all A ¢ ME R
-1 .
pE [A] € M bl
E(pLTTAD) = u(A)
E E

)

For the rest of this section we assume that X_.,u
F>"F FeF

is an inverse system of measure spaces relative to the maps e ¢
3
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1.2 Definitions

For any set @ , and surjective maps Py Q > XF such

that for any E and F in F with E < F

3

Pg = "E,F ° Pr >

@) Cyl@,p) = {pp [A] : FeF, e}

@) (@) ¢ by [A] € Cyl(2,p) > up(a) ¢ K,

(3) nQ p is the Caratheodory measure on § generated by
H
. 1. - and Cy1(Q,p)
B Q,p yl(e.p
When there can be no ambiguity we shall omit the subscripts
Q and p .
Remarks

The following assertions are readily established. (Choksi

[6], Mallory and Sion [23]).

(1) Cyl(Q,p) is é field.

tZ) T is well-defined and is finitely additive on Cy1l(Q,p)
(3) Cyl(a,p) < Mg -

(4) " (2,n) 4is a limit relative to the maps Pp of the given

inverse system of measure spaces iff

n|Cyl(Q,p) =1 .

(5) There exists an outer measure £ on such that (R,£8) .

is a limit relative to the maps of the given inverse system

Pp

of measure spaces <=>
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T is countably additive, in which case n dis such a measure.

We now suppose that

(Q,m= =) is a limit relative to the maps p. ,
2, F
Qc o,

and for each F e F ,

PF = pF]Q is surjective.

We shall be interested in determining when (Q,nQ p) itself
bl

is a limit relative to the maps Pp

1.3 Lemmas.

With the above notation and hypotheses,

(1) (Q,n ) is a limit relative to the maps Pp of the given

&
inverse system of measure spaces iff

n=—(A) = n§~5(x'n Q) for éll A e CJ;(§;5> .

(2) For any F'< F , let
A(F') be the set of all f & § such that there does
not exist g e Q Qith
E%(g) = Ef(f) for every F ¢ F'

If, for every {F_}

< F with F < F for each n e w
n’ new n

n+1l
nﬁiE(A({Fn}new)) =0 ,
then

”5,5(4:), = ”E,E(A N Q) for all A e Cyl(Q,p)
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Proofs 1.

Let
Cyl(e,p) = Cyl, Cyl(®,p) = Cyl ,
T T TR
n—ng’p,n-nﬁ,g
1.3.1 Since the maps P, are surjective, for each A in Cyl ,

there exists a unique A e C;i-.s.t.
A=AAQ
Then,
A e Cy& + A ¢ C;I is bijective
and |
T(A) = T(A) for all A e Cyl
Hence, for any B n Q ,

nBAQ = inf{ ¥ T(H) : Hc Cyl is countable,

]

inf{ » t(H) : Hc Cyl is countable, B A 0 ¢ ||H}
HeH ‘

n(B A Q)
Consequently, if (9,n) dis a limit, then, by Remark 1.2.4., for

any A e Cyl ,

nAa 2 =) = 1(4) = (&) =)
On the other hand, if

;(X) = E(K A Q) for all A e Cyl R
then, again by Remark 1.2.4., for any A ¢ Cyl s

n) = nAn 2 =n®) =@ =@ ,

and therefore (Q,n) 1is a limit.
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.3.2. For any subfamily F' of F ; let

GI(F') = (o, [B] : Fe F', Bei) .
We shall show that for any A e Cyl there exists A'c;~§ s.t.
n(A') =0 and n(A " A) =nlAna Q) .
In which case,
n(A) =n(A " A") +n(Aa A) =n(A " A) =n@ana Q)
and the lemma follows.
For each n e w , let Hn<: Cyl be countable with

Anec|H and T T <n(Aa Q) +1/n .

HeH
n

For each n ¢ w , choose countable Fnt: F with

(1) {A} v Hn c Cyl(Fn)

Since (X, u.) is an inverse system of measure spaces relative
F, F' FeF

to the maps , we may further assume that

'E,F

2) Fn is a sequence { n,j}jew in F with 3 < n, 441

~for each jew .

Let
An = A(Fn)
and
A'' = U A
- n
new

Since fﬁ(An) 0 for every new , then

(3). n@'y =0 .
Let new . For each f e A~ An there exists g e @ s.t.

PF(g) = pF(f) for all T ¢ Fn



In particular, by (1),
g e A
. , —1 —1
Hence, for some H ¢ H , with H = p.  [p. [H]]
n G G
for some G e F
n

g eH |,

and consequently,

"

£ e oy [pg(D)] = oy [py(8)] < b [pg[H1] = H

It follows that

-

AT A C [_JHn
and therefore

(%) n(a T A) <nan @)+ 1/n
Since Anc: Q~ Q for each n ¢ w s
A'e 27 Q
Hence
AAQec AT A,
and therefore, by (4), for each n ¢ w ,
nAAQ) <nA”A) <A T A) <n(An Q) +1/n .
Conéequently,

nAan Q) =n(A "~ A")

15.
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2. Cylinder Measures over Vector Spaces..

We shall view a cylinder measure over a vector space X as
being.an inverse system of measure spaces whose indexing set is the family
of finite dimensional subspaces of X

In this paper we shall consider only complex vector spaces, and

we shall hereafter refer to them simply as veéctor spaces. By the term

°

subspace we shall always mean vector subspace.

We note that if F is a finite-dimensional vector space, -then
there is a unique Hausdorff topology on F wunder which it is locally
convex (the Euclidean topology). Since this.is the only topology on
F that we shall ever consider, explicit reference to it is hereafter
omitted,

Throughout the remainder of this work, we shall use the following
notation,

For any vector space X

X is the set of linear functionals on X to ¢ s
A is the topology on X* of pointwise convergence,
For any Ac X ,

o . *
Al ={feX : |f&x)] <1 for all x e A} .

FX is the family of finite-dimensional subspaces of X
directed by € . When there can be no ambiguity we

shall omit the subscript X .

For any subspaces E and F of X with ECF ,
T : F - E is the restriction map,
E,F

i.e, for all f e F

- = £|®
lE,F(f) LIL .
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In what follows, E and F will always denote finite-dimen-
sional vector spaces.
For any subspace Q of X R

(X,9) 1is a dual pair iff ro oyl is surjective for
>

every F ¢ F
Remark.

With the viewpoint of inverse systems discussed in the

preceeding section, taking FX as our index set and letting

XF =F for each F ¢ FX R

we note that, for any E , F and G in F, with EcF G ,

X

the restriction map r is surjective and continuous,

E,F
and

T = r o rF,G

Thus, we shall make the following definition.
2.1 Definition.

(1) " Let "X be a vector space.
p is a cylinder measure over X

iff

uti:FefF~> bp o @ Radén measure on F

is such that

(F ’UF)FQF is an inverse system of measure spaces relative

to the restriction maps r
E,F

C g
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(2) v is a cylinder measure iff 1y - is a cylinder measure over

some vector space X

Remark.

Let X be a vector space. 1If

s,

kS

u:FeF->u, , afinite Raddn measure on* F

F
then, by §0.4,

u is a cylinder measure over X iff for any

E and F in F with ECc F ,
Mg = Ty plugl

oL
w

"Let Q Dbe any subspace of X . For any E and F din F
with E¢c F ,

TE,X

Q= rppo (p gl .

Hence, when (X,Q) is a dual pair, the viewpoint of Definition

1.1.2 applies, with

Py = | for each E ¢ F

“E,X

We shall therefore make the following definition.

2.2 Definition.

Let X be a vector space, g4 a cylinder measure over X

and Q@ Dbe-a subspace of X“ such that (X,R) is a dual pair.
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For any outer measure § on §
£ is a limit measure of u on § iff
(Q,8) 1is a limit relative to the restriction maps

8 of the inverse system of measure spaces (F“3UF)

', X FeF

Remarks.

From the theory of inverse systems of measure spaces we know
several conditions under which we can put a limit measure on the pro-
jective limit set L , where

L={¢e T E : g = (

T ) , Ec F} .
ep BT

e

Since there exists a set isomorphism
r+X -»1L
such that

rF,X(f) = (r(f))F for all £ ¢ X and FeF ,

it follows that

L 1is sequentially maximal (Defn. 3.4).

Hence, by a theorem of Bochner ([4] p. 120), we deduce thatv/a; always

e
Ea

has a limit measure on X . However, little has been said about the
properties such a limit measure can have. Therefore, in the next section,

we shall construct one having special approximation properties.

ES

Unfortunately, for most practical purposes X is far too
unwieldy. We shall therefore be studying the problem of putting limit

. *
measures on subspaces of X
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3. Non-topological Limit Measures.

Given any cylinder measure p over a vector space X , and
subspace § of X* such that (X,0) 1is a dual pair, we shall
determine sufficient conditions on | for it to have a limit measure on
9]

Throughout this section we shall use the following notation.

X 1s a vector space.

%

For any cylinder measure gv over X , and subspace § of X
. _l. .
CyL (@ = {0n z y[Al : FeF, Acim) ,
s art [A] e Cyl (@) » 1 (A) € R
Tu,ﬂ : F,X € Ly ’ UF € )
o is the Caratheodory nieasure on § generated by
T  and Cyl (@
0,0 y u( )
T =T ,
U U, X
and
u - UX,‘;

In what follows,

Q will denote a subspace of X such that (X,Q) is a

‘dual pair.

From Definifion 1.1.2 and Remarks 1.2 we get the following assertions.
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Propositions.

Let p be a cylinder measure over X
For any outer measure & on §, £ 1is a limit measure of u
iff

Cyl () e and elCyL (@) = .

£ W, 8

If there exists any limit measure of u on & , then Hy is
a limit measure of u
In view of Proposition 3.1.2, when looking for a limit measure

of w on § , we shall concentrate on o
%
When Q =X , we have the following result.
Theorem

For any cylinder measure p over X |,
e

u is a limit measure of u
If

. - ES
C={r_ " [K] : FeF, KeF 1is compact}

F,X
then
C is a compact family,

and for any A ¢ MU* ,

ux(A) = sup{uN(C) :C @A, Cce C(S}

(We note that C_, dis also a compact family.)

S
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For each F e F ,

(1) Mg is Radon and o-finite.

Hence, for any A € Cyl‘J (Xk) s

sup{T:(C) :CagA, ceC}

2 T* A
@) L)
Since

% % *

Wo(a) < T (8) for all A Cylu(X y o,
we also deduce from (1) that

. .

(3) U is oO-finite.
Hence, by Thm II1.2.5 of [23], the assertions of the theorem will

f_ollow once we show that C is a compact family. (Also see [24]).

1

» = r e C 1 =
For any Cj rF,,X[Kj] e i 1,2, 1let T be
J .
. , r = 0N -1
the linear span of F. & F.,. , and K = r [K.]
1 2 ) F.,F
J=L,2 ]
. T B
Then K is compact and Clt% C2 = rF’X[k]
Hence,
(4) C is closed under finite intersections.

For any C'< C s.t. [la £ ¢ for every finite ac C' , let
= {[le : ac C' 1is finite}
We note that A is a filterbase ([8] p. 211). 1In view of
4), ggr each finite o &C' , let

Mo = F Y K] for some F, € F and compact

ot

Kac: Fa , and

Y = U{Fa :0ocC' is finite}
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From the remarks preceding (4), we see that for any finite
subfamilies o and B of C' ,

O'CB=>FC1CF8 ,

and therefore Y is a subspace of X .
*
Let U be a maximal filterbase in X ([8] p. 218) which
is a subfilterbase of A ([8] p. 219, Thm. 7.3). Then, for each

finite a cCcC" ,

(r. [U}) . is a maximal filterbase in Fk , and
Fu uclU

there exists u e U s.t. R [u] Ka .
o
*
Since Kd is compact and Fa is Hausdorff, this ultrafilter

converges to a unique point

f X
o o

We note that if Fa = FB , then fa = fB . Also, for any finite

subfamilies o and B of (' with aC B8 , .

ro JF (fB) = fu' R
o’ B

since the restriction map is continuous and

r = r i o T .
F
FoX  TFLF FooX

i %
Consequently, there exists a unique g e ¥ s.t.
~t

gIF = f for each finite o € C
o o

g
If f e¢X is any linear extension of g , then, for each finite

a (' .
-1 -1 -1 3
fery ylrpg @) =ry yIE T Cr, (IKI= Me
o] a - o o
Hence,
[le + 4 .

It follows that C is a compact family. (]
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Next, we consider the problem of finding a limit measure
of u on an arbitrary Q .
%

Since u is always a limit measure of p , application of

Lemma 1.3.1 yields the following basic result.
3.3 Lemma.

For any cylinder measure u over X |,

1 has a limit measure on & iff
* ) % g
(1) u A =u (ANnQ) for all A« Cylu(X~) .

However, we are interested in finding intrinsic conditions
on our systems which will guarantee the existence of a limit measure
on & .

One such condition is the following, which is of considerable
importance in the general theory of inverse systems of measure spaces

(Bochner [4], p. 120, Choksi [6], Mallory and Sion [23]).
3.4 Definition

 is sequentially maximal 1iff

for any sequence {Fn}naw in F with Fn<:'Fn+l for each

’ %
€ w Al b =
n , and fn € Pn such that rn T (fn+l) fn , there
n’ n+l

exists g €  such that

an,X(g) = fn for each ne w .
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Remark.
%
We note that X is sequentially maximal. Consequently,
X .

the fact that p - is a limit measure of u follows also from a
theorem of Bochner ([4}, p. 120).

Since un is always a limit measure of & application of

Lemmas 1.3.2 and 3.3 yields the following.

3.5 Proposition

If @ 1is sequentially maximal, then every cylinder measure
over X has a limit measure on & .

However we have the following.

3.6 Observation.

If X is a topological vector space containing a bounded,
countable, linearly independent subset, and @ 1is its continuous
dual, then § 1is not sequentially maximal. (e.g. whenever X

is an infinite-dimensional, metrizable, locally convex space).

Proof Let '{an ; n e wt be a bounded, countable, linearly

independent subset of ‘X , and for each n e w let Fn be the

: %
linear span of {a ,...,an} . Then, for any f ¢ X with

0

f(an) =n for every n e w , ,
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(1) f[{an i n € wh] c:¢ is unbounded.
Hence, there cannot exist g'e Q s.t. g Fn = f Fn for
every n e w . For if so, then gIUnean is continuous, and

therefore g[{an :ne w}] is bounded, which contradicts (1). 0

Since, in the theory of cylinder measure, R 1s often the continuous
dual of metrizable l.c. space ([11], L39]), it follows that the condition
of sequential maximality does not apply in many important situations.

In order that we might take fuller advantage of Lemma 3.3, we

therefore weaken the notion of sequential méximality.
3.7 Definition

Let pu be a cylinder measure over X
Q is u-sequentially maximal 1iff

for any sequence {Fn}nE in F with Fn(:-Fn+ for every

w 1

new, and € >0

there exists An € MF for each n ¢ w , such that
: n

I o
new 8l

(An> < e

and for any sequence {fn}new with

f ¢ Fx ~ A
n

I (f = fn s

n® 'F ,F atl’
n

there exists g e Q such that )y = fn for each n ¢ w

Iy x(8
n .
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The following key theorem of this section is now an immediate

consequence of Lemma 1.3.2 and.the above definition.
3.8 Theorem

Let pu be a cylindér'measure over X
If Q@ 1is yp-sequentially maximal, then u has a limit
- measure on
We now establish a condition on 13 which ensures that ®

is p-sequentially maximal.
3.9 Definition

Let u be a cylinder measure over X
For any family H of subsets of X" R
p is e H-sequentially tight iff
for any sequence {Fn}nem in F with Fnc; Fn+l for each

negw, Ac MF with Up (A) <o , and € >0 |,

0 0
there exists H ¢ H such that
-1 ~ :
Mg (rF JF [Al) T ,X[H]) < g forall new .
n 0’ ' n n

.10 Theorem

Let u be a cylinder measure over X
If y 1is H-sequentially tight'for some family H of
. .
w —compact subsets of § , then

 is p-sequentially maximal,

and therefore y has a limit measure on § .
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We point out that under certain conditions p-sequential
maximality cf @ is also a necessary condition for p to have a limit

measure on .
3.11 Proposition

Suppose that the Mackey topology on X induced by @

([47] p. 369) restricted to any subspace of countable dimension

-

is metrizable. For any cylinder measure yu over X ,
if y has a limit measure on § , then Q 1is yu-sequentially

maximal.
Proofs 3.

Lemma . Let

{Fn}naw be a sequence in F with Fn,CLFn+l for

each ne w,

* *
K be a w —compact subset of X .

For any sequence {f with
y q {*n}ngw

f er fK] and r (f
n FH,X Fn’Fn+l

n+l) B fn ‘

[

there exists g e K s.t

Y = 3
T ’X(g, fn for all n e w
n
Proof For each n ¢ w
-1 . )
(1) rp xlE )0 K o .
n
0 - F I =
Since L F [_n+lJ fn .

n’ n+l



29.

-1 -1

(2) e ,len] o ]
n+l
., , * i . *
Also, since rF 5 is w -continuous and K i1is w -compact,
n’

(3) Knrl (] is w

N an,X[ L 18 W -compact.

® .
Since w is a Hausdorff topology, it follows from

(1), (2) and (3), that

N Kot D+

F ,X
ncw n

and the lemma follows.

3.10 Let

. - . - _
{Fn}ngw F with Fn(, F 41 for each n e w,

{B M i B,) < = h o
{ }jeu;: F o with Hp ( j) < for each j e w ,
0 0
* .
and FO = U B.
jew ‘
Since pu is H-sequentially tight for some family H of

%
w —compact subsets of Q , given € >0 , for each j e w

KX

choose a wﬂ—compact szz Q s.t

S0P,y Fo’F (8]~ 5y yIEjD) < e/
Let
c, = U (r T p B 7w ,X[Kj])
jew O n
A9 = o
T R té [c,]
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Then, for any ke w ,

k
U F F[A ] = Ck

n=0

and

k k .
Tou. (A) = (c) < 1 e/23Mt :
- F *'n k™ k" — |,

n=0 "n j=1

H
ence T Hp (An) < g .
new n

If '{fn} is a sequence s.t. for each n e w ,

%
fn € Fn A.n s T F (£

) = £
Fn’ n+l

n+l n °
then, for some j e w ,

fo € rFO,'X[I\j] a) BJ

and hence for every n & w,

f €T [K.]
Fn+l’X

Consequently, by the Lemma, there exists g e Q s.t.

T X(g) = fn for all n ¢ w , and it follows that Q 1is p-
n’
sequentially maximal.

The last assertion is immediate from Thm. 3.8.

Proof of 3.11

For any 4{Fn} c Ff with F ¢« F for each n e w , let

new n n+1

Y= U Fn with the restricted topology,
new
A= {f ¢ X : there does not exist g e Q s.t.

an’X(g) = an,X(f) for all n & w}
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=1, - ' _ .
rF ,X[AJ tnew, Acg MF o,
n n

B ={

& be the o-field generated by B , and

* *
n the Caratheodory measure on X  generated by TulB and .
B« Since the topology of X restricted to Y is metrizable,

choose a sequence '{Vk} of absolutely convex neighbourhoods

kew

of the origin in X s.t. 4{Vk(\ Y}kgw is a base for the neigh-
bourhoods of the origin in Y . Using the Hahn-Banach extension

theorem, one readily checks that
* _ -1 0
A= U0 D IV
kew new n n

It then follows that
(1) e 8,

*
and, since (Cyl (X )c M

N b]

(2) he bﬂJ* .
We note that

3) AcX 9.
* 7': * )
Since is o~finite and u (A) =y (An Q) for all
E
A ¢ Cylu(X<) , from (2) and (3) it follows that

(%) W = o

%
Since B 1is a field and Tu is countably additive on Cylu(X )
(Thm. 3.2, Remark 1.2.5), we have that
18 = %[B  and u |B = 1B
= 7 an =1 .

n TU u u
However, TUiB has a unique countably additive extension to
Gﬁ. Hence, since GBG:Mn(ﬂ M: s

*f
n|@= TG

and therefore, by (1) and (4),

n(p) =0
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Consequently, given any € > 0 , there exists

{Bj}jauc B s.t.

o s .
Aec U B, and I 1 (B,) <e .
jew 3 jew

For each j e w ; let

and

F

B + -1 [B'] for any n < nj and B' e M
n

r
j F
S PS¢
For each n e w , let
= ‘ B' 4 i ‘:
An LJ{ ; je Q, nj n}t
Then,

(5) z Hyp (Ah) <e .
new n

Further, if {f } is any seguence s.t. for
n new

each new,

f eF A ,r (£ ) =£f
n n n Fn’Fn+l n+1 n
then, there exists fe X ~ U r—l fA ] s.t.
F , X" n
new n
o ,X(f) = fn for each n g w .
n
Since A C U B, = U r%l X[An] , from the definition of A it
jew 3 new o ’ '

follows that .

(6) there exists g e Q s.t. (g) = fn for all new .

r

| F_,X

Since the sequence {F_} in F with F « F for each
n new n n+l

n € w was arbitrary, we conclude that §Q 1is u-sequentially

maximal.
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4, Raddn Limit Measures

In this section we shall consider the problem of finding
Raddn 1im;t measures. The technique we use was communicated to us by
C. Scheffer,
In this section we shall use the following notation.
X 1is a vector space,
Q is a subspace of X* suchbthat (X,9) is a dual pair.
For any~topolbgy G on @ and cylinder measure -y over X ,
gt A CZX* > inf {“F(ré,X[A]) : F e F},
g, : Ge G >sup {g(K) : K e K(G , K& G} ,
e is the Caratheodéry measure on { generated by
8. and G

We shall hereafter assume that
i is a fixed cylinder measure over X ,
G is a regular Hausdorff topology on § which is

%
finer than w restricted to Q.

We have the following important assertions.

4.1 Propositions

(1) Mg is a G-Raddn measure on @ , and uGIG = g,
(2) Cyl () €M
U MG
(3) If there exists any G-Raddén limit measure of y on @ ,
then is a limit measure of y

e
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In view of the above propositions, when searching for a
G-Radén limit measure of 1y , we shall restrict our attention to 78

Following Scheffer [37] we make the following definition.

Our terminology is slightly different.

4.2 Definition For any family H of subsets of X ,
u is H-tight iff
for any E ¢ F, A ¢ ME with )AE(A) <o ,and € >0 |,
there exists H g H such that

-1 . ; .
“F(rE,F[A} rF,X[H]) < ¢ for all. FefF with ECF

We point out that the above definition is a "uniform'" version
of the definition of H-sequential tightness (Defn. 3.9).
We now have the following key theorem concerning the existence

of a G-Radén limit measure of
4.3 Theorem

u has a G-Raddn limit measure on

<=> uA is K(G)-tight.
Remark The above theorem extends a result due to Mourier [26], and
Prohorov [33] (§5 Lemma 3). However, our approach is somewhat different

from theirs.

Theorem 4.3 has a useful corcllary.



Corollary

35.

If X is a metrizable, locally convex space, § is its

continuous dual, and {V } is a base for the neighbourhoods of the

origin in

"Proofs 4.

" 'Notation

and

n New

X , with Vn+ C‘.Vr1 for every n ¢ w , then,

1
* ”
M has a w -Radon limit measure on § <=>

i has a limit measure on § <=>

. 0 ,
u is {Vn}new tight.

Let

H= L@ n o,
-

T = Tﬁ’ﬂ

We shall need the following lemmas.

(1)

(2)
(3)

For any A E'Cylﬁ(ﬂ) R

T(A) = inf {t(d) : A€ H e H}

y(A) < 1(A)

| A

For any Ke K({G) ,

ry X[K] is compact for every E ¢ F ,“&xﬁvf% /kE -meosarable .
3

g(K) = ug(K) = inf {1(H) : K< H ¢ H}

For any E and F in F with Eg F , and Ae M, ,

Gy (KD 2 up (g (KD
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roof of L.1.1 For any E ¢ FX and B ¢ ME , since rE,X is

*
w —continuous and g is Radén,

4 o % )
Qo rE,X[B]) = UE(B) = inf {UE(G) t:Be GCE , G is open}

. -1 ..
> dinf {t(H) : o~ rE,X[B] c He H} > (0 n o

1
[BD)

Proof of L.1.2 We note that H& G , and for every H ¢ H

3

8, (H) < 7(H)
Hence,

y(A) = inf { 3 g,(H) : H'c H is countable and Ac [JH"}
HeH'

<inf { ¢ 1(H) : H'€e H is countable and A ¢ UH'}
h HeH'

i_inf‘{r(H) : Ac H e H} = «(A) , by L.1.1.

Proof of L.2.1 We only observe that for every E ¢ F, U is Radon,

o
b

* .
K(G) e H(w ) , and L is w -continuous.
bl

*

’ L d » .
is Radon and r is w =continuous.

Proof of L.2.2 TFor every E ¢ F,
E,X

Mg

Therefore,

g(K) = inf {UE(G) t Ee F, ¢ [Klc Ge Eh , G 1is open}

E,X

= inf {t(H) : Ke H e H} .~

On the other hand, by L.1.1,

UQ(K) =dinf { ¢ t(#) : H'e H is countable, K ¢ UH'}
HeH'
= inf {t(H) : K& H ¢ H},
since,

K is G-compact, Hec G, H is closed under finite unions,

and 1 1is finitely subadditive on Cylp(Q)
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Proof of L.2.3 We have that

-1
rF,X[KJ c:rE’F[rE’X[K]]
Hence,

‘ -1

up (g < [KD) = (e L lxp (IRID) 2w (e (KD

"E, F,X

7
y A

4.1.1 To show that vy is a G-Raddén measure, by Sion [44] Ch. V,
Thm. 2.2, we need only show that
(1) g(¢) =0, g 1is positive, monotone, subadditive and additive
on K(G) ,
(2) y(K) <o for all K ¢ K(G) ,
Except for additivity, the properties of g are immediate from
L.2.2. We shall now establish the additivity of g on K(G)

Let K, and K, be in K(G) with K. n KZ = ¢

1 . 2 - 1
Since K(G) <« K(w [Q) , and W [Q is regular and Hausdorff, there exists
G, ew |X, K.e G,, j =1,2 , with
] J J
G,N G,y = ¢

oJo
However, H is a base for w IQ , and is closed under finite

' *
unions. Consequently, since K., ,K, are w IQ—compact, there

1°72

exists

H, ¢ H, KjC Hj , J=1,2 , with
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Then, by L.2.2,

g(Kl) + g(Kz) = pg(Kl) + uQ(Kz)

= 1 dinf {p,(4) T K @A cM 3}
j=1,2 )

= 1 dnf () rAaeu K edlcH )
j=1,2 Moo .

, 1 2 i i
= inf {u (A" U A7) : A7 e M ,KjCAJC e 3= 1,2,
Q

2

( =
< MKy u Kz) g(KlkJ KZ)
Hence, by the subadditivity of g ,

Since Kl and K2 were arbitrary it follows that g is additive

. on K(G)

It remains for us to prove (2).

Let X ¢ H(G) . TFor any F ¢ F, since QF is Radon and ry X[K]
is compact (L.2.1),
-1 ; P
-an rF,X[rF,X[KJ] £ Cylu(Q)
and by L.1.2,
_l —
YO < y(onorpyle, (KD < w@n e, ([KID)

= uF(rF’X[K]) <
Hence, .

y(K) < » for all K e K(G)

Let F e F and A ¢ MF
If pF<A) =0 , thenm, by L.1.2,
...l _
v(Q n rF,X[A]) = 0

and therefore

Qa rF,X[A] £ MY



Otherwise, since Hp is Radéﬁ, choose a Borel subsét B of F
with
AC B and UF(B‘M A) =0

By the preceding observation,

_l N
2 n rF,X[B Al ¢ MY
However, fF w9 is G -continuous since wx|9 cG ,

and 'by Prop. 4.1.1, y 1is G-Radon. Hence,

-1
QN rF’X[B] e MY ,

and therefore,

-1 [(B] ~ Qn r_

-1
Q =
n rF,X[A] Qn rF,X 7

1 [B~A] e M
» X Y

We shall now establish another uséful lemma.

L.3 TFor every K g K(G) ,

g(®) < y() .
If vy 1is a limit measure of ﬁ , then, for every
K ¢ K(G) ,
g(K) = y(X) .
Proof of L.3 Let K e K(G) . By Prop. 4.1.1,

y(K) = inf {g,(G) : Kc G ¢ G}

v

g (K)

If y is a limit measure of yu , then, by L.2.2 and Prop. 3.1,

inf {1(H) : K¢ H ¢ H} = inf {y(H) : K'c H e H}

g (X)

vy(K) , since vy is G-Raddn and He G

[v



For any K g K(G) ,

g (K

)

= inf {£(G).: K C G ¢ G}
i_inf'{g(H) : K< HeH} since He G |

= inf {t(H) : Ke H e H} by Prop. 3.1.1

g(K) by L.2.2

D

y(K) by L.3.
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Let & be any G-Raddn limit measure of u o on

Hence, as & and vy are both G-Raddén measures on £

£(A) < y(A) for all Ac Q .

(A) = g(A) < y(A)

and- therefore, by L.1.2,

v(A) = ©(A)

In particular, by Prop. 3.1.1, for any A e Cylu(Q)

From Props. 3.1.1 and 4.1.2 it now follows that Y

measure of y

b

is a limit

By Prop. 4.1.3, if y has any G-Radon limit measure on Q , then vy

is

a

G-Radon limit measure of 1y

A ¢ My with UE(A) < ® o,

-1 -1
» £ ©
@0 y[a] e L (@ a Ty RIAD <=,

and theféfore

Y@ A g (A = sup 1y ()

Hence, for any e > 0 , there exists K e H(G)

and

-1 .
y(Q A rE,X[A] K) < e .

with

Hence, for any E ¢ F and

: K e K(G) , Ke O (\r;X[AW

-1
Ke @ an,X

(4]
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In which case, for any T ¢ F with Ec F ,

up(rp pl8] ~ rp (KD
=yl g g IAD T 2 gk e, KD

-1
< y(@n rE,X[A] “K) < e

It follows that y dis K(G)-tight.

We now show that K(G)-tightness of 1y 1s a sufficient
condition for 1y to have a G-Radbén limit weasure on . 1IN
view of Props. 4.1 and 3.1.1, we need only show that
(1Y u is K(G)-tight => y|Cylu(Q) = T

<If, for every A ¢ Cylu(Q) s
(2) 1(a) = sup {g(K) : K e K(G) , Kc A} ,
then, for every A ¢ Cle(Q) , Since yu is o-finite (L.1.2),
v(&) = sup {(y(K) :K ¢ K(B) , Ke A}

sup {g(K) : K ¢ K(G) , K¢ A} by L.3,

fv

(4) by (1).

]

Hence, by L.1.2,

v(&) = 7(&) for all A ¢ eyl (@
Consequently, (1) will have established when we show that,
(3) u is K(G)-tight => (2) holds for all A ¢ Cylu(Q)
Suppose 1y is K(@)-tight.
let E ¢ FAand B ¢ ME with UE(B) < ®

Given € > 0 , since is Rad8n, there exists a closed C ¢ B s.t.

o)
uE(B ~C) < ¢f2
Since y is K(G)-tight, theve exists Kl e K(G) s.t. for every

FeF with ECF

-1 ) ’
“F(rE,F[B] rF,X[Ll]) < g/2
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‘Let

-1

K=K n rE,X

Since C 1is closed and Th x @ is G-continuous,
3

(4) K e K(G)

Further,
-1

aY
(5). K @ r]:’X

[B]

Now, for any F ¢ F with EC F

-1

E’F[C]

(6) rF,X[K] = rF,X[Kl] nr

Hence,
w (et 8] % r KD
F\'E,T F,X

-1

M {))

-1 . -1 o
= uF((rE’F[B] rF’X(Kl]) ] (rE,F[B] T

| A

-1 . .
Consequently, by L.2.3 and L.2.1,

g(K) = inf {uF(rF’X[K]) t: Ec F e F}
> inf {“F(rETF[B]> - € E CFe F}

=, (B) - ¢

Since € was arbitrary it follows that (2) holds for all
A e Cylu(ﬂ) with T(A) < o

However, since Hp is Ac—finite for all Fe F ,

T(A) = sup {1(A"): A'c: A, Ac Cylu(Q) , T(A') <=}

Hence, (2) holds for all A ¢ Cylu(Q)
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Proof of Cor. 4.3.

Let K = {VO T n e wl
n
We note that
(L a-= UK , and
(2) Ke K@ |
By (2) and Thm. 4.3 we need only show that
(3) y is ...z K-tight whenever u has a limit measure on Q

Suppose.that 1y has a limit measure on § . Let

E e Fand A e ME with UE(A) < o

x

Since is Radén, choose a closed Cc E s.t.

Mg
Cea and p (C) > u (A) -¢e/2

and for each n e w , let

0o -1
= V
A T ¢

[c]

N
v

?
Since C 1is closed and rE X is w -continuous, then, by (2),
3

(&) Kn € K(wle) for each n e w .
Further, by (1)

-1
(5) an rE,X[C] = U Krl
new

Since u is an outer measure, and Knc: Kn+ for each n ¢ w ,

2 1

we deduce from (5) that

-1 _ i
6) u (en rE’X[C])— sup .JQ(I\D)
new
By Prop. 3.1.2,

(7)

Hg is a limit measure of u ,

Hence,

"_l = Ax i o
(8) uQ(Qf\ LE,X[C]) = LE(C) < uE(A) <o,
Let € > 0

By (6) and (8), there exists n ¢ w s.t.



bt

(9 wp® ) >, (@A rE ACl) - ¢e/2
Then, by (7),
Ho(R ) > u (C) - ef2 > uE(A) - €
Hence, by (4) and L.2.2,
(10) g(® ) > up (8) = €
We have that, for any F ¢ F with E ¢ F ,

“1 A

[K ] e r [C] C rE,F

T X
and therefore,

uF<r;fF[A] Crp KD = uF(rElF[A]) - (g LKD)

= up(a) - uF(rF,X[Kn]) < vg(A) - g(®)

< e , by (10).
However, Kn}: Vg , and therefore, for every F ¢ F with E CTF s
-1 - 0
uF(rE,F[A] rF’X[Vn]) < e .
Since € >0 , EeF , and A ¢ ME with uE(A) < o,

were all arbitrary, it follows that p is K-tight.
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5. Finite Cylinder Measures

We shall specialize the results of the foregoing sections to
the case of finite cylinder measures. By introducing the notion of a
finite section of an arbitrary cylinder measure, we shall show that,
with regard to the problem of finding limits, we can concentrate on

finite cylinder measures.
5.1 Definition.

U is a finite cylinder measure iff yu 1s a cylinder measure over
a vector space X and for some F ¢ FX ,

UF(F*) < w

(We note that UF(FK) is independent of F ¢ FX )

For the rest of this section we assume that
X 1is a vector space,
2 is a subspace of X* such that (X,Q) ié a dual pair,
G is a regular, Hausdorff topology on § which is finer

than the wa—topology restricted to Q ,

n is a cylinder measure over X .

The following lemmas indicate that the hypotheses of earlier

results can be simplified when considering finite cylinder measures.
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5.2 Lemmas.

If u 1is a finite cylinder measure over X , then
% % - g %
(1) - w (A) = u (A ) for every A e Cylu(X ) <=>

*x * %
p(R) =u (X)

For any family H of subsets of X R
(2) u is fH-sequentially tight <=>

for any sequence {F } in F with F_c¢ F for each
n new n nt+l

new, and € >0 , there exists H & H such that

an(Fn an,X[h])-< e for all ne w .

(3) If 2 X[H] e M, for every FeF and H e H , then,

F
u is H-tight <=>

for any € > 0 there exists H ¢ H such that
HF(F rF’X[H]) < g for all F e F

Proof of 5.2.1

Certainl?, if 'ux(Q a A) = ux(A) for all A ¢ Cylu(Xk) , then

% % %

po(Q) = u (X)

On the other hand if uK(Q) = u“(XK) , then, for any
%

A e Cle(X )

® P * * %
p@n A +p (@A) <p @A)+ X TA

]

* % ¥
p (X)) = ()

=p (X))

Hence u (2 A A) = uK(A)

1
H
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Proof of 5.2.2

We observe only that for any F e F, A ¢ M, and
HeH ,

uF-(A rF’X[H]) <y

R(F T rF,X[H])

Proof of 5.2.3

Together with the observation of Proof 5.2.2 above, we
note that for any E and G in F with Ec G , and

Hef

* *
K S
uE(E rE,X[H]) ~»“G(G _ rG,X[H])

The assertion is now immediate.

The following theorems are now immediate consequences of,

respectively, Lemma 3.3, Theorem 3.10, and Theorem 4.3
5.3 Theorems

If ¢ is a finite cyliner measure over X , then < i

(1) w has a limit measurec on & <=>

‘

() = u X)) . (Silov [46]).
(2) ¢ has a limit measure on & if,

for each n £ &,

' , i F P .
for any sequence {F.} in with Fn Lan+l

1 nNew-

«
and e > 0 , there exists a w -compact K « & such that

S
(Fn ~ an,X[K]) < g for all n & w
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(3)  (Mourier-Prohorov, [3 ] §5 Lemma 3)
y has a G-Raddn limit measure on € <=»>
for any € > 0 there exists K ¢ K(G) such that

MF(F’r “~r_ [K] <e for all Fe F

F,X
Remark, We point out that Theorem 5.3.2 does not seem to have been

previously stated in the literature.

We shall now show that the problem of finding limits for

arbitrary cylinder measures can be recuced to that for the finite case.
First, we make the followihg definition.

5.5 Definition £ is a finite section of yu 1iff for some E ¢ F and
A ¢ ME with pE(A) < e , ¢ is the cylinder measure over X such that

for every F ¢ F,
— . - —l
Ep = rF,G[uGElE’F [A]]

for some G ¢ Fwith Ee«¢ G and F o G

Remark. If g"is a finite section of u then g is well-defined,

g is in fact a cylinder measure over X , and

% -1
[

x %
£ (B) =y (rE % Al n B) for all Bec X

(This remark is proved below.)

The following theorems are then readily established.



5.6

(1)

(2)

Theorems.

u has a limit measure on Q

a limit measure on

iff every finite section of

u  has

p is K(G)-tight iff every finite section of p is K(G)-tight.

Hence,

. ’
p has a G-Radon limit measure on Q 1ff every finite section

of u has a G-Raddn limit measure on

Proof of Remark 5.5

Remark 2.2.1 and Lemma 0.4.1,

be (g g Lel n xp STIAD)

4,_,’

o

For any F ¢ F and o < F

is independent of the cheoice of G ¢ Fwith E¢ G and F C G
Hence, so also is gF

We note that for any F ¢ F with E CF

) -1 . P
(l) UFlrE,F [A] is Radém.
Consequently

-1 , -

(2) gF = “FlrE,F [A] and is Radon.
Hence, by Lemma 0.4.3,
(3) gF is Raddn for every F e F.

For any F and F, in F with FoF, ., if Ge F with
Ey F L}Fl < G , then by Lemma 0.4.2,

o= lulr, SNIAID = v o Qv o Cuglr STIAD]

F F,ctHc!"E,q F,F, U F,F P6ELG
= Tp oy [&F ]

1 1

49,

. -1 . .
with rF,G [a] ¢ MG , in view of



Hence, by (3) and Lemma 0.4.1
£ is a cylinder measure over X
We shall now prove that

% TS
(4) & (B) = (lE,X

;L

[A] A B) for all B¢ X
Let

H

. X %
{H € Cle(X%) : H is w -open} ,
~1
a = rE,X [A]
We have that
% *
He Cyl (X)) n Cyl (X))
, £ L
and by (2),
r;(H) = T:(H n a) for every H g H
Hence, by Thm. 3.1,
(5) EK(H) = T;(H A a) for all H e HO
Let Be X . If pK(B) < © , then, since u“ is an
Hg—outer measure, for any € > 0 there exists H ¢ H0 s.t.
% %
BcH and u (H) < u (B) + ¢
Since «a E,Mu* we have that
Tk T % Tk %
p(Baa)+u (B ~oa)=u(B)>u H -c¢
% %
=p Hno)+u H" o) -c¢
and therefore

UA(H 0noa) < u"(B n o) + ¢

o
%

Since p is o¢-finite it follows that for any B < Xh R
* *
(6) u (B o) = inf {u (H.’\\x):BcHgHU}.

Since gh and u"” are both HO~outer measures, (5) and (6)

together imply that (4) holds.

50.



Proof of 5.6.1. ’ -

By Lémma 3.3 we need only show that
(1) u*(A) = u*(A.ﬂ Q) for all A ¢ Cylu(X*)
iff
(2) g*(X*) = 5*(9) for every finite section & of
From Remark 5.5 it is immediate that (1) => (2).
Howéver,

* * . %
(2) => yu (A) =y (An Q) for all A ¢ Cylu(X ) with

g
p (A) < o
x® %
For any A ¢ Cylu(X ) , since yu is o-finite, choose an
. . v .
i - i A i 1 X .
increasing sequence { n}new in Cy u(k ) s.t

ux(An) < o for all n ¢ w and

A
new n
%

Since u is an outer measure, we then have that

* Py *
nw{An Q) = lim u*(An~n Q) = lim (An) = u (A)
new new

Hence (2) = (1).

Proof of 5.6.2.

Let & be a finite section of yu determined by some
Ee Fand A ¢ MF with uE(A) < w . By (2) in the proof of

Remark 5.5, for any F ¢ F with Ec¢ F , and K ¢ K(G) ,

il

‘—]_ - :'<~
“F(lE,F [A) rF’X[K]) EF(F. rF,X[K])

The assertion now follows from Lemma 5.1.2, and Thm. 4.3.
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CHAPTER IT

CYLINDER MEASURES OVER TOPOLOGICAL VECTOR SPACES

In.this chapter, we are primarily interested in determining
when a cylinder measure over a Hausdorff locally convex space X will
have a limit measure on the topological dual X' which is Radén with
respect to some given topology G on X' . Since (X,X") is a dual
pair, the theory of the previous chapter applies with & = X'

. Hence, if G is regular and finer than the w*—topology restricted

to X' , then, by Theorem I.4.3, v will have a G-Raddn limit measure
on X' whenever yu is H-tight for some family H c K(G) . IWe shall
take G to be one of three standard topoclogies, and these suggest that
we take for H the particular family E defined below. Our main
concern 1s then directed towards finding conditions under which ﬁ is

E-tight.
1. Notation ,

We point out that our topological vector spaces are not
assumed to be necessarily Hauséorff.

In the rest of this paper we shall use the following notation.
For any vector space X and V X ,

0ot e X |f0] <1 for all x e V) .
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For any topoiogical vector space X ,
nbnd 0 in X d1s the famiiy of ‘neighbourhoods of the origin in X ,
£ is the'family of all sets K¢ X* such that X is w*~closed
and K¢ VO for some Vg nbnd 0 in X

* .
X' = {f e X : f is continuous}

and for every F ¢ FX ,

3

In addition to the w“—topology restricted to X' , we shall consider the

following two topologies:

wte
w

c is the topology on X' of uniform convergence on the

compact subsets of X ,

s is the topology on X' of uniform convergence on the

bounded subsets of X

Remark We note that
E ¢ K(w'\)

and

% *

, %
w |X ¢ c s
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2. E-tight Cylinder Measures.

Throughoﬁt this section X is a topological vector space and
u is a cylinder measure over X .
When X is iocally convex and Hausdorff we notice that [ is
nothing else but -the family of w*—closed equicontinuous subsets of X'
Hence, from Treves [47], Props. 32.5 and 32.8, we have that
Ec K

Consequently, application of Theorem I.4.3 yields the following assertion.

2.1 Theorem. Let X be Hausdorff and locally convex
u is Ejtight => W has a c*-Radéh limit measure'on X'
If E = K(c*) , in particular, if X dis barrelled ([47]
Thm. 33.1) then,
p is E-tight <=> y has a c*—Radon limit measure on X'

Sometimes E[~tightness of u can also imply the existence

of a limit measure on X' which is Radon with respect to the

fa
w

s‘—topology. For example, if X dis a Montel space ([47] p. 356)
then E = K(sh) ([47], Prop. 34.5); or, if X 4is a nuclear space
([47] p. 510) then [ ¢ K(sx) ([47] Prop. 50.2). Hence, on applying

Theorem I.4.3, we obtain the following theorems.
2.2 Theorem

(1) If X 1is a Montel space, then,

p is E-tight <=> u has an s -Raddn limit measure on X' .



(2) If X 1is a nuclear space, then,

1.

p is E-tight => 31 has an s -Radon limit measure on X'

Even if E ¢:K(sx) , E-tightness of y can still imply

ata
- -~ pd P -
that y has an s -Raddén limit measure on X' .

2.3 Theorem. Let X be Hausdorff and locally convex. For any
"V enbnd 0 in X Ilet
X% = UnganO with the topology induced by the norm

1 fe X& > iis[f(x)] e R

-1y
If there is a base V for nbnd 0 in X such that for each
Vvel

X& is separable.

then,

(1) u dis E-tight => y has an s -Raddn limit measure on X'

ota
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(2) If X' 4is a separable Banach space under s , then indeed

KR )

P - i x P
every finite ¢ -Raddn measure on X' is s —-Raddn.

Proof of Theorem 2.3

We first establish the following lemma.

Lemma. For any V ¢ nbnd 0 in X s.t. X& is separable, if

1

v o then Gc o-field

G 1is the family of all open subsets of X

)

generated by (CKIXV



Proof Let H = {f + gVO te >0, f ¢ X%} .

For any € >0 and f ¢ X' ,

ggX'—>gggX' and ggX'—>f+gg_X‘

*

are homeomorphisms with respect to c , since X' is

a topological vector space under c
. 0 . * W %
. Hence, since V is w -closed and w ¢ ¢ s

H consists of ¢ ~closed subsets

and therefore

%

HO ¢ o-field generated by (c

!

v

However, X% is separable and metrizable.

Consequently;
G« HO,C-G—field generated by (c*]X§)
We now prove the theorem.
(1) By Thm. I.5.6.2, we may assume that y  is normalized.
In that case, by Lemma I.5.1.2, we néed to prove that for
any € > 0 ., there exists K ¢ K(s*) s.t.
pF(F* ~ rF[K]) < ¢ for every F ¢ F .
With the notation of I.4, since ﬁ is E-tight, theﬁ, by
. Thm. 2.1 and Props. I.4.1,

X

Mok A chRad5h‘limit measure on X' of
and by L.3 of Prbofé-1.4,,
@ bow (K) = g(X) for all K e K(c)
Since y is E-tight, for any € > 0 , there exists
Venbnd 0O in X s.t.
X& is separable,

and for all F ¢ F ,

2 0
UF(F Tr VD < e/2



(2)

(3)

(2)

will be

case when

Hence, by L.2.1 of Proofs 1.4,
0
1-g(V") <eg/2,
and therefore, by (1),

: ! 0
s (X' = ) < 1= u, (V) < e/2

If
T 3 +
£ Ac XV +»uC*(A) e R .
' * . '
then £ is a c¢ [X&—outer measure on X&

K)

By the lemmas, and the fact that cﬁ

'(& <G ,
it follows.that £ is a G-outer measure'on X%
However, Xb is complete ([47], Lemma 36.1, see also p. 477).
X& is also separéble and metrizable. Hence, by Prohorov
132] Thm. 1.4; there exists K ¢ K(G) s.t.

£, T K) < e/2
However, s*[X% ¢ G , hence

K e K(s)
Then, certainly, K ¢ K(c*) , and by (1), (2) aﬁd (3),

g(K) = Ué*(K) >1 - ¢
From the definition of g , and L.2.1 of Proofs I.4,

uF(F rF[k]) f e for all F e F

J,
* P i
From the lemma we have any ¢ -Radon measure on X' is

ot ’ ot
v

an s -outer measure (G = s ) . The assertion now follows

from Prohorov [32] Thm. 1.4

We are led by the above theorems to study conditions under which
E-tight. 1In view of Theorem I.5.6.2 we shall concentrate on the
u 1is finite.

Conditions for u -to be UC-tight will then be given in terms

of the one-dimensional subspaces of X . We begin by indicating a

necessary

such condition.



2.4 Proposition Let X be a topological vector space, 1 > 0 ,
and y a finite cylinder measure over X

If u is E-tight, then, for any ¢ > 0 , there

1 KR
w

. % -, .
exists a w -Radon measure n on X with supp n e E
such that

xe X, [lE@] T < 1= o df e E oz [£60] 21D < e,
. _

where FX is the space spanned by x

Proof. We assume that u is normalized.

With the notation of 1.4, by Th. I1.4.3,

Y

o )\ K
N 3

< w .
Wk is a w -Raddén limit measure on X for

Since yu 1is E-tight, by L.2.1. of Proofs I.4, for
any € > 0 there exists V € nbnd 0 in X s.t.
0
1 - g(v) <eg/2 ,
and therefore, by L.3 of Proofs I.4,

ES x 0
<
uw*(X V') < g/2

For any x ¢ X , let
I ={feX : |£&x] >1}
* X 2 % 0 +
If n:ACX »— uw*(A ~ V) eR , then,

X M

KN 1

w

n is a w -Radon measure on X with supp. n e E

and for any x ¢ X s.t. f]f(x)[rdn <1l ,

* .
uFX({f e ¥ [EG)] 21D = (1)

SN SN S IC E
Vv’k_ X wx X

£ E_ £ -
<z d)+35=73 f 1IX<1.l + /2
€ r € £ €
SJE flf(X)l dn(f) + E-E_E-+ S=c . Q

The above proposition suggests the following definitions.
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2.4 Notation. For any vector space X , x ¢ X and cylinder measure

¥ over X

FX = space spanned by x,
, *
D ={ferF {f(x)l > 1}
X x —
and

“X = UF

x

2.5 Definitions. -~ Let X be a vector space, and U be a family of

subsets U of X with 0 e U .
(1) TFor any finite cylinder measure u over X ,
u is U-continuous iff for any € > 0 there exists
U ¢ U such that
x € U => uX(DX) < e .
(2) For any cylinder measure p over X ,
p is  U-continuous iff every finite section of (I is
U-continuous.
(3) For any topological space Y and T : X ~»Y ,
T is U-continuous iff for every neighbourhoods V of
T(0) there exists U e U such that
Tl V .
(4) When X is a topological space, for any finite cylinder measure
M over X
Yy is continuous iff y is V-continuous for some family

V of neighbburhoods of the origin in X

The discussion of limits in the rest of the chapter requires
only the above concepts. However, to explain their relation to

standard notions of continuity we introduce the following definitions.
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Let X be a vector space.

" rn
For any n ¢ w and X ='(XO,...,Xn_l)~E X

vrf
i

b

linear span of {xO,...,xn_l

8 * .
;\X ‘. f >4 FX - (f(xo)"")f<xn_l)) g € 3

and for any finite cylinder measure yu over X ,

we =@ lug 1.
X
For any n g w s
M(¢n) is the family of finite Radon measurés on ¢n
endowed with the vague topology;

i.e. for any net (nj)jEJ in M(¢n) and n e M(@n) s

]

. : n
for every bounded continuous £ : § - £

n, »nin MY iff | fdn, + [ fdn

1 n .
We note that U, € M(E") for all me w and x e e

We now have the following well-known proposition (Gelfand,

Vilenkin [11] P. 310, Fernique [9] p. 37, which shows that one can

naturally associate certain continuous maps with a continucus cylinder

measure. (see also Appendix 1.7).

2.6

(L

(2)

(3)

Proposition Let X be a topological vector space.

ﬁ ié continuous

iff

; ¢t X g X > ;x ¢ M(§) dis continuous at O
iff

for each n ¢ w ,

pn s x e X0 > L M(@?) is continuous with respect to the product

topology on X"
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Remark  From the proof of the above propoéition one readily checks
that the following assertion also holds.
If U is a family of balanced, absorbent subsets of X ,
with fU e U for every Ue U and t > 0 , then,
Q is (~continuous iff

L xe X by € M(€) is U-continuous.

Proof of Proposition 2.6.

We show that (3) => (2) => (1) => (3)
(3) => (2) take m =1

(2) => (1) 1let ™ : € ~ € be bounded and continuous,

%(z) = 1 if |z| > 1
) ' 1
| | 0 if |z| E—E
Let € >0 . Choose V g nbnd 0 in X s.t;

xe V= |f %d;x - %dugl < g

g is concentrated at the origin in € , and has finite

Since
mass, then
J‘xduo=0‘.
Hence, for any x ¢ V ,
uX(Dx) = uX({Z e €:lz] >1) < Bdu < e
(1) => (3) For any Fe¢ F , and u >0 , let

I(u) = {(w,f) ¢ F x F* :}f(w)

> u}
n ) n
let new , % : & > € be bounded and continuous, and x ¢ X

We shall show that for any € > 0 there exists V ¢ nbnd 0 in X

s.t.
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yex+V o= |f %”ux -/ %d;y[ < e

(Note:‘ v ¢ nbnd 0 in X" ).
We assume that .is normalized.
For aﬁy z ¢ Cé_ , let |z| = sup {]zk] : k =.O;...,n - 1}
Let ' ’ »
(1) M=sup {[¥(2)] : ze €} ,
(ii) W be an open nbnd of the origin in X s.t.
woe W => uw(Dw) < g/16nM -,
(i11) t >0 be s.t. x_e tW for each k =0,...,n - 1
(iv) and let § > 0 be s.t.
zj‘e gt ,.lzji <t ., j = 0,1 , and z0 -z
o ) < %D < esa
Since = = ;Wé is an open nbnd of 0 din X
there exists. V g nbnd 0 in X s.t.
1

= J
() sVew

(vi) x + Vet
For any v ¢ x + v? ‘and F e F with FX 9! FF c ¥, let

X X F

Y =@ or N S « s
nyyA %

A ={feT & |v (£) -v (£)] > &
A(8) = {f ¢ [V () - v (D] >
and
k=n-1
B (e = U I (t)
J k=0 Tk
Then,
) , k=n-1
o (A (6)) = C U I _  (68))
Py F k=0 7V
k=n-1. k=n-1
< I (

I, (L) = = : Dy are )
oo EU/8) Gy my) oo /8 =y ) N G my)

< e/16M by.(ii) and (v).



From (vi), we have that
n
y € tW
1 o L
Hence, TV € W for each k e n , and therefore,

by reasoning as above,

pF(By(t)) < ¢/16M

In particular,
uF(BX(t)) < g/16M .

Consequently, if

B=3B(t)yd B (t)v A (&) ,

B ¢ y( y(

then, UF(B) < 3 g/l6eM < g/4M
and, by (iv), _
feF ~B=> X(r (E)) =Xy _(E0)] < e/t
Hence,
| Xdisg - [ Xau | = 1f % ¥ dug - [ %o ¥ dug}

<£lXo\yy—-Xo\deuF+f lxoqjy—xowxlduF

— -

S

M. e/bM + uF(FW ~B) < e .

~{m

yex+ v = de;yufxa;x] <e
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3. Limits of Continuous Cylinder Measures

Let X be a Hausdorff, locally convex space, and u be a
finite cylinder measure pver X . 1In the previous section we have
seen that conditions under which y is E-tight are important for

. * *
determining when p has a ¢ - or an s -Raddén limit measure on X'
In terms of the one-dimensiocnal subspaces of X Proposition 2.4 gives
a necessary such condition. In seeking some kind of converse to that
proposition, we are led tc¢ introduce the concept of a weighted system

in X , which is defined below.

We shall use the following notation.
3.1 Notation

For any vector space X , absorbent absolutely convex
Ve X , and FeF ,

ker V={xe X:xetV for every t > 0} ,

FV =Fa ker Vo,

V A F)O = {f ¢ P If(x)’ <1 for all x e VN T} s
a X

FV ={f eF : f(x) =0 for all x ¢ FV}

For any t > 0
1(6) = {0, e Fx T oo || 2t}

I=1I(1) .

e
w

So for any xe¢ F , £ ¢ F s

If

{x e F: |[fG)] > 1)

I ={feF : |£(x)] > 1}

X
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Remarks

We note that

(1) e F o

and since (x,f) ¢ Fx F -+ f(x) ¢ € is continuous with respect to

the product topology on F x FN

3

(2) for any t > 0 ,

I(t) dis closed.
3.2 Definitions

Let X be a locally convex space.

A
(1) (v,F.V) 1is a system of §-weights in X if
§ >0 ;
V is a family of absolutely convex neighbourhoods of

the origin in X ,
Fc F is directed by ¢ and W F 1is dense in X
and

vi:Vel, FeF»v , a probability Raddn measure

V,F
measure on F for which

a _ 0 _ f
felfy (Ve F) —>vVF(I)16

s
When | is a singleton {V} , we shall write (v,ﬁ,V) instead
of  (v,F, 1)
(2) il is weighted by such a system (v,ﬁ,U) iff
W is a family of neighbourhoods of the origin in X ,
for each W ¢ W there exists V ¢ V. such that ker Ve W
and

vy F(F “tWATF) >0 as t >« , uniformly for F ¢ F
b N
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(3) ) is a weighted system in X 1iff (¥ dis weighted by some

system of §-weights in X

We shall now state and prove the fundamental results of this

section.
3.3 Theorem

Let X be a Hausdorff, locally convex space, and m be a
finite cylinder measure over X

If yu 1is {W-continuous for some weighted system in X ,

then y 1is E-tight.

Corollary

Let X be a Hauédorff, locally convex space, and ﬁ be an
arbitrary cylinder measure over X
If y 1is W—continuoﬁs for some weighted syétem in X , then
u is E-tight,
and therefore,

oJe
p has a ¢ -Raddén limit measure on X'

Proof of Corollary

By Thms. 3.3, I. 5.6.2, and 2.1.

We shall need the following lemmas in the proof of Theorem 3.3.

They are proved at the end of the section.
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Lemmaé
(1) Let ¥ be a finite dimensional space, and ¢ > 0
: *
If ¢ dis a finite Raddn measure on F such that
xeF=>¢£(I) <c¢
X
then

E(F Y {0}) <«

(2) Let X be a locally convex space and yu a continuous

finite cylinder measure over X .

For any dense subspace Y of ¥ , and ¢ >0 , if V dis

an absolutely convex neighbourhood of. the origin in X such that

E - wAn

iA

g e for every F e FY R

then

NGRS i

A

€ for all F ¢ FX

Proof of Theorem 3.3

By the Hahn-Banach extewsion theorem, we see that forvany
FeF _, and absolutély convex V ¢ nbnd 0 in X ,
(1) o - @A’
Hence, by Lemma 1.5.1.2, we need oﬁly prove that, for any
e >0 , there exists V € nbnd 0 in X s.t.
(2) UF(F* T (VA F)O) < ¢ for all FeF
We assume that yu ié normalize&.
Let W be a weighted system in X with respect

to which p 1is WW-continuous, and let (v,F,V) be a

system of &-weights in X by which W 1is weighted.



68.

For any ¢ > 0 , let
0 < e' < min(Se,¢) :
Weldl s.t. x e W => UX(DX) <e'/h
Vel and t>0 s.t. ker VE W and
vV,F(F Tt F) < e'/4 .for eﬁery F e %
Let |
U =V/t
Suppose that
(3) UF(F* (U~ F)O) < g for every F ¢ %
Since ? is directed by e , then i1 ﬁ is a subspace
of X , and for any finite dimensional subspace E of
Llﬁ there exists F ¢ %' with E =« F . Hence, by (1),
(3), and L.2.3 of Proofs 1.4,
. % O ‘
He(E T (UnE)7) <¢
Since W 1is a family of neighbourhoods of the origin in X ,
U is mnecessarily continuous, and by hypothesis, i} % is
dense in X . Hence, from Lemma (2) and the foregoing
remarks we conclude that (2) holds.

It remains for us to establish (3).

For any F e I ,

R 0 * 0
(4) 4 uF(F Unr)) = uF(F eV )
_ a . 0 * . _a
= p(Fy 7 eV A E)) + u(F F )
since
wanle 72

v



(5)

We show that each of the last two terms given in

(4) is less than ¢/2

We estimate the first term.

Since (v,F,V) 1is a system of §&-weights in X , then

a .

0
v (Ve F)

£ e F§ . ovan? = Lecr

(* (£)) = (1

Consequently,

- 0
6.UF(F$ t. (VAR

i_inf{vV,F(If(t)): fe o~ t.(Vn P)O}.QF<F$ . waAnd

\Y
<wop X unp(I(t)) by Sion [44] Ch. ILII, Thm. 1.2.6,

et

= Jelpali oy dup Yy, T 4
fug(r () dvy () = fﬁF(IX(t))dvv’F

V,F(f)

d by Fubini's theorem,

= qu(I )dvv p () = quKDE)dv
t t t

(D Jdvy p G + [l RMCILAENC)

t ot t t
+ 1.y S g
(tWM\ F) 1 vV’F(r tWA )

tW P Mx

£
4 VV,F

1

m

L
£ €
1+ 1.4 < 6.2 .

<

]

Hence,
b (7 wADY) < e/2
Fy
We now estimate UF(F" ~ F@)
We have that

X € FV => X g ker V => x ¢ W => yu (Dx) <e'/4

= 1] o c = =
> g (IX) < ¢'/bh since Ex‘“ v ¢ F

Hence, by Lemma (1),

‘7'< o ) ‘
e,y 70D < e

69.
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Since

7'€~ a
r F[F PV

e ® - {0},
FV,

it therefore follows that

' * _ _a o -1 ".‘c = .
w7 F) f—“F(rFV,F[FV {o}])

=y (F 7 {03) < e'/h < efb
\Y

Then, certainly,
*® . a
(6) g (F Fy) < e/2

From (4), (5), and (6) we see that (3) holds.

Remark. We point out that the theorem still holds when we use a
. somewhat weaker notion of system of é—weights, in which
% : Vel » %V c F directed by <« and Llﬁv is
dense in X

The other definitions remain unchanged.
Proofs 3.

. Proof of Lemma (1).

For any x ¢ F and n ¢ w ,

i

1
nt+l’ ° Ix(n> e M

1
IX(—I;)C IX( g o

and

A
(4]

1
E(1,()) = &(1_)

Consequently, for any x ¢ F , x + o ,

N 1
E( U IX(EJ)
New

E(f e F @ £(x) + 0})

= Lin £(I () <e
new
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Hence if
- (1) there exists y ¢ F s,t.
E(E e F ¢ £(y) = 0} ~ {0} =0 ,
then
E(E - {0)) = £({f € P E(y) + 0}) + £(ff ¢ P i E(y) = 0} " {oD)
< g

We shall establish (1) by induction.

For any subspace E of F , let

B = {f ¢ T : f(x) =0 for all x e E}

Let dim F=n . If n =1 then (1) holds. We therefore

assume that n > 2 . For any' k-dimensional subspace G
of F with 2 <k <n , |

(25 '{H%vGa : H is a (k - 1)-dimensional subspace of G}
is an uncountable, disjoint subfamily of M

Let GO = F . Then, by (2) and the finiteness of & ,

there exists an (n - 1)-dimensional subspace Gl of F s.t.
a . a a
~ = G ~ 3 =
£(6y 7 {0}) = e(6; "Gy =0
For any 0 < k <n - 2 , if there exists an (n - k)-dimensional

subspace Gk of F s.t.

a’~ -
E(6p ~ (0D =0
Then, by (2) and the finiteness of & , there exists an

(n - k - 1)~dimensional subspace Gk+l of Gk s.t.

a . .a. _
£CG, "6 ) =0

Consequently,

’ a - _ a . A RP- S N
g(Gk+l {oh = g(ek+l Gk) + £(G) {0y =0
Hence, there exists a one-dimensional subspace Gr 1 of F s.t.
o a-
EGE {0 =0
n-1

i.e. (1) holds.



Proof of Lemma (2).

For any F ¢ FX s, 1 E w, X € F" ,and t >0 , let

F k=n-1 "
A(e) = O {feF : |£&x)]| <t}
- k=0 K

We shall assume that yu 1is normalized. Since

(V. ~ F)O = (VO/\.F)O , where VO is the interior of V

shall further assume that V 1is open.

Let E ¢ FX .

, we

Since E is separable there exists a countable, dense

subset {x } of VA~ E . Then,
n new
(V n E)O = M {f ¢ B lf(xk)! < 1t
kew

Now, for any ne w ,
k=n-1 ‘ B 1

N {feE : |EGD] <1} = N Al  HyaFD
k=0 mew 0’ " a-1

Consequently, for any & > 0 , there exists n e wand me w

s.t.

B
(XO,...,X

$

L+ < w (@A B + 3

ug (VA BY0) < up(a -

Since. 1y is continuous, there exists U e nbnd 0 in X

(1) uelU-=> pu(Du) < &/2n ,

and since Y 1is dense in X and V 1is open there exists
i ’

{yo,...,yn_l} in V s.t.

(2) x € %-U for all k=0,...,n -1

k- Yk
Let F ¢ FX be such that E W {yo,...,yn_l} C F and
let

* = (XO""’Xn—1> > ¥ = (yO""’yn~l)

s.t.
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Then,
k=n-1

Fooo1 - 1
(=) = e U {feF ff(xk - yk)| Z—H})

U(FN“A_.
F X~y m k=0

k=n-1

< z

< u, . (D _ ) < &8/2 by (1) and (2).
T k=0 KTV mOgoy)

Further,

Fol F,o _ F._ 1
A DN A M S A+

Hence,
F 3 F 1 F F ~ L F 1
iy (1) = g (A () A Ay + (A () 7 AL ()
F 1 S _ E 1., . 8§
5—”F(AX(1 + H)) +-§ = “E(Ax(l + m)) + 3

< g (7 0% + s
i.e.
- F 0
@ i) <u @A m v

o1t s

However, if Fy denotes the linear span of -{yo,...
we observe that

L olwa )Y
y

F
Ay(l) o rFy,F

0
Since FV € FY , and (Vn Fy) is closed, we have that

VA FV)O e MF and
: y

F -1 0 ' 0
1’\. i = -
up(Ag (D) 2 Gt LA F)TD =y (A F)%) > 1 - e
y y

Hence, by (3),

(@ AD) > 1 -6 -
Since § was arbitrary, it follows that

(A B > 1 -
Consequently, since (Vn E)O € ME R

' % 0
W (B 7 (VA E)) < e
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4. Induced Cylinder Measures.

It can happen that a finite cylinder measure over a Hausdorff,
locally convex space X is given indirectly.» For example, it may have
been induced by a finite cylinder measure 1 over a vector space Y
and a linear map T on X to Y ([ll]rp. 311). In such a situation
we shall be interested in obtaining conditions on j» and T which
will ensure that the induced cylinder measure over X will have a
limit measure on X' , Raddn with respect to some given topology on
X' . This kind of problem seems to have been first mentioned in
[11] Ch. IV.. It has been studied extensively, by L. Schwartz,

S. Kwapien, and others, in a series of papers ({191, [201, [39] - [42]).

Tn view of the previous theory, our emphasis will be on
determining condipions under ‘which the induced cylinder measure will

be E-tight. Using the notions of continuity and weighted system

we readily obtain such conditions.
4,1 Definition

For any vector spaces X and Y , linear map T : X ~+»Y ,
and finite cylinder measure yu over Y ,
the cylinder measure § over X induced by y and T is
defined as follows: for each F ¢ FX N
T>‘:[" ]
& T Tpliprp)t o
where

T. is the adjoint of TlF s

3 & *
T. : £ ¢ (T[FD) £ o (T|F) ¢ F



We shall denote this induced cylinder measure & by
v T

We prove below that ¢ is indeed a cylinder measure over X

Lo

w
Proof For each E ¢ FX s TE is continuous.

Hence, by §0.4,

ot
w

, ) . 7/
gE is a finite Radon measure on E

Since all. the maps considered are continuocus, then, by §0.4

and Remark 1.2.1, for any E and F in F with EcC F ,
X

rp,plepl = rE,F[T;[uT[F]” RS OO I T;[QT[F}‘]
= I °'rT[E],T[F}[“T[?]] = Ty rrey Mrpey ]

TE[UT[E]] = gE )

and therefore, again by Remark 1.2.1,

g is a cylinder measure over X . i
We now prové the foliowing important lemma.
4.2 Lemma N
For any vector spaée X , family U of subsets U of X
with 0 ¢ U , topological vector space Y , and linear T : X+ Y ,

if T is U-continuous, then u @ T dis U-continuous for

every continuous finite cylinder measure over Y
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Proof. Let u be a continuous finite cylinder measure over Y
For any x ¢ X , by Lemma 0.4.2,
%

) - e a1 -
(v a T)X(DX) = TF'X[UT"’] (DX) = uTx(TFX [DX]) = “T;;(DT;Q

P 2u Pes

For any € > 0 , there exists V e nbnd 0 in Y s.t.
e Ve u (D) <ce¢
y Uy y ’
and there exists U e U s.t.
T{ul < v
Then, by the first assertion,

) < €

xe U => Tx_ e V=> (unf T)X(DX) = pT_;(DT_){

It follows that u n T dis U-continuous. 21

Our key theorem on induced cylinder measures is now an immediate

consequence of Theorems 3.3, 2.1, and the above lemma.

4.3 Theorem.

Let X be a Hausdorff, locally convex space, Y be a
topological vector space, and T be a linear map on X to Y

If T is w—continuoﬁs for some weighted system W in X ,
then for every continuous finite cylinder measure over Y

poT dis E-tight
are therefore

: %
u T has a, ¢ ~Radon limit measure over X

Remark.

It is clear that this theorem reduces to the finite case of

Corollary 3.3 when X =Y and T 1is the identity map.



77.

CHAPTER III

APPLICATIONS

We shall apply the theory of the previous chapter to a study
of cyiinder meaéures over Hilbertian and Qp-spaces. Qur results
on cylinder measures over arbitrary Hausdorff, Hilbertian spaces
generalize and clarify many known theqremé (Minlos [25], Sazonov [35],
Badrikian {11, Fernique [9]). 1In the case of Qp—spaces we obtain
significant extensions of formerly known results (L. Schwartz [39],
Kwapien [19]). |

Our main tool is Cérollary I7.3.3, which requires us to
construct weighted systems in the above spaces. In view of Proposition

II.2.4, it is the search for such systems which leads us to consider

the families S , for 1 > 0 , defined below.

1. Preliminaries

For any vector spaces X and Y ,
L[X,Y] is the set of linear maps on X to Y
For any topological vector space X ,
CM(X) 1is.the family of continuous finite cylinder

measures over X
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Remarks.

From Appendix 3.1.1 and 3.2.1, we have that for any family

C of finite cylinder measures over a vector space X

\

, there exists
a coarsest topology on X wunder which it is a topological vector space,
and such that
ueC=»y is continuous.
"This topology is called the C-topology.
For any topological vector space X , if the topology of X
is the (M(X)~topology, then we call X a CM-space (Appendix 3.1.2).
For any topological vector space X , 0 < r < | and
ES V4 £ .
w ~Radon measure n on X with suppneE |,
s = {xeX: [lE)|Tan(E) < 1}
rsn -
For each r > 0 ,
Sr is the family of all sets Sr < X

s

1.1 Remarks

Let X be a topological vector space.

(L For each r > 0 , there is a unique topology on X wunder
which X 1is a topological vector space having S* as a base
for its neighbourhoods of the origin. When r > 1 , this
topology is locally convex.

We shall call this topology the Sr—topology.

(2) If 0 <t <t , then St is finer than §" , i.e. for every
o e S there exists B e St with Bc o

(3) If X ds locally convex, then, for each lr >0

Sr is a family of neighbourhoods of the origin in X



We prove only 1.1.2.

Proof of 1.1.2.

79.

For -any finite measure space (£,n) and integrable

fi:a->0 , if

p = t/r ‘and Lyloy P
- P - q :
then, by » Hu\&ﬁ, s inequality,
rp :
e
[1€]Tan < (J1€° dn) Ve @t/ .

Hence, v
W (fleFam /T < (“f!tdn)l/t. oo (B

For any S e ST ,
3

nx) <o

% *
since supp ne ECc K(w') and n is w -Raddn.

Consequently, by (1),

t-r rt
= n(x )( )/
then
S S
t,& = r,n
The assertion follows. R

To point the significance of the families

Proposition II.2.4 can be restated as follows.

SI‘

we note that
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1.2 Proposition

Let X be a topological vector space. For any finite cylinder
measure p over X

w is E-tight => y 1is S'-continuous for every ¥ > 0 . B

When X is Hausdorff and locally convex, the above proposi-
tion and Theorem II,3.3 yield the following assertion:

if q is W-continuous for some weighted system W in X
then u 1is Sr-continuous for each r > 0

In view of this, when searching for weighted systems in X
we shall look for suitable subfamilies of S©

In general, Sr~continuity for some ¥ > 0 does not imply
E-tightness. . (Example 1, Appendix 4).

We shall need the following result on induced cylinder measures.

1.3. Proposition.

Let X be a topological vector space, Y be a vector space,
and T e L[X,Y] . TFor any family C of finite cylinder measures
over Y , if

ﬁ;: T is E-tight for every p e C ,
then, for each r>0 |,

. r . - .
T is S -continuous with respect to the C-topology on Y
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Proof. Let r >0 . By Prop. 1.2,
puel=>pT is ST -continuous.
Hence, by Appendix 3.2.1,
the Sr-—topology is finer than the (C {2 T)-topology on
X
By Appendix 3.2.2, this says exactly that

. T . .
T is S -continuous with respect to the C-topology on Y . I



2, Hilbertian Spaces.

Throughout this section,

X 1is a Hausdorff, Hilbertian space ([1]).

i.e. X 1is a Hausdorff, locally convex space, for which there
exists a family T of pseudo-inner products on X
such that nbnd 0 in X has as a base the family of all
sets {x e X : [x,x] <1}, [.,.1eT

The fundamental theorem of this section is the following.
2.1 Theorem

For each 0 < r < »
r o : .
§S" is a weighted system in X
The proofs of this and other assertions will be given at the end
of the section. Now, we concentrate on the consequences of the above

theoremn.
2.2 Theorems.

Let u Dbe a cylinder measure over X , and 0 < 1 < ®
Then,
(D p is E-tight <=> 1y ig S -continuous.

. r . - w .
(2) v is S -continuous => y has a ¢ -Radén limit measure

on X' .

82.
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’ * .
(3) . If K(e¢ ) = E , in particular, if X 1is barrelled, then
. r .
p is S -continuous <=>
u is E-tight <=>
p has a ¢ -Raddén limit measure on X'

Using Theorems 2.2, we can now characterize certain positive-

definite functions on X (Appendix 2).
2.3 Theoren.

Let ¢ be a positive-definite function on X and
0 <r <

Then,

. . . .o = -
¢ 1is SF—contlnuous => there exists some finite ¢ ~Radon

measure ¢ on X' such that

W) f exp 1 Re f(x)dg(f) for every x e X .

If K(c') E , in particular, if X is barrelled, then

. r . . .
Yy is S -continuous <=> there exists some finite
Y.

@ R
¢ -Raddn measure £ on X' such that

v (x) = fexp i Re f(x)ag(f) for every x e X
Remarks

We note that Theorem 2.2.2 generalizes a result of Minlos
({25 p. 303 Thm. 1). Theorem 2.3 genefalizes results due to Minlos
([25]) P. 310), and Badrikian ([1] p. 16 Cor. 1l). The special case

when X 1is a Hilbert space will be discussed below (52.7).



84.

We point out that, with the viewpoint of §I.4, the assertions
of Theorems 2.2.2 and 2.3 for the case r = 2 can be established by
using the technique of characteristic functionals {([1], p. 9,

Lemma 1, Prohorov [33]). Also, it can be shown that the Sz-topology
is néthing else but ﬁhe Gross-Sazonov topology on X ([35], [1], [13]
p. 65).

By means of Proposition 1.2 and Remark 1.1.2 we can deduce
the assertions above f&r 0 <r<2 from the case r =2 . We have
been unable to give a similar deduction for the case r > 2 . However,
in this context, we draw attention to §2.6 belcw.

As consequernices of Theorems 2.1, II 4.3; and Proposition 1.3,
we have the following assertion concerning induced cylinder measurés

over X
2.4 Theoren

Let Y be a vector space, T ¢ L[X,Y] , and 0 < 1 < =
For any family C of finite cylinder measures over Y |,
pvmT is E-tight for every p e C <=>

T : ..
T is S ~continuous with respect to the C-topology on Y

The above theorem yields immediately the corollaries given
below. Corollary (2) significantly generalizes a result in [11]

(p. 349).



Corollaries

Let Y be a topological véctor space, T ¢ L[X,Y] , and ¥ > 0O .
() If Y is a CM-space, then
uoT is E-tight for every u e CM(Y) <=>
T is S'-continuous. “
(2) 1If T is Sr—continuous, then, for every u ¢ CM(Y) ,
u T is E-tight,

) * - L.
and therefore has a ¢ -Radon limit measure on. X'
2.5 Remarks

Under certain circumstances one can readily strengthen the
assertions of Theorems 2.2 - 2.4,
Let p be a cylinder measure over X
(1) (Theorem II. 2f3> If there exists a base (U for nbnd 0 in X
such that for each U e U
the Banach space Xﬁ is separable,

then,

. ) * S ,
u is E-tight => p- has an 3§ -Radon limit measure on X'

' . , * z
Hence, in those theorems involving the existence of a ¢ -Radon

S ofa
« k2

limit measure on X' , we may replace ¢ by &
(2) Let G be a regular topology on X' with w* X;Ci G
If
EcK(@G) , or E=K(G) ,

then the foregoing theorems may be modified as indicated by Theorem

I1.4.3.
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In parituclar, we note that when X is a Montel space,

FE=K(s') . (cf. Thm. 17.2.2.1)

The theorems above allow us to make some interesting

, . r ] )
assertions about the S -topologies.
2.6 Theocrems.

(D) For all 0 < r < » , the families of Sr—continuous cylinder

measures coincide.

(2) For all 0 < r < 2 , the ‘Sr—topologies coincide.
(3) Let Y be a topological vector space, and for each r > 0 ,

Tr = {T e L[X,Y] : T is Srfcontinuous}
If Y dis a C(M-space, then, for all 0 < r < o

the families Tr coincide.
Remark.

In general, the Sr~topologies do not coincide for v » 2

(Example 3, Appendix 4). W
Clearly, we may interpret all of our results for the special
case when X 1s a Hilbert space. 1In particular, we have the following

theorems.



2.7

(1)

(2)

(4)
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Theorems.

Let X be a Hilbert space,
Let "0 < r <o , For any cylinder measure ﬁ over X ,
u is S'-continuous <=>
p is  E~-tight <=>
u has a c*—Radéh limit measure on X'
Let O ; r <o , and Y be a positive-definite function
on X
Y is ST -continuous <=;
for some finite c*-Rad6n measure &£ on X'
$(x) = [ exp 1 Re £(x)dE(f) for all x e X
Let Y be a Hilbert space, and T ¢ L{X,Y]
u@T has a c*—Radén limit measure on X' for
every u e CM(Y) <=>
T is a Hilbert-Schmidt map ([36] p. 177).
([42} VIII, Pietsch [31], Petcyiiski [28]). Let Y be a
Hilbert space.
For all 0 <t < ®
{T.e L[X,Y] : T is r-summable}
= {T ¢ L[X,Y] : T is Hilbert-Schmidt}
(For the definition of r-summability, see [31], and [42]

p. VII. 3).
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Remark

By Theorem 11.2.3.2, when X is a separable Hilbert space,

) L.

every ¢ -Raddn measure on X' is s ~Radbn. Hence, in Theorems 2.7,
we can replace c* by s* when X- is separable.

We point out that Theorems 2.7.1 and 2.7.2.are eéuivalent
(Cor. I.4.3, Thm. 1.5.6.2, Appendix 2.5 and 2;6).

We observe that even when X 1is a Hilbert space our work
extends previously kno&n results. Sazonov in [35] discusses the case
when X 1s separable, obtaining Theorem 2.7.2 fof the case r = 2
‘Waldenfels in [48] extgnds Sazonov's theorem to the non-separable
case. Theorem 2.7.3 e#tends a result given in [11] (p. 349), where
X is assumed to be separable and 1t = 2 .

From Appendix 3.5 and Proof 2.7.4 we see that theorem 2.6.3

significantly generalizes the Pietsch-Pe¥¢yrski theorem given above

(Theorem 2.7.4).
Proofs 2.

We shall need the following lemma.

Lemma

Let X be a locally convex space, v >0 , and S = Sr . S
. . H
Let
P = P(MnlsuPP n) directed by refinement,

and for-each P ¢ P,

S' = {x g X: Zv inf lf(x)|r.n(B) > 1} .
P Be? febB
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Then, for any F ¢ FY , Radon measure £ on F and t >0 ,
E(F ~ tS) = lim £(F A tséj

PeP

Proof of Lemma

We first make the following observations.
(1 If Pe P, Qe P, with Q finer than .P , then
[ 1
SP - SQ
(2) For any u > C s

X ~uS = U uSl')
PeP

(3) For every P c P s

S% is open in X

We prove only (3).
Let P ¢ P . We have that

(4) S, =U{xeX: 1 inf [E&)| .n(®) > 1},
B BeB feB

where the union is taken over all finite B < P . Hence,
since supp n ¢ E 1is equicontinuous, for every B ¢ P ,

X ¢ X - inf If(x)l £ R is continuous.
feB

Hence, for any finite Bg P ,

(5) x ¢ X=> § (inf }f(x)[)r.n(B). is continuous,
BeB feB

and therefore, by (4), (3) holds.
From (3) we deduce that

tF o~ S!

p is open for every P ¢ P .

Consequently, as P 1is directed by refinement, from (2) it follows
that for any compact C in F with C¢ F ~ tS , there exists

PeP s.t.
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N s,
Q ¢ tF SP

Hence, since § is Raddn and F ~ t§ is open in F ,

E(F ~ tS) = éup' {g(€) : CC F ~ tS is compact}
=}sup:{g(tF P\Sé :PeP}
= lim E(tFn sé)

PeP

Let V be a base for nbnd 0 in X s.t. for each

V e ! there exists a pseudo-inner=-product [.,.]V on X

for which
V={x¢eX: [x,x]V <1} .

Let & C be as given in Appendix {.1. ' .

b
2 , T

2
For each V'g  , let

For each V. ¢ V! and F e F, let

v be a probability Raddn measure on F related

V,F
to [.,.]V]F x F as in Appendix 1.3.

Then, from Appendix 1.3 we see that

~

(v,F,V) 1is a system of §,-weights in X

_ 2
By Remark 1.1.3,
(1) Src; nbnd 0 in X
Let §=5_ e §°
r,n
Since ! is a base for nbnd 0 in X and supp neE ,

there exists V ¢ V with

0
supp n ¢ V
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Then, .

x ¢ ker V => sup !f(x)] =0 => f If(x)!rdn =0=>x¢$§
feVO

(2) ker Ve S .
Let t >0 . For any B¢ X' , let

T g

ot |

f. e B and gy =

B B

Using the notation of the above Lemma, for any P ¢ P ,

FAts! C{xeF: 1 |f (x)lr.n(B) > 7}
P BeP B

Hence,

(F ~ t8)) f_vV’F({x eTF : I lgB(x)]r > 1}

v
Vo F BeP

< C T sup IgB(x)}r by Appendix 1.3.2,
BeP xeV F _
r 1 T
<C T sup IgB(x)| j_—;Cz . ) sup IfB(x)l .n(B)
BeP xeV t " BeP xeV

0
1 .
< C2,rn(X ) since fB eV for every B e P
From the above lemma it now follows that
v (F~ t8) <i-c. nx') .
v,F —-tr 2,7

Since C2 rn(X') < @  we conclude that
b

(3)

vy F(F ~tS) >0 as t > » uniformly for F e F.
b

From (1), (2), and (3) we see that

st s weighted by (v,F,V)

.1 By Cor. I11.3.3, Thm. 1.5.6.2 and Prop. 1.2 ,




2.2.2 and 2.2.3 By Thms. II.2.1 and 2.2.1.

2.3 By Remark 1.1.3 and Appendix 2.2.5,
¢ 1is S'-continuous => vy is continuous at 0
=> y is confinuous =>y|F is continuous for all F ¢ F.
Hence, by 2.4 and 2.5 of the Appendix,
there exists a finite S -continuous cylinder measure
u ovef X s.t.
P(x) = f exp i Re f(x)dﬁx(f) for all x e X
By Thm. 2.2.2,

* - . .
p has a c.-Radon limit measure £ o

=}
[

Then, for every x e X ,

. exp i Re f(x)dé(f)

Y(x) = fFX exp 1 Re f(x)dux(f) = IX

‘Suppose now that E = K(c*) , and for some finite
Radén measure ¢ on X'
Y(x) = f exp 1 Re £(x)dg(f) for all x € X
We note that for every TF e F and Borel subset. H of F*
r}l[H] e M,
I1f, for each Fe¢ F ,°
vp = rplel
then, by Lemmas 0.4 and Remark I1.2.1,
v is a finite cylinder measure over X .
Fﬁrther, by Lemma 0.4.2,
£ is a limit measuré of u ,

and therefore it follows that

Y is the characteristic functional of

92.
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% x
Since £ 1is ¢ ~Raddn and K(c>) = E , then, from

Lemma I.5.1.2 and the definition of . we see that

y is E-tight.

Hence, by Prop. 1.2,

. r ,
y is S -continuous,

and therefore,-by Appendix 2.5,

2.7.1 and

Y is Sr—continuous.
By Thm. 2.2.i.
By Thm. 2.611, Cor. 2 of Appendix 3.5, and Appendix 3.2.1.
By Cor. 1 of Thm. 2.4.

2.7.2. are consequences respectively of Thms. 2.2.3

and 2.3, since Hilbert spaces are bharrelled.

Since X and Y are Banach spaces, by [31] p. 339, Thm. 1,
T is Sz—continuous <=> T 1is Hilbert-Schmidt.

The assertion is now a consequence of Cor. 1 of 2.4, and

Cor. 3 of Appendix 3.5.

Since X and Y are Banach spaces, by [42] p. VII. 3, §2,
for any r > 0 ,

T is S -continuous <=> T is r-absolutely summable.
The assertion ncw follows from Thm. 2.6.3 and Cor. 3 of Appen-

dix 3.5.
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3. DNuclear Spaces.

Nuclear spaces comprise one particularly important family of
Hausdorff, Hilbertian spaces (Grothendieck [14], see also [36] and
[47]1). We shall therefore interpret the results of the previous section
for the case when X 1is a nuclear space. As a consequence of the
special structure of nuclear spaces, we shallAbe able to strengthen
considerably thé theorems concerning cylinder measures over arbitrary
Hausdorff, Hilbertian éﬁaces. We point out that many of the common
spaces of distributions are in fact nuclear (Treves [47] Ch. 51).

| For our definition of a nuclear space we shall use a characteri-

zation due to Pietsch ([29], [36] p. 178).
3.1 Definition.

X is a nuclear space iff X is a Hausdorff, locally convex
space with the following property:

for any neighbourhood U of 0 in X , there exists another
neighbourhood V of 0 in X , and a w*—Radéh measure 1n on X*

with supp n c,VO , such that

{x e X : [lE&) ]dn(f) < 1}€ U
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Remarks

If X is a Hausdorff, locally convex space, then, from

Remark 1.1.3 and thé above definition, we see that
(1) X is nuclear iff Sl is a base for nbnd 0 in X .

For any nuclear space X , from (1) above, Remarks 1.1.2 and
1.1.3, it follows that
(2) the Sr—toﬁologies on X coincide for r > 1

In particular, taking 82 as a base for nbnd 0 in X , we
deduce that
(3)’ X 1is a Hilbertian space ([36] p. 102).

As in Treves [471; p. 519, we can prove that
(4) EcK(s) | |

Hence, if X 1is barrelled, then
(5) E=K(s)

We point out that coincidence of all the Sr—topologies for

r > 0 is a consequence of (2), (3), and Theorem 2.6.2.

The theorems given below in 3.2 are direct consequences of
the above remarks, and assertions from the previous section ,specifically,

Theorems 2.2, Theorem 2.3, and Remark 2.5.2.
" 3.2 Theorems.
Let X be a nuclear space, and p be a cylinder measure over

X .

(1) 1y is continuous <=> p is E-tight.



(2) u is continuous => y has an s*—Radon limit measure on X'
(3) If‘ K(s*) =E , in particular, if X is barrelled, then,
’ u is continuous <=>
u is E-tight <=>
p has an sJ—Radén limit measure on X'
(4) Let ¢ be a positive-definite function on X
Y is continuous =;
there exists an s'~Rad6n measure & on X' such that
P(x) = [ exp i Re £(x)d&(f) . for all x e X
JIf E = K(s*) , in particular, if X is barrelled, then
¥ is continuous <=>

there exists a finite s -Raddn measure £ on X' such that

P(x) = [ exp i Re £(x)d&(f) for all x e X

Theorem 3.2.2 extends a result of Minlos ([25], p. 303, Thm.

who considered finite cylinder measures over countably normed nuclear
spaces -([11] p. 56). Vilenkin extended that result to the case of

countable strict inductive limits of such spaces ([11] Ch. IV 2.4).

96.

1),

Theorem 3.2.4 extends results due to Minlos ([25] p. 310) and Badrikian

([1] p. 17). We note that the thecrems of 3.2 completely resolve

a conjecture of I. Gelfand ([25] p. 310, [18], p. 222), that every finite

continuous cylinder measure over a nuclear space X has a limit measure

on the continuous dual X'

Theorem 3.2.1 has a partial converse which extends a result

of Minlos ([25]. Thm. 4).
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3.3 Theorem

Let X be a Hausdorff, locally convex space.
If X 1is a C(M-space and
boe CM(X) => p is E-tight, .

then X dis nuclear.

Proof By Proﬁ. 1.2,
U € CM(%) => y is Sl-continuous.
Hence, by Appendix 3.2.1, |
the Sl~topology is finer than the C(M(X)-topology.
On the other hand, by Cor. 2 of Appendix 3.5, and Remark 1.1.3,
the (M(X)-topology is finer than the Sl-topology.
Consequently, |
the C(M(X)-topology = the Sl—topology.
Since X is a (M-space, it follows from Remark 3.1.1 that

X 1is nuclear. @

Remark.

. We note that a‘Hausdorff, locally convex space is not neces-
sarily a CM-space (Example 4.3, Appendix 4). When X is not a CM-space
we see from the above proof tﬁat the best assertion possible is the
following.

If pe CM(X) => y 1is E-tight,
then,

the Sl—topology and = CM(X)-topology coincide.
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Theorems 3.3 and 3.2.1 lead to the following new characteri-

zation of nuclear spaces (Remark 3.1.3, Cor. 3 of Appendix 3.5).

3.4 Theorem

Let X be a Hausdorff, locally convex épace.
X 1is nuclear iff X dis a (M-space and

poe CM(X) => y is E-tight.

Concerning induced cylinder measures, Remark 3.1.4 enables us
to strengthen Corollary (2) of Theorem 2.4. 1In view of Remark 2.5.2,

the following assertion is immediate.

3.5 Theorem

Let X be a nuclear space, Y be a topological vector space,
and T ¢ L[X,Y] .
If T is continuous, then, for every u e CM(Y) ,
pa T is E-tight,

%
and therefore has an s -Raddn limit measure on X'

We observe that an infinite~dimensional normed space cannot
be nuclear ([47], p. 520). As a consequence of this fact we can assert
that certain cylinder measures over such a space X cannot have a limit

measure on X'



3.6 Proposition

Let. X be an infinite~dimensional normed space

'If u is a finite cylinder measure over X such that the

topology of X 1is the >{u}—topology, then py does not have a

limit measure on X'

Proof.

Corollary

By Cor. I.4.3, Prop. 1.2, and Appendix 3.2.1,

y has a limit measure on X'
=> yp is E-tight

1

=> y is S -continuous

: 1
=> {u}-topology is coarser than the S -topology
=> X 1is nuclear, by Remarks 1.1.3 and 3.1.1.
Since X 1is an infinite-dimensional normed space the

last assertion cannot hold, and therefore u cannot

have a limit measure on X'
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Let A be an index set. For any 1 <p <2 , if is the

- . 2 . s .
finite cylinder measure over &7 (A) with characteristic functional

(Remark, Appendix 2.4)

x € 3P (A) » exp - (l\xnp)P e € ,

then p does not have a limit measure on GPant .



100.

Proof See (1) in Proof of Example 4.2, Appendix 4, and Proof 3.1.1

of Appendix 3.

Remark

For p = 2 the above corollary is well known (Gross [13]).

We have not seen a treatment of the case 1 §;p < 2 in the literature.
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4. Qp—sgaces.

Applied to zp—spaces, l<p <o , the theory of the previous

chapter yields results analagous to those for Hilbertian spaces. Since
2, . . . .

§"-is a Hilbert space this case has already been discussed in §2.5.

The results given there are stronger than those we shall obtain here -

for an érbitrary Qp-space.

Notation

. Let A be an index set. For any 0 < r < =,

V{X:E ¢A : I X(u)|r< w} when r < ® ,
{ oeA .
f
gt () =
A '
{x e € : sup \x(a)l < ©} when 1 = ®

ocA

We give zr(A) the usual topology. 1i.e.,
when ¥ < 1 , the topology generated by the quasi-norm
(Appendix 3.3)

borxe 2 > 3 [x@] e RT
oA

B

when r > 1 , the topology generated by the norm

ol xe T -z x@ DY Rt
. aehA
where we take '
(r jx(u)lr)l/r = sup lx(d)l if r = o
aeh och

For any 1 <p <2 ,

U o= {xe 2P : 5 |x@]|® <1} .
P acA :



. 1 b
assert that certain families of subsets of 27 (A) , 1 < p < » , are

" For any outer measure 1, on a space @ s

gu(n) = lim £ n(B)|1lon(B) |
_PeP(Mn) BeP

where wt tc\,\&e

ulnu = 0 when u =20

. 102.

The heart of this section is the following group of results, which

weighted systems in QP(A)

4.1+ Theorem.

(1

(2)

(3)

Let 1 <p<wand 1/p+ 1l/q=1
For any' r >0 , let

-t T . T ,
S ¢ S consist of those sets Sr 5 e S for which
-3

satisfies the added condition
QU(H) < @ s

and when 1 <p <2 , let

S

T T , r ,
< S consist of those sets Sr N e S for which
-y

fies fhe added condition

[Fsup  [£G0) [Fan(e) < w
erp

If 2 <p <o and 0 <71t <q then .
T . . . D
S is a weighted system in ' (A)
If 2 <p < and r =gq then
St is a weighted system in QP(A) .
If 1 <p <2 and 0 <r < » , then

or , . D
S is a weighted system in §° (&)

(We note that st = s¥ when p=2 )

1

"

satis-
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The proof of the above theorem will be given at the end of
the section. Now, we point out its immediate consequences when taken

together with Corollary II.3.3.
4.2 Theorems

Let 1 < p < and ;-+ 1. 1
» - - p q

(1) If 2 <p<w and 0 <71 <gq , then, for any cylinder
measure |y over ,Q,p(A)’ >
. r s .
p is . 8 -continuous <&>

i is E-tight &>

% . L"\n‘\t . P
p has a ¢ -Raddn¢measure on (27 (A))'

(Here, we also use Prop. 1.2 and Thm. I1.2.1, noting that QP(A) is
a Banach space and is therefore barrelled.)
(2) If 2 <p <wand r =gq , then, for any cylinder measure u

over QP(A) ,

p is Sr~continuous =>
u is E-tight =>
* - Um'\\:
¥ has a ¢ -Radonimeasure on (ZP(A))'

(3) If 1 <p <2 and r >0 , then, for any cylinder measure

over lp(A) s

. r .
p is S -continuous =>

p is E-tight =>
X - Ll\ "\\\\— p
n has a ¢ -Radonvmeasure on (27 (A))'
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Using Theorems 4.2 we can represent certain positive-definite

functions on RP(A) as Tourier transforms of measures on (lp(A))'

The proofs of the assertions given below are similar to the proof of

Theorem 2.3, and are therefore omitted.

4.3

(1),

(2)

(3)

Theorems

+—=1 , and ¥ be a positive-definite

T

Let 1 <p <=,

3 =
Q|

function on 2F(A)
If 2 <p<wand 0 <r <q , then,
r . . *
Y is S -continuous <=> for some finite ¢ ~-Radén

measure £ on (QP(A))' s

y(x) f exp 1 Re f(x) dg(f) for all x ¢ QP(A) .

If 2 <p < and v =gq , then,
) — ) . .. k] 7
Y is S -continuous => for some finite ¢ -Radon
measure & on Pyt
P(x) = f exp i Re £(x)dg(f) for all x e Qp(A)
If 1<0p <2 and r >0 , then,
Y is S'-continuous => for some finite c“—Radéh

measure & on (RP(A))' s

Y(x) = f exﬁ i Re £(x)dE(f) for.all X € ZP(A)

Concerning induced cylinder measures, Theorem 4.1 yields the

following results when taken together with Theorem II.4.3.
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4.4 Theorems.

Let 1 <p <o %—+ %—= 1, Y be avector space, C be
a family of finite cylinder measures over Y , and T ¢ [RP(A),Y]
(1) If 2 <p <> and 0 <r <gq , then,
T is S¥-continuous with respect to the C-topology on Y
<=> for evefy ueC ,
uao T has a c*—Radéh limit measure on (2P(A))' .
(Here, as fo£ Thm. 4.2, we also use Prop. 1.3 and Thm. II.2.1.).
(2) If 2 <p < and r=gq , thén,
T is S -continuous with respect to thé C-topology on Y =>
for every u e C H,
Tln] T. is E-tight =>
for every p e C
pup T has a c*—Radén limit measure on (RP(A))'
(3) If 1 <p 5_2 and r > 0 , then,
T is S'-continuous with respect to the C-topology on Y =>
for every une C
ﬁ o T is E-tight =>

for every p e C ,

uw T has a ¢ -Rad8n limit measure on (Qp(A))' .

As consequences of Theorems 4.4 we have the following extensions
of results due L. Schwartz [39] and Kwabien [19]. They consider only

the case when r = q and A 1is countable.
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Corollaries.

(1) If 2<p<w, 0<r<q,yce Qr(A) and

ke BPA) > xlyE)) e 8 @)

A
then, for every u ¢ CM(Qr(A)) R

pe= T has a f—Radén limit measure on (QP(A))'

(2) If 2<p<w, r=q,ye & (A) with

.o ly@ | aly@|] <=
achA :

and
T :xe 2P(A) (x(a)y(a)) € Qr(A)
. ’ aeA : ’
then, for every u e CM(ﬁr(A)) s
*
po T has a c¢ ~Radon limit measure on (QP(A))'
(3) If 1<p<2,1r>0,yc¢ Qr(A) , and

T:xe 2P > @y, e 2 @,

A
then, for every u e CM(Zr(A)) s

to

w
p3 T has a ¢ -Radon limit measure on (Zp(A))'

We give here the proof of only Corollary (1). The other

proofs are similar.

Proof of Coroilary (1).

For each o ¢ A , let
e e (LPNT i x e 2Pa) » x() e C
and 1 be the discrete measure on (Zp(A))‘ with

n({ed}) = ly(d)lr for each o ¢ A .



4.5

(1)~

(2)

(3)
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Then,
supp n ¢ £,
and for any x ¢ QP(A) s

z |(T§)a[r = [lEG) | Tan(e)

ocA

. r . ;
It follows that T 4is S ~continuous, and the corollary is now

i

an immediate consequence of Thm. 4.4.1. W
Remarks.

If A is countable, then (XP(A))' is separable. Consequently,
by Theorem II.2.3.2, every c¢ -Radon measure on Pa))t is in

* .
fact s ~Radon. The foregoing theorems may then be suitably modified.

We point out that Corollary 4.4.2 is the best result possible

when 2 <p <e and r=gq . If
Ny e 23(a) with = !y(a)!q]ln]y(a)ll =
agA . :

and T 1is as given in the corollary, then by Example 4.2 of
Appendix 4,

there exists U € CM(%q(A)) such that uy & T fails to be
E-tight.

With the notation of (2) above, as in the proof of Corollary
4.4,1, we see that

T 1is Sq—continuous,
and therefore, by Lemma II.4.2,

v T is S% continuous.
From Remark (2) above, and Theorem II.3.3, it now follows that

1

for any 2 < p <~ , if %—+ a-= 1 , then

SY is not a weighted system in 2P (A)
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However, Proposition 1.2 suggests that when searching for a weighted
system in 2P (A)  we ought to look for a subfamily of s¢ ‘. |
Remark (2) then indicates that S% is in fact an appropriate
subfamily of Sq for us to consider.

When 2 <p < w , the construction which we use for producing
a system of ¢~weights in QP(A) depends on the fact that

for any finite set K

X g @K -+~ exp - I Ix(d)lq e €

ek
. - - . K 1 1
is a positive~definite function on € , where — + a—= 1
(Remark (1) of Proofs (4), and Proof 2.2 of Appendix 2.) If

1 <p< 2 , then q > 2 and the function given above is no
longer positive-definite (Schoenberg [38] p. 532). The construc-—
tion therefore breaks down when 1 < p < 2 , We can show that
construction of a system of §-weights in zp(A) s lsp<2
would be possible if there were a X : R+ -+~ € such tﬁat fér

any finite set K ,

X € @K -+ X( Z ]X(d)iq) e €
aek

I . K . .
was positive-definite on € . If such a function X existed,

then, by Appendix 2.2.4,

(1) xe 2t > X |x@]H ec
a€eA '
would be a positive-definite function on zq(A) . However,

when q > 2 , one can show as in [5] that there does not exist
+ ' )

X : R = € such that (i) holds.
Nonetheless, we can still obtain a system of §-weights in

2P (a) s L <p< 2 , 1f wve use the system of §,-weights induced

2

by the canonical imbedding

X g lp(A) +~ X ¢ RZ(A) . (Remark (2) of Proofs 4.)
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(5) Remarks (4), Proposition 1.2, and the proof of Theorem 4.1.1,
led us to believe that S" ¢ S© R r >0 , would be a suitable
family to study when searching for a weighted system in QP(A) R

1 <p<2

1

(6) We point out that for p > 1 and + == 1 |, the appearance

Q|-

of- g in the hypotheses arises at the finite-dimensional level-
(Remarks (4) and Appendix 1). Thus, although (zp(A))'

may be identified with zq(A) , we have avoided doing this, a$s
carrying out such an identification might have suggested that the

relationship between QP(A)F and Zq(A) was crucial to our argument.
Proofs 4,

Together with the notations of Appendix 1.1 and Proofs 2,

for any p > 1 , let

i+i=1,

P q

x_ = 4P@

P

vV = {x X ¢ ix < 1} .
p % |%~

|.] :£feX'>sup [£&x)}
P xev

For any finite K« A , let

K%
I'lq,K : f e (@K) ~ sup {!f(x)l T X & Vpr\ CK} ,

= {€ : Kc A is finite} directed by inclusion,



For any 2 < p < o and finite K< A

and

Remarks

Yg be the product measure on €

(1) By Appendix 1.2, for each 2 < p <

(2)

+~
=

3

generated by Yp

, which is Radon.

(VP,F,VP) is a system of Gp—weights in Xp

For each

1l <p < 2 , since

K. 0 K. 0 -
N CH) ¢ (Vp/\ cH

then, by Appendix 1.2, for every 1 < p <2

(v

We observe that for any p>1 and r >0 |,

D) S'c nbnd 0 in X, (Remark 1.1.3).

and |

(2) ker Vp = {0} ¢ S for every S g st

| Now, for any S =‘Sr,n £ Sr , and each B« X; ,

fB e B, 8g =»nl/r(B).fB

and
8 = sup {lf{q : f e supp n }

Then, as in Proof 2.2.1, for any P e P , finite K¢ A

t >0
(5)
and, by

(6)

2 ,
,F,Vp) is a system of 62'

s, we have that

WA es]) < WPl e 6F
, P BcP
the lemma of Proofs 2,

Lt £5) = 1im WA esh)
K" K ]

PeP(8)

for every finite

Ke A

-weights in Xp

let

on

-, and

Pttt 1y

110.

’
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Case ‘1. (2 <p<w, 0<r <q).
Since supp n e E

0 <5 <o

Then, for any t > é'nl/r(xé) )
I
B < supp n => E_Dqu <1

Hence, by Appendix 1.2.3, the right-hand-side of (5) is

majorized by

1 r ~r+1 1 q :
c N PN G0 Y 2nC, ( =) 1 |r g |
PsT pop Kt ®B" 'q,K BeP Kt "B" 'q,K

- <

c ¢ n(}\)+—52 e (9-‘~—>sq Ty X))

Dy
; t

|
=

(Since q/r > 1 , then

: a7 m = YTy ) ) 19T
BeP P Bep P
<T@ 5 @/ =T

BeP

Whence, by (5) and (6),

K, X . 1 R | q-r+1,.q a/r, .,
7 c ts) < ~—C 5 X' + = 27nC Ys'n= (XYY
(7) Yp( ) S E G N ( p) a p( e 0

Since the coefficients of l/tr and l/tq are finite and
independent of K it follows that

(8) YE(CK T tS) » 0 as t > o uniformly for all finite Kc A

By (1), (2), and (8),

st s weighted by (vp,F,Vp)
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Case 2 (2 <p<w, r=gq,S5 e'gf) .
If

q
c = sup u'ln u
O<u<s

t.hen

0 <c <o

For any t > é-nl/r(xé) .s by Appendix 1.2.3, the right-hand-side

of (5) is majorized by

o

1 : - 1 ' : 1
(9) ¢ 5 IrK E—gB)]z,K + ZTrCp X }IKCE 8B)|3’Klln|rK(€ gB)[

The first term of (9) is majorized by

g sdnxh)
(4 Psd D

The second term of (9) is majorized by

27C b 1
P BeP tq

SEMBETONEY +%!1nn(B)] + [1nleg] 1]

: I ]
el o st 4 2c 6T 5 ) | 1on)|
a4 T P8 P D

+ L 2rC_ ¢ n(X') .
4 P P

Hence, by (5), (6) and (9),
K, K
¢ ~ tS
Yp( )

27C
o)

-
¢

q_ vt
< — |[C X)) +
< q[ Sn(p)

Yvn) + 246 ¢ n(xH]
D,q P p

1
+2EL e Iy
a p> o
By the hypotheses, the coefficients of 1/t% and ]lnt]/t? are

finite and independent of K . Hence,

(10) \)E(CK - tS) + 0 as t » « uniformly for all finite KC A .

By (1), (2) and (10)

ST is weighted by (VP,F,Vn) .
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Case 3 (1<p<2,r>0,58¢eS8)

By Appendix 1,2.3, for any t > 0 , the right-hand-side
of (5) is majorized by

1

T
¢ L HK(? gy) IZ,K

25T Bep
Hence, by (5) and (6),

2, K _ o as K, K '
VK(E ts) = lim YZ(C I tSp)

PeP(S)
< Lin ¢y e T G aplh
PeP > BeP >
1 ] : T
= ;? CZ, . 1lim T sup X IfB(X)i) .n(B)

PeP BeP XeUé\C
1 . . r

= Cy  lim I (sup (sup [£GI])T) n(B)
t " PeP BeP feB erD

in

i

Loy, [Mewn [£6 ) an()
t xel

By hypothesis, the coefficient .of 1/t" is finite and independent
of K . BHence

T¢
(11D \)é(CL< ~tS8) » 0 as t + o uniformly for all finite K C A

By (1), (2) and (11),

ST is weighted by (v2,F,Vp)
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APPENDIX -

In this Appendix we establish a number of results and construc-
tions which are necessary for the discussions of Chapter IIT., In the
last section we give some counterexamples which complement the considera-

tions of Chapter III,

1. *Special Measures. on Finite-Dimensional Spaces.

In this section we shall construct special measures on
finite~dimensional spaces. The existence of these measures enables us

to produce systems of O-weights in Hilbertian spaces and in 2p-—spaces,

p2l
Notation

K idis a finite set.

For any 1 S p £ ® ,
1,1,
p q
{x € CK :ZdEK ]X(a)]p < 1} when p < o
Vv = N
P x € ¢ : sup [x(a)| < 1} when p = o

aek
R.*
For any f £ (€) s

lff = sup lf(x)]
9 x€eV

(We note that VO = {f ¢ (@K)K : [f} < 1}H
0 =


http://15.pl03

A is the Lebesque measure on € .
For any finite dimensional space F

I={(,8) ¢ FxF : |[£G)] > 1)

The constructions of this section will be based on the asser-

tions given below.
1.1 Lemmas

Let 2 <p <o and r >0
(1) There exists a strictly-positive, comntinuous
+
9 :€¢->R

such that

© exp - ]wlq = f (exp 1 Re@é)@p(z)dw(z) for all w ¢ €

(2) When 2 < p < o , there exists
i) 0 <C < o
( p
such that
(ii) @p(z) < Cp/]z]2+q for all z e § .

Hence, when r < q , for any u >0 ,

27C q-r
(1i1) - E:EE'[l + 1/u ] if r<gq ,
z|” 0 (z)dx(z) <
1<jz{<u ,
27TCD Ilnul if r=q ,
and
(iv) [ 0 (2)dr(z) < 2nC_|u|?
u<|z P :
(3) When p =2 |,
. (2
Sl o d2l0 vor -
Gz(z) = 5o exp 7 for every z ¢ €



Notation

and

Remarks

For

For

For

and

each <p =
Yp tBg € ~
§ = ({z ¢
p p

any r > Q0 ,

2 <

Cg,r - j'zlr

each

o o let
% +
¢
j lB @p dx & R R
€ |z] > 1}
let

9,(z) da(z)

2 <p <o

, and

any 0 <t < ¢q

C_ be the constant of Lemma 1.1,2,

=

21C . r

—L 4 [ ]zl 0 (2)dx(2)

¢-r  fzl< i

2nC_ + [ |z|" 6 _(2)dx(2)
Polzla P

3

let

We note that in view of Lemmas 1.1.1 and 1.1.2,

Yp is a probability Raddn measure on € ,

116.



1.2 Lemmas

Let 2 < p < « and
K ] K
Yp be the prcduct measure on € generated by

the measure Yp on € . »
K . o K
(1) Yp is a probability Radon measure on (

K. # 0 K, _f
(2) £ e (¢ YV o= 7)) > §
) 5 Yp( ) > >

(3) For any sequence {f ] Ci(GK)x ,and 1 > 0

let
n new ’

B={xecC : .1 £ o)™ > 1)
new "

(i) If p=2 , then q = 2 and

<

K
Z(B) 5-02,r 2 lf
NeEW

(i1) If p>2 , r <q , and ’fq[q <1 for every n e w , then,

C g £ " + 2nC (ﬂi§il) p e |® if r<q ,
Pot e ™4 Poatt ey T
Y (®) <
c t J£|T+o2mc oz £ |Ym|f | | if r=gq
Psq ., m'q P o, D4 ''nlg
1.3. Lemma.

Let F be a finite~dimensionél vector space,
If [.,.] is a pseudo-inner product on F and
V=1{xeF: tx,x] < 1} ;,
‘then, there exists a probability Raddn measure £ on F such
that

¢ f e (ker V)a ~ VO => Q(If) 3_52

117.
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KN
w

(2) For any sequence {f } in F

n new ’

e{xe F: % !f (x)|r > 11 < C I  (sup If (X)I)r .
n — 2,T v n
new new xeV

Proofs 1.

—
=

Let i be the Lebesque measure on R2
From Blumenthélvand Getoor [3] p. 263, we have the following facts.
(See also Levy [21} Ch. VIL.)

For any 0 < gq < 2 , there -exists a strictly positive

continuous
é : R2 > R+
P
s.t.
= N 2
(i) exp - |t| = f[exp i(t.u)] GP(u)dA(u) for all t ¢ R R

2

2
where, for any t ¢ R" , ue R s

t.u

touO + tlul

and

|4 mg + t§>

If q <2 , there exists 0 < c¢c_ <= s.t.

1im | 3] 219 ép(t) = ¢

| £] o0

q

Hence, if
, 1 24an L
(ii) C, = sup, | t] % (v ,
* TeR P
then,
iii) 0 < C < =
( P
and

(1v) 6 (V) < cp/|t12+q for all & R
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' Consequently, for any 0O <r <q , and u>20 |,

14T 8 (har) < ¢ 6]t . — G
! P A 1.<_’Cii1ll e

1+q-r, ~ , .
0 4 Y) ldp using polar coordinates.

= 21C /. (

1<p<u

By integrating the last term it follows that

(v) 2nC _r 27C r
—Pr1-1/0%) « — Ry, ifr<gq,
. q-r — q-r
|6 _(e)da(x) <
<u P ,

[

1<t

chpllnul if r=gq .

For q = 2 , using the fact that

: 2
(J/‘/_Z—Tth (exp 1 xy)exp - x dx = exp - z R

2

a direct computation shows that

2
; 3 =1 _1xlT
) 6,1 =i exp - L

Hence, for any r > 0 ,

(vii) j|t]r52(ﬁ)di(t) < e

Let
‘ 2
T: zeC~»>(Re z, Imz) ¢ R y
and for each 0 <q <2 .,
6 =6 , T
p P
The assertions of Lemmas 1.1 now follow from (i) - (vii)
above, and the properties of the map T , namely,
for any z and w in ¢ ,

Re wz = (Tw).(Tz) ,

and T is an isometric, measure preserving, homeomorphism.
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Notation For any f ¢ (@K)m , let

£ = f/|f|q ,

?f P X e @K > f(x) e €
K E LKy
p Y
and let |
It - K \
Y’f t:weg € (exp i Re wz)dyl’f(z) e ¢ .
1.2.1 ° This follows from the fact that Yp- is a probability Radon

measure on € .

1.2.2 For each o & K , let

e = 1

K
a {a} € Q .

Then, for any f ¢ (EK)k , and we €

(1) @f(w) iexp i Re wz d;i’f(z)

fexp i Re f(@&)d;i(x)

m [f(exp i Re wi(e )x(a))dy_(x(a))]
aeK ¢ P

exp - I Iw f(ed)lq by Lemma 1.1.1,
0eK )

exp - leq|f{2

Since a Radon measure on a finite-dimensional space is uniquely
determined'by its Fourier transform (Bochner's Theorem, Appendix
2.35, it follows that

“K, £
2) |f] =1=>40" =
( ) |[q > 'Yp Yr‘



However,

and

fe (&9 v
Hence,

ah s hath - Yo e e e o] 210

= 6p , by (2) above.

121.

: ' ‘ K
(1) Since I _Ifé(x)lr is a series of positive Yz—measurable

new:

. K
functions on C s

B = fldv < [CT 5 D ays )
. new

r K
=3 [£ |, J1£] G| dy, ()
new

T r -Ks n
-5 e |E LT @, mw
new

r

9 by (2) of Proof 1.2.2.

=C DI
n

(11) Let

H = {x € CK : lfn(x)[ < 1} for each new ,

H= 0O H
R n
new
and
h @ xe CK -+ 1 if x ¢ @K ~ H

oJf G)|F if x e H
new o
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We have that

K - K K K
1 B) < jhd = 1, dy +} 1. hd
(1) v, ®) < fhay] fc1\~HYp J 1hay,

Now,

f1 " dyK <. I YK(@K " H)
¢ "H P new P

K " K .
= oy (xe £l 6ol > 1/an|q}>
new

K, E!
= I Yo ({z e €C: |z] > l/lfn!q})
new
(2) <2nc. £ |£ ]% by (2) of Proof 1.2.2,
—~“7p n'q
new

and Lemma 1.1.2.(iv).

. K
Since z |fr'1(x)[r is a series of positive yp—measurable
new

) K
functicns on € , we also have that

K _ Ty oy r. K,
f 1yhdy | = f lH[niw lntq[fn(x)| Jdy Go)

fi

Y V K .
) lfnlz [ 1H{fn(x)‘rdyp(x)

new
' K
<z Ifnlg [ 1, [fé(x)lrdyp<x)
new n
’ ; T T NK’fé
= ¢ |f | flzl" ay_ ()
new d P
Jz]<1/]£ |
- - n q
_ r r
= niwv]fn[ [ |z] ep(z)dk(z)
|2!fl/lfn[q by (2) of Proof 1.2.2.

Hence

f 1thy§_i L [fn|z[ [ lz]F o (D) + 2|7 6 _(2)darn(z)]
ey |z <1 1<fal<i/ls |
Letting ap’r = ‘f Izlr'ep(z)dl(z) , from
2] <1

Lemma 1.1.2 (d4ii), we have that
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r 27rCp -
Eolt + 1+ |f : £ ’
new I ?lq(ap:r q-r [ I nlq D 1 -r < q
K
3) f Lhdy, <
T
Lol (e, T o2nC i in]f if r =
new I nlq(ap’r i pl nl n[q[) 1 ' r q

Consequently, if r < q , then, from (1), (2) and (3),
27mC

K q r 12 4=r
B 27C_ L | f + 1 |f + 1+ £
YP( ) = p new I n]q new l n!q(ap,r g-r [ I nlq ])
- C olE S+ 2me (EEL pofe T
Pol ey 1A Pramr pey M4

since all terms are positive.

The case r = q 1is established from (1), (2) and (3)

similarly.
1.3 We first suppose that [.,.] is non-degenerate. If so,
choose a [.,.]-orthonormal basis K for F . Let

K
T:2zeg€ > L z .a0a¢ekF
, O
oeK
and
x 0~ K *

ng—:»f:foT'E(@)
.Then,

T 1s a homeomorphism.

"

Further, for any x' ¢ GK , v' o€ @K , and feF ,
(1) [rx',Ty'] = <x',y's , where <.,.> denotes the inner
product in CK s

and

(2) sup !f(x)l = I%IZ
»eV

Whence, if
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" then

£ K, f
and
K .

b3 % (x') s1h
new | n |

£(B) = v?({x' e ¢

The assertions now follow from (3) and Lemmas 1.2.

When [.,.] 1s degenerate, let Fl be any subspace

of F s;t. F is the direct sum of Fl and ker V

(Possibly, F1 = {0}) . We have that

[.,.]lFl x F, 1is non-degenerate,

since Flr\ ker V = {0}

Let El be the probability Radon measure on F1 determined
as above, and
. -+
g:HCEW>ﬂHAFﬁ e R .
Then,
(3) ¢ is a probability Radon measure on F .
Since F is the direct sum of Fl and ker V , for any

x £ X there exists a unique representation

e F and x., € ker V

X = X, + Xy with Xy 1 9

1

Consequently,

(4) f e (ker V)a => gup [f(x)] = sup [f(x)|
xeV ernFl
and therefore, from the non-degenerate case above,
' *
) fe (ker N2~ = r. () e - (v F)Y
Fl,F L 1
p ¢

=g =g b ) s,
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* a
If fn e F ~ (ker V) for any n e.w , then

sup [f (x)l =
xeV n

and therefore (2) of the lemma holds.
If fn e (ker V)a fer everyv new, then

from the non-degenerate case above,

§) = g Uxe P oz £ " > 1D
new
<cC o oswp £ (|7
25T new xeVaF n
1
=C, I suw JE T by (4),

new xeV
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2. ‘Positive~definite Functions on Vector Spaces.

In this section we give a number of useful results concerning

positive-~definite functions on vector spaces.
2.1 Definition

Let X be a commutative group.

Y is a positive-definite functiom on X 4iff

p: X > € |,
and for any n e w, {xo,...,xn_l} & X, {zo,...,zn_l} e,
n-1 _
z.z Y(x, - x) >0 .
K, 4=0 k™8 k ')

We shall need the following elementary assertions about positive-

definite functions on groups.

2.2 Propositions

Let X be a commutative group.
(L) If 1y 1is a positive-definite function on X , then
0 < p(0) < o
(2) Let ¢ be a positive-definite function on X , and ~Y be
a commutative group.
If T: Y~ X is a homomorphism, then ¢ , T dis a positive-
é&finite function on X .
(3) If ¢ and y are positive-~definite functions on X , then

¢y 1is a positive-definite function on X .



%)

(5)

If (lpj)j€J is a net of positive definite functions on
X ,and ¢ : X > C is such that

p(x) = lim ¢.(x) for all x e X ,

jed

then,

Y is a positive~definite function on X

If X 1is a topological group, and ¢ is positive-definite

function on X , then

Yy is continuous on X <=> i 1s continuous at 0 ¢ X

For finite-dimensional spaces we have the following version

of a well known representation theorem (Rudiﬁ {341 p. 19 1.4.3,

Bochner [4] p. 58).

2.3 Theorem

Let F be a finite-~dimensional vector space.
P is a continuous positive-definite function on F
iff
&

there exists a unique finite Radon measure &£ on F

such that y(x) = f exp 1 Re f(x)dg(f) for all x ¢ F

Using the above theorem, as in [11] (p. 349) one readily

establishes its following infinite-dimensional analogue. We omit

the proof. (The theorem given in [11] is formulated only for real

vector spaces. See also [48]).
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2.4 Theorem

Let X be a vector space.
Y is a positive-definite function on X with wIF
continuous for every F'e F o, iff
there exists a unique finite cylinder measure u over
X suéh that

Pix) = f exp 1 Re f(x)dux(f) for all x e X .
Remark

When u and ¢ are related as in the foregoing theorem,

we call ¢ the characteristic functional of p (Prchorov [33]).

The final theorem of this section is useful for determining
continuity properties of cylinder measures. As an adjuonilto
Proposition I1I.2.6, it further motivates the terminology ''continuous

cylinder measure'", introduced in Definitions II1.2.5.1.
2.5 Theorem

Let X be a vector space, u be a finite cylinder measure
over X , and UV be a family of balanced, absorbent subsets V of
X with uV e V for every u > 0 .

If ¢ 1s the characteristic functional of pu , then

u is V-continuous <=> ¢ d1s V-continuous.
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Corollary
Let X be a topological space, and U be a finite cylinder
measure over X

If ¢ is the characteristic functional of wuw , then

v is continuous <=> ¥ 1is continuous.

Proofs 2

2.2.1 Taking n = 1, Xy = ¢ , and zq = 1 , the assertion

"follows immediately from Defn. 2.1.

2.2.2 For any n £ w, {XO,..;,xn_l}cz X , and {zo,...,zn_l} <€
n-1 _ n-1 _
z z,z, ¥ o T(x, - x)= L z,z, Y(I. -~ T_ ) >0
K, £=0 k2 k 2 k, 9=0 k2 X _xQ

2.2.3  From [48] we have that

q)(x) =@ (-x) for all x e X

Hence, by Defn.2.1, for any nc w,'{xo,.}.,x }e X , and

n—-1
{ZO""_’Zn—l}C € ,

n-1 . ‘s -
M= (Cf(xk - Xz))k,2=0 }s a positive-definite

Hermitian matrix.

Hence, there exists an n X n-matrix T s.t.

te

M=TT

& ES

where T = (¢, ) , T = (t Y , and =t
k,s .

k,s
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Consequently,

n-1 _
) z, z,(x, ~ x Ju(x, = x )
SR e T T S
n~-1 _ n-1
r zoz (3% )¢(X - %)
K, 2=0 k™g 5=0 k S b A 2
n-1 n-1
z T ( )(zt )l,b(x—X)>0,
s=0 k,2=0 Kih,s™" kAT —

and therefore . ¢ 1is positive-definite.

For any n ¢ w’.{XO"'°’xnf1} c X , and ‘{zo,...,z et |,

n-1 _ n-1 _
) z,z Y(x, - x ) = lim % z,oz U, {(x, ~x ) >0
1 . Z
K, 1=0 '< L k L jed Kk, 9=0 k™2 "3k [

From Rudin [34}, p. 18, 1.4.1 (4), we have that for any x

and y in X ,
| lp(x) - v | < 20(0) Re ($(0) = ¥(x - v))

The assertion follows.
This theorem is a special case of a general theorem in Harmonic
Analysis ([34]), p. 19 1.4.3). However, it is readily derived from

the real case treated by Bochner ([4] p. 58).

Together with the notations of I1.2.4 and 1I.2.6, for each

x ¢ X , let

f exp 1 Re Eédux(z) for every z ¢ €

0, ()

We note that

(1) wx(w) = w(gk) for every =z ¢ €



Suppose that p is V-continuous.

ze & >expiRezeC

is bounded and continuous, by (1) and Prop. II.2.6 we have that

(2) Y is V-continuous

Suppose that Y is V-continuous. Since Y/c is positive~

definite for every c¢ > 0 , by Prop. 2.2.1 we may assume that

$(0) = 1

Given any € > 0 , choose
Ve-1

e

-

0 < ¢ <§—(

5 )

£ > 2//e"
and Ve V s.t.
x e V=>1-Re ¥(x) < et

By (1) and the fact that V 4is balanced,

’(3) xeV,zeC€, |z| <1=>1- wx(z) <

Lo - 2 _ 2
It z = uy + iu, ¢ ¢ , then ’z| = Uy

therefore, by (3), for any x eV ,

%) Wl <l= 1o (1) <<

Hence, by the lemma given by Kolmogorov in [17],

~ }/_
(5) w () =u ({ze€: |z >11) <

< e
Since € was arbitrary, it follows that

y is V-continuous

m

and

for any

(e' + 4

131.



Proof of Corollary 2.5

We note that nbnd O
balanced, absorbent sets V
Hence, by the above theorem

j# 1is continuous <=> u

<=>

<=>

in X has a base

, with €V e V
and Prop. 2.2.5,
is V-continucus
is V-continuous

is continuous.

V consisting of

for every € > 0

132.
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3. C(M-spaces.

For any family C of finite cylinder measures over a vector

133.

space X , we shall define the C(-topology on X and give some of its

properties. We shall establish examples of topological vector spaces

whose topologies are exactly those determined by the families of
continuous finite cylinder measures.
We note that for sets X and Y , topology G on Y ,
and T : X~>Y ,
{T "[G] : G e G}
is a topology on X . We shall refer to it as the.topology on X

induced by G and T
3.1 Definition

Let X be a vector space.
(1), For any family C of finite cylinder measures over X ,
the C-topology is the topology on X having for a
base all subsets V of X with

V=x+elN {yeX:p@®)<ce}
ueH y ¥y

for some x ¢ X , finite Hc C , and e > 0
(2) X is a C(M-space iff X 1is a topological vector space

whose topology is the C(M(X)-topology.

Concerning C(-topologies we have the following assertions.



3.2

(L

(2)
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Propositions

Let Y be a vector space, and ( be a family of finite
dylinder measures over Y .,

Y 1is a topological vector space under the (-topology,
which is the coarsest such topology with respect to which (¢ 1is
a family of continuous cylinder measures.

In particular, when Y 1is a topological vector space,
and C = CM(Y) ,

the C(-topology is coarser fhan the original topology of Y
For any vector space X and T e L[X,Y] if

CoT={uaT:pelt . ,
then,
the C i T-topology is the topclogy en X induced by the

C-topology and T

We shall now show that the class of (M-spaces contains many

interesting topological vector spaces. However, not all topological

vector spaces are C(M-spaces. In Appendix 4 we give an example of a

Banach space which is not a (M-space (Example 4.2).
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3.3 Definitions

(1) Let X be a vector space
bt X » R+ is a pseudo-quasi-norm on X 1ff
b(0) = 0 ,
for any x and y in X ,
"b(-x) = b(x) ,
b(x + vy) f_b(X) +b(y) ,
and

+ oL N
z e €~ b(zx) e R 1is continuous at 0 ¢ €

(For any family '{bj}ij' of pseudo-quasi-norm on X ,
as in Yosida [49] p. 31, ofe can show that X 1is a topological vector
space under the coarsest topology on X making bi continuous for

every j e J ).

(2) For any measure space (A,n) , and ¥ > 0 ,
Lr(A,n) = {f ¢ GA : £ is np-measurable, f [flrdn < o} |
b fe L%, ~ [ |£]%an e &,
and when ¥ > 1
+

l.lr fe Lr(A,n) -> (f lf.lrdn)l/r ¢ R

Remarks
When 0 < r< 1 |, br is a pseudo-guasi-norm on Lr(A,n) ,

which is therefore a topological vector space under the coarsest topology

making br continuous.
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When © > 1, I.lr .is a pseudo-norm on Lr(A,n)", which
is therefore a locally convex space under the coarsest topology making
I"r continuous.

We shall hereafter assume that Lr(A,n) , ¥ >0 , carries the

appropriate topology indicated by the foregoing observations.

We shall need the following lemmas, which are of independent

interest.
3.4 Lemmas

(1) Let X be a vector space, and b be a pseudo-quasi-norm
on X . If ¢y is a positive~definite function on X such that
the coarsest topology om X making ¢ continuous coincides with
the coarsest topology making b continuous, then, there exists
a finite cylinder measure yu over X whose characteristic function
is ¢ , and,

the {ul}-topology on X 1is the coarsest topology on X with

respect to which b is continuous.

(2) Let X be a vector space. If {b_}

yiyey 18 2 family of

pseudo-quasi-norms on X such that for each V e V, there exists
a positive~definite function wV on X satisfying‘the hypothesis
given in (1) above, then,
X 1s a C(M-space under the coarsest topology making bV
continuous for each V ¢ V .
(3) Let (A,n) be a measure space. For any 0 <r <2 ,
! r \ I ’
f el (A, - exp - br(L) e €

, - — . T
is a positive-definite function on L (A,n) .
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The following theorem and its corollaries indicate that many

of the topological vector spaces considered in this paper are in fact

CM-spaces.

3.5 Theorem

X is a C(M-space whenever X 1is a topological vector space

having a faﬁily V  of neighbourhoods of 0 which satisfies the

following conditions:

(i) {eV : Vel, e>0} is a base for nbnd 0 in X
(ii) For each V e V

, there exists a measure space (Av,nv) s

r
v
< X : .
0 < ry 2 , and TV e LIX,L (Av,nv)] , such that

V=1{xeX: f]TV(x)[ dny, < 1}

Corollaries.

(1) Let (A,n) be a measure space. For any 0 < r < 2

2

L¥(a,m) is a CM-space.

In particular,

Rr(A) is a C(M-space.

(2) - Let X be a topological vector space. For any 0 < r < 2

s 3
X with the Sr~topology is a (M-space.

(3) Every Hilbertian space is'a (l-space.
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Proofs 3

Notation

For any vector space X , ¢ >0 , vy ¢ X

I(e) = {GuE) e X x X ¢ [£)| > ¢},

D
Vs€

It

{f EF; c e | > e},
and for any family C of finite cylinder measures over X ,

V(C,e) = :zc‘{x Xt )< el

Remark Since

D =D for all x ¢ X and e >0 ,

it follows that

V(C,e) = e {xeX: uX(DX) < g}
neC

3.2.1 We shall only prove the first asserfion. The second then
follows immediately from the definition. Let
V={V(H,e) : Hc C is finite, e > 0} .
In view of the remark above, it will be sufficient if we show
that V has the following properties.
(1) 0 eV for every V g V
(i1) V is a filterbase.
For each Ve { ,
(4ii) there exists U e V s.t. U+ Uc¢ VvV ,
(iv) V is absorbent, |

(v) V is balanced. (Treves [47] p. 21)



139.

Proofs of (i) - (v).

(1) For any ¢ > 0 ,
w(®g ) = up(®) = 0
and therefore 0 ¢ V for every V ¢ V
(ii) For any 0 < 8§ < ¢ , ﬂ eC ,and ye X ,

(o >
_.Uy
Hence, if V(ej,Cj) eV, 3j=0,1 , and ¢ = min {80,21} R

( )

D
N>

D
My iy Ls

then,
V(e,Cou C)c NV V(e ,C)
0 1 4=0,1 3’73
(iii) Let V = V(g,H) , and U = V(e/2,H)

For any x e X , veY , and f ¢ F(x,y) (II.2i6),

lfG) + £ < £ ] + £,

and therefore,

1X+y(e) c Ix(e/Z)xJ It(e/Z)

Consequently, for any x e U , yvye U , and pue H |,

) = (1, ()

D
Ux+y( xt+y, e F(x )

< g (I (e/2)) + u

(I_(e/2))
(x,y) Y

F(X,y)

= (D ) + ) < e

X x,e/2 y Dy,e/2
i.e.
U+0cV

(iv) Forany x e X ,e>0,t>0 ,and peC ,

LItx(Dtx,e) - Ux(Dx,E/t)

and

<u<t=>D
O<usxt x,e/u < Dx,e/t
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Consequently, since M is finite,

lim B D
Ux/n( x/n,e
N N0

) = lim ux(Dx,ns)

=‘ n = , :’:.
H (naw Dx,ne) UX(Q) 0

Hence, for any V ¢ V , there exists n et w s.t.
x/n e V

i.e. V 1is absorbent.

(v) Forany nweC ,xeX,e>0 and z e C

with ]z] <1 ,

uzx(sz,s) B uX(D]z[x,e) - ux(Dx,e/iz1>

i-ux(Dx €) since Dx,s/lz] c D

H s €

Hence, for any Ve V ,

Zv¢e Vo,

As in Lemma II.4.2, for any x e X , ¢ >0 , and .
peC ,

( EXT)X(DX,E) - UTX<DT;;,2)

Hence, for any & > 0 and finite subfamily H of C ,

w1 : )
T [J?H'{y eY : Uy(Dy,e) < g}]

it

f\’{x e X 3oy (DTx 8) < g}
pef X )

N {xex: (uasT) O )< e}
UEH X X, €

It follows that ‘{T—l[V] Y eiV} is a base for the C T-topology
neighbourhoods of 6 in X , where |V 1is as defined in Proof

3.2.1. However, from Proof 3.2.1 we see that V 1is a baée for the
C-topology neighbourhoods of 0 in Y . The assertion now follows

from Prop. 3.2.1 and the linearity of T
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Lemma

Let T be a finite-dimensional space. If b is a pseudo~-

quasi-norm on F , then b is continuous on F

Proof of Lemma. Let K be a basis of F

Every x ¢ F has a unique representation
I z (X))o ,

oekK

and the norm
+
xe F~»> L ]z (x)l e R
o
aeK

generates the topology of F

For any net (xj)jEJ in T ,

x, »0=> I |z (x)| »0=>
J - o 3

aeK

z (x.) 0 for each o ¢ K =>
a ]
'b(zu(xj)a) +~ 0 for each o & K =>

L bz (x.)a) »0=>Db(x.) »0 , since
a ] J
aekK

b(xj) < I

bz (x.)a) .
aek o

Hence b 1is continuous at 0 ¢ F ., However, for any x and
y in F ,

b)) - b b~y
and therefore continuity of b at 0 ¢ F implies‘continuity

~

of b on F
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3.4.1 By the above Lemma,

w|F is continuous for every F e I ,

and therefore, by Thm. 2.4, there i1s a cylinder measure J over
X whose characteristic functiénal is ¢ . From the hypothesis,
X 1is a topological vector space under the coarsest topology
making  continuous. Hence, by Cor. 2.5 and Prop. 3.1.1,

the {u}-topology
= coarsest topology making u continuous
= coarsest topology making ¢ continuous

= coarsest topology making b continuous.

By Prop. 3.1.1 and Lemma 3.4.1.

let o : BeM »>0_¢eB
n - B

For any P ¢ P(Mn} , let
d(P) be the family of finite subsets of P directed
by inclusion.

Then, for any £ e L (A,n)

b _(£) = lim  lim I EACTORREINE:)
r 'PaP(Mn) Ked(P) Bek

Consequently, since
t e R>exp -t e R 1is continuous,

we have that

exp - br(f) =  lim 1lim I exp -~ ln(B)l/

PEP(Mn) Qed(P) BeQ
Since f ¢ Lr(A,n) - n(B)l/r

r T
f(aB)l
f(aB) is linear for every

B e Mn , we deduce from Lemma 1.1.1 and Props. 2.2.2 - 2.2.4

that £ ¢ Lr(A,n) > exp - br(f) e € 1is positive-definite.
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3.5 For each V ¢ V, let
& = 1 when ry < 1 .,
l/rV when ry >1 .,

| vy, &
byt x eX »i([!TV(X)I dnv) ,
and ’
wv : x e X exp - bV(X) e €
For each V ¢ V , we have that

by is a pseudo-quasi-norm on X ,

and for every t > 0 ,

S Y.ge
- J
tV=1{x¢e X : bV<X).f.t v V}

Since the topology of X 1is completely determined by

its neighbourhoods of 0 s 1t follows that the

topology of X 1s the coarsest topology making bv
continuous for every Ve /' . However, by Lemma 3.4.3,

wv is positive-definite, and since ¢t ¢ R% - exp - t e (0,1]
is a homeomorphism, it follows that

the coarsest topology on X making wv continuous

1]

the coarsest topology on X making bV continuous.

The theorem is now a consequence of Lemma 3.4.2.
Corollaries (1) and (2) are immediate consequences of the theorem.

Proof of Corollary (3) Recalling the definition of a Hilbertian

space (8III.2), we need only make the following observation.
Let X be a vector space. For any pseudo-inner-product
[.,.] on X , there exists a measure space (A,n) (A 1is an
index set and n 1is counting measure on A ), and T ¢ L[X,Lz(A,n)] s

such that "
[x,x] = f ]T(x)|‘dﬂ for all x¢& X

(Treves [47], p. 115 - 116.)
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4. Examples

4.1 Example

u over

Proof

There exists a Banach space X and finite cylinder measure
X such that

. 1 . . .
u is S -continuous but is not E-tight.

Let A be a set,

Together with Notation 1.1, let

~

X = Ql(A) with the usual topology (Notation III.4),
[5.] 5 GLy) e XxX > 2 x(@)yla) e €
OEA

bt xe X exp - [x,x] €€
For any finite KcC A

TK W og GK > fw € (@K)n , where

fw(x) = I x(a)w(a) for all x ¢ €
aeK

K

Since

T |x(a)l2 for all x ¢ Rl(A) s
o€A

[x,x]

as in the proof of Lemma 3.4.3, we deduce that ¢ 1is a
positive~-definite function on Ql(A) . Since x g X » V[x,x]
is a norm on zl(A) , we further deduce that w[F is
continuous for every F ¢ F .

By Thm. 2.4, there exists a cylinder measure u over zl(A)
whose characteristic function is 1 . Then, for any finite

- 7
KecA , and x ¢ Ck , as in Proof 1.2.2,
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fexp iRe £GdCyy o TN () = ¥(0)

f exp 1 Re f(x)dux(f) = f exp 1 Re f(x)dﬁ@K(f)

(Note that T, 1is a homeomorphism, and therefore Y§ o T

K K

is Radon.)

Hence, by Thm. 2.3,

X -1
(1) ucK =Y, o TK

Consequently, for any t > 0 , with the notation of Proofs.

I1T. 4,

UQK(rK[th]) = UGK(t(Vlzw €K>O)'

]

Yg({w e & sup |w(a)| < t})

oeK
= 7 / 92 (w(a))dx(w(a))
aeK ‘
lw(a)| <t
However,

[ oo (@d() <1,

z| <t

since f 62(z)dk(z) =1 and © is strictly positive

2
" (Lemmas 1.1). It follows that

inf y K(r, [tv0]) = 0

€ K 1 >

finite X Cc A
and therefore, by Lemma I1.5.1.2, 1y cannot be E-tight.

On the other hand, by Pietsch [30] p. 82, Prop. 4,
there exists S £ Sl s.t.

1,n

[x,x] f_f[ f(x)ldn(f) for all xe X ,

and therefore
' + 1 ,
x e X+ [x,x] ¢ R is $ ~-continuous.

Hence ¢ 1is Sl-continuous. Consequently, by Thm. 2.5,

. 1 ,
u is S =continuous.
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4.2 Example

Let A be a set, 2 <p <e® , and %_+ %,z 1

If v e Kq(A) is such that

I y@|Ymly@]] ==
achA
and
T : x ¢ RP(A) > (x(a)y(a)) e 23(a)
: ' oghA ’
then there exists u ¢ CM(zq(A)) such that pa T is not

E-tight.

Notation. Together with the notations of §2.1 and Proofs III.4, for
any t > 0, , let
b(t) = t7]Int|, t > 0, and b(0) = 0

We shall need the following lemma ([41] Lemma2].)

Lemma. Let
w:A-+C with |w(a)]| <1 for all o e A
There exists a constant 0 < C < @ such that

for every finite K A,
@K : T |z(a)w(a)lq > 11 i_e-I - exp - 2 b(|w(a)|) .

K.
y_({z ¢
p oeK ek

Proof of Lemma Let ep be the function of Lemma 1.1.1.

From [3] p. 263,
-{.
0 < lim |v]9™2

B (v) <o
| v |0 P



Hence, there exists 0 < C' < « s.t.

(1) GP(V) Z_C'/]vl%+2 for all v e € with IVI.i

By Taylor's theorem, for any 0 < t <1 ,

l-exp-t=texp-t' forsomme 0<t'<l

and therefore
(2) 1l-exp~-t>t e~l for all 0 <t <1 .
Let

1

(3) ¢ = 2'n'e— c'

Then, for each o e A ,

(4) f@ - exp ~~IVW(a)Iq)sp(v)dA(V)

> et Jlw@]% am by @),

Oiva(a)lj}

1
. ; 2 dx(v) by (1)

jv

e~1C"flvw(a)|q
1<lvl< 17w (o) |

= e topwel 1 4
1<p<l/

w(a)l

cb(|wi@]) by (3).
For any finite K¢ A , if

. K
BK ={zeg ¢ : =& ]z(a)w(a)[q > 1} .,
aekK
then,

K
YP(BK) i.f lBK(z)(l - exp - I

|2(@)w ()] Dy, (2)
aeK

= f(l - egp - ¥ [z(a)w(d)]q)dyK(z)
aekK P

- fl K (z)(1 - exp - & |z(u)w(u)|q)dYI;(z)

€ ~BK aek
> [0 -exp - I |zl@u(@ ]|y () - @ - ™
acK P
= e_l - I f exp - [z(u)w(a)[qdyp(z(a)),

acK

1

.

H

147.
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However, for each d e K ,
[ exp - lz(d)w(d)[qdyp(z(a)) =1 - f(l - exp - ]z(a)w(d)]q)dyp(z(a))v

< 1-0b(w(a)) by (4) above,

Hence,
K -1
vy (B, >e = T [1-Cw()].
p K -
aecK
Z_e— T exp - Cb(w(g)) since 1 - u i_e—u for all u=>0 _,
' aeK
=e  ~exp -C 2% bGwla))
aeK

Proof of Example 4.2

If
htxe 8@ »exp- 2 [x(@]%ec ,
. aeA

then h is continuous. By Lemma 3.4.3 and the lemma of

Proofs 3., h is positive definite and h|F is continuous
" for every finite dimensional subspace F of zq(A)

Hence, by Thms. 2.4 and 2.5,

(1) theré exists a continuous finite cylinder measure

u over zq(A) with characteristic functional h

Clearly, |

(2) we @A)

Choose
"(3) t>0 s.t. |y@]|/t <1 for all ace A

Let 0 <6 <e b

For any finite subfamily K of A , let

hy : z¢ & +—hK(z) € (CK)* , with

hK(z)(x) = 7 x(a)zla) for all x ¢ CK s

cek
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then, as in earlier proofs (Proof 1.2.2 (1), Proof 4.1(1),
D
(4) wu K= Yp o hK .
c
Hence, for any finite K¢ A s.t. a & K => y(a) + o ,
K,* _ K. 0
wa ) (e t(V.~ €)7)
[l p

K% %=1 K. 0
= K((G, ) tT X (Vp!\ C)") by Lemma 0.4.2, and the fact
¢ ¢

K
that ¢ = T[@K] ;

= YE({Z £ .oz ’Z%gl'z(u){q > 1})

aeK

Z.e- - exp - C Z b(|y(a)[/t) by the Lemma.
aekK

Now,

z b(]y(a)l/t) = o for any t >0 |,
achA

Therefore there exists finite J € A s.t. o e J => y(a) + 0, and

e - exp - CZL b(|y(a)l/t) > &
aeJ

Hence,

wan (@) e neh? s

Since t > sup !y(a)[ , and 0 < & < e—l were arbitrary,
aeh
and with the notation of Proofs III.4,

0 J. 0
' =
rJ(t\p) t(Vp(\ €) s
it follows from Lemma I1.5.1.2 that

p 3T dis not E-tight.
4.3 Example

There exists a Banach space which is not a C M-space.
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c. = {x ¢ @w . lim x(n) = 0} .

n—>o

+
o' X € Cq > sup |x(m)] e R,
2 new
L7 =47 (W)
and
2

T: & »>c

0 be the canonical imbedding.

As 1s well known, c¢ is a Banach space under the topology

0
generated by the norm |-[m

From Pietsch [30] p. 83, Remark 2.2,
(1) T 4is not Sl—continuous.
From Kwapien [19] we have that

L€ C&(co) => y o T has a limit measure on (22)'» R
and therefore, by Cor. I.4.3,

T CM(CO) =>y g T is E-tight.
Hence, by Prop. III.1.3,
(2) T 1is Sl—continuous with respect to the CM(CO)—topology
on ¢y - |
From (1) and (2) it follows that the CM(CO)—topology does not

coincide with the norm topology, i.e.

o is-not a C(M-space.

4.4 Example

For any r > 4 , the Sr—tOpology on zz(m) does not

coincide with the Sz—topology.



Proof We shall construct a T : 22@») > £2@») which will be
Sr—continuOUS but not Sz—continuous, from which it follows
2
that the S'~and S -topologies do not coincide.

For each ne w , let

2 T )

a = n—2/r s

n

T : x ¢ Zz(w) > {(a x ) £ Qrﬁw)

n n’ new
As in the proof of Cor. III.4.4.1, we conclude that

(1) T is ST -continuous.

If T were also Sz—continuous, then, there would exist a

* . 2 * .
w ~Raddn measure n on (& (w)) with suppne E , s.t.

flee Panen™? < 1= 1] <1

Hence,
lTxii f_flf(x)lzdn for all x e 2°(®)
Consequently, for any k £ w

2 2 2
Ioa = & |Ten[r < f ni ]f(en)l an (£)

n<k n<k k

<fCosw £
X|2£}

since b{en}new is a orthonormal basis of the Hilbert space
2
27 (w)

Since supp ne £, and k ¢ w was arbitrary, it follows

that
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However, this is dmpossible, since

a2 = n—4/r n_l ,and I 1l/n=® |,

new

n

v

Hence

T dis not Sz»continuous.
. Remark.,
In view of Theorem III. 2.6.3, from the abOve-example we

see that for every r > 4 ,

Rr@w) is not a (M-space.
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