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Abstract

A hierarchy of separation axioms can be obtained by considering
which axiom implies another. This thesis studies the properties of some
separation axioms between T, and T; and investigates where each of
the axioms belongs in this hierarchy. The behaviours of the axioms under

strengthenings of topologies and cartesian products are considered.

Given a set X, the family of all topologies definmed on X is
a complete lattice. A studylof topologies which are minimal in this lattice
with respect to a certain separation axiom is made. We consider certain‘
such minimal spaces, obtain some characterizations and study some of their

properties.
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Introduction

We shall say that a separation axiom implies another if every
topological space which satisfies the first axiom also satisfies the second.
Separation axioms between T, and Tj, that is, separation axioms which
imply T, and are implied by T;, were first studied extensively by Aull
and Thron [1]. They introduced a hierarchy of separation axioms between
To and T3, mnamely Typ, Tp, T(Y), T, Tf, Tyg> Tpp and Tpp, gave
characterizations of them, and studied their properties. Later Robinson
and Wu [10] defined T(m), strong T, and strong T, spaces. The first
chapter of this thesis is devoted to a survey of'these separation axioms.
Their relative positions are studied, and examples are given. We introduce
a new axiom, namely a Tég) space. At the end of the chapter we obtain a

diagram which shows the positions of these axioms,

In the first part of chapter II we shall study the behaviours of
the separation axioms under a strengthening of the topology, following the
pattern of Park [9]. It will be found that with the exceptions of T(Y),
strong T, and strong Tp, our axioms are preserved when the topology is
strengthened. Product spaces of a family of T or T(m) ( m a cardinal)
spaces are considered in the second part of this chapter, as Robinson and
Wu did in [10]. The major result will be.that it is not possible to define
a separation axibm between T(M and T; which is preserved under arbitrary

products.

Chapter III is devoted to the study of minimal topologies on a

set. Given a set X, the family of all topologies defined on X 1is a



complete lattice. We shall consider topologies in this lattice which are
minimal with respect to a certain topological property. Minimal T, ,

minimal T, minimal Tl, minimal T2 and minimal regular spaces are
considered. Characterizations of minimal T, and minimal T spaces are
obtained by Larson [6], while that of minimal regular spaces is obtained

by Berri and Sorgenfrey [3]. In the last section we produce a characterization
of order topologies on a set by means of minimal T, topologies by Thron

and Zimmerman [11].

Terminology and Notation

The terminology and notation used in this thesis follow those of
Kelley [5]. In chapter III, where results on filter bases are used, one

may refer to Bourbaki [4].

A mention of the following terminologies is in order :

1) A set is said to be degenerate iff it comsists of at most omne
element.
(2) For the closure of a point x, or more precisely, of the set

'{x}, we shall write {X}. For the associated derived set we

shall write {x}' .



CHAPTER I

SEPARATION AXIOMS BETWEEN T, AND Ty

1. Introduction

In this chapter we shall describe various separation axioms
intermediate in strength between T, and T;. Emphasis will be given on
those not included in [1]. We shall describe the axioms, and for those
not found in [1] examples and characterizations will be given. The reader
is referred to [1] and [7] for examples and equivalent formé for separation
axioms introduced in [1]. It will be observed that all the axioms can be

described in terms of the behaviour of derived sets of points.

2. Separation Axioms Between T, and T;

To characterize separation axioms between T, and T; it is
convenient to introduce the concept of weak separation in a topological

space.

Definition 2.1 A set A 1in a topological space (X,T) is said to be

weakly separated from another set B iff there exists an open set G DA

such that G N B = ¢. We shall write A }— B in this case. When
A={x} or B ='{y}, we write x —B and A F—y instead of

{x} —B and A }— {y}, respectively.

The following axioms are introduced by Aull and Thron in [1] :



Definition 2.2. A topological space (X,T) is called a

(a) Typ-space iff for every x ¢ X, {x}' 1is the union of disjoint
closed sets ;
(b) T,-space iff for every x e X, {x}' 1is a closed set ;
(c) Tpp-space iff it is Tp and in addition for all x, y € X,
x #y, we have {x}' N {y}' = ¢;
(d) Tp-space iff given any point x and any finite set F such
that x ¢ F, either x —7F or F }—x;
(e) Tpp-space iff given two arbitrary finite sets F;{ and F, with
Fl n FZ = ¢, either Fl F—-Fz or F2 k—-Fl 3
(£) Ty-space iff for all x, y € X, x # y, {X} N {y} 4is degenerate;
(g) Tyg-space iff for all x, y e X, x #y, {x} n {y} 1is either
¢ or {x} or {y}; and
(h) T(Y)-space iff for every x € X {x}' is the union of disjoint
point closures.
The following three separation axioms are due to Robinson and
Wu [10] :
Definition 2.3. Let m be an infinite cardinal. A topological space

(X, T) is called a T(m) space iff for every x ¢ X,'{X}=FfT((\{0i:i e I}

where F

is closed, each 0; 1is open, and card (I) = m,



Definition 2.4. A topological space (X,T) is called a strong Tp
space iff for each x ¢ X,A{x}' is either empty or is a union of a finite
family of non-empty closed sets, such that the intersection of this family

is empty.

Definition 2.5. A topological space (X,T) is called a strong T, space

iff for each x € X, {x}' is either empty or a union of non-empty closed
sets, such that the intersection of this family is empty and at least one

of the non-empty members is compact.

In view of the fact that in a T, space {x)} = ¢ for every x
and that in a T, space "{x}' is the union of closed sets, it is immediate
that strong Tp and strong T, lie between T, and T; . The following

theorem shows that this is also true for T (m) spaces.

Theorem 2.1, The following are equivalent.:

(a) x,T) is a T@® space ;

() For each x € X,'{k}' is the union of m closed sets , i.e.,
q{x}' = k)‘{Ci : i € I} where each C; is closed and card (I) =
= m 3 and

(c) For each A<C X such that card A <m, A' is the union of m

closed sets.

Proof : (a) => (b) For x e X, if x}=F n ( (]i{Oi : 1 e I} ), then



{x}' = {%} - {x}

X -@Fn (nfog:iel}))

({x}-F) U (u‘{"{"i}—oi:iel})

U{{x}-0;:iel}

since {X} < F, where card (I) = m. Hence {x}' is the union of m

closed sets.

(b) => (c¢) Suppose A =‘{xi : i e I} where card I < m. Denote

by C the set of w-limit points of A, 1i.e.,

C = {x € X : every neighborhood of x contains

infinitely many points of A} .
Then C is closed, and
A' = CU (U {{x} :diel})

because A' contains the right hand side and if x ¢ A' is not an

w-1limit point, then x e'{xi}' for some x; € A. Now by (b) each '{xi}'

is the union of m closed sets and since card I < m, A' is the union of

m closed sets.

(c) => (b) obvious.



(b) =>(a) If {x}' = \J‘{Fi : 1 ¢ I} where each F; is closed

and card I = m, then

x} = (3} - {x}

(X} - U {F; : 161}

{x} n X-F; :ied}

Hence (X,T) is a (m) space.

Corollary. (a) Each T(m)

~-space is a T, space.
(b) Each T space is a T (m) space for any m.

(¢) Each T, space is a 7 (m) space for some m.

A combination of Ty, and T(m) yields the following separation

axiom.

Definition 2.6. Let m be an infinite cardinal. A topological space

(X,7) 1is called a Tég) space iff for every x ¢ X,'{k}' is the union

of m disjoint closed sets.

From the definition it is immediate that every T space is a
T(m) space for all m, and ever T(m) space is a T space as well
vp- °P ’ LA ) up SP
as a T(m) space. Moreover every Typ space is a Tég) space for some

. (m) .
cardinal m. Thus TUD lies between To and Tl .



3. Relations of the Axioms

The following diagram is obtained by Aull and Thron in [1]. In

this diagram T, —> Tg means that every Td space is a Tg-space.

> TD

TFF > > TF > T(Y) > T
We shall now attempt to place the T(m) and Tég) spaces into

this chart and show that they are new axioms intermediate in strength

between T, and T; . By virtue of Corollary to Theorem 2.1 and the

remark following Definition 2.6 we have

T, ———> Tpp > Tp
; (m)
Tys WD~ (m)

} } N

> T(r) —> Tgp ———> T

Tep

We introduce some examples.

Example 1. X = real numbers.

closed sets : ¢, X and [a,»), where a e X.



Example 2. X = real numbers
closed sets : ¢, X and {x} for x # 0 plus finite unions

of these sets.

Example 3. X = integers

closed sets : ¢, X and {n}, n # 0 plus finite unions of

these sets.

The reader is referred to [7] for detailed description of these

examples.
Theorem 3.1. T(m) and TUD are unrelated.

Proof : @ Tt # o1 Example 1 is a T(M)  space where m = ¢,
A4 Ub

but not a Typ space.

2 Typ #> T(m) : Example 2 is a Typ space but not a T(w)

space.
Theorem 3.2. (™ ang T(Y) are unrelated.

Proof : @h) (@) #> T(Y) : Theorem 3.1 Proof (1).

(2) T(CY) #> T(m) : Example 2 is a T(Y) space but not a T(w)

space.



For Tég) we have the following theorem :

Theorem 3.3. (a) T, #> Tég).

® T % 1,

© T # T,

Proof : (a) Example 1 is a T, space which is not a Tég) space for

any m.
(b) Example 2 is a Tég) space but not a Tp space.

(c) Example 2 is a T(Y) space which is not a Tég) space.

For strong Tp and strong T, spaces we can make the following

observations.

Theorem 3.4. (a) Every strong T, space is a Tp space.

(b) Every strong T, space is a T, space.

Proof : This follows from the definitions.

Example 4. X = {a,b}.

=" {¢, {a}, X} .

-~
|

This is a Tpp space, because {x}' = ¢ for all but at most

one x € X (cf. [1] Theorem 3.3), and also a Tpp space because {x}!



is closed for every x e X and for x #y, {x}' n {y}' = ¢. However,
it is not a strong Tp nor a strong T, space since "{a}' = {b} cannot
be expressed as the union of a family of non-empty closed sets whose

intersection is empty.

We conclude this section by the following chart :

= Strong Tp
>TD

} }
Tyg TL(]“D‘) > 7
| | |

> Strong T,



CHAPTER II

PROPERTIES OF THE SEPARATION- AXTOMS

1. Introduction

In this chapter an attempt is made to investigate various
properties of the separation axioms we have introduced. Properties like
whether a separation axiom is preserved under strengthening of the topology

or under product are considered.

2, Strengthening of Topologies

It is known that the property of being T, or T, is preserved
under strengthening of the topblogy. In this section we shall study the.
axioms between T, and T; . It will be found that the same is true for
most of our axioms. The following lemma, which follows directly from the
definition, will be useful. 1In this lemma and throughout the remainder of
this section, (X,Tl) will denote a strengtheﬁing of a topological space

X,T), where T and Tl are the two families of closed sets.

Lemma 2.1. (a) Let {x}, {x}' and 'f§}l ,‘{x}i be the closures and
derived sets of the point x in T and T1 respectively.
Then '{§}1<:‘{§} and '{x}i(:f{x}'
(b) Suppose T, =T kJ.{A&} where A, 1is a closed set in
T, for each @ . Then if x ¢ U A& , then {x} ='{§}1,

{x}' = {x}] .
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Proof : (a) 1is clear since we have more closed sets in Tl than in T.

(b) since x ¢ U Ay , the closed sets in T; containing x
are precisely those in T containing x, and the equality

follows.

Theorem 2.2. If (X,T) is a TUD space, then so is (X,Tl).

Proof : Let x be an arbitrary point in X. We shall show that A{x}i

is the union of disjoint closed sets in Tl . Since (X,T) is TUD , {x}'=
=\ Cy, where C, € T for each o and C, N Cor = ¢ if a # o' . Now

by Lemma 2.1 (a), >{x}i<::{k} , hence

V{x}i (;{i}l n {x}'

{x}; n (U Cy)

U C{EH N Cy)

C;{x}i

where the last inclusion follows from the fact that each 4{§}l N C, is a

subset of '{E}l not containing x. Since ('{i}l N Cy) N ('{E}l N Cyi)=
¢ if o # af ;{x}i is the union of disjoint closed sets. Therefore
(X,Tl) is a TUD space.

Theorem 2.3. If (X, T) is a Ty space, so is (X,Tl).
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Proof : We have seen in the Proof of Theorem 2.2. that the equality
’ T - ) U
{x} _{?}1 n {x}

‘holds for every x € X. Thus if (X,T) is T then {x}' is closed in

D’

T and so '{x}i is closed in T, . Hence (X,Tl) is also Ty .

Theorem 2.4. T(Y) 1is not preserved under the strengthening of the
fopology.
Proof : Let X=1{0,1, 2, 3,:+-}

{¢} U { {n, n+l, n+2,-++} : n =0, 1,---}

=
n

Then (X,T) is a T(Y) space because for each n,

{n}' {n+l, n+2, --+}

- {n+1}

Now let

T, =T VU { {n, n#2, nth, +++} : n=0,2,--}

Then (X,Tl) is a strengthening of (X,T) but (X’Tl) is not a T(Y)

space since for each n

{2n - 14 {2n - 1}, n {2n - 1}

{2n, 2n + 1,-+°}

‘{2n -1, 2n, 2n + 1,-«+Y N {2n, 2n + 1,---
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cannot be written as a union of disjoint point closures.

Theorem 2.5. If &, T) is a Tp space, so is (X,Tl).

Proof : A space is a Ty space iff for every xe X, y e {x}' implies
{y}' = ¢. (Cf. [1] Theorem 3.2). Now if y e {x}' , then y ¢ {x}' and

hence {y}' = ¢. But -{Y}i_Ci{Y}' - Thus '{y}i = ¢

Theorem 2.6. If (X,T) is a~hTY space, so 1s (X,T,).

Proof : We have, for x, ye X, x ¢4y,
XY n Oy < X n iyl

Since (X,T) is Ty, {x} N {3y} 1is degenerate, so that 'f§}1 (\'{§}1

is also degenerate.
Theorem 2.7. If (X,T) is a Tyg space, so is (X,Tl).

Proof : For x,ye X, x#y, since {x} N {§} is either ¢, {x} ,

or {y} , the same holds for '{E}l rw'(?}l .
Theorem 2.8. If (X,T) is a Tpp space, so is (X,Tl).

Proof : &,T) is T iff {x}' = ¢ for all but at most one x € X
—_— : FF

(cf. [1] Theorem 3.3). Since '{x}i < {x}' , the same is true for '{k}i .
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Theorem 2.9. If (X,T) is a Tpp space, so is (X,Tl).

Proof : Since (X,T) is Tp » by Theorem 2.3 (X,Tl) is also T .
Now for x, ye X, x#y , {x} r\‘{y}' = ¢, hence '{x}i (\'{Y}i = ¢.
Thus (X,Tl) is also Tpp .

(m)

Theorem 2.10, If (X,T) is a T space, so is (X’Tl)'

Proof : Let x € X. Then

{x}' = U'{Ci : ie I}

where each Cj ¢ T and. card I = m. But

]

'{x}i ‘{§}1 n {x}

{x}; n (U Cy)

u (&l n ¢y

where '{i}l N Cy € Tl . Hence (X,Tl) is also T(m)

Theorem 2.11. If (X,T) 1is a Tég) space, so is (X,Ty).

T(m)

UD ° for each x e X

Proof : Since X,T) is

{x}' = Uy, iel
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It

where each C; € T, card I =m and Cj N C=¢ 1if j # k. Hence

]

{x}] '{32}1 n {x}

= N Uy

U ({x} nocy

where the family '{'{E}l N C;} is disjoint. Hence X,T}) 1is a Tég)
space.
Theorem 2.12. Strong Tp 1is not preserved under the strengthening of

the topology.

Proof :  Consider the example :

X = {a, b, c}

T = {¢, {a}, {a,b}, {a,c}, X} .
Here

{a}' = {b,e} = {b} U {e}

'.{b}' = ¢ '{c}v v= ¢

Hence (X,T) is a strong Ty space. Now let T, = {¢, {a}, {b}, {a,b},

{a,c}, X}. Then (X,Ty) is not a strong Tp space because '{a}i = {c}.

‘Theorem 2.13. Strong T, 1is not preserved under the strengthening of

the topology.
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Proof : In the example in the proof of Theorem 2.12, (X,T) is a strong

T, space but (X,Tl) is not.

3. Product Spaces

An interesting question concerning the separation axioms is
whether they are preserved under arbitrary products. The product space
of a family of T, (or Tl) spaces 1s again T, (or Tl)' In this

(m)

section we shall consider products of Tp and T spaces, m a

cardinal.

Theorem 3.1. Let '{(Xi,Ti) :i=1, 2,---,n} be a finite family of Ty

n
spaces. Then II Xi is also a Tp space.

i=1
Proof : A space (X,T) is a T, space iff for every x ¢ X, {x} = 6nc,

where G is an open set and C 1is a closed set in X (cf. [1] Theorem 3.1).

. n ,
Now take x = {xg, x2,"',xn} € 121 Xy . Then each {x;} =6G; N C; , where

G; and Cy; are open and closed respectively in X; . Hence

n

- -1
x} = N_p; G N Cy)
i=1 .
’ n
- -1
= N GEY N opyHEy))
i=1

n_, n
= N p, G n N p,
= * 7 i=1 *

ey
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Thus {x} is the intersection of an open set with a closed set. Hence

n
I Xi is also TD .
i=1

The following theorem shows that Tp is not preserved under

arbitrary products.

Theorem 3.2. Let '{Xi :i € I} be an infinite family of Ty spaces,
where each Xy 1s nmot T, . Then T X; is not a Tp space.

iel
- Proof : For every i e I, since X; is not T; , there is a point

af € X; such that {ai}' #¢ . Let a=1{o; :1el}e .HI X; » and
ie

let Y= 1 '{Ei} . Let’{a}é be the derived set of o in the subspace
iel

Y. We shall show that {a}% is not closed in Y. To this end we first

observe that if xe¢ Y - {a} and 0 is a basic open neighborhood df X,
then pi(x) e'{Ea} implies that aj € pi(O) for every i. Hence

x eA{a}é . Thus we have '{a}é =Y - {a} . It therefore suffices to show

that Y - {a} 1is not closed (in Y). We observe that if 0 is a basic

open neighborhood of o in Y, then
0 = Y on{og =41 e I}

where each 0i is an open neighborhood of oy € X; and 0i # Xi for
only a finite number of i € I. Since I 1is infinite, there exists a
- non-empty subset I'< I such that 0y =X, for all 1e I' . Since

1

we have '{ai} - {a} # ¢ for all i e I, we can choose a point B & Y
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és follows :

'
og if ieI-~1I

{ay} - {a}  if e T

Then B8 ='{Bi : i e I} ¢ 0. This means that every open neighborhood of

@ in Y contains points of Y - {a} . Thus Y - {a} is not closed in
Y.
We therefore have proved that the subspace Y of I Xi is
- ' iel

not a Tp space. Since the property of being T, 1s hereditary, .HI Xy
ie

is not a T, space.

Theorem 3.3. Let (X,T) be a Tp space. Then all powefs (that is,

products of X by itself) of X are T, spaces iff (X,T) is Ty -

Proof : This follows from Theorem 3.2.

Theorem 3.4. A product of m T(m) .spaces is again a T(m) space.

Proof : Let I X; bea product of the T(m) spaces X; , where
iel .

card (I) = m. Let x = {x; : ie I} be an arbitrary point in T X, .

. iel
Then for every i e I, {xi} = Gi,m (\_Fi where Fi is closed in Xi

and Gy , 1is an intersection of m open sets in X; - Thus
b}
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{x}

(\1{p;1(xi) : i€ I}

. - 1 . .
n {pi (Gi,m n Fi) : i€ I}

n'{p;l(ci’m) :ie Il non {p;l(Fi) : ie I}

Now by the continuity of P; » each p;l(G is the intersection of m

i,m)

open sets in nX; , and also (\~{p;1(F ) : i e I} is closed in Xy .

i
Since card (I) = m, we have expressed {x} as the intersection of a

o (@)

closed set with m open sets. Thus nX; is

Theorem 3.5. Let '{Xi : i € I} be a family of T(m) spaces none of

which is Ty , and let card (I) = n. Then ﬂXi is a T(m) space iff

n < m.

Proof : .If n <m, then by Theorem 3.4, nXi is again a T(m) space.
If n > m, then by an analogous argument as in that used in the

. (m)
proof of Theorem 3.2, ﬂXi is not a T space.
Theorem 3.6. There does not exist a separation axiom between T(m) and

Tq which is inherited by arbitrary products.

(m)

Proof : Let T, be a separation axiom between T and T . Fix an

o

infinite cardinal m, and let '{Xi : 1 € I} be a family of T, spaces,

none of which is T; and suppose card (I) = n > m. Now each X; is a
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(m) (m)

T space, so by Theorem 3.5 nX; cannot bea T space since n > m.

1

Therefore nXi is not a T, space.



CHAPTER III

Minimal Topologies

1. Introduction

Given a set X, the family of all topologies defined on X
is a complete lattice. Of great interest are topologies which are minimal
in this lattice with respect to a certain topological property, in the

sense of the following definition.

Definition 1.1. Let P be a topological property. A topology T
defined on a set X is called a minimal P space iff T has property P

and every strictly weaker topology on X does not have property P.

Thus if P stands for T,, Tp, Tp, Ty, regular, completely
regular, normal or locally compact space, the topology T will be called
a minimal T, , minimal Tp , minimal T, , minimal regular, minimal
completely regular, minimal normal or minimal locally compact topology

accordingly.

It is the purpose of this chapter to investigate some of these
minimal topologies, obtain their characterizations and arrive at some of

their properties.
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2, Minimal T, and Minimal T Spaces

For the characterizations of minimal T, and minimal Tp spaces

the following Lemmas will be useful.

Lemma 2.1. Let (X,T) bea T, (Tp) space and let B be an open

subset of X. Let

T®) ={6eT:GCB or BCG).

Then (X,T(B)) is a T, (TD) space.

Proof : We first show that T(B) is indeed a topology. Since ¢ < B
and B C X, we have ¢, X ¢ T(B). Now if Gy, Gz'e T(B), then either
BC Gy, B (sz, in which case B < G N Gy, or B contains one of the
two sets in which case G; N Go< B . Hence G; N Gy ¢ T(B). Finally
if G, € T(B) for every a € A, then either every G, B or B G,

for some o, so that U G, B or BC U Gy, whence U G,e T(B).
oA aeA acA '

Now suppose T is a T, topology. To show that T(B) is also
T, s let x, yeX, x#y and suppose that G e T, xeG, y¢G. We

consider three cases.

@D) If xeB and y ¢ B, then B is an open set in T(B)

containing x but not y. Similarly if y € B and x ¢ B.
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(2) If x, ye B, then G N B is an open set in T(B) containing

x but not vy.

(3) If x, y¢ B, then G U B is an open set in T(B) containing

x but not vy.
Thus (X,T(B)) is also a T, space.

Suppose next (X,T) is a Ty space. T, prove that T(B) is
-also Ty, take arbitrary x € X, and consider {x}! , the derived set

of x in the topology T(B). Again we consider two cases.

(1) If x¢ B, then x ¢ X - B which is closed in T(B). Thus
'{x}écl X-B and so B X —‘{x}é . Hence X -'{x}é is open, and so

'{x}é is closed in T(B).

(ii) If x e B, we can prove that if y ¢ B, y # x, then y ¢'{x}é .
Indeed, in this case B - {x} € T(B), yeB —'{k}, but x ¢ B - {x} .
Hence A{x}é M B=¢ , which means that BC X —'{x}é . Hence '{x}é is

closed in T(B).

Lemma 2.2. In a topological space (X,T), the following are equivalent:

@) The open sets in the topology are rested, i.e., for A, Be T,

either A < B or B CA,
2) The closed sets in the topology are rested.

(3 Finite unions of point closures are point closures.
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Proof : The equivalence of (1) and (2) is clear. That (2) implies (3)
is also obvious, since the union of a finite number of point closures is

the largest one.

* To show that (3) implies (2), let C, D be two non-empty closed
sets in (X,T), and suppose C # D. Then either C-D# ¢ or D-C# ¢
must hold. Assume C - D # ¢. Take y e D and choose x e C - D. Then
by (3) {X} U {3} = {z} for some =z e X. It follows that z e {X} or
z {3}, ie., (BCIE or By . But (R {F and {3} C (3.
Hence {x} = {z} or {y} = {z}. But {y} = {Z} is impossible since this
would imply X € {z} = {y} < D, a contradiction because x ¢ D. Therefore
{x} = {z} and so y e {z} = {X} C C. We have thus proved that Dc C.

Similarly if D - C # ¢, then C < D. Hence (2) holds.

The following Theorem gives a characterization of minimal T,

spaces.,

Theorem 2.3. A T, topological space (X,T) dis minimal T, iff the

o
family B = {X - {X} : x ¢ X} U {X} is a base for T and finite unions

of point closures are point closures.

Proof : (=——===3) Let A, B be open sets in T If A¢‘B, B<f_.A,
then by Lemma 2.1, T(B) is a T, topology on X such that T(B) CT
and A ¢ T(B). This contradicts the minimality of T Thus either
ACB or B <A, Hence b}; Lemma 2.2, finite unions of point closures

are point closures. Now since T 1is a nested family of open sets, the
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subfamily {X - {X} : x € X} U {X} is closed under finite intersections,
and so is a base for some topology Tl on X. Clearly T1C. T. Also Tl
is a T, topology, because for x #y, either x ¢ {3} or y ¢ {x}

since T is T, . By the minimality of T, we have T; =T. So B is

o}

a base for T.

(&) Let (X,T) be T, where T is nested and B is a
base for T Suppose T*C T, - where T* is a T, topology. Suppose
there is a point x € X such that {X} # {X}* , where "{'i}* is the
closure of {x} in T* . Since {X} < {xX}* , we can choose a point
ye {X}*, y¢ {X} . Since T is nested, we must have {x} C {¥} . But
{Y} < {F}*, hence x¢e {X}C{F}* . Thus x e {y}* and ye {x}*,
which is impossible in a T, space. Hence for every x € X, {?} = {X}* .
Since B = {X - {X} : x e X} U {X} is a base for T, we must have |

T=T%. Thus T is minimal To -

Theorem 2.4. A T, topological space (X,T) is minimal Tp iff finite

unions of point closures are point closures.
Proof : (=—=>) By a proof identical to the one in Theorem 2.3.

(&=—=) Suppose (X,T) is Tp and T is nested. Let T*< T,
where T* is a Tp space. We shall show that T* = T. Since a Tp
space is a T, space, we can apply the argument in Theorem 2.3 and arrive

at the conclusion that {X} = {x}* , {x}' = {x}'* for every x ¢ X. Now

assume that T* # T. Then there is a set C<C X closed in T but not



- 26 -

closed in T* .i If C* denotes the closure of C in T*, then C;;EC*.
But T* is T, , therefore C* - C consists of exactly one point x.
Since there does not exist a closed set in T* smaller than C* which
contains x, we have C* = {X}* =C U {x} = {x}'* U {x} . Thus it
follows that C = {x}'* because x ¢ C, x ¢ {x}'* . But this contradicts
the fact that C is not closed in T* . Thus we must have T* = T and

T is minimal Tp .

The following two examples show that the two conditions in

Theorem 2.3 cannot be relaxed and that they are independent of each other.

real numbers

Example 2.1. X

{(~=,x) : xe X} U {(-=,x] : x e X} U {¢,X}.

-~
]

X,T) is a T, space in which the open sets are nested, but is not a
minimal T, space because, for example, the proper subfamily T =

= {(~o,x) : x € X} U {¢,X} is a T, topology on X.

Example 2.2. X = {a,b,c}

= {¢, {a}, {b}, {a,b}, X}

-~
1

(X,T) is a T, space. Moreover, since {a@} = {a,c}, {b} = {b,c}, {c} = {c},
the complements of these sets are {b}, {a}, {a,b} which form a base for

the topology T . However, the open sets are obviously not nested.
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The next example shows that minimal T, is not hereditary.

real numbers.

Example 2.3. X

{(=,x) : x e X} U {¢,X}

=
0

o>
I

= (—,0] U (1,«)

(X,T) 1is a minimal T, space since the open sets are clearly nested and
for every x ¢ X, {X} = [x,%) so that the family {X -;fi} : x e X} is
precisely T iﬁself. However, the subspace A is not minimal T,

because although the open sets are again nested, the complements of point
closures do not form a base. Indeed, we first observe that (—»,0] is
open in A and 0 ¢ (~~»,0] . Now if x e (~~,0] , then 0 ¢ [x,») N A=
={x} N A =-{§}A and so O ¢ A —A{E}A . On the‘other hand, if x e (1,«),
then A -‘{i}Asﬁ (-»,0] . Hence {A -Af§}A : x € A} is not a base for the

relative topology.

For minimal TD spaces we have the following result.
Theorem 2.5, Every subspace of a minimal Tp space is again minimal Tp.
Proof : Each subspace of a T space is Tp. By the definition of

relative topology the nestedness of open sets is inherited. Hence by

Theorem 2.4 and Lemma 2.2 the result follows.
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3. Minimal T; spaces

For minimal T; space we have the following neat theorem.

Theorem 3.1. A topological space (X,T) is minimal Tl iff the non-

trivial closed sets are precisely the finite sets.
Proof : Given ény set X let

T* = {ACX:X-A is finite} U {¢} .
Then it is well-known that (X,T*) is a Ty space. Moreover, T* is the
weakest Tq topology on X because if T is another T, topology on X,
then all finite sets are closed in T and so T*C T. It follows that T

is a minimal Tj topology iff T = T*. The theorem follows.

Corollary 3.2. Any subspace of a minimal T; space is minimal T, .

4, Minimal Regular Spaces

For subsequent discussion we shall make use of the notion of a
filter base. The reader is referred to [4] for definitions and results
concerning filter bases in a topological space. For our present arguement

we introduce some definitions.
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Definition 4.1. A filter base F on a set X is said to be weaker

than a filter base G on X 1iff for each F ¢ F, there exists some

G e G such that G CF.

Definition 4.2. A filter base F on a set X 1is said to be equivalent

to a filter base G on X iff F 1is weaker than G and G 1is weaker

than F.

It is readily checked that the relation of equivalence between

filters is an equivalence relation.

Definition 4.3. A filter base F on a topological space (X,F) is

called an open (closed) filter base iff for every F ¢ F, F is an open

(closed) set.

Definition 4.4. A filter base T on a topological space is called a
regular filter base iff it is open and is equivalent to a closed filter

base.

Definition 4.4 is suggested by the following theorem.

Theorem 4.1. In a regular topological space (X,T), the filter base of

open neighborhcods of a point is regular.

Proof : Let B(x) be the filter base of open neighborhoods of the point

x and let C(x) be the filter base of closed neighborhoods of x.
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Obviously for every C € C(x), there is a B e B(x) such that B< C
Since T 1is regular, for every B ¢ B(x), we can also find C ¢ C(x)

such that C c B. Hence B(x) is equivalent to C(x) and so is regular.

We shall be interested in the following conditions in a topological

space :

(a) Every regular filter base which has a unique cluster point is

éonvergent to this point.

(B) Every regular filter base has a cluster point.
Theorem 4.2. A regular space (X,T) is minimal regular iff (o) holds.
Proof : Necessity : Suppose B 1s a regular filter base which has the

unique cluster point p, and assume that B does not converge to p. We
. shall construct a topology on X which is regular but strictly weaker
than T. For each x ¢ X, let U(x) be the filter base of open neighbor-

hoods of x. Define

U(x) if x#p
ur(x) =

{UUB:UelU(p), Be B} 4if x=p .

Under this definition there is defined on X a topology T' with U'(x)
as an open neighborhood base at each x e X. Now since B does not

converge to p, there is a U e U(p) - B which does not contain any set
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in U'(p). Hence T' 1is strictly weaker than T. To show that T' is
regular, first it is clear that T' is'regﬁlar at each point x # p. At
the point p, since B 1is regular, B is equivaient to some closed filter
base C. Now if pe U B, where Uge U(x), B¢ B, there exists

closed sets V, C such that p e VCU, CeC, CCB, sothat pe VUC.
Thus T' is also regular at p. This shows that T is not a minimal

regular topology.

Sufficiency : Suppose (X,T) is regular and satisfies (o).
Let T' be a regular topology on X such that T'C T. For each x € X,
denote by U(x) and U'(x) the open neighborhood systems of x in T
and T' respectively. Since T' is regular, the filter base {'(x) 1is,
by Theorem 4.1, T'—:egular. Moreover, 'x is the only cluster point of
.U'(x). Since T'<C T, it follows that ('(x) dis regular in T and haé
x as its unique cluster point. By (@), U'(x) must converge to x in
T, so that by definition {(x) C U'(x). But T'(Q_T implies U'(x) C U(x).

Thus U(x) = U'(x) and we have T' =T, Hence T is minimal regular.

Lemma 4.3. If the subspace A of the regular space (X,T) satisfies (8),

then A 1is closed in X.

Proof : Suppose A # A and let pe A-A . Let U and VY be the
open and closed neighborhood systems of p in X, respectively ( V is a

neighborhood system since T is regular). Let
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Then B 1is an open filter base in A, while C 1is a closed filter base
in A. Moreover, since T is regular, U is equivalent to V, and hence
B 1is equivalent to C. Thus B 1is a regular filter base on A. But B
is also a filter base on X, and U is weaker than B. Since p 1is the
only.cluster point of U in X, it is also the only cluster point of B
in X. This means that, since p ¢ X, B has no cluster point in X,

which contradicts (B). Hence A must be closed.
Theorem 4.4. In a regular space, (o) implies (B).

Proof : Let B be a regular filter base on a regular space (X,T).
Assume B has no cluster point. Let ( be a closed filter base equivalent
to B. Fix p e X. Let U, V be the open and closed neighborhood systems
of p respectively. Then ( and V are equivalent, by Theorem 4.1. Let
F={BuUU:B e B, UelU} and G ={CUV:Cel, VeV}. Then F is
an open filter base, and ‘G is a closed filter base on X. Moreover, F
is equivalent to G, which follows from the equivalences of B to C

and U to V. Thus F is regular. Now p is a cluster point of F,

and since B has no clustef point, F has no cluster point other than

p. However, F does not converge to p. This contradiction to (a)

shows that (a) implies (B).
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Theorem 4.5. A minimal regular subspace of a regular space is closed.
Proof : By Theorem 4.2, a minimal regular subspace of a topological
space satisfies (o). By Theorem 4.4, it also satisfies (B), so that

by virtue of Lemma 4.3 it is closed.

Corollary 4.6. Minimal regularity is not hereditary.

5. Minimal Hausdorff‘Spaces

For the characterization of minimal Hausdorff spaces we consider

the following two properties of a topological space :

1) Every open filter base has a cluster point.

(2) Every open filter base which has a unique cluster point converges

to this point.
Theorem 5.1. In a Hausdorff space, (2) implies (1).

Proof : Suppose (1) does not hold, and let B be an open filter base
which has no cluster point. Fix p e X. Let U be the open neighborhood

system of p. Define

G={vuUB|Vel and B e B}
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Then G is an open filter base and p is its only cluster point. By (2),
G converges to p . But B 1is weaker than B, so B also converges to
p. But this contradicts the assumption that B has no cluster point,

Hence (1) holds.

Theorem 5.2. A Hausdorff space (X,T) is minimal Hausdorff iff (2) holds

in T.

Proof : Necessity : Let (X,T) be Hausdorff and suppose that (2) does
not hold, so that there exists an open filter base B having the unique
cluster point p but B does not converge to p. For each‘ x € X, let
U(x) denote the open neighbprhood system of x. Define for every x a
family of subsets of X as follows : U‘(x).= Ux) if x # p, and

U'(p) ='{U“L) B:Uc¢e€l(p), Be B}. With this definition there exists a
topology T' on X with .U'(x) as an opeh base at each x. That T'< T
is clear. Moreover since B does not converge to p, there is

UelU(p) -B and U does not contain any sef in U'(p). Thus T';g T.
We now show that T' is Hausdorff. Indeed, for x, veX, x#y, if

X+ p, ¥y ¥ D then the existence of disjoint open neighborhoods is
guaranteed. For x # p, by Hausdorffness of T there are A e U(p),

D e U(x) such that A N D = ¢. Since p 1is the only ciuster point of
B, x cannot be a cluster point and so there is E ¢ U(x), B € B such
that E N B = ¢. It follows that D N E e U(x), A U B e U'(p) and

A yB N d®MNE)=¢. Thus T' is Hausdorff and T is not minimal

Hausdorff,



- 35 -

Sufficiency : Let (X,T) be Hausdorff satisfying (2) and let
T' be a Hausdorff topology on X with T'<: T. Let x € X, and let
U(x) and U'(x) be the open neighborhood systems of x in T and T'
respectively. Then U'(x)< U(x). .The ofen filter base U'(x) has x
as its only cluster poinﬁ, because T' is Hausdorff. Since T'<: T, X
is the only cluster point of U'(x) in (X,T). By (2), U'(x) converges
to x. Thus U(x)<Z U'(x). Thus the two topologies T and T' are

identical, and so T is minimal Hausdorff.

Theorem 5.3. Let X be a subspace of the Hausdorff space (Y,T). If

X satisfies (1), then X dis closed in Y.

Proof : If X#X, let peX~X. Let U be the open neighborhood
system of p in Y. Then B ¥A{X N U :Uel}l is an open filter base

on X. Moreover, as a filter base on Y, B is stroﬁger than U and

since p 1is the oﬁly cluster point of U, B cannot have any other cluster
point than p in Y. This means that B has no cluster point in X,

since p ¢ X. But this contradicts the hypothesis that X satisfies (1).
That the property of being minimal Hausdorff is not hereditary

is shown by the following theorem.

Theorem 5.4. A minimal Hausdorff subspace X of a Hausdorff space

(Y,T) 1is closed.
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Proof : Since X 1is minimal Hausdorff, Theorems 5.1 and 5.2 tell us
that X satisfies property (l). Theorem 5.3 then concludes that X is

closed.

Theorem 5.5. If a subspace of a minimal Hausdorff space is both open

and closed, then it is minimal Hausdorff.

Proof : Let A bg.an open and closed subset of the minimal Hausdorff
space (X,T). Let .B be an open filter base on A with 6nly‘one cluster
point p € A. Since A is open in X, B is also an open filter base on
X. Since A 1is also closed, the closure of B e B in A is closed in

X, and hence p 1is fhe only cluster point of B on X. But now X is-
minimal Hausdorff, hence B converges to p on X, by Theorem 5.2. Since
p e A, B also converges to p on A. Again invoking Theofem 5.2, A is

minimal Hausdorff.

6. A Characterization of Order Topologies by Minimal T, Topologies

In this section we shall give a characterization of order
topologies on a set X by means of minimal T, topologies on X. We
recall that a topology T on X 1is an order ﬁopology on X 1iff there
exists a linear order < oﬁ X such that the sets of the forms {y : y < x}
and_'{y : x < y}, where x € X, form a subbase for T, where a < b

means that a < b but a # b. We prove that a topology T on a set X
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is an order topology iff (X,T) is T; and T 1is the least upper bound

of two minimal topologies on X, in the sense of the following definition.

Definition 6.1. ‘A topology T on a set X 1is the least upper bound of

two topologies T1 and T, on X iff T is the smallest topology

containing T; and T, . We shall write T =T; V T, in this case.

Lemma 6.1. If T, and AT2 are topologies on X and B; and B, are
bases for T, and T2 respectively, then By U B2 is a subbase for

T,V Ty .

Proof : it is clear that B; U B, 1is a subbase for some topology, say
T, on X. Also Tlc: T and TZCZ T . Hence Tl \% T2<: T,' On the other
hand any topology on X containing T; and T, must contain B1 U By

and hence contains unions of finite intersections of members of Bl U BZ’

so that it contains T. Thus T::_Tl v T2 .

Definition 6.2, Let T be a topology on a set X. Define a relation

E-T on X as follows :

a<yh iff be {3} .

It is immediate that < T as defined above is reflexive and

transitive. In a T, space it is also anti-symmetric, as the following

lemma shows.
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Lemma 6.2. A topology T on a set X is T, iff E-T is a partial

order.

Proof : If T is T,

and a<q b, b< a, them b e {2} and

ae {b}, so that a=b since T is T, . Conversely, if h 5 is anti-
symmetric, and if a #b and be {a}, then a¢ {b} . Hence T is Tye
Lemma 6.3, The topology T 1is nested iff any two elements are comparable,
i.e., for a, b ¢ X, either ai.rb or biTa.'

Proof : 1If T is nested, then for a, b ¢ X, either {a}c {b} or

{b} < {3} , and so either a<rb or biTa.

Conversely, suppose the condition holds. Let A, Be T and
assume A ¢ B. Choose ae A~ B . Now for each x ¢ B, x ¢ {a} since
B is an open set containing x but not a. _ Thus a £ T X and so x < T a-
Therefore a € {x} and since a ¢ A' e T, we must have x e A. Hence

Bc A and so T is nested.

Theorem 6.4. A topological space (X,T) is minimal T, iff T is a

linear order and {{y : y < T x} : x € X} U {X} 4is a base for T.

Proof : If T is minimal T, »,+ then by Theorem 2.3 and Lemma 2.2 T
is nested and {X - {X} : x e X} U {X} is a base for T. It follows
from Lemma 6.2 and Lemma 6.3 that < T is a linear order. Moreover for

each x ¢ X,
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X - {%} X-{y:ye {x}

X=-{y:x <7

{y 1y < T x}

since <7 is linear. Thus {{y : y <1 x} : xe X} U {X} is a base

for T.

In the other direction suppose E-T is linear and {{y : y < x} :
: xe X} U {X} is a base for T. Then by Lemma 6.3, T is nested. Again,
because f-T. is linear we have for each x ¢ X, X - {x} = {y ::y <1 x}.
Thus {X - {X} : x € X} U {X} is a base for T and by Theorem 2.3 T

is a minimal T, topology.

Theorem 6.5. Given any set X, there exists a 1-1 conespondence
between the set of all minimal T, topologies on X and the set of all

linear orders on X.

Proof : Let M be the set of all minimal topologies on X, and let L
be the set of all linear orders on X. Define ¢ : M —> L by ¢(T) = i-T

for each T € M . By Theorem 6.4 < is indeed a linear order on X,

T

and so ¢ is a well-defined map from M to L. Also ¢ is 1-1

because if T;, T, ¢ M and i_Tl = 5_T2 » then T, and T, have bases

“{{y:y<T x} : x e X} U {X} and'{{y:y<.r x} : xe X} U {X},
1 ' 2

respectively. Since the two basis are the same, T; =T, .
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Now let < be a linear order on X. Let B ='{{y :y < x} o
:xe X} U {X}. Forany x, ze X, {y:y< x} {l1{y : y <z} is
either {y : y<x} or {y :y< 2z}, since < is linear. Thus B 1is
a base for some topology on X, say T. Let < T be the relation on X
defined by T. We shall show that Sr=s. If a <b and be NeT
then there is a B e B such that be B&N. If B=X then ae BC N.
If B#X then B={y :y<c} for some c e X. Then since a < b and
b < c we have a <‘c and so a € B¢ N. This means that every open set
containing b contains a. Hence be {a} and a T b. On the other
hand, if a <7 b but b < a, thenwe have be {y : y < a} e T but
aé¢ {y:y<a}, sothat b ¢ {a} and this contradicts a T b . Hence
a <b since < is a linear order. We have thus prove that ﬁ-T =< .
Hence by Theorem 6.4 T is a minimal topology on X. Consequently

o (@) = == and so ¢ 1is onto.

The following theorem gives the main result of this section.

Theorem 6.6. A topology T on a set X is an order topology iff T

is T; and T 1is the least upper bound of two minimal T, topologies.

Proof : Let T be an order topology and let < be the associated
linear order. Then the sets of the forms {y : y < x} and {y : x < y}

form a subbase for T. Clearly T is T; . Let

By = {y : y<x}: xeX} U {x}
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and By = {{y:y>x:xeX u (X .
\

As in the proof of Theorem 6.5, Bl and BZ are bases for topologies

T, and T2 respectively which are minimal T, on X, and we have

< =< and < =<1 vhere a<'b iff b< a. By Lemma 6.1
=T A T = A =

1 .2

B, U B, 1is a subbase for Ty Vv T5 . But as mentioned above Bl U 52
is also a subbase for T. Hence T =T; V T, is the least upper bound

of two minimal T, topologies.

Conversely, assume that T =T, V T, where T, and T, are
: 1 2 1 2

minimal T, and that T 1is Tl' Then we know that iT and -<—T are

.1 2
linear. We shall show that < =<2 , il.e., ac< b iff b < a .
71,7571 =7 =7
1 .2 1 .2
For this purpose suppose a_<_.r b, asr b and a# b, and let Ge T =
1 .2

= Tl i T2 be such that b e G. Then there exist Gl € Tl and G2 € TZ

such that b e G; N Gy CG. Since aiTl b, b e {aTl and so ae Gy .

Similarly a ¢ Gy . Thus a e G. This means that every open set in T
containing b also contains a, which is impossible since T is T .

Hence for a, be X, a# b and asr b, we have aiT b and since
2

1
< is linear, we must have b < a . Similarly b < a, b # a
~T -T -7
2 -2 -2
implies a < T b. Hence < T. = _<_-l . Now since Tl and T2 are
1 | 2 '

minimal T, » by Theorem 6.4 they have bases

B = Iy :yc« T, x} : xe X} U {X}
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and o _ o
B, = Iy :y> T, x} : xe X} U {x}

respectively. By Lemma 6.1, Bl V) 32 is a subbase for T; V T, =T .

But since 1 is linear, Bl U 32 is the subbase for an order topology
1

on X, which in this case must therefore be T. Thus T is an order

topology.
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