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ABSTRACT 

The purpose of t h i s t h e s i s i s to develop the machinery of -

noncommutative l o c a l i z a t i o n as i t i s being used to date, along w i t h 

some fundamental r e s u l t s and examples. We are not concerned w i t h a 

search f o r a "true t o r s i o n theory" f o r R-modules, but r a t h e r w i t h a 

u n i f i c a t i o n of previous g e n e r a l i s a t i o n s i n a more n a t u r a l c a t e g o r i c a l 

s e t t i n g . 

In s e c t i o n 1, the g e n e r a l i s a t i o n of t o r s i o n f o r a r i n g R 

manifests i t s e l f as a k e r n e l f u n c t o r which i s a l e f t exact subfunctor 

of the i d e n t i t y f u n c t o r on the category of R-modules. I f a k e r n e l 

f u n c t o r a a l s o has the property a(M/o(M)) = 0 f o r any R-module 

M- , we- say-that' o" i s * idempotrent--;--We--treat- fche>-C-abr-ial.-corr-espondence-•• 

which e s t a b l i s h e s a c a n o n i c a l b i s e c t i o n between k e r n e l f u n c t o r s , 

f i l t e r s of l e f t i d e a l s i n R , and c l a s s e s of R-modules c l o s e d under 

submodules, extensions, homomorphic images, and a r b i t r a r y d i r e c t sums. 

This r e s u l t , which allow s us to view t o r s i o n i n s e v e r a l e q u i v a l e n t 

ways, i s fundamental to the r e s t of• the t h e s i s . 

S e c t i o n 2 presents some p o s i t i v e and negative observations 

on when a k e r n e l f u n c t o r i s idempotent. 

In s e c t i o n 3 we begin by g e n e r a l i s i n g the concept of i n j e c t i v e 

module by d e f i n i n g o - i n j e c t i v i t y r e l a t i v e to an idempotent k e r n e l 

f u n c t o r a . This y i e l d s a f u l l c o r e f l e c t i v e subcategory of the category 

of R-modules. The l o c a l i z a t i o n f u n c t o r r e l a t i v e to a i s then 

constructed as the composite of the c o r e f l e c t o r w i t h the embedding 

of the subcategory. 



I n s e c t i o n 4 we d i s c u s s the important "property T" which 

allows us to express the l o c a l i z a t i o n of an R-module as the module 

tensored w i t h the l o c a l i z e d r i n g , j u s t as i n the c l a s s i c a l commutative 

case of l o c a l i z i n g at a prime i d e a l . 

F i n a l l y i n s e c t i o n 5 we see that every idempotent k e r n e l 

f u n c t o r can be represented by a f i n i t e l y cogenerating i n j e c t i v e 

R-module V and the r e l a t i v e l o c a l i z a t i o n of R -by the double 

c e n t r a l i z e r of V . 

I n d i c a t i o n s are th a t the g e n e r a l i s e d concept of t o r s i o n w i t h 

i t s r e l a t i v e l o c a l i z a t i o n w i l l prove i t s e l f i n c r e a s i n g l y v a l u a b l e i n 

the f u r t h e r study of r i n g s and modules. 
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1. 
INTRODUCTION 

To every a b e l i a n group G we can a s s i g n a t o r s i o n subgroup 

T(G) c o n s i s t i n g of a l l the elements of G w i t h f i n i t e order. I f 

G' <S G i s a subgroup, i t i s c l e a r that T(G') = G' D T(G) . 

Furthermore, any group homomorphism G > H n e c e s s a r i l y maps T(G) 

i n t o T(H) . Thus we may regard T as a l e f t exact subfuhctor of the 

i d e n t i t y functor on the category of a b e l i a n groups. This f o r m u l a t i o n 

of the usu a l t o r s i o n theory i n a b e l i a n groups lends i t s e l f e a s i l y to 

a g e n e r a l i s e d concept of t o r s i o n f o r other "nice", a b e l i a n c a t e g o r i e s . 

In t h i s t h e s i s we s h a l l be concerned only w i t h the g e n e r a l i s a t i o n to 

ca t e g o r i e s of modules over an a r b i t r a r y r i n g w i t h u n i t y . A l e f t 

exact subfunctor"of" the'- 4identity" on- M« ±s-• GaM-ed̂ a-k-e-r-nel--f«uno-t-o.E*.-:-

A k e r n e l f u n c t o r a f o r which a(M/a(M)) = 0 f o r every R-module M 

w i l l be c a l l e d idempotent. Thus the usual t o r s i o n theory i n a b e l i a n 

groups i s a prototype f o r our idempotent k e r n e l f u n c t o r s defined on 

more general module c a t e g o r i e s . However, we are not concerned w i t h 

a search f o r a "true t o r s i o n theory" f o r R-modules, but r a t h e r w i t h 

a u n i f i c a t i o n of previous g e n e r a l i s a t i o n s i n a more n a t u r a l c a t e g o r i c a l 

s e t t i n g . 

In s e c t i o n 1 we t r e a t the G a b r i e l correspondence which 

e s t a b l i s h e s a c a n o n i c a l b i j e c t i o n between k e r n e l f u n c t o r s , f i l t e r s 

of l e f t i d e a l s i n R , and c l a s s e s of R-modules closed under submodules, 

exte n s i o n s , homomorphic images, and a r b i t r a r y d i r e c t s u m s I n the case 

of idempotent k e r n e l f u n c t o r s , t h i s b i j e c t i o n r e s t r i c t s to a s i m i l a r 

correspondence which enables us to view the g e n e r a l i s e d concept of 



2. 

t o r s i o n i n s e v e r a l e q u i v a l e n t ways. The G a b r i e l correspondence i s 

fundamental to the r e s t of t h i s t h e s i s . 

S e c t i o n 2 presents some p o s i t i v e and negative observations 

on when a k e r n e l f u n c t o r i s idempotent. This i s done mainly by 

i n v e s t i g a t i n g the a s s o c i a t e d f i l t e r of l e f t i d e a l s . 

In s e c t i o n 3 we begin by g e n e r a l i s i n g the concept of i n f e c t i v e 

module. This i s done r e l a t i v e to any idempotent k e r n e l f u n c t o r a by 

remodeling the i n f e c t i v e t e s t lemma i n the sense t h a t a module A i s 

c a l l e d a-~infective i f the ex t e n s i o n property enunciated i n the i n f e c t i v e 

t e s t lemma holds f o r at l e a s t the l e f t i d e a l s i n the f i l t e r a s s o c i a t e d 

w i t h a . I f the extensions are unique, we say that the module A i s 

f a i t h f u l l y a - i n j e c t i v e . Now the l o c a l i z a t i o n f u n c t o r r e l a t i v e to <T 

as's±gn's~"to—ea-ch- R-modulre'-its' f^±^1^117*,o--iUj'e"c"t'ive---hu±'r;'' • In" order" t r 

c o n s t r u c t t h i s f u n c t o r e x p l i c i t l y , we consider the f u l l subcategory 

of c o n s i s t i n g of the f a i t h f u l l y a - i n j e c t i v e R-modules. This 

subcategory i s c o r e f l e c t i v e w i t h exact c o r e f l e c t o r , and the l o c a l i z a t i o n 

f u n c t o r i s the composite of the c o r e f l e c t o r w i t h the embedding of the 

subcategory. The l o c a l i z a t i o n of the r i n g R i s again a r i n g , but now 

need no longer be a l o c a l r i n g i n the sense of having a unique maximal 

i d e a l . E q u ivalent formulations of t h i s l o c a l i z a t i o n process are a l s o 

mentioned. 

In s e c t i o n 4 we d i s c u s s the important "property T" which allows 

us to express the l o c a l i z a t i o n of any R-module as the module tensored 

w i t h the l o c a l i z a t i o n of R , j u s t as i n the c l a s s i c a l commutative 

case of l o c a l i z i n g at a prime i d e a l . 

In s e c t i o n 5 x\re see that every idempotent k e r n e l f u n c t o r a 



can be represented by a f i n i t e l y cogenerating i n j e c t i v e R-module V 

( where f i n i t e l y cogenerating i s the dual of f i n i t e l y generated ) 

i n the sense that a(M) i s the i n t e r s e c t i o n of the k e r n e l s of a l l 

R-homomorphisms of M i n t o V f o r any M i n M , Furthermore the 
K— 

l o c a l i z a t i o n of R r e l a t i v e to a i s the double c e n t r a l i z e r of V . 

A l l r i n g s have u n i t y 1 and a l l r i n g morphisias are u n i t a l . 

The category of l e f t u n i t a r y modules over a r i n g R i s denbted by 

^M ( M^ f o r r i g h t R-modules ). Morphisms i n are c a l l e d R-maps. 

Module always means l e f t unless s t a t e d otherwise. For any R-module M 

w i t h submodules M1,M" we use the n o t a t i o n (M':M") f o r the l e f t 

i d e a l { r e R | rM" Q M'} . Thus i n p a r t i c u l a r (0:m) i s the 

a n n i h i l a t o r of m e M , and (0:M) the a n n i h i l a t o r of M . I(M) denotes 

the- i n j ee-feiv.e.-hu«M*- of-- M»-.- T.he--hom^f.unGtor* in,--at Ga-fcegory-- •• _G-.. is.f denoted,, 

by £,(.]_>]_)• The s i t u a t i o n of a fu n c t o r F being l e f t a d j o i n t to 

a f u n c t o r G i s denoted by F — I G . Proof of r e s u l t s are given e i t h e r 

when they could not be found i n the l i t e r a t u r e , or an a l t e r n a t e proof 

i s o f f e r e d . Otherwise a refe r e n c e i s given. The symbol \ i n d i c a t e s 

the end of a proof. E f f o r t has been made to i n d i c a t e as much as p o s s i b l e 

the source of terminology used i n t h i s t h e s i s , and to mention other 

terminology used elsewhere. The b a s i c references throughout are 

[7,9,16,17,22,33]. 



1. TORSION THEORIES 

Let be the category of l e f t modules ( w r i t t e n M f o r 

short ) over a r i n g R w i t h u n i t y 1. A subfunctor of the i d e n t i t y on 

M i s a c o v a r i a n t endofunctor 

a : M — y M 

such that a(M) Q M i s a submodule f o r every M e M and 

a ( f ) : a(N,) > a(M) i s the r e s t r i c t i o n f o r any f : N > M i n M . 

(1.1) D e f i n i t i o n ; A subfunctor a of the i d e n t i t y on M i s c a l l e d a 

k e r n e l f u n c t o r [9] i f a i s l e f t exact. E q u i v a l e n t l y , a i s a k e r n e l 

f u n c t o r i f a i s a subfunctor of the i d e n t i t y on M such that 

a(N) = N C) a(M) f o r any submodule N of M e M . An idempotent k e r n e l  

f.unc.t.o.r„.[.9.],.. is,,.a..kernel, functor, a_. s a t i s f y i n g , a(M/,a,(M).)„. = 0, .. 

We denote the f a c t that a : M -—> M i s a k e r n e l f u n c t o r 

( idempotent k e r n e l f u n c t o r ) by a e KF(R) ( a e IKF(R) ) . We 

have the c l a s s i n c l u s i o n IKF(R) *C KF(R) which w i l l be shown to be 

set i n c l u s i o n . For a e KF(R) and any M e M we c a l l o(M) the 

a - t o r s i o n submodule of M. Observe that i f a e KF(R) then a 2 = a 

i e . a(a(M)) = a(M) A a(M) = a(M) . 

Various endo-functors* of; M having'an- assortment of- d i f f e r e n t 

names appear i n the l i t e r a t u r e : a subfunctor of the i d e n t i t y on M i s 

c a l l e d a p r e r a d i c a l i n [5,21]; a k e r n e l f u n c t o r i s c a l l e d a concordant 

i n [33]; a subfunctor a of the i d e n t i t y on M such that a(M/0(M)) = 0 

f o r every M z M i s c a l l e d a r a d i c a l i n [5,17] where a l s o an 

idempotent k e r n e l f u n c t o r i s c a l l e d a t o r s i o n r a d i c a l . 



(1.2) D e f i n i t i o n : A f i l t e r of l e f t i d e a l s [9,33] i n a r i n g R i s a s e t 

of l e f t i d e a l s F. s a t i s f y i n g the f o l l o w i n g c o n d i t i o n s : 

i ) i f U e F_ and I i s a l e f t i d e a l c o n t a i n i n g U then I e F_ 

i i ) i f U,V e F_ then U O v e F 

i i i ) i f r e R and U e F then (U:r) e F . 

These f i l t e r s were considered by G a b r i e l [2,7] where such an o b j e c t 

was c a l l e d un ensemble d'ideaux a gauche t o p o l o g i s a n t . 

I f i n a d d i t i o n a f i l t e r s a t i s f i e s : 

i v ) i f I i s a l e f t i d e a l f o r which there e x i s t s some U e F_ w i t h 

(I:u) e F_ f o r every u e U then I e F_ 

then the f i l t e r F_ i s c a l l e d s t r o n g l y complete [33]. 

G a b r i e l [2,7] c a l l s such an o b j e c t un ensemble d'ideaux ( a gauche ) 

t o p o l o g i s a n t ~ et id'empotent"'. 

(1.3) D e f i n i t i o n : A Serre c l a s s [33] i n RM i s a non-empty subclass 

of M such that i f 

0 > A' y A > A" 0 

i s exact then A',A" e S_ i f and only i f A e _S . E q u i v a l e n t l y , a Serre 

c l a s s S i s a non-empty subclass of M c l o s e d under submodules, 
— K— 

homomorphic images, and extensions. 

An a d d i t i v e c l a s s [33] of R-modules i s a non-empty subclass of M c l o s e d 

under submodules, homomorphic images, and f i n i t e d i r e c t sums. 

We say that a c l a s s of R-modules i s s t r o n g l y complete [33] i f i t i s 

c l o s e d under a r b i t r a r y d i r e c t sums. 

These Serre c l a s s e s , s t r o n g l y complete a d d i t i v e c l a s s e s , and 

s t r o n g l y complete Serre c l a s s e s are e x a c t l y l e s sous-categories e'paisse, 

l e s sous-categories fermees, and l e s sous-categories l o c a l i s a n t e 

r e s p e c t i v e l y , considered i n [ 7 ] . 



6. 

In the f o l l o w i n g paragraphs we want to give e x p l i c i t l y the 

G a b r i e l correspondence which was f i r s t announced ( p a r t i a l l y ) i n 

[7, Chap.5] 

Let us denote the set of f i l t e r s on R by FI L ( R ) . For any 

a e KF(R) , put 

F a = { I £ l e f t i d e a l s of R | a ( R / l ) = R / l } 

Then the mapping a >—> F^ d e f i n e s a c a n o n i c a l b i j e c t i o n between KF(R) 

and FIL(R) by [9,Thms. 2.1,2.2] w i t h the i n v e r s e mapping f o r any 

F_ e FIL(R) given by . 

F_ i >• T where x (M) = { m e M | (0:m) e F_ } f o r any M e M 

having the property that F_ = F^ and a (M) = { m e M | (0:m) £ F^} 

From t h i s i t f o l l o w s immediately that KF(R) forms a s e t , as observed 

i n - [-9Y1"3-]T and- that* • lKF-(4V)-# KF-(R>-- i s - s e t - inclusdronv 

(1.4) Lemma: o e KF(R) i s Idempotent i f and only i f F i s a 

strongly complete f i l t e r . 

Proof; This I s - e x a c t l y the content of [9,Thm 2.5]. 

Next l e t us denote the c l a s s of a l l s t r o n g l y complete 

a d d i t i v e c l a s s e s i n „M by CAD(R) . For any F £ FIL(R) put 

S„ = { M e M I (0:m) E F f o r every m e M }" 

Then the mapping F_ i—> d e f i n e s a c a n o n i c a l b i j e c t i o n between 

FIL(R) and CAD(R) by [33,Thm 1.10], w i t h the i n v e r s e mapping f o r 

any _S e CAD(R) given'by 

1' y = ^ 1 e l e f t i d e a l s of R | R / l e S } 

having the property that S_ = j and F_ = Ê g J 

From [33,Lemma 1.18] we have 



(1.5) Lemma: F_ e FIL(R) is strongly complete i f and only If 

i s a strongly complete Se.rre class. 

The correspondences given above induce a c a n o n i c a l b i s e c t i o n 

between KF(R) and CAD(R) which i s e a s i l y computed to be the 

mapping a i — • S = { M e M | a (M) = M } w i t h i n v e r s e given 

by S i > T where T (M) = \ { ImOjO | Tp e M(S,M) , S e S_ } 

The members of S are c a l l e d a - t o r s i o n modules. Hence a(M) i s the -a • ;  

l a r g e s t ( n e c e s s a r i l y unique ) a - t o r s i o n submodule of M. Combining 

Lemmas (1.4,1.5) we have 

(1.6) Lemma: a e KF(R) is idempotent if and only if is a 

strongly complete Serre class. 

C o l l e c t i n g these r e s u l t s , we s t a t e 

(1.7) Theorem: ( Ga b r i e l , correspondence f o r M ) 
: K.— 

i ) . There is a canonical bijection between kernel functors, 

filters of left ideals, and strongly complete additive classes. 

, i i ) Restriction of the bijection in i ) yields a canonical 

bijection between idempotent kernel functors, strongly complete 

filters of left ideals, and strongly.complete Serre classes. 

There i s another object a s s o c i a t e d w i t h every a e IKF(R) 

th a t turns out to be important l a t e r when c o n s i d e r i n g l o c a l i z a t i o n s , 

namely 

(1.8) V = { M - e M | a(M) = 0 } . . 
The c l a s s of R-modules i s closed under isomorphic images, submodule 

d i r e c t products, and i n j e c t i v e h u l l s by [17,Prop 0.3], and i t s members 



are c a l l e d a - t o r s i o n - f r e e modules. Moreover, by the same P r o p o s i t i o n 

we have 

(1.9) S g = -{ M e M.| M(M,A) = 0 f o r every A e Vff } . 

This c o i n c i d e s w i t h the c l a s s i c a l n o t i o n i n a b e l i a n groups that we 

cannot map a t o r s i o n group i n t o a t o r s i o n - f r e e group i n a n o n - t r i v i a l 

way. 

(1.10) P r o p o s i t i o n : For any a e IKF(R) ' Ya is a full coreflective 

subcategory of M with coreflector F : M >- whose object function 

is given by F(M) = M/a(M) . Furthermore, i s an abelian category, 

and the coreflector F is exacts 

Proof: Let K : V > M be the embedding funct o r of V considered 
- — 6 -a 

as a f u l l subcategory. I t should f i r s t be remarked that monomorphisms 

i n V and i n M c o i n c i d e , -a — 
I f f : M >• N i n M , then the diagram 

0 — > a(M) — y M -—> M/a(M) = F(M) — y 0 

( i . i i ) a ( f ) f : : 

0 — y a(N) — y N — > N/a(N) = F(N) — y 0 

has exact rows. We d e f i n e F ( f ) as the unique f a c t o r i z a t i o n of f. over 

the cokernels making (1.11) commute. This makes . F i n t o a f u n c t o r . 

For any M e M , C e , and TT^ : M > M/a(M) c a n o n i c a l 

i r ^ : V (FM,C) y M(M,KC) 

i s c l e a r l y a n a t u r a l isomorphism by (1.9). Thus ir : M y F(M) i s a 

c o r e f l e c t i o n f o r M i n [22,p.128]. Suppose f i n (1.11) i s a mono 

and that F ( f ) ( m + a(M)) = 0 f o r m e M . As the diagram commutes, we 

have f(m) e a(N) . So there i s a U e F q such that Uf(m) = 0 . This 

i m p l i e s f(Um) = 0 , and f mono i m p l i e s Um = 0 . Hence m e a(M) and 
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so F ( f ) i s a mono. Hence by [22,Prop 5.3,p.130] i s an a b e l i a n 

category and by [22,Prop 12.1,p.67] F i s exact. 1 

The G a b r i e l correspondence s t a t e d i n (1.7) allows us to view 

the g e n e r a l i s e d concept of t o r s i o n i n s e v e r a l equivalent ways. Given 

a e IKF(R) we s h a l l c a l l the t r i p l e of a s s o c i a t e d o b j e c t s ( F q , S , V ) 

a t o r s i o n theory. These ideas appear much more concrete a f t e r 

i n v e s t i g a t i n g a few s p e c i a l cases. 

(1.12) Example: Let R be any r i n g , S C R a m u l t i p l i c a t i v e l y c l o s e d 

system ( i e . S]_ S2 £ $ i f s]_>s2 e s )• L e t <± be t u e s e t °f l e f t 

i d e a l s I of R such t h a t f o r any r e R there e x i s t s s e S v/ith 

sr £ I . E q u i v a l e n t l y , 

G_ = {'" I e l e f t I d e a l s of" R J (I':r) H S i 0" f o r any r e R } . 

The c o n d i t i o n s f o r a s t r o n g l y complete f i l t e r are e a s i l y seen to be 

s a t i s f i e d by G_ . For i n s t a n c e to see that c o n d i t i o n i v ) holds l e t J 

be a l e f t i d e a l such that (J:u) £ G_ f o r every u £ U w i t h U £ G_ . 

For any r e R , we have that s^r £ U f o r some s^ £ S . Then 

(J:s2'0 £ £ so t h a t si s2 r e ^ ^ o r s o r a e s^ e S . As S 2 S 2 e ^ 

we have J e Ĝ  . 

Let a be the idempotent k e r n e l f u n c t o r corresponding to G_. 

An R-module H i s a - t o r s i o n i f and only i f f o r every h e H , sh = 0 

f o r some s e S , and a(M) i s the l a r g e s t a - t o r s i o n submodule of M 

f o r any M e M . I f 0 E S e v e r y t h i n g i s t o r s i o n , but assuming 

1 £ S changes nothing. 

Even though every I e G_ meets S, a(M) i s not the subset 

of M c o n s i s t i n g of elements k i l l e d by some element of S. This set i s 
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not even a submodule i n g e n e r a l . The reason i s that not every s e S 

need be contained i n an i d e a l belonging to G_. For t h i s to happen we 

need a "common l e f t m u l t i p l e p r o p e r t y " : 

(1.13) \/ s e -S \ / r e R 3 t e S 3r' e R . > t r = r ' s ' . 

This i m p l i e s that every l e f t i d e a l that meets S i s contained i n G_. 

The c o n d i t i o n (1.13) i s t r i v i a l l y s a t i s f i e d i f S i s c e n t r a l i n R, which 

i s c e r t a i n l y the case i f R i s commutative. In case S c o n s i s t s of a l l 

non-zero d i v i s o r s of R, (1.13) i s e x a c t l y the c l a s s i c a l l e f t Ore c o n d i t i o n 

[16,p.109]. For an e n t i r e r i n g R, the set of a l l non-zero l e f t i d e a l s 

forms a s t r o n g l y complete f i l t e r i f and only i f R i s a l e f t Ore r i n g . 

Now i f S C R i s a m u l t i p l i c a t i v e l y c l o s e d system 

s a t i s f y i n g (1.13) i t i s c l e a r that 

a(M)" = C m e M' |' sm = 0 f o r some s e' S~ }" f o r any MTe H 

d e f i n e s an idempotent k e r n e l f u n c t o r w i t h t o r s i o n theory 

F = { I e l e f t i d e a l s of R I I H S 1 0 } -a 1 

S = { H" e M | (0 :h) (~\ S ± 0 f o r any h e . H } 

V = { C e M | (0:c) (~\ S = 0 f o r a l l 0 + c e C } . 

For the remainder of t h i s s e c t i o n we s h a l l i n v e s t i g a t e two 

more s p e c i a l t o r s i o n t h e o r i e s . 

For any R-module M d e f i n e the l e f t s i n g u l a r submodule 

Z X(M) as : 

(1.14) Z (M) = { m e M | (0:m) i s e s s e n t i a l l e f t i d e a l i n R } 

In case M = R , Z^(R) i s a 2-sided i d e a l [16,p.106 f f ] . 

The e s s e n t i a l l e f t i d e a l s of a r i n g R ( which p l a y an 

important r o l e i n the G o l d i e Theory - see f o r example [11] ) form a 

f i l t e r which i s not i n general s t r o n g l y complete. This i s because 



Z^(R/Z^R) need not be zero. But we can e i t h e r s h r i n k or enlarge t h i s 

set of l e f t i d e a l s ( apart from the obious extreems ) so t h a t we do 

o b t a i n a s t r o n g l y complete f i l t e r . This was b a s i c a l l y the approach of 

Dlab [ 6 ] . 

We s t a r t by e n l a r g i n g the set of e s s e n t i a l s . 

(1.15) Lemma: For a left ideal L of R, the following conditions are 

equivalent: 

i ) there exists an essential left ideal E in R such that (L:x) 

i s essential in R for every x e E 

i i ) for every r e R with r i L there exists s e R such that 

(L:sr) i s proper ( ie. R ) essential in R . 

Proof: I ) => i i ) " IF' r "̂'L , Rr'*f*(T so" Rr" -E't 0* implTes 

0 ^ s r e E f o r some s e R , and we can p i c k i t so that sr i L 

( s i n c e otherwise (E:r) = (L:r) , making (L:r) e s s e n t i a l a l r e a d y ). 

Then (L:sr) i s proper e s s e n t i a l . 

i i ) => i ) Let S = { s e R | (L:s) i s e s s e n t i a l }. S ± 0 by 

t a k i n g r = 1 i n c o n d i t i o n i i ) . Let E be the l e f t i d e a l generated 

by L and S. I f 1 ^ 0 i s any l e f t i d e a l i n R such that I f ) L = 0 , 

then f o r 0 ^ a e I there e x i s t s b s R such th a t (L:ba) i s 

proper e s s e n t i a l . Then ba ^ 0 , ba e I and ba e S C E . Hence E 

i s e s s e n t i a l . I f (L:x) and (L:y) are e s s e n t i a l , then (L:x + y) i s 

e s s e n t i a l as i t contains (L:x) C\ (L:y) . For any r e R and s e S 

(L:rs) = ( ( L : s ) : r ) i s e s s e n t i a l . Hence (L:x) i s e s s e n t i a l f o r 

every x e E . J 

C l e a r l y any e s s e n t i a l s a t i s f i e s the c o n d i t i o n s of the Lemma. 
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I t was shown by A l l n ( found i n [31] ) that c o n d i t i o n i ) of the 

Lemma c h a r a c t e r i s e s the l e f t i d e a l s i n the s t r o n g l y complete f i l t e r of 

the s o c a l l e d G o l d i e Torsion Theory [ 8 ] , where the t o r s i o n submodule 

of any M e M i s given by Z 2 (M) = T T - 1 ( Z (M/Z^M) ) w i t h 

TJ : M > M/Z^M c a n o n i c a l . E q u i v a l e n t l y , 

(1.16) Z 2(M) = { m e M | (Z M:m) i s e s s e n t i a l l e f t i d e a l i n R} . 

C l e a r l y a l l quotients M/N of M by an e s s e n t i a l submodule N are 

Z ^ - t o r s i o n . An R-module i s Z ^ - t o r s i o n - f r e e i f and only i f i t has zero 

s i n g u l a r submodule. Notice that f o r any M e M ^ (M) i s e s s e n t i a l 

over Z^ (M) . In f a c t Z^(M) i s the maximal e s s e n t i a l extension of Z^(M) 

i n M i n the sense that i f N i s a.submodule of M which i s e s s e n t i a l 

over Z (M), then N £ Z 2 (M) . 

Left" ideal'S'L satisfying*'i'±-)K'of -Lemma" (i s-;i50" were' cald/ed*" • 

"maxi" i n . [6 ] , In s e c t i o n 5 we w i l l be able to gi v e another c h a r a c t e r ­

i z a t i o n of these maxi i d e a l s as being " Z^(R)-dense " . 

Next l e t us s h r i n k the set of e s s e n t i a l l e f t i d e a l s i n R. 

(1.17) Lemma: For a left ideal D of R, the following conditions are 

equivalent: 

i ) \/ 0 7̂  r ^ e R and y r ^ e R there exists r e R such that 

r r ^ ^ 0 and r r ^ e D 

i i ) for any r e R there is no 0 ̂  s e R such that (D:r)s = 0. . 

Proof: i ) => i i ) C o n d i t i o n i ) says that f o r any r e R and 

0 f s e R there e x i s t s x.e (D:r) such t h a t xs f 0 . This i s 

e x a c t l y c o n d i t i o n i i ) . 

i i ) => i ) Take any r e R . Hi en saying t h a t f o r every 0 ̂  r.. e R 
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( D : r ^ ) r ^ i- 0 means there i s an r e R such t h a t r r ^ =f 0 and 

r r ^ e D , as r e q u i r e d . J 

Any l e f t i d e a l s a t i s f y i n g the c o n d i t i o n s of the Lemma must be 

e s s e n t i a l . C o n d i t i o n i ) i s the same as the c o n d i t i o n of [16, Prop 4,p.96] 

and c h a r a c t e r i z e s the dense l e f t i d e a l s which do form a s t r o n g l y 

complete f i l t e r and l e a d to the complete r i n g of l e f t q u o t i e n t s of R 

introduced by Utumi. The t o r s i o n theory corresponding to the dense l e f t 

i d e a l s w i l l be r e f e r r e d to as the Lambek To r s i o n Theory. L e f t i d e a l s 

D s a t i s f y i n g i i ) of Lemma (1.17) were c a l l e d " s t r o n g " i n [6] where the 

f o l l o w i n g were proven to be e q u i v a l e n t : 

(1.18) i ) Z X(R) = 0 

i i ) e s s e n t i a l <=> dense 

i i i ) e s s e n t i a l <=> maxi 

i v ) dense <=> maxi 

Thus i f a r i n g has zero s i n g u l a r i d e a l , the e s s e n t i a l , dense, and 

maxi l e f t i d e a l s a l l c o i n c i d e , and the e s s e n t i a l s form a s t r o n g l y 

complete f i l t e r [7,Lemme l,p.416]. 

On the other hand suppose the e s s e n t i a l l e f t i d e a l s i n a r i n g R 

already form a s t r o n g l y complete f i l t e r . Let M be any R-module. I f 

m e Z^(M) then there i s an e s s e n t i a l E such that Em C Z^ (M) . So 
(x) (x) 

f o r each x e E there i s an e s s e n t i a l E w i t h E xm = 0 ; 
(x) 

i e . E C (0:xm) = ((0:m):x) . This says ((0:m):x) i s e s s e n t i a l 

for- every x e E , which under the hypothis i m p l i e s (0:m) i s 

e s s e n t i a l . Hence m e Z^(M) and we have Z^(M) = Z^(M) f o r a l l M e M. 

This means that the idempotent k e r n e l f u n c t o r induced by the e s s e n t i a l s 

under t h i s hypothis i s e x a c t l y Z^ . From the G a b r i e l correspondence we 
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conclude that the e s s e n t i a l s c o i n c i d e w i t h the maxi l e f t i d e a l s , and 

so by (1,18) e s s e n t i a l <=> dense and R has zero s i n g u l a r i d e a l . 

In p a r t i c u l a r , t h i s i s t r u e f o r any semiprime G o l d i e r i n g R [11] ; 

here the m u l t i p l i c a t i v e l y c l o s e d system ,S C R c o n s i s t i n g of a l l 

non-zero d i v i s o r s has the common l e f t m u l t i p l e property (1.13) and the 

set of e s s e n t i a l s i s p r e c i s e l y the s t r o n g l y complete f i l t e r a s s o c i a t e d 

w i t h S as i n Example (1.12). 

C o l l e c t i n g a few of the above f a c t s , we have 

(1.19) P r o p o s i t i o n : For any ring R, the following are equivalent: 

i ) if 1 is a left ideal in R such that (I:x) is essential for 

every x e E with E essential, then I is essential 

i i ) R has zero singular ideal 
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2. KERNEL FUNCTORS 

A l l k e r n e l f u n c t o r s are c e r t a i n l y not idempotent. f o r example 

take a commutative r i n g A ( always w i t h 1 ) and a e A such t h a t 

a i1 0 , a 1 . Define f o r any A-module M a submodule 

a (M) = { m e M I am = 0 } a ' 
C l e a r l y i s a k e r n e l f u n c t o r , but we do not have to look very f a r 

f o r a r i n g i n which such an a i s not idempotent. In f a c t , . t a k e A = 1 

n > 1. Let G = 3?/n32. Then a
n ( G ) i - s a proper subgroup of G s i n c e 

n 2 e a (G) x<rhereas n i a (G) . But a (G/a G) T 0 because n n n n 
0 ^ n + a (G) i s a member, n 

With the aim of l o c a l i z a t i o n i n mind, the main i n t e r e s t i n 

k e r n e l 1 functors'' is-' to- determine- whether-or' not the- ones- bha-t- arise-*-

n a t u r a l l y are indeed idempotent. 

The set KF(R) has an obious p a r t i a l o r d e r i n g given by 

(2.1) a $ p <=> a(M ) C p (M) f o r every M e M 

There i s a s m a l l e s t and a l a r g e s t member w i t h respect to t h i s p a r t i a l 

o r d e r i n g : namely 0 such that 0 (M) = 0 f o r every M and 0 0 such 

that °°(M) = M f o r every M. r e s p e c t i v e l y . C l e a r l y O,00 e IKF(R). 

These are the t r i v i a l t o r s i o n t h e o r i e s which e x i s t f o r any r i n g . 

(2.2) Example: The G o l d i e T o r s i o n Theory i s the s m a l l e s t n o n - t r i v i a l 

t o r s i o n theory f o r which a l l modules of the form R/E are t o r s i o n , 

where E i s any e s s e n t i a l l e f t i d e a l i n the r i n g R. To see t h i s , 

suppose a e IKF(R) such that a(R/E) = R/E f o r every e s s e n t i a l E. 

This means that F contains a l l the e s s e n t i a l s . Let L be a maxi l e f t -a 

i d e a l i n R. Then there e x i s t s an e s s e n t i a l l e f t i d e a l E such that 
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(L:x) i s e s s e n t i a l f o r every x e E. Now E e s s e n t i a l i m p l i e s E e 

and a e IKF(R) i m p l i e s L e F^ . Hence F^ a l s o c o n t a i n s a l l the maxi' 

l e f t i d e a l s and so a , 

(2.3) Example: The Lambek T o r s i o n Theory i s the l a r g e s t n o n - t r i v i a l 

t o r s i o n theory f o r which the r i n g R i s . t o r s i o n - f r e e . To prove t h i s , 

l e t p_ be the set of dense l e f t i d e a l s i n R. C l e a r l y R i s t o r s i o n -

f r e e w i t h respect to the Lambek To r s i o n Theory s i n c e D e D i m p l i e s 

(D:l) = D has no r i g h t a n n i h i l a t o r s by Lemma (1.17). Now suppose 

a e IKF(R) such that a(R) = 0. I f U e F , then (U:r) e F f o r 
—a —a 

any r e R. Hence (U:r)s = 0 i m p l i e s s = 0 f o r any r,s e R , 

which shows by Lemma (1.17) that F^ Q D_ . 

Any a e KF(R) s a t i s f i e s a 2 = a , so already appears to be 

" idempotent In order to j u s t i f y our terminology f o r idempotent 

k e r n e l f u n c t o r s , we in t r o d u c e a product on f i l t e r s ( f o l l o w i n g [2] ). 

Let F , F be two f i l t e r s of l e f t i d e a l s i n R. Define: 
-a ' -p 

(2.4) F *F = { I e l e f t i d e a l s of R I 3 J e F w i t h a ( J / l ) = 0 } . -a -p 1 _J -p 

F^&Fp i s a f i l t e r , t h e r e f o r e has a uniquely a s s o c i a t e d k e r n e l f u n c t o r 

which we denote by a*p i n order to w r i t e F *F = F .An R-module• 
y -a -p a*p 

M i s a * p - t o r s i o n i f and only i f M has a o - t o r s i o n submodule M' such 

that M/M' i s p - t o r s i o n . This s t a r product i s a s s o c i a t i v e . From the 

d e f i n i t i o n of s t r o n g l y complete f i l t e r i t i s c l e a r that . F i s 

s t r o n g l y complete i f and only i f f o r l e f t i d e a l s I C J i n R such that 

J e F and J / I a - t o r s i o n we have that I c F . Now Goldman [9,Thm 2.5] 

st a t e s that a z KF(R) i s idempotent i f and only i f a*o = a • 

Another way of forming new k e r n e l f u n c t o r s from given ones 
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i s by i n t e r s e c t i o n . More p r e c i s e l y , l e t { o, j i E I } be a f a m i l y 

of k e r n e l f u n c t o r s i n KF(R). Define a = i n f { a | i e I } by 

a(M) = Q a ±(M) f o r any M e M . T r i v i a l l y a e KF(R) , a $ a ± 

f o r a l l i e I , and i f p £ o\ f o r a l l i e I then p < a 

Furthermore i t i s t r i v i a l t hat i f a = i n f { a . I i e I } then 

F = n F • 
-a ' ' -a . 

1 

This concept of i n f gives r i s e to a c l o s u r e o p e r a t i o n 
C : KF(R) — > IKF(R) defined by 

( 2 .5 ) a i—> a c = i n f { p e IKF(R) | a s< p } 

More e x p l i c i t l y a°(M) = f) { N g M submodule | a(M/N) = 0 } . 
c 

This d e f i n i t i o n does indeed make a an idempotent k e r n e l f u n c t o r 

by [ 9 ,Prop. 1.1 and Thm. 1.6J and a e KF(R) i s idempotent i f and 

only i f cr = a*" . V i a the G a b r i e l correspondence, the mapping 

a i—>• 0 extends to a c l o s u r e o p e r a t i o n on f i l t e r s : 
( 2 .6 ) F = F i—y F c = F ° v ' — -a -a — 
and on s t r o n g l y complete a d d i t i v e c l a s s e s : 
(2.7) S = S 1—• S c = S° 

— —o —o — 

Given any subclass of ̂ M , there i s c e r t a i n l y at l e a s t one 

a e KF(R) f o r which every R-module i n C_ i s o - t o r s i o n , namely a = 00 . 

F i n d i n g the sma l l e s t such i s eq u i v a l e n t to f i n d i n g the s m a l l e s t 

s t r o n g l y complete a d d i t i v e c l a s s c o n t a i n i n g C_, Of course we o b t a i n 

t h i s c l a s s by i n t e r s e c t i o n , and the d e s i r e d k e r n e l f u n c t o r i s 

i n f { a e -KF(R) | C, } . To o b t a i n the sma l l e s t idempotent one, 

simply apply the c l o s u r e o p e r a t i o n , and thereby a l s o o b t a i n the 

sm a l l e s t s t r o n g l y complete Serre c l a s s c o n t a i n i n g C_. This was e x a c t l y 

the s i t u a t i o n f o r the Goldie T o r s i o n Theory where we cl o s e d the c l a s s 

{ R/E | E e s s e n t i a l l e f t i d e a l i n R } of R-modules. 
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We t u r n to another concept that w i l l be u s e f u l l a t e r . 

(2.8) D e f i n i t i o n : A k e r n e l f u n c t o r a e KF(R) i s c a l l e d n o e t h e r i a n [9] 

i f f o r every ascending c h a i n 1̂  C ^ C ••. of l e f t i d e a l s i n R whose 

union i s i n F ,1 e F f o r some n. 
-a ' n -a 

In p a r t i c u l a r , every k e r n e l f u n c t o r i n KF(R) f o r a l e f t n o etherian 

r i n g R enjoys t h i s property. We s h a l l i n v e s t i g a t e the behavior of 

noetherian k e r n e l f u n c t o r s w i t h respect to the formation of i n f . 

(2.9) Observation: I f p^,...,P n are f i n i t e l y many noetherian k e r n e l 

f u n c t o r s , then p = i n f { p, | i = 1 n } i s a l s o n o e t h e r i a n . The 

proof f o l l o w s immediately from the remark that some member of any 

acsending c h a i n of l e f t i d e a l s whose union i s in - F must be i n every 
F . This i s however not the case f o r i n f i n i t e l y many memners of KF(R) 

P i 

for' arbitrary*"RT"A"co'unterexampl'e" w i T l " b'e*'given-'in-. (2". 13)' ' a f t e r " the'" 

f o l l o w i n g d i s c u s s i o n which helps us to determine when a k e r n e l f u n c t o r 

i s n o e t h e rian. 

(2.10) D e f i n i t i o n : A f i l t e r I? i s s a i d to have a co f i n a l subset of  

f i n i t e l y generated l e f t i d e a l s i f every U e F_ conta i n s a f i n i t e l y 

generated l e f t i d e a l which i s a l s o i n J_ . ' 

(2.11) Observation: I f a f i l t e r F^ has a c o f i n a l subset of f i n i t e l y 

generated l e f t i d e a l s then a i s no e t h e r i a n . To see t h i s , l e t 

1̂  C ' ' * b e any ascending c h a i n of l e f t i d e a l s i n R such that 

U = I J I i s i n F^ . Then U contains a f i n i t e l y generated l e f t i d e a l 
(x,,...,x ) e F , and so some I. must c o n t a i n a l l the x..,...,x . 1 n y

 -a ' 2. I n 
This says that some I. e F J i -a 

The converse of t h i s i s not yet c l e a r as remarked i n [9]. 

However we make the f o l l o w i n g : 
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(2.12) Observation: Suppose every U e F^ i s at most countably 

generated. I f a i s noetherian then F^ has a c o f i n a l subset of f i n i t e l y 

generated l e f t i d e a l s . The proof i s obtained simply by t a k i n g chains 

where we keep adding on generators of l e f t i d e a l s i n F^ . 

(2.13) Example: Let A = k[x^,X2>...] be the commutative polynomial 

r i n g i n i n f i n i t e l y many indeterminants over a f i e l d k. Let 
2 3 

S. = { l , x . , x . ,x. ,...} be the m u l t i p l i c a t i v e l y c l o s e d system i n A x x x x 
defined by x^ , and l e t a be the idempotent k e r n e l f u n c t o r a s s o c i a t e d 

w i t h S^ as i n Example (1.12) . Since A i s commutative, f o r any M e 

m e a.(M) <=> x.nm = 0 f o r some n , and F c o n s i s t s of those l x -o. x 
i d e a l s i n A that meet S. . This means F has a c o f i n a l subst of x -a. x 
f i n i t e l y generated i d e a l s of the form As , s e S^ and so by (2.11) 

each,..a.. iss-noe-thaE-Aan!.*.-Leta,-•=•. inf..•.{-,ov.. I. it-=«•!-.,*..... ,«>•< } C o n s i d e r - . • 

the c h a i n of i d e a l s 

(2.14) ( x 1 ) C (x 1,.x 2) C ( x 1 5 x 2 , x 3 ) C ... 

and l e t U be t h e i r union. Since a^(A/U) = A/U f o r every i , U >e F^ . 

But a(A/(x^,...,x^)) ^ A/(x^,...,x n) f o r any n because i f m > n , 
x + (x, ,...,x ) cannot be a a - t o r s i o n element and consequently m i n m -i J 

cannot be a a - t o r s i o n element. Hence no member of t h e chain (2.14) i s 

i n F , and' a i s not noetherian. -a ' 

(2.15) D e f i n i t i o n : A f i l t e r F_ i s c a l l e d m u l t i p l i c a t i v e i f U,V e F_ 

i m p l i e s UV e F_ . 

(2.16) Remark: A s t r o n g l y complete f i l t e r i s always m u l t i p l i c a t i v e 

s i n c e U C (UV:v) e F_ f o r every v e V . This i s the same as saying 

F^ i s m u l t i p l i c a t i v e f o r any a e IKF(R). The converse of t h i s remark 

i s however not tr u e i n gen e r a l . The f o l l o w i n g counterexample i s 
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i n d i c a t e d i n [2,p.158]. 

(2.17) Example: Let k [ x ^ , x 2 , . . . ] be the commutative polynomial r i n g 

i n i n f i n i t e l y many indeterminants over a f i e l d k . Let (x^x^.)^^. be 

the i d e a l generated by a l l the x - j _ x j a n c* P u t 

A = k [ x 1 , x 2 , . . . ] / ( x i x _ . ) i ^ j 

CO 
Let = x, + ( x . x . ) . ,. and I = (5, ), , be the i d e a l i n A k Ic i j XT*J k k=l 

generated by a l l the 5^ . Consider the set F_ of i d e a l s i n A c o n t a i n i n g 

a power of I . C l e a r l y F i s a m u l t i p l i c a t i v e f i l t e r of i d e a l s i n A. 

Denote the corresponding k e r n e l f u n c t o r by T such that I? = F . 
i "° i Let J = ( £ . ) . ., be the i d e a l i n A generated by a l l the £. 

l 1=1 o J X t h s ( i powers of the S^'s )• Then f o r any a e I , I a CI J f o r 
g 

l a r g e enough s. So I C (J:a) e F^ f o r every a e I ( s depending 

complete, and we conclude that x i s not idempotent. 

By imposing some r e s t r i c t i o n s we do get a p a r t i a l converse 

to Remark (2.16) i n the case of commutative r i n g s . 

(2.18) P r o p o s i t i o n : Let A be a commutative ring. If a filter F has 

a cofinal subset of finitely generated ideals, then F is multiplicative 

if and'only if the associated'kernel- functor- a- is idempotent-. 

Proof: I f a i s idempotent, the c o n c l u s i o n f o l l o w s from Remark (2.16). 

Conversely, l e t M be any A-module. For any 6 = m + o(M) e a(M/o(M)) 

there i s a f i n i t e l y generated i d e a l I = (a.,...,a ) e F such that 
J b 1 n -a 

10 = 0 ; i e . a.m e a(M) f o r i = l , . . . , n . Then f o r each i there i s a i 
U. e F w i t h U.a.m = 0 . Let J = f ) U . e F . Then Jim = 0 and x -a i i i -
J l e F^ so that m e a(M) and a(M/o(M)) = 0 . I 
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(2.19) Corollary: If F_ is a filter of ideals in a commutative ring A 

then the following assertions are equivalent: 

i) F_ is multiplicative 

i i ) J_ i s strongly complete 

i i i ) the associated kernel functor is Idempotent , I 



3. LOCALIZATION FUNCTORS 

In t h i s s e c t i o n a l o c a l i z a t i o n f u n c t o r i s co n s t r u c t e d f o r 

each a e IKF(R) and some of the b a s i c p r o p e r t i e s are obtained. 

The f o l l o w i n g theorem c h a r a c t e r i s e s a c l a s s of modules which turns 

out to be q u i t e important. 

(3.1) Theorem: For any a e IKF(R) with torsion theory ( L . S ,V ) 

and A e M the following are equivalent in M : 

i ) i f M/N e S^ for N Q M submodule then any R-map N > A 

extends to an R-map M • A / i e . M(M,A) >- M(N,A) > 0 i s 

exact whenever N £ M and M/N e S 
-a 

i i ) I(A)/A i s a-torsion-free ; ie. I(A)/A e 

i i i ) i f U e F^ and g : U > A is any R-map then there exists 

a £ A such that g(u) = ua for every u e U 

i v ) i f E e F^ i s an essential left ideal in R , then any R-map 

E >• A extends to R 

v) any R-map U > A with U e F^ extends to R ; i e . for every 

U e F a M(RjA) > M(U,A) > 0 is exact 

v i ) E x t R
1 ( S , A ) = 0 f o r every S e S 

v i i ) f o r any essential extension M of N with (A:m) e F^ for 

every m e M any R-map N >• A extends to an R-map M >• A 

Proof of equivalence of these c o n d i t i o n s can be found s c a t t e r e d 

through the l i t e r a t u r e : i ) <=> v) by [9,Prop 3.2]; i ) <=> i i ) <=> 

i i i ) ' by [17,Prop 0.5] where such an A e M i s c a l l e d d i v i s i b l e ; 

i v ) <=> v) by [32,Thm 11]; i ) <=> i i ) <=> v) <=> v i ) by 

[33,Prop 2.4]; i ) <=> v i i ) by [20,Prop 1.2] 1 
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(3.2) Definition: An R-module A is called o-injective [9] i f A 

satisfies any ( hence a l l ) of the conditions of Theorem (3.1). 

If in addition the extension in i) in the Theorem is unique , 

ie. M(M,A) - M(N,A) for N £ M and M/H £ S F L , then A is 

called f a i t h f u l l y a-in;]ective. 

From [9,Prop 3.1] we have 

(3.3) Proposition: A e M is faithfully a-injective if and only if 

A is a-injective and A e V Q . 

For any a e IKF(R) l e t A q denote the f u l l subcategory 

of M consisting of the f a i t h f u l l y a-injective R-modules. Regarding R— 
as a f u l l subcategory of the above Proposition (3.3) gives 

an- embedding* 'functor'" J- :• A- >----V- (•• subscripts- have-been'-dr-opped-*-

as we are considering a fixed for now ). Composing with the embedding 

K : V > M we get the embedding 

(3.4) E : A - i - V M 

For C e V l e t D(C) C. 1(C) be the extension of a(I(C)/C) by C 

( ie. 0 > C >• D(C) > a(I(C)/C) > 0 exact in 0M . ) 
K— 

such that D(C)/C = a(I(C)/C) and CCD(C) . 

(3.5) Proposition: For any C £ V_ we have D(C) e A . 

Proof: As C C D(C) £ 1(C) , D(C) e V by (1.8)ff. Since 1(C) is 

clearly an essential extension of D(C) ( as i t is already essential 

over C ) 1(C) is the injective hull of D(C) by [16,Prop 10,p.92]; 

ie. I(D(C)) = 1(C) . Now I(C)/D(C) = (I(C)/C)/(D(C)/C) 

= (I(C)/C)/a(I(C)/C) 

is a-torsion-free because a is idempotent. Hence D(C) is a-injective 
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by Theorem (3.1,ii), and together with Proposition (3.3) this 

means D(C) 6 A . ' I 

Here i t should be remarked that monomorphisms in A and 

.in V_ coincide, and hence also coincide with monomorphisms in M . 

Now D : y_ > A is easily made into a functor: 

since D(B)/B = o(I(B)/B) is a-torsion, for any f : B y C in V 

there is a unique D(f) by the fa i t h f u l o-injectivity of D(C) that 

makes the diagram 

B - > D(B) 

(3.6) I D(f) 
i 4-C y D(C) commute 

where i , i are inclusion. If f in (3.6) is a monomorphism, 

b 6 B such that D(f)(i (b)) = 0 , then i_f(b) = 0 and so b = 0 
B O 

since i f is a mono. Hence ker D(f) f\ B = 0 . But D(B) essential 

over B implies ker D(f) = 0 . This shows that D preserves 

monomorphisms. 

Furthermore, for any A e A , C e V_ with i : C y D(C) 

inclusion 

(3.7) i * : A(DC,A) — y V(C,JA) 

is clearly a natural isomorphism. Composing with the adjoint of 

Proposition (1.10) and putting Q = DF we have that Q is l e f t adjoint 

to the embedding functor. E . Since both F and D preserve monos, 

[22,Prop 5.1,p.129] again gives us that A is an abelian category, 

and by [22,Prop 12.1,p.67] Q is exact. Notice that A is not 

in general an abelian subcategory of M as the embedding functor E 

need not be exact. Since the category M is complete, [22,Prop 5.1',p. 129] 
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gives us that A is complete. Collecting these results ( see also 

[17,Prop 0.8] ) yields the following; 

(3.8) Theorem: For any a e IKF(R) , the full subcategory A 

consisting of the faithfully a-injective R-modules is a coreflective 

subcategory of M with coreflector Q = DF . Furthermore A is 

a complete abelian category and the coreflector Q is exact. 

(3.9) Definition: The endofunctor EQ : M > M w i l l be called 
K- R— 

the localization functor relative to a e IKF(R). 

In effect, the functor EQ provides a a-injective hull for 

every M e M as in [33,Prop 4.2] and can be computed by: 

This Proposition (3.10) in the particular case M = R 

appears as [27,Prop 1.7]. 

More information regarding this localization can be obtained 

by investigating the unit and counit of the adjunction n : Q —{ E . 

(3.10) Proposition: For any M e M 

EQ(M) = { x e I(M/cr(M)) j (M/a(M):x) e F } , 

Proof: Immediate by our definition of D which i s 

EQ(M)/F(M) = EDF(M)/F(M) = a (I (FM)/F (M) ) 

and that a(M) = { m e M | (0:m) e F } . I 

The unit is given by cj> = n (1 Q(M) ) : M—> EQ (M) and i s easily 

computed to be: 

M * EQ (M) 

(3.11) 

M/a (M) 



Hence there is a natural mapping <j>M : M »- EQ (M) for every M e 

whose kernel is exactly a(M) . 

( 3 . 1 2 ) Proposition: An R-module M' i s faithfully a-injective if 

and only if EQ(M) = M . 

Proof: If M = EQ(M) , then M is f a i t h f u l l y a-injective by 

Proposition ( 3 . 5 ) . 

Conversely, M f a i t h f u l l y a-injective implies a(M) = 0 , so that 

<}>̂  : M >• EQ(M) is inclusion. Since EQ(M) is already f a i t h f u l l y 

a-injective and EQ(M)/M is a-torsion, there exists a unique a 

such that the diagram 

M : > EQ(M) 

( 3 . 1 3 ) ~ / 1 
EQ(M) (uniquely) 

commutes 

From <|> «:1 • = 1^/wv •<!>,, = fy.'Ct'fy.. we have <J> *a = 1 _ b y M M EQ(M) M M M M EQ(M) 

uniqueness, which together with  a'$n ~ 1^ implies that the 

inclusion <J> is an isomorphism. Hence EQ(M) = M . J 

( 3 . 1 4 ) Corollary: i ) (EQ) 2 = EQ 

i i ) the counit of the adjunction n : Q — \ E is the identity. 

Proof: i ) EQ(M) is f a i t h f u l l y a-injective. 

i i ) for any A e A the counit of r\ is given by 

n _ 1 ( l E A ) : QE(A) • A 

But EQE(A) = E(A) and E being an embedding implies QE(A) = A 

Furthermore 1 works!^so we have i t by uniqueness. I 



We write the counit of n as 1 : QE *• Id^ 

Here we can mention a few more simple facts: 

(3.15) Observation: M is a-torsion <=> Q(M) = 0 <=> EQ(M) = 0 . 

( => ) by construction of the functor 

( <= ) by the fact that a(M) = ker $ 

(3.16) Observation: If U e F_a then Q(U) - Q(R) and hence 

EQ(U) = EQ(R) . This is because 0 y U y R y R/U y 0 i s 

exact in M , consequently 0 • Q(U) —> Q(R) y Q(R/U) > 0 

is exact in A . But R/U is a-torsion, so Q(R/U) = 0 and we have 

Q(U) - Q(R) in A . Since E preserves isomorphisms ( always ! ) 

EQ(U) - EQ(R) in M . 

The objective of such localization is to study the ring R 

by means"" of"* EQ-OR.')"" whi'cir--shoul'd"aiso*-b-e"a"ring'; In1-order forgive-' 

EQ(R) a suitable ring structure, notice that as A is an abelian 

category on i t s own right, the adjunction n : A(Q(M),A) - M(M,E(A)) 

is an isomorphism of abelian groups. Putting M = R there is an 

isomorphism E(A) - A(Q(R),A) of abelian groups which says that E 

is representable ( in the sense of [17] ). It is clear from the 

general theory of representable functors that ( Q(R), 0(1) ) is a 

representing pair for E , where we write (j> = $ for the canonical 

map R y EQ(R) . The rest of the story now follows immediately 

from [17,Prop 1.1] which is stated here in i t s entire generality. 

(3.17) Proposition: ( Lambek ) If C_ is an additive category, 

U : C y M a representable functor with representing pair 

R— 
( A , s ) , s s U ( A ) , such that U(C) - C(A ,C) is an abelian o o o o o 
group isomorphism for every C e , then the following are true: 
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i) ^(^Q)  c a n ^ e  m a-d e into a ring S - C ( A Q , A O ) with underlying 

abelian group same as that of U ( A Q ) 

i i ) the map R U ( A Q ) given by r I—> r s Q i s a ring homomorphism 

3 •: R — y S 

i i i ) for each C e C U(C) i s a l e f t S-module, call, it T(C) 

iv) for each f : C > C' i n £ U(f) i s an S-map, c a l l i t T(f) 

v) T : C_ > M i s a functor such that . U^T = U C where 

: M >• M i s change of rings functor via 3 - see / f I 2 7 ) 

o— R— 

vi) T i s representable with representing pair ( A , .s ) and 

S >• T(A ) by x i >• xs^ i s an isomorphism. 

From this proposition i t now follows that EQ(R) = Q(R) is 

a ring with unit ^(1) such that Q(R) A(Q(R),Q(R)) and 

<p : R > EQ(R) is a ring homomorphism such that the induced 

R-structure by change of rings coincides with the original structure 

as in [9,Thm 4.1]. There is a functor T : A—-s» , .M such that 
hQCR;-

4 

U. T = E and T_ * A(Q(R),_?) giving each fa i t h f u l l y cr-injective 

R-module an EQ(R)-module structure ( see also [9,Cor 4.2] ). In 

Lambeck's terminology [17], ( Q(R), T ) is called the completion 

of ( R, E ) . Putting together the facts thus far, we have the 

following commutative diagram of categories and functors: M 
EQ(R)-

A(EQ(R) ,?) 
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It should be pointed out here that this functor Q cannot 

be considered the same as Goldman's localization functor Q which 

is actually EQ . This is most dramatically illustrated by the fact 

that Q is exact while EQ is not in general right exact. It w i l l 

be easy to give a counterexample in Section 4 after a discussion 

of the important "property T", but the basic reason is that A 

need not be an abelian subcategory of M . In fact, i t turns out 

to be an abelian subcategory i f and only i f EQ is exact - see 

[33,Thm 3.13]. 

Since the endofunctor EQ arose from a pair of adjoints 

Q — I E , i t gives rise to a monad [25] which by Corollary (3.14) is 

particularly simple. E x p l i c i t l y i t is given by the commutative 

diagrams':* 

(3.19) 

written ( EQ, <j>, \ ) where <j> : Id^ >• EQ is the unit of the 
— 2 

adjunction n : Q — I E and i = E1Q : (EQ) >• EQ i s the identity 

natural transformation since the counit. 1 of n is the identity 

and (EQ)2' = EQ . 

Having Theorem (3.8) at our disposal, we can apply 

[25,ThnT 2,p.75] to conclude that E is a monadic functor ( caution: 

our coreflective as in [22] corresponds to reflexive in [25] ). 

This means the following: the endofunctor EQ gives rise to a 

category M of socalled EQ algebras. The objects of M are 

pairs ( A, a ) where A e M and a : EQ(A) >- A . is a morphism in 

M such that the following diagrams commute: 
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(3.20) 

(EQ)2(A) -M(«l> EQ (A) 

A 
EQ (A) -> A 

Morphisms from ( A,"a ) to ( B, 3 ) are morphisms f : A 

in M such that the diagram 

EQ(A) E Q ( f ) > EQ(B) 

(3.21) 3 
A -> B commutes. 

We get a functor L : A >• M*"* by defining L(A) = ( E(A) , E(± A) ) 

„EQ 

>MEQ 

on objects and the obv/ous one on morphisms. That M_7X is indeed a 

category and L a functor has been shown in great generality by 

Pareigis [25,Thm l,p.62J. Now E monadic means that L : A > M" 

is an isomorphism of~categories. Furthermore by Theorem" ('3T8')'", 
EQ 

M i s abelian. Hence we can regard the category A as an abelian 

category of EQ algebras. This was done by Heinicke [10,Thm 4.3] under 

somewhat more general circumstances using the Eilenberg-Moore 

construction directly. In [10], localization functors are defined 

via natural transformations and made to correspond with certain 

monads deemed localizing. However, the functor EQ and i t s monad 

( EQ, <j>., i ) are the canonical choices as seen by [10,Thm 2.4]. 

Several other equivalent descriptions of this localization 

process can be found in the literature. In [9] Goldman gives an 

explicit elementwise characterization of EQ(M) which for any 

o-torsion-free R-module C is essentially given by 
EQ(C) = M(U,C) / = 

UeF 
-a 

where = is an equivalence relation such that f e M(U,C) and 
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g e M(V,C) are related when there exists some W e F with 

WC D(°| V on which f and g agree. We can translate this 

description of EQ into 

(3.22) EQ(M) = lim M(U,M/a(M)) for any M e M 
UeF -a 

by making the observation that inclusion in F induces a direct 

system of the abelian hom-groups with the required R-module structure 

defined on the direct limit by letting r [ f] be the equivalence 

class of (U:r) > M 

x \ > f (xr) 

for any r e R , and any equivalence class [f] , f e M(U,M). 

This coincides with the construction in [2] as well as that in 

[7,33] using the quotient category of M with respect to the. 

strongly complete Serre class S 
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4. PROPERTY T 

Let EQ be the localization functor "relative to a e IKF(R) 

and <|> the unit of the adjunction n : Q — I E . Denote the localised 

ring EQ(R) by Q ( a l l other notations w i l l be the same as in the 

previous section ). 

(4.1) Lemma: There is a natural transformation K : Q 8 ? > EQ 

of endofunctors on M given by K^(q@m) = q(c|>̂ (m)) for any M e M 

and m e M , q e Q . 

Proof: The set map Q x M • EQ(M) 

(q,m) > q(<j)M(m)} 

is bilinear and R-balanced for any R-module M , thus extends 

uniquely to an R-map K : Of 0 R M':—> EQ"(M)*! 

by the universal property of the tensor product. Let f : M > N 

be any R-map and consider the diagram: 

• ' *M KM M > EQ(M) < Q 8 M 

(4.2) f 

N > EQ(N) -f Q 8 N 

Now for any generator q,@m. e Q. © M. 

EQ(f)-KM(q0m) = EQ (f ) (q (m)) ) 

= q(EQ(f).4»M(m)) 

= q(<|) *f (m)) by naturality of 

KN-(10f)(qOm) = tcN(q0f(m)) 

= q(* N-f (m)) 

Hence extending linearly, we have naturality of K . 1' 

EQ(f) 18f 
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(4.3) Lemma: If Q(f>(I) = Q then I e F . 

Proof: Exactness of I >• R >• R / l > 0 implies the exactness 

of Q@I Q8R > Q8R/I >• 0 . The image of a is Q4> (I) . 

But Q<f>(I) = Q - Q®R . Thus Q0R/I = 0 , which implies KR^ = 0 

and so ~ 0 • Hence R / l = ker 0 Ryj = o"(R/l) which implies 

that I e F .' I 
-a 

(4.4) Lemma: Q 6 (R/U) i s a-torsion for every U e F R —a 
Proof is given in [27,Lemme 1.3] 

The three Lemmas above provide some information about the 

general case of localizing relative to an arbitrary idempotent 

kernel functor. They also raise the following questions: 

i) - when-is" fhe'-na-turai'- tran-sformati-on*'in,'"Lemma' -(4-.'i)' a" rcaturai'"isomor-phism-?'-

i i ) when is the converse of Lemma (4.3) true ? 

i i i ) when is Q 0 (R/U) = 0 ( ie. "really" torsion ) for every U 
R . 

in the strongly complete f i l t e r 1? . 

We shall see from the answers in Theorem (4.5) below that these 

questions are intimately related. 

It i s also of interest to know when the functor 

A(Q(R),_?) : A >- QM ( see diagram 3.18 ) is a natural isomorphism. 

For i f this is the case, every X e is isomorphic to A(Q(R),A) 

for some A e A . Then regarding X as an R-module by change of 

rings via $ , U* (X) - U<f>A(Q(R),A) = E(A) is f a i t h f u l l y 

a-injective. On the other hand, i f for every X e , (X) is 

fai t h f u l l y a-injective, then QU(j)A(Q(R) ,_?) = I d A and 
A(Q(R),QU I) = Id by diagram (3.18) which implies that 

Q-
A(Q(R),?) is a natural isomorphism . 
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The following Theorem establishes the connection between 

the foregoing remark and the above questions. 

(4.5) Theorem: For any a e IKF(R) , the following statements are 

equivalent: 

i ) the functor A(Q(R) ,_?.) : A >• is a natural isomorphism 

i i ) (X) is a-torsion-free for every X e 

i i i ) Q<f>(U) = Q for every U e F^ 

iv) (X) is faithfully a-injective for every X e 

v) K : Q @ ? > EQ i s a natural isomorphism. 

R— 

vi) the functor EQ i s right exact and commutes with direct sums 

v i i ) Q 8R(R/U) = 0 for every U e F^ 

v i i i ) the functor EQ is right exact and F^ has a cofinal subset 

of finitely generated left ideals 

ix) the functor EQ preserves colimits . 

Proof: The i n i t i a l remark establishes i) <=> iv) ; vi) <=> ix) i s 

an immediate consequence of the dual statement to [22,Cor 6.3,p.55] 
since DM i s a conormal category with direct sums. In fact ix) is is.— 

equivalent to the weaker statement: the functor EQ preserves direct 

limits ; i i ) <=> i i i ) <=> iv) <=> v) <=> vi) by [9,Thm 4.3] with 

naturality following by Lemma (4.1) ; v i i ) <=> v) <=> i i i ) <=> i i ) 

by [33,Thm 3.2] ; v i i i ) => i ) and v i i i ) => v) by [7,Cor 2,p.414] ; 

v i i ) <=> i i ) <=> v i i i ) <=> v) <=> i ) by [27,Prop 2.8] where a new 

proof is offered. J 

(4.6) Definition: We say that a e IKF(R) has property T [9] ( for 

tensor product ) i f any ( hence a l l ) of the conditions of the 

above Theorem (4.5) are satisfied. 
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In {9J Goldman proves two more interesting equivences 

which are useful in determining property T : 

(4.7) the functor EQ commutes with direct sums if and only if 

a is noetherian 

(4.8) the functor EQ i s right exact if and only if every U e 

i s "<r-projective" in the sense of the following: 

Definition: An R-module P is called a-projective i f for any 

epimorphism C >• C" of a-torsion-free modules in M , any R-map 

P > C" can be l i f t e d to an R-map P' >• C on a submodule P' 

of P with P/P' o-torsion making the diagram 

0 > P' y P 

C. >• C" > 0, commute. 

(4.9) Example: Since any projective R-module is clearly a-projective 

for any a e IKF(R) , i t is evident that for a l e f t noetherian 

hereditary ring R , every a e IKF(R) has property T . 

(4.10) Example: If R is a l e f t semisimple artinian ring, then R 

is ( l e f t ) hereditary by Wedderburn's Theorem [13] and also l e f t 

noetherian [16,p.69]. Hence by Example (4.9) every a e IKE(R) for 

a- l e f t semisimpl-e- artinian ring R has property-T . 

C 4 . l l ) Example: Let S C R be a multiplicatively closed system 

with associated idempotent kernel functor a as in Example (1.12). 

Suppose S has the common l e f t multiple property (1.13). Then F^ 

contains Rs for every s e S and F^ has a cofinal subset of 

principal l e f t ideals. Let U e F , s e S U , p : C -—> C" 

an epimorphism of a-torsion-free R-modules, and f : U > C" any 

R-map. For some c e C , p(c) = f(s) . The R-map Rs > C defined 

http://C4.ll
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by rs '—y rc makes the diagram 

0 y Rs > U 

f 

C ^ > C" -> 0 commute 

Also U/Rs C R/Rs and so U/Rs is a-torsion. This means that every 

U e F^ is a-projective which by (4.8) implies EQ is right exact. 

Hence by Theorem (4.5,viii), a has property T . 
r 

The converse of the above need not hold in general, i e. the 

common l e f t multiple property is not a necessary condition for a 

to have property T . For a counterexample, consider the ring R of 

2x2 matricies over a division ring D and the multiplicativly closed 

system S consisting of matricies of the form (o o) w^ t' 1 0 ̂  d e D. 

Le-t- p« be'>-the*-as<3Qe<L-a*ed--idempotan̂  R»- i s — 

simple artinian, p has property T by Example (4.10), but S does 

not have the common l e f t multiple property because taking 

(o o) £ R ' (o o) £ S ' (o o)(o o) = ( dij }2x2 ( J I) implies d = 0. 

Returning to the general situation of a multiplicatively closed 

system S in a ring R , the common l e f t multiple property does insure 

that every <f>(s) for s e S under the canonical map (j) : R >• EQ(R) 

has a l e f t inverse in EQ(R) . To see this, pick any s e S and define 

k g : R > R by r /—> rs . This induces the exact sequence 
k 

(4.12) 0 y K y R R > R/Rs > 0 

where K = ker k g , R/Rs = cok k g . Since a has property T , 

we have an exact sequence 
EQ(R) -^y EQ (R) >• EQ (R/Rs) y 0 

where p = EQ(kg) is the unique extension by f a i t h f u l a-injectivity 
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of EQ(R) defined by qi—>- q (s) . Now R/Rs e F implies 

EQ(R/Rs) = 0 and so p is an epimorphism. Hence 1 = q(<Hs)) for 

some q e EQ(R) and we obtain the desired l e f t inverse. 

If we demand that each <j>(s) is also to have a right inverse in EQ(R) 

then rs = 0 implies cj>(r)<f>(s) = <|>(rs) = 0 and consequently <(>(r) = 0 

ie. r e a(R) which means there i s some t e S such that tr = 0 . 

Hence a necessary condition for right i n v e r t i b i l i t y of <)>(s) is : 

(4.13) i f rs = 0 with r e R then tr = 0 for some t.e S . 

This condition i s also sufficient because i t implies K C o (R) 

in (4.12) so EQ(K) = 0 making u = EQ(kg) a monomorphism :( hence 

an isomorphism ) . Again letting q be a l e f t inverse of <j>(s). > 

from u(cj>(s)q - 1) = (<(>(s)q ~ l H ( s ) = 0 we have <f>(s)q = 1 and 

he-nee'.- (̂ŝ ).-- haS"a-2-sided..-in.v.er.se,.in- . EQ,(»R.)*-.... Wei-hav.e«.thus» ar,r.iv,ed<. . 

at the f u l l generalization of the classi c a l Ore condition: 

(4.14) Definition: A multiplicatively closed system S C R is called 

a l e f t denominator set [4] i f S satisfies both the common l e f t 

multiple property (1.13) and condition (4.13) above. 

(4.15) Definition: Let S C R be a multiplicatively closed system. 

A ring of l e f t fractions for R with denominators in S [2,7] is 

a pair ( Q', \p ) where Q" is a ring and' ifi : R *• Q is' a ring' 

homomorphism satisfying the following three conditions: 

i) i f i^(r) = 0 then sr = 0 for some s e S 

i i ) 4>(s) is invertable in Q for every s e S 

i i i ) every element of Q has the form ^(s) % ( r ) r e R , s e S 

(4.16) Theorem: For a multiplicativelu closed system S i n a ringr R' 

with associated idempotent kernel functor a the following are 
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equivalent: 

i ) R has a ring of left fractions with denominators in S 

i i ) S is a left denominator set 

i i i ) for every s e S , $(s) via the canonical <j> : R > EQ(R) 

is invertable in EQ(R) . 

Proof: i i ) => i i i ) f o l l o w s from the preceeding d i s c u s s i o n . 

i i i ) => i ) f o l l o w s from P r o p o s i t i o n (3.10) and the f a c t t h a t every 

U e F^ meets S . The p a i r ( EQ(R), <j) ) becomes the ( unique 

up to isomorphism ) r i n g of l e f t f r a c t i o n s f o r R which i n t h i s 

case i s a l s o the u n i v e r s a l S - i n v e r t i n g o b j e c t i n [4]. 

i ) => i i ) i s e a s i l y proven as i n [7,Prop 5,p.415]. J 

I f S contains only the non-zero d i v i s o r s , a r i n g of l e f t 

f r a c t i o n s w i t h denominators i n S ( i f i t e x i s t s ) i s c a l l e d a 

c l a s s i c a l r i n g of l e f t q u o t i e n t s f o r R . From the Theorem we can 

immediately deduce [16,Prop l , p . l 0 9 ] : 

(4.17) C o r o l l a r y : A ring R has a classical ring of left quotients 

if and only if it satisfies the classical Ore condition. 

For a commutative r i n g A ,. every m u l t i p l i c a t i v e l y c l o s e d 

system S i s a denominator s e t . Therefore the r i n g of f r a c t i o n s 

of A w i t h denominators i n S always e x i s t s and can be const r u c t e d 

i n the c l a s s i c a l way as i n [l,Chap 3], Because of property T , t h i s 

c o n s t r u c t i o n extends to every A-module M by EQ(A) 0^ M e x a c t l y 

as i n [ l , P r o p 3.5] which gives the module of f r a c t i o n s w i t h 

denominators i n S . 



39. 

(4.18) Proposition: If a e IKF(R) has property T , then the canonical 

map (j) : R > EQ(R) is a ring epimorphism and EQ(R) . i s flat as a 

right R-module. 

2 

Proof: The isomorphism EQ(R) = (EQ) (R) - EQ(R) Q EQ(R) i s induced 

by multiplication, so <j> : R > EQ(R) is a ring epimorphism by 

[28,Prop 1.1], Since EQ - EQ(R) 8 ? is a natural isomorphism, 
R — 

EQ(R) is f l a t in J 

In particular, the results of [28] apply to any a e IKF(R) 

with property T in which case <j> : R >- EQ(R) is a l e f t localization 

in the sense of Silver. However, the converse of Proposition (4.18) is 

not true in general. 

(4.19) Example: Let A = k[x,y] be the commutative polynomial ring 

in two indeterminants over a f i e l d k . Let M = (x,y) be the 

maximal ideal of A , and take J_ to be the f i l t e r consisting of 

ideals containing a power of M . Since F_ is clearly multiplicative, 

F_ is a strongly complete f i l t e r by Corollary (2.19). Let p be the 

associated idempotent kernel functor. Clearly A is p-torsion-free 

( a s A is an integral domain ) so the canonical map (j> : A EQ(A) 

is inclusion.If we l e t K denote the f i e l d of fractions k(x,y) of A 

we have K = 1(A) and p(K/A) = 0 . Hence A is f a i t h f u l l y p-injective 

and hence A = EQ(A) . By Observation (3.16) EQ(M) = EQ(A) = A . 

Consequently EQ(M) is not isomorphic to A @̂  M - M and thus p does 

not have property T . Nevertheless <|> : A —•> EQ(A) = A is a ring 

epimorphism and A is certainly f l a t as a right A-module. 

This example shows more: 

(4.20) Since A is noetherian, p is also noetherian. Hence EQ 
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cannot be right exact relative to this p . But Q is s t i l l exact 

as always. 

(4.21) Not every torsion theory for a commutative ring arises from 

a multiplicatively closed system since a l l these do have property T . 

(4.22) The product of torsion modules need not be a torsion module. 

co . n 
In the present example, ILA/M is not p-torsion ( the element 

n=l 
n - i

0 0 

{ 1 + M Jn_-L cannot be k i l l e d by any single power of M ) but 

each A/Mn is p-torsion by construction of the f i l t e r . A similar 

example of this can be found in abelian groups. Consider the group 
CO 

2(p ) ( written additively ) with generators 0 ^ , 0 ^ , • . • , c n , . . . and 

relations pc^ = 0 , pc^ = c^ P c
n +^ = c

n ' ' " ' ' ^ & § r o u P s 

CO 

^(p )/Zc_^ i = 1,2,... are a l l torsion in the usual torsion theory 

for , but their product is not a torsion group. 

The above Example (4.19) is a concrete version of one 

indicated in [9,Ex 2,p.45]. 

Even though the converse of Proposition (4.18) is not true 

iri general, a partial converse in this connection can be found in 

the literature. 

(4 .23) Theorem: A' ring map i|T :* R* *• Q* ' is an eplmorphism' and" Q" is' 

flat as a right R-module if and only if the set of left ideals I in 

R such that. Q^.(I) = Q Is a strongly, complete filter and for the 

localization relative to this torsion theory there is an isomorphism 

Q - EQ(R) making the diagram 

R' ~" 

'EQ(R) commute 



Proof i s given in I17,Thm 2.7J and [27,Prop 2.7]. 

In the light of the above Theorem we may regard the l e f t 

localizations of Silver [28] as arising relative to an idempotent 

kernel functor which appears very close to having property T . 
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5. REPRESENTATIONS OF IDEMPOTENT KERNEL FUNCTORS 

AND THEIR RELATIVE LOCALIZATIONS -

Let cr e IKF(R) be arbitrary and let ( F, S_, V ) be i t s 

corresponding torsion theory. Again notations from previous sections 

w i l l be retained. 

The o-torsion modules _S are generated by the cyclic 

modules R/U with U e F_ , i n the sense that for any M e _S there 

is an epimorphism 

0 R/U > M 

UeF 

The a-torsion-free modules V_ are cogenerated by the modules 

I(R/I) where I is a l e f t ideal in R such that a(R/I) = 0 

( called closed l e f t ideals in [17] ) } in the sense that for any 

C e V_ there is a monomorphism 

C > IT { I(R/I) | a(R/I) = 0 } = V 

via a factorization through the injective hull of C and then by a 

construction of Jans ( described in [17,p.6] ) , 

Let M be any R-module and put 

k(M) = O { ker(f) [ f e M(M,V) } 

Clearly a(M) Q k(M) by (1.9) as V is a-torsion-free. On the other 

hand, for any m e k(M) , M(Rm,V) = 0 because we can always f i l l the 

diagram 0 —-c Rm M 

by in j e c t i v i t y of V . Now i f C is any a-torsion-free module, we have 

a monomorphism C > V . Hence 0 > M(Rm,C) > M(Rm,V) = 0 

is exact which implies M(Rm,C) = 0 for every C e V . Consequently 
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by (1.9) Rm f S and therefore m 6 (T(M) . Hence V completely 

determines the torsion theory as: 

(5.1) a (M) = ker(f) | f e M(M,V) } 

By reversing the procedure, i t is clear that any R-module S determines 

a kernel functor i f we take V = I(S) . We denote the kernel functor 

which arises i n this way by x and observe that x i s idempotent 

and in fact is the largest idempotent kernel functor for which S is 

torsion-free [9,Thm 5.1]. 

From the above discussion we have: 

(5.2) Proposition: For every o e IKF(R) there exists M e M such 

that a = x,, M 

Notice that' an" R-mo'duTe"" X"" is'"'T;v,-t''6'rsion 
M 

<=> M(X,I(M)) = 0 

<=> V x £ X \/m e. M r £ R ^- rx = 0 and rm f 0 

Clearly the R-module M whose existance was asserted in 

Proposition (5.2) is not unique - not even up to injective h u l l . 

But i t is unique up to a relation that is manufactured to do 

precisely that job. 

(5.3) Definition: i ) We say that a module M is cogenerated by a 

module G i f M can be embedded in a product of coppies of G . 

i i ) Two modules are called similar [22] i f they cogenerate eachother. 

(5.4) Lemma: Two modules M, N give rise to the same torsion 

theory ( ie. x = x^ ) if and only if M and N have similar 

injective hulls. 

Proof: ( Storrer [17, Appendix] ) We f i r s t remark that a necessary 



and sufficient condition for a module X to be T -torsion-free i s 

that X be cogenerated by I(S) . This condition is obiously 

sufficient because products and submodules of torsion-free monules 

are again torsion-free. Necessity follows from the fact that 

M(Rx,I(S)) =f 0 for any 0 ^ x e X since RxC X is x -torsion-free 

By i n j e c t i v i t y we can f i l l the diagram 

0 >• Rx > X 

y''3' f 0 ' 

K s f 

which by the universal property of direct products gives a map 

X >• I(S) into the X-fold product of I(S) which must be mono. 

Now i f I(M) amd i(N) are similar, then V = V 
TM TN • 

because cocenerating is transitive, and hence x — x 
M N 

Conversely i f x w = x„ then M is x -torsion-free and we M N N 
have an embedding e : M > I(N)^ for some J-fold product of I(N) . 

By i n j e c t i v i t y we can f i l l the diagram 

0 > M >• I(M) 
/* 

K N ) J ^ 

with a mono since I(M) is essential over M . Therefore I(M) is 

cogenerated by I(N) . By symmetry, I(N) is cogenerated by I(M) 

and hence M and N have similar injective hulls. \ 

(5.5) Proposition: An idempotent kernel functor a ~ Xg has 

property T if and only if the l o c a l i z a t i o n EQ(R) of the ring 

r e l a t i v e to a is f l a t as a right R-module and I(S) is s i m i l a r 

to the i n j e c t i v e left R-module i W = • M.(EQ(R) ,<Q/2) . 
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Proof: If a has property T , i t has already been shown in 

Proposition (4.18) that EQ(R) is f l a t as a right R-module. It remains 

to show a = xTT . Now _M(M,W) - M(EQ(R) 0_ M,Q/2) 

- JJMCEQCM) ,Q/2) 

for any M e M . If me a(M) then EQ(Rm) = 0 and so _M(Rra,W) = 0 . R— R— 
This means xTT(Rm) = Rm and so me xri(M) . On the other hand i f W W 
m e x (M) then ^(RnijW) = 0 and M(EQ(Rm) ,Q/Z) = 0 . By [16,p.89] W . K— A— 

we have EQ(Rm) = 0 . Consequently Rm is a-torsion. Hence a = x 
W 

and we get the desired similarity by Lemma (5.4) . 

Conversely, let U e F . Then R/U is x T-torsion which J -a W 
means „M(R/U,W) = 0 . But 0 = DM(R/U,W) - „M(EQ(R) @„ R/U,^/Z) K— K— £— R 

implies EQ(R) R/U = 0 . Hence by Theorem (4.5,vii) a has 

prope-rfey-T .. 

Tachikawa [30] mentions the following result: 

(5.6) Proposition: The localization of any M in M relative to 

x = x i s given by 

EQ(M) = { x e I(M/xM) | $ (x) = 0 for a l l <j) e $ } 

where $ = { (j) e M(I(M/ M) ,V) | f(M/xM) = 0 } and V is any 

injective similar to I'(S)' . 

Proof: . Putting C = M/xM , the Proposition follows from 

ED(C)/C = T v(I(C)/C) = f ) { ker(f) | f e M(I(C)/C,V) } 

and that TT : M(I(C)/C,V) >• $ , induced by the 

canonical projection TT : 1(C) > I(C)/C is a bijection since 

we can f i l l the diagram 
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0 »• C y 1(C) > i ( c ) / C y 0 

V 

with a unique g for any <j> e $ 

If V i s any injective in M , i t is tempting to try and 

construct injective resolutions from products of copies of V as 

far as possible because the further we can push such a resolution, 

the more closely the module being resolved i s pinned down by the. 

torsion theory associated with V . 

(5.7) Definition: Let U e M . We say that an R-module X has 
R— 

U-dominant dimension 2 n [23] ( notation: U-dom.dim(X) j> n ) 

i f there is an exact sequence 

0 —y X — y X, — y ... —y X 1 n 
such that each X^ is a product of copies of U . 

(5.8) Lemma: If V and W are s i m i l a r i n j e c t i v e R-modules, then 

V-dom.dim(X) £ n if and only if W-dom.dim(X) £ n for every, X e M . 

Proof: Suppose V-dom.dim(X) > n .Then there is an exact sequence 

0 — y X y X.. —y...—y X such that each X. is a product of copies 
I n I V V 

of V . Then each X_̂  is cogenerated by W because of the similarity 

and the fact that a product of monos is mono in M . From 
R— 

[17,Lemma A.4,p.87] we conclude that W-dom.dim(X) > n . The coverse-

implication follows by symmetry I 

Out of the similarity class of an injective, we wish to 

pick out a distinguished representative having the finiteness condition: 
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(5.9) Definition: An R-module X is called f i n i t e l y cogenerating [23] 

i f there is a f i n i t e number of elements f e M(R,X) i = l,...,n 

such that P\ ( ker(g) | g e M(R,X) } = f) { ker(f ±) | i = l,...,n } 

Notice that this is. the dual of f i n i t e l y generated. 

Since (o:x) = ker(g) for g e M(R,X) defined by r \ > rx 

x e X and M(R,X) - X by f i > f(1) , X is f i n i t e l y cogenerating 

i f and only i f there exists elements x,,...,x e X such that 
I n 

(5.10) (0:X) = Pl { (0:xi) | i = l,...,n } . 

(5.11) Lemma: Every i n j e c t i v e in M is similar to a finitely R— 
cogenerating i n j e c t i v e . 

V 

Proof: Suppose V is any injective R-module. Let W = V be the 

V-fold product of copies of V .. Obiously W and V are similar. 

If £ is the element of W whose v~" coordinate i s v for any 

v e V , then (0:W) = (0:5) and W is f i n i t e l y cogenerating. 1 

Since the dominant dimension of a module is uniform over a 

similarity class of injectives in the sense of Lemma (5.8), we make 

the following: 

(5.12) Definition: For a s IKF(R) we say that an R-module X has 

q-dominant dimension £ n ( notation: c-dom.dim(X) £ n ) i f 

V-dom.dim(X) > n for any injective V such that a = . 

Using this terminology and keeping Lemma. (5.8) in mind, 

we state: 

(5.13) Proposition: For any a z IKF(R) and M e M 

i) M is o-torsion-free if and only if a-dom.dim(M) £ 1 

i i ) M is faithfully a-injective if and only if a-dom.dim(M) £ 2 , 
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Proof is given in [17,Prop A.6,p.88] and [23,Lemmas 5.1 & 5.2] # 

This Proposition provides yet another characterization of 

the fa i t h f u l l y a-injective modules. Thus by Lemma (5.11) the f u l l 

subcategory. p_(V) of M consisting of modules with V-dom.dim > 2 

for a f i n i t e l y cogenerating injective V considered by Morita [23] 

is exactly our category A^ associated with a = x^ . The fact that 

A is an abelian subcategory of M i f and only i f EQ is exact, 

a condition which does not hold in general, caused trouble in 

Section 3. Property T is a good attempt at patching up this d i f f i c u l t y 

and also provides some fringe benifits. In [23,Thm 6.1] Morita gives 

another answer to this problem: for a e IKF(R) , the category A 

is an abelian subcategory of M i f and only i f a-dom.dim(A) = °° 

for every A e A . 

Lemma (5.11) t e l l s us that for any idempotent kernel functor 

a there is sone f i n i t e l y cogenerating injective V such that a = x^ 

This method of picking a distinguished representative from the 

similarity class of an injective i s exploited in [23,Thm 5.6] as 

follows: 

(5.14) Theorem: ( Morita ) Let a e IKF(R) and V a finitely 

cogenerating injective such that a = x^ . I f DC i s the double 

centralizer of V , then EQ(R) = DC where EQ i s the localization 

functor relative to a . 

(5.15) Observation: From this Theorem and Proposition (3.12) we get 

very cheaply a result of Kato [15,Thm 2] which says that a fa i t h f u l 

f i n i t e l y cogenerating injective V has the double centralizer 
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property i f and only i f R is fai t h f u l l y x^-injective. However this i s 

a particular case of a more general result [23,Thm 3.4] for which we 

have to work considerably harder. 

The Theorem (5.14) no longer holds in general i f we drop the 

condition that V be f i n i t e l y cogenerating. However i f W is any 

injective such, that a =• x^ and DC the double centralizer of W , 

we do in fact obtain a ring homomorphism EQ(R) >• DC which is a 

monomorphism ! ( see 118] ) . 

(5.16) Example: For any ring R , the injective hull I(R) is 

always f i n i t e l y cogenerating injective. Then Theorem (5.14) says 

that EQ(R) relative to T„ is the double centralizer i f I(R) . 

This i s exactly the definition of the complete ring of quotients 

given-- ±ar [46 vpv94»]«v • 

We shall return to this Example again later, but f i r s t a 

generalization of the notion of dense l e f t ideal. 

(5.17) Definition: Let I be a l e f t ideal in R . A l e f t ideal J 

in R i s called I-dense i f 

V r ^ I Vr2 e R 3 r e R 3~ r r ^ i I and r r £ e J . 

(5.18) Proposition: ( Popescu ) For any left ideal I in R the 

strongly complete filter F_ associated with x^ for N = R/l 

consists exactly of the I-dense left ideals. 

Proof is given in [26] of this Proposition and of the following: 

(5.19) Corollary: If A i s a commutative ring, I an ideal, N = A/l 

and F the strongly complete filter associated with x^ then 

U e F if and only if a e A such that UaC I implies a e I . 
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(5.20) Example: Recall that in the Goldie Torsion Theory the 

R-module N = R/z2(R) has zero singular ideal and so is Z^-torsion-f -tree. 

This means 2̂ ̂  TN ' ̂ n o r < ^ e r t 0 P r o v e that the converse implication 

also holds, suppose U is a Z^-dense l e f t ideal in R , and l e t r I U 

If r e Z2(R) , then Er <k Z^ (R) for some essential E 

If Er = 0 then (U:r) 3 (0:r) D E is essential. 

If Er ̂  0 then 0 •/= xr z (R) for some x e E which we can pick so 

that xr i U ( otherwise (U:r) 2 E is essential already ). Now there 

is an essential E' such that E'xr = 0 e U so (U:xr) 3 E' is also 

essential. Suppose r i Z^(R) . If (U:r) is not essential, there i s 

a l e f t ideal B + 0 such that (U:r) D B = 0 . Let 0 ̂  b e B , 

so br i U . If br t Z 2(R) then because U is Z2(R)-dense there 

exists - x* such^tliat" • xbr-^s""Z-^('R)r-and' xbT~>e'~U«--- lev xb-"-/-'0' , x-b ê -B" 

and xb e (U:r) - impossible. Hence br e Z^(R) . This means 

Ebr C Z^(R) for some essential E , which i s what we want , for 

i f Ebr = 0 then (U:br) £ (0:br) P E is essential already. 

If Ebr ̂  0 then 0 7̂  xbr e Z^(R) for some x e E and we can pick 

x such that xbr i U (otherwise (U:br) IP E is essential ). 

Now there is an essential E' such that E'xbr =0 so (U:xbr) P E' 

is essential. In any case, we can always find s e R such that 

(U:sr) is proper essential . Hence by Lemma (1.15,ii) every 

Z2(R)-dense l e f t ideal i s maxi i e . x^ ̂  Z 2 . This shows = Z^ 

is the largest torsion theory for which R/Z2(R) is torsion-free, 

and we obtain another characterization of the maxi l e f t ideals as being 

Z2(R)-dense . 

(5.21) Example: The 0-dense l e f t ideals are just the usual dense l e f t 

ideals. Hence the strongly complete f i l t e r of dense l e f t ideals i s 
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exactly the f i l t e r associated with T r .For the case T = T r , comparing 

Proposition (5.6) with [16,Prop l,p.94] i t is clear that EQ(R) is the 

complete ring of l e f t quotients, which we denote here by Q̂ . This 

agrees with the conclusion of Example (5.16). Since R is 

t R-torsion-free, we consider R as a subring of . 

Let a e IKF(R) such that a(R) =0 . The resulting localised 

ring EQ(R) relative to such a a is called a f a i t h f u l ( l e f t ) 

quotient ring of R . The importance of the complete ring of quotients 

of R comes from the fact that i t exists for every ring R; 

( which was seen not to be the case for the classical ring of quotients ) 

and that any fa i t h f u l quotient ring of R is a subring of Q^ .This 

is because o(R) = 0 implies a < T D SO that every l e f t ideal in F 
R ' — 

must be dense. Now By Proposition (3"".TO')' 

EQ(R) = { x e I(R) | (R:x) e F^ } Q { x e I(R) | (R:x) is dense} = 

(5.22) Proposition: The idempotent kernel functor T R has property T 

if and only if Q̂  has no proper dense left i d e a l s . 

Proof: Suppose T d has property T . Let D be a dense l e f t ideal 

in Q̂  . Then R O D is dense in R . To see this, take r^ ^ 0 and 

r in R . Now there exists q e Q such that qr.. ^ 0 and qr. e D . 
m 1 2' 

For some dense U in R , Uq R by Proposition (3.10) and 

Uqr^ =/ 0 as Q^ is torsion-free. Hence for some, u e U , uqr^ f 0 

and uqr^ e R D which shows that R O D is dense. 
Now Q = EQ(RH D) = Q 0 _ (ROD) m TU K 

= (^(RH D) as Q m i s f l a t in ^ 

C QJD C D 

and so Q^ has no proper dense l e f t ideals. 
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Conversely, l e t D be dense in R . Then Q D is dense in 
m 

: take q^ f 0 , in . For some dense J in R we have 

Jq^ C R and J q 2 R with Jq^ f 0 . So 0 f aq^ and aq^ are 

in R for some a e J . As D is dense, there, exists r e R such that 

raq^ f 0 and. raq^ e D C Q̂ D . This shows Q̂ D is dense in and 

so Q̂ D = . By Theorem (4.5,iii) we conclude that x^ has 

property T . I 

(5.23) Remark: The above Proposition has an obvious generalization: 

i f 0 e IKF (R) with <j> : R > EQ(R) canonical then 0 has 

property T i f and only i f EQ(R) has no proper l e f t ideals J such 

that <j> "''(J) e F . The same argument as i n the Proposition shows 

this statement is equivalent to Theorem (4.5,iii) . 

One of the objectives of such a localization process is 

of course to determine "local properties". By this we mean the 

following: let SUB(R) be a subset of IKE(R) and suppose £2 

is a property satisfied by the ring R ( or by an R-module M ). 

Then tt_ is called a SUB(R)-local property when R ( M ) has ft" 

i f and, only i f EQ.(R). ( EQ„(M)_ ). has fi, for every localiz.ation 

relative to a member of SUB(R) . Now the advantage of having every 

idempotent kernel functor in the form x allows us to distinguish 

a subset of IKF(R) by means of a distinguished class of modules, 

li k e simples or indecomposable injectives for example. This is done 

in [9] and in [26] by an equivalent method. 

Another objective of this localization is to obtain 

information about the structure of R via the structure of i t s 



localizations EQ(R) by imposing conditions on the rings R and 

EQ(R) - see for example [24]. A classical example of this i s 

of course the Goldie Theory ( as in [11,Chap 7] ). 

In this thesis the machinery of localization has been 

developed as i t is being used to date, along with some fundamental 

results and of course examples where, as usual, the real action of 

the theory is taking place. Indications are that the generalised 

concept of torsion with i t s relative localization w i l l prove i t s e l f 

increasingly valuable in the further study of rings and modules. 
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