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ABSTRACT
e
' Let S denote -the set of n X n permutation matrices; )
"let T denote the set of transpositions in Sn ; let C denote the set

" of 3-cycles {(r, r#l, t) ; r = 1, ..., n=2; t = r+2, ..., n} and let .- {/f/’
I denote the identity matrix in Sn . 'We shall denote the n-1lst
_elementary symmetric function of the eigenvalues of A by En—l(A) .

In this thesis, we pose the following problems:

l. Let H be a subset of Sn and ags eees a,

be k-distinct real numbers. Determine the set of n-square matrices
. s o

A such that '{tr(PA):P:e'H} ='{al, ...;vak} . We examine the cases

I

~

fee}
]

S» k=1 a

“{2-cycles ‘in Sﬁ} » k=1

S

2. Determine the set of n X n matrices such that
En_l(PA) = En_l(g)_ ,vf.or all Pe S

. P
. . - b

3.-vExamine those‘prfhogonal,matrices which can be o



iid.

;fpexpressed as .linear combinations of permutation matrices.
. The main results are as follows:

If R” is the subspace of rank 1 matrices with a11p]'

""ghﬁroﬁs equaluand if C¢° is the subspace of rank 1 matrices with all

'eﬂ>columns equal, then the n x n matrices A such that- tr(PA) tr(A)

for all P e S form a subspace S R‘ + C7 . This implies{ hat the

‘. rank of A is <2 .

If  tr(PA) = tr(A) for all P e T , then such A's
" form a subspace which contains '‘all n x n skew-symmetric matrices and

is of dimension n(B%l)

" Let A be an n-square matrix such that {tr(PA) :
S e»Sﬁ} {al, a } , where a; + a, - Then A is either of the form
- a

»\C = Al + A2 ,'whete A1 e (R"+ C7) and A2'.has entries a;

(rj, rl),jj =>2, +.+» k \and zeros elsewhere, or of the form CT .

2

Thevset Bi = {P e,Sn :Jtr(PA) = ai} consists of

e all 2—cyc1es (rl, : ), J =2, .J.,ﬁkv and*thebproducts"?f'of“disjéihtﬁ
1’ PZ’

;,Withfan,edgea:r T (or rJ > ry ) for J'- 2 erey k

13

‘cycles ...,.Pm, ‘m>1 for which one of the P

1 has_its:graph

_If A is tauk’ n—l n—square matrix with the property

:ahen A His of the form

s
b
H




S

.

' ‘yectors. .

r.
Za

i=1*

=+l

“an independent set TUCUL of Sﬁ

n-1 :
- I U |, where' U, are the row

Finally,,if 8

[}
™~

=4

rg

i i‘ » where all P, are from = -
i=1 R

s 18 an orthogonal matrix, then
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INTRODUCTION

Let Sn denote thg set of nxn permutation matrices;
let T. denote the set of all.transpgsitions of Sn.; ;et C denote
;he'set;of 3-cycles {(r, r+l, t); r =1, ..., n=2; t = r#Z,A..., n}
and};et I. be the identity matrix of § .- |

One of the.primary aims of this thesis is to characterise

the following sets of nxn matrices:

(1) {A: tr(PA) = tr(A) for all P ¢ H} wheré

(2), '{A : tr(PA) ¢ '{al; gy +ees ak} for a}l PesS;
:whére a1 855 eees ék "are distinct and reals} (we are only partially

sﬁécessful when k > 2).

(3) "{A': E_,(®) =E

(A) for all P e Sn} .
\ ‘

We also consider the following problem:

(4) . What linear cémbinations of independent permutation
métficesvgive orthogonal matrices? In particular, what linear combinations
liof %nd¢pendent permutation matrices give sjmmetric orthogonal métricgs?_
':Problém (4)‘i$ inciudgd to give an abplication of the results obtaineé-iﬂ S

'

o .Chaptér I to the solution of certain matrix theory problems.

¥ a




Problems (1), (2) and (4), iisted above demand the
ﬁ;COnstructigﬁ éf'a suitable linearly independent 'set in Sn . Problem (3).
7 iireﬁuires‘a similar comstruction ﬁsiﬁg mémbers of the set
‘:ji{c . .

®) : P evSh} , Where c is the (n-l)—compound.: These

n-1 n-1

.f‘congtructions of linearly independent sets form the substance of Chapter I.
In Chapter I, we show first that TU CU I  is an
. independent set in S, » and in fact generates the whole of the set §_

(Thm. 1.8). . Furthermore, if the matrix P  of § ~ is a linear

- T ' T
‘-combination '.z'aiPi 5 P.i e TU CU I, then z a; = 1 (Cor. 1.9). In

i=1 i=1
the last section of this chapter, the set '{Cn_l(P) : P e Sn} is

characterised and an independent set which generates '{Cn_l(P) P e Sn}

" is constructed (Thm. 1.22). Some information on the coefficients of linear

f'gombinations of the generators of {C_ .(P) : P ¢ Sn} is obtained

n-1
(Remark 1.28).  The chapter concludes with an observation on the set

'{Cr(P) : P ¢ Sﬁ}_ where r ¥ 1 .  (Note 1.29).

s
s

In Chapter II, we determine the structure of matrices A
:‘sﬁch that- tr(PA) = t;(A). for all P ¢ Sn (Thm, 2.1). An immgdiate
cotollary of this structufe theorem is that  rank(A) < 2 . Theorem
4 ‘(2T1$j;iwhiéh actually}generélisés theorem (2.1), gives complete'infqrmation:%?.;ﬁ.
'. .§éog?vthosejmatrices';‘A such fhat' tr (PA) e'{al,‘aé}‘ fq; all‘ P é Sn .f'

™~

“igndfwherév}:al #_aj\

3 -
Cahe

are real. Some partial information about ﬁhogegv
“ imatrices A for which " tr(PA) € {a), ..., a } ~for alli'Pes .y "

{




,A\ ’sugh that En_l(PA) = En

where 'ai‘#.a, and a; are reals for i, =1, ..., k is given

: .(Remark on Theorem (2.15)). Theorem (2.17) gives a necessary condition on

_l(A) for all P e Sn , and Theorem (2.27)

'~ . characterises such A's completely.

* the linear combination to yield on orthogonal matrix when the independent ks

Finally, Chapter III deals with those orthogonal matrices

- which can be expressed as linear combinations of permutation matrices.

- Three types of such linear combinations are considered.

First, we consider those orthogonal matrices which can

"be expressed as linear combinations of the elements of TUTI . A

. "necessary condition that such a linear combination be an orthogonal matrix

is that the sum of the coefficients in the linear combination be + 1

, (Théorem (3.3) and Theorem (3.7)). Theorem (3.9) states that given a

 subset {(zx, s)} of 2-cycles for which the combined graph is strongly

connected and complete (as an-undirected graph), there exists an orthogonal

[}

\ .

matrix . 6 =) Zafs(r, s) + \I  such that every - ars'# 0.

/

Secondly, we examine those orthogonal matrices which can  *
- ) . o &

: 7Be1éxptesséd as linear combinations of the elements in "~ C (Theorem (3.10)).“  _f

St

' Lastly, Theorem (3.14) gives a necessary éonaitioﬁ'qu

permutations are chosen from the whole set TUCUTI.



| CHAPTER I

'’ .’ GENERATING SETS OF nxn PERMUTATION.MATRICES

' . AND THEIR (n-1)-COMPOUNDS

"In order: to facilitate computation in this chapter, we

.. shall use a graphical representation of matrices. First, we need a few

definitions concerning graphs [1] and matrices [2].

1.1 Definitions:
Denote the cartesian product of two sets P and Q
by -lPXQ " If -(}E;(V x V) xR, Whefe -V is a non-empty set and
R ”Lis'the-seﬁ of real numbers, then G ='{(v, W} d)} is called a
difectéd graphlpfovidéd that for every pair (v, w) - in  VxV , there is
qnlyfoné' faié R.;‘ The elements of V are éalled vertices of the/graph
G and” a - is the weight o? the edge joining v to w . Graphically,

v Ia — W
/

2 ' If V is a finite set, then G 1is called a finite
graph, otherwise it is called an infinite graph. _We shall consider finite
-graphs only.

.3 v If a vertex v, in a directed graph G = {(v, w; a)}

is such that in every triple (v, w, @), a=0 wvhenever v = v, or



o w”=‘vl © except possibly for v =w =‘vl , then the vertex vy is said

- to'be an isolated vertex of G .

4 By a graph of an nxn matrix (aij) , We mean a

" directed graph '{(vi, vj; aij)} , where there are n vertices (vi) 3

i=1, ..., n, and the weight on the edge joining v, to v, is' a,

i o J ij
a,.
3 : ij
i.e. v, V.
1 J
e.g. the graph of the identity matrix I

" conmsists of {(v., v,, 8..)} , where &,, =0 for i# 3 and
i k| ij . ij
=1 for i =3 .. This graph consists of single loops of the form

ij
_vﬁj} at all Vi i=1, ..., n and the weight on each loop is "1 .

Similarly, a zero matrix corresponds to a zero graph i.e..

a graph in which the weight on each edge is zero i.e. G = {(v, w; 0)} .

- ;3~-_; . If two directed graphs Gl and G2 are suchfthét_'

- bqpﬁ~héve the same set of vertices (V) and if Gl = {(v; W§ al)}f,;

2“Gé ¥ﬁ{(v,-w, az)} » then G + G, 1is also a directed grathWith;its." .¥<

B

o ;kéé;fﬁf;yérficés,equalatOLI‘V“ and it is given. by. f;{(Q,ijy&fiFChéff'hi'

.6 , “NIf G = {(v, w; @)} is a directed graph, then for

BeR, BG={(v, w 8a)} . is also a directed graph for any real g8 .



T . 4 Finally (cf. [2]), the r-th compound Cr(A) of a nxn’
- ;mét:ix(~ A f,is the ( : Ix( ; ) '_matrix whose entries are d(A[a|B]) ,
a,B‘e‘ern;liérranged lexitographiCaliy_in ‘o and - B where if

1 5_k <n , then Q denotes the totality of strictly increasing

k,n

sequenées of k-integers chosen from 1, R d[aIB] ~denotes the

determinant of the submatrix of A 1lying in the rows indicated by
4 - o .

inpegers in o and the columns by B .

Also, if A is an rxn matrix and the r-rows of A

are denoted by Ups eees Ur in succession (1 <r <n) , then Cr(A)
is én ( : ) tuple and is sometimes called the Grassmann Product or

., U . The usual notation

Skéw—symmetric Product of the vectors Ul’ .. .

for this is Ul A oo A Ur . From the properties of determinants, it

;follows, for‘a permutation ¢ in sr , that
Uo'(l) A LN A UO'(r) = sgn g ‘U,lA"“ A Ur. .
y

Furthermore, if B is an nxn matrix, then

C.(B) UpA...AU =BU A...ABU_ .

We denote the set of nxn permutation matrices by S .

In | Sn , we denofé'an m—cycle by (rl, ceny rm) . We shall use the

tefms‘permutation and . permutation matrix interchangeably. Accordingly, by



" the graph of (rl, ey rm) we mean the graph of the corresponding

permutatibn matrix. Its vertices are the integers 1, ..., n. It
should be noted that in the graph of (ri, ceey rm) , there are l-cycles

" called loops at all the vertices j » j # r;, «+ey ¥+ The following

- will .give an independent set in Sn which generates Sn as linear

combinations over the reals.

1.8 Theorem:
If T is the set of all 2-cycles, I the identity
‘vmatrix and C is the set of 3-cycles {(r, r+l, k) ; r=1, ..., n=2

~and k =r+2, ..., n} in Sn , then the set TUCUTI is an
independent set in Sn , and it generates the whole set Sn as linear

combinations over the reals. Furthermore, the cardinality of TU CU I

“is ()41 .

. o N .

Proof: The number of elements in TU CU I is
“aeD) L D@D L L 2 | ,
BT p AT 41 = (n-1)° + 1 . This is the dimension of a maximal

2 - 2
. Af'ihdependent set in "Sﬁ, (see [2]; pp. 99—100) .  Thus we nééd(oniy shqw'v.l*

- that the set TWVU CUTI generates the set Sﬁ-'

¢

First, we show that every 3-cycle in Sn is generafed
'-by the set TU C'U I . Let us consider a cycle (rl, T,s r3) not

belonging to c.



- Case (i) - . r, <r, <*T

:

Wg write (rl,,rz, rs) as - (rl, rl+k, r3) and claim

" that

«‘;,2t :.(rl, rl+k, r3)

wren

K 1

¥ (ry + 1i-1, £+, Ty), —'-..-2 (r,+i, r5) + '2 (ry+i-1, 1 +k)
i=1 - - . Coi=1 i=1
k-1 :

_,'z (ry+i-1, r +i, r +k)
i=1 .

Wé show that the graph of the RHS is equal to that of

the LHS. In the RHS of (119) the graph of the_first sum 1is
‘ ' ' k~2. ' '

k=1 m ‘
Qe L O

In this graph, the weight on the single loops at the
vertices rl-"and rl+k ‘is k-1 whereas the weight on each of the

- single loops at the remaining vertices between ri .and rl+k is k-2




*'?f”ﬁﬁd}ﬁﬁé“Wéith‘on'thé lbbp.af r

¢ T T e R e T
3 is zero. .Clearly, each-of the
‘isolated vertices (rt) carry a weight k . The weights on the edges

1'afe shown in the graph. Now, subtracting from this the graph of the

second sum in the RHS of (1.9), we‘get

r_+k-1

1 .
Yo!

Adding the‘graphvof the third sum of the RHS of (1.9) to

the above graph,.wé‘get

{ s
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Since we have added . (k%l)_fz—cjcles,A;he;eforé,,the

1> vovy ri+k=2" is  (k=2) and

' weight on single loops at the vertices Y, 1

" “on the ioops_ét the vertices r1+ke1 and r, - carry weight - (k-1)

3.
each. - Also, on each of the isolated vertices, the weight on these loops

is (k-1) +1 =k .

Ry Subtfacting?thé'grabh‘of’the’last’sum in the RHS of (1.9)"

from the above graph, we get

r.+k-1
)= 0 5,

r +k

Case (ii) r. >r, >r

In this case, we have

l.lO»-l (rl, r,, r3) = (rlf rz) +-(rlf r3) + (rz, r3)4— (r3, s rl) -I..
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Clearly, the graphs of the RHS and the LHS of (1.10) are

identical. Now the 3-cycle (r3, s rl) is given by (1.9). ‘Hence,.
the RHS of (1.10) consists of members of the set TU CU I .
- From (1.9) and (1.10) it foilows that ever§ 3-cycle in

L

-.Sn can be written as a linear combination of the members of TU CU I .

v

Now, consider any cycle g = (rl, ceey rm) we. claim
o o m—2 _ m-3
e LERRLTI i’Zl"'(Fl’ Fi+12 r,1+2)’7_-'izl(r1’ Tigp) o

In the RHS of (1.11), the graph of the first sum is

From this it follows immediately that the graph of the
RHS of (1.11) is equal to ﬁhe graph of the LHS of (1.11). Moreover, in

the RHS of (1.11) every 3-cycle, not belonging to the set. TUCU I




can be expressed in the form (1.9) or (1.10). Therefore, the RHS of (1.11)

can be written as a linear combination of the members of TUCUTI.

Finally, consider the case when a permutation is the

~product of two or more disjoint cycles. Let Pi ; i=1, ..., m Dbe
the disjoint cycles and. P = Pi cer Pm . We claim that

) (
L.;Z Pl .o Pm = P1 + ...+ Pm - (m-1I .

Clearly, the wéight on .the isolated vertices is 1, ic
therefore, follows that the graph of the RHS of (1.12) is equal to the
graph of LHS (1.12). Also, (1.9), (1.10) and (1.11) express the RHS of

(1.12) in terms of the members of.the set TUCUT.
Hence, the set TU CU I does generate the whole set

Q.E.D.

- /
1.13 Notation:

We designate the set TU CU I. by M.

._'l.lﬁ Corollary:

Every permutation matrix P ¢ Sn  can be written as

: o . - ' Y
' LP-éf_Z @.P, ;3 P, eM  such that ) o, =1.
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Proof: o If P € M, then there is nothing to prove, therefore
..suppose  P ¢ M . It is either a cycle or a product of disjoint cycles.

T

If P is a 3-cycle of the form (1.9), then from the

o r .
RHS of (1.9) it is immediate that -z o =1 . If P is a 3-cycle
' ' i=1 ‘ - '

"of'the form (1.10), then it is an easy consequence of the preceding

statement that E o, = 1.
' . 1
i=1
Similarly, if P = (rl, cees rm) or P=P ...
. . ) ) ) r
then from (1.11) and (1.12) respectively, it follows that 2 a; = 1.
| - . i=1

The entries of Cr(P) ; Poe Sn ‘are either 0, 1 or

-1 . In order to discuss such compounds, it is convenient to introduce

-~ the following notation:

1.15 Notation:
We have identified [pp. 6 ] the cycle

o) =b(rl, ...,'rm) with the permutation matrix P  where Pr =

i’ 7i+l

for i=1, ..., m, (rm+l = rl) R Pkk =1 for
k ei{{l,...., n}\drl; eely 1} and P., =0 otherwise. We now -

‘ m ij ,

8y ceey S .
denote by T =, : the matrix Q such that
T (rl, cedy rm)t_
' Qr.,r = sil for i=1, ..., m ; Qk,k = tl | for
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ke {{1, ..., n}\{rl; cees rﬁ}} and Qij =0 otherwise, where each
'.si and .t are either the symbol + or the symbol - .-
For example: o = (1, 3; 4)  is identified with
' . Y
0 0 1 0
0 1 0 0 a
0 0 0 1
1 0 0 of. -,
\ o J
-vwhile T = (l+, 3—, 4+)_ - is the matrix
0 ‘0 +1
-1 0
-1
+1 0 0 0
- In fact o= (lf, 3+, 4+)+ in the new notation.

\«

1.16 Lemma: .
- ' ' Sy s, B
Cn4l(r’ s) = (n-r "+1, n “-s+l) . where nz3 and

s, =+ if 1r+s ~1is odd

1
' = - if r+s is even . .
Proof: Suppose P is the matrix of a linear transformation of
' n P . .
n-space R relative to the unitary basis U eeey U Then

1 n

' . . . . n .
Cn_l(P) is the matrix of a linear pransformatlon of R relative to
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A.e. AU 3 i=mn,n1, ..., 1. Now
if P = (r, s) , then

AU Ao AT

Cueg B0y A v AU Uit AT
: =PU A ... A U,y APU 4 A ... APU
= —Ul A oo A Ui—l A Ui+l A ... A Un if i#fr, s,

- since PU, A ... A PUi—l A PUi+l A e A PUn is just

A

‘Ul A eee A Uifl Ui+l A eee A Un »w1th Ur ..and Us interchanged.

.This shows that the _ (j, 3) element of Cn—l(P)‘ is~ -1, if

j#r,s

i T+l n
.= (-1) Uy AU, A eee AU AU 0 A eee AT,

. : : . ' r+s-1
therefore the  (n-r+l, n-s+l) element of Cn_l(P) is (<177 7.
‘oo : . . . ‘ . r+s=-1

~ Similarly, if i='s , the (n-s+1, n-r+l1) element is (-1 .
Q.E.D.
1.17 Lemma:
Let o = (rl, e rm).; (rm+l = rl) be any cycle

in ©S_ . If the r -th row and the r,,;-th column are deleted from the
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- matrix . o . then the determinant of the remalnlng (n—l)?(nel)‘ i
o L Tt o o Lo
‘submatrix is - (=1) ~ sgn o .

" Proof: Write

N | G = S?i? riflj » then
Cn;tzc) 1’.ri;l)<
(Cn_l(AB) = Cn—l(A)Cn—l(B> ;.[2])
1.18 - (n—;i+1sl, n—riil+l)_>... (n—ri+182, n—rifl+1)_ :
where Sl; -t.» 8, are given by (1.16).

The determinant of the submatrix of g obtained by

removing the ri—th row and the r,

l+l—th column is given by the entry in

position '{n—r +1, n- Ty +1} in C (o) . From (1.18)

i+l n-1
Cn l( (n—r +1 7, n- +l+l) P , where the sole nonzero element in the
. : . wt+2 » . .
(n-r., .+1)-th row is -1 and this occurs on the diagonal of P .

i+l

+1} element of C (d) . is

‘Thus the {n—ri+l, n-x -1

i+l

r.+r,, . +1 - r.+r, , ,
(-1 l“_l+; = (—l)vl lfl sgn o . Hence the lemma.

From the above Lemma, we get

N
~
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Tk

s s cees -8

. 1 2 m
Cn_l(c) = (n—rl+l , n~r +1 7, ..., n—rmfl »)

2 sgn O

where ¢ = (rl, e rm) .

From (1.18), the sign of the diagonal elements in

C .() is (-1) ... (-1) , (m-1) times i.e. sgng . Moreover,

s are determined by (1.17).

Thus given .any permutation matrix, its (n-1)-compound
can be computed by the above formulae.
e.g. if o =(2,6, 5, 7,8, 9) , then for n > 9
' | + +

Cn_l(c) = (n-1, n—5+t n~4 , n-6, n-7 , n—8+)_

In this case. sgn g = -1 .

~ In the special case of a 3-cycle, where o= (rl, Ty r3) , then

S S S

, - _ . 1 2 3
1.20 Cn—l(rl’ s r3) = (n rl+l , I r2+1 , T r3+l )+ where
‘ ’ r.+r,
s s; is the sign of (-1)-* i+l and
T, = Iy .

i.21 Notation:

Let T, ={C _,(P) : Pe T}, ) = {C

nfl(P) : P e C} .{”‘

where T, C are defined in the Thm. (1.8).
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. '1.22 Theorem:
The set TllJ ClLJ I is linearly independent and

generates the set {C (P) : P Sn} as linear combinations over the

n-1

.reals. The cardinality of T,V ClL) I is (n—l)2+l .

Proof: - First, we establish. the independence of the set

' TiL)lclL’ I. PForall a's, B's and r real, we assume that

8 (1, 2, H+ ... +8  C_ (1,2, 0+

n n-2 Cn—l

+ B (n-2, n-1, n) +

31 Cn—l

rI =0 .,

Using lemmas (1.16) and (1.17), we get
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N I+ + - 1 51
1(23, a g n(n-—l s, n)_+ ... F oy n(l ,n ) _+
+
Tapt, 2
s s s
- + 2 3 4y .
8, n__2(n , n-1 , n-2 )+ + ...+ 8 l(n , -1 7, 1 )+ +
8..(3, 27,1, +rI=0
317 0 L T T

. where the 4 are given by (1.16) andk(l.20).

Cbnsider the graph of thevLHS>of (1.23); the weight 6n‘

-

- the edge 2 > 1 is the sum of the coefficients of (3, 2, 1), and

+
o1y 20) evizs .alZ - By - Similarly, the weight on the_edgeilx§f2f~xuf

is only 41g - Iﬁ‘order to, get a zero graph, the Weight on each edge of

. the graph of the LHS of (1.23) must be zero, therefore, g9 = 0 R
. conéequently ”'331 =0 .

We now use mathematical induction on the subscript s

0 for

in ,Bst vagd. qt s-1 .. Suppose that Bst =0 and T

o all s =3, ;.;;.k ~.and for t = s=2, ..., 1 . We shall show that this

implies Byp = 0 ™ and @ o = 0; s=ktl and t=3s5-2, ..., 1.
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We may visualize the a's  and "g's in a matrix.

1°- %12 %13 7 %1 k-2 0 %1 k-l %1n
0 0 %23 Tt %2 k-2 *2 k-1 " %n
B31 0 o O3 k-2 %3 k-1 -t O3
Bap 0 00 DO K2 % k-l - Tt %n
» K . = b
B 1 By 2 By 3 R B "t %%
P11 Brr 2 B3 Bkl k-2 Pl k-l vt %kbln
Ea1 o Bno a3 e By k2 L

In the induction process, we are assuming that all elements in the upper
left hand k x (k-1) submatrix are zero, and we wish to show that the

elements adjacent to this submatrix are also zero.

Case (1) A t# k-1 . /

The weight on the edge k » t is the sum of the

s s s s s
coefficients of  (k l; t l) and  (kt+l 2, k 3,-t

o viz;

- S0 + S4Bk+l-t' ‘and'the weight on Fhe edge 't >k is the sum of the
: ’ s; 8 s
coefficients of (k 7, £ 7)_ and k *, k=1 7, ¢t )+ viz;

-

'slakf + SZBkt .- Since these weights vanish separately, therefore, we get
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I
(=

1% T 84841 ¢ T and

. . ' _ | . .
S1%t + S4BkF_ '.ﬂao- ?X.Fhe induction

.

Case (ii) t = k-1

The weight on the edge k » t .is the sum of the

T "

: ‘ s s! s
coefficients of (ks, ts)_ , (1+k t, k -, t t)+ R
s s, 5! s s! s
A{(k k_zs t k—za k-2 k—z) 3 eey (k 1, t 1’ ll) } viz;
+ _, T+
o k=2 .
| . - .
sakt + St8k+l ¢ +.er serr , and the weight on the edge t >+ k is
S Since Bkt =0 . for te {k-2, ..., 1} (by 1ndupt10n),
therefore, O = 0 a@d 8k+l c = 0. This completes the induction;
all thé Bst = 0 an@ al; N 0. for s =3, ..., n,
t =s-2, ..., 1. The a, .. where t = n-2, ..., 1 are however not

tn

\

" yet accounted for. 'We have reduced equation (1.23) to

At ol + ...+

+ +
10t _ n-1 n(n—l ,n)_ +rI=0 .

Since, the graphs of (1, n), ..., (n-1, n) have no edge

in common, their weights must be zero separately. Therefore, r=20,

alﬁ‘i e = anfl a =0 . This implies that TlL) ClLJ I is an

’

independent set.
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Now we prove that TlLI C;U I  generates

{C (P) ; P €S } as linear combinations over the reals. Since C
n-1 , n , n-1

~ is not a linear map, this does not follow from Theorem (1.8). . The method,

C o we use-isfsomewhat similar to that used in Theorem (1.8).

To start with, we prove that every 3-cycle in

v {C ®P) ;P ¢ Sn} is tﬁus generated. It follows from (1.20) that every

n—-1

(P) is the compound of a 3-cycle. - Let .

‘éf?ycleyof the form- Cn—l _

‘ ;vz’?FS)f'Qbe,su¢hJa?3—py¢iéiwﬂi§h'déeé“nqt-belong.to f Cl Lo

Case (i) STy ST, < r,
From (1.9), we have

' k k-1
(r}> Ty T5) =_.§ (ry+i-1, r+i, 1,) —,_Z (r)+i, 15)
i=1 i=1 : ‘

k-1 : k-1
+.izl(rl+1—l, rl+k) - iZl(rl+l—lf rl+1, rl+k) s

where T, =g + k.

. We claim that
k-1

v *Cn—l(rl’ r2, r3) = iZlCn_l(rl+1—l{ rl+1, r3) f,izlcn_l(rl+1, r3)

A

o k=1
_ 121Cn'1<rl+l*l’ rl+k) —4iZlCn_l(rl+1—l, rl+1, rl+k) .
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To be specifig'we shall discuss the case where 'r2+ri

E'Tifié even, r,tr, odd and r;+r, odd.  The proof for the other __f”

.€ 5pQ$sibilities/is similar, and will not be includéd‘here,,i;Bkaitthéﬁéﬁﬂﬁwggﬂﬁfﬁ-

R

(1.16) and (1.17), the above identity becomes:

+ - -—
1.26 (n—rl+l , n-rl—k +l,.r -r3+l)+
k _ : si —si
= izl(n—rl—l +2, n-ry —1+l? n-r, +l)+
k-1 . —si —si
+ Z (n—rl-i +1, n-r, +1)
SN 3 -
k—l s, s,
- z (n-rl—i 1+2, n—rll—k+l)_
i=1 - ¢ . '
k-1 0 si —s:.L
- .z (n—rl—l +2, n-r; —-i+1, n-r, -—k+l)+

' i=1

i+l

where. .si,?-g_l) L

Thé graph of the first sum in the RHS of (1.24) is

ke

b n—rl-k+3

N
N
N
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O i w
L

‘-’ The weights on the loops at thé veértices ‘are as folldws: '

3!

s

On the vertices n-rl—k+l and n—rl+l it is k~1 ,
on each of the isolated vertices it is k and on each of the remaining
vertices of the graph, the weight is k-2 .

To this graph, we add the graph obtained from the second

sum of the RHS of (1.24).and we get

{beéﬁuséfghe signs in the;ZrcyélQ§§Qffﬁhe{séddndﬁsum‘in the RHS of (1.24) N

" are opposite to the.corresponding signs in the previous graph and therefore,
b . . ' N

these cancel each other.

Subtracting the graph of the third sum in the RHS of

. (1.24) from the above graph,‘we get : Co
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. To see this, note that we have added k-1 2-cycles (with opposite signs),

hence the weights on the single loops at n—r3+l and n—rl—k+2 are

k-1 . At each isolated vertex the weight is k , at the rest of the:
vertices of this graph the weight is k-2 . The weights on the edges of

the gféph are as shown.

From the signs of the non-zero weights on the edges of .

~ .ﬁﬁT'QEhéuéfiﬁh'Of'thé.laSt'sﬁmviﬁ'the RHS .of (1.24), it is clear-that if we W'  “ur = &

subtract this graph from the above graph, we are left with:




26

Note that the weight on the single loop at . ﬁ—r3+i becomes

(k=1)-(k-1) = 0 . Also, the weight on the single loop at n—rl—k+l

remains zero, for every 3-cycle in the last sum of the RHS of (1.24) has

n—rl—k+l

as one of the vertices.

At n—ri+1 , the loop has weight

(k-2) - (k-2) = 0 and at each of the isolated vertices this weighf is -

k- (k-1)

(n-?1

=1.

Since the above graph is also the graph of

¥l+; n—rl—k_+l, n_—r

3

identity (1.24) holds.

" Case (ii)

. From (1.10), we

(r15 Ty T4) = (xy, )+ (x),

-We

\

claim that

Cn-1(Fp> Tpo ¥9) = 10, (rys 7))

5
t

rl+r2

is even,

As

1

r. +r

Co1(fg> Tps

in case (i),

3 odd and

+l)+ , which is the LHS of (1.24), therefore, the

have

/

*lrpmy) - (rgs Tperp) =1

/

+ Cn—l(rl’ r3) + Cﬁ—l(rz’ r3)}

rl) -1

we consider ‘only the case in which

r +r odd.

o3 The other cases can be

varified similarly. Using lemmas (1.16) and (1.17) we get:
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1.25 (n-r

L
l+l s n—r2+l, n —r3+l)+
' 5.{(n—r++l ot -r +1), + (n-r.+1 n——f +1) +A(n;r—+l-‘ﬁ?¥r +1) .}
17 T N T M 2 3T
b+ (g—r3+l R n—rzfl, n —rl+l)_ -1
y + - + ,
where (n—r3+l, n—r2+l, n —rl+l)_ may be expanded as in (1.24).

Graphically, the weight in the RHS of (1.25) on the edge

-n—rl+1‘ — r—r2+l is 1

n—r2+1 —r n—ri+1 is 1-1=20
n—rl+l — n—r3+l i is -1+1=20
n—r3+l —+—yn—rl+l o is -1

'n-r2+l .f*' n—r3+l is -1

n-r_+1 -~ n—r2+l is -1 +1 =‘O .

3

On each of the isolated loops the weight is 1+1+1-1-1 1.

o

The resultant graph is, therefore,

n—-r

5+l

which is the graph of the LHS of (1.25). Thus every 3-cycle in



.{Cn-l

where n

(1,04, 5)

'(P) i Pe Sﬁ}

i
o

(i,'z,'5) + (2, 3, 5) + (3,

28

is generated by T, U ClL) I.
As an examplé of the foregoing, consider the special case

and ¢ = (1, 4, 5) . From (1.9) we have

4 5) =@ 5 - (3,5 + A, &)

@, 8 -, 2, 4) - (2, 3, 4)

Hence

That is

arbitrary cycle

We claim that '

Cg1 e B0 ) =

Cn—1(12l2§;5);fkbné;ﬂzf 3, 5) + C (3 4, 5) + c
C;:iQB;E55J:Z¢nQ;(i;14)4 R (2 4) 1(1,a2,Q4)
’Cn_1(2, 3, 4)
=(é_,'s_, 2+)+j+(5“’ it 2y, + 6T, 3, 2+)+
+ (5+’- 2"‘)'-}- (4, 27)_+ (6_? 3‘)+ + (54-’ 3+)+
+ 5, 3%)_ + (S+’ 4+, 3_);

+ (6,

Resumlng the proof of the theorem, we now consider an

g = (rl, . rm) From (1.11) we have:
m-3

1+2 "izl(rl’ T o)

'm—2'

= Y (xq, Tiiqs
1—l 1 i+l

m=2 m-3

@ = LGy i1 T i+2) T lZlC T1s Tipg)

sgn @ C.
B i=1 .

_1(2;.5) L -
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By lemmas (1.16) and (1.17), thié is equivalent to

S cees S

‘ N | L -
1.26 - . - cee, D
. 6 | sgn ¢ (n r, +1, » DT fl)ggn o

m-2 s, - s! s'!

— _ €1 _ 1 -
= izl(g rl+l , Il ri-+l+l’ n

—ri+2+l)+
m§3 t

+ (n-r
i=1  t

t, .
1

—ri+2+l)

i+l',‘n _
with the help of Lemma (1.17), we infer that the weights on the common
edges, of the graphé of the two sums in the RHS of (1.26) cancel each
other and the resultant graph of the RHS of (1.26) is equal to the graph
of the LHS of (1.26). It now follows from (1.24) and (1.25) that the
RHS of (1.26) can be:expressed'as a linear combination of the elements
in TlL{ Clt) I..

Finally, we consider the general case:

P=7P ... Pm s where Pi for i=1, ..., m ‘- are disjoint cycles.

1 \
. m
From (1.12), we have P = z P, - (m-1)I . We show that
o Coi=1 t. '
. , o s ‘
sgn P.Cn—l(P) = izlsgn Pi Cn—l(Pi) - (m=1)I . Since

m
sgn P = |[sgn P. , therefore this is the same as
’ i=1 = '

S 1.27  (sgn P, C_(®)) ... (sgn B_C__ (2))

o .
= Z sgn Pi Cn4l(Pi) - (m-1)I
i=1 : . .
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It is- ev1dent that the welghts on the correspondlng edges of the graphs of

the LHS and the RHS of (1.27) are the same; and the same is true for the

.

.weightS'on loops at the»non—isolateq vertices, ' There remainsvto show‘that'
't'the:weight of eaeh of the isolated loops has the same value for each side
of (1.27). For this, note that in case oann odd cycle (ife. sgn o = 1)
';»each of the.lsolated loops carry a welght -;+}h% ﬁhile_for an eyeh ¢yqi¢; :

,th1s welght _;71" When ve attach sgn P to each Pi~; Welchéhge':‘

the weight on each of the isolated loops to +1 . Hence, in the graph of

m .
E'Sgn Pi Cn_l(Pi) , the isolated loops have weight m . When we add
i=1 - |

-(m-1)I  to this shm, we reduce the weight on each of the isolated loops

to 1. Hence the identity (1.27) holds.

By (1.26) each Cn l(P') is ‘contained in the linear
-1%i

combinations of the elements of TlL),ClLJ'I . Hence, by (1.27), -

Cn_l(P) can also be expressed as a linear combination of the members of
. . \

U ,cl.u I.

’
/

Thus we haveishown'that the set TlLJ CiLJ'I generates

the who;e set _:{Cn_l(P) 3 Pe Sn} .

Finally; the number of elements in TlLJ ClLJ'I is ‘the

same as the number™of elements in the set’ TU CVU I ; viz; (n--l)2 + 1.

Q.E.D.
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71528 ‘Remarki.
It is interesting to note that the parallel theorem to

Corollary (1.14) involving TlLJ C,U I and {C

1 (P);P;Sn},- is

n-1

not true, as the following shows:

There exists g e‘{Cn;l(P) s P g Sh}‘ such that
cr : . T
'z BiPi-,_where_  Pi'e Tlt}_ClLJ I and .Z,Bi £ 1. Let
i=1- " 7 ' . i=1

Q
I

a =v(r3, rl+l, rl) .where ,rZ = r1+l , then

o= (r3, r

l+1)‘ + (r3, rl) + (rl+l, rl) - (rl, rl+l, r3) -1 ,

and’

C (o) = -{

n-1 . » T

Cn—l(r3 (rl+l, rl)}]._

1

1+1) + Cn—l(rS’ rl)‘fuCn_

‘- Cn—l(rl’ ri+l, r3) - T : o (by (1.25)).

Each compound appearing in the RHS of this expression is a member of
5 |
‘ Z\Bi = -5 # 1 , where the B, are the

T l).C U I . However,
1 :
i=1

1

“y R

. coefficients of these compounds. -

- 'We shall make use of this result in Chapter II.

1.29 Remark:
We close this chaptér with a note about the set of

r-compounds '{Cr(P) ; P e Sﬁ} .~ We have so far been unable to establish

theorems similar to (1.22) and (1.28) except .in the special cases when
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r = n;l, 1. Fér r=2 and n =14, we Can‘say that this set

.contéins an independent subset of cardinality 18 which is greater than
'(n—l)2+l ﬁiz; 10. Moreover; the above remark (1.28) remains true in -
phis sepcia; case; anq ﬁe cqnjecture that it is‘true for thg;genéral ?gt

{cr(?) ; P e’Sh}A.
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CHAPTER II

CHARACTERISATION OF nxn MATRICES A. FOR WHICH
TRACE (PA) ¢ {ag, «oes a'k} , AND MATRICES B FOR.

WHICH E__,(PB) = E _,(B)VP e S _

In this chapter, we pose the following problem: Let' H = .
.- 'be a subset of Sn "and let a1y wees 8 be k distinct real numBgrs;

y
PN

: -jj'ﬂpe;etmiperthe set of square matrices ; A such that

- B
L .

{tr(PA) | P e H} =;{a1, cees a}

We provide-solutipns in the following cases:

(1) H=S ;k=1

n
-~
N
]
0
<
0
}_I
o
0
e
=]
w
—
-
=
It
'_l

(2) H

(3 H=S_ ;k=2 .

A second problem which we solve is the determination of

QA v

the structure of nxn matrices A such that En_l(PA) = E

*

n-1

PesS (n>3) .

The r-th elementary symmetric function of the ,ﬁxh
matrix A (dénoted'by Er(A))' is used to desighate’

. .
N

. - 4 . T
_Er(ki, ceey A) = . 2 - TW?Xi. , whére ‘A13 ...,_An are the
. 'Liil,...<ir§p i=1 J ’ :

&
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‘eigenvalues of A . As is well known, lEr(A)i is equal to the sum of

all the principal XY subdeterminants of A . Again’

,Ef(A) = trace Cr(A)'= tr(Cr(A)) , where Cr(A) is the r-th compound of

. n . .
A . . In particular, E (A) = d(A) and E (4) = iZlaii = tr(A), if

 We first comsider case (1) above; viz; the set of nxn

matrices {A : tr(PA) = tr(A) ; for all P ¢ Sn}

By Corollary (1.14) we know that every P ¢ Sn can be

r
written as P =, z aiPi , where Pi eM,M=TUCUTI (see (1.13)) and

i=1 .
r . . ’
PesS ,i=1, ..o, r, and . Y o, =1 . Thus if tr(Qa) = tr(A).
o oi=1 T
for all Q ¢ M, then for any P ¢ S (P = Z a,P, 3 P, e M and
. : n . iti? i ‘
i=1 . .
r
z @, = 1) it follows that
Ll :
i=1 . \
T r ~
tr(PA) = tr( ] a.P.A) = ] o tr(P.A) ([2]; pp-18)
i=1 1=}
7
r - .
= ¥ a,(tr(a))
. i
i=1

r .
(§ o) (er@) = tr(a)
i=1 .

Therefore, the set- {A : tr(PA) = tr(a) P e Sﬁ} is

just. the set {A : tr(PA) = tr(4) P e M}
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Let A= (a,.) . Then, by assumption

1]

- tr (1, k)(K, r)A = tr(A) = tr(k, r)A . Hence a5] T8 T AT d
for all k, r . To simplify the notation, let o; = ags and
Gi=ail—all for i=1, ..., n. Then apk=ak+6i"and

(agtéy 0L2+61 oo ocn+61\
al+62. a2+62 “os o +62
A = . . .
1 a,+8 ay+s . 'an+6nJ .
This can be written
r'Ol.l 0,2 v e OLn 3 4 61 61 o (Sl N
oy oy ‘o o 62 62 .o 62
. . \' . l‘ .
A = . . + . . .
L a1 a, .o fqn ) L 6n Gn e e Gn I
‘If R' = subspace of rank 1 matrices with one row
repeated n-times and if C' = subspace of rank 1 matrices with one column

repeated n—times, then clearly

~ AeR' +C' .
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On the other hand if A € R' + C' , then clearly

a

tr (PA) = tr(a) for all P ¢ Sn . We have, therefore

2.1 Theorem:

The nxn matrices A such that tr (PAY tr (A)

for all P ¢ Sn , form a subspace § = R' + C' , where R' subspace

of rank 1 matrices with all rows equal and =~ C' = subspace of rank 1
matrices'with all columns equal.

This is our result for the case (1) listed on page (33)L

2.2 " Corollary:
‘ The rank of A  such that tr(PA) = tr(A) for all

’

Turhing to case (2) on page (33), suppose we restrict
the set” 'H to interchanges only. It follows immediately that
Sl = {A  tr(PA) = tr(a) for all P.e T} is a subspace and contains

all’ nxn skew-symmetric matrices.

It also contains the nxn matrices of the type

V]

a .o a
a .o a

o

. - .
N .

‘a a - O
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Since these two subspaces meet in the zero matrix only,
we have

. . 'n(n-1) ~n(nt+l)
~dim Sl 2_———3——r+ n= B

Now the subspace S is éomplementafy to the subspace

o

formed by nxn matrices of the type

( * % e * .. % )
0 * .o * .e *
0 0 . 0 * *
\ 0 0 ce .o . oo 0
This subspace has dim Eﬁﬂgll and therefore,
Lo, C2 n(n-1) _ n(n+l)
S dims) gt - T = B . o
. dim S. = n(nt+l)

‘. 1 2 :

matrices “{A : {tx(PA)} ='{al, a,}, for all P e 8 } we assume

We begin by sfudying the decomposition BllJ B2 of

\.

Sn given by

e <Bi = {P ¢ Sﬁ[{'pr(PA)~= ai} ; i =‘}, 2 .

“.i .For case (3) on page (33) we now ‘consider-itheset of “nxm-' =~
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It is clear that equations (1.9), (l.lO);'(l.ll) and (1.12) impose

restrictions on the partitions BlLI B2 - of Sn which are possible or

"admissible". Our task now is to find the "admissible" partitions of
Sn'.a In the first instance, we partition the set T of all 2-cycles in

Sn';.» It is convenient to recall here the following:
2.3 Definition:
If for every pair (v, w) 3 v #w, in a directed graph

there exists a sequence { (v, Vs ql), ""'(Vr’ W, o_..)} as well as

r+1

)} , with all o, and B nonzero,

L w5 B, e G Y By ;s
then the directed graph is said to be strongly connected. If the
corresponding undirected graph [1] is complete (i.e. every two distinct

vertices are joined by an edge), then we will call such a, directed graph as

str@hgly connected complete graph.

2,4i: If H is,a subgraph of G , the number of vertices in

H 1is said to be the order of H .

"~ Assume that I ¢ B, i.e. tr(a) = a, » then we have

2

2.5 Lemma:

contains a

The graph of all the 2-cycles in TN B2

.,

‘strbngly connected complete subgraph of order n-1 .
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~Proof: First, we observe that TN B1 can not contain disjoint

2-cycles. For, if it does contain two disjoint 2-cycles (rl, Sl) and

“(rZ’ sz) , then by equation (1.12) we have

(xys sl') (rz, 52) = (rl, ’s_l)' + (rz, s2) -1,
(rl, Si)(rZ’ SZ)A = (rlf sl)A +.(r2, sz)A -~ A. and

tr(rl, sl)(rz, sz)A = a; + a, - a, = 2al - a,

B R 8y L

which is contrary to our assumption that a; # a, . It follows that

INB contains a strongly connected complete subgraph of order 3 or the

1

~2-cycles of . TN Bi contain a vertex 'in commomn.

~

In case (rl, sl), (rl, 52) and (sl, SZ) are in

T lel , we have, from (1.10),
l \

(rlr Sz, Sl) = (rl’ Sl) + (rl, 52) + (Sl’ 52) - I - (rl’ Sl’ 52)
which. gives ’

(rl, Sys sl)A = (rl,vsl)A + (rl, SZ)A + (§l, SZ)A - A - (rl, sl,'sz)A

: .Takiﬁg the trace of both the sides, we obtain

tr(rl?‘sz,.sl)A = al.f a; + a; = a, - t;(rl, Sl"SZ)A

- tr(r

B2 -4 1> 810508

' In either case, .a-'=aaz';”*:'*’f*“A
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In case tr(rl, S1s 52)A =a; then
. tr(rl, SZ’ s )A = 2al - a, which we have already found leads to a
-ﬁcontradxctibn.
Now, if tr(rl, s1> sz)A = az‘,‘we get
15 s2,_s )A xl'r-Zaz_,' !
Then 3al - 2a2 is equal to either a, or a,
and in both these cases we get a; = a,, contrary to our assumption that
ay # a, . We infer, therefore, that T N Bl cannot contain a strongly

connected (complete) subgraph of order greater than 2.

'Tﬁé'only péééibility remaining is that all the 2=cycles

in T Bl have one vertex in common, i.e. these 2-cycles form rays from
a vertex (rl-say) . Since TN B2 =T~ TN Bl , the graph of all the
2-cycles in TN 32 contains a strongly connected complete subgraph of

- order n-1 ; viz; a graph with its set of vertices q{v - (rl)} , where

V  is the set of vertices of S viz; {1, ..., n} .

We now look at the 3-cycles in Bl and B2 . If the

two cycles ,(rl’ sl) and- (rl, sz) _ aré,ln | TN B1 , we claim that

).“'are also in l Bl .

. the ._3-C>'¢,1e§ (rl, sl, 52),,_;, and .(rle,v.‘slz_',_‘,‘.s

f.From the precedlng paragrap f'(si;_§é)ﬁ"ﬁﬁst-be?iﬁ"H;T ﬂ‘Bé . 3lBy;(1.lO), '
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-we get

C(rs sys 89) = (xy, 5q) + (ry, 8y F sy, 8y) 1= (g, sy,08,)
2;6 (rl, Sy sl)A = (rl, sl)A + (rl, sz)A + (sl, sz)A-A - (rl, sl’”SZ)A
17 Sy sl)A = a; + a, + a, = a, - tr(rl, S1» SZ)A

and;' tr(r

." Ic¢ B2)

2al - tr(r s SZ)A

1 %1
If tr(rl, Sl’ sz)A = a, then from the above equation

tr(ri, S,s Sl)A = 2al - a, which we know is impossible. Therefore,

. Thus

‘tr(rl, 1> sz?A = a; and‘consequently, ;r(rl, Sys sl)A = a;

we have proved

2.7 Lemma:

If (rl, s%) and (rl, sz) are in TN B, then
(rl, 51> 52) © and ‘(rl, 82’.81) are in Bl .
2.8 Remark:

Suppose TN Bl contains (rl, sl) but not

(rl,.sz) . In the equation (2.6), we take the trace of both the sides and

- obtain

‘§r(r1, SZ’ASI)A =a; ta,+ a, = a, f\tr(rl,4sl, sZ)A .



42

If tr(rl, S1» SZ)A =a;, Fhen tr(rl, Sys sl)A = a,;
and vice versa. Therefore in this case the 3-cycles '(rl, 81» sz)v and

(rl, Sys sl) are dlv;ded among Bl and B2 .

Concerning the set B, , we have the:

2.9 ‘Lemma:

If o (r2, gl) . (rz, §2) and (;l, 82) are in

T ﬂsz , then both. _(rz, Sis 52) “and (r2, sz,-sl) are in B2 .

Proof: - By (1.10)
v(rzs 52: sl) = (r2’ sl) + (rZ" SZ) + (Sl’ 32) -1- (rZ’ sl, SZ) s

T

(rZ? st sl)A = (rz, sl)A +(r2, SZ)A-+(sl, SZ)A - A - (r2, Sl"SZ)A )

and tr(rz, 95 Sl)A = a, +.'a2 + a, = a, - tr(rz, Sy SZ)A

2a2 --tr(rz, s sZ)A

If tr(r

9 Sp» sé)A = a_ , then

1

tr(fz, Sos sl)A = 2a2 -3 which we know is impossible, therefore,
tx(r,, S SZ)A = ?2‘ and consequently  tr(r,, Sgs sl)A = a, . Hence
the lemma.

-
“~

We now use our representation of the permutation

matrices (l.9), (1.10), (1.11) and (1.12) to complete the characterisation
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'. 'of thé admissible par;itions of Sn . The discussion falls'naturally'

..“into the following cases:

e

;?\;nggﬁ(i}ﬁ.~.: . lTJWgBl."'contains all theA2—cycles,with’CQmﬁanGéitéip:?;jfuf”

.(rl) viz; (rl, r2), cees (rl, rn) where r, e {1, ..., n} . There

" are (n-1) such 2-cycles. - From Lemma (2.7), it follows that it contains

all the 3-cycles with Ty " in them. Furthermore, we claim that Bl

" contains all cycles with the integer ry in them. In order to show

this, consider any such cycle (rl, sl,'..., sm) . F?om (1.11) we have

'(flﬁ Sqs oo

sm) 
= (rl, Sq» SZ) + (rl, 82’.83) + ...+ (rl, s__1° sm) - (rl, 32)
) .

- . — (rl, s: 1

Multiplying on the right by A  and taking the trace of

 -both the sides, we obtain

!.; ém)k{é (m—l)al -‘(m425al% gl .

tr(riavsl,_;

" We -can now conclude in this case that Bl consists of

those productsv P of disjoint cycles Pl’ «ewy P, m>1, for which

m

one-of the "P:.L contains . r For, suppose T is involved in

P,ls. Then, By (1.12) . .
L I N e _
‘P = z P. - (m-L)I ' and
Lo 1 .

. ’m. :
tr(PA) =. z tr(PiA)-(m—l)tr A= a1+(m—l)'az—(m—l)a2 = a

- i=1



44

-Case (ii) TN B, ~ does not contain all the 2-cycles with the

.vertexv r, in common. Let (rl, rz)? ceny (rl, rk) be the 2-cycles

of B and let '{tl, vy B

1 } = {1, ..., n}\{rl, cees rk} . Consider

..‘the cycles (rl, L tj) and (rl, tj,-ri) . By Remark_ (2.8) if
A (rl, o tj) £ Bl , then. (?l, tj’ ri) £ B2 , and vice versa. Our’
. argument breaks into three subcases; viz,

I‘(a):"{(rl, ros tj) :i=2, ..., k,j=1, ..., nk} & Bl H

1, ... n-k} B

.
I

(b){(rl’rl’tJ) 1= 2, cees k 5 9 .;
() '{(fl, ris tj) :i=2, ..., k,j=1, ..., n-k} interéects'both‘v.’?

o _'}'314; - and Bz' nontrivially.

- Case (a) '{(rl,ri,tj) : 1= 2, ey ky j =1, ool nk}lCE B1

’

In this case, B contains all 3-cycles of the type

1
(rl, s rj) , where 1,j e\{l, cens k} (by lemma (2.7)) and all 3-cycles

of the»type (rl, ri, tj) . Furthermore, Bl contains all cycles a

such that the‘graPh”of‘ ‘s contains an edge r; rr, . To show this,

. we note that
(rl’.ri’ Sy» ..;, sm)

= (rl, s Sl)A+ (rl, Sy sz).+ .;.-+ (;l, s 1 sm) - (rl, sl)

- .. = (x

17 Sp-1) o
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by (;..11) . If {_sl, sm} < {tl, ey tn_k} , then

.tr(ri, Tis Sy T sm)A = a, + (m—l)a2 - (m—l)a2 = al . If, however,

{Sl, ey st} _.{rl, cees rk} and {St+l’ cees sngigf {tl, cees tn—k} R
: then

tr(rl, r., s ceesy sm)A

l)

il

a. + ta, + (m—l—t)a2 - ta, - (m—l—t)a2

1 1 1
= al >
because (rl, i Si+l) e Bl iff (rl, si) and (rl, Si+l) - are in
Bl .
. It can easily be shown that B. . does not contain a

1

cycle. whose graph has no edge Ty > r, . From this, it follows

: immediately that B consists of those products P of disjoint cycles

1
'Pl? sees Pm , m>1 , for which one of the Pi has a graph with an edge

r. > r,

. Caée.(B)_ ' o In'this case, A{(rl, L tj)‘: i=2, "”.k,,*

> =1, ..., n=k} € Bz‘, and an argument similar to that of case (a) can be .-

:  madé leading to the conclusion that B1 consists of those prqduCtSvji

l“(-bfﬁﬁisjbfﬁt5éybiés’-JPi§ ;3.;'Pm , m j_l , fOr'whidh“dhe:o%ﬁtHéf&in

~its graph with an edge T - ri .

-~
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-~

Case (c) =~ '{(rl, T tj) 1= 2,....,.k ; =1, ..., n-k} intersects
both Bl .and B2 nontrivially.
First, we show.that if for a fixed r,, (x,, r., t ) B
' . i 1 i P’ 1
"for some- p'El{l, cees n-k} , then (ri, ros tj) € B1 for all
j'€ {l, ..., n=k} . Suppose (rl, L tq) ¢ Bl for some (¢ e {1, .., n-k} .~

We have -

' = + - - .
.(rl, s tq) (rl, s tp) (tp, T tq) (:i, tp) + (rl, tq) (rl, tq, tp)

tr(rl, o, tq)A.= tr(rl, T tp)A_+ tr(tp, s tq)A - tr(ri,tP)A +tr(;l,tq)A

- tr(rl, tq, tp)A .

a, +a, - a, + a

1 2 2 2

-a, =ay which contradicts the

assumption thgt (rl,ri,tq) ivBl . Hence, for each L {rz, ety rk} if

for some p , then (rl, s tj) € B for all

1 1

,(rlf oo tp) € B
32 {1, ..., n-k}

Similarly, if for a flxed’ T, (rl, tp’ ri) € Bl for

séme: p 8'{1, ceey n-k} , then (rl, tj, ri)-e B for all je {1, ..., n=k} .

1

. Now, 'let '{(rl, Sy» tj) s, e'{sl, cens sm}GE'{rl, cevy fk} 3
j = : -k} < ‘ ' : - ., TN eeey S} 30

,;{.J 1, ..., n-k} € B, and {(rl, T tj) i {rl, cees rk} .{sl, s sm} :

A S é-l, ..{;1n—k}§E B Clearly, B, also contains (rl, T, rj)v and

cees T} (lemma (2.7)). It is a'matter =

¥

5 -
‘;1(rl?frj, ri) for all Ty rj € {rl{

' ; bffsimp1e verification that B contains all products P of disjoint

1
.?,Jéyclesp P

R

12t Pﬁ,‘m_i,l ',_for whigh one qf tﬁe~‘?ii.ha$ a.g;app ﬁiih;if}

N J B ., .. . AR s et
o . - . L . v . . .
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an,edge r, > s, or an edge 1, > 1 for r, € {rl, cees rk}\\{sl, crey sm} ..

We omit the details.

Thus we have characterized the possible partitions

BlLJ Bé» of Sn . ,We'now look for the possible structures of A which

Lo

can occur in each of the possible partitions BlL)'BZ . It will be séen

that the case (ii) (c¢) is not possible as long as our assumption- that

‘al +‘a2 stands.

We want A to be: such that

a. for all Pe B

L erea)

1
= tr(A) = a, for all P ¢ B2 and
Sn = BlLJ B2 . First, we consider the partition of Sn given by
Case (i).

Assume, for simplicity, that r, = 1 and TN By
contains (1,2), ..., (1,n) . Let A" be the (n-1) x (n-1) submatrix
obtained by deleting the ISt TOoW énd)the 1%t column of A . Then,

| tr(PA ).= tr(&")v P €fB2 = Sn-l where
S _, is over' {2, ;.f,’n}  .‘-By Thm. (2.1)

n—-1



'2.10 A=

(1,r,m)

and

..Hence

. o
%11 %12 P13
31 ;) o, +s
331 -al+62 a2+6
01 081 %O

For r,m e {2,
are in Bl Therefore,
tr(l, r)A'=
arl - aml -
Set o, T a8y - $
arl - Gr—l =

-Also,

which gives

Set

aln
1 T e e 'an—l+6l
2 LT “nfi+62
. e e +
n-1 gy o OLn--_l 6n—1,

.., n}, (L,r), (1,myr) and

ajg = a + Sr—l s r e {2, ..., n}

tr(l, r)A
8r 7 %n
8a T 2

alr - 0Lr-—l

1]

tr(1, r, m)A_ .

= q - o
oy ; then
=8 T =9,

- 48



Hence

and "

is given by

”ﬁ’:thé'members.of TN B

or

f(q =
(a2 al)+ocn+<Sn .

o-+6

n-

We determine all as follows::
n n-1
= = Z = Z
a, = tr(h) =a;; + 4y 1T o
i . i=1 .
n n~-1
a, = a + a + Iz a..=oa +§ + I
1 12 21 i+l,2' ii n i=1
- = - sy
8, —ap = ay — @ +8)
aj = (a2 al) + (an + 6n)

Hence, the matrix A

+8
0Ll+ n
5
1 %1t
o +6n—l

n—l‘ 1

In general, if the

1 then

is

o
n-1 n

8
0‘n—1+ 1

§

+
OLn-—-l n-1)

49

completely determined, and

i-th vertex is common to all
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o _ , . . -
+ + . )
4G ESE T c %™
A= laas ... aws - TPy S R
'2'11 _ A= l+ n n+ n+(82 al) OLn--1+ n i-th
a +8 e v . o486 . e e 8 :
: Ll+ n~-1 0Ln-i- n-1 . C ctn—l+ n-1)

Clearly, a1'= a, reduces (2.11) to the same form

.0of A as was obtained in Thm. (2.1).

Now, consider the partition of Sn given by case (ii) (a).

Assume that r, = 1 and B1 contains
(1, 2), ..., 1, k) (k¢n) and all cycles with an edge 1 > r for
r E'{Z, eooy kIO Again, by lemma (2.5), A reduces to the form (Z.iO).
Also, we knpw that (l; r), (1, r, m) and (1, m, 1) _are in Bl for

r, m é'{Z, ooy R} « . Therefore, for all m + 1, f » we have

/

/

> tr(1, r)A = tr(1, r, m)A
;;.follows that alr - alm f amr - aﬁm,= ar—l - am—l
alm = 1 + (alr - 0Lr-l)
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Set alr = o + Sn ; then

a; . = o

4 & . 'This gives'allveleﬁents;bf
1m on T i T

the;first row in (2.10) except a; Let us, now, find the first column .
- of (2.10).

We khOW‘that (1, r) and (1, m, x¥) afe in [Bi-ffor -

Cryde {2500, k) 7 (lemma. €2, 7))5 Th

s

tr(l, r)A

]
ot
H
VY
’._l
g
A
S
e

s

and hence ' a - a = a - a

Set a -6, =8 : then

re {2, ..., k}

We claim that this relation does not hold good for
\

T e'{kfl, e n} , m ee{Z, cees K}, for if sof then. aq - a,=a_ —_amm

implies that tr(l, r)A = tr(l, m, r)A . But in this case (1, r) € B2

and (1, m, r) € B,

, which means that fi(l,’r)A + tr(l, m, )A , a

- contradiction. Therefore, the above chain of relations stops at aq

31 T BBy Ay TBH Gy e 2y TEF Oy

However, if m, r ¢ {2, ..., -k} , then (1, r) and

(1, m, 1) belonguto B, (lemma (2.9)). In particdlar, (1, m),

2

o (1,'mf1, m) are iﬁ5~B

2 fof m ¢'{2, cees k} therefore,
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tr(l, m)A = tr(l, m+l, m)A ,

and : 81 " %1l T Cmowl T Pwrl mil - Sm-1 T Cn

='f_Set ak+1 10T i hen By g S 0y O

e n-1
. In order to determine aj; o we use
fr(l, mtl, m)A = tr(m, mrl)A, m &A{Z, eeey, kY .
He?é : ‘ ém+1 1 ail - 6m - 6n f
and hence aj; = Gn + (am+1 1 §)

=39 +-an . .Consequently, the first column of

A is -{qn +8 ,.8+ 68, sees B 81 gn + Sk?""’ a . 86 .} , where

n + n-1
8 s obtained as follows: . ' | | ‘
 ¢; : Since tr(i, 2)A = aj and
tr(l, k+1)A = a,
. n '
therefore, a,, + aj, + ‘Z aii'= a1
: , i$1,2
N 4 ' . . - n
~and- . B a + a . + I a,, = a
, T : 1 ktl k+1l 1 i+l,k+l ii 2

~ By subtractingithe 2nd .equation from the first, we

get. .



a1‘+6n+38+6l»—ak—6n—an_kaak+6k-°‘l—§l=al_a2

CC-or B—-ao =a, - a

™
1]
~~
[
I
0
(3]
~
+
o]

Thus the matrix A takes the form . :

v

r v ) . . . )
‘an+6n al+6n . Aan_l+5n
(a;-ay)Fa *8) i S B S |
\ (al—a2)+an+62  al+62 SRR qn_l+62
2.12 A= (al—'az)+an+6k_1 < al+6k_l IR un_l+6k R ~k-th
an+6k a1+6k .« . . »an_1+6k v e
= . . .
' . R
: %1 o1 %-1"%a-1)
v Here fhe rows 2";o k of the first column are

- "distinguished" since we assumed, for simplicity, that 2-cycles of

Bi had 1 as a common vertex, and 2, ..., k as the other vertices.

In the general case, the '"distinguished" elements of A are those in

column rl and rows Tys r3, ey rk .~ Conversely, if A is of

the'abbvé form, then '{tr(PA) t P E_Sn} ='{81, az}
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;fFrKPA) : P¢ Sn}
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In this case, also, a a2 gives the same form .'

l.=

of A as was obtained in Thm. (2;1).

Case (ii) (b) is analogous to case (ii) (a). In

h ‘this case, we can assume that T N B contéins (1, 2), ..., (1, k)

1

(k<n) ' . Also, Bl contains 3-cycles (1, m, r). for r e-{2, ..., k}

and me {2, ..., n} , m + r . The equation tr(l, m, r)A = tr(l, r)A
determines the first column of A in (2.10) and the remaining computation

is similar to the preceding analysis. We omit. the details. We obtain

/ . (a.-a. eie oo
oLn-i-(sn (a1‘a2)+al+6n T ( l 2)+a +(Sn O‘n—l Gn
.. .
Nt a;+6) o178, o 1781
2.13 A= . . ' . .
+ ' L. T v
%00 a1 °‘k—1 n-1 T L]
\

Again, in the general case, the "distinguished"

~elements of A are those in row r, and columns

1/ AR

'~[_'ConVer§ely,'if the matrix A 1is of theaabOQe'form, then

='{a1, aé} .

‘P;”';"Cléafiy,. a) = aéz gives'thé.sémewfofm 6f”WA'\asf

- was obtained in theorem (2.1).

~
N

Finally,'we consider the structure of A .when the

partition of 'Sn is. given by case (ii) (c).
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Let (1, 2), +.., (1, k) be in TN B, k<a .. For
' simplicity, assume that {1, ry, m) : ;'{kl+l, vee, k} 3 m=ktl, ..., n}

C_fBl and {(1, t,m) :re {2, «0u, ky} s mo= Kkl ..., 'n}ng .

Lemma (2.5) reduces A. to the form (2.10) and by

CLemma (2.7), (1, r), (1, m, r) and (1, r, m) are in Bl ‘for

03

r, ﬁ'a {2, ..., k} 3 m$+ r . Therefore, as before,

tr(l, r)A = tr(l, m, r)A gives
arl - aml = arm - amm
and aq = 6r—1 + (a21 - 51) re {2, ..., k}

Also, for r e {k+l, ..., n} , (1, r) and. (1, 2, 1)
are in B . Hence tr(l, r)A = tr(l, 2, r)A

1

1@p11es : aq = Gr—l + (a21 - 61), , for r e {2, ..., n}
\
Set a21 - 61 = an‘ .
E.ThePf.‘f o ST T §r—l 2
“‘ >§n4' P 817 % + 61’ > 841 7 an f §

n-1

To find the first row of (2.10), note that (1, 1),

1, m, r) and (1, r, m) are in~ B, for m, r e {2, ..., k} - . Hence,



2.14

are in B
2

and

By (2.14),

" we have

fact that

| Welhave

and
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et > k)
' éince r e {k+1, ;.., n} , (1, ) and (l, r, 2)
,’ a tr(l,lr)A = tr(l; r, Z)A -
3y "% + (312 -.a;)‘..
a;. = ar—l + (a12 al) for r e'{3{ , 1}
Setting a9~ e, = Gn s
aj =0 4 + 8 for r e‘{s, , N}

In .order to determine the element , we use the

%11
for me {k+1, ..., n}

(m, m1l) and (1, mtl, m) are in B2

tr(m, mr1)A = tr(l, mtl, m)A

11 mtl 1 mtl m

Im
= o + 6 = -8 §
n m ?m—l ~'m T -1 * ol
=0 + &
n n

Thus (2.10) becomes



o +8 o_+6
n n 1l n
an+61 al+61
[ A=
a +6 al+6n—l

L n n-1 -

\ .

o
n-1l n

G101

'an-l

57

+6

+8

n-l

We know from Theorem (2.1), that for such matrices

tr(PA) = tr(AV P € Sn , which means that a

azl .

Hence case (ii) (c¢) cannot arise if a; + a

cannot be different from

1

5

We bring our results together in the

2.15 Theorem: Let

A be an n-square matrix such that

{tr(PA) : P e Sn} = {al, a2} , where a; i a, - Then A is elthe?

of the form:

(al+61 _ ... arl_1+61,
al+62, ar _l+62
: 1
o.+8 Ceee 0 416
| 1 r2 | rl 1 r2
C = .
S o« S
1 rk | rl 1 r.k
a.+8 cee Q +§
LT 17l T
:' \\ :
+
Lal Gn arl-l 6n

§ cee

O‘rl+1+ 1 O‘n-hsl
Qr +1+52 o “n+52
1 .
o +5 ce e a+6
1 2 r1+l r2 n r2
a +§ cee a T8
1 X 'rl+l rk n rk
a +5 " ee. g 18
r1+l‘ rk+l n rk+l
ar 4178, f"QKWn

~
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or qf the'form CT .

The set ='{P € Sn : tr(PA) = él} consists of

| By
- ‘all 2—cycies '(rl, rj) » j =2, ..., k- and the products P of disjoint

‘cycles P '.;., P> m>1 , for which one of the Pi has its graph with

l’
an g@ge r, > rj (or rj - rl) for 3 =2, ..., g .

.

Conversely, for every matrix of the form C - or ct

{tr(PA) : P ¢ Sh} ='{al, a2}

Proof: |  The foregoing discussion proves all but the last

statement, which is trivial to verify

1

‘Corollary: _ If A is such that {tr(PA) : P ¢ Sh} #'{al;.az} y
whgré al + a2 , there exist permutation matrices al and 92 in
Sn and an integer k , 1 <k <mn , such that either 61 A 62 or
. . T . ;
(el.é 62) is equal to:
. o \ \
) ) + o e ® +
v 'an+6n oy dn ) 6n
(alfa2)+an+61 Coayte, L a _;+6;
(aj-ay)to 6, atoy e gt
C = ) i C i .
| F S e O e L o ]
aﬁ+5k al+6k . . an-l+§k
S % Sa-1 L L |




The set B, ={p¢ Sﬁ : tr(PA) = él} consists .of
all }2—Eyclés (62(1), el(j)), ji=2, ;.., k and the products P of

disjoint cycles P SN Pm’ m>1 , for which one of the Pi has its

l’
graph with an edge 92(1) - el(j) (or el(j) - 62(1)) for j =2, ..., k

Remark: The general case of a matrix A for which tr(PA)

ceey @ as P ranges over Sn presents

takes on k distinct values "

as
formidable combinatorial difficulties. We can, however, indicate one or

two very special results which are possible. : '

If k=n and tr(l, )A=a__, for r=2, ..., k
and tr(PA)= a for all other 2-cycles P in T , we can show that

A has the form:

fa_. . a

11 12 313 ‘ . . .aln
31 . 9t A IR NS o
a3; - TS aFsy e e o g¥S,

/

\3n1 - ogtéy 0 %t ' €;'ln—i+6n-l
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We do not give the details of proof, but the admissibility of such a
partition of T follows from (1.9), (1.10), (1.11) and (1.12) and the

strgcture.is obtained by lemma (2.5).

Similarly, if k >n , an admissible partition of

T is given by: tr(l, 2)A = a eewy tr(l, n)A = a

n-1
. tr(r, s) ak 1 and tr(PA) a for all other 2-cycles in T .

1’ , tr(2; 3)A = a_ s

In,;hls case A has the form:

0Ll-'-(gn—r ...an 1 Gn—r

To conclude this chapter, we consider the set of
_an. matrices {A : En_l(PA) = En_l(A). for all P ¢ Sn} , where
' En;i(A) denotes the (n-1)st elementary symmetric function of A

" We claim that for such matrices En_l(A) =0 .

By Remark (1.28), for a P exsn R
r A o :
(B) = c L 8;Cp-1(By) » where P, e M and,

~‘I.' W 'qk IR R ", Lo
I B, + 1 , 'therefore,
. i
‘1=1 , .
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.
Cam1 P2y (B) = o 8;Ca-1®12Com

Kol

By taking the trace of both the sides, we get

§
2.16 tr(c__,(PA)) = tr(C _,(®)C _,(A)) = iil Byer(Cc _ (PC _(A))

::By opr”éssqmptlon ;hgt ;;n_l(PA) = En_i(A)va.; sn”

and the fact that trC (A) = E
- ‘n—l n

_1(A) , we have

er(c_ (®)C_ () = tr(C__ (&) = A , say.

- Subs;itutingH_k;fin (2,16);'we get

A=z B, ,which implies A= 0 ,

E_,(8) = tx(C__;(A) =0
" Thus we Have

2.17 Theorem: A necessary condition that the nxn (n>3) matrix A  have

the property, En—l(PA) = E

n_l(A) fo? all P e Sn , is that En—l(A) =0

NOTE: The corresponding theorem for an ‘nxn matrix A ;-
namely that tr(BAj = tr(A) for all P e Sn implies tr(A) =0 1is

not true. For, in this case corollary (1.14) asserts that if
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. r r .
PesS , then P= & a.P, , where P, ¢ M and L o, =1
o n . ii i I §
i=1 S i=1
This fact saves tr(A) from becoming zero.
Hg.ls Notation: Write Cn_l(A)4= B and Cn—l(P)‘= Pc .-

In order to gain further insight into matrices with

(A) for all P ¢ Sn , we establish:

the property En-l(PA) = Eh—l

””f2x1§“1heérem:‘For“an an;.(nzﬁ)”zmgtri§‘fAﬁ5s§;isfyiqg En_l(PA) =

PR

{:fgh_l(AQ ‘fqr-a;l PesS ,detA=0

¢

Proof: By Theorem (2.17), En_l(PA) = tr(Cn_l(PA)).=

Atr(Cn_lgP)Cn_l(A)) %,tr(P B) implies tr(P°B) = 0 for all P ¢ Sn

, In fact, tr(QB) = 0 for all linear combinations Q of such P”'s

Since det B = det C__ (A) = (det I

(12]; pp. 17), it is sufficient to establish that det B =0 .

Now B = (bij) is an nxn matrix; let

o | | \
[bito,  byytbyg byg -0 Ppy
by17P9s Paa*Pay . Pag - - By
Bo ™ 1 PP Pka™r3 Py v o P
\ bn1+bn2 : ‘bn2+bn3 ) bn3 ot bnn

“~
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“ Ihgﬁi dét‘B det B . We clalm that the flrst two columns of B ‘ are -

vhyuof.the form {a ,”:ﬂdr ( 1) 'f“}Tﬁ, 1 2 for certaln real

.ngmbersu al, Gy 'In the following,”we shall want to derive conclusions
- from the fact that tr(QB) = 0 for any linear combination .Qv of P”'s
‘ n ’
and the fact that E _.(A) = © b.. =0 . We shall simply say
. . n~1 jo1 i
" Q gives' ....... ", where the dots indicate the simplified form of the
v( ' ' n ' -
equation tr(QB) = 0 obtained by using I bii = 0 . Thus, for example;
N Co ’ n n .
for P*.= (1, 2)_, tr(P"B) = b12 + bZl - I -bii =0 . Using .E bii =
1+1,2 i=]1
+ o+
. n : = .
we fléd that (1, 2)_ gives b12 +‘b21 (b + b22) ; and
b11 + b12 = - (b2l + ?22) In the same way (r, s)._ gives
b +b =+ (b + b )' , Where the +ve sign is used if rt+ts is
ST rs — ' rr ss’ - . .
even and the -ve sign is used otherwise.
If we let bll + b12 = a; then b21 + b22 = -0

l H
which sayé that the first two elements of the first column of Bo are

a, -and - o, , respectively. By judicidusly picking sums of P"s",

1 1

we can show that the remalnlng elements in the first column of B

+ + + %+
-are also iAal with correct signs. For example, Ql = (1, 2, 3, 4)_
+ - - : v
.f a, 3, 4)+ givesu b31 + b32 = - (b21 + b22) =0 sinqe
(01000 ... 0} (0 0100 ... o))
00100 ... 0/ [0 10 00 ... O
s ' 0001C0 0 0 00-10 .. 0
0= tr(QlB) = 10000 . 0l +1-100 00 . O(!B
| 0000 -1...-0 0 00 01 ... O
0000 0...-1] [0 00 00 1))
J \ -
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T Pyp TPy T By Py

L 4+ o+ o+ 4 - -
In general, for k even, (1, 2, k-1, k)_ + (1, k—l,'k)+ gives

| b_21 +-,b_k-—12 + bkk-l + blk + bk—ll - bkk—l + blk + b22 = 0 and

b = - (b.. +b..) = a

L L 21 T Pgp) = g

e - =+

If k is odd, then (1, 2, k-1, k)_+ (1, k-1, k)+

glvgsr bk—ll + bk—12 = (b21 + b22) = -0

These results give us all but the last element in the -
. first column of Bo 'f'-Now; we show that the n-th element of the first

. column is obtained as follows:

Ebr n odd, the matrix (1, 2, n-1, n)_ + (2, n-1, n)+

. gLves b21 - bn—lz + bnn—l - bln * bn—12 - bnn-—l ; b2n + bll =0

and hence - (b1n + bZn) + (bll + bZl) = 0 . This can be rewritten as:

(byy *byp) = by = by F b ) Hbyy = by +b o)+, +Dbyy =0
Slﬁce: (?,,s)_ gives Prs + bSr = i(brr + bss) s
e get S " b.+b, =b,.+b, =q

nl n2 11 12 1

Similarly, when =n is even the matrix
+ + 4+ + - - 4+ ’

1, 2, n-1, n)_ + (2, n-1, n)+ gives b .+ b , = —>(b

a1l ¥ P2 11 TP = -op -

-° F . " S . X . + ~—. , + _ B !‘rv,"“+" _!,.1 - _ )



1 65

' Hence, the firsg'column of Bd is“ :

B ' {0‘1’ ul’ .oty ("'l)n Ol-l} .

“In order to get the second column of B » we observe

: + 4+ + + + - - | _
Fhat'the matrix (1, 2, 3, 4)_+ (1, 3, 4)+ gives b21 + b31 + b32 + b22 =0
. . _ - : +
This can be re wrltteg as (b12 + b21) b12 + (b3l + b13) b13 + (b32 b23)
- b23 + by, = 0 . By using the fact that b12 + b21.= - (bll + b22) s
b31 + b13,= bll +,b33 an@ _b32 + b23 = —-(b22 + b33) , we get
) b22 + b23 = - (bl2 + b13) . Set b12 + b13 = OI.2 ;
- + +
then b22 + b23 = - a, Also, (2, 3?_ gives
| b33 + b32 = - (b22 + b23) = a2 . Thus, the
first three elements of the second column of Bo are 0o,, = dz- and
O, ; respectively. The‘femaining eléments of this column are obtained

9

by examining the matrices: '{(2;'3, k-1, k)_+ (2, k-1, k) k=35, ..., n}

+,

and (2, 3, n—i, n)_ + (3, n—l,,n)+ . We omit the details. Henée,

\

we have

. | .
( _al’ % AR ?ln )

4T o P

oy Y ' b33 o« e b3n

B =
-0
n-1_ n-1
\(fl) A (-1) oy bn3 .« . . ) bnn
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and det B_ =0 = det B . ‘Therefore, det A =0 . QED.

2.20 Remark. Lét‘ matrix B” be obtained from the matrix B =
Cﬁ_i(A) ='(bij)’ i, =1, .., n by“replacing the first n-1 columns
' byl‘(bij + bi,j+l)’ i=1, ...,n ;3i=1, ..., n-1 and by keeping
the last column as it is. We claim that the first n-1 columns of B~

are of the form '{ar, =0 sees (—l)n—lai}T, r=1, ..., n~1 .

In the preceding theorem, we have seen that it is

‘true for the first two columns of B” . We assert that it is true

for any k—-th columm of B~

Suppose, the k-th element of this column is

s S S S

(—1)§—lak . In this column, the matrices { (k l, k+1 2, k+r 3,'k+r+1'4)_
s -s -s t t t t
+ (k 5, k+r 3, ktrtl 4)+, r=2, ..., n-k=1 and (k l, k+1 2, n 3--1, n 4)__
S —t2 -t3 t5
+ (ktl , 0 T=1y D _}+} give the last n-k-1 elements, the matrix

L+
(k+, k +1)_ gives the (k+l)st element, the matrix

+ -+ + .- -
-1, k7, K41, KH2)_+ @1, kT, ¥427), gives the (k-1)st
element and the first k-2 elements are given by {(r, k-1, k)+
+ (f, k) , r =1, «.uy k-2} . Thus, without the details, we infer that

Athe k-th column is of the form {a,, -

-1 : ,
o s ees (DY e}, kenslo

‘Q\If A is an mxn matrix with p(A) =k , then



o(c, ) = (9 ((2]; pp. 28). Clearly, for k<1 , p(C.(A) =0 ,

i.e. every entry of Cr(A) is zero.

In the presep?’pase,.when_ir_= n-1 , p(3)f%:(#il):,y¥
J'Siﬁcé.téét AA= d‘:, theref;fe 'p(A) “n . 'Buf fof p(A>"<'n;1;u,.ﬁe: 
" have the trivial case in which p(B) = 0 " In this case B = 0 and
it ls trivially true that for any A (of rank < n-1 ) tr(Cn_l(A)) =

t:(cnfl(PA)) for»all Pe Sn

We consider now the structure of B and A when

p(A) = m~1 and p(B) is (consequently) 1.

Assume that B has the form:

[ : N
al aZ an
k121 kq3y 1%
.
B = '
k-121 k-122 a
-\ . : n-1"n,

If we éxamine'the first n-1 columns of B in

the light of Remark (2.20), we find that

1)

2.21 (ar +'a:+l}(l'+ kl) =”(ar f §r+1)(l __FZ? ?‘T.. = (ar + a’

1+ (—l)n_lkn_l) =0 for r=1, ...,Anfl e
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- . We now consider the form of 'B in the tWoiCaéeSQ;",  'q
. . ¢ . . . ’ L ",,'”.'t . a

qrt1
a, + a4 = 0 forall re {1, ..., n~-1} .

"?“wWhiéhiariSe’when'“ar:+
L] .

Case (i) a ta ., +0 for r=k .
From (2.21), we have kr = (—1)r and the matrix

B . becomes

-a; C-a, e e e -a

2.22 B =

T T

Case (ii) | a_ta ., =0 forall r e'fl, .ee, n-1} .

In this case the matrix hB- takes the form

2.23 B = . . .

n-1%1. n-1°1 n-1%1 0 K P Ty

$ 0 for some r & {1, .., n=1}""and whem T
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Note fhat as fér as form is éoncerned, (2.23) is
'essen;iaily theftranspose of (2.22). This implies that the structure
,dfla.ﬁatrix A whose compound ié‘a matrix of the form (2.23) is the
Ltfanépose éf a matrix whose compound has the form (2.22). It ié'thgrefA-

fiiffore'suffiéient‘to.determine the form of A" when B 1is giyen by (2.22).‘

If U,4i=1, ..., n are the rows of A‘ ,fthéh”§y g :;‘ﬂ

. o

“'definition (I,7)

. _ n-i Ea) ‘
2.24 Up ~ Uy ~eee ~ U= (D70 -l U SRRTICR

~

where Ui implies the absence of Ui in the Grassmann product.

Now A is of rank n-1. Let us suppose that the

row vectors 'Ul’ cees Un;l are independent, and

2. = B .
23 Uﬁ lel + + Bn—lun—l

Taking the left Grassmann product of (2.25) with -

‘-'Ul Aeen n Ui A e Ath s wgvget
| - A.v ] -'!\l ...’;" .Ai-"’-:.;v.‘ ~ =B '-'Av-'l.'l‘.b.‘ AvA PO :A U .'\v.
':-Ul \ U2 no ,Ui e Un, iU1 .»'vUi .. 'Un -Ui
n—i;l- to -
= (- B Aees
= ( ;) . ;U U

Using (2.24), we obtain:

-
TN

~ ~

e v, which implies

that . 'si ‘-1 for all i e {1, ..., n-1}



70

n-1
Thus , : U =~ % U, , and
. : n 1
: ‘ i=1
. f
Ul
U2
2.26' . A= .
: Un—l
n-1
- I Ui
\ i=l : )

Note that we are led to this form, no matter which

rows of A we assume to be linearly independent.

Similarly, the form of A , when B is given by

(2.23), is the transpose of (2.26).
We summarize these results in
2.27 Theorem: If A is rank n-1 n-square matrix with the
proper?y that En_l(PA) = En_l(A) for all‘ P e Sn (n>3) , then A is of

the form (2.26) or its transpose.

However, for an n-square matrix A of rank less

thagx n-1 , En—l(PA) = En_l(A) for all P ¢ Sn is trivially true.
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CHAPTER IIIL

ORTHOGONAL MATRICES AS
LINEAR COMBINATIONS OF
PERMUTATION MATRICES.

3.2 o It is an interesting fact that some orthogonal

matrices, such as any permutation matrix, or can be

\

Wl win win
b
WM L wite
wlro Wi Wi

expressed as linear combinations of permutation matrices; while others,

such as cannot. In this Chapter we shall take a look at

O Q
OO
o+ O

orthogonal matrices of the former type. Our main result will be to

show that, if the orthogonal matrix © " can be written as a sum

k . k ¢
z aiPi , then z a, = +1 .
i=1 i=1

In view of theorem (1.8) such linear combinations
can always be expressed in terms of the members of TUCUI. It turns
~out to be convenient to treat this question under threg possibilities
| whiéh can arise. First, we examine those‘orthogonal matrices which

can be expressed as linear combinations of the elements of TU I
Obviously such matrices are always symmetric. Parenthatically, we

note that not every symmetric orthogonal matrix can be expressed as

‘
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. o . ' 1 0
a linear combination of T U I , as the example (O _1) shows.
Secondly, we consider those orthogonal matrices which can be expressed
as linear combinations of permutation matrices from the set C .
Finally, we look at those orthogonal matrices which lie outside the two.

previous categories and require permutations from both C and TU I

in their representation.

Suppose the orthogonal matrix 6 1is a linear combi-
nation of elements of TU I . Let all (r, s) ¢ T be arranged in
lexicographic order (<) and let the coefficient of (r, s) be denoted

by «a . In any product o

rs ,» as a matter of convenience it

rs%tu
will be taken for granted that (r, s) < (t, u) . Furthermore, we denote
n~-1 n

. ) o by Za , the sum of the products of all « taken two
1 g=p+1 TS rs rs

t~i

¥

' : 2
at a time by I o_ o ,» and the sum of the squares of « by I a .
, » rs tu : rs rs

‘Let I = z o be the sum of all a's which are the coefficients

rs

fixed, let I =

of those permutations (r, s) which keep r
. \ rl)sl

1

z o s = sum of all o's which are the coefficients of those

f,s%fl,sl

(r,vs) which leave r, and s, unaltered, let o be the set of
e _ 1

. a's in the summation 'L, and let I a

o “be the sum of the
rs tu
1 . : .

1

products of all aré in o taken two at a time.
. ‘ 1 -
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. n-1 n
3.3  Theorem: If 8= 1 r o (r, s) , where the o are
: rs . rs
- r=1 s=r+l
» n-1 n.
real, i1s an orthogonal matrix, then I z o = Zo =41 .
‘ rs rs —
r=1 s=r+l
Proof: ' We note first that, in the special case in which
arls =0, s =1, , . 3 s +fr1 , for a figeé Ty eA{l,;...i n}
( ]
0
0
‘ * ;,j*‘.-' e
¢ . ' ) :
6 = 0 0 Ta "0{...r ~th
rs 1
* : %
A '.
0
"r.-th
\ 1 )
From this it is evident that Zars =+1 .

For the general case, there are technically two
approaches that we could take. Since © 1is symmetric and orthogonal,
02 -I=(Ca (r, )@ o (r,s)) . We could
. rs "’ rs T’ : ]
consider both sides_of this‘equatidh as repréSentations of I. as
linear. combinations of elements of M (Theorem 1.8), and equate

" coefficients. We prefer, however, a second approach which just uses




the fact that.the row'vectors'of 6 form an orthonormal set of vectors.

Written out,

{
t

‘(Z

6 has the form

1 %12 %13 :
@9 Iy G .
G135 O3 I3 -
6 = :
*1n-1 %2n-1 %*3n-1. -
Luln a2n 0L3n
Using the fact that each

norm 1 , we obtain the

X

z

z
It follows that: kl =
. oy
contains (2 )} terms

=k

n equatioms:

o 2 + 2k, = 1 , where
rs 1

= ,

a_  + 2k, =1 , where

rs 2

e

o + 2k = 1 , where
rs n .
2.= cee = kn =k , s

- n—-1
R wherev m, = ( 5 )

%1n-1

In
o‘2n-—l 0L2n
0L3n—l, 0‘3n
Zn--l OLn—ln
0Ln-—ln Zn ]

row of the matrix 6 1is of

k1 - i 0trsOLtu
1

k2 - i 0Lrsutu
1

k =X a o

n . s tu
o]
n

ay. Clearly, each ki

Also,



"3.4

o
Here. [ur’

n .

-E ki =nk = I arsatu » X rsatu , and

i=1 G - o

1 n
nk = (n-3)I G O R , where
. ’ + + e -
R oLlZ[Zl,Z] 0‘1’,3[): ,s] * + n—ln[Zn—l,n
S] denotes the sum of those ukp £ 0 such that (k, p) > (r,'s) .
. 5

Now, using the fact that the inner product of any

two rows of 0 is zero, we get the following (;) equations:

A

3.5

A

019 (Zy 5 F Ta T agp) Faggtygt e tag 10, 0t 9%, T
013(8y, 3 F Bapg 7 ogg) Foagptyg e oy q83,0 F 090,
oLri—-ln(}: trog o )+ %n-1%n * T + %1-1n-2%n=2 ~

n-1,n rs ‘n-1n

Eaéh_équatiqn-in this set has n{(n-2) terms. Adding these equations,a

Lowe get. ..

we obtain

3.6

¢

312

oo
rs tu

nk

n . which implies
Lars%ey ch implie

< k = Za_
~ OLrSOLtu

+ R=0 . Adding this equation to (3.4),

75

=.0
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&0 ' : ,
. S e ‘Since g 2 +2k. =1 and k, = k , therefore
_ o B | rs i i T
(za_ )2 =1 | CQED.
rs . PR o .r!,
. ‘. .“\» . : ,’_.Iv . , A s, n—l n ) » . o ,=V‘~,‘ .\‘-. v ,, » B
s aveir 307 Theorems: . S If g = % 2 o (r, s) + AL is-an.orthogonal « .. -
: v 2eh rheorems .o o - I .0 . AL an, orthogonal.. v v
. ' r=1 s=r+l _
~ matrix, then Lo +2=+1 .
: rs - =
Proof: ’ The argumentiis,similar to the one in Theorem (3.3).

In this case equation (3.4) becomes

nk = (n~3)Za a = R+ (n-3)AIa + Ala , and
A “Trs , rs - rs

tu

'the‘set of equations (3.5) when added, gives

R+ 3Za_ o, .+ 3 Aa = AZo. =0
: rs tu : rs - rs

Adding these two equations, we obtain

nAlo_ + nZa_ o, =mnk . Using this in
S rs . T Trs tu S . v
o 2 + AZ + 2k =1 , we get
rs ‘ :
Lo +2A=+1 .
rs -

Q.E.D.

" The following example shows that there exist .
’ U L T .
orthogonal matricés 6 of the form I I o_ (r, s) + Al , in
S r=1 s=r+l '

~

which none of the g is -zero.



For the matrix

2 2 2 2 2 =(0=2))
n n “n 7 n n n
2 2 2 2 -@2) 2
‘n ‘n n "7 n n n
x 2 2 2 -@2) 2 2
' n n n °°° n n n
3.8 8 = . . . | . .
2 2 -@2 2 2 2
n n n """ n n n
2 ) 2 2 2 2
n n n " . n n n

-L_H‘Z) g —2‘ cee "2‘ 'g' g + 1t is
( n n n n n n

. . : 3_ . R '_ X
. easy to show that when n is odd, then A = —EB- ; and when n is even,

x=,%i‘~ . In both cases, So__ + A=1 .
. _ s T

.More generally we have
3.9 Theorem: - Given a subset {(r, s)} of 2-cycles for which
the combined graph is strongly connected and complete, there exists an

‘orthogonal matrix 6 = L I ars(r, s) + AT such that every g + 0o .
T s . :

Proof: The fact that {(r, s)} form a strongly connected
- complete subgroup implies that {(r, s)} is the whole set of 2-cycles
.in Sk for some ~k <n . The pfeceding example then gives appropriate

nonzero values of a . -

77
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Now we consider those orthogonal matrices which can .
be expressed as linear combinations of permutation matrices from the

set C = {(r, 1, t); r =1, veu, N=2; t = TH2, «u., n} .

Suppose -the orthogonai matrix 6 d1is a linear combina-

tion of elements of C . Let Brt be the coefficient of “(xr, r+l, t)

T

and let br = Brr+2 + 8fr+3 .o+ Brﬁ .
. . n-2 n -
3.10 Theorem: If 6= = z Brt(r, r+l, t), b_ > 0 for all
| r=1 t=r+2 *
r , is an orthogonal matrix, then all but one of the Brt are zero.
._Prbof: ‘ ‘ ' The matrix:'é "has the form
[ T b, . 0 0 .. 0
0 £ b Boatb, B ... B
r+l,2 r 13 72 14 In
B13 0 —813+ P br 824+b3 . e an
o = . 42,3 :
. . y . .
n-2 n-2
B1n Bon Ban Ban  + -+ LB LBy

k G r=1 " i=1




We shall obtain our result by using induction on
'n of--Snb»,(ZSince, e is an orthogonal matrix, the inner produqts'df-

the first row with every other row of 0 .are zero, we get

311 | b. I b =0

Lfiot
- v3‘.12,},~ - = B: $b =20
G T T
b
, | f ‘ 14r+lr
3.13 ' . PR
| B £b_+B8,b, =0
In r+1r 2n1

By (3.11) and (3.12),

either b1 =0 or z br = 0 and
: r$1,2
either B8,,=0 or I b_=0 . Thus we have the following
13 r - .
r+1 . :
three cases: '
(i) bl =0
(ii) i"br =0 and I b =0
r$l,2. , rfl =~
(111)'. T br = 0 and 813 = 0_ .
. 1,2 - .

Let us examine these cases.



“Case (i)

A

gonal,.'B13

16"

80

b = )

r+l r
, and - ©

This implies that 1 since is an ortho-

In 0

. =8B reduces to the form where

induction is applicable to its (n-1) x (n=1) principal submatrix.

we can show that 6

by showing that a

t
514 - B B1n =0
f35 = v T B3 70

of the matrix

Case‘(ii) g b =0 and I b =20
K . r+l,2r . r+lr
Let 6 = (aij) ; br = 0 dimplies that bl =1
r+l
‘and; 824 = 825 = "o = an =0 It also implies that br = 0 for all
=2, ..., n=2 (br > 0) The fact that the third row of 6 has norm
i'bgiveé
2 2
B8, + (-, ,+ I B +b,=1 ,
13 137 4y a0t T3
and hence 8 2 4 (1-6. 0% = 1
» 13 13
Thpsv 313 =0 or 813 =1
If 813 = 1 , then ayg = 1—613 = ( In this case

reduces to a 3-cycle (1, 2, 3) . We achieve this

e = 1 for all t > 3 ‘Note that we now have

and ayq = 813 =1 Thls implies that
, and hence.the only nonzero entry in the fourth
6 is a5 This means that a = 1 Assume
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T

, thétv a "=Al for r.= b4y ..., tfl.g.."We shall show that a__.= 1 .

From the fbrﬁ of 8 it is pleaf'that éﬁr =0 for r +_t and r=1, ..., n";

for . arf =1, r =.4, seey t=1 . Thus att' is the only nonzero entry in-

the t-th row of the matrix 6 and it is 1 . Hence, in this case

o = (1, 2, 3) .

Consider the case when 813 = 0 . This implies

az_3 =0 and_a33 =1 . Since the fburth'row of 0 is of norm 1 ,

we get’

B,,(1-8,,) = o . Therefore,

- 14 14

814 =0 or 614 = 1 . Suppose that

Bl,e-1 = Bpgip = ++- = By3=0 and B TOta, .

It is clear that . a =1 for t<r . Since

t-1t-1 =1,

r-1r-1

=a_ .. =0 . Consider the elements

therefore;' a = .
: r—-1ln

r=1r+1 - Zr-1r+2

of the r-th row of 6 3 Bfr + 0 and a 1= T2, F o . Also,

.q e

a1 = A gy = 0, viay 2., % a1 = O . Thus the r-th row has

. only two nonzero elements; viz, ariv and a. - This implies that

Blr(l—Blr) =0 , since the norm of r~-th row is 1 . Tbus Blr =1
since Blr + 0 for a,. # 0 . The fact that a ., T 1 for t >‘r follows
from_an argument similar to that used when 813 =1 , Hence, in this

 'instance, the matrix © reduces to the cycle (1, 2, r) .

Lo



 Case (iii)

that by

1 and this case reduces to case (ii).

>'3.14 Theorem:

T b =0 and B =0
r$l,2 t 13

Adding the equations in (3.12) and (3.13), we obtain

b. b +b.b

=0 and
1 i1 T 172 ,
b, (Zb_+b,) =0
1 r=f=l r 2
Suppose b, = 0 . This case reduces to case (i).

1

I1f, however, Ib +b,=0 , then
T 2
A r+l

I b_+2b,=0 . Since 5 br‘=
r$1,2 ' r$1,2

therefore 9 : r
: r+l

'Wé”cdnclude thiS‘Ehapter With 'f “

\

n-1 n n-2 n
If 6= 1 X o s(r, s) + I T

B
r=1 s=r+l;~r r=1 k=r+2 rk

+ AI, where the a's, B's and X are real, is an:orthbgonal matrix,

then

.Proof:

Zo

rs

+ IB

rk

+A=+1 .

'The matrix 6 is of the form:.

b,=0 and Ib_=0 . This implies

o Q.E{D;',

82

0

(r, rtl, k)
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[ ' ’ . '
z br+2i+A a12+bl e ali "'aln
r#l :
%9 LoD, wee 0y By, % 10
r+l,2
| | i-2
= + . - ...
6 = oy ¥Byy TRl I DAL =L B Aoy TBin
, ) r+1,1-1 r=1
v ) n-2
Lécln+61n 0L2n+82n cee OLin+Bin .. .Zn+>\+):br—r£18m

In addition to the notation in theorem (3.3), we let

_di denote the set of B's occurring in the expression for the element

in the {i, 4} position of 8 , let d; denote the set of B's
,éﬂ-qccurring in the non-diagonal elements of the i-th 'column of 8 ,
m .
‘and let IB_ B denote the sum of those products R B8 for which
T rs tu - rs tu ‘

A, r+1;'é} and A{t,'t%l, u} ‘have m (m%B) integers in common
.om : ' " ' :
Za'rthu_ is defined in the same way. As usual, the sum of B's and the.

“

\ . v ‘
gre denoted by iBrs- and iersstu , respectlvely.

Now by using the fact that each row of the matrix
is of norm 1 , we obtain n equations
2 2 2

3.15‘: AT+ qus +:Z§pq1f-2ki =1, 1i=1, ..f’ n , where

- sum of the products of  B's , taken two at a time, in any set S < ... o e
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3716 ki=~>‘(zi+28)+zara'+(288 + z B B ) +

a, P g TSTE g PATS gy yyq) TSEU
1 L 1
‘ | i-2 : A
L
i i)(s fpg’ T rflarieri.+ %541 Py * By1340)7

1

. By (3;15), it follows that 'kl = ,,. = kn = k , say,

3.17 and Conk= T ok

We now proceed to simplify the RHS of (3.17).

By theorem (3.7) we can replace

I AL - .
. EALL by (n Z)Azars ; by theorem (3.3), we can replace -Z T @ O

i=1 ‘ . : i=1l o,

: , . RS W _
_ . : . 1 o a N | ¥
by (n-3) Za_ e - R . We shall now show that Z (Z.B_ B + I B :B_)
| rs tu ' i=1 d; P4 T® ' {4,i+1} PL*S
2 1. o

, -3)z -5)1 - 1

can be replaced by gn 3) Brsstu + (n-5) Srthu + (n 6)28r38tu Let

{r, r+1, s} and {t, t+1, u} have two integers in common. This implies
" that Brs and Btu are fogether; as a sum, in (n-4) .diagonal and one

- ? 4 :

ndn—diagonal positions; the non-diagonal position corresponds to the

pair of integers common to {r, r+l, é}, and {t, t+l, u} . Thus the

term 'Brsstu will occur in the ki's for (n-3) times. Similarly,

the term B B8 is repeated (n-5) or (n-6) times in k.'s when

rs tu i

{r, r+1, s} , {t, t+1, u} have one or no integer in common, respectively.

, i=2 .
Finally, we show that Z {(z. )(Z B )+ & a_.B . +
| ‘ i=1 d, P4 k=1 THTL
. : 2 . 1
(b + B, )} can be replaced by (n-2)Ia "+ (n-4)Ia_ B

i+1 i-1i+1 ‘ . rs tu rs tu
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(n—S)Za B: ". ‘Let {r, s} and {t, t+1 u} have two. 1ntegers in '
S t .

7‘commqp. Thls 1mp11es that hrsffand“-séu are’ together, ‘as a;sum,.ln

. (neS)} diagonal and one non—diagonallpositions; the non-diagonal position
corresponas to the pair of integers common to {r, s}, {t, t+l, u} .
Therefpre, in the vki‘s , the term &¥sstu occurs (n-2) times. The

"~ arguments for the cases when Ar, é},4{t,At+l, ﬁ} have one-or no integer

in common, are similar to the preceding one.

Thus, the equation (3.17)'takes the form

n - 2
3.18 nk = (njz)xzars,+ ‘ iil (zi qu + (@-3)Ia o - R+ (n—j)zsrsstu
. . 1 :
1 o 2 1 ' o
(n—S)ZBrSBtu + (n—G)ZBrSBtu + (n—Z)ZarSBtu + (n-&)ZarS u + (n—S)EarS tu

- Now, by using the fact tﬁat'the inner product of any
two rows of 6 is ééro, we obtain (;) equations. The sum of these
equations is put in a simplified éorm by using the fact that the sum
of a's o; B's 1in each row (column) is the same and by using the
infbrmation given Byithe equivalence of equations (3.17) and (3.18).

' This simplified form is

L . : n , 2 ; 1 o
'3, = 2) + + +
3.19 0 42A2ars _Ail_i qu ?qusqtu + R + 328rsstu S?Brsst | 6ZBrSBtu
2 1 o _ - ' o '”:,
+:Z,zotrsetu 420Lrthu + ?zarsstu

 Adding (3.18) and (3.19), we get



nk =

"Hence

3.20 Corollary:

*(theorem (1.8)), then

If

, .
n(A(Za, + 28 ) + To o+ I8 B+ Ia

s. tu rs t

Using this in (3.15), we get

, ‘ 2'_
(Za__ +128 + 0" =1

Ta_ + I8 +A=+1

86

L.

Q.E.D. -

rs rs
r . : ]
P= I a,P., , where P € S and P, & TUCUL
. id n i
T i=1 :
La, =1 .
4 1

i=1
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