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ABSTRACT 

We are going to study the remote points i n 0R and the P-points 

in PR — R . A remote point i n gR i s a point which is not i n the gR 

chosure of any discrete subset of R . A point p e *R - R i s a P-point 

of $R—R i f every G^-set containing p is a neighbourhood of p . 
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As we know, every completely regular space X has a compactification 

3X such that every function f in C*(X) has an extension to a function 

f^ in C(BX) . This thesis is devoted to study the papers [1], [3], [4], 

[5]. 

In chapter II, we study the class of subalgebras of C(X) called 

B-subalgebras. With each 3-subalgebra A of C(X), we define A-po'ints 

in 3X — X . Then we study the A-points in chapter III . In chapter IV, 

we turn our attention to the remote points in 6R . Finally, we study the 

prime ideal structure of C(X) . 



CHAPTER I  

PRELIMINARIES 

Throughout this thesis, a l l given spaces are assumed to be completely 

regular and Hausdorff. C(X) will denote the collection of a l l real-valued 

continuous functions on X, and C*(X) will denote the subcollection of 

bounded functions. Under the pointwise operation, C(X) and C*(X) are 

commutative rings with identity. A l l ideals in C(X) or C*(X), unmodified, 

will always mean proper ideals. If S is a set, then | s | will denote the 

cardinality of S. As is standard, let c denote the cardinality 2̂ ° of 

the continuum. Furthermore, we assume the continuum hypothesis (c = V ^ i ). 

If S C " » then C1XS, int xS, 8XS will denote, respectively, the closure, 

interior and boundary of S in X. If f is a function, then we let f < — 

denote the inverse map. 

Definition (1.1) For f e C(X), Z(f) = f < _ (0) = { x e X : f(x) = 0 } 

is called a zero set in X while X — Z(f) is called a cozero set in X . 

The family Z[C(X)] of a l l zero sets in X will be denoted by Z(X) . 

Remark (1.2) 

(1) The family Z(X) of a l l zero sets is a base for the closed sets. 

(2) f is a unit of C(X) i f and only i f Z(f) = <f> 

(3) Every zero set is a Gg set . 



Definition (1.3) Two subsets A and B of X are said to be completely 

separated in X i f there exists a function f e. C*(X) such that 0 <̂  f <_ 1. 

f[A] = {0} , f[B] = {1} . 

Definition (1.4) A subspace S of X is said to be C-embedded in X i f 

every function in C(S) can be extended to a function in C(X) . S is 

C*-embedded in X i f every function in C*(S) can be extend to a function 

in C*(X) . 

Definition (1.5) A non-empty family F of Z(X) is called a z-filter on 

X provided that 

(a) <j> i F 

(b) i f Z(f), Z(g) e F , then Z(f) (\ Z(g) e F 

(c) i f Z(f) e F , Z(g) e Z(X) and Z(f)CZ(g), then Z(g) e F . 

If in addition, F is not contained in any other z-filter, then . 

F is called a z-ultrafilter on X . 

Theorem (1.6) 

(a) If I is an ideal [resp. maximal ideal] in C(X), then Z[I]={Z(f):fel} 

is a z-filter [resp. z-ultrafilter] on X . 

(b) If F is a z-filter [resp. z-ultrafilter] on X, then Z < -[F]={f:Z(f) eF} 

is an ideal [resp. maximal ideal] in C(X) . 

Hence the mapping Z is one-one from the set of a l l maximal ideals 

in C onto the set of a l l z-ultrafilters. 



Definition (1.7) An ideal I in C(X) is called a z-ideal i f Z(f) e Z[I] 

implies f e I . 

Definition (1.8) A z-filter f in X is called a prime z-filter i f f 

has the following property : whenever the union of two zero sets belongs. 

to F i then at least one of them belongs to p . 

Definition (1.9) An ideal I in C(X) or C*(X) is said to be fixed i f 

H Z[I] f <j> -. Otherwise I is said to be free . 

Theorem (1.10) 

(a) The fixed maximal ideals in C(X) are precisely the sets 

Mp = { f e C : f(p) = 0 } (p e X) . 

The ideals Mp are distinct for distinct p . For each p, C/Mp is 

isomorphic with the real field R ; in fact, the mapping Mp(f) —> f(p) 

is the unique isomorphism of C/Mp onto R . 

(b) The fixed maximal ideals in C*(X) are precisely the sets 

Mj = ' { f e C* : f(p) = 0 } (p e X) . 

The ideals Mp are distinct for distinct p . For each p, C /M* is 

isomorphic with the real field R ; in fact, the mapping M^(f) —> f(p) is 

the unique isomorphism of C /M? onto R . 



Definition (1.11) For p e X, let 0 p denote the set of a l l f in C 

for which Z(f) is a neighbourhood of p . If Mp = Op , then p is 

called a P-point of X . 

Remark (1.12) p e X is a P-point of X i f and only i f every containing 

p is a neighbourhood of p . 

Remark (1.13) 

(a) For p e X, Mp is the only maximal ideal (fixed or free) containing 

Op • 

(b) If P is a prime ideal in C, and PCMp , then P D O p . 

Definition (1.14) By a compactification of a space X, we mean a compact 

space in which X is dense. 

Theorem (1.15) Every space X has a Stone-Cech compactification BX with 

the following equivalent properties : 

(1) (Stone) Every continuous mapping T from X into any compact space 

Y has a continuous extension T from 3X into Y . 

(2) (Stone-Cech) Every function f in C*(X) has an extension to a 

function f& in C(BX) . 

(3) (Cech) Any two disjoint zero sets in X have disjoint closures in 

PX . 

(4) For any two zero sets Zj and Z 2 in X , 



(5) If X is dense and C*-embedded in T, then X C T C£X . 

( 6 ) If X is dense and C*-embedded in T, then gT = gX . Furthermore, 

gX is unique, in the following sense : i f a compactification T of X 

satisfies any one of the listed conditions, then there exists, a homeomorphism 

of gX onto T that leaves X pointwise fixed. 

Remark (1.16) 

(1) For SCX. S is C*-embedded in X i f and only i f C1DVS = gS . 
PA 

(2) The mapping f —> f^ is an isomorphism of C*(X) onto C(gX) . 

Theorem (1.17) The maximal ideals in C*(X) are precisely the sets 

M*P = { f e C*(X) : f&(p) = 0 } (p e gX) , 

and they are distinct for distinct p . The maximal ideals in C(X) are 

precisely the sets 

MP = { f e C(X) : p e C l ^ Z ^ f ) } ( p e gX) , 

and they are distinct for distinct p . 

Definition (1.18) Let M be a maximal ideal of C(X). [resp. C*(X)] . 

M is said to be a real ideal i f C/M [resp. C*/M] is isomorphic to the 

real field R . If M is not real, then we call M hyper-real . 



Definition (1.19) 

(a) X is said to be realcompact i f every real maximal ideal in C(X) is 

fixed. 

(b) By a realcompactification of X, we mean a realcompact space in which 

X is dense. 

(c) X is said to be pseudocompact i f C(X) = C*(X) . 

Theorem (1.20) is hyper-real i f and only i f M**5 contains a unit of 
i 

C 

Theorem (1.21) Let vX denote the set of a l l points p e BX such that 

Mp is real. Then 

(a) vX is the largest subspace of BX in which X is C-embedded. 

(b) vX is the smallest realcompact space between X and BX . In 

particular, X is realcompact i f and only i f X = vX . 

Theorem (1.22) Every (completely regular) space X has a realcompactification 

vX, contained in BX, with the following equivalent properties. 

(1) Every continuous mapping x from X into any realcompact space Y 

has a continuous extension x° from VX into Y . (Necessarily, T° = ̂ IvX, 

where T is the Stone extension of T into BY.) 

(2) Every function f in C(X) has an extension to a function f° in 

C(vX) . (Necessarily f v = f*|vX .) Furthermore, the space vX is unique, 



in the following sense : i f a realcompactification T of X satisfies any 

one of the listed conditions, then there exists a homeomorphism of vX onto 

T that leaves X pointwise fixed. 

Theorem (1.23) If f e C(X) , and aR denotes the one-point compactification 

of R, then there is a (unique) continuous function f* : BX —> aR which 

agrees with f on X . 

Theorem (1.24) In the ring C(X), and also in C*(X), the prime ideals 

containing a given prime ideal form a chain. (A chain is a totally ordered 

sets.) 



B-SUBALGEBRAS 

Let A be a commutative ring with an identity. Let F be the 

set of prime ideals in A . For E c A, define 

V(E) = { P e F : E C p } 

Note that 

(1) V(+) = F 

(2) V(A) = <f> 

(3) V( u E±) = H V(E±) 
ieJt ie£ 

(4) V(E H F) = V(E) U V(F) 

E±C A , i e £ , 

where H is an index set 

E cr A, F c A . 

Therefore the V's determine a topology on F . This topology is called 

the hull-kernel topology. 

Now for a e A , define 

and let 

V(a) = { P e F : a e P } 

F a = F — V(a) . 

Theorem (2.1) 

(1) { F a : a e A } is a basis of open sets for F with tae hull-kernel 

topology. , 



(ii) F is compact. 

Proof : (i) Let 8 be a closed subset in F , then B - V(E) for some 

E C A . Now P e F - B i f and only i f P 4 B i f and only i f E <£ P i f 

and only i f there exists a e E such that a P i f and only i f there 

exists . a e E such that P e F a . Thus F — B = u F a . 
aeE 

(ii) Suppose F = U F a , E C A . Let I = (E) = ideal generated 
aeE 

by E. We claim I = A . Suppose I ̂  A , then by Zorn's lemma I C P 

for some P e F , then P e F a for some a e E . . Hence a 4 P • But 

ae E C I C P , contradicting a y P . Therefore we must have I = A . So 
r • . 

1 = J ^ i a i » a^ e E , b^ e A . Now for P e F , since 1 4 P > there 

exists i , 1 < i < n such that a..- 4 P . It follows that P e F 0 . This - - 1 a i . 
proves that 

F = F U • • • U F a 

a l d n 

and F is compact . 

Notation (2.2) Let denote the collection of maximal ideals in A 

endowed with the hull-kernel topology. 

Definition (2.3) By a-subalgebra A of C(X), we mean a subalgebra in 

the usual sense which contains the constant functions. 

Given a subalgebra A of C(X). Define for each p e BX , 



i I I 
= { f e A : (fg)*(p) = 0 for a l l g e A } 

where f* maps BX into the one point compactification of R as stated 

in 1.23 . Let 

G A = ' { : p E 3 X } - . 

Theorem (2.4) is a prime ideal in A, p e 3X . 

Proof : Since 0 e and 1 £ M̂ ., we see that $ $ and ^ A . 

Obviously is an ideal in A . To prove that is prime, i t suffices 

to show that i f f, g e A with f, g £ , then fg 4 . Now let 

f, g e A , choose h, k e A such that (fh)*(p) f 0 and (gk)*(p) ± 0 . 

Then (fghk)*(p) i 0 . Thus fg M J . 
' A 

Definition (2.5) Let x A : BX—> G^ be such that T A(p)'= . A is 

said to be a B-subalgebra of C(X) i f T a is a homeomorphism of gX onto 

M A. 

Remark (2.6) C*(X) and C(X) are 3-subalgebras of C(X) . 

For f e A , let 

S A(f) = T a ~ { p e G A : f e P } 

= ' { p e PX : f e } 

= n z((f g)*) . 
geA 



Since Z((fg)*) is closed in 8X, S A(f) is closed in 6X . Note that 

is continuous, since { { p e : f e P } : f e A } is a base for 

the closed sets in G. 
A . 

Definition (2.7) A subalgebra A of C(X) is said to be B-determining 

i f { Z(f*) : f e A } forms a base for the closed sets in 6X . A is 

said to be closed under bounded inversion i f f is a unit of A whenever 

f e A with f >_ 1 . 

Definition (2.8) An ideal I in A is said to be absolutely convex i f 

f e I whenever f e A and g e l satisfying | f | [ g{ 

For convenience, we shall abbreviate M. , MP , G , T. and 
A A A A 

to M , MP , G , T and S , respectively. 

Theorem (2.9) Given a subalgebra A of C(X) , the following are 

equivalent. 

(1) A is B-determining 

(2) G is Hausdorff and x is one-to-one 

(3) T is a homeomorphism 

Proof : (1) implies (2) . Suppose A is B-determining and let p,q e B x 

with p i q . By [2, 6.5(b)], there exists Z1 , Zj, e Z(X) such that 

Zj U Z2 = X and p 4 Clg^Z} , q gf C1^Z2 . Since A is B-determining, 

{ Z(f*) : f e A } is a base for the closed sets in gX . So we can choose 



f, g e A such that p 4 Z(f*) Z> CI. „Z, and q ̂  Z(g*) 3> CI. Z9 . By the 
pA p A. 

choice above, -f ̂  MP . Thus MP e G — { Ms e G : f e Ms } which is an 
O S s 

open set in G . Similarly MH e G — { M e G : g e M } which is an open 

set in G . Furthermore by the choice of f, g, we see that fg = 0 . 

Thus { MS
 e G : f' e_ M8 } U { Ms e G : g e Ms } = G . So G — { Ms e G: f e Ms } 

and G — { M S e G : g e M s } are disjoint open sets in G . Since p, q 

are arbitrary, G is Hausdorff. Since MP ± Mq , x is one-to-one . 

(2) implies (3) . It suffices to prove that x is closed. Let F 

be a closed set in BX . Since BX is compact, F is compact . Since x 

is continuous, x[F] is compact. Since G is Hausdorff, x[F] is closed. 

(3) implies (1) . Let F be a closed set in BX and p e BX with 

p 4 F . Since x is a homeomorphism, { S(f) : f e A } is a base for the 

closed sets in BX . Thus there exists f e A such that p 4 S(f) and 

F C S(f) . Since S(f) = H Z((fg)*) , (fg)*(p) f 0 for some g e A . 
geA 

Thus pV Z(f*) ; but F C S(f) C Z((fg)*) . This proves that {Z(f*): f e A} 

is a base for the closed sets in BX . 

Theorem (2.10) Given a subalgebra A of C(X), the following are 

equivalent. 

(1) A is closed under bounded inversion. 

(2) If I is an ideal in A, then f\ Z(f*) f <p . 
fel 

(3) Every ideal in A is contained in some Mp . 

(4) , MA C G A . 



jtaiiisM 

(5) Every M e is absolutely convex 

Proof : (1) implies (2). Let I be an ideal in A . Let F={ Z(f*):& 1} . 

To prove (2), by the compactness of 8X , i t suffices to show that f has 

the finite intersection property. Let f 1 , • • •, f n e I and let g=ff + -•-+f$f I. 
n 

Then Z(g*) = (\ Z(ff) . Suppose Z(g*) = <j> . Then |g*(p)| > 0 for a l l 
i=l 

p e 8X . Since 8X is compact, there exists r > 0 such that |g*(p)| ±_ r > 0. 

So g >_ r, and g is a unit of A . Since g e l and since I is proper, 

this is a contradiction. So we must have Z(g*) = cj> . 

(2) implies (3) . Let I be an ideal in A . Let p e H Z(f*). 
fel 

We claim that I C Mp . For i f f e l , then fg e I for a l l g e A . So 

(fg)*(p) = 0, for a l l g e A . So f e MP . 

(3) implies (4) . Obvious. 

(4) implies (5). It suffices to show that MP is absolutely 

convex. Let f e A and g e MP satisfying | f | <_ |g| . Then | fh| <̂  | gh| 

for a l l h e A . Since X is dense in gX , | (fh)*| <_ | (gh)*| for a l l 

h e A . So f e Mp . 

(5) implies (1). Since 1 does not belong to any maximal ideal, 

i t follows that f is a unit of A whenever f e A with f ̂ _ 1 . 

This completes the proof . 



Theorem (2.11) Given a subalgebra A of C(X), the following are 

equivalent. 

(1) A is a B-subalgebra of C(X) . 

(2) ' A is B-determining and closed under bounded inversion. 

Proof : Suppose A is a B-subalgebra of C(X) . By 2.9, A is 

B-determining. By 2.10, A is closed under bounded inversion. 

Conversely suppose (2) holds.- By 2.9, T is a homeomorphism of 

BX onto G . By 2.10, M C G . Since G is T 2 , no two ideals of 

G are comparable. So M = G . This proves that A is a B-subalgebra of 

C(X) . 



THE A-POINTS OF gX - X 

Let A be a g-subalgebra of C(X). By 2.9, the family {S(f): feA} 

forms a base for the closed sets in BX. Let X* denote gX — X . For 

f e A , let S*(f) = S(f) (\ X* . Then { S*(f) : f e A } is a base for 

the closed sets in X* . For convenience, let us agree that the symbols 

"CI" , "int" and " 9 " , without subscripts, refer to the topology of X* . 

Definition (3.1) A space X is said to have the Gg-property i f every 

nonvoid Gg subset of X has a nonvoid interior. 

Remark (3.2) Since in a completely regular space X, every Gg containing 

a compact set S contains a zero set containing S, i t follows that X 

has the G^-property i f and only i f every nonempty zero set in X has a 

nonempty interior. 

The following theorem will be used several times throughout this 

thesis : Let Y be a nonvoid locally compact Hausdorff space with the 

Gg-property. If V is a family of at most V̂x dense open subsets of Y, 

then H V is dense in Y. If, in addition, Y has no isolated points, 

then | n V\ >_ 2*1 . ([5, 3.2]). 

Definition (3.3) Given a g-subalgebra A of C(X), a point p e X* is 

said to be an A-point of X* i f , for a l l f e A , p i 3S*(f) . 



Remark (3.4) 

(1) A point p e X* is an A-point of X* i f and only i f S*(f) is a 

neighbourhood of p whenever f e A and p e S*(f) . 

(2) The set of A-points of X* is precisely f\ (X* — 3S*(f)) . 
feA 

Theorem (3.5) X is realcompact i f and only i f for every p e X* , there 

is a Z e Z(BX) such that p e Z C X* . 

Proof : Suppose X is realcompact and p e X* . Then MP is hyperreal 

by [2, 8.4] . By 1.20, M*P contains a'unit f of C(X). Since f is a 

unit of C(X), i t follows that Z(f^) C X* . By 1.17, p e Z(f3) . This 

proves the necessity. 

Conversely, let p e X* . By assumption, there exists Z(g) e Z(8X) 

such that p e Z(g) C X* . Then g(x) ± 0 for a l l x e X . So the 

restriction of g on X is a unit of C(X). Since g(p) = 0 , g e M*P . 

By 1.20, MP is hyperreal . This proves that X is real compact . 

Theorem (3.6) Suppose X is a locally compact and realcompact space, 

then X* has the Ĝ  property. 

Proof : By remark 3.2, i t suffices to prove that every nonempty zero set 

Z in X* has nonempty interior. Since X is locally compact, by [2, 6.9(d)], 

X is open in 8X. So X* is closed. Since BX is compact and Hausdorff, 

BX is normal. So X* is C*-embedded in BX by [2, 3D]. Therefore 



Z = Z(f) fl X* for some f e C(8X). Let p e Z. By 3.5, there exists a 

function g £ C(8X) such that g(p) =0 but g(x) ? 0 for a l l x e X . 

Define h = | f| + | g| , then pe Z(h) C Z f\ X* . Now let {x̂ } be a 

set in X converging to p . By continuity of h, {hCx^)} converges to 

h(p) = 0 . Obviously we can choose a subsequence {x } of distinct points 
a i 

of {xa} such that b.(x ) —> 0 . By induction, choose disjoint compact 
i 

neighbourhood of x̂  _ such that |h(x) - h ^ ) ] < -j- for x e . 

By complete regularity of X, there exists a function ŵ  such that 
OO 

0 < < 1 , ŵ x,̂  ) = 1 , w±[X — V±] = 0 . Let • w = £ w± , w is well 
1 . 1 = 1 . 

defined provided that {x0 } has no limit point in X ; but in fact, {X- } 
i i 

cannot has a limit point in X by the fact that h is not zero at any point 
OO 

of X . Note that w(xH ) = 1 for each i and w(x)"= 0 for x e X — U v i • 
1 i=l 

Now suppose w^(q) ̂  0 for some q e X* , we see that every neighbourhood 

of q meets infinitely many V^'s . Thus h(q) = 0 . This proves that 

X* — (ZCw8) n X*) CZ Z(h) . Since< gX is compact, {x., } has a limit 
i 

point q in 8X . As proved already q e X . Thus there exists a subsequence 
{x } of {x„ } such that wB(x„ ) —> w6(q). But w3 (x„ ) = 1 for a l l 

% 1 in 
n, i t follows that ws (q) = 1 . So X* - (Z(w^) H X*) ̂  <j> . Since 

Z(h) C Z and X* — (Z(w$) H X*) is open, this proves the theorem. 

Theorem (3.7) If X is realcompact, then X* has no isolated points. 



Proof : Suppose p is an isolated point in X* . Then there exists a 

zero set neighbourhood Z(f) of p in gX such that Z(f) f\ X* = {p} . 

By 3.5, there exists Z(h) e Z(6X) such that p e Z(h) C X* . So 

{p} = Z(f) H Z(h) e Z(6X) . So {p} is a zero set in BX . Since {p} 

is disjoint from X, by [2, 9.5], {p} contains a copy of N. This leads 

to a contradiction. 

Theorem-(3.8) Let X be a locally compact and real compact metric space. 

Let A be a B-subalgebra of C(X) with |A| = C. If, in addition, X is 

not compact, then X* has a dense subset of 2cA-points. 

Proof : Let V = { X* — 9S*(f) : f e A } . Obviously, for each f e A , 

X* — 8S*(f) is an open dense subset of X* . By 3.6, X* has the Gg 

property. By 3.7, X* has no isolated points. Now apply [5, 3.2], we see 

that- H V is dense in X* and | H V\ > 2° . Since A is a B-subalgebra 

of C(X), |X*| <_ 2^' = 2° . So | H V\ = 2 C . By remark 3.4 (b), O V 

is precisely the set of A-points of X 

Theorem (3.9) Let X be a locally compact and realcompact but not compact 

metric space. Let {A^: a e A } be a family of 8-subalgebras of C(X) 

with 1̂ = C for'each a e A and |A| f_ C, then X* has a dense subset 

of 2 C points which are simultaneously Aa-points for a l l a e A . 

Proof : Let V = { X* - 3S* (f) : f e A„ , a e A } . Then 
Aa • 

H V = n n (X* - 3S^(f)) is precisely the set of points of X* that 
aeA feAy ^* 



are simlltaneously Appoints for a l l a e A . Applying [5, 3.2] again, 

H V is dense in X* and | (\V \ ±_ 2 C . Since A^ is a 8-subalgebra 

of C(X), |x*| <_ 2 = 2 C . So | (\ V\ = 2 C . 

Theorem (3.10) A point in X* is a C*(X)-point i f and only i f i t is a 

P-point of X* . 

Proof : Since M*p = { f e C*(X) : f0 (p) = 0 } , we see that S J.(f)=Z(f6), 
C* 

f e C*(X) . So S* A(f) = X* H Z(f3) . Now by definition, a point in X* 
c 

is a P-point of X* i f and only i f i t is not an element of the X*-boundary 

of any zero set of X* , and is a C*(X)-point i f and only i f p 4 3S* (f) = 
C* 

= 3(X* H Z(f B)) for a l l f e C*(X) . Obviously a P-point is a C*(X)-point. 

Conversely suppose p is not a P-point. Then there exists 

Zi e Z(X*) such that p. e 3Zj . Let S be a G6-set of BX such that 

S H X* = Zx . By [2, 3.11 (b)], there exists a Z2 e Z(gX) such that 

p e Z<i C S . Then p e 3 (Z2 H X*) . This proves that p is not a 

C*(X)-point. 

Corollary (3.11) 

(1) 8N — N has a dense subset of 

(2) 3R — R has a dense subset of 

2̂  P-points 

2 C P-points 



Proof : (1) Obviously N is locally compact and realcompact but not 

compact. Furthermore |c*(N)| = C . Applying 3.8, 8N — N has a dense 

subset of 2 C C*(N) points. By 3.10, 8N — N has a dense subset of 2° 

P-points. 

(2) R is obviously locally compact and realcompact but not 

compact. Since R is separable, |c*(R)| = C . Applying 3.8 and 3.10, 

p has a dense subset of 2 C P-pdints. 



REMOTE POINTS IN gR 

In this chapter, we shall turn our attention to the remote points 
V 

in the space gR, the Stone Cech compactification of the space R of real 

numbers. As in [2] , we associate with each maximal ideal MP in C(R) the 

z-ultrafilter 

A P = { Z(f) : f e MP } = { Z e Z(R) : p e CI. Z } . 

For p e gR, we denote by 0 P the set of a l l f e C(R) for which Cl O T,Z(f) 

is a neighbourhood of p, i.e. 

0 P = { f e C(R) : p e i n t g R C l 3 R Z ( f ) } 

Definition (4.1) A point p e gR is said to be a remote point in gR i f 

p is not in the gR closure of any discrete subset of R . 

Theorem (4.2) gR — R has a dense subset of 2° C-points . 

Proof :. Since R is separable, |c(R)| = C . By 3.8, i t is immediate 

that gR — R has a dense subset of 2° C-points. 

Lemma (4.3) If Z is a closed nowhere dense set in R, then there exists 

a discrete subset D of R such that D H Z = <J> , D U Z = C1DD . 



Proof : Since Z is closed, R — Z is open . As an open set in R, 

R — Z is a union of disjoint open intervals I w . For each I a , choose 

a discrete subset Da CI I a such that the endpoints of I are the only 

limit points of D„ . Put D = U D„ . Obviously D H Z = <p and DyZ = CI D. 
a, - K 

Theorem (4.4) For p e 6R, the following are equivalent : 

(1) p is a remote point in PR . 
« 

(2) A P has no nowhere dense member . 

(3) MP = 0 P . 

(4) p is a C-point of BR — R . 

(5) MP is a minimal prime ideal . 

(6) 0 P is prime . 

Proof : (1) => (2) . Suppose that A P has a nowhere dense member Z . 

By 4.3, there is a discrete subset D of R such that Z (\ D = <}> and 

Z U D = C1„D , so that Cl O TZ c Cl O T 3D . Hence p e Cl O TZ C Cl O T 1D . 
K p K p K p K p K 

Therefore p is not a remote point in BR . 

(2) =>(1) . Suppose p is not a remote point in BR . Then there 

is a discrete subset D of R such that p e CI D . Clearly ClOT(D e A P . 
p K p K 

We claim int CI D = <p . Suppose, on the contrary, that int DCl D ̂  <j> . Then 

(int CLD) H. D A . Let q e (int CI D) H D . Since D is discrete, q 

is open in D. So {q} « D (\ G for some open set G in R. Obviously 

{q} C G H (int-.CLD) . Conversely, let r e G H (int nCl nD) . Then r is 



either a ppint of D or a limit point of D. If r is a point of D, then 

r e D-f\ G . Hence r = q . If r is a limit point of D, then G (\ D 

contains infinitely many points of D. This contradicts the fact that D'< (\ G 

is a singleton set. So this cannot be the case, and {q} = G f\ (int-.Cl^D) . 

This proves that {q} is open in R, i.e. q is an isolated point in R. 

But this cannot be true. So we must have the fact that int CI D = <j> . So 
R R 

A P has a nowhere dense member . 

(2) =>(3) . Suppose that A P has no nowhere dense member. Let 

f e MP . Since C1R(R — Z(f)) is a closed.set in R, by Urysohn's lemma 

there exists a function g e C(R) such that Z(g) = C10(R — Z(f)) . Thus 
R 

R = Z(f) U Z(g) . We claim p 4 ClOT_Z(g) . Suppose not, then 
p e Cl 3 RZ(f) n Cl p RZ(g) . By theorem 1.15, (4), p e Cl g RZ(f) H Cl g RZ(g) = 

= Cl o r >(Z(f) n Z(g)) = CI. a Z(f) . This proves that S^ZCf) e A P . Since 
p K p K K K 

3 RZ(f) is nowhere dense, this contradicts our hypothesis that AP has no 

nowhere dense member. So p 4 Cl„DZ(g) . So ' p e 3R — Cl O T )Z(g) c c l „ T , z ( f ) -
p K p R p K 

Since ClDT,Z(g) is closed , $R — Cl o r iZ(g) is open. This proves that 
p K p R 

Cl o t >Z(f) is a neighbourhood of p . Thus f e 0 P . pK 

(3) => (4) . Suppose that 0 P = MP . For any f e C(R) and 

p e S*(f) = S c(f) H (3R-R) = (CI Z(f)) H (3R-R), then f e MP , 

whence f e 0 P . Thus p e int 0 0Cl D t (Z(f) . Thus p is in the interior of 
p K p K 

S*(f) in 3R — R . By remark 3.4, (1), this proves that p is a C-point 

of 3R - R . 

(4) => (2) . Suppose that p is a C-point of 3R — R , and let 

Z e A P . We shall show that Z is not nowhere dense. Since Z e Ap , 



.. 

p e Cl p RZ 1 So p e (Cl g RZ) n (BR - R) « S c(f) f\ (BR — R) = S*(f) . Since 

p is a C-point, by remark 3.4, (1), p is in the interior of S*(f) in 

BR — R . Thus p e int 0 1 JCl /. T )Z . Obviously (lnt o r )Cl O T >Z) (V R / <p and is 
p K p K p K p K 

a subset of Z . This proves that Z is not nowhere dense. 

(2) => (5) . Assume (2) . Suppose, on the contrary, that MP 

is a nonminimal prime ideal. Let I be a prime ideal properly contained 

in MP . Choose Z e Z[MP] - Z[I] = A P - Z[I] . Since R = Z U C1(R - Z) 

and Z 4 Z[I] , i t follows that C1(R - Z) e Z.[I] . So C1(R - Z) e MP . 

Thus 3 Z = Z H C1(R — Z) e MP . Obviously 3 Z is nowhere dense. This K R 
contradicts our hypothesis. So MP is a minimal prime ideal. 

(5) => (3) . Assume (5). By [2, 2.8], 0 P is the intersection 

of a l l the prime ideals contained in MP . Since MP is a minimal prime 

ideal, i t follows that MP = 0 P . 

(3) => (6) . Obvious . 

(6) => (5) . Suppose MP is not a minimal prime ideal. Since 

(5) and (2) are equivalent, i t follows that AP has a nowhere dense member 

Z . Choose disjoint discrete subsets , D 2 of R such that D | = Z , 

i = 1, 2, where D_! denotes the derived set of D-J in R . Let G,- = Cl^D^-, 

i = 1, 2 . Obviously Cl R(G i - Z) e Ap . By [4, 4.2], Ap has a prime 

z-filter F i containing G± but not Z, for i = 1, 2 . Since Gj n G2 = Z, 

we see that and F 2 are incomparable. Thus Z< [Fj] and Z < — [ F 2 ] are 

incomparable . Since F^ is a prime z-filter in AP, Z< [F^] is a prime 

ideal contained in MP , i = 1, 2 . By [2, 7.5], Z * - ^ ] contains 0 P , 

i = 1, 2 . By 1.23 , we see that 0 P is not prime. 



Theorem (4.5) gR — R has a dense subset of 2 remote points in gR . 

Proof : Follows immediately from 4.2 and 4.4 . 

Theorem (4.6) gR — R has a dense subset of 2 C points which are simultaneously 

remote points in BR and P-points of BR — R . 

Proof : Apply 3.9 to the family { C(R), C*(R) } of B-subalgebras of 

C(R) . Then BR — R has a dense subset df 2° points which are simultaneously 

C*-points and C-points of gR — R ..By 3.10, C*-points of gR — R are 

precisely the P-points of gR — R . By 4.4, C-points of gR — R are precisely 

the remotes points in gR . 

Theorem (4.7) gR — R has a dense subset of 2 C points which are P-points 

of gR — R but not remote points in gR . 

Proof : Let V be a closed neighbourhood in gR of any point in gR — R . 

Obviously V (\ R is not pseudocompact. Since V H R is closed, by 

[2, 1.18], i t is C-embedded in R . Thus by [2, 1.20], V fl R contains 

a copy D of N which is C-embedded in R . Since D is C*-embedded in 

R , by 1.16, gD = c lgR D • Since V is closed in gR , we see that 

D* = gD - D = Cl g RD - D C V H R* • Since gD - D is homeomorphic with 

8N — N , by 3.11, gD - D has 2 C P-points of gD - D . By [2, 9 M.2] , 

we see that a point in gD — D is a P-point of gD — D i f and only i f i t 

is a P-point of gR — R , that gD — D has 2° P-points of gR — R. Since 



D is discrete, no point of BD — D is a remote point of BR . Since V 

is arbitrary, this proves the theorem. 

Definition (4.8) A space X is said to be an F-space i f every cozero set 

in X is C*-embedded in X . 

Remark (4.9) By [2, 14.27], 8N — N is a compact F-space and so is 

BR - R . 

Lemma (4.10) Every infinite compact F-space has at least 2 C non P-points. 

Proof : Let X be an infinite compact F-space. Since X is infinite , 

there is a countable discrete subset D = { d n : n e N } . By [2, 14 N.5], 

D is C*-embedded in X . So CI D = BD by 1.16 . Let f e C*(X) be such 
•A. 

that f(d n) = n - 1 , n £ N . Then for any p e D* = BD — D = C1XD - D , 

p e Z(f) , but obviously Z(f) is not a neighbourhood of p . Thus p 

is not a P-point . Since |BD — D|,= 2 C , this proves the lemma . 

Theorem (4.11) BR — R has a dense subset of 2° points which are neither 

remote points in BR nor P-points of BR — R • 

Proof : Let V be a closed neighbourhood in BR of any point in BR — R • 

As in the proof of 4.7, V fl R* contains a copy D* = BD — D of 8N — N . 

By remark 4.9, D* is a compact F-space. By 4.10, D* has at least 2 C 

non P-points of D* . So by [2, 9M.2], D* has at least 2° non P-points 

of BR — R • Since D is discrete, no point of BD — D is a remote point 

of BR * This proves the theorem . 



Theorem (4.12) BR — R has a dense subset of 2 C points which are remote 

points in BR but not P-points of BR — R . 

Proof : Let V be a closed neighbourhood in BR of any point in BR — R 

By [5, 5.5], there exists an infinite compact set A of remote points in 

BR such that A C V ft (BR — R) . Since BR - R is an F-space by 4.9, 

the C*-embedded subset A is also an F-space by [2, 14.26]. By 4.10, A 

has 2 C non P-poirits. By [2, 4L.2], each of these points is a non P-point 

of BR — R . This proves the theorem . 
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': CHAPTER V 

PRIME IDEAL STRUCTURE AND REMOTE POINTS 

Definition (5.1) Let P(X) denote the family of a l l prime z-filters on 

X. A prime z-filter is said to be minimal i f i t is a minimal element of 

P(X). For A, 8 e P(X), i f A C 8 , we say that A is a predecessor 

of B and that B is a successor of A . If in addition there is no prime 

z-filter between them, we use the term immediate predecessor and immediate 

successor. 

Theorem (5.2) Let A be a prime z-filter on X . Suppose there exists 

Z e A such that for any zero set W^A, Z y W ^ X . Then A is non-

minimal . 

Proof : For any E q X,, let 

, z(E) = { Z e Z(X) : E C Z } . 

By assumption, we have z(X — Z) c A . Now let 

B -'{We Z(X) : z(W - Z) c A } 

Since X e B , B f <|> . Furthermore B has the following properties : 

(i) 8 is closed under supersets : Let We 8 and let V e Z(X) such 

that W C V . Obviously z(V - Z) C z(W - Z) and hence z(V - Z) C A . 



Thus V e B . 

(ii) for any Wx , ̂  e Z(X) , i f Wt 4 B for i = 1, 2, then u *W B: 

choose Vi e z(Wi - Z) — A for i F .1, 2 . Since A is prime, V1 U V2 ^ A . 

On the other hand, i t is obvious that Vj (J V2 E z(Wj y W2 — Z) and by 

definition of 8 , W2 (j W2 ^ B -. 

Now applying Zorn's lemma, there exists a z-filter F which is 

maximal among the z-filters contained in B . Note that Z 4 F . Furthermore, 

for any W e F , We z(W - Z) C A , so that W e A . Thus F C A , 

F ^ A . Finally we shall prove that F is prime. Let Zl , Zg e Z(X) 

with Z2 u Z2 e F . Suppose Z± 4 f for i = 1, 2 . By the maximality 

of F , there is W-j; e F such that ^ H Z± 4 B , for i = 1, 2 . 

Setting W = Wx H W2 , obviously 9 n (Zj U £ F . Since B is 

closed under supersets, W ft Z± 4 B , i = 1, 2 . By property (ii) of 8 , 

we see that W r\ (Zj u Z^) 4 B . Thus W f l (Zj u Z2) 4 F , and this 

leads to a contradiction . Thus we must have that F is prime, and hence 

F is an immediate predecessor of A . So A is non-minimal . 

Theorem (5.3) For each p e 3X , every prime ideal P of C*(X) contained 

in M*P is comparable with MP H C* . 

Proof : Obviously Mp f\ C* is a prime ideal contained in C* . Choose 

a minimal prime ideal J such that J C P . By 1.24, it. suffices to show 

that J C MP C C* . To show this, we first pass to the ring C(8X) by 

means of the canonical isomorphism f —> of C*(X) onto C(8X) , and 



then we pass to the family of prime z-filters on BX . 

Since Mp = { f e C(X) : p e C l ^ ^ C f ) } , the prime ideal in 

C(pX) corresponding to MP f\ C* is given by 

(MP fl C*)6 = { ge C<gX) : pe C l ^ Z ^ X ) } 

we claim (MP fl C*)B is a z-ideal. Let Z f f ) e Z o v((M P ft C*)B) , then 
pA p A 

Z g x(f) = Zgx(g) for some g e C(gX) . Hence Z x(f| X) = Z g x(f) fl X = 

= Zg X(g) H X = Zx(g|x) , whence p e Cl^ xZ x(f|x) . This proves that 

f e (MP fl. C*)6 and hence (MP (\ C*)6 is a z-ideal. Now let us denote 

the corresponding prime z-filter on BX by KP ; obviously 

KP = { Z E Z(8X) : p e Cl 0 fZ H X) } 
PA 

Also by [2,.14.7], the minimal prime ideal J$ of C(gX) corresponding to 

J is a z-ideal ; let B denote the corresponding minimal prime z-filter on 

BX . Now we are going to show that B C KP . Let Z e B . To show that 

Z e KP , i t suffices to show that p e C I ( Z fl X) . Now let V be any 
BX 

zero set neighbourhood of p . By [2, 7.15], V e B and hence V fl Z e B . 

Since B is minimal, applying theorem 5.2, we can choose a zero set W not 

in B such that (V fl Z) y W = BX . If i n t f V fl Z) = <{,, then W is 
BX 

dense in BX and hence W — BX . Thus W e B , but this is impossible. 
So we see that int(V fl Z) ̂  <J> , and (V (\ Z) fl X ̂  $ , whence 
p e Cl o Y(Z fl X) and Z e KP . Thus B C Kp and hence J C MP f\ C* . BX 



Definition (5.4) If Y C X and p is a z-filter on Y, i t is clear 

that 

P# = { Z e Z(X) : Z f \ Y e f } 

is a z-filter on X ; i t is called the z-filter induced on X by p 

If Y C X and F is a z-filter on X , then F|Y = {ZftY : ZeF} 

is called the trace of F on Y . 

Definition (5.5) A z-ideal in C* is an ideal I that contains any 

function that belongs to the same maximal ideals as some function in I . 

Theorem (5.6) If Y is C*-embedded in X and F is a prime z-filter 

on X such that every member of F meets Y, then F|Y is a prime z-filter 

on Y . 

Proof : It is clear that F|Y is a z-filter on Y . To show that F [ Y 

is prime, i t suffices to show that for any Z, We Z(Y) with Z u W = Y , 

at least one of them belongs to F | Y . Since Y is C*-embedded in X, we 

can choose S, T e Z(X) such that Z = S ft Y , W = T ft Y . Since F is 

prime and F C ( F | Y ) ^ , i t follows that (F|Y)^ is prime. Since 

(S u T) ft Y = Z \j W = Y , by definition of (F|Y)# we see that 

S U Te (F|Y)# . Thus at least one of S, T belongs to (F|Y)* , and 

whence at least one of Z, W belongs to F|Y . Hence F|Y is prime. 



Review (5.7) In the rest.of this chapter, we consider the real line R 

only. By the Stone-(5ech compactification theorem and [2, 2.12], we see that 

the prime z-ideals contained in M*P are in order preserving correspondence 

with the prime z-filters on 8X contained in AP , by means of the 
pK 

mapping P —> Z[P6] . Under this mapping Mp (\ C* —> Kp (see theorem 5.3), 

where 

Kp = { Z e Z(pR) : p e C1_(Z f\ R) } 

Since R is locally, compact, i t follows that gR — R is a zero 

set in 6X and is C*-embedded in PR . Obviously .there is a bounded unit 

of C(R) that belongs to M*P for every p e PR — R . Thus MP (\ C* ± M*P 

i f and only i f p e PR — R . 

Theorem (5.8) For any p e pR , the family of prime z-filters on gR 

contained in Kp is in one-to-one corresponding with the family of prime 

z-filters on R contained in AP . 

Proof : Let P be a prime z-filter contained in KP , then every member 

of P meets R . By theorem 5.6, P| R = { Z A R : Z e P } is a prime 

z-filter on R. Since P C KP , i t follows that p| R C A P . If 8 is 

a prime z-filter on R contained in AP , obviously the induced prime 

z-filter 

8 # = { Z e Z(pR) : Z H R e 8 } 

is contained in Kp and B̂ |x = 8. Hence the mapping P —> p|x for 

P C KP is onto the family of prime z-filters of C(R) contained in A P . 



To prove that the mapping is one to one, i t suffices to show that P - (P|x)̂  
Obviously ? c (P|R)# • Conversely for any Z e (P|R)* , there is We f 

such that Z H R = W (\ R . Obviously W C Z U (6R - R) , so that 

Z U ' (6R - R) e P . By definition of KP , we see that BR - R 4 P . Since 

P is prime, we have Z e P . This proves that (PJR)^ C P and hence 

P = (P|R)# . 

Corollary (5.9) The family of prime z-ideals of C*(R) contained in 

MP fl C* is order isomorphic with the family of prime z-ideals of C(R) 

contained in MP . 

Proof : It follows immediately from 5.8, the Stone-c'ech compactif ication 

theorem and [2, 2.12] . 

Corollary (5.10) MP is a minimal prime ideal of C i f and only i f 

MP fV C* is a minimal prime ideal of C . 

Corollary (5.11) p is a remote point in BR i f and only i f MP (\ C* 

is a minimal prime ideal of C* . 

Theorem (5.12) For any p e BR — R The family of prime z-filters on 

pR properly containing Kp is in one-to-one correspondence with the family 

of prime z-filters on BR — R contained in A P _ 
p K — K 



Proof : Let P be a prime z-filter on BR properly containing Kp . 

Obviously every member of P meets BR — R . So by theroem 5.6, we see 

that the trace P | (3 R — R) is a prime z-filter on BR ~ R • Since p C A^, 

i t follows that p | ( B R - R ) C A P
R _ R . Let B be a prime z-filter on 

BR — R contained in A | >
r _ R . The induced z-filter 

B # = { Z e Z(BR) : Z f\ ($R — R) e B } 

is clearly prime and B*| (BR - R) = B . Since BR - R 4 KP and gR-Re B#, 

i t follows from theorem 5.3 that B̂ ' properly contains KP . This proves 

that the mapping P —> P | (BR — R) , for Kp C P is onto the family of 

prime z-filters on BR — R contained in A? R _ • . Finally we are going 

to show that i t is one-to-one . It suffices to show that P = (P| (BR — R))^ . 

Obviously P C (P| (BR - R)) # . Now let Z e (P| (BR - R)) # , then there 

exists We P such that Z O (BR - R) = W H (BR - R) . We claim 

BR — R e P . Suppose not, then the z-ideal P in C*(R) corresponding to 

P contains no unit of C(R) . Let f e P and let V be a zero set 

neighbourhood of p in BR • Since P̂  is prime and is contained in A P , 
P R 

by [2, 41.4] , i t follows that Ve ZtP6] . Thus V H Z(f 6) e ZfP 8] and 
hence V (\ Z(f) e ZfP] . Since P contains no unit of C(R), V fl Z(f) / $ . 

Hence p e CI Z(f) and therefore f e-MP . This proves that P C Mp f\ C* , B R . 
i.e. P is contained in KP , but this is impossible. So we.must have 

BR — R e P * Thus Z f\ (BR - R) = W H (BR - R) e P and hence Z e P . This 

proves that (p| (BR — R))^C P , and hence the mapping is one to one . 



Definition (5.13) The z-filter generated by a z-filter f and a zero set 

Z that meets every member of F is denoted by (F, Z) . Obviously 

(F, Z) = { W e Z(X) : for some F e F, F f\ Z ci W }. 

Remark (5.14) In the last part of the proof of 5.12, we showed that for 

any p e 6R — R , a prime z-filter contained in Ap properly contains Kp 

i f and only i f i t contains the zero set 6R — R . This means that KP has 

an immediate successor (K p) + in the family of prime z-filters on BR , 

generated by KP and the zero set BR — R . i-e. (K P) + = (KP, BR — R) • 

Furthermore, according to the construction of the one to one onto mapping 

in theorem 5.12, we note that (K P) + = (Ztof^ D ] ) # . 
B R R 

Theorem (5.15) (Z[0 P
R1 , BR - R) = (Z[0 P

R _ R ] ) # . Hence (Z[0 P
R, BR - R) 

= (K P) + , and the immediate successor of MP (\ C* in the family of prime 

z-ideals of C*(R) consists of a l l functions f such that f^ vanishes on 

a neighbourhood of p in BR — R . 

Proof : For any Z e (Z[0^ D], B R - R ) , there exists W e Z[0^_] such 
— p K p R 

that W H ( B R ~ R ) C Z . Since W f\ ( B R — R ) £ Z[0P J , i t follows 
p K K 

that Z H ( B R - R ) e Z[0P _] . Thus Ze (Z[0P
 D ] ) # . Conversely 

p K K B R — R 

for any Z e (Z[0P ])* , then Z f\ ( B R — R ) e Z[0P„ 1 . This means 
p K K p K — R 

that Z fl ( B R — R ) is a zero set neighbourhood of p E f R - R in B R — R . 

So there is W E Z[0 P ] such that W H ( B R — R ) C Z H ( B R — R ) . Thus 
B K 



W fl (BR - R) C Z , and Z e (Z[0P ] , BR - R) . 
p R 

Corollary (5.16) For any p e B R - R , p Is a P-point of BR — R i f 

and only i f M*P is the immediate successor of MP fl G* in the family of 

prime z-ideals of C*(X) . 

Corollary (5.17) For any p e BR — R , the family of prime z-ideals of 

C*(R) contained in M*p consists of just the two ideals M*p and Mp fl C* 

i f and only i f p is both a remote point in gR and a P-point of gR — R . 

Theorem (5.18) p is a remote point in gR i f and only i f the prime ideals 

contained in MP form a chain . 

Proof : If p is a remote point in gR-, then Mp is a minimal prime 

ideal and hence the necessity follows immediately. 

Conversely, suppose that the prime ideals contained in MP form 

a chain C . By [2, 2.8] 0 P = fl C . To show that p is a remote point 

of gR — R , i t suffices to show that 0 P = fl C is prime. Now let 

a 4 ft C , b 4 C . Then there exists P, J e C such that a 4 P , b 4 J • 

Since C is a chain, i t follows that P C J, say. Thus b 4 P • Since 

P is prime, ab 4 P • Hence ab 4 ft C . This proves that 0 P is prime. 
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