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ABSTRACT 

Let S^ denote the set of n x n permutation matrices"; 

l e t T denote the set of transpositions i n S ; l e t C denote the set 
n 

of 3-cycles {(r, r+1, t) ; r ta 1, n-2; t = r+2, n} and l e t 

I denote the id e n t i t y matrix i n . We s h a l l denote the n - l s t 

elementary symmetric function of the eigenvalues of A by E^_^(A) 

In this thesis, we pose the following problems: 

1. Let H be a subset of and a^, a^ 

be k - d i s t i n c t r e a l numbers. Determine the set of n-square matrices 

A such that {tr(PA):P e H} = {a^, ..., a^} . We examine the cases 

when •'' \ 

(i ) H = S . k = 1 / n 

( i i ) H = {2-cycles i n Sn> , k = 1 

( i i i ) H = S , k = 2 . 
" n 

2. Determine the set of n x. n matrices such that 
\ . : . • 

E ' (PA) - E .(A) for a l l P e S . n—1 n—I n 

3. Examine those orthogonal matrices which can be 



i i i . 

expressed as l i n e a r combinations of permutation matrices. 

The main results are as follows: 

I f R-* i s the subspace of rank 1 matrices with a l l 

rows equal and i f C i s the subspace of rank 1 matrices with a l l 

columns equal, then the n x n matrices A such that tr(PA) = tr(A) 

for a i l P. E S n form a subspace S = R' + C* . .This implies- that the.' 

rank of A i s < 2 . 

If tr(PA) = tr(A) f o r a l l P e T , then such A's 

form a subspace which contains a l l n x n skew-symmetric matrices and 

i s of dimension n ( ^ p ) • 

Let A be an n-square matrix such that (tr(PA) : 

P e S n} = {a^, a.^} , where a^ =f a
2 * Then A i s either of the form 

C = A^ + A^ » where A^ e (R1* +. C ) ' and A^ has entries a^ - a^ 
T 

at ( r . , r ^ ) , j = 2 , k \and zeros elsewhere, or of the form C 

The set B = {P e ,S : tr(PA) = a.. } consists of 1 n 1 

a l l 2-cycles ( r ^ , r j ) > j = 2, ..., k and the products P of d i s j o i n t 

cycles P., P„, P. , m>l , for which one of the P. has i t s graph I Z. . m — i 
with an edge + r^ (or r^ -> r^ ) for j = 2, k . 

I f A i s rank n-1 n-square matrix with the property 

that E ..(PA) - E .(A) for a l l P e S , then A i s of the form n—1 n -1 n 



vectors. 

i v . 

U„ 

n-1 
n-1 
Z U 

i - l 
, where are the row 

F i n a l l y , . i f 6 = Z OL^ ' , where a l l P., are from 
i = l 

an independent set TUCUI of S , i s an orthogonal matrix, then 
r 
E a. = + 1 . 

i = l 1 " 
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INTRODUCTION 

Let S n denote the set of nxn permutation matrices; 

l e t T denote the set of a l l transpositions of ; l e t C denote 

the set of 3-cycles {(r, r+1, t ) ; r = 1, ..., n-2; t = r+2, n} 

and,let I be the i d e n t i t y matrix of S .". 

One of the primary aims of this thesis i s to characterise 

the following sets of nxn matrices: 

(1) {A : tr(PA) = tr(A) for a l l P e H} where 

H = S or H = T . n 

(2) .{A : tr(PA) e {a , a_ a } for a l l P e S ; 

where a^, a^t •••» a^ are d i s t i n c t and reals} (we are only p a r t i a l l y 

successful when k > 2) . 

(3) {A : E (PA) = E , (A) for a l l P e S } n-1 n-1 n 

We also consider the following problem: 

(4) What l i n e a r combinations of independent permutation 

matrices give orthogonal matrices? In p a r t i c u l a r , what l i n e a r combinations 

of independent permutation matrices give symmetric orthogonal matrices? 

Problem (4) i s included to give an application of the results obtained i n 

Chapter I to the solution of certain matrix theory problems., 
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Problems (1), (2) and (4), l i s t e d above demand the 

construction of a suitable l i n e a r l y independent set i n . Problem (3) 

requires a si m i l a r construction using members of the set 

{C ,.(P)' : P e S } , where C .. i s the (n-1)-compound. These n—1 n n—1 

constructions of l i n e a r l y independent sets form the substance of Chapter I. 

In Chapter I, we show f i r s t that T U C U I i s an 

independent set i n , and i n fact generates the whole of the set S n 

(Thm. 1.8). Furthermore, i f the matrix P of S i s a li n e a r 
n 

r r 
combination £ a i P i ! \ £ T u c u 1 > t h e n I a- = 1 (Cor. 1.9). In 

i = l i = l 
the l a s t section of this chapter, the set ^ n - l ^ 1 P e n̂"̂  "*"S 

characterised and an independent set which generates {C n ]_0?) : P e 

i s constructed (Thm. 1.22). Some information on the coe f f i c i e n t s of l i n e a r 

combinations of the generators of ^ n - i ^ : ^ e ^ s O D t a i - n e c l 
(Remark 1.28). The chapter concludes with an observation on the set 

{C (P) : P e S } where r + 1 . (Note 1.29). r n 

In Chapter I I , we determine the structure of matrices A 

such that tr(PA) = tr(A) for a l l P e S (Thm. 2.1). An immediate 
n 

corollary of this structure theorem i s that rank(A) <^ 2 . Theorem 

(2.15), which actually generalises theorem (2.1), gives complete information 

about those matrices A such that tr(PA) e {a.,, a„} for a l l P e S 
1 2 n 

and where . a^ ̂  a2 are r e a l . Some p a r t i a l information about those 
'matrices -A for 1 which ' tir (PA) e {a,, a'} " for a l l "••"'P'̂'e" S ••','' "" 

I k n 
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where a_̂  ̂ . â . and a^ are reals for i , j = 1, k i s given 

(Remark on Theorem (2.15)). Theorem (2.17) gives a necessary condition on 

A such that E , (PA) = E ..(A) for a l l P e S , and Theorem (2.27) n—1 n - 1 n 

characterises such A's completely. 

F i n a l l y , Chapter I I I deals with those orthogonal matrices 

which can be expressed as li n e a r combinations of permutation matrices. 

Three types of such l i n e a r combinations are considered. 

F i r s t , we consider those orthogonal matrices which can 

be expressed as li n e a r combinations of the elements of T U I . A 

necessary condition that such a li n e a r combination be an orthogonal matrix 

i s that the sum of the coeff i c i e n t s i n the l i n e a r combination be + ]. 

(Theorem (3.3) and Theorem (3.7)). Theorem (3.9) states that given a 

subset {(r, s)} of 2-cycles for which the combined graph i s strongly 

connected and complete (as an - undirected graph), there exists an orthogonal 
\ • 

matrix . 9 £a- (r, s) + XI such that every a V 0 . 
r s 

Secondly, we examine those orthogonal matrices which can 

•be expressed as line a r combinations of the elements i n C (Theorem (3.10)). 

Last l y , Theorem (3.14) gives a necessary condition for 

the l i n e a r combination to y i e l d on orthogonal matrix when the independent 

permutations are chosen from the whole set T U C U I . 
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CHAPTER I 

/ '.GENERATING SETS OF nxn PERMUTATION.MATRICES 

.. AND THEIR (n-1)-COMPOUNDS 

In order to f a c i l i t a t e computation i n this chapter, we 

s h a l l use a graphical representation of matrices. F i r s t , we need a few 

defin i t i o n s concerning graphs [1] and matrices [2]. 

1.1 <Definitions: 

Denote the cartesian product of two sets P and Q 

by PxQ . i f G C (V x V) x R , where V i s a non-empty set and 

R i s the set of rea l numbers, then G = {(v, w; a)} i s ca l l e d a. 

directed graph provided that for every pair (v, w) i n VxV , there i s 

only one a e R . The elements of V are called vertices of the graph 

G and a i s the weight on the edge j o i n i n g v to w . Graphically, 

.2 I f V i s a f i n i t e set, then G i s call e d a f i n i t e 

graph, otherwise i t i s call e d an i n f i n i t e graph. . We s h a l l consider f i n i t e 

graphs only. 

.3 I f a vertex v^ i n a directed graph G = {(v, w; a)} 

is. such that i n every t r i p l e (v, w, a) , a =0 whenever v = v.. or 
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. w = v^ except possibly for v = w = v^ , then the vertex v^ i s said 

to be an isolated vertex of G . 

.% By a graph of an n*n matrix ^ a i j ^ '' w e m e a n a 

directed graph {(v., v.; a..)} , where there are n vertices (v.) ; 
* X J 1 j 1 

i = 1, . .., n , and the weight on the edge j o i n i n g v^ to v_. i s a ^ 

i. e . v. ^ >-v 
a. 

i j 

e.g. the graph of. the i d e n t i t y matrix I 

consists of {(v., v., 6..)} , where 6.. = 0 for i # j and 

.6^ = 1 for i = j . This graph consists of single loops of the form 

v^) at a l l v , i = 1, ..., n and the weight on each loop i s 1 

Si m i l a r l y , a zero matrix corresponds to a zero graph i . e . 

a graph i n which the weight on each edge i s zero i . e . G = {(v, w; 0)} . 

.5 I f two directed graphs Ĝ  and are such that 

both have the same set of vertices (V) and i f Ĝ  = {(v, w; a^)} , 

= {(v, w, c^)} , then + G2 i s also a directed graph with i t s 

set. of .'vertices equal, to % V and i t i s given by. • { (v, ;'w;.;, a^-^' ô ).}- 'V 

.6 X l f G = {(v, w; a)} i s a directed graph, then for 

£ e R , gG = {(v, w; 3a)} i s also a directed graph for any r e a l 6 



.7 . F i n a l l y (cf. [2]), the r-th compound C^CA) of a n*n 

matrix A i s the ( n )*( " ) matrix whose entries are d(A[ct|B]) , 
r r 

a,B e Q arranged lexicographically i n a and 8 ; where i f 

1 <_ k <_ n , then ^ denotes the t o t a l i t y of s t r i c t l y increasing 

sequences of k-integefs chosen from 1, ..., n ; d [ a | 8 ] denotes the 

determinant of the submatrix of A lying, i n the rows indicated by 

integers i n a and the columns by g 

Also, i f A i s an rxn matrix and the r-rows of A 

are denoted by U^, D"r i n succession (1 <_ r <_ n) , then C^CA) 

i s an ( ̂  ) tuple and i s sometimes cal l e d the Grassmann Product or 

Skew-symmetric Product of the vectors U^, . The usual notation 

f o r ' t h i s i s A ... A . From the properties of determinants, i t 

follows, for a permutation cr i n S^ , that 

U / - » A . . . A U / v = sgn a U J . . . A U a(l) c(r) 6 1 r. 
/ 

Furthermore, i f B i s an nxn matrix, then 

C (B) L A ... A D = B U A ... A BU 
r 1 r 1 r 

We denote the set of nxn permutation matrices by S 
n 

In S n , we denote an m-cycle by ( r ^ r^) . We s h a l l use the 

terms permutation and.permutation matrix interchangeably. Accordingly, by 
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the graph of ( ri> •••» r
m^ w e m e a n t n e g r aph of the corresponding 

permutation matrix. Its vertices are the integers 1, n . I t 

should be noted that i n the graph of (r\> •••> r
m^ » there are 1-cycles 

cal l e d loops at a l l the vertices j > i r, , .. . , r . The following 
1 m 

w i l l ,give an independent set i n S which generates S as l i n e a r 
n n 

combinations over the reals. 

1.8 Theorem: 

If T i s the. set of a l l 2-cycles, I the i d e n t i t y 

matrix and C i s the set of 3-cycles {(r, r+1, k) ; r = 1, n-2 

and k = r+2, .... n} i n S , then the set T U C U I i s an 
n 

independent set i n , and i t generates the whole set as l i n e a r 

combinations over the reals. Furthermore, the c a r d i n a l i t y of T U C U I 

i s (n-1) 2 +1 . 

Proof: The number of elements i n T U C U I i s 

n(n-l) (n-1)(n-2) , 1. 2 . . . . . ' . . 
—2 1 — 2 + 1 = (n-1) + 1 . This i s the dimension of a maximal 

independent set i n (see [2]-; pp. 99-100) . Thus we need only show 

that the set T U C U I generates the set . 

F i r s t , we show that every 3-cycle i n i s generated 

by the set T U CV I . Let us consider a cycle ( r ^ , x^, r^) not 

belonging to C . 
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Case ( i ) 

that 

We write ( r ^ . r 2 , r^) as - ( r ^ r^+k, r 3 ) and claim 

1.9 ( r 1 5 r x+k, r 3 ) 

• k - i k - l 
= I + i - 1 , r ^ i , r 3 ) - ' ^ ( r ^ i , r 3 ) + £ ( r ^ i - l , r ^ 

i = l i = l i = l 
+k) 

k - l 
- I (r + i - l , r +i, r +k) 

i = l 

We show that the graph of the RHS i s equal to that of 

the LHS. In the RHS of (1.9) the graph of the f i r s t sum i s 
k-2-

u 
k - l 

In this graph, the weight on the single loops at the 

vertices r^ and r^+k i s k - l whereas the weight on each of the 

single loops at the remaining vertices between r ^ .and r^+k i s k-2 



arid the weight on the loop at i s zero. Clearly, each-of the 

isolated vertices ( r t ) carry a weight k . The weights on the edges 

are shown i n the graph. Now, subtracting from this the graph of the 

second sum i n the RHS of (1.9), we get 

Adding the graph of the t h i r d sum of the RHS of CI.9) to 

the above graph, we get 
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Since we have added . ( k - l ) 2-c y c l e s , t h e r e f o r e , the 

weight on s i n g l e loops at the v e r t i c e s r ^ , ..., r^+k-2 i s (k-2) and 

on the loops at the v e r t i c e s r^+k-1 and r ^ c a r r y weight ( k - l ) 

each. A l s o , on each of the i s o l a t e d v e r t i c e s , the weight oh these loops 

i s . ( k - l ) + 1 = k . 

S u b t r a c t i n g the graph of the l a s t sum i n the RHS of (1.9) 
e 

from the above graph, we get 

+k-l 

; i + 2 o 
r l + 1 

This i s also, the graph of the LHS (1.9) 

Case ( i i ) r l y r 2 r 3 

In t h i s case, we have 

1.10 (r x, r 2, r3) = Gt̂ , r2) + r3) + (r 2, r3) - (r 3 > r 2 > r±) - I 
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C l e a r l y , the graphs of the RHS and the LHS of (1.10) are 

i d e n t i c a l . Now the 3-cycle ( r ^ , r^t r^) i s given by (1.9). Hence, 

the RHS of (1.10) c o n s i s t s of members of the set T U C U I . 

From (1.9) and (1.10) i t f o l l o w s that every 3-cycle i n 

S can be w r i t t e n as a l i n e a r combination of the members of T U C U I n 

Now, consider any c y c l e a = ( r 1 ( ..., r ) we c l a i m 
l m 

m-2 m-3 
( rl' rm } = I ( r l > r i + l > r i + 2 ) " X ( rl» ^ ''' 

x=l " • ' '1=1 • 

In the RHS of (1.11), the graph of the f i r s t sum i s 

m-3 

From t h i s i t f o l l o w s immediately t h a t the graph of the 

RHS of (1.11) i s equal to the graph of the LHS of (1.11). Moreover, i n 

the RHS of (1.11) every 3-cycle, not belonging to the set T U C U I 
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can be expressed i n the form (1.9) or (1.10). Therefore, the RHS of (1.11) 

can be written as a lin e a r combination of the members of T U C U I . 

F i n a l l y , consider the case when a permutation i s the 

product of two or more d i s j o i n t cycles. Let ; i = 1,- . . . , m be 

the d i s j o i n t cycles and P = P.- ... P . We claim that 
1 m 

1.12 P. ... P = P. + ... + P - (m-l)I l m l m 

Clearly, the weight on the isolated vertices i s 1, i t 

therefore, follows that the graph of the RHS of (1.12) i s equal to the 

graph of LHS (1.12). Also, (1.9), (1.10) and (1.11) express the RHS of 

(1.12) i n terms of the members of the set T U C U 1 . 

Hence, the set I U CU I does generate the whole set 

S . 
n 

Q.E.D. 

1.13 Notation: ^ 

We designate the set T U C U I. by M 

1.14 Corollary:-

Every permutation matrix P e S^ can be. written as 

r % r 
P = T a.P. ; P. e M such that T a. = 1 . 

••15=1 1=1 
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Proof: I f P £ M , then there i s nothing to prove, therefore 

suppose P £ M •• I t i s either a cycle or a product of d i s j o i n t cycles. 

I f P i s a 3-cycle of the form (1.9), then from the 
r . 

RHS of (1.9) i t i s immediate that Y a. = 1 . If P i s a 3-cycle 
i - l 1 • ' 

of the form (1.10), then i t i s an easy consequence of the preceding 

i«. -statement that I a, - 1 
. ' i = l 

S i m i l a r l y , i f P = (r, , ..., r ) or P = P n ... P 
J 1 m 1 n 

r 
then from (1.11) and (1.12) respectively, i t follows that £ a. = 1 • 

i = l 1 

The entries of C (P) : P e S 'are either 0, 1 or 
r n 

-1 . In order to discuss such compounds, i t i s convenient to introduce 

the following notation: 
• \ 

1.15 Notation: 

We have i d e n t i f i e d [pp. 6 ] the cycle 

a = ( r 1 , ..., r ) with the permutation matrix P where P = 1 

1 x+1 
for i = 1, m , (r = r j : P., = 1 for 

m+1 1 kk 
k e {{1, n}\{r., r }} and P.. = 0 otherwise. We now • x 1 • m i j 

denote by T = , ' , s the matrix Q such that (r , r ) l m t 

Q = s i for i = 1, .. . , m ; Q, , = t l for 
r i ' i + l 1 * » * • . ' ' 
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k e {{1, .... n}\{r n, .... r }} and Q.. = 0 otherwise, where each 
1 m xj 

s^ and , t are either the symbol + or the symbol 

For example: a = (1, 3, 4) i s i d e n t i f i e d with 

while T = 

In fact 

0 0 1 0 
0 1 0 0 
0 0 0 1 
1 0 0 0 

i s the matrix" 

0 +1 0 ' 
0 -1 0 0 
0 0 0 -1 
-1 0 0 0 

J 

' • 3 + . 4 +) + i n the new 

1.16 Lemma: 
3 n - l ^ r ' s ) = (n~*- + 1» n -s+l)_. where n^3 and 

s^ = + i f r+s i s odd 

= - i f r+s i s even 

Proof: 

n-space R 

Suppose P i s the matrix of a linea r transformation o 

r e l a t i v e to the unitary basis U^, ..., U . Then 

C (P) i s the matrix of a li n e a r transformation of R r e l a t i v e to n — l 
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the basis U. A ... A U, ., A U.,, A ... A U ; i = n, n-1, 1 . Now 1 i - l i + l n 

i f P = ( r , s) , then 

C n(P)U n A ... AD.'. A U.., A ... A U n-1 1 i - l i + l n 

PU.. A ... A U. . A P U . A ... A PU 
1 i - l i + l n 

-D, A ... AD. . A U.,., A ... A U i f i $ r, s ± i — l i + l n 

since PIL A ... A PU. . A P U M 1 A ... 'A PD i s just 1 i - l i + l n 

D. A ••• A D. , A U.' A ••• A U with U .and U interchanged. 1 i - l i + l n r s 

This shows that the ( j , j ) element of is-' -1 , i f 

j ^ r, s . 

If i = r , then 

n-1 1 . , i - l . i + l n 
r+Q—1• 

, = '(-I)- U1 A U, A ... A U , A U A ... A U , 
1 2 s—1 s+1 n 

r+s—1 
therefore the (n-r+1, n-s+1) element of ^ n - l ^ 

r+s—1 
S i m i l a r l y , i f i = s , the (n-s+1, n-r+1) element i s (-1) 

Q.E.D. 

1.17 Lemma: 

-Let a = C^, r m ) ; ( r
m + l = r i ^ b e a n y c y c l e 

i n S I f the r.-th row and the r.,.,-th column are deleted from the n I i + l 
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matrix a , then the determinant of .the remaining (n-l)x(n-l) 
' r i + r i + l ' submatrix i s (-1) sgn a 

Proof: Write 

a = ( r . , r . + 1 ) ( r . , r. + 2> ... ( r . , r . ^ ) , then 

C n - l ( o ) = C n - l ( V r i + l ) < v ' C l ( r i ' " r i - l > 

(C (AB) = C ,(A)C ^(B) ; £2]) 

S S S ' s 
1.18 = (n-r.+l 1, n-r.^+1) ... (n-r.+l 2, n - r ^ + l ) 

1 ' i + l - l ' i-1 -

where s^, •'• •, s 2 are given by (1.16) 

The determinant of the submatrix of a obtained by 

removing the r_^-th row and the r ^ + ^ - t h column i s given by the entry i n 

position {n-r.+l, n-r.,.,+1} i n C , (cr) . From (1.18) 
1 i + l n-1 

S l S l ̂  
Cn_^(cr) = (n-r J - l , n-r^ +^+l) P , where the sole nonzero element i n the 

m+2 
( n - r i + j + l ) - t h row i s (-1) and this occurs on the diagonal of P . 

Thus the {n-r.+l, n-r.,.,+1} element of C ' (a) i s l i + l n-1 
r i + r i + l + 1 m+2 r i + r i + l (-1) (-1) = (-1) sgn a . Hence the lemma. 

From the above Lemma, we get 
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1.19 Corollary: 

S l ,,S2 „ V 
: n - l ( a ) = ( n _ r i + 1 ' n " r 2 + 1 » n" rm + 1 }sgn a 

where cr = ( r n , . . ., r ) . 
1 m 

From (1.18), the sign o f the diagonal elements i n 

C^ ^(a) i s (-1) ... (-1) , (m-1) times i . e . sgn a . Moreover, 

s, , .... s are determined by (1.17). 1 m 

Thus given .any permutation matrix, i t s (n-1)-compound 

can be computed by the above formulae. 

e.g. i f a = (2, 6, 5, 7, 8, 9) , then for n >_ 9 
- ' + — + + + C ]_(a) = (n-1 , n-5 , n-4 , n-6 , n-7 , n-8 )_ 

In this case sgn a = -1 . 

In the special case of a 3-cycle, where a = ( r ^ , x^, r^) , then 

s s s 
1.20 c

n_!( ri» r
2 ' r 3 ) "''(n^+l , n-r 2+l , n-r 3+l ) + where 

r ' + r i + l 

s_̂  i s the sign of (-1) and 

r4 = r l • 
1.21 Notation: 

Let T. ="{C . (P) : P e T}, C. = {C _ (P) : P e C} , i n — l l n — i 

where .T, C are defined i n the Thm. (1.8). 
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1.22 Theorem: 

The set T^ U U I i s l i n e a r l y independent and 

generates the set {C .(P) : P e S } as li n e a r combinations over the 
n-1 n 

2 
reals. The c a r d i n a l i t y of C^U I i s (n-1) +1 . 

Proof: F i r s t , we establish-the'independence of the set 

T^U C^U I . For a l l a's , g's and r r e a l , we assume that 

• a C (1, 2) + . . . + a C . (1, n) + n-1 n n-1 I n n-1 ' . 

+ a l 2 C n - l ( n ^ ' n ) + "* 

3n n-2 C n - l ( 1 > 2' 3 ) + + K 1 C n - l ( 1 > 2> n ) + 

.+ e 3 1 n-1, n) + 

r l = 0 . 

Using lemmas (1.16) and (1.17), we get 
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1.23 < V l n ^ " 1 ' n } - + 
+ °1 n C 1 + 

+ a 1 2 ( l + , 2 + ) _ + 

+ S 2 S 3 S4 Bn n _ 2 ( n , n-1 , n-2 ) + + ... + 8 n 1 ( n , n-1 , 1 ) + + 

e 3 1 ( 3 " , 2~, l + ) + + r l = 0 

where the s^ are given by (1.16) and (1.20). 

Consider the graph of the LHS of (1.23); the weight on 

the edge 2 + 1 i s the sum of the c o e f f i c i e n t s of ( 3 , 2 , l + ) + and 

<(1 +, 2 +) v i z ; ~ ft-^l * S i m i l a r l y , the weight on the edge 1 H- 2 

i s only • In order to, get a zero graph, the weight on each edge of 

the graph of the LHS of (1.23) must be zero, t h e r e f o r e , ot^ 2
 = 0 » 

consequently 3.^ = 0 . 

We now use mathematical i n d u c t i o n on the s u b s c r i p t s 

i n 6 ' and a . . Suppose that 3 ^ = 0 and a , = 0 f o r s t t s-1 ^ s t t s-1 

a l l s = 3» k and f o r t = s-2, 1 . We s h a l l show that t h i s 

i m p l i e s 8 = 0 N and a t s 1 = ^ ' S = ^+^~ a n ^ t = s - 2> *••» ^ " 
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We may v i s u a l i z e . the a's and SB's i n a .matrix. 

•K = 

ro.' 

0 

3 3 1 

3k 1 

k+1 1 

Jn 1 

*12 

0 

0 

>42 

3k 2 

\+l 2 

3 n 2 

'13 

*23 
0 

0 

5k 3 
\+l 3 

Jn 3 

*1 k-2 

'2 k-2 

a 3 k-2 
x4 k-2 

n k-2 

l l k-1 

a 2 k-1 

*3 k-1 
x4 k-1 

3k k-2 0 

3k+l k-2 Sk+1 k-1 

3. n k-1 

*ln 

'2n 

*3n 

*4n 

ten 

k+1 n 

In the induction process, we are assuming that a l l elements i n the upper 

l e f t hand k x (k-1) submatrix are zero, and we wish to show that the 

elements adjacent to this submatrix are also zero. 

Case ( i ) t ± k-1 

The weight on the edge k -> t i s the sum of the 
^1 ^1 ^2 ^3 ^4 coeffi c i e n t s of (k , t )_ and (k+1 , k , t ) v i z : 

S-,a, + s.B-, .-, and the weight on the edge t -> k is the sum of the 1 kt 4Mk+l t . 

c o e f f i c i e n t s of 

A t + S4 S kt ' 

s' s' s' 
J_ 2 3 4 (k , t ) and (k , k-1 , t ) S l *L v i z : 

Since these weights vanish separately, therefore, we get 
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s l a k t + S4 gk+1 t = ° a n d 

s, OL _ + s! 3, _ =0 by the induction 1 kt 4 kt . . 

hypothesis 3, ̂  - 0 . Therefore. a, =0 and B, , n'' • kt . Kt k+1 t 0 

Case ( i i ) t = k - l 

The weight on the edge k -»• t i s the sum of the 
S t S t S t 

coeffi c i e n t s of (k , t ) , (1+k , k , t ) , 
s s' s" s s' s" 

{(k k" 2, t k" 2, k-2 k _ 2 ) + (k 1, t \ 1 1) +} v i z ; 

k-2 
sa. + S ' B T.-, + I s , and the weight on the edge t -> k i s 

r=l 

s a ^ t . Since = 0 . for t e {k-2, 1} (by induction), 

therefore, a, =0 and 8, ,, = 0 . This completes the induction; kt k+1 t 

a l l the g =0 and a l l ct n = 0 for s = 3, . . . , n , st t s-1 

t = s-2, 1 . The a '•• where t = n-2, 1 are however not 
tn • . 

\ • 

yet accounted'for. We have reduced equation (1;23) to 

h h + + an (1 , n ) + ... + a n (n-1 , n ) + r l = 0 In - n-1 n 

Since, the graphs of (1, n), (n-1, n) have no edge 

i n common, th e i r weights must be zero separately. Therefore, r = 0 , 

a •=...= a = 0 . This implies that T.U C,U I i s an 
t I n • n-1 n • 1 1 

independent set. 
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Now we prove that T^U C^U I generates 

{C , (P) : P e S } as li n e a r combinations over the reals. Since C n n-1 n n-1 

i s not a li n e a r map, this does not follow from Theorem (1.8). The method, 

we use i s somewhat sim i l a r to that used i n Theorem (1.8). 

To s t a r t with, we prove that every 3-cycle i n 

{C^ ^(P) ; 'P e S } i s thus generated. I t follows from (1.20) that every 

3-cycle of the form ]_0?) ^s t* i e c o m P o u n d of a 3-cycle. Let 

^^rj» r 2 » ^3) be such a 3-cycle which does"not belong to . 

Case ( i ) < < 

From (1.9), we have 

k k - l 
0^, r 2 , r 3 ) = . £ ( r ^ i - 1 , r ^ i , r 3 ) - £ (r^+i, r 3 ) 

i= l i = l 

k - l k - l 
+ I ( r ^ i - 1 , T±+k) - I ( r ^ i - 1 , r ^ i , r ^ k ) 

i= l . i = l 

where = r ^ + k . 

We claim that 

k • k - l 
3 n - l ( r r V r 3 }

 = J l
c
n-l ( rl + 1" 1». r l + ± ' r3> + " E C n - l ( r l + i ' r 3 } 

x=l x=l 

' X ' k - l • • k - l 
C n - 1 ( r I*1'1' r l + k ) " 'I Cn-1 ̂ l * 1 " 1 > r l + ± > r l + k ) 

i = l i = l 
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To be s p e c i f i c we s h a l l discuss the case where. r^+r^ 

i s even, r 2 + r 3 o c ^ a n c^ r l + r 3 °dd. The proof for the other 

p o s s i b i l i t i e s i s s i m i l a r , and w i l l not be included here. .,: By: virtue., of , 

(1.16) and (1.17), the above i d e n t i t y becomes: 

+ 
- , n-r 1-

-k~+l, r"-r 0+l) 

k 
- 1 (n-

i = l 

s. 
- r ^ - i +2, n-r^ 

•k-1 
+ I (n-

1=1 

-s. 
- r ^ - i +1, n-r 

k-1 - 1 (n-
i = l 

s. s 
- r ^ - i +2, n-r^ 

k-1 
- 1 (n-

i = l 

s. 
- r ^ - i +2, n-r^ • 

:-D 1 + 1 . 

-s. 

-s. 

-s. 
+ 

The graph of the f i r s t sum in. the RHS of (1.24) i s 

o . 
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**''•'" The'weights on the loops at the vertices'''aire as follows:" 

On the vertices n-r^-k+1 and n-r^+1 i t i s k - l , 

on each of the isolated vertices i t i s k and on each of the remaining 

vertices of the graph, the weight i s k-2 . 

To this graph, we add the graph obtained from the second 

sum of the RHS of (1.24) and we get 

n-r 

n-rj+1 

1 i - } 

n-r1-k+2 

because the signs i n the 2-cycles of the second sum i n the RHS of (1.24) 

are opposite to the corresponding signs i n the previous graph and therefore 

these cancel each other. 

Subtracting the graph of the t h i r d sum i n the RHS of 

(1.24) from the above graph, we get 
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k-2 

To see t h i s , note that we have added k-1 2-cycles (with opposite s i g n s ) , 

hence the weights on the s i n g l e loops at n-r^+l and n-r^-k+2 are 

k-1 . At each i s o l a t e d v e r t e x the weight i s k , at the r e s t of the 

v e r t i c e s of t h i s graph the weight i s k-2 . The weights on the edges of 

the graph are as shown. 

From the signs of the non-zero weights on the edges of 

-: the graph of the. l a s t sum i n the PJiS of (1.24), i t - i s c l e a r that i f we 

su b t r a c t t h i s graph from the above graph, we are l e f t w i t h : 
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Note that the x^eight on the single loop at. n-r^+l becomes 

(k-1)-(k-1) = 0 . Also, the weight on the single loop at n-r^-k+1 

remains zero, for every 3-cycle i n the l a s t sum of the RHS of (1.24) has 

n-r^-k+1 as one of the vertices. At n-r+1 , the loop has weight 

(k-2") - (k-2) = 0 and at each of the isolated vertices t h i s weight i s • 

k - (k-1) = 1 . 

Since the above graph i s also the graph of 

(n-r^+l*, n-r 1~k~+l, n ~ - r 3 + l ) + , which i s the LHS of (1.24), therefore, the 

i d e n t i t y (1.24) holds. 

Case ( i i ) r ^ > r2 > r3 

From (1.10), we have 
i 

f 

( r 1 , r 2 , r 3 ) = ( r 1 } .+.•<r1, r 3 ) + ( r 2 , . r 3 ) - ( r 3 , r 2 , r.^ - I . 

\ 

We claim that 

C n - l ( r l > R 2 ' r 3 } = - { C n - l ( r l ' R2> + C n - l ( r l > R 3 ) + C n - l ( r 2 > r
3

) } 

" C n - l ( r 3 ' r 2 ' r l > " 1 • 

As i n case ( i ) , we consider only the case i n which 
r-|+r

2 i s even, r]_ + r3 0 < ^ a n c* r 2 + r 3 The pther cases can be 

v a r i f i e d s i m i l a r l y . Using lemmas (1.16) and (1.17) we get: 
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1.25 (n-r^+l"1", n-r~+l, n " - r 3 + l ) + 

=' {(n-rj+l, n + - r 9 + l ) + + (n-r~+l, n ~ - r 3 + l ) + + (n-r~+l, n~-r 3+l) +} 

+ (n-r 0+l , n-r„+l, ri -r.,+1) - I • J z x — 

+ — + 

where (n-r 3+l, n-r^+l, n -r^+1) may- be expanded as i n (1.24) 

Graphically, the weight i n the RHS of (1.25) on the edge 

•n-r^+1 

n-r 2+l 

n-r^+1 

n - r 3 + l 

n-r 2+l 

n - r 3 + l 

r - r 2 + l 

n - r ^ l 

n - r 3 + l 

n-r.j+1 

n - r 3 + l 

n-r 2+l 

i s 1 

xs 

i s 

i s 

i s 

i s 

1 - 1 = 0 

-1 + 1 = 0 

-1 

-1 

- 1 + 1 = 0 

On each of the isolated loops the weight i s 1 + 1 + 1 - 1 - 1 = 1 

The resultant graph i s , therefore, ' 

which i s the graph, of the LHS of (1.25). Thus every 3-cycle i n 
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{C ,(P) ; P e S } i s generated by T.U C 'U I . n—1 n X i 

As an example of the foregoing, consider the special Case 

where n = .6 and cr = (1, 4, 5) . From (1.9) we have 

(1, 4, 5) = (1, 2, 5) + (2, 3, 5) + (3, 4, 5) - (2, 5) - (3, 5) + (1, 4) 

.+ (2, 4) - (1, 2, 4) - (2, 3, 4) . 

Hence 

, C n _ ^ ( l , ; 4, 5) = C ^ d , 2, 5) + Cn_±(2, 3, 5) + 0 ^ ( 3 , 4, 5) + 0 ^ ( 2 , 5) 

• + C
n - 1 ( 3 ' 5 ) " C

n _ l ( 1 ' 4 ) - C
n - 1 ( 2 > 4 ) " C n - 1 ( 1 ' 2 ' 4 ) 

t 
- Cn_±(2, 3, 4) . 

That i s 

(6", 3", 2 + ) + = (6", 5", 2 + ) + + (5", 4 +, 2~) + + (4~, 3", 2 + ) + 

+ ( 5 + , 2 +)_ + (4~, 2~)_ + (6", 3") + + ( 5 + , 3 + ) + 

+ (6 +, 5", 3 +) + ( 5 + , 4 +, 3") . 

Resuming the proof of the theorem, we now consider an 

arbitrary cycle a = (r.. , r ) . From (1.11) we have: 
1 m 

m-2 ' m-3 
ff • J 1

( r l ' r i + l ' r i + 2 } " . V r l ' r i + 2 ) * i = l i = l 

m-2 m-3 
We claim that' sgn cr C ^ W - ; j C ^ ^ , r , r 2) + ." J C ( r ^ r ± + 2 ) . 

i = l 1=1 
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By lemmas (1.16) and (1.17), t h i s i s equivalent to 

sl • • '" ' sm 1.26 . ' sgn a (n-r n +1, n-r +1) 
1 m , sgn CT 

m-2 s. s! s'.' 
= I ( n - r ^ l 1 , n - r / ^ + l , n ±-^±+2

+1^> + 

i = l 

m-3 t. t. 
+ I (n-r^+1, n 1 - r . + 2 + l ) _ 

i = l 

with the help of Lemma (1.17), we i n f e r that the weights on the common 

edges, of the graphs of the two sums i n the RHS of (1.26) cancel each 

other and the resultant graph of the RHS of (1.26) i s equal to the graph 

of the LHS of (1.26). I t how follows from (1.24) and (1.25) that the 

RHS of (1.26) can be expressed as a li n e a r combination of the elements 

i n T±U C 1U I . 

F i n a l l y , we consider the general case: 

P = P.. ... P , where P. for i = 1, m are d i s j o i n t cycles. 
1 m l v 

m 
From (1.12), we have P = £ P. - (m-l)I . We show that 

' i = l 1. 
m 

sgn P C _ X(P) = I sgn P. C _ 1(P.) - (m-l)I . Since 
i = l 

m 
sgn P = ~[TsSn P. > therefore this i s the same as 

i = l 1 

1.27 (sgn P C (P )) ... (sgn P C (P )) l n — l i m n — l m 

m 
= I sgn P̂ ^ C ^ C P ) - (m-l)I 

i = l 
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I t i s evident that the weights on the corresponding edges of the graphs of 

the LHS and the RHS of (1.27) are the same; and the same i s true for the 

weights on loops at the non-isolated vertices. There remains to show that 

the weight of each of the isolated loops has the same value for each side 

of (1.27). For t h i s , note that i n case of an odd cycle ( i . e . sgn a = 1) 

.each of the isolated loops carry a weight +1 , while for an even cycle 

• this weight -1 . , •• When we attach • sgn.P^ to each P^ > we change 

the weight on each of the isolated loops to +1 . Hence, i n the graph of 
m 
£ sgn P_̂  ^^i^ »• t* i e isolated loops have weight m . When we add 

i = l 

-(m-l)I to this sum, we reduce the weight on each of the isolat e d loops 

to 1 . Hence the id e n t i t y (1.27) holds. 

By (1.26) each C .. (P ) i s contained i n the li n e a r 
n - i i 

combinations of the elements of T^U C^U ' I . Hence, by (1.27), ' 

C (P) can also be expressed as a li n e a r combination of the members of 
n \ 

T 1 U °lLi 1 • 

Thus we have shown that the set T^U C^U * generates 

the whole set ,{C , (P) ; P e S } . 
n— i n 

F i n a l l y , the number of elements i n T^U C^U I i s the 

2 
same as the numberxof elements i n the set T U CU I ; v i z ; (n-1) + 1 . 

Q.E.D. 
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1.28 Remark:. ' ' ' . "• • 

It i s interesting to note that the p a r a l l e l theorem to 

Corollary (1.14) involving U I and ^ ^ ( P ) ' P e S
n ^ ' i s 

not true, as the following shows: 

There exists a e {C n(P) : P e S } such that 
n-1 n 

r r 
a = I 6.P. , where P. e T U C U I and £ g. ? 1 . Let 

1=1 1 1 i l l i = 1 i 
o = ( r ^ , r^+1, r^) where r^ = r ^ + i » then 

a = ( r 3 , r ^ l ) + ( r 3 > x^) + (r.j+1, r^) - ( r ^ r.j+1, r 3 ) - I , 

and 

C n - 1 ( C T ) = - { C n - l ( r 3 ' r i + 1 ) + C n - l ( r 3 ' V + C n - l ( r l + 1 > r l > }' 

- c
n _ l ( r l ' r l + 1 , r 3 } " 1 (by (1.25)). 

Each compound appearing i n the RHS of this expression i s a member of 
5 

I,U C.U I . However, • Yv g. = -5 4 1 , where the g. are the 1 1 . L\ l l i = l 

c o e f f i c i e n t s of these compounds. -. 

' We s h a l l make use of this r e s u l t i n Chapter I I . 

1.29 Remark: 

We close this chapter with a note about the set of 

r-compounds {C (P) : P e S } . W e have so far been unable to establish r n 

theorems sim i l a r to (1.22) and (1.28) except i n the special cases when 
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r = n-1, 1 . For r = 2 and n = 4 , we can say that this set 

contains an independent subset of c a r d i n a l i t y 18 which i s greater than 
2 

(n-1) +1 v i z ; 10. Moreover, the above remark (1.28) remains true i n 

this sepcial case; and we conjecture that i t i s true for the general set 

{C r(P) ; P e Sn> . . -
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CHAPTER I I 

CHARACTERISATION OF nxn MATRICES A FOR WHICH 

TRACE(PA) e' {a , a^} , AND MATRICES B FOR. 

WHICH E . (PB) = E . (B)V P e S n — l n — l n 

In this chapter, we pose the following problem: Let H 

be a subset of S and l e t a,..... a. be k d i s t i n c t r e a l numbers 
n 1' ' k 

"Determine 'the set of square matrices A such that '.V ,<•,'""•>•""', 

'{tr(PA) | P e H} = {a±y afc} 

We provide solutions i n the following cases: 

(1) H = S ; k = 1 
n 

(2) H = {2-cycles i n Sn> , k = 1 

(3) H = S ; k = 2 . 
n v 

A second problem which we solve i s the determination of 

the structure of nxn matrices A such that E . (PA) = E .. (A) V 
, n — i n — l 

P e S (n>3) . n — 

The r-th elementary symmetric function of the nxn 

matrix A (denoted by E^(A)) i s used to designate 
v. ' -

r , E (A. X-) = J TTx.. , where A., X are the r 1 n .., .' L } ' x i 1 n l < i n ...<x <n j = l J 

— 1 r — J 
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eigenvalues of A . As i s w e l l known, E (A): i s equal to the sum of 

a l l the p r i n c i p a l r x r subdeterminants of A . Again 

E r(A) = t r a c e C^(A) .= trCC^CA)) , where C^CA) i s the r - t h compound of 
n 

A . , In p a r t i c u l a r , E (A) = d(A) and E,(A) = V a.. = t r ( A ) i f n 1 , L - , xx x=l 

A . C a ± . ) . 

We f i r s t consider case (1) above; v i z ; the set of nxn 

matrices {A : tr(PA) = t r ( A ) ; f o r a l l P e S } . 

By C o r o l l a r y (1.14) we know that every P e S can be 
r 

w r i t t e n as P = , £ a.P. , where P. e M , M = T U C U I (see (1.13)) and 
1=1 1 1 . 1 • 

r 
c.. x P e S , i = 1, r , and . £ a. = 1 . Thus i f tr(QA) = t r ( A ) . 

n i = l 1 

r 
f o r a l l Q e M , then f o r any P e S ( P = 7 a.P. ; P. e M and n . L

n x x x x=l 
r 
£ ct. = 1) i t f o l l o w s that 

i = l 1 . • v 

r r 
tr(PA) = t r ( I a.P.A) = £ a.tr(P.A) ( { 2 ] ; pp-18) 

i = l 1 1 i = l 1 1 

/ 
/ 

r 
- I a , ( t r ( A ) ) 

i = l 1 

' = ( I a , ) ( t r ( A ) ) = t r ( A ) . 
i = l 

Therefore, the set {A : tr(PA) = t r ( A ) P e S } i s 
n 

j u s t the set {A : tr(PA) = t r ( A ) P e M} 
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Let A = (a^j) • Then, by assumption 

t r ( l , k)(k, r)A = tr(A) = t r ( k , r)A . Hence a,, - a n 1 = a .. - a , • 11 l k r l rk 

for a l l k, r . To simplify the notation, l e t a. = a,. and 
• i l l 

6. = a.. - a_. for i = 1, i i i 11 Then a , = a, +8. , and rk k r 

A = 

a 2 + ^ l 
a l + S 2 a 2+5 2 

1 n 2 n 

V 6 i 

V 5 2 

a +5 n n 

This can be written 

A = 

v " l 

n 

n 

n 

t 6, 

, 6 n 

. 62 

n n i 

I f R' = subspace of rank 1 matrices with one row 

repeated n-times and i f C.' = subspace of rank 1 matrices with one column 

repeated n-times, then c l e a r l y 

A e R ' + C* 
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On the other hand i f A e R' + C , then c l e a r l y 

tr(PA) = tr(A) for a l l P e S We have, therefore 
n 

2.1 Theorem: 

The nxn matrices A such that tr(PA)" = tr(A) 

for a l l P e S n , form a subspace S = R' + C' , where R' = subspace 

of rank 1 matrices with a l l rows equal and C' = subspace of rank 1 

matrices with a l l columns equal. 

This i s our re s u l t for the case (1) l i s t e d on page (33). 

2.2 Corollary: 

The rank of A such that tr(PA) = tr(A) for a l l 

P e S i s < 2 . n — 

Turning to case (2) on page (33), suppose we r e s t r i c t 

the set H to interchanges only. I t follows immediately that 

= {A : tr(PA) = tr(A) for a l l P e T} i s a subspace and contains 

a l l nxn skew-symmetric matrices. 

I t also contains the nxn matrices of the type 
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Since these two subspaces meet i n the zero matrix only, 

we have 

A-t-m c 'n(ri-l) _ n(n+l) dim S^ _>_ 2 " — + n 2 — 

Now the subspace S^ i s complementary to the subspace 

formed by nxn matrices of the type 

0 * * 
0 0 * 

0 0 

0 0 

* 

This subspace has dim n ^ n , ^ and therefore, 

vi-?™ -c „ 2 n(n-l) n(n+l) d i m S ^ n - — - — 

dim S„ _ n(n+l) 

'I. For case (3) on page (33) we now consider •the'set of "nxn 

matrices {A : {tr(PA)} = {a., , a_}, for a l l P e S } we assume i i. n 

a l * a 2 . 

We begin by studying the decomposition B^U B^ of 

S n given by 

B. = {P e S tr(PA) = a.} ; i = 1 , 2 . 
1 n 1 ' 
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It i s clear that equations (1.9), (1.10), (1.11) and (1.12) impose 

r e s t r i c t i o n s on the par t i t i o n s B.. U B_ • of S which are possible or 
r 1 2 n 

"admissible". Our task now i s to find the "admissible" p a r t i t i o n s of 

.. In the f i r s t instance, we p a r t i t i o n the set T of a l l 2-cycles i n 

. I t i s convenient to r e c a l l here the following: 

2.3 D e f i n i t i o n : 

If for every pair (v, w) ; v f w , i n a directed graph 

there exists a sequence {(v, v^; a^)> •••> .(v » w; a + ^ ) } as well as 

{(w, ŵ ; 3^), (w^, v, 0^^)} > with a l l and 3 I nonzero, 

then the directed graph i s said to be strongly connected. I f the 

corresponding undirected graph [1] i s complete ( i . e . every two d i s t i n c t 

vertices are joined by an edge), then we w i l l c a l l such a,directed graph as 

strongly connected complete graph. 

2.4 I f H i s x a subgraph of G , the number of vertices i n 

H i s said to be the order of H . 

Assume that I e B 2 i . e . tr(A) = a^ , then we have 

2.5 Lemma: 

The graph of a l l the 2-cycles i n T f l B 2 contains a 

strongly connected complete subgraph of order n-1 . 
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Proof: F i r s t , we observe that T f) can not c o n t a i n d i s j o i n t 

2-cycles. For, i f i t does c o n t a i n two d i s j o i n t 2-cycles ( r ^ , s^) and 

i^2> s 2 ^ ' t n e n equation (1.12) we have 

( r x , s
1 ) ( r

2 > s 2 ^ = ^ri» s i ^ + ^ r 2 ' s2) ~:T ' 

(r , s 1 ) ( r 2 , s 2 ) A = (f^-, s 1 ) A + ( r 2 , s 2 ) A - A and 

t r ( r , s 1 ) ( r 2 , s 2 ) A = a^ + a^ - a^ = 2 a 1 - a^ . 

Then 2a^-a 2 equals a^ . or a 2 . In e i t h e r case, a^ = a
2 » ' 

which i s contrary to our assumption that a^ ̂  a^ . I t f o l l o w s that 

T H B^ contains a s t r o n g l y connected complete subgraph of order 3 or the 

2-cycles of . T D B^ co n t a i n a v e r t e x i n common. 

In case (r , s ^ , ( r ^ s 2 ) and ( s ^ , s 2 ) are i n 

T H B 1 , we have, from (1.10), 
\ .. . • . 

( r x , s 2 , s 1 ) = ( r 1 , + ( r . ^ s 2 ) + ( s ^ s 2 ) - I - ( r . ^ s 1 , s 2 ) 

xjhich gives 

( r l S s 2 , s 1 ) A = ( r i v s ^ A + ( r . ^ s 2 ) A + ( s l f s'2)A - A - ( r ] [ , s±, s 2 ) A 

Taking the t r a c e of both the s i d e s , we o b t a i n 

trO^, s 2 , s 1 ) A = a1 + a1 + a^^ - a 2 - trO^, s^, s 2 ) A 

= '-3a1 - a 2 - t r ( r 1 , s ^ . s ^ A . - " 
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In case t r ( r ^ , s^, s 2)A = a^ , then 

t r ( r ^ , s 2 , s^)A = 2a^ - a 2 which we have already found leads to a 

contradiction. 

Now, i f t r ( r 1 } s , s 2)A = a 2 ,'we get 

t r C r 1 , ' s 2 , ';s1)A: = ;3a 1 - 2a 2 

Then 3a^ - 2a 2 i s equal to either a^ or a 2 

and i n both these cases we get a^ = a^ , contrary to our assumption that 
ai ^ a2 ' ^ e ^ n^ e r* therefore, that T O B^ cannot contain a strongly 

connected (complete) subgraph of order greater than 2. 

The only p o s s i b i l i t y remaining i s that a l l the 2-cycles 

i n T n B^ have one vertex i n common, i . e . these 2-cycles form rays from 

a vertex ( r ^ s a y ) . Since T O B 2 = T ^ T-O B , the graph of a l l the 

2-cycles i n I H contains a strongly connected complete subgraph of 

order n-1 ; v i z ; a graph with i t s set of vertices {V - (r^)} , where 

V i s the set of vertices of ; v i z ; {1, ..., n} 

We now look at the 3-cycles i n B^ and B 2 . I f the 

two cycles ( r ^ , s^) and ( r ^ , s 2) are.in T O B^ , we claim that 

the 3-cycles ( r ^ , s^, s 2) and (r-]_> s
2» s.^) ' a r e also i n B^ . 

From the preceding paragraph, ( s 1 > s 2) must be i n T D B^ . By (1.10), 
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we get 

(r i s s 2, s1) = (r1, s.̂  + G^, s2) + (s.̂  s2) - I - G^, s ^ ' S ^ , 

2.6 (r1, s 2, s ] [)A = (r ,̂ s1>A + (r±, s 2)A + (s1, s 2 ) A - A - ( i ^ s , , s 2)A 

and tr(r 1 5 s^s s^)k = + a^ + a 2 - a 2 - trCr^, s2>A 

= 2 a 1 - tr(r 1 9 s , s 2)A . 

I f t r ( r ^ , s^, s 2 ) A = a 2 , then from the above equation 

t r ( r ^ , s 2 > s^)A = 2a^ - a 2 , which we know i s impossible. Therefore, 

t r ( r ^ , s^, s 2 ) A = a^ and consequently, t r ( r ^ , s 2 , s^)A = a^ . . Thus 

we have proved 

2.7 Lemma: 

I f ( r ^ , s^) and ( r ^ , s 2 ) are i n T H then 

( r 1 , s 1 , s 2 ) and . ( r ^ s 2 > s 1 ) are i n B . 

2.8 Remark: 

Suppose T n B^ contains ( r ^ , s^) but not 

(r ,̂ s2) . In the equation (2.6), we take the trace of both the sides and 
obtain 

trG^, s 2, s^A = a 2 + a 2 + a 2 - a 2 - trG^, s^ s 2)A . 
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I f t r ( r l S s l 5 s 2 ) A = a^ , then t r ( r ; L , s 2 , s ^ A = 

and v i c e v e r s a . Therefore i n t h i s case the 3-cycles ( r ^ , s^, s 2 ) and 

( r ^ , s 2 > s^) are d i v i d e d among and B 2 . 

Concerning the set B 2 , we have the: 

2.9 Lemma: 

I f ( r 2 > s 1 ) , ( r 2 > s 2 ) and ( s ^ s 2> are i n 

T O B 2 , then both ( r 2 , s^, s 2 ) and (r2» s 2 > s^) are i n B 2 . 

Proof: By (1.10) 

( r 2 , s 2 , s±) = ( r 2 , s.^ + ( r 2 > s 2> + ( s 1 , s 2> - I - ( r 2 > s ^ s 2 ) , 

( r 9 , s 2 , s 1 ) A = ( r 2 , s ^ A + ( r 2 > s ^ A + ^ j s 2 ) A - A - ( r 2 , s ^ s 2>A 

and t r ( r 2 , s 2 > s 1 ) A = a 2 + a 2 + a 2 - a 2 - tr'(r' 2, s ,• s 2>A 

• = 2 a 2 -• t r ( r 2 , s 2>A . 

I f t r( r2» s i > S 2 ^ A = a i * t n e n 

t r ( r 2 , s 2 , s^)A = 2 a 2 - a^ which we know i s imp o s s i b l e , t h e r e f o r e , 

t r ( r ' 2 , s^, s 2 ) A = a 2 and consequently t r ( r 2 , s 2 > s^)A = a 2 . Hence 

the lemma. 

We now use our r e p r e s e n t a t i o n of the permutation 

matrices (1.9), (1.10), (1.11) and (1.12) to complete the c h a r a c t e r i s a t i o n 
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of the admissible p a r t i t i o n s of S . The discussion f a l l s n a turally 
• n 

into the following cases: 

,'Ca'se' ; ( i ) : . ,• T O • ... contains a l l the. 2-cycles ..with?' c6,nimbn.'ver;tex:;-';''-..̂  

(r.^) v i z ; ( r ^ , r ), ( r ^ , r^) where r_^ e {1, •••» n} . There 

are (n-1) such 2-cycles. From Lemma (2.7), i t follows that i t contains 

a l l the 3-cycles with r ^ i n them. Furthermore, we claim that B^ 

contains a l l cycles with the integer r ^ i n them. In order to show 

t h i s , consider any such cycle ( r ^ , s^, s^) . From (1.11) we have 

(r. 5 s.. , . > •, s ) 
1 1 m 

= ( r x , S l , s 2) + ( r x , s 2 , s 3) + ... + ( r r s ^ , - ( r ^ s 2) 

( r 1 } s m_ 1) . 

Multiplying on the right by A and taking the trace of 

both the sides, we obtain 

t r ( r 1 } S T , s )A = ( m-l)a 1 - (m-2)a = a . 
1 . 1 . m l l .1 

We can now conclude i n this case that B^ consists of 

those products P of d i s j o i n t cycles P^, ..., P m , m >_ 1 , for which 

one .of the P^ contains r ^ . For, suppose r ^ i s involved i n 

P̂ ' .• Then, by (1.12) .' • <'•••.• • 

m ' " ' • ' . . 
*P = . V P. - ( m-l)I and 

m 
tr(PA) = . I tr(P A) - ( m-l)tr A = a^ C m-l) a 2 - ( m-l) a 2 = a± . 
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Case ( i i ) T.O does not contain a l l the 2-cycles with the 

vertex r^ i n common. Let ( r ^ , r ^ ) , ( r ^ , r^) be the 2-cycles 

of B and l e t {t , . .., t } = {1, n}\{r , r,} . Consider 

the cycles ( r ^ , r ^ , t^) and (r.^, t , • r^) . By Remark (2.8) i f 

(r2»' r^> t j ) £ B^ , then ( r ^ , t , r_̂ ) e B 2 , and vice versa. Our 

argument breaks into three subcases; v i z , 

k , j = 1, .. . , n-k} cr B ; 

k , j = 1, . . •, n-k} C. B 2 ; 

k , j = 1, n-k} intersects both 

>B - 'and B„ n o n t r i v i a l l y . . * ' .••<."•'. 

Case (a) { ( r ^ , r ^ , t ) : i = 2, ..., k, j = 1, ..., n-k} cz B^ 

In this case, B^ contains a l l 3-cycles of the type 

( r ^ , r^, r ) , where i , j k} (by lemma (2.7)) and a l l 3-cycles 

of the type ( r ^ , r ^ , t_.) . Furthermore, B^ contains a l l cycles cr 

such that the graph of a contains an edge r i r i " T o s n o w t n i s > 

• we note that 

( r r r±» V Sm} 

- ( r r r . , s x) + ( r r s r s 2 ) + . . . + 0^, s ^ , - ( r r s ^ 

" ( r l ' Sm-1) ' 

(a) ' ( ( r ^ r . , t.) : i = 2, . .., 

.'(b) " { ( r 1 , r ^ t ) : i = 2, 

.(c). { ( r ^ r . , t.) : i = 2, . .. , 
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by (1.11) . I f {s.., ..., s } { t ... t . } , then ' 1 m — 1' n-k ' 

t r ( r v , r . , s_, ..., s )A = a. + (m-l)a„ - (m-l)a„ = a. . I f , however, l l l m l Z Z 1 

{s , . . . , s } CZ { r , .. ., r } and ' {s , . . . , s } cZ {t 1 , ..., t , } , 
x t — l K. t+i m — l n—K. 

then 

t r ( r , r , s , .. . , s )A 
i l l m 

= a 1 + ta.^ + (m-l-t)a 2 - ta.^ - (m-l-t)a 2  

= a l ' 

because ( r ^ , s i , s
i+-|_) £ B-̂  i f f ( r ^ , s^). and ( r ^ , s

i +^) a r e i n 

B„ . 

I t can easily be shown that B^ does not contain a 

cycle whose graph has no edge r i r i * From t h i s , i t follows 

immediately that B^ consists of those products P of d i s j o i n t cycles 

P^, ..., P^ , m _> 1 , for which one of the P^ has a graph with an edge 
v 

r •- r. . 
• 1 I 

Case (b) In this case, { ( r ^ r ^ , t_.) : i = 2, . .., k ,•. •. 

j = 1, n-k} ̂  B 2 , and an argument si m i l a r to that of case (a) can be 

made leading to the conclusion that B^ consists of those products P 

of •.:'disj.'o,int-icycles- -.P."', ,' P , m > 1 , for which" one of the'"' P. •••'has'-' 
1 m — i 

i t s graph with an edge r i r i * 
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Case (c) {(r^> r\, t ) : i = 2, ..., k ; j = 1, . .. , n-k} intersects 

both B^ .and B^ n o n t r i v i a l l y . 

F i r s t , we show.that i f for a fixed r . , (r, , r . , t ) e B ' l l i p l 
for some p e ( l , n-k} , then ( r n , r., t.) e Bn for a l l 

1 x 2 1 
j e ( l , . .., n-k} . Suppose (r-̂ > £ ̂  ^ o r s o m e ^ e ^» •••> n - k } 
We have 

• . ( r l f r., t q ) = ( r i, r., t p ) + ( t p , r ± , t q ) - ( r . , t p ) + ( r r t q ) - ( r ^ t q , t 

t r ( r , r t )A = t r ( r , r , t )A + t r ( t , r , t )A - t r ( r ,t )A +tr(r ,t )A 

- t r ( r r t q , t p ) A . 

= a^ + - a^ + a^ - a^ = a^ , which contradicts the 

assumption that ( r . , r . , t ) £ B.. . Hence, for each r. E { r 0 , . .., r, } i f 

( r . , ' r . , t ) e B. for some p , then ( r n , r . , t.) e B. for a l l . 1 x p 1 1 x j • 1 
j e ( l , ..., n-k} 

Si m i l a r l y , i f for a fixed r ^ , ( r ^ , t p , r^) E B^ for 

some p e ( l , n-k} , then ( r ^ , t , r ^ £ B^ for a l l j e {1, ...» n-k} 

Now, l e t { ( r 1 ( s., t.) : s. £ {s.., s } <— {r. , r, } ' l x j x 1 m l k 
j = 1, .. ., n-k} <=, B 1 and { (r.^ r±, t..) : r ± £ {x^ . .. , 'fs

1> • • • > s
m} 

j - 1, n-k) ̂  B 2 . Clearly, B^ also contains ( r ^ , r ^ , r j ) a n ^ 

( r 1 > '-''r , x/) for a l l r.^, r £ { r ^ , r^} (lemma (2.7)). I t i s a matter 

of simple v e r i f i c a t i o n that B^ contains a l l products P of d i s j o i n t 

cycles. P.., ..., P , m > 1 , for which one of the P. has a graph with 
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an edge + or an edge r ± f o r r.^ e {r.^, r j c ^ ' t s i > •••> s
m ^ 

We omit the d e t a i l s . 

Thus we have c h a r a c t e r i z e d the p o s s i b l e p a r t i t i o n s 

B.U B„ of S . We now look f o r the p o s s i b l e s t r u c t u r e s of A which 
1 2 n . 

can occur i n each of the p o s s i b l e p a r t i t i o n s B^U • I t w i l l be seen 

that the case ( i i ) (c) i s not p o s s i b l e as long as our assumption that 
a l ^ a2 s t a n d s • 

We want A to be such that 

' tr(PA) = a^ f o r a l l P e B 

= t r ( A ) = a 2 f o r a l l P e B 2 and 

S = B,U B, . F i r s t , we consider the p a r t i t i o n of S given by n I 2 n 

Case ( i ) . 

Assume, f o r s i m p l i c i t y , that = 1 and i n B^ 

contains (1,2), ( l , n ) . Let A' be the (n-1) x (n-1) submatrix 
s t s t obtained by d e l e t i n g the 1 row and the 1 column of A . Then, 

tr(PA') = t r ( A " ) V P e B = S . where 
2 n-1 

S , i s over { 2, ..., n} . By Thm. (2; 1) n-1 
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2.10 A = 

*11 

l21 

a31 

l a n l 

12 l13 

a 2 + 6 l 

a l + 6 2 a2 + < S2 

1. n-1 2 n-1 

In 

n-1 1 

n-1 2 

a .+6 . n-1 n-1. 

For r,m e {2, . .., n} , ( l , r ) , (l,m,r) and 

(l,r,m) are i n . Therefore, 

t r ( l , r)A = t r ( l , m, r)A 

and r l ml r - l m-1 

Set a = a o n - 6n ; then n 21 1 

r l r - l 21 1 n 

.Hence a T = a +6 - , r e {2, n} r l n r - l 

Also, t r ( l , r)A = t r ( l , r, m)A 

which, gives a. -a., = a T - a _ l r lm r - l m-1 

Set <S = a,„ - a, ; then n 12 1 

a. - a .. = a., „ - a, = 5 l r r - l 12 I n 



Hence a = a + 6 l r r - l n 

We determine as follows: 

and 

n 
= tr(A) = a '+ ? a 

1 1 ±4i 1 1 

a, = 
n 

a 1 0 + a o n + £ 
1 2 2 1 i * l , 2 

a l l + ^ ( a i + 6 i > ' i= l 
n-1 . 

a + <5 + E (a. + 6 . ) n n . , i i i = l 

a„ - a l = a l l - ( a n + V 

or a. = (a„ - a ) + (a + 6 ) 
11 Z 1 n n 

Hence, the matrix A i s completely determined, and 

i s given by 

A = 

f ( a 2 - a 1 ) + a n + 6 n . 

a +6 n 1 

a +<5 . \_ n ' n-1 

a +6 
1 n 

a i + 6 i 

a.+5 
1 n-1 

a ,+6 
n-1 n 

a +6 
n-1 1 

a +6 . 
n-1 n - l j 

In general, i f the i - t h vertex i s common to a l l 

the members of T H B^ , then 



50 

2.11 A = a +6 1 n 

a +6 I 1 n-1 

a +6 n-1 1 

a +5 n-1 n 

a +6 n n-1 a +6 n-1 n-1 

i - t h 

Clearly, a^ = a^ reduces (2.11) to the same form 

of A as was obtained i n Thm. (2.1) 

Now, consider the p a r t i t i o n of S given by case ( i i ) (a) 
n 

Assume that r^ = 1 and B^ contains 

(1, 2), (1, k) (k<n) and a l l cycles with an edge 1 r for 

r e ^2, k^ . Again, by lemma (2.5), A reduces to the form (2.10) 

Also, we know that (1, r ) , (1, r, m) and (1, m, r) are i n B^ for 

r, m e {2, k) . . Therefore, for a l l m =j= 1, r , we have 

t r ( l , r)A = t r ( l , r, m)A 

I t follows that a.. - a 1 = a - a' = a - a l r lm mr mm r-1 m-1 

a n = a + ( a - a ) lm m-1 l r r-1 
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Set a, = a , + 6 : then l r r - l n 

a. = a , + 6 . T h i s gives a l l elements of lm m-1 n ° 

the f i r s t row i n (2.10) except a^^ . Let us, now, f i n d the f i r s t column 

of (2.10). 

We know that (1, r) and (1, m, r) are i n f o r 

r, m e {2,-. .. .,, k} (lemma. (2. 7)).. Therefore, •. 

t r ( l , r)A = t r ( l , m, r)A , 

and hence an - a .. = a - a 
l r ml rm mm 

Set a 2 1 - 6 = .8 ; then 

a r l - 6 r - l + ( a21 " V " 3 + V l f ° r 

r e {2, ..., k} 

We claim that this r e l a t i o n does not hold good for 
\ • . ' . 

r e {k+1, . . n} , m E {2, k} , for i f so, then. a .. - a .. = a - a 
. . . r l ml rm mm 

implies that t r ( l , r)A = t r ( l , m, r)A . But i n this case (1, r) e 

and (1, m, r) e B^ , which means that t r ( l , r)A =j= t r ( l , m, r)A , a 

contradiction. Therefore, the above chain of relations stops at a ^ : 
a 2 i = g + 6 r a 3 i = e + V \l = * + \-l ' 

However, i f ra, r f {2-, ..., k} , then (1, r) and 

(1, m, r) belong to (lemma (2.9)). In p a r t i c u l a r , (1, m), 

(1, m+1, m) are i n B 2 f o r m £ {2, k} , therefore, 



t r ( l , m)A = t r ( l , m+1, m)A , 

and a n - a . = a - a .n =6 , - 6 
ml m+11 m m+1 m+1 m+1 m-1 m 

S e t ak+l 1 " 6 k = an ' ; t h e n \+2 1 = an + W 
, a = a +6 ,. n l , n n-1 

In order to determine a.... , we use 
( i i 

t r ( l , m+1, m)A = tr(m, m+l)A,'m \ {2, ... , k} 

Here a ,., _ - a 1 1 = 6 - 6 , 
m+1 1 11 m n 

and hence a.... = 6 + ( a , - 6 ) 
11 n m+1 1 m 

= 6 + a . .Consequently,the f i r s t column of n n * 

A i s {a + 6 , 8 + 6..,...,6 + 5.,, a + 6, , . . . , a ' 6 ,}• ' , where n n x K—x n K n f n—X 

ft 
i s obtained as follows: ' 

Since t r ( l , 2)A = a^ and 

t r ( l , k+1)A = a 2 

n 
therefore, a 0 1 + a, 0 + Z a.. •= a. 

21 12 . l l ) 2 xx 1 
n 

and a. , ,, + a, ,, , + E a. . = a 0 

1 k+1 k+1 1 . + 1 ) k + 1 xx 2 

\By subtracting the 2 n d - equation from the f i r s t , we 

get.. •' 



or a = a - a n 1 2 

3 = (a - a ) + a l z n 

Thus the matrix A takes the form 

f a +6 n n 

(a -a )+a +6 
1 z n X 

(a -a„)+a +<S9 l z n z 

2.12 A = 

1 n 

a l + 6 l 

a 1 + 6 2 

(a 1-a 2)+a n+6 k_ 1 

a +6, a,+<5, n k l k 

.a .+6 n-1 n 

a _+6. n-1 1 

n-1 2 

n-1 k 

a .+6. n-1 k 

a +6 •• n n-1 1 n-1 a _+6 . n-1 n-1 

• Here the rows 2 to k of the f i r s t column are 

"distinguished" since we assumed, for s i m p l i c i t y , that 2-cycles of 

had 1 as a common vertex, and 2, k as the other vertices. 

In the general case, the "distinguished" elements of A are those i n 

column r^ and rows r 2 > r ^ , r ^ . Conversely, i f A i s of 

the above form, then (tr(PA) : P e S
n ^ = ^ a i » a

2^ 
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In t h i s case, a l s o , a^ = a^ gives the same form 

of A as was obtained i n Thm. (2.1). 

Case ( i i ) (b) i s analogous to case ( i i ) ( a ) . In 

t h i s case, we can assume that T H contains ( 1 , 2 ) , (1, k) 

(k<n) . A l s o , B^ contains 3-cycles (1, m, r) f o r r e { 2 , ...» k} 

and m e {2, n} , m ^ r . The equation t r ( l , m, r ) A = t r ( l , r ) A 

determines the f i r s t column of A i n (2.10) and the remaining computation 

i s s i m i l a r to the preceding a n a l y s i s . We omit the d e t a i l s . We o b t a i n 

^ a +6 • (a -a0)+a..+6 . . . (a..-a„)+a. .+6 . . .a ,+6 n n 1. 2 1 n - 1 2 k-1 n n-1 n 

2.13 A = 

n 1 

a +6 , , n n-1 

V 6 i 

a, +.6 , 1 n-1 

a k - l + 6 l 

V i \ i 

n-1 1 

. . .a T+6 n 

n-1 n-J, 

Again, i n the general case, the " d i s t i n g u i s h e d " 

elements of A are those i n row r n and columns r 0 r 
1 • z k 

Conversely, i f the matrix A i s of the above form, then 

{tr(PA) : P e S } =' { a. , a 0} . 
n 1 2 

C l e a r l y , a^ = a^ gives the same form of A as 

was obtained i n theorem (2.1). 

F i n a l l y , we consider the s t r u c t u r e of A when the 

p a r t i t i o n of i s given by case ( i i ) (c) 
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Let (1, 2), C I , k) be i n I f l . B , k<n .. For 

s i m p l i c i t y , assume that {(1, r, m) : r e {k^+1, k} ; m = k+1, n} 

c B.̂  and {(1, r, m) : r e {2, ..., k^} ; m = k+1, ..., n} £ B 2 

Lemma (2.5) reduces A to the form (2.10) and by 

Lemma (2.7), (1, r ) , (1, m, r) and (1, r, m) are i n "for 

r, m e {2, ..., k} ; m ̂  r . Therefore, as before, 

t r ( l , r)A = t r ( l , m, r)A gives 

a .. - a - = a - a r l ml rm mm 

and a r l = 6 ^ + ( a 2 1 - 6^) r e {2, k} 

Also, for r e {k+1, .... n} , (1, r) and (1, 2, r) 

are i n B 2 . Hence t r ( l , r)A = t r ( l , 2, r)A 

implies a
ri = 1 + ^ a21 ~ ^1^ ' r £ '"' n ^ 

Set a o n - 6n = a 
IL 1 n , 

T h e n ' a r l = a n + 6 r - 1 ' 

and a_T = a + S-, . .. , a n = a + 8 , 

21 n 1 n l n .. n-1 

To f i n d the f i r s t row of (2.10), note that (1, r ) , 

(1, m, r) and (1, r, m) are i n " B^ for m, r e {2, ..., k} . Hence, 
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2.14 a l r = a + ( a 1 2 - a 1) f o r r e {2, ..., k} 

Since r e (k+1, . .., n} , (1, r) and (1, r , 2) 

are i n B 2 , t r ( l , r)A = t r ( l j r , 2)A 

and a l r = a
r - 1 + ( a

1 2 " a
1 > • 

By (2.14), a = a + (a 2 - a ) f o r r e {3 n} 

Setting a l 0 - a = <5 

we have a. = a , + <5 f o r r e {3, . .., n} 
l r r - l . n . 

In-order to determine the element a ^ , we use the 

fa c t that (m, m+1) and (1, m+1, m) are i n B 2 f o r me {k+1, n} 

We have 

tr(m, m+1)A = t r ( l , m+1, m)A 

a n ^ a n = a i i i ~ a , i i + a
n 

11 m+1 1 m+1 m lm 

a + S e - a - S + a ., + 5 n m /m-1 m m-1 n 

a + 6 n n 

Thus (2.10) becomes 
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a +6 a +6 n n I n 

a +6 a.+6 n 1 1 1 

a +6 , I n n-1 a +6 1 n-1 

a , + 6 n-1 n 

a + 6 n-1 1 

a ,+6 -i n-1 n-1 

We know from Theorem (2.1), that for such matrices 

tr(PA) = tr(A)V P e S , which means that a., cannot be diff e r e n t from 
n 1 

a^ • Hence case ( i i ) (c) cannot arise i f a^ =f a^ 

We bring our results together i n the 

2.15 Theorem: Let A be an n-square matrix such that 

(tr(PA) : P e S } = (a. , a.} , where a, =|= a„ . Then A i s either n 1 Z 1 z 
of the form: 

f V 6 i 
a 1 + 6 2 

C = 

a,+6 1 ^ 

1 r. k+1 

a r r l + 6 l 
a r r l + 6 2 

a,+6 ... a ,+<$ 1 r 2 r ^ l r 2 

a ,+6 
r l _ 1 r k 

a n+6 
V 1 rk+i 

a ..+6 a T+6 I n r l n 

a +6. 
r l 1 

\ + S 2 

a +6 r r 1 k-l 

r^+1 1 

r^+1 2 

( a r a 2 ) + a
r i

+ ( S r 2
 a r 1 + l + 6 r 2 

(a -a )4xx +6̂ . a . - , + 6 , . Li. r, r, r , t i r 1 k 

ar 1+l + 6n 

a n + 5 l 
an+(S2 

a +6 n r. 

l k k 
r l + 1 rk+l n rk+li 

a n + 5 n 
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or of the form C 

The set B =' {P e S : tr(PA) = a n} consists of I n • 1 
a l l 2-cycles ( r ^ , r J , j = 2, k and the products P of d i s j o i n t 

cycles P,, .... P , m>l , for which one of the P. has i t s graph with 
•> 1 m — l 

r 
an edge r ^ ->• r (or r^ -»• r^) for j = 2, . . . , k 

Conversely, for every matrix of the form C or C 

{tr(PA) : P E Sn> = a^ . 

Proof: The foregoing discussion proves a l l but the l a s t 

statement, which i s t r i v i a l to v e r i f y 

Corollary: I f A i s such that {tr(PA) : P e Sn> = { a ^ . a ^ , 

where a + a , there ex i s t permutation matrices 9. and 6~ i n 
1 1 2 '1 2 

and an integer k , 1 <_ k <_ n , such that either 0^ A o r 

T 
(0^ A i s equal to: 

C = 

a +6 n n 

(a 1-a 2)+a n+6 1 

Ca1-a2)+an+62 

(a 1-a 2)+a n+6 k_ 1 

a +6, n k 

a +6 
: n n r l 

ou+6 
1 n 

a l + 6 l 

a l + S 2 

W l 
a,+6, 

1 k 

a.+6 ' T 1 n-1 

a .+& n-1 n 

n-1 1 

n-1 2 

n-1 k -1 

a ..+6. n-1 k 

a .+5 ; r . n-1 n-1 
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The set B. = {P e S : tr(PA) = a,} consists of 1 n 1 
a l l 2-cycles ( e ^ l ) , e ^ j ) ) , j = 2, ..., k and the products P of 

di s j o i n t cycles P , P^, m>_l , for which one of the P^ has i t s 

graph with an edge e 2 ( l ) + 6 1 ( j ) (or 6 1 ( j ) ->- 6 2 ( D ) for j = 2, k 

Remark: The general case of a matrix A for which tr(PA) 

takes on k d i s t i n c t values a^, a^ as P ranges over presents 

formidable combinatorial d i f f i c u l t i e s . We can, however, indicate one or 

two very special results which are possible. 

I f k = n and t r ( l , r)A = a for r = 2, k 

and tr(PA)= a n for a l l other 2-cycles P i n T , we can show that 

A has the form: 

11 

l21 

'31 

h i 

a l 2 a13 , ' In 

a l + S l a2+Sl • n-1 1 

a-^+62 a 2 +6 2 . . .a i+6\ n-1 2 

n-1 n-1 



We do not give the d e t a i l s of proof, but the a d m i s s i b i l i t y of such a 

p a r t i t i o n of T f o l l o w s from (1.9), (1.10), (1.11) and (1.12) and the 

s t r u c t u r e i s obtained by lemma (2.5). 

S i m i l a r l y , i f k > n , an admissible p a r t i t i o n of 

T i s given by: t r ( l , 2)A = a^, t r ( l , n)A = a n ^, tr(2,- 3)A = a^, 

t r ( r , s) = a
k _ 1 and tr(PA) = a^ f o r a l l other 2-cycles i n T 

In t h i s case A has the form: 

f 

ft ft 

. a-,+5., ... a +<5n 1 1 n-r 1 

ft 

. 1 n-r ... n-1 n-r 

To conclude t h i s chapter, we consider the set of 

nxn matrices {A : E .(PA) = E . (A), f o r a l l P e S } , where 
n -1 n—1 n 

E ^(A) denotes the ( n - l ) s t elementary symmetric f u n c t i o n of A 

We c l a i m that f o r such matrices E .(A) = 0 
n—1 

By Remark (1.28), f o r a P e S n , 

r 
N C ,(P) = E g.C .(P.) , where P. e M and n-1 , -. l n-1 i ' I . 

• ' 1 = :1 ' " ' . 

E (3. ={= 1 , 'therefore, ' '•' 
i = l 1 
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C _CP)C . ( A ) = Z 3.C _(P.)C . ( A ) - . n-1 n-1 • n i n-1 x n-1 x=l 

By taking the trace of both the sides, we get 

r 
2.16 tr(C .(PA)) = tr(C _(P)C .(A)) = I B.tr(C -.(P.)C (A)) n—X n—x n—x . .. x n—x x -n—x x=l 

By our assumption that -E .(PA) = E .. (A)V P e S 
. . n-1 n-1 .•• . ' n 

and the fact that trC , (A) = E • (A) , we have 
n-1 n-1 

tr(C .(P)C. ,(A)) = tr(C ( A ) ) = A , say. n—1 n—1 n—1 

Substituting .A \ i n (2.16), we get 

A = AZ B . , which implies A = 0 , 
r ' i = l 

since Z f 1 
i-1 1 , 

E . (A) = tr(C (A) = 0 n-1 n-1 

Thus we have 

2.17 Theorem: A necessary condition that the nxn (n>_3) matrix A have 

the property, E (PA) = E (A) for a l l P e S , i s that E _ (A) = 0 . 

NOTE: The corresponding theorem for an nxn matrix A ; 

namely that tr(PA) = tr(A) for a l l P e S n implies tr(A) =0 i s 

not true. For, i n this case corollary (1.14) asserts that i f 
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P e S , then P = Z a.P. , where P. e M and E a. - 1 . 
i - l 1 1 1 l - i 1 

This f a c t saves t r ( A ) from becoming zero. 

2.18 N o t a t i o n : Write C (A) = B and C .(P) = P' . n-1 n-1 

In order to gain f u r t h e r i n s i g h t i n t o matrices w i t h 
the property E^^CPA) = E^ ^(A) f o r a l l p e s

n » w e e s t a b l i s h : 

2.̂ 19 Theorem: For an nxn (n^3)- m a t r i x . A s a t i s f y i n g E ^ ( P A ) = 

E . (A) f o r a l l P e S , det A = 0 . n-1 n 

Proof: By Theorem (2.17), E .(PA) = t r ( C , (PA)). = 
n—1 n — l 

t r ( C ,(P)C .(A)) = tr(P'B) i m p l i e s tr(P'B) = 0 f o r a l l P e S n-1 n-1 n 

In f a c t , tr(QB) = 0 f o r a l l l i n e a r combinations Q of such P"'s 

n-1 Since det B = det C .(A) = (det A) 
n-1 

( [ 2 ] ; pp. 17), i t i s s u f f i c i e n t to e s t a b l i s h that det B = 0 

Now B = ^ i j ^ '*"s a n n * n m a - t r i x ; l e t 

B = o 

b l l + b 1 2 b 1 2 + b 1 3 13 
b 2 1 + b 2 2 b 2 2 + b 2 3 b 2 3 

b In 

2n 

b k l + b k 2 b k 2 + b k 3 ,. b k 3 * * * b k n 

b .,+b _ b „+b _ b „ . . . b 
k n l n2 n2 n3 n3 nn 



Then det B = det B We claim that the f i r s t two columns of B are 

of the form {a , - a^, (-1) a r} , r = 1, 2 for certain r e a l 

numbers â ,' a 2 • In the following, we s h a l l want to derive conclusions 

from the fact that tr(QB) = 0 for any l i n e a r combination Q of P"s 
n 

and the fact that E (A) = E b.. = 0 . We s h a l l simply say n-1 . ., xx x=l 
" Q gives 11, where the dots indicate the s i m p l i f i e d form of the 

n 
equation tr(QB) = 0 obtained by using E b^. = 0 . Thus, for exampl 

i = l 
n n 

f o r ! P',= (1, 2) , tr(P'B) = b._ + b,. - E b.. = 0 . Using E b — IZ Z l . 1 - 0 XX • -| xx x f l , 2 x=l 
+ + 

we find that "(1, 2)_ gives b 2 + b n = - ( b ^ + t> 2 2)" ; and 

b l l + b12 = ~ ^ b21 + b22^ " I n t h e S a m e W a y S i v e s 

b + b. = + (b + b ) , where the +ve sign i s used i f r+s i s sr rs — r r ss 
even and the -ve sign i s used otherwise. 

I f we l e t b ^ + b^ 2 = , then b,^ + b 2 2 = -

which says that the f i r s t two elements of the f i r s t column of B are 
o 

and - , respectively. By judiciously picking sums of P"s , 

we can show that the remaining elements i n the f i r s t column of B 
+ + + °+ 

are also + a., with correct signs. For example, C> = (1, 2, 3, 4)_ 
+ - -

+ (1, 3, 4 ) + gives b 3 1 + b 3 2 = - ( b 2 1 + b 2 2) = , since 

0 = trCQjB) = t r 

(0 1 0 0 0 . . . -o" [0 0 1 0 0 . . o' 
0 0 1 0 0 . . . 0 0 i 0 0 0 . . 0 
0 0 0 1 0 . . . 0 0 0 0 -1 0 . . 0 
1 0 Q 0 0 .. . 0 + -1 0 0 0 0 . . 0 
0 0 0 0 -1 • . • 0 0 0 0 0 1 . . 0 

0 0 0 . 0 .. . -1 0 0 0 0 0 . . 1 
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= b21 + b22 + b31 + b32 > f 0 r \ b i i = ° • 

1=1 
+ + + + + - -

In general, for k even, (1, 2, k-1, k) + (1, k-l,'k) gives 
b 0 . + b. 1 0 + b. . . + b . . + b. - b. , . + b . . + b 0 0 = 0 and 21 . k-12 kk-1 l k k-11 kk-1 l k 22 

V l l + \-12 " " C b 21 + b 2 2 } = . a l ' 

+ - + - - - + 
If k i s odd, then (1,. 2, k-1, k)_ + (1, k-1, k ) + 

g i v 6 S b k - l l + V l 2 = ( b 21 + b 2 2 ) = " a l ' 

These results give us a l l but the l a s t element i n the 

f i r s t column of B .Now, we show that the n-th element of the f i r s t 
0 

column i s obtained as follows: 

For n odd, the matrix (1, 2, n-1, n)_ + (2, n-1, n ) + 

gives b - b 1 0 + b n ~ b +b 1 0 ~ b n ~ b + b = 6 ; 21 n-12 nn-1 In n-12 nn-1 2n 11 

and hence - (b. + b„ ) + ( b n n + b„ n) = 0 . This can be rewritten as: In Zn 11 Z l 
( b 2 1 + b 1 2 ) - b 1 2 - ( b l n + b n l) .+ b n l - ( b 2 n + b n 2 ) + b n 2 + b u - 0 • 

Since ( r , s) gives b +b = + ( b + b ) , • - & rs sr — r r ss 

we get b n l + b n 2 = b u + b 1 2 = a± 

S i m i l a r l y , when n i s even the matrix 
+ + + + + 

CI, 2, n-1, n)_ + (2, n-1, n ) + gives + = - (b^ + b 1 2 ) = -
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Hence, the f i r s t column of B i s 
' •' •<•'' • o 

'{a 1 > -a^ , ( - l ) n 1 0 ' 1 } T 

-' In order to get the second column of B , we observe 
+ + + + + - - ° 

that the matrix (1, 2, 3, 4)_ + (1, 3, 4 ) + gives + b 3 1 + b 3 2 + b 2 2 = 0 

This can be re-written as (b^ 2 + b 2 1> - b^ 2 + ( b
3^ + ~ b i 3 + ^ 3 2 + b23^ 

- b 2 3 + b 2 2 = 0 By using the fact that b^ 2 + b,^ ( b n + b 2 2 ) 

b31 + b13 = b l l + b33 a n d b32 + b23 - ( b 2 2 + b 3 3) , we get 

b22 + b23 = ' ( b12 + b 1 3 ) S e t b12 + b13 = a2 

then b22 + b23 - a,. 
+ + 

Also, (2, 3) gives 

b33 + b32 = " ( b22 + b 2 3 } = a2 Thus, the 

f i r s t three elements of the second column of B are a„, - a„ and 
o 2. J. 

a 2 , respectively. The remaining elements of this column are obtained 

by examining the matrices: {(2, 3, k-1, k ) _ + (2, k-1, k) + , k = 5,,...., n} 

and (2, 3, n-1, n) + (3, n-1, n ) + . We omit the detai! 

we have 

B = o 

3, n-1, n)_ + (3, n-1, n ) + . We omit the de t a i l s . 

a2 .. - b13 

" " a l ; b23 • ' ^ b2n 

- a l • a2 b33 . . . b„ 
3n 

( - D n _ 1 a 2 
bn3 . . . b 

nn 
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and det B = 0 = det B . Therefore, det A = 0 . QED. 
o 

2.20 Remark. Let matrix B" be obtained from the matrix B = 

C n ^(A) = ( bj_j)> i» J = 1> • • • > n > b y replacing the f i r s t n-1 columns 

by (b . . + b . .,,)> 1 = 1> ..., n ; j = 1, ..., n-1 and by keeping 

the l a s t column as i t i s . We claim that the f i r s t n-1 columns of B' 
n ~ l * X 

are of the form {<* > ~ a
r> •••» ( - x) a

r ^ > r = 1> •'••» n~l 

In the preceding theorem, we have seen that i t i s 
t 

true for the f i r s t two columns of B' . We assert that i t i s true 

for any k-th column of B' 

Suppose, the k-th element of this column i s 

s_ s„ s„ s k - l 1 2 3 4 (-1)i a, . In this column, the matrices {(k , k+1 , k+r , k+r+1 ) k -

+ (k , k+r •3, k+r+1 ) , r = 2, n-k-1 and (k , k+1 , n -1, n ) 

- t 2 - t t 5 

+ (k+1 , n -1> n ) } give the l a s t n-k-1 elements, the matrix 

+ + 
(k , k +D_ gives the (k+l)st element, the matrix 

( k + - l , k +, k ++l, k ++2)_ + ( k - l + , k+l~, k+2~) + gives the ( k - l ) s t 

element and the f i r s t k-2 elements are given by {(r, k - l , k) 

+ ( r , k ) _ , r = 1, k-2} . Thus, without the d e t a i l s , we i n f e r that 

the k-th column i s of the form {a, , -a , ( - l ) n "'"a, } 5 k<n-l 

x. I f A i s an mxn matrix with p (A) = k , then 



P-'(C ( A ) ) = Q ([2]; pp. 28). Clearly, for k < r , pCC^A)) = 0 , 

i.e . every entry of C^(A) i s zero. 

' k • : , In the present case, when , r = n-1 , p(B) = (n_^) 

Since det A = 0 , therefore -p. (A) •; n . But for p (A) < n-1" , we 

have the t r i v i a l case i n which p(B) = 0 , In this case B = 0 and 

i t i s t r i v i a l l y true that for any A (of rank < n-1 ) T R ^ N ^(A-)) = 

tr(C ,(PA)) for a l l P e S . n-1 n 

We consider now the structure of B and A when 

p(A) = n-1 and p(B) i s (consequently) 1; ; 

Assume that B has the form: 

B = 

k i a 2 

k - a n k ..a0 n-1 1 n-1 2 

k.a 1 n 

k . a n-1 n. 

I f we examine the f i r s t n-1 columns of B i n 

the l i g h t of Remark (2.20), we f i n d that 

2.21 ( a r + - a i + 1 ) ( l + k ^ = ( a r + a ^ ) (1 - k,,) = ... = ( a r + a ^ ) 

(1 + ( - l ) n _ 1 k ,) = 0 for r = 1, n-1 n-1 



We now consider the form of B i n the two cases 

•which • arise' when -a '+ a ., =(» 0 for some ' r e ' {1» •n-1'}"'-''and when' « r r+1 1 

a + a = 0 for a l l r e {1, n-1} r r+1 

Case ( i ) a + a ' + 0 •for r = k r r+1 ! 

B becomes 

From (2.21), we have k^ = (-1) and the matrix 

2.22 B = 

-a. -a. 

/ i \ n - l / -i \ n _ l (-1) a1 (-1) a 2 
r T \ N _ 1 

Case ( i i ) a + a , . = .0 for a l l r e {1, n-1} 
r r+1 

In this case the matrix B takes the form 

2.23 B = 

k l a l 

-a, 

" k l a l k l a l 

/ i v.n-1 (-1) a± 

U 1 C - l ) " - 1 a 1 

k ,a, -k ,a, k _a 1 n-1 1 n-1 1 n-1 1 
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Note that as far as form i s concerned, (2.23) i s 

es s e n t i a l l y the transpose of (2.22). This implies that the structure 

of a matrix A whose compound i s a matrix of the form (2.23) i s the 

transpose of a matrix whose compound has the form (2.22). I t i s there

fore s u f f i c i e n t to determine the form of A" when B i s given by (2.2.2) 

If U\, i = 1, n are the rows of A , then by 

d e f i n i t i o n (1.7) 

2.24 U, - U. U = ( - l ) n XU, - ... «• U. * ... r> U 
1 2 n 1 I n 

where U. implies the absence of U. i n the Grassmann product, x 1 

Now A i s of rank n-1. Let us suppose that the 

row vectors U U - are independent, and 1 n-1 

2.25 U = 3,11. + ... + B _U . 
n i l n-1 n-1 

Taking the" l e f t Grassmann product of (2.25) with 

U, ~.„. -U. A . . . A U , we get 
1 x n ° 

IL <v U . * . . . A U. *• .'. A U . = ' B.U,'-' A ' . . . A U. A •* . ' i . ' « U A U. 1 2 x n x l x n x 

= ( - l ) n 1 - 1 B'.IL U 
x 1 n 

Using (2.24), we obtain-

v ( - l ) n ̂ U J - A . « u = ( - l ) n ,U, A . . : . ' : ^ A Tj , which implies 
1.'' iy.n.• a-1: n • 

that , ' 3 . = -1 for a l l i e { l , n-l> 
x 
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Thus 
n-1 

U = - E U. , and n . ' i x=l 

2.26" 

I U, 

A = 

U i n-1 
n-1 

- E U. 
1=1 3 

Note that we are led to this form, no matter which 

rows of A we assume to be l i n e a r l y independent. 

S i m i l a r l y , the form of A , when' B i s given by 

(2.23), i s the transpose of (2.26). 

We summarize these results i n 

2.27 Theorem: I f A i s rank n-1 n-square matrix with the 

property that E (PA) = E^CA) for a l l P e S n (n>3) , then A i s of 

the form (2.26) or i t s transpose. 

However, for an n-square matrix A of rank less 

than n-1 , E (PA) = E .(A) for a l l P e S i s t r i v i a l l y true. n-1 n—1 n 



CHAPTER I I I 

ORTHOGONAL MATRICES AS 
LINEAR COMBINATIONS OF 
PERMUTATION MATRICES. 

3 . 2 I t i s an interesting fact that some orthogonal 

matrices, such as any permutation matrix, or 

f 2. 1 _ I 
3 3 3 

2 _ 1 2 
3 3 3 

1 2 2 
1 3 3 3 J 

can be 

expressed as li n e a r combinations of permutation matrices; while others, 

cannot. In this Chapter we s h a l l take a look at such as 
0 1 0 
0 0 1 
1 0 0 J 

orthogonal matrices of the former type. Our main resu l t w i l l be to 

show that, i f the orthogonal matrix 8 c a n D e written as a sum 
k k 
E a. P. , then E a. = + 1 . , i i . , i — i = l i = l 

In view of theorem (1.8) such l i n e a r combinations 

can always be expressed i n terms of the members of TUCUI. I t turns 

out to be convenient to treat this question under three p o s s i b i l i t i e s 

which can arise. F i r s t , we examine those orthogonal matrices which 

can be expressed as li n e a r combinations of the elements of T U I 

Obviously such matrices are always symmetric. Parenthatically, we 

note that not every symmetric orthogonal matrix can be expressed as 
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linear combination of T U I , as the example (J shows. 

Secondly, we consider those orthogonal matrices which can be expressed 

as l i n e a r combinations of permutation matrices from the set C 

Finally;, we look at those orthogonal matrices which l i e outside the two. 

previous categories and require permutations from both C and T D I 

i n their representation. 

Suppose the orthogonal matrix 8 i s a l i n e a r combi

nation of elements of T U I . Let a l l ( r , s) e T be arranged i n 

lexicographic order (<) and l e t the co e f f i c i e n t of ( r , s) be denoted 

by a . I n any product a a , as a matter of convenience i t rs J rs tu 
w i l l be taken for granted that ( r , s) < ( t , u) . Furthermore, we denote 
n-1 n 
Z E a by Za , the sum of the products of a l l a taken two 

n , rs J rs rs r = l s=r+l 
2 at a time by Z a a , and the sum of the squares of a by Z a rs tu n rs y rs 

Let Z = Z a be the sum of a l l a's which are the coef f i c i e n t s r, „ 4 rs 
I r j S - f ^ 

of those permutations (r, s) which keep r fi x e d , l e t Z 
i x1,s1 

Z a = sum of a l l a's which are the coef f i c i e n t s of those 
I rs r , s f r 1 , s 1 

( r , s) which leave r n and s. unaltered, l e t a be the set of 
1 1 r 1 

a's i n the summation E and l e t Z a a be the sum of the r n rs tu l a 
r l 

products of a l l a i n a taken two at a time. 
rs r ^ 
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3.3 Theorem: 
n-1 n 

If 6 = E E 
r=l s=r+l 

a (r , s) , where the a are rs rs 
n-1 n 

r e a l , i s an orthogonal matrix, then E E 
r=l s=r+l rs 

Ea = + 1 rs — 

Proof: We note f i r s t that, i n the special case i n which 

:1 a = 0 , s = 1, .. . , n ; s =f r.. , for a fixed r1 e {1,- ..., n} ; 
r l S 1 • 

0 0 Ea 
rs 

'r-j-th 

. r 1 ~ t h 

From this i t i s evident that Ea = + 1 . 
rs — 

For the general case, there are technically two 

approaches that we could take. Since 6 i s symmetric and orthogonal, 

6 2 = I = (E a ( r , s))(E a ( r , s)) . We could rs rs 
consider both sides of this equation as representations of I. as 

linear.combinations of elements of M (Theorem 1.8), and equate 

coe f f i c i e n t s . We prefer, however, a second approach which just uses 
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the fact that the row vectors of 

Written out, 6 has the form 

6 form an orthonormal set of vectors. 

. a12. a i 3 a l n - l am 
h a23 a 2 n - l a2n 

a13 a23 S3 a 3 n - l . a3n 

a l n - l °2n-l a 3 n - l 

In 2n 3n 

"n-1 n-ln 
a , Z n-ln n 

Using the fact that each row of the matrix 6 i s of 

norm 1 , we obtain the n equations: 

E a + 2k, = 1 , where k, = E a a rs 1 1 rs tu 
CT1 

Z a + 2k„ = 1 , where k„ = E a a rs 2 2 rs tu 
a l 

E a + 2k = 1 , where k = E a a rs n n . rs tu a n 

I t follows that k, = k„ = ... = k = k , say. Clearly, each k. 
1 2 n J J ' x 

m l n-1 contains ) terms, where m̂  = ( 2 ) • Also, 



II 
E k. = nk = E a a + 

. . 1 rs tu x-1 a± 

+ Z a a , and. rs tu cr n 

3.4 nk = (n-3)Z a a - R , where rs tu 

R - a 1 2 [ Z l j 2 ] + ... + a r s [ Z r > s ] + ... + ^ [ Z ^ ^ J 

Here FZ ] denotes the sum of those a. £ a such that (k, p) > ( r , s) - r,s J kp r,s 

two 

Now, using the fact that the inner product of any 

rows of 0 i s zero, we get the following ( 2) equations: 

f a 1 2 ( E l , 2 + Z a r s " a l 2 } + a13 a23 + •*• + a l n - l a 2 n - l + a l n a 2 n = ° 

a 1 3 ( Z 1 ) 3 + Z a r s - a 1 3) + c ^ c i ^ + ... + a ^ a ^ + a l n a 3 n = 0 

3.5 

a .. (E T +Za - a ., ) + a., -a, + . .. + a » „a . 0 = 0 n-ln n-l,n rs n-ln ln-1 In n-ln-2 nn-2 

Each equation i n this set has n(n-2) terms. Adding these equations, 

we get.' : < •:'.'•.'•.'",. 

we obtain 

3 Ea a + R = 0 . Adding this equation to C3.4), rs tu 

nk = n Za a , which implies rs, tu 

3.6 k = Ea ' « 
rs tu 



2 Since Za + 2k. = 1 and k. = k , t h e r e f o r e r s I i 

(Za ) 2 = 1 Q . 'E .D. 
rs 

'>•.'•, . n-1 n J 4 
3.7 Theorem:, I f .6=. Z Z a ( r , . s) .+ AI, i s an, orthogona-1, 

, r = l s=r+l 
m a t r i x , then Za + A = + 1 rs — 

Proof: The argument i s s i m i l a r to the one i n Theorem (3.3), 

In t h i s case equation (3.4) becomes 

nk = (n-3)Za a - R + (n-3)AZa + AZa , and rs t u r s r s 

the set of equations (3.5) when added, gives 

R + 3 Za a + 3 AZa - AZa = 0 rs t u r s r s 

Adding these two equations, we o b t a i n 

nAZa + nZa a = nk Using t h i s i n rs r s t u 

2 2 Za + A + 2k = 1 , we get rs 

Za + A = + 1 . rs — 
Q . E . D . 

' The f o l l o w i n g example shows that there e x i s t 
n-1 n 

orthogonal matrices 6 of the form Z Z a ( r , s) + AI , i n 
• r - l s=r+l r s 

which none of the a i s zero. 
r s 
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For the matrix 

3.8 6 

2 
n 
2 
n 
2 
n 

2 
n 
2 
n 

-(n-2) 
n 

2 
n 
2 
n 
2_ 
n 

2_ 
n 

-(n-2) 
n 
2 
n 

2 
n 
2 
n 
2_ 
n 

•(n-2) 
n 
2 
n 
2 
n 

2 
n 
2 
n 

-(n-2) 
n 

2 
n 
2 
n 
2_ 
n 

2̂  
n 

•(n-2) 
n 
2 
n 

2 
n 
2̂  
n 
2̂  
n 

•(n-2) ) 
n 
2_ 
n 
2 
n 

2 
n 
2 
n 
2_ 
n i t i s 

3 —n 
easy to show that when n i s odd, then A = ; and when n " i s even, 

4-n A = In both cases, Za + A = 1 ' rs 

More generally we have 

3.9 Theorem: Given a subset {(r, s)} of 2-cycles for which 

the combined graph i s strongly connected and complete, there exists an 

orthogonal matrix 6 = Z Z a ( r , s) + Al such that every a^s =j= 0 
r s 

Proof: The fact that {(r, s)} form a strongly connected 

complete subgroup implies that {(r, s)} i s the whole set of 2-cycles 

The preceding example then gives appropriate 

nonzero values of a 

i n S. for some xk < n k — 

rs 
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Now we consider those orthogonal matrices which can 

be expressed as l i n e a r combinations of permutation matrices from the 

set C = { ( r , r+1, t) ; r = 1, n-2; t = r+2, ..., n} 

Suppose the orthogonal matrix 6 i s a l i n e a r combina

t i o n of elements of C . Let 3 be the c o e f f i c i e n t of " ( r , r+1, t) 

and l e t b„ = 3 . 0 + 3 _,_0 '+...+ 3 -' . 
r rr+2 rr+3 rn 

3.10 Theorem: 
n-2 n 

I f 6 = • E E 3 ..(r, r+1, t) , b >_ 0 f o r a l l 
r = l t=r+2 r t r 

r , i s an orthogonal m a t r i x , then a l l but one of the 3 are zero. 

Proof: The matrix: G has the form 

f E b 

0 

J13 

'In 

E b 
r+1,2 r 

2n 

h 3 + h 2 B14 

-3,.+ Z I 
1 3 r+2,3 

>3n 

3 2 4 + b 3 

>4n 

0 , 

In 

J2n 

n- i-2 
E b - E 3. 

r = l i = l 
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We s h a l l o b t a i n our r e s u l t by using i n d u c t i o n on 

n of .... Since. 6 i s an orthogonal m a t r i x , the in n e r products of 

the f i r s t row w i t h every other row of 0 are zero, we get 

3.11 b, Z b = 0 
1 r+1,2 r 

3.12. . 3,, Z b = 0 
1 3 r f l r . . 

3.13 

B14 I n
br + B 2 4 b l = ° r+1 

J. Z b + 30 b = 0 In i . r 2n 1 r+1 

By (3.11) and (3.12), 

e i t h e r b., = 0 or Z b = 0 and 
1 r+1,2 r 

e i t h e r 3 , o = 0 o r Z b = 0 . Thus we have the f o l l o w i n g 
13 i n r r+1 

three cases: 

( i ) b 1. = 0 

( i i ) Z b = 0 and ' Z b = 0 
r+1,2 r r+1 r 

( i i i ) Z b = 0 and B.. = 0 
r+1,2 r 1 3 

Let us examine these cases. 
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Case ( i ) = 0 

This i m p l i e s that E b = 1 s i n c e 6 i s an ortho-

gonal, = B-̂  = . . . = 3 l n = 0 , and 0 reduces to the form where 

i n d u c t i o n i s a p p l i c a b l e to i t s (n-1) x (n-1) p r i n c i p a l submatrix. 

Case ' ( i i ) E b = 0 and E b = 0 
r+1,2 r • r+1 r 

Let 6 = (a..) . E b = 0 i m p l i e s that b. = 1 
r+: ~ i j * r+1 r 1 

and ' 3 „ , = 3 ~ r = . . . = 3 o = 0 • I t a l s o i m p l i e s that b = 0 f o r a l l 24 25 2n r r 

r = 2, , n-2 (b^ >_ 0) . The f a c t that the t h i r d row of 0 has norm 

1 gives 

$ 2 + -(-g + E b ) 2 + b 2 = 1 , 
1 3 1 3 r+2,3 r 3 

2 2 and hence 3 ^ 3
 + = 1 

Thus 3 3 = 0 or 3 = 1 

I f 3 1 3 = 1 , then a 3 3 = 1 - 3 1 3 = 0 . In t h i s case 

we can show that 6 reduces to a 3-cycle (1, 2, 3) . We achieve t h i s 

by showing that a = 1 f o r a l l t > 3 . Note that we now have 

:3, . = . . . = 3 , = 0 and a 0 0 = 3 , _ = 1 . This i m p l i e s that 14 In 23 13 . 
p< = .. . = 3 o = -0 , and hence the only nonzero entry i n the f o u r t h 3J 3n 
row of the m a t r i x 6 i s a,. . This means that a.. = 1 . Assume 

44 44 
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that a = 1 for r = 4, .... t-1 . .We s h a l l show that a ^ .= 1. . 
r r . , .. .• t t 

From the form of 9 i t i s clear that a =0 for r 4= t and r = 1, ... 
t r 1 

for a.. = 1, r = 4, .... t-1 . Thus a i s the only nonzero entry i n r r t t 
the t-th row of the matrix 6 and i t i s 1 . Hence, i n this case 

6 = (1, 2, 3) . 

Consider the case when 3-j^ ~ u • This implies 

a^^ = 0 a n <i = 1 • Since the fourth row of 6 i s of norm 1 

we get 

$,,(1-3,/) =0 . Therefore, 14 14 

3 ^ = 0 or 3-^ = 1 . Suppose that 

B l , r - 1 " h,r-2 = ••• = 3 1 3 = 0 and 3 l r f 0 + a 2 r 

I t i s clear that a , ̂  , = 1 for t < r . Since a , , = 1 , 
t - l t - 1 — r - l r - 1 

therefore, a _ , , = a , , „ = . , . = a , = 0 . Consider the elements r-lr+1 r-lr+2 r - l n 
of the r-th row of 0 ; 3 .i =r 0 and a - = ... = a 0 = 0 . Also, 

i r ' r r - 1 r2 
a = a , , , = 0 , . . . , a = a , =0 . Thus the r-th row has rr+1 r-lr+1 rn r - l n 
only two nonzero elements; v i z , a , and a . This implies that 

r l r r r 

3, ( l - 3 n ) = 0 , since the norm of r-th row i s 1 . Thus 3, = 1 l r l r ' l r 
sm ce 3, +0 for a. + 0 . The fact that a ^ = 1 for t > r follows l r 1 2r 1 t t 
from an argument s i m i l a r to that used when 3 ^ = 1 . Hence, i n this 

instance, the matrix 9 reduces to the cycle (1, 2, r) 



Case ( i i i ) E b = 0 and B. = 0 
r+1,2 r " 

Adding the equations i n (3.12) and (3.13), we o b t a i n 

b. Z b + b.b. = 0 and 1 j , r 1 2 r+1 

b. ( l b + b ) = 0 1 i , r I r+1 

Suppose b^ = 0 . This case reduces to case ( i ) 

I f , however, Z b + b~ = 0 , then 
r+1 r 2 

Z b + 2b„ = 0 . Since E b = 0 
r+1,2 r 2 r+1,2 r 

. t h e r e f o r e b„ = 0 and E b = 0 . This i m p l i e s 

that b^ = 1 and t h i s case reduces to case ( i i ) . . Q.E..D. 

•We' conclude t h i s chapter w i t h • ' ." 

n-1 n n-2 n 
3.14 Theorem: I f 6 = E E a ( r , s) + E E B , ( r , r+l,.k) 

r = l s=r+l r s r = l k=r+2 • 

+ XI} where the a's, B's and X are r e a l , i s an orthogonal m a t r i x , 

then Ea + EB , + X = + 1 . r s rk — 

Proof: The matr i x 6 i s of the form: 
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r 
r+1 r 1 12 1 l i In 

a n o Z b +X+E0 a„.+3,. ...a 0+3, 12 ,, . r 2 2 i l i 2n In r+1,2 

i-2 

r + i , i - l r=l 
oh, .+3,. a 0.+3 0. ... Z b +E.- Z 3 .+X...a. +3. 1 l i l i 2 i 2 i i . . , r i , r i i n l - l n 

n-2 
a, +8, a 0 +3 0 a. +8,- -..Z H-X+Zb - Z 8 In In 2n 2n i n i n n r , rn r=l 

In addition to the notation i n theorem (3.3), we l e t 

d^ denote the set of 3's occurring i n the expression for the element 

in the { i , i } position of 8 , l e t d^ denote the set of B's 

occurring i n the non-diagonal elements of the i - t h column of 0 , 
m 

and l e t ZB 3 denote the sum of those products R- 3 for which rs tu rs tu 
(r , r+1, s} and {t, t+1, u} 'have m (m<3) integers i n common; 
m 
Za 3 i s defined i n the same way. As usual, the sum of 3's and the rs tu y 

sum of the products of-, 3's .taken two at a time, i n any,, set: :S 

are denoted by ZB and ZB 3 » respectively. 
ITS - ITS t u 

s s 

Now by using the fact that each row of the matrix 

i s of norm 1 , we obtain n equations 

3.15 X 2 + Za 2 + Z0 2 + 2k. = 1, i = 1, ..., n /where 
rs pq l 
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3.16 k. = A(E. + E B ) + E a a . + ( E B B + E B B„ ) + 
i 1 d. p q a. r s t u d. P q r S {1,1+1} r S t U 

i i I 
i-2 

{(E.)(E B ) + E a . B . + a..,.(b. + B. ,..,')} l , pq n r i r i n+1 l i - l i + l d. r=l l 

By (3.15), i t . f o l l o w s that k^ = ... = k^ = k , say, 

( 1 1 

3.17 and nk = E k. 
- • • i = l 1 

We now proceed to simplify the RHS of (3.17). 

. . . By theorem (3.7) we can replace 
n n 
E XE by (n-2)XEa ; by theorem (3.3), we can replace E E a a . , I . rs . . rs tu i = l i = l a. 

l 
n 

by (n-3) Ea a - R . We s h a l l now show that E (E B B + E B 3 ) 
r s t u i - l d l

 P q r S { i , i + l } P q r S 

2 1 o can be replaced by (n-3)E8 + (n-5)EB B_ + (n-6)EB B„ -. Let c J rs tu rs tu rs tu 
{r, r+1, s) and {t, t+1, u) have two integers i n common. This implies 

that B and B are together, as a sum, i n (n-4) diagonal and one rs tu \ 
non-diagonal positions; the non-diagonal position corresponds to the 

pair of integers common to {r, r+1, s) and {t, t+1, u} . Thus the 

term B B w i l l occur i n the k.'s for (n-3) times. S i m i l a r l y , rs tu l . . 
the term B 0 i s repeated (n-5) or (n-6) times i n k.'s when rs tu l 
{r, r+1, s) , {t, t+1, u) have one or no integer i n common, respectively. « 

n . i-2 
F i n a l l y , we show that E { ( E . ) ( E B ) + E a - B . + 

i - l 1 d. P q k-1 r i r i 

2. 1 1 
a i i + l ( b i + e i - l i + l ) } c a n b e r e P l a c e d b v ( n " 2 ) E c t r s e t u + ( n _ 4 ) E a r s B t u + 
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(n-5)Za 3 . Let {r, s} and {t, t+1, u} have two integers i n 
• . . .v rs t u ; , • . y^- ::r • 

common. This implies that a and 3 are together, as a sum, i n • rs tu ° 
(n-3) diagonal and one non-diagonal positions; the non-diagonal position 

corresponds to the pair of integers common to {r, s}, {t, t+1, u} 

Therefore, i n the k.'s , the term a 3.. occurs (n-2) times. The 
x rs tu 

arguments for the cases when {r, s}, {t, t+1, u} have one-or no integer 

i n common, are similar to the preceding one. 

Thus, the equation (3.17) takes the form 

n / . • 
3.18 nk = (n-2)AZa .+ AZ Z 3 + (n-3)Za a - R+ (n-3)ZB B„ + . rs . , , pq rs tu rs tu x=l d. x 

1 o 2 1 o 
(n-5)ZB B + (n-6)ZB 3 + (n-2)Za g t + (n-4)Za 8,. + (n-5)Za 3^ rs tu rs tu rs tu rs tu • rs tu 

Now, by using the fact that the inner product of any 

two rows of 6 i s zero, we obtain (̂ ) equations. The sum of these 

equations i s put i n a s i m p l i f i e d form by using the fact, that the sum 

of a's or 3's i n each row (column) i s the same and by using the 

Information given by the equivalence of equations (3.17) and (3.18). 

This s i m p l i f i e d form i s 

n 2 1 o 
3.19 0 = 2AZa^.o + AZ _Z 3 _ + 3Za M o + „ + R + 3Z3_B,.„ + 5Z3_B,.„ + 6Z3_B 

x 
rs . , — pq rs tu rs tu rs tu rs tu x=l d. • 

+ 2Za 3 + 4Za 3 + 5Za 3 
rs tu rs tu rs tu 

Adding (3.18) and (3.19), we get 



nk = n{X(Ia + Eg ) + Ea a. + UB. + Ea Eg } rs pq r s - tu rs tu rs tu 

Using this i n (3.15), we get 

(Ea + Eg + X) = 1 rs rs 

Hence Ea + Eg + X = + 1 rs rs — Q.E. 

3:20 Corollary: I f P = E a.P. , where P e S and P. .e TUCUI . . . i i n i r i = l 
(theorem (1.8)), then E a. = 1 

1=1 1 



BIBLIOGRAPHY 

Busacker, R.G. and Saaty, T.L., F i n i t e Graphs and Networks, 

McGraw-Hill, Inc., (1965).. 

M. Marcus, and H. Mine, A Survey of Matrix Theory and Matrix 

Inequalities, A l l y n and Bacon, Boston, (1964). 

Frank Harary and Gordon W. Wilcox, Boolean Operations on Graphs, 

Math. Scand. 20, (1967); 41-51. 


