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- 'ABSTRACT - -

We are going to study the remote points in BR and the P-points
in BR — R . A remote point in BR is a point which is not in the BR
chosure of any discrete subset of R . A point p e BR—R is a P-point

of BR-'R if every Gs-set containing p is a neighboﬁrhood of p .
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"INTRODUCTION

As we know, every completely :egu1ar space X has a compactification
BX such that every function f in C*(X) has an extension to a function

8 in C(BX) . This thesis is devoted to study the papers [1], [3], [4],

[5].

Iﬁ chapter II, we study the clasé of subalgebras éf C(X) called
B-subalgebras. With each B-subalgebra A of C(X), we define A-points
in BX — X . Then we study the A-points in chapter III'. In chaptér v,
we turn our attention t6 the remote points in BR . Finally, we study the

prime ideal structure of C(X) .



" 'CHAPTER I

" "PRELIMINARIES

Throughout this thesis, all given spaces are assumed to be completely

regular and Hausdorff. C(X) will denote the collection of all real-valued

continuous functions on X, and C*(X) will denote the subcollection of
bounded functions. Under the pointwise operation, C(X)’ and C*(X) are
comﬁutative rings.with_identify. All ideals in .C(X) or C*(X), unmodified,
will always mean proper ideals. If S is a set, then [S| will denote the
cardinality of S. As is standard, let c denote the cardinality £g° of
the continuum, Furfhermore, we a§Sume_the continuum hypothesis (c =%; ).

If SCX, then Cl,S, intyS, 93,5 will denote, respectively, the closure,

interior and boundary of § in X. If f is a function, then we let £

denote the inverse map.

Definition (1.1) For f e C(X), Z(f) = £°

T ={xeX: f(x) =0}
is called a zero set in X while X — Z(f) 4is called a cozero set iﬁ X .

The family Z[C(X)] of all zero sets in X will be denoted by Z(X)

. Remark (1.2)‘

(1) The family Z(X) of all zero sets is a base for the closed sets.
(2) £ is a unit of C(X) if and only if Z(f) = ¢

(3) Every zero set is a GG set .

USRI | -7+



Definition (1.3) Two subsets A and B of X are said to be completely
separated in X if there exists a function f e C*(X) such that 0 < f<1.

£[A] = {0} , £[B} = {1} .

Definition (1.4) A subspace S of X is said to be C—embed&éd in -X if
évery function in C(S) can be eétended to a function in C(X) . S is
C*-embedded in X if every functién in C*(S) can be extend to é function
in C*(X)

Définition (1.5) ,' A non-empty family ‘F of 2(X) is called a z-filter on

X provided that

(@ ¢4 F ‘
()  if z(f), z(e) e F, then Z(f) N Z(g) € F

()  if z(f) e F, z(g) e 2(X) and Z(£)C Z(g), then Z(g) e F .

If“in addition, F 4is not contained in any other z-filter, then

F> is called a z-ultrafilter on X .

" Theorem (1.6)
(a) If I is an ideal [resp. maximal ideal] in C(X), then Z[I]={Z(f):feI}
is a z-filter ' [resp. z-ultrafilter] on X . ‘
(b) If F is a z-filter [resp. z-ultrafilter] on X, then Z¢_[F]é{f:z(f)eF}

is an ideal [resp. maximal ideal] in C(X) .

Hence the mapping Z is one-one from the set of all maximal ideals

in C onto the set of all z-ultrafilters.



.Definition (1.7) An ideal I in C(X) is called‘a z-ideal if Z(f) e Z[I]

implies f e I .

Definition (1.8) A z-filter F in X dis called a prime z-filter if" F
has the following property : whenever the union of two zero sets belongs.

to F , then at least -one of them belongs to F .

Definition (1.9) ~ An ideal T in C(X) or C*X) is said'to_be fixed if

‘(1 Z[I] # ¢ .. Otherwise I 1is said to be free .

Theorem (1.10)

(a) = The fixed maximal ideals in C(X) are precisel& the sets
‘Mp = { feC: f(p) =0 }" ~pe X) .

- The ideals 'Mp are distinct for distinct p . For each p, C/Mp is
isomorphic with the real field R ; in fact, the mapping Mp(f) —> f(p)
is the unique isomorphism of C/Mp onto R .
(b) The fixed maximal ideals in c*(X) are precisely the sets

*

M= (fect: £() =0) ®e X .

“The ideals M; are distinct for distinct p . For each p, C*/Mg is
isomorphic with the real field R ; in fact, the mapping Mg(f) —> f(p) is

the unique isomorphism of C*/MS onto R .

WRE T W



" Definition (1.11) For p € X, let O, denote the set of all f in C

P
for which Z(f) 1is a néighbburhood of p. 1If MP = 0p , then p is

called a P-point of X .

Remérk (1.12) » p € X 1is a P-point of X if and only if eVery Gst-containing

p 1is a neighbourhood of p .

Remark (1.13)

(a) For p e X, M, is the only maximal ideal (fixed or free) containing

b

0P .

(b) If P is a prime ideal in C, and PC M, , then PO, .

Definition (1.14) By a compactification of a space X, we mean a compact

‘'space in which X is dense.

Theorem (1.15) Evéry space X has a Stone-Cech compactification BX with

F)

the following equivalent properties :

(1) (Stone) Every continuous mapping 7 from X into any compact space

Y has a continuous extension T from BX into 'Y .

(2) (Stone—Cech) Every function f in C*(X) has an extension to a

function £8  in c(RX)

3 (Cech) Any two disjoint zero sets in X have disjoint closures in

BX .

(4) For any two zero sets- Z;, and »Zz in X,



ClBX z; 'n _.Zz) = Z;, n ql

Clox ox% -

(5) If X 1is dense and C*-embedded in T, then XCT CBX .

(6) If X is dense and C*-embedded in T, then BT = gX . Furthermore,
BX 1is unique, in the following sense : if a compactification. T of X
satisfies.any one of the listed éonditions, then there exists. a homeomorphism

of BX onto T that leaves X pointwise fixed.

Remark (1.16) 1

(1) For SCX. S is C*-embedded in X if and only if 016)'(5 = BS .

(2) . The mapping £ — # is an isomorphism of C*(X) onto CE®X)

Theorem (1.17)  The maximal ideals in C*(X) ‘are precisely the sets
%P _ - * . 8 N
M = { fe C*"X): ff@p)y=201} (p € BX) ,

and they are distinct for distinct p . The maximal ideals in C(X) are =

precisely the sets

MP =A:{ feCX): p e ClBXZX(f) } (p € 8X) ,

and they are distinct for distinct p .

Definition (1.18)" Let M be a maximal ideal of C(X). [resp.»C*(X)] .
M 1is said to be a real ideal if C/M [resp. C*/M] 1is isomorphic to the

real field R . If M is not real, then we call M hyper-real .
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Definition (1.19)

(a) X 1is said to be realcompact if every real maximal ideal in C(X) is
fixed.
~(b) By a realcompactification of X, we mean a realcompact space in which

X 1is dense.

(c) X 1is said to be pseudocompact .if C(X) = c*X) .

.

Theorem (1.20). - MP  is hyper-real if and only if M*P  contains a unit of
C.
Theorem (1.21) - Let vX denote the set of all points p € BX such that

MP is real. Then
(a) vX 1is the largest subspace of 8X in which X is C-embedded.

(b) vX is the smallest realcompact space between X and BX . In

particular, X 1is realcompact if and only if ‘X = vX .

Theorem (1.22) Every (éompletely regular) space X has a realcompactification

vX, contained in BX, with the following equivalent properties.

(l)’ Every continuous mapping T from X into any realcompact space Y
has a continuous extension 7T© from VX into Y . (Necessarily, t©0 = T1vX,

.where T is the Stone extension of T into B8Y.)

(2) Every function f in C(X) has an extension to a function £V in

C(vX) . (Necessarily £V = f*|vX .) Furthermore, the space vX is unique,



in the following sense : ' if a realcompactification T of X satisfies any
one of the listed conditions, then there exists a homeomorphism of vX onto

T that leaves X pointwise fixed.

TheOremA(l.23) If fe CX), and aR denotes the One-poinpucompaétification
of R, then there is a (unique) continuous function £* : BX —> oR which
agrees with f on X .

Theorem (1.24) In the ring C(X), and also in C*(X), the prime ideals
containing a given prime ideal form a chain. (A chain is a totally ordered

sets.)



CHAPTER II1

" 'B=SUBALGEBRAS

Let A be a commutative ring with an identity. Let F be the

set of prime ideals in A . For E C A, define

v(E) = {PeF: ECP} .

Note that
W V) = F
(2 V@A) = ¢
(3 V(U E) =N VE) = ECA, ica,

ief ief .
' where & is an index set .

~(4). V(E N F) V(E) U V(F)- EC A, FcA.

Therefore the V's determine a topology on F . This topology is called

the hull-kernel topology.

Now for a e A, define

V@) = {PeF: aepP}
.and let »
Fa = F—v() .
Theorem (2.1)
@ {F,: ac A} is a basis of open sets for F with the hull-kernel

v/"

topology.



(ii) F 1is compact.

Proof : (i) Let B be a closed subset in F , then B = V(E) for some
ECA. Now Pe F—B if and only if P ¢ B if and only if E @& P if
and only if there exists ae E such that a¢ P if and only if there

exists .a€ E such that Pe F, . Thus F-B=y F
a E

a

(ii) Suppose F = U Fa , ECA . Let I = (E) = ideal generated
. ac E '

by E. We claim I =A . Suppose I # A, then by Zorn's letma IC P
"for some Pe F, then Pce F, for some ae E ..Hence ag P . But
ae ECIC P, contradicting a g P . Therefore we must have I =A . So

r . .
1= Z bja; » aj e E, b; e A. Now for Pe F, since 1¢ P, there

i i
i=1
exists i, 1< i< n such that a;j ¢ P . It follows that Pe F, . This
R i
proves that
F = Fall U - U Fan

and F is compact ..
Notation (2.2) Let MA denote the collection of maximal ideals in A
endowed with the hull-kernel topology.
Definition (2.3) By a subalgebra A of C(X), we mean a subalgebra in

the usual sense which contains the constant functions.

Given a subalgebra A of C(X). Define for each p e BX ,



-.10 -

MX = { fe A: (f2)*() =0 for all ge A}

where f£* maps BX into the one point compactification of R as stated

in 1.23 . Let

Gy = { Mi : pe BX} .

Theorem (2.4) Mz is a prime ideal in ‘A, pe BX .

Proof :  Since O Mi and 1 ¢ M | we see that Mg # ¢ and Mi # A .

Obviously MK is an ideal in A .. To prove that Mz is prime, it suffices
to show that if f, ge A with £, g¢ M , then fg a'Mi .~ Now let
£, g A, choose h, ke A such that (fh)*(p) # 0 and (gk)*(p) # O .

Then (fghk)*(p) # 0 . Thus fg¢ MZ .

‘Definition (2.5) Let Ty BX —> GA be such that TA(p)'= Mi . A is

said to be a B-subalgebra of C(X) if Tp is a homeomorphism of BX onto

MA'
Remark (2.6) C*(X)‘ and C(X) are B-subalgebras of C(X) .

For fe A, let

I

S, (£) -TX—{PE. GA:feP}

'{peBX:feMX

}

noozE)*) .
. 8€A
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Since Z((fg)*) is closed in BX, Sp(f) is closed in 8X . Note that
T, 1is continuous, since { { Pe GA : feP}: fe A} is a base for

the closed sets in GA

Definition (2.7) A subalgebra A of C(X) 4is said to be B-determining
if { 2(f*) : fe A} forms a base for the closed sets in BX . A :is
said to be closed under bounded inversion if f is a unit of -A Whenever
fe A with £> 1.

Definition (2.8) . An idéal I in A is said to be absolutely convex if

fe I whenever f e A and» ge I satisfying lfl.i Igl

For convenience, we shall abbreviate MA s Mz R GA > Ty apd

S, to M, M, G, = and S , respectively.

Theorem (2.9) ~ Given a subalgebra A of C(X) , the following are

equivalent.

1) A 1is B-determining

(2) G is Hausdorff and T is one-to-one

(3) t is a homeomorphism

Proof : (1) implies (2) . Suppose A is B-determining and let p,q e gX

with p#q . By [2, 6.5(b)], there exists Z,, %, ¢ Z(X) such that
) Z, =X and g§d C1,.Z2,, q¢ CL _Z, . Since A is B-determining,
2 P BX"1 BX“2 _ -

"{'Z(f*) : fe A} is a base for the closed sets in BX . So we can choose -
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f, ge A such that p ¢ z(f*):>(nBle -and q ¢ Z(g*):)(ﬂ.'z By the

gX2 °

choice abbve, £¢d M . Thus MP ¢ Q —{ M e G: £fe M} which is an

open set in G . Similarly Mle G—{ M e G : ge M

} which is an open

set in G . Furthermore by the choice of f, g,’ we see that fg =0 .

Thus (M e G f'g‘MS }U{MeG:geM}=06G.

So G —{ M5 ¢ G: £e M5}

and G—{ M°¢ G P g e M5} are disjoint open sets in G . Since Ps q

are arbitrary, G is Hausdorff. Since MP # Ml , T 1s one-to-one .

(2) implies (3) . It suffices to prove that f is closed. Let F

be a closed set in BX . Since BX is compact, F is compact . Since T

is cohtinuous, rfF] is compact. Since G is Hausdorff, T[F] is closed.

(3) implies (1) . Let F be a clbsed set in BX and p e BX with

p¢ F. Since T 1is a homeomorphism, {S(f) : fe A } is a base for the

closed sets in BX . Thus there exists f € A such that p ¢ S(f) and

FC S(E) . Since S(£) = N Z((£e)*) , (£g)*(p) # 0 for some g€ A .

geA

Thus p ¢ Z(f*) ; but F C:-S(f) C Z((fg)*) . This proves that {Z(£¥): f e A}

is a base for the closed sets in BX .

Theorem (2.10) Given a subalgebra A of C(X), the following are

equivalent.

10 A 1is closed under bounded inversion.

(2) If I is an ideal in A, then N Z(f*) # ¢ .
fel

(3)  Every ideal in A 1is contained in some MP .

4) . Myc Gy .

B, A -]

%)
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(5) Every Me MA is absolutely conve# .

Proof : (1) implies (2). Let I be an ideal in A . Let F{z(f%):££ 1} .
To prove (2), by the compactness of 8X , it suffices to show that'.F has
the finite intersection property. Let f;, ..., fn e I and let g=f§+;--+f%;l.

n
Then Z(g*) = (\ Z(f§) .- Suppose Z(g*) =¢ . Then _|g*(p)| > 0 for all
i=1 '

pe 8X . Since BX is compact, there exists r > 0 such that |g*(p)| > r> o.
'So_ g>1r, and g is a unit of A . Since ge I and since I is proper,

this is a contradiction. So we must have Z(g¥*) = ¢ .

(2) implies (3) . Let I be an ideal in A . Let pe N z(f%).
: fel

We claim that I MP . For if fe I, then fge I forall ge A . So
(fg)*(p) = 0, for all ge A . So fe M . A »
(3) implies (4) . Obvious.

(4) implies (5). It suffices to show that MP  is absolutely
convex. Let fe A and ge MP satisfying lfl §_|g| . Then lfhl i.lghl
for all he A . Since X is dense in BX , I(fh)*lls_|(gh)*] for all

he A. So feM .

(5).implies (1). Since 1 does not belong to any maximal ideal,

it follows that f is a unit of A whenever f e A with f >1.

This completes the proof .
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Theorem (2.11) Given a subalgebra A of C(X), the following are

“equivalent.
(1) A is a B—éubélgebra of C(X)

(2) ~ A is B-determining and closed under bounded inversion.

Proof : Suppose A is a B-subalgebra of C(X) . By 2.9, A is

B-determining. By 2.10, A 1is closed under bounded inversion.

Cdnversely suppose (2) holds.' By 2.9, 1t is a homeomorphism of
BX onto G . By 2.10, MC G .. Since G is T, , no two ideals of
G are comparable. So M =G . This proves that A is a B-subalgebra of

CX) .
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"CHAPTER‘III

" “THEA=POINTS OF 8X = X

Let A be a B-subalgebra of C(X); By 2;9; the family {S(f): feA}
forms a base for the closed sets in .BX. Let X* denote BX — X . For
feA, let S*(f) = S(f) N X* . Then i{.S*(f) : fe A} 1is a base for
-the élosed sets in X* ., For convenience, let us agree that the symbols

"C1" , "int" and "o" , without subscripts, refer to the topology of X* .

" Definition (3.1) A space X 1is said to have the GG—pfoperty if every

nonvoid Gg subset of X has a nonvoid interior.

_Remark (3.2) Since in a completely regular space X, every Gg containing
"'a compact set S contains a zero set containing S, it follows that X
has the Gd—property if and only if every nonempty zero set in X has a

nonempty interior.

The following theorem will be used several times throughout this
thesis : Let Y be a nonvoid locally compact Hausdorff space with the
Gg-property. If D is a family of at most X; dense open subsets of Y,

then N D is dense in Y. If, in addition, Y has no isolated points,

then | n D] > 2% . ([5, 3.2]).

Définition (3.3) Given a B-subalgebra A of C(X), a point pe X* is

sald to be an A-point of X* if, for all £ e A, p ¢ 3S*(f) .

Cu
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Remark (3.4)

(1) A point p e X* is an A-point of X* if and only if S*(f) is a .

neighbourhood of p whenever £ ¢ A and p e S*(f) .

) The set of A-points of X* is precisely"rl_’(X"'c — 3s*¥(£)) .

~ feA
‘Theorem (3.5) X 1is realcompact if and only if for every p € X* , there
is a Z e Z(BX) such that pe Z C X* .
Proof : Suppose X 1is realcompact and p e X* . Then MP  is hyperreal

by [2, 8.4] . By 1.20, M*?  contains aunit f of C(X); Since f is a
unit of C(X), it follows that Z(fB) C x* . By 1.17, p e z(£8) . This

proves the necessity.

Conversely, let p e X*¥ . By assumption, there exists Z(g) € Z(8X)
such that p e Z(g) € X* . Then g(x) # 0 for all x€ X . So the ¢
restriction of g on X is a unit of C(X). Since g(p) =0, ge M* |

By 1.20, MP  is hyperreal . This proves that X is real compact .

Theorem (3.6) Suppose X 1is a locally compact and realcompact space,

then X* has the G; property.
S

Proof : By remark 3.2, it suffices to prove that every nonempty zero set
Z in X* has nonempty interior. Since X is locally compact, by [2, 6.9(d)],
- X. is open in BX. So X* 1is closed. Since BX 1is compact and Hausdorff,

BX 1is normal. So X* is C*-embedded in BX by [2, 3D]. Therefore
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Z = 7Z(f) (1_X* for some f e C(BX). Let p e Z. By 3.5, there exists a
function g e C(BX) such that g(p) = 0 but g(ﬁ%) # 0 for all xe X .
Define h = |f| + |g| , then pe Z(h)C Z N X* . Now let {x%)} bea

set in X converging to p . By continuity of h, ‘{h(xd.)} converges to

h(p) = 0 . Obviously we can choose a subsequence '{x&' } of distinct points
, ‘i

of ‘{x&} such that h(xd.)'——-> 0 . By induction, choose disjoint compact
i

neighbourhood Vy of xa such that [h(x) - h(xd )] < —i— for xe V4 .
i i

By complete regularity of X, there exists a function w; such that

i
Of_wiil-, wi(xu_)'=l, wi[X—Vi]:’—:ﬂO. Let~w=.Z Wi, w is well
. i _ i=1

defined provided that {xd'.}' has no limit point in X ; but in fact, {Xy.}
. 1 . . 1

cannot has a limit point in X by the fact that h ' is not zero at any point

of X . Note that W(xd.) =1 for each 1 and w(x) =0 for xc¢ X—TJ Vi .
i i=1

Now suppose wh (q) # 0 for some q ¢ x* , Wwe see that every neighbourhood
of q meets infinitely many V;'s . Thus h(q) = 0 .. This proves that
X — @B n x*) C Z(h) . Since BX is compact, '{xa_} has a limit

i

"point q 1in BX . As proved already q € X* .. Thus there exists a subsequence

(o 3

111 1
n, it follows that wB(q) =1 . So X* — (ZGB)Y N x*) # ¢ . Since

‘{x. } of {x,} such that wP(x, ) —> w’(q). But w(x, ) =1 for all
1 %ip ip

Z(h) C Z and X* - (Z(ws) N x*) is open, this proves the theorem.

Theorem (3.7) If X 1is realcompact, then X* has no isolated points.
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Proof :  Suppose p is an isolated point in- X* . Then there exists a
zero set neighbourhood th) of p in .SX such that Z(f) N x* = {p} .
ﬁy 3.5, there ;xists Z(h) e Z(gX) ‘such tha; P e.Z(h)f:  X*“. So‘

" {p} =’Z(f) N Z(h) é Z(BX) . So '{é} is a zero set in BX . Since {p}
is disjoinf from X, by [2, 9{5]; "{p}" contains a copy of N." Thisleads

to a contradiction.

Theorém~(3.8) Let X be a locally compact and real éompact metric space.
Let A be a B-subalgebra of C(X) with [A] = C. If, in addition, X is

not compact, then X* has a dense subset of 2€A-points.

" Proof : Let D ={X*¥—03S*(f) : fe A} . Obviously, for each f ¢ A,
X* — 3S*(f) 1is an open dense subset of X* . By 3.6, X* has the Gg
property. By 3.7, X#_ has no isolated points. Now apply [5, 3.2], we see

that N D is dense in X* and [ N D| Z;ZC . vSince A 1is a B-subalgebra

of C(X), |x¥| 5_2|A| =2°. 80 | Nn Dl =2%. By remark 3.4 (b), N D

is precisely the set of A-points of x* .

Theorem (3.9) Let X be a locally compact and realcompact but not compact
metric space. Let { Ad : aed} bea family of B-subalgebras of C(X)
with IAaI =C for'each o e 4 and |A] < C, then X* has a dense subset

of 2¢ points which are simultaneously Ad—points for all a € A ,

Proof :  Let D = { x* —-BSZ (f) : feahy, d e A} . Then
. o :

TNP=MNn"nN (X* — 3S¥ (£f)) is precisely the set of points of X* that
ach fehy Ao ) :
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are similtaneously A,-points for all o e A . Applying [5, 3.2] again,
N D is dense in X* and | N D| > 2° . Since A, is a B-subalgebra
of C(X), |X*| <2 =2°. so | nop|=2°.

Theorem (3.10) A point in x* is a C*(X)-point if and only if it is a

P-point of X* .

Proof : Since M*p ={ fe C*RX) : f8(p) =01} , we see that SC*(f)=Z(f3),
fe C*X) . So Sz*(f) = X* N Z(f8) . Now by definition, a point in X¥

"is a P-pdiﬁt of X* if and only if it is not an element of the X*-boundary

of any zero éet of Xx* , and is a C*(X)—point if and only if »p J BS**(f) =
. ' . C

=3@x* N z(ff)) for all f£e C*(X) . Obviously a P-point is a C*(X)-point.

Conversely suppose p 1is not a P-point. Then there exists
Z; e Z(X*) such that p e 9Z; . Let S be a.Gé—set of BX such that
s N x* =.Zl . By [2, 3.11 (b)], there exists a Z, € Z(BX) such that
pe Z; C S. Then pe 3(Z, N X*) . This proves that p ' is not a

C*(X)—point.

Corollégz (3.11)

- (1) BN — N has a dense subset of 2° P-points .

(2) BR — R has a dense subset of 2 P-points .
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Proof : (1) Obviously N 1is locally compact and realcompact but not
compact. Furthermore [c*)| = ¢ .- Applying 3.8, BN — N has a dense

subset of 2€ C*(N) points. By 3.10, BN — N has a dense subset of 2°

P-points.

(2) R 1is obviously locally compact and realcompact but not
compact. Since R is separable, |C*(R)| =cC . Applying 3.8 and 3.10,

p has a dense subset of 2¢ P-points.
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" 'CHAPTER IV

" 'REMOTE POINTS .IN B8R

In this chapter; we shall turn our attention to the remote points
~ in the spacé B8R, the Stone 5eéh compactificétion of the space R of real
"numbers. As in [2], we associate with each maximal.ideal MP  in C(R) the
z-ultrafilter |

AP = '{ZZ(f) :feM Y ={ZezZ®R) :pe ClBRi }
For »p é BR, we denote by of the sef of all f e C(R) for which ClBRZ(f)

is a neighbourhood of p, 1i.e.

. p - ‘. . 3 .
.0 = { f é C(R) f P e lntBRClBRz(f) }

Definition,(4.l) A point p e BR 1is said to be a remote point in BR if

P 1is not in the BR closure of any discrete subset of R .
Theorem (4.2) BR — R has a dense subset of 2¢ C-points .

Proof :. Since R is separable, [C(R)l = C . By 3.8, it is immediate
that BR — R has a dense subset of 2¢ C-points.
Lemma (4.3) If Z is a closed novhere dense set in R, then there exists

a discrete subset D of R such that DN Z=¢ , D U .z = ClRp .
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-Proof : Since Z is closed, R —Z 1is open . 'As‘an open set in R,

R — Z is a union of disjoint open intervals I -

For each 'Id » choose

a discrete subset Dd C: Id' such that the endpoints of I are the only

limit points of Dd . Put D= Dd . Obviously D N Z = ¢ and fDL)Z_= ClRD.
o ’ .

Theorem (4.4) For p ¢ BR, the following are equivalent :

@D) p 1s a remote point in B8R .

2) AP has no nowhere éehse member .
(3) MP=oP .

| (4) p 1is a C-point of BR-— R .

(5) MP  is a minimal prime ideal .

(6) of is prime .

Proof : (1) => (2) . Suppose that AP has a nowhere dense member Z .
By 4.3, there is a discrete subset D of R such that Z M D =¢ and

ZU D=CLD, so that Z c Cl Hence pe Cl RZ C Cl

Cler arD B arD -

Therefore p 1s not a remote point in BR .

(2) =>(1) . Suppose p 1is not a remote point in BR . Then there
is' a discrete subset D of R such that p e ClBRD . Clearly ClBRD e AP,
We claim .intRClRD = ¢ . Suppose, on the contrary, that intRCIRD # ¢ . Then

(intRCIRD) N.D#¢ . Let qce¢ (intRCIRD) N D . Since D is discrete, q
is open in D. So {q} =D N G for some open set G in R. Obviously

{q} ¢ (ll(intR01RD) . Conversely, let re G (\‘(intRC1RD)‘. Then r is
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either a point of D or a limit point of D. If f is a point of D, then
re DN G. Hence r=q . If r is a limit point'of D; then G ' D
contaiﬁs iﬁfinitely many points of D. This‘contradicts the fact that&‘D‘rl_G
is a singleton set. So this cannot be the'case;'and {q} = G’(l((intR01RD5 .
This proves that '{q} is open in R; i;e. q 1is an isolatedupoint in R.
But this cannot be true. So we must have—the fact that intRClRD =¢ . So

Ap has a nowhere dense member .

(2) =>(3) . Suppose that AP has no nowhere dense member. Let
feMP . Since ClR(R-—‘Z(f)) is a clbéed_set in R, by Urysohn's lemma
there exists a function g e C(R) such that 2Z(g) = ClR(R-— Z(£f)) . Thus

R=2Z(f) U Z(g) . We claim p ¢ ClsRZ(g) . Suppose not, then

©

€ ClBRZ(f). N 01BRz(g) . By _t.heorem 1.15, (4), pe ClBRZ(f) N ClBRZ(g) =

ClBR(Z(f)' N z(g)) = Cl, 2. Z(f) . This proves that 3 2(f) ¢ AP . Since

BR'R
'aRZ(f) is nowhere dense, this contradicts our hypothesis that AP has no
nowhere dense member. Sg p ¢‘ClsRZ(g) . So'pe Bg —-ClBRZ(g) cC ClBRZ(f).

Since CIBRZ(g) is closed , BR — Cl _Z(g) 1is open. This proves that

BR
ClBRZ(f) is a -neighbourhood of p . Thus £ ¢ OF .

(3) => %) .j Suppose that of = MP . Fof any f e C(R) and
pe SEE) = Sc(£) N (BR—R) = (CLZ(£)) N (BR—R), then £e M,

whence f e O° . Thus p € int Z(f) . Thus p dis in the interior of

BRCIBR
Sz(f) in BR— R . By remark 3.4, (1), this proves that b is a C-point

of BR—R .

(4) => (2) . Suppose that p is a C-point of BR — R , and let.

Z'e AP . We shall show that 2 is not nowhere dense. Since Z e AP ,
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pecCl

So e (ClgZ) N (BR—R) = Sc(£) N (BR—R) = S5(F) . Since

BRZ . |
p is a C-point, by remark 3.4, (1), p is in the interior of -Sg(f) in

BR—R . Thus pe lntﬁRC1BRz . Obviously (lntBRClBR

Z) M R#¢ and is
a subset of Z . This proves that Z is not nowhere'denéé. '

(2) => (5) . Assume (2) : Supposé; on the contrary; that MP
is a nonminimal prime ideal. Let I be a prime ideal properly cohtained
in M, choose z e z[MP] — z[1] = AP — 2[1] . Since R =z L)'Cl(R — 2)
and 2z ¢ z[I] , it follows that CL(R —Z) ¢ Z[I] . So Cl(R—2) ¢ MP .
Thus B#Z =2 N CLR—2) ¢ M . Obviéusly BRZ is nowhere dense. This

contradicts our hypothesis. So M’ is a minimal prime ideal.

(5) => (3) . Assume (5). By [2, 2.8], oP is the intersection
of all the prime ideals contained in MP . Since MP is a minimal prime

ideal, it follows that MP = of .
(3) => (6) . Obvious .

(6) => (5) . Suppose MP  is not a minimal prime ideal. Since

(5) and (2) are equivalent, it follows that AP has a nowhere dense member

Z . Choose'diéjoint discrete subsets Dl’ D, of R such that Di =27z,

i 1, 2, where Di denotes the derived set of Dj in R . Let Gj = ClRpi,
i= 1,,2>. Obviously ClR(Gi —2) e AP . By [4, 4.2], AP has a prime

z-filter F.

i containing G; but mot Z, for i =1, 2 . Since G N G, = Z,

we see that F; and F, are incomparable. Thus ZQ_[FI] and Z<—[F2] are
incomparable . Since Fi is a prime z-filter in Ap, ZQ—[Fi] is a prime
ideal contained in MP , i=1,2 . By [2, 7.5]," Zé_[Fi] contains OF ,

i=1, 2 . By 1l.23 , we see that FOP is not prime,.
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- Theorem (4.5) BR —R has a dense subset of 2% remote points in @R .
‘Proof : Follows imﬁediately from 4.2 and 4.4 .

Theorem (4.6) BRJ— R has a dense subset of 2C .points which are simultaneously

remote points in BR and P-points of BR —R .

E‘_o_é_f: -~ Apply 3.9 to‘the family { C(R), C.*(R)' } of B-subalgebras of

C(R) . .Then BR — R has a dense subset of 2c' points which are simultaneously
. C*-—points and C-points of BR — R . By 3.10, C*-—poiﬁts of BR-— R are
precisely the P—points of BR—R . .By 4.4, 'C—p;nints ;)f BR — R ;are precisely

the remotes points in BR .

Theorem (4.7) BR — R has a dense subset of 2°¢ points which are P-points

of BR — R but not remote points in BR . _ .

Proof : ' Let V ‘be a closed neighbourhood in B8R of any point in BR — R .
Obviously V 1 R is not pseudocompact. Since V .ﬂ R 1is closed, by

‘[2, 1.18], it is C-embedded in R . Thus by [2, 1.20], V’ N R éontains
acopy D of N which is C-embedded in R . Since D is C*-embedded in

| R , by 1.16, BD = Cl, D . Since V is closed in B8R , 'we see that
—DCV (\_R"; . Since Bﬁ — D dis homeomorphic with

p*¥=8D—D = Cl

BR"
BN —N , by 3.11, 8D —D has 2% P-points of BD —D . By [2, 9 M.2] ,

we see that a point in BD — D 1is a P-point of BD — D if and only if it

is a P-point of BR— R, that BD — D has 2¢ P-points of BR — R. Since
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D is-discrete, no point of BD — D is a remote point of BR . Since V

is arbitrary, this proves the theorem.

Definition (4.8) A space X is said to be an F-space if every cozero set

in X is C*-embedded in X .

‘Remark (4.9) By {2, 14.27}, Bﬁ — N 1is a compact F-space and so is

BR — R .
Lemma (4.10) Every infinite compact F-space has at least 2 non P-points.
Proof : Let X be an infinite compact F-space. Since X is infinite,

there is a countable discrete subset D = { d, : ne N} . By [2, 14 N.5],

C*(X) be such

™

D is C*-embedded in X . So CL,D = 8D by 1.16 . Let f

that £(dy) = n—1 ,. ne N . Then for aﬁy peD¥=8D—D

p € Z(f) , but obviously Z(f) is not a neighbourhood of p . Thus p

is not a P-point . Since IBD —-D|,= 2% , this proves the lemma .

Theorem (4.11) BR — R has a dense subset of 2% points which are neither

remote points in BR . nor P-points of BR — R .

Proof : Let V be a closed neighbodrgood in BR of any point in BR-— R .
“As in the proof of 4.7, V N R* contains a copy D* = BD — D of BN - N .
By remark 4.9, D* is a compact F-space. By 4.10, D* has at least 2€

non P-points of D¥ . So by [2, 9M.2], D* has at least 2¢ non P-points

of BR— R . Since D is discrete, no point of 8D — D is a remote point

of BR . This proves the theorem .
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Theorem (4.12) BR — R has a dense sgbsetvof 2% points which are remote

points in gR but not P—points of BR-— R .

Proof : Let V 'be a closed neighbourhood in BR of any‘point in BR-— R .

By [5, 5.5], there exists an infinite compact set’ A of remote poiﬁts in
BR such that A € V N (BR — R) . Since BR—R is an F-space by 4.9,

the C*-embedded subset A is also an F-space by [2, 14.26]; By 4.16, A

“has 2% non P-points. By [2, 4L.2], each of these points is a non P-point

o%“‘BRf— R . This proves the theorem .

PR
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"CHAPTER V

PRIME 'IDFAL STRUCTURE AND REMOTE POINTS

Definition (5.1) Let P(X) déﬁofe the family of all prime z-filters on
X. A prime z-filter is said to be ﬁinimal if it is a2 minimal element of
P(X). For A, Be P(X) ,. if ACc B, we say that A 1is a predecessor

of B a'nd tihat B is a succ‘essor of A . If in additién there is no prime
z-filter between them, we use the term immediate predecessor and immediate

successor.

Theorem (5.2) Let A be a prime z-filter on X . Suppose there exists

Z ¢ A such that for any zero set Wd A, Z y W#X . Then A is non-

~

minimal .
Proof : For any EC X,, let
z(E) = {ZeZ2(X) : Ec Z}

By assumption, we have z(X —2Z) ¢ A . Now let

B = {(We 2(X) : z(W—2)¢e A} .

'Since Xe B, B #¢ . Furthermore B has the following properties :

(1) B is closed under supersets : Let We B and let Ve Z(X) such

that WC V . Obviously z(V —-2) C z W — Z) and hence z(V—-2Z)¢c A
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i

Thus Ve B .

(ii) for any W, W e Z(X) , if W; ¢ B for i =1, 2, then W\ Wd B:
choose Vj ¢ z(Wi.—~Z) —A for iw=.1, 2 . Siﬁce A is prime, V; U V, d A .
On the Othef'hand, it is obvious that V; Uy V, efzﬂﬁ U WQ —'Z) and by

definition of B ,. W U W, ¢ B ~

Now applying Zorn;s 1emma; there exists a z-filter F which is
maximal ‘among phe_z—filtersicontained in B . ﬁote'that' Zz¢g F . Furthermore,
for any We\F, We z(W—er)C A, sothat We A . Thus F C A,

F #A . Finally we shall prove that F is priﬁe. Letv Z, , Zy e Z(X)

" with Z, UFZ2 e F .- Suppoée Z; ¢ f bfor i=1, 2. By the ma#imality
of F,__thereAis Wy e F such that Wi N Z; B, for 1i-= 1; 2 .. |

" Setting W =W ()VWQ s obviously W N (Z; U Z,) e F . Since B is

" closed under supersets, W.(\ Z; d B, 1i=1, 2 . By property (ii) of B ,
we éee that W N (Z U Z)¢B . Thus W N (2y U Z,) ¢ F, and this
leads to a contradiction . Thus we must have that F 1is prime, and hence

F is an immediate predecessor of A . So A 1is non-minimal .

Theorem (5.3) For each p e BX , every prime ideal P of C*(X) contained
in M*P s comparable with MP noc*

Proof : Obviously MP N c* is a prime ideal contained in C* . Choose
a minimal prime ideal J such that J & P . By 1.24, it suffices to show:
‘that J c ¥ C C¢* . To show this, we first pass to the ring C(8X) by

means of the canonical isomorphism £f—> 8 of C*X) onto C(8X) , and
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then we pass to the family of prime z-filters on 8X .

since M ={ fe C(X) : pPe CleZx(f) } , the prime ideal in

C®X) corresponding to MP (lv'C* is given by

o fl‘C*)B‘=A{V g€ C@BX) : pe C

L <Zx (8l )}

we claim M N C*)B is a z-ideal. Let Z,x () € ZBX((MP N c*)B) , then

st(f) = ZBX(g) for‘ some ge CERX) . Hence ZX(fI X) = ZBX(f) n X =

= ZBX(g) n X= Zx(g| X) , whence pe C Zx(f] X) . This proves that

1BX
fe (Mp . ¢*)8  and hence (Mp N c*)B  is a z-ideal. Now let us denote
- the corresponding prime z-filter on BX by KP 3 obviously
(2 N X} .

P ={ze 26X) : pe 1,

Also by [2, .14.>7], the minimal prime ideal B of C(@X) corresponding to .
J 1is a z-ideal ; let B denote the correspbnding minimal prime z-filter on
BX . Now Weiare géing to show that BC K’ . Let Ze B . To show that
ze kP » it suffices to show that p € ClBX(z N X) . Now let V ' be any
zero set neighbourhood of p . By [2, 7.15], Ve B and hence VN Ze B .
Since B is minimal, applying theorgm 5.2, we can choose a zero set W not
in B such thaf (VN zZ) y W=8BX. .If in.tBX(V N Z) =¢, then W is

. dense in BX and hence W =8X . Thus We B , but this is impossible.

So we see that int(V N 2z) # ¢ , and ‘(V N Z)y N X#¢ , whence |

PeCly(ZAX) and Ze K . Thus B € K° and hence J < M . c* .
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Definition (5.4) If YC X and F is a z-filter on Y, it is clear
that .
Flootzez: znyeF)

is a z-filter on X ; it is called the z-filter induced on X by F .

If YC X and F is a z-filter on X , then F|Y = {ZNY : ZeF}

is called the trace of F on Y.

Definition‘(S.S) A z-ideal in C* is an ideal I that contains any
function that belongs to the same maximal ideals as some function in I .
Theorem (5.6) If Y is C*-embedded in X and F 1is a prime z-filter

on- X such that every member of F meets Y, then FIY ~is a prime z-filter

on Y .

Proof ; It is cleaf that FlY is a z-filter on Y . ‘To show that F|Y

. 1s prime, it suffices to shqw that for any 2, We Z(Y) with Z Yy W=Y 5
at least one of thém belongs to FIY . Since Y is C*-embedded in X, we
can choose S, Te Z(X) such that Z=S N Y s, W=TMN Y, Since F 1is
- prime and F C (FIY)# » it follows that (FlY)# is prime. Since

TSy TDNYI=Zy W =Y, by definition of (FlY)# we see that

SuUT 8'(F|Y)# . Thus at least one of S, T beloﬁgs to (FIY)# , and

whence at least one of Z, W belongs to FIY . Hence FIY ~is prime.
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Review (5.7) Iﬁ the restjof this chapter, we consider the .real line R
onlyf By the'Stone—&ech,Compactification theorem and [2, 2.12], we see that
the prime ;—ideals contained in M*® are in-order preserving corréspondence
lwith the prime z-filters on 8X contained in AER » by means of the ‘
mapping P —> z[PB] . Under this mapping MP N ¢* —> KP (see theorem 5.3),

where

kP

{ Ze Z@BR) : pe 01BR(z N R) }

Since R is locally compact, it follows that BR — R 1is a zero
set in BX and is C*-embedded in B8R . Obviously .there is a bounded unit
of C(R) that belongs to M*P  for every p € BR —R . Thus MP (I‘C* # M*P

if and only if pe BR—R .

Theorem (5.8) For ahy pe BR , the family of prime z-filters on BR
contained in KP is in one-to-one cofresponding with the family of prime

z-filters on R contained in AP .

Proof : Let .P be a prime z—filtér contained'in kP ; then every member
of P meets R . By theorem 5.6, PIR ={ZNR: ZegP} is a prime
z-filter‘on R. Since # C kP , it follows thatA PlR C AP . If B is
a prime z-filter oﬁ R contained in Ap » obviously the induced prime
z~-filter

| 8" = (z2ez@R): zN ReB)
1is contained in KP  and B#|X = B. Hence the mapping P —> P|X for

P C kP is onto the family of prime z-filters of C(R) contained in AP .
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To pfove that the.mapping is one to one, ‘it suffices to show that P = (P]x)# .
Obviously P ¢ (PIR)# . Conversely for any Z ¢ (PIR)# ; there is ﬁ e P
such that Z N R=W N R ; Obviously W C Z k;'(BR — R) ; so tﬁat

Zy (BR—R) e P . By definition of KP ; we see that BR —R¢g P . Since
P is prime, we have Z e P ; This proves that (PIR)# C P and hence

P=cnt.

Corollary (5.9) The family of prime z-ideals of C*(R) contained in
MP (\_C* is order isomorphic with the family of prime z-ideals of C(R)
contained in MP .

-~

Proof : It follows immediately from 5.8, the Stone—&ech compactification

theorem and [2, 2.12] .

Corollary (5.10) MP is a minimal prime ideal of C if and only if

MP f\vC* is a minimal prime ideal of C¥* .

Corollary (5.11) p 1is a remote point in RBR if and only if MP (1.C*

is a minimal prime ideal of C* .

Theorem (5.12) For any p €¢ BR — R .. The family of prime z-filters on
BR properly containing KP is in one-to-one correspondence with the family

of prime z-filters on BR-— R contained in AER - R



v e e e ke o . [ OUEN O W 7Y

- 34 -

Proof : Let P be a prime z-filter of; BR properly containing kP .
Obviously every member of P meets sR —R . So by theroem 5.6, we see

"that the trace 'P[ (BR —“R) is a prime z-filter on BR —R . Since PC Aé)R,
it follows that P| (BR —R) C AgR _ R Le; B be a prime z-filter on

BR - R contained in AgR ___ g + 7The induced z-filter

8" = { ze z@R) : ZN @R—R)e B}

is clearly prime and B#I (BR —~ R) = B . Since BR —R¢d k?  and BR—Re B#,

it follows from theorem 5.3 that- B# properly contains k? . This proves
that the mapping P — PI(BR —R) , for e P ois onto the family of

R Finally we are going

prime z-filters on B8R — R éontained in A§R _
to show that it is one~to-one . It s_uffices to show that P = (PI @R — R))# .
Obviously P( C (Pl (®BR — R))# . Now let Z e (PIF(BR - R))# , then there
exists We P such that Z N (BR;- R) =W (\-‘ BR—1R) . We claim

BR— Re P . S.uppose,i not, then the (z-ideal P in C*(R) corresponding to

P contains no unit of C(R) . Let fe P and let V be a zero set
ne_ighbqurhood of p in BR . Since P s prime and is contained in AgR ,
by [2, 4I.4] , it follows that Ve Z[PP] . Thus v N z(P) ¢ z[PB] and
hence V N Z(f) € Z[P] . Since P contains no unit of C(R), V N Z(f) # ¢
Hence p € ClBRz(f) and.therefore fe M . This proves that P C Mp n c* s
i.e. P is éontained in KP s but this is impossd'.ble. So we.must have
BR—Re.P » Thus 2Z N (BR-R) =W N (B_R-—R) e P and hence Z e P . This

proves that (P| BR — R))#C P , and hence the mapping is one to one .
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Definition (5.13) The z—filteﬁ generated by a z-filter F and a zero set

Z_ that meets every member of F is denoted by "(F, Z) . Obviously
“(F, 2) ={ We Z(X) : for some Feg F, F n Z c Wl

Remark (5.14) In the last part of the proof of 5.12, we showed that for

any pe BR—R, aprime z-filter contained in AE

if and only if it contains the zero set BR — R . This @éans that K° has

R properly contains P

an immediate successor (Kp)+ in the family of prime z-filters on BgR ,
generated by KP and the zero set BR — R , 1l.e. (Kp)+ = (P, gR — R)
‘Furthermore, according to the construction of the one to one onto mapping

in theoreﬁ 5.12, we note that (Kp)+ = (Z[OgR ])#

— R

#

Theorem (5.15) (Z[OIB)R] , BR — R) = (z[ogR _ g’ . Hence (z[ogR,’ 8R — R) =

= (Kp)+ , and the immediate successor of MP r\}c* in the family of prime

z-ideals of C*(R) consists of all functions f such that f® vanishes on

\

a neighbourhood of p in BR—R .

- Proof : = For any Z ¢ (Z[OER], BR — R) , there exists We Z[OgR] such

that W N BR—R)C Z . Since WN (BR—R) ¢ z[ogR it follows

.
#

1)7 . Conversely

— g

— P
that z N (B8R —R) e Z[OF, -

D
Thus Z ¢ (Z[OBR

])#

p : y . P .
for any Z ¢ (Z[OBR__ R » then Z N (BR —R) ¢ Z[OBR-— R] . This means
that Z N (BR — R) 1is a zero set neighbourhood of p ¢ BR —R in BR—R.

So there is W e z[ogR] such that W N (BR—R) € Z N (BR —R) . Thus
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WN BR—R)C Z, and Ze (Z[Og , BR — R)

r)
Corollary (5.16) For any pe BR—R , p is a P-point of BR — R if
and only if M*P‘ is the immediate successor of MP (l‘C* in the family of

prime z-ideals of C*(X) .

Corollary (5.17) For any p e BR-—.R » the family of prime z-ideals of
C*(R) contained in M*? consists of just the two ideals M*® and MP (\'C*

if-and only if p 1is both a remote point in BR and a P-point of BR — R .

_ Theorem (5.18) p is a remote point in BR if and only if the prime ideals

contained in Mp form a chain .

Proof : If p 1is a remote point in BR-, then MP  is a minimal prime

ideal and hence the necessity follows immediately.

Conversely, suppose that the prime ideals contained in MP form
a chain 'C-; By [2, 2.8] of=nC. To show.that p 1is a remote point
' of‘ BR—R , it suffices to show that OF = N C is prime. Now let
ad N C\, b ¢ C . Then there exists P, Je C such that a¢d P, bd J.
Since é is a chain, it follows that P & J, say. Thus b ¢ P . Since

P is prime, ab¢ P . " Hence ab ¢ N C . This proves that of is prime.
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