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ABSTRACT

The purpose of this thesis is to develop the machinery of -
noncommutative localization as it is being used to date, along wiﬁh
some fundamental results and examples. We are not concerned with a
search for a "true torsion theory" for R-modules, but rather with a
unification of.previous generalisations in a more natural categorical
setting.

In section 1, the generalisation of torsion for a ring R
manifests itself as a kernel functor which is a left exact subfunctor
of the identity functor on the category of R-modules. If a kernel
functor o also has the property o(M/o()) = O for any R-module
M-, we say-that o Is--idempoetent:  -We~trealt- the-Gabrniel correspondence
which establishes a canonical bijection Between kernel functors,
filters of left ideals in R , and classés of R-modules closed under
submodules, extensioné; homomorphic images, and arbitrary direct sums.
This result, which allows us to view torsion in several equivalent
ways, is fundamental to the rest of the thesis.

Section 2 presents. some positive and negative observations
on when a kernel functor is idempotent,

In section 3 we begin by generalising the concept of injective
module by defining o-injectivity relative to an idempotent kernel
functor o¢ . This yields a full coreflective subcétegory of tﬁe category
of R—modules, The localization functor relative to ¢ is then
constructed as the composite of the coreflector with the embedding

of the subcategory.
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In section 4 we discuss the important "property T" which
aliows us to express the localization of an R-module as the module
tensored with the localized ring, just as in the classical commutative
case of localizing at a prime ideal. |

Finally in section 5 we see that every idempotent kernel
functor can be represented by a finitely cogenerating injective
R-module V and the relative localization of R . .by the double
centfalizer of V .

Indications are that the generalised concept of toréion with

its relative localization will prove itself increasingly valuable in

the further study of rings and modules.
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INTRODUCTION

To every abelian group G we can assign a torsion subgroup
T(G) consistiﬁg of all the elements of G with finite order. If
G'<= G is a subgroup, it is clear that T(G') = G'11T(G) .
Furthermore, any group homomorphism G —> H necessarily maps T(G)
into T(H) . Thus we may regard T as a left exact éubfunctor of the
identity functor on the category of abelian groups. This formulation
of the usual torsion theory in abelian groups lends itself easily to
a generalised concept of torsion for other "nice' abelian categories.
In this thesis we shall be concerned only with the generalisation to
categories of modules M ‘over an arbitrary ring with unity. A left
exact” subfunctor-of- the  identity on- nghis*cai&edwa~kefneiJﬁunctonﬁu
A kernel functor o for which o®/o(M)) = 0 for every R-module M
will be called idempotent. Thus the usﬁal torsion theory in abelian
groups is a’prototype for our idempotent kernel functors defined on
more ge#eral module categories. However, we are not concerned with
a search for a'”true torsion theory'" for R-modules, but rather Qiﬁh
a unification of previous generalisations'in a more mnatural categorical
setting.

In section 1 we treat the Gabriel co}respondence‘which
establishes a canonical bijection between kernel functors, filters
of left ideals in R , and classes of R-modules closed under submodules,
extensions, homomorphic images, and arbitrary direct sums..ln the case
of idempotent kernel functors, this bijection restricts to a similar

correspondence which enables us to view the generalised concept of



torsion in several equivalent ways. The Gabriel correspondence is
fundamenfal to the rest of this thesis.

Section 2 presents some positive and negative observations
on when a.kernel functor is idempotent. This is done mainly by
investigating the associated filter of left ideals.

In section 3 we begin by generalising the concept of injective
module. This is done relative to any idempotent kernel functor o by
remodeling the injective test lemma in the sense that a module A is
called g~injective if the extension property enunciated in the injective
test lemma holds for at least the left ideals in the filter associated
with o ., If the extensions are unique, we say that the module A 1is
faithfully o-injective. Now the localization functor relative to o
assigns~to-each  Remodule~its Taithiwlly o=injective hull In-order—to-
construct this functor explicitly, we consider the full subcategory
of R@ consisting of thé faithfully o-injective R~modules. This
subcategory is coreflective with exact coreflector,iand the localization
functor is the composite of the coreflector with the embedding of the
subcategory; The localization of the ring R 1is again a ring, but now
need no longer be a local ring in the sense of having a unique maximal
ideal. Equivalent formulations of this localization process are also
mentioned.

In section 4 we discuss the important ''property T'" which allows
us to express the Jocalization of any R-module as the module tensored
with the localization of R , just as in the classical commutative
case of.locaiiziﬁg at a prime ideal.

In section 5 we see that every idempotent kernel functor o



can be represented by a finitely cogenerating injective R-module V

( where finitely cogenerating is the dual of finitely generated )

in the sense that (M) 1is the intersection of the kernels of all
R-homomorphisms of M dnto V  for any M in R@ . Furthermore the
localization of R relative to ¢ is the double centralizer of V .

All rings have unity 1 and all ring morphisms are unital.

" The category of left unitary modules oﬁer a ring R 1is denbted by

R§ ( gR for right R-modules ). Morphisms in Rg are called R-maps.
Module always means left unless stated otherwise. For any R-module M
- with submodules M',M" 'we use the notation (M':M") for the left

ideal { r e R llﬂf'gzM'} . Thus in particular (O:m) is the
annihilator of m ¢ M , and (0:M) the annihilator of M . I®) denotes
the- injectivehudls 0f- Mw. The~hem~functor in.awcategory.. .G« is«denoted...
by C( 2?2, ? ) . The situation of a functor F being left adjoint to

a functor G 1is denoted by F — G . Proof of results are given eithef
when they could not be found in the literature, or an alternate proof

is offered. Otherwise a reference is given. The symbol | indicates

the eﬁd of a éroof.kEffort has been made to indicate as much as @ossible
the source of terminology used in this thesis, and to mention other

terminology used elsewliere. The Basic references thioughout are

[7,9,16,17,22,33].



1. TORSION THEORIES

Let RM_ be the category of left modules ( written M for
short ) over a ring R with unity 1. A subfunctor of the identity on
M is a covariant endofunctor

o M- U
such that oM) € M is a submodule for every M e M and
o(f) : o(N) — o) 1is the restriction for any £ : N‘——+ M in M .

(1.1) Definition: A subfunctor o of the identity on M is called a

Kernel -functor [9] if o is left exact. Equivalently, ¢ is a kernel

functor if ¢ is a subfunctor of the identity on M such that

o(N) = KI(WO(M) for any submodule N of M € M . An idempotent kernel

_ EEBEEQEVLQL“iSMa“annel"functorwcmsatisfyiggd o.Mla.G1).).. = 0.

' We denote the fact that 0 : M —> M dis a kernel functor
( idempotent kernmel functor ) by ¢ e KF(R) (¢ & IKF(R) ) . We
have the class inclusion IKF(R) € KF(R) which will‘be shown to be
set inclusion. For o ¢ KF(R) and any M e M we call o) the
g-torsion submodule of M., Observe that if o ¢ KF(R) then 62 =0
ie. o(o@)) =M NoM) = @) .

Various endofunctors of M having an"assortment of different
names appear in the literature: a subfunctor of the identity on M is
called a preradical in [5,21]; a kernel functor is called a concordant
in [33]; a.subfunctor a of'the identity on M such that 0(M/0(M))_= 0
for every M ¢ M is called a radical in [5,17] where also én |

idempotent kernel functor is called a torsion radical.
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(1.2) Definition: A filter of left ideals [9,33] in a ring‘R is a set
of left ideals F satisfying the following conditions:

i) if U e F and I is a left ideal containing U ’then IeF

ii) if U,V e F then UMV e F

iii) 4if r e R and U é F then (U:r) € F

These filters were considered by Gabriel [2,7] where such an object
was called un ensemblé d'ideaux a gauche tbpologisant.

If in addition a filter satisfies:

iv) 1if I dis a left ideal for which there exists some U e F with
(I:u) € F for'every ueU then I¢F

then the filter F dis called strongly complete [33].

Gabriel [2,7] calls such an object un ensemble d'idéaux ( & gauche )
topologibant et ideémpotent.

(1.3) Definition: A Serre class [33] in RM is a nonéempty subclass
S of M such that if

0 > A’ A A" 0

is exact then A',A" ¢ S if and only if A € S . Equivalently, a Serre
class S is a non-empty subclass of RM closed under submodules,

homomorphic images, and extensions.

An additive class [33] of R-modules is a non-empty subclass of M closed

under submodules, homomorphic images, and finite direct sums.

We say that a class of R-modules is strongly complete [33] if it is
closed under arbitrary direct sums.

These Serre classes, strongly complete additive classes, and
strongly complete Serre classes are exactly les sous-catégories‘ébaisse,
les sous—catééories fermées, and les sous-catdgories localisaﬁte

respectively, considered in {7].



“In the following paragraphs we want to give explici&ly the
Gabriel correspondance which was first announced ( partially ) in
[7, Chap.5]

Let us denote the set of filters on R by FIL(R). For any"
c ¢ KF(R) , put )
igg ; { I & left ideals of R l o(R/I) = R/I }
Then the mapping g Ec defines a canonical bijection between KF(R)
and FIL(R) by [9,Thms. 2.1,2.2] with the inverse mapping for any
F ¢ FIL(R) given by

Fr— 1 ivhere (M) ={meM I (O:m) £

e

} for any Me M

]

having the property that F = ET and o (M) {meM ‘ (O:m) € Er} .
From this it follows immediately that KF(R) forms a set, as observed

I [951375 and- that - TRF-(R)-G K R)- Lsset inclusiony:

(1.4) Lemma: o e KF(R) is idempotent if and only if Ec is a
strongly complete filter,

Proof: This is-exactly the content of [9,Thm 2.5].

Next let us denote the class of all strongly complete
additive classes in Rg by CAD(R) . For any F e FIL(R) put

Sp={Mel | (Oim) ¢ F for every me M ¥

Then the mapping F r—> §F defines a canonical bijection between
FIL(R) and CAb(R) by [33,;hm 1.10}, with the inverse mapping for
any S e CAD(R) given‘b&

S

Fo = { I e left ideals of R | R/T ¢ § }

having the property that ;§_= S(F ] and F = E( ) .
=S ¥

From [33,Lemma 1.18] we have



(1.5) Lenmma: F'e FIL(R) is strongly complete if and only if §F-.

is a strongly complete Serre class.

The correspondences given above induce a canonical bijection
between KF(R) and CAD(R) which is easily computed to be the

mapping g 8 = {Me g_l oM) =M} with inverse given

by Sr— 1t where t() =) { Im@) | v ¢ M(S,M) , Se S} .

The members of §G are called o-torsion modules. Hence o(M) dis the

largest ( necessarily unique ) o-torsion submodule of M. Combining

Lemmas (1.4,1.5) we have

(1.6) Lemma: o & KF(R) is idempotent if and only if §o is a

strongly complete Serre class.
Collecting these results, we state

(1.7) Theqrem: ( Gabriel. correspondence for Rg )
1) . There is a canonical bijection between kernel functors(
filters of left ideals, and strongly complete additive classes.
.1i) Restriction of the bijection in i) yields a canonical

bijection between idempotent kernel functors, strongly complete

filters of left ideals, and strongly complete Serre classes.

/

There is another object associated with every o e IKF(R)
that turns out to be important later when considering localizations,
namely

- (1.8) v = {MeM| o0 =0)

The class of R-modules Vc is closed under isomorphic images, submodules,

direct products, and injective hulls by [17,Prop 0.3], and its members



are called o-torsion~free modules. Moreover, by the same Proposition

we have

(1.9) 8, =-{MeM|MOA) =0 forevery AeV_ 1} |
This coincides with the classical notion in abelian'groups that we

cannot map a torsion group into a torsion-free group in a non-trivial

way.

(1.10) Proposition: rfor any ¢ ¢ IKF(R) , Ya is a full coreflective
Subcategory of M with coreflector F M-V whose object function
is given by FM) = M/o (M) . Furthermore/ YO i1s an abelian category,
and the coreflector F 1is exact.

Proof: Let K : V —— M be the embedding functor of Yo considered
as a full subcategory. It should first be remarked that monomorphisms
in Yc and in M coincide.

If £ :M— N in M , then the diagram

0 —> G(M) —> M —> M/o(M) = FQM) — O

1.11) o(f)l fl =IO
¥ ¢
0 —> o@) —> N —> N/o(N) = F(N) —> 0
has exact rows . We define TF(f) as the unique factorization of f. over

the cokernels making (1.11) commute. This makes .F into a functor.

For any MeM , Ce Yo , and Ty * M — M/o (M) canonical

1r; : V (FM,C) —> M(M,KC)

is clearly a natural isomorphism by (1.9). Thus m, : M —> F(M) is a

M
coreflection for M in Yc [22,p.128]. Suppose f din (1.11) is a mono
and that F(f)(@m+ o)) = 0 for me M , As the diagram commutes, we

have f(m) € o(N) . So there is a U ¢ Ec such that Uf(m) = 0 . This

implies f@Wm) = 0 , and f mono implies Um = 0 . Hence m e o) and
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so F(f) is a mono. Hence by [22,Prop 5.3,p.130] YG is an abelian

category and by [22,Prop 12.1,p.67] T is exact. : |

The Gabriel correspondence stated in (1.7) allows us to view
" the generalised concept of torsion in several equivalent ways. Given
o £ IKF(R) we shall call the triple of associated objects ( go’ §o’ A

‘a torsion theory., These ideas appear much more concrete after

investigating a few special cases.

(1.12) Example: Let R be any ring, S C R a multiplicatively closed

e s if €S ). Let G be the set of left

system ( ie. 5,5, S1:8,
ideals I of R such that for any. r € R there exists s & S with
sr € I . Equivalently,

G = {"I e left ideals of R | (I:r) (VS # ¢ for any r e R } .
The conditions for a strongly comﬁlete‘filter are easily seen to be
satisfied by G . For instance to see that condition iv) holds let J
be a left ideal'such that (J:u) ¢ G for evéry ueU with UeG.
For any r ¢ 3 , we have that 8, € U for some 8, € S . Then
_(J:szr) € g_bso that slszr e J fof some s, € S . As 8, € S
we have ‘J e G .

Let ¢ be the idempotent kernel functor corresponding to G.

An R—moduie H is d—torsion if and only if.for every _h eH, sh=20
for some s € S , and o) is the lérgest o-torsion submodule of M
for any M e M ., If O e.S evefything is torsion, but assuming
1 € S changes ﬁothing.

Even though every I e G meets S, o(M) is not the subset

of M consisting of elements killed By some element of S. This set is
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not even a submodule in general. The reason is that not every s €8
need be contained in an ideal belonging to G. For this to happen we
need a "common left multiple property" :
(1.13) V s €8S U reR dtes H'r' eR. >tr=1's .
This implies that every left ideal that meets S is contained in G.
The condition (1.13) is trivially satisfied if S is central in R, which
is certainly the case if R is commutative. In case S consists of all
non-zero divisorsAof R, (1.13) is exactly the classical left Ore condition
[16,p.109]. For an entire ring R, the set of all non—ze?o left ideals
forms a strongly complete filter if and only if R is a left Ore ring.
Now if S<C R is a multiplicatively closed system

satisfying (1.13) it is clear that

oMy = {me | sm=0 for some s g S} for>any Me M
defines an idempotent kernel functor with torsion theory

Fo=1{1c¢ left ideals of R | TS # ¢ }

s ={H ebg.{ (0:h) NS # ¢ for any h e H }

-0

Yo ={Ce E_I (O:c)NS =@ for all 0#ceC1l}t .

For the remainder of this section we shall investigate two.

more special torsion theories.

For any R-module M’défine the left singular submédule
Zl M) as '
a.14) Zl(M) ={meM l {(0O:m) is essential left ideal in R }
In case M =R , Zl(R) isva 2-sided ideal [16,p.106 ff],. |
The essential left ideals of a ring R ( which play an
important role in the Goldie Theory - see for example [11] ) form a

filter which is not in general strongly complete. This is because
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Zl(R/ZlR) need not be zero. But we can either shrink or enlarge this
set of left ideals ( apart from the obious extreems ) .so that we do
obtain a strongly complete filter. This was basically the apprdach of

Dlab ([6].
We start by enlarging the set of escentials.

(L.15) Lemma: For a left ideal L of R, the followiﬁg conditions are
equivalent:

i) there exists an essential left ideal E in R such that (L;x)

is essential in R for every x e E

ii) for every r € R with t ¢ L there exists s & R such that
(L:sr) is proper ( ie. # R ) essential in R .

Proof™ i) => ii)” If” SR Rf“#”b“ so R¥F - E'# 0" dimplies

0‘# sr ¢ E for some s ¢ R, and we can pick it so that sr ¢ L

( since otherwise (E:r) = (L:r) , making (L:r) essential already ).
Then (L:sr) is proper essential.

ii) => i) Let S ={s e R ]‘(L:s)' is essential }. S# 0 by
taking. r =1 in condition ii). Lét E be the left ideal generated
by L and S. If I # 0 is any left ideal in R such that IO L =20 ,
then for 0 # a € I there exists b € R such that (Liba) is
pfoper essential. Then ba # 0 , bae I and ba e S€ E . Hence E
is essential. If (L:x) and (L:y) are essential, then (L:x +y) 1is
essential as it contains (L:x) (1 (L:y) . For any r € R and s € S
(L:rs) = ((L:s):r) 1is essential. Hence (L:x) 1is eséential for

every x £ E . I

Clearly any essential satisfies the conditions of the Lemma.
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It was shown by Alin ( found in [31] ) that condition i) of the
Lemma characterises the left ideals in the strongly complete filter of

the socalled Goldie Tersion Theory [8], where the torsion submodule

of any M e M is given by ZZ(M) = ﬁ;l( Zl(M/ZlM) ) with

T M M/ZlM canonical. Equivalently , |

(1.16) ZZ(M) ={me M_I (ZlM:m) is essential left ideal in R} ,
Clearly all quotients M/N of M by an esseﬁtial submodule N are

Z,-torsion. An R-module is Z,-torsion-free if and only if it has zero

2 2
singular submodule. Notice that for any M e M ZZ(M) is‘essential
over Zl(M). In fact’Zz(M) is the maximal essential extension of Zi(M).
in' M in the sense that if N is‘aﬂsubmodule of M which is essential
over Zl(M), then N & ZZ(M)

Eeft'ideaiSWE'satisfying”if)“of“ﬁemma“Cb?l&)' were ‘called
"maxi'" in [6]. In section 5 we will be aﬁle to give another character-

ization of these maxi ideals as being " ZZ(R)—dense "
Next let us shrink the set of essential left ideals in R.

(1.17) Lemma: For a left ideal D of R, the following conditions are '
equivalent: |

i) \/ 0 %’rl e R and X%‘rz e R there exists r & R such that

rry # 0 and rr2 e D

ii) for any r € R there is no 0 # s € R such that (D:r)s = 0 ,
Proof: 1) => ii) Condition i) says that for any r € R and

0+ s e R there exists x e (D:r) such that x5 # 0 . This is
exactly condition ii). |

ii) => 1) Take any r, € R . Then saying that for every 0 # r € R
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(D:rz)rl # 0 means there is an r € R such that rry # 0 and

rr, €D, as required. 1

Any left ideal satisfying the conditions of the Lemma must be
essential. Condition i) is the same as the condition of [16, Prop 4,p.96]
and characterizes the dense left ideals which do form aAstrongly
complete filter and lead to the complete ring of left quptients of R
introduced by Utumi. The torsion théory corresponding to the dense left

ideals will be referred to as the Lawmbek Torsion Theory. Left ideals

"strong" in [6] where the

D satisfying ii) of Lemma (1.17) were called

following were proven to be equivalent:

(1.18) o i) Zl(R) =0
ii) essential <=> dense
iii) essential <=> maxi
iv) dense <=> maxi

Thus if a ring has zero singular ideal, the essential, dense, and
maxi left ideals all coincide, and the essentials form a strongly
complete filtef [7,Lemme 1,p.416].

On the other hand suppose the essential left ideals in a ring R '
already form a strongly complete filter. Let M be aﬁy R~module. If-
m e ZZ(M) then there is an essential E such that Em C Zl(M) . So

(x) with E(x)xm =0 ;

for each x ¢ E there is an essential E
ie. E(X) € (Q:xm) = ((0:m):x) . This says ((0:m):x) is essential

for-every x ¢ E , which under the hypothis implies (0:m) is » ,
essential. Hence m é Zl(M) and we have ZZ(M) = Zl(M) for all Me M.

This means that the idempotent kernel functor induced by the essentials

. From the Gabriel correspondence we

under this hypothis is exactly 22
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conclude that the essentials coincide with the maxi left ideals, and
so by (1.18) essential <=> (dense and R has zero singular ideal.
In particular, this is true for any semiprime Goldie ring R [11] ;
here the multiplicatively closed system ,S € R consisting of all
non-zero divisors has the common left multiple property (1.13) and the
set of essentials is precisely the strongly complete filter associated
with S as in Example (1.12).-

Collecting a few of the above facts, we have

(1.19) Proposition: For any ring R, the following are equivalent:
i) if I is a left ideal in R such that (I1:xX) is essential for
every x € E with E essential, then 1 is essential

ii) R has zero singular ideal
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2. KERNEL FUNCTORS

All kernel functors are certainly not idempotent. for e#ample
take a commutaﬁive ring A ( always wifh 1) and a € A such that
a# 0, a# 1l . Define for any A-module M a submodule
| 6 0D = {med | amn=0}

Clearly a, is a kernel functor, but we do not have to look very far
for a ring in which such an o« is not idempotent. In fact, take A = Z
n > 1. Let G = 2Z/n32. Then an(G) is.a proper subgroup of G since
n? e an(G) whereas n ¢ an(G) . But un(G/anG) # 0 Dbecause

0 #n + an(G) is a member,

With the aim of localization in mind, the main interest in
kernelr functors-is to determine- whether-or not~the ones that-arises- -
naturally are indeed idempotent.

The set KF(R) has an obious partial ordering & given by
2.1) c<op <=> oM & p (M) for every M e M
There is a smallest and a largest member with respect to this partial
ordering: namely O such that O®) =0 for every M and « such
that M) = M for every M. respectively. Clearly 0, ¢ IKF(R).
These are the trivial torsion theories which exist for any ring.

(2.2) Example: The Goldie Torsion Theory is the smallest.non-trivial
torsion theory for which all modules of the form R/E are torsion,
where E is any essential left ideal in the ring R. To see this,
supﬁose g ¢ IKF(R) such that o(R/E) = R/E for every essential E.
This means that Eo contains all the essentials. Let L be a maxi left

ideal in R. Then there exists an essential left ideal E such that
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T

(L:x) is essential for every x e E. Now I essential implies E ¢ F,

and o ¢ IKF(R) dmplies L ¢ Eo . Hence Ec also contains all the maxi-
left ideals and so Z2 £ 0. ”

(2.3) Example: The Lambek Torsion Theory is the largest non-trivial
torsion theory for which the ring R is. torsion-free. To prove this,

let D be the set of densé left ideals in R.. Clearly R is torsion-

free with respect to the Lambek Torsion Theory since D e D implies
(D:1) = D has no>right annihilators by Lemma (1.17). Now suppose

o & IKF(R) such that o(R) = 0. If U e EU , then (U:r) ¢ Eo for
any ¥ & R, Hence (U:r)s = 0 dimplies s =0 for any r,s € R |

which shows by Lemma (1.17) that F_ €D.

Any o ¢ KF(R) satisfies 62 =0 , so already appears to be

t ". In order to justify our terminology for idempotent

kernél functors, we introduce a pfoduct on filters ( following [2] ).
Let“gO , Eb be two filters of.left ideals in R. Define:
(2.4) EE = {(Te left ideals of R | I Je P, with 0(J/1) = 0} .
Eo*gp ‘is a filter, therefore has a uniquely associated kernel functor
which we denote by o%p in order to write Eo*gp z‘Fo*p . An R-module-
M is oxp-~torsion if and only if M has a o-torsion submodule M' such
that M/M' is p-torsion. This starvproduct is associative. From the
definition of strongly complete filter it is clear that. F_ 1is
strongly complete if and only if for left ideals I & J in R such that

J e F and J/I o-torsion we have that ' I e EO . Now Goldman {9,Thm 2.5]

states that o € KF(R) is idempotent if and only if oxo =0 -~

Another way of forming new kernel functers from given ones
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is by intersection. More precisely, let { oy | ie I} bea family
of kernel functors in KF(R). Define o = inf { oy lieI} by

o). = () o, () for any M e M . Trivially o ¢ KF(R) , 0 § 0

I
for all i1 e I, and if p ¢ o for all i1 e I then p o

Furthermore it is trivial that if o = inf { o | i e I} then

F = F .
-0 -0,

This concept of inf gives rise to a closure operation
€ . KF(R) — IKF(R) defined by
(2.55 6 — o° = inf { p e‘IKF(R) | o <o}
More explicitly @ = fw { N& M submodule | cM/N) =0} .
This definitioﬁ does indeed make ¢ an idewmpotent kernel functor
by [9,Prop. 1.1 and Thm. 1.6] and o € KF(R) 1is idempotent if and-
cnly if ¢ =" . Vi
.0 6"  extends to a closure operation on filters:
(2.6) |  F=F r—>Fc=F°
and on strongly complete additive classes:

(2.7) S=8 t—rSc=8

, there is certainly at least one

Given any subclass C of R

o ¢ KF(R) fof which every R-module in C is o~torsion, namelylo = o,
Finding the smallest such is equivalent to finding the smallest -
strongly complete additive class containing C. Of course we obtain
this class by intersection, and the desired kernel functor is

“inf{ g e KF(R) l E-é’gc } . To obtain the smallest idempotent one,
simply apply the closure operation, and thereby also obtain the
smallest strongly complete Serre class containing C. This was exactly

the situation for the Goldie Torsion Theory where we closed the class

{ R/E | E essential left ideal in R } of R-modules.
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We turn to anothef concept that will be useful later.
(2.8) Definition: A kernel functor o € KF(R) is called noetherian [9]
if for every ascending chain .Il C 12 C ... of left ideals in R whose
union is in Ec ,In e F for Some n.
In particular, every kernel functor in KF(R) for a left noetherian

ring R enjoys this property. We shall investigate the behavior of

noetherian kernel functors with respect to the formation of inf.

(2.9) Observation: If PpswersP, are finitely many noetherian kernel
functors, then p = inf { pi | i=1,...,n } is also noetherian. The

proof follows immediately from the remark that some member of any
acsending chain of left ideals whose union is in'E_“p musﬁ be in evéry
Ep‘ . Thig is however not the case for infinitely many memners of KF(R)
f6i‘arBiftary*RT“K“CUunterexampté“wiIT‘be%giVen"ihi (2, 13) afterthe

following discussion which hélps us to determine when a kernel functor

is noetherian.

(2.10) Definition: A filter F is said to have a cofinal subset of

finitely generated left ideals if every U ¢ F contains a finitely

generated left ideal which is also in F .-

(2.11) Obser&ation: If a filter Eo has a cofinal subset of finitely

generated left ideals then ¢ is noetherian. To see this, let

Il C I2 < ... be any ascending chain of left ideals in R such that
: )

U = LJ Ii is in Eo . Then U contains a finitely generated left ideal

s X

eae e F . 3 ain 4 he cee
-(Xl’ ,xn) Foos and so some Il must contain all t X5 =

This says that some Ii € Eo .

The converse of this is not yet clear as remarked in [9].

However we make the following:
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(2.12) Observation: Suppose every U e go is at most countably
generated. If ¢ is noetherian then EG hgs a cofinal subset of finitely
generated léft ideals. The proof is obtained simply by taking chains
where we keep adding on generators of left ideals iﬁ EG .

(2.13) Example: Let A = k[xl,xz,...] be the'commutative polynomial
ring in infinitely many indeterminants over a field k. Let

8; = {l,xi,xiZ,XiB,...} be the multiplicatively closed system in A
defined by X5 s and let oi be the idempotent kernei functor associéted
with Si as in Exgﬁple (1.12) . Since A is commutative, for any ‘M E A@'
m € Ui(M) <=> xinm = Q0 for some n , and Eo, consists of thoge
ideals in A that meet S, - This means T . hasla cofinal subst of
finitely generated ideals of the form A: s S € Si and so by (2.11)

LI ipzwL,Q,.,®«}vh Considetﬁ~
the chain of ideals
(2‘14) (Xl) C (xlaxz) C (Xl’XZSXB) C A

and let U be their union. Since oi(A/U) = A/U for every i, U« F_ .

But c(A/(xl,.;.,xn)) # A/(xl,...,xn) for any n because if m > n ,

X + (% "Xn) cannot be a Om—torsion element and consequently

127"

cannot be a o-torsion element. Hence no member of the chain (2.14) is

in Fd , and 0 1§ not noetherian.

(2.15) Definition: A filter I is called multiplicative if U,V e F
implieé Uve F . |
.(2.16) Remark: A strongly complete filter is always multiplicative
since U & (UV:v) ¢ F for every v ¢ V . This is the same as saying
Ec is multiplicative for any <« e IKF(R). The converse of tﬁis reﬁark

is however not true in general. The following counterexample is
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indicated in [2,p.158].

‘(2.17) Example: Let k[xl,iz,...J be the commutative polynomial ;ing
;n infinitely many indeterminants over a field-k . Let (xixj)i i be
the ideai generated by all the Xixj for i#j and put

A = k[xl’XZ""]/(xixj)i#j

Let Ek = x + (xixj)i#j and I = (gk);=l be the ideal in A
generéted by all the Ek . Consider the set F of ideals in A containing
a power of I . Clearly I is a multiplicative filter of ideals in A.
Denote the corresponding kernel functor by <t such that F = ET. .

Let J = (gii):=l' be the ideal in A generated by all the Eii

( ith powers of the Ei's ). Then for any ael, 1%¢ € J for
large enough s. So 1° C (J:a) 8(21 for every "o £ I ( s depending

~a Psat T +oa ~ £ 4
on o ). But J can contain no power of L. Hence is not strongly

| b=

complete, and we conclude that T 1is not idempotent.
By imposing some restrictions we do get a partial converse

to Remark (2.16) in the case of commutative rings.

(2.18) Proposition: Let A be a commutative ring. If a filter Eg has

a cofinal subset of finitely generated ideals, then Eo is multiplicative
if and only if the associateﬁ“kernel functor- o Is idempotent.

. Proof: 1If o is idempotent, the conclusion follows from Remark (2.16).
Conversely, let M be any A-module. For any 6 =m + o(M) ¢ o(M/a(M))

there is a finitely generated ideal I = (a .,an) e EU such that

12

106 =0 ; ie. a,me o) for i = 1,...,n. Then for each i there is a
L

U, ¢ F with U,a.m=0 . Let J = f)U. ¢ F . Then JIm = 0 and
i =g i7i i _
i

L]
o

JI ¢ EO so that m e o(M) and o@M/oQ@D)



21.

(2.19) Coxollary: If F is a filter of ideals in a commutative ring A
then the following assertions are equivalent:
i) F is multiplicative

ii) F is strongly complete

iii) the associated kernel functor 1s idempotent . i



3. LOCALIZATION FUNCTORS

In this section a localization functor is constructed for

each o & IKF(R) and some of the basic properties are obtained.

The folloWing theorem characterises a class of modules which turns

out to be quite important.

(3.1) Theorem: For any o ¢ IKF(R) with torsion theory

and A e M the following are equivalent in QEE

22.

(Ed’_go,syo,)

i) if M/N e §U for N& M submodule then any R-map N — A

extends to an R-map M — A ; ie. M(@M,A) —> M(N,A) — 0

exact whenever N & M and M/N ¢ §0

ii) TI(A)/A -is o-torsion-free ; ie. I(A)/A € Yo

is

iii) 4if U ¢ Eo and g : U~— A is any R~map then there exists

a € A such that g(u) = ua for every u e U
iv) if E e F_ is an essential left ideal in R , then

E—> A extends to R

v) any R-map U —> A with U ¢ Ec extends to R ; ie.

UeF_ M(R,A) —> M(U,A) — 0  is exact
vi) ExtR}(S,A) = 0 for every S e S

vii) for any essential extension M of N with (A:m)

every m e M any R-map N —> A extends to an R-map M —> A

Proof of equivalence of these conditions can be found scattered

any R-map

for every

through the literature: i) <=> v) by [9,Prop 3.2]; 1) <=> ii) <=>

iii)" by [17,Prop 0.5] where such an A e M dis called divisible;

iv) <=> v) by [32,Thm 11]; i) <=> ii) <=> v) <=> vi) by

[33,Prop 2.4]; i) <=> vii) by [20,Prop 1.2] i
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(3.2) Definition: An R-module A 1is called o-injective [9] if A
satisfies any ( hence all ) of the conditioné of Theorem (3.1).
If in addition the extension in i) in the Theorem is unique ,

ie. M(M,A) = M(N,A) for NE&M and M/N e §0 , then A is

called faithfully og~-injective.

From [9,Prop 3.1] we have

(3.3) Pro?osition: A e M 1is faithfully o-injective if and only if

A is o-injective and A € Yc .

For any o ¢ IKF(R) let éo denote the full subcategory
of Rg consisting of the faithfully o-injective R-modules. Regarding
Yo as a full subcategory of Rg the above Proposition (3.3) gives
an“embeddingkﬁuncbor“‘ J o Av——reYa (- subscripts: have-been~droppeds-.
as we are considering ¢ fixed for now ). Composing with the embedding
K,:‘y_——+ M we get the embedding
(3.4) E:A-Lyv Sy .
For C € V let D(C) € I(C) be the extension of d(I(C)/C) by C
(ie. 0-—C—D(C) — o(I(C)/C) —> 0 exact in M )
such that D(C)/C = o(I(C)/C) and C & D(C) .

(3.5) Proposition: For any C e V we have D(C) ¢ A .
Proof: As C ¢ D(C) € I(C) , D(C) € V by (1.8)ff. Since I(C) is
clearly an essential extension of D(C) ( as it is already essential

over C ) I(C) is the injective hull of D(C) by [16,Prop 10,p.92];

R

(T(c)/C)/ (d(C)/C)

ie. I((C)) = I(C) . Now I(C)/D(C)
(T(C)/C)/o(I(C)/C)

il

is o-torsion-free because ¢ is idempotent. Hence D(C) is o-injective
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by Theorem (3.1,ii), and together with Proposition (3.3) this

means D(C) € A . ‘ i

Here it should be remarked that monomorphisms in A and
.in V coincide, and hence also coincide with moncmorphisms in M .
Now D : V—> A is easily made into a functor:

~

since D(B)/B = o(I(B)/B) is o-torsion, for any £ ¢t B— C in V

there is a unique D(f) by the faithful o-injectivity of .D(C) that

makes the diagram

(3.6) f l . D(£)
iC ¥ _
¢ —— D(C) : commute
where i, are inclusion. If f din (3.6) is a monomorphism,

g » I,
be B such that D(£)(ig(b)) = 0 , then i f(b) =0 and so b =0

since in is a mono. Hence ker DEYN B = O . But D(B) essential

over B implies ker D(f) = O . This shows that D preserves

monomorphisms.
Furthermore, for any A e A, Ce V with in: ¢ — D(C)
“inclusion ,
3.7) it A(DC,A) —> V(C,JA)

C

is clearly a natural isomorphism. Composing with the adjoint of
Proposition (1.10) and putting Q = DF we have that Q is left adjoint
to the embedding functor. E . Since both F and D preserve ﬁonos,
[22,Prop 5.1,p.129] again giveé us that A is an abelian category,

and by [22,Prop 12.l,p;67] Q 1is exact. Notice that A 1is not

in general an abelian subcategory of M as the embedding functor E

need not be exact. Since the category M is complete, [22,Prop 5.1,p.129]
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gives us that A is complete. Collecting these results ( see also

[17,Prop 0.8] ) yields the followingi

(3.8) Theorem: For any o e IKF(R) , the full subcategory A
consisting of the faithfully o-injective R-modules is a coreflective
subcategory of M with coreflector Q = DF . Purthermore A is

a complete abelian category and the coreflector Q 1is exact:

(3.9) Definition: The endofunctor EQ : RM — R@ will be called

the localization functor relative to o € IKF(R).

In effect, the functor EQ provides a o-injective hull for

every M € M as in [33,Prop 4.2] and can be computed by:

(3.10) Proposition: For any M e M
EQM) = { x ¢ TM/o)) | M/o@):x) e L
Proof: Immediate by our definition of D wﬁich is
EQ(M)/F(M) = EDF(M)/FQD) = o(L(FM/FM))

and that o) = {meM | (0:m) ¢ F }. i

This Proposition (3.10) in the particular case M =R
appears as [27,Prop 1.7].

More information regarding this localization can be obtained
by investigating the unit and counit of the adjunction n : Q — E .
The unit is given by ¢M ='n(lQ(M)) : M'——+'EQ(M) and‘is easily .
computed to be: .
1 " EQ (M)

(3.11) T .
. M
M/c (M)
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Hence there is a natural mapping ¢M : M — EQM) for every M € M

whose kernel is exactly o(M)

(3.12) Proposition: An R-module M ié faithfully c-injective 1f
and only if EQM) = M .
lgzggﬁ; If M= EQ®M) , then M is faithfulljlc—injective by
Proposition (3.5). |

Conversely, M faithfully c—injective implies o) = 0 , so that
¢M : M —> EQ@) dis dinclusion. Since EQ) is‘already faithfully
o-injective and EQ(M)/M is o-torsion, there exists-a unique «

such that the diagram

(3.13)
lEQ(M) (uniquely)

EQ (M) commutes

From ¢y L= lpqan "% = Py 0%y Wwe have ¢yre = 1p,gy  bY

uniqueness, which together with a-¢M = 1 implies that the

M

inclusion ¢M- is an isomorphism. Hence EQ(M) =M . 1

(3.14) Corollary: i) (EQ)2 = EQ

ii) the couﬁit of the adjunction n : Q'——{E' is the identity.
Proof: i) EQ(M) is faithfully o-injective.

ii) for any A ¢ A the counit of n is‘given by

n—l(lEA) : QE(A)‘——+ A .

But EQE(A) = E(A) and E being an embedding implies QE(A) = A .

Furthermore lA works!)so we have it by uniqueness.' -
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We write the counit of n as - 1 : QE —> IdA .

Here we can mention a few more simple facts: ,

(3.15) Obsefvation: M is o-torsion <=> Q) = 0 <=> EQ(M? =0 .
( => ) Dby construction of the functor
( <= ) Dby the fact that o) = kér ¢M.

(3.16) Observation: If U ¢ Ec then Q(U) = Q(R) and hence

EQ(U) = EQ(R). This is because 0 > U > R R/U- 0 is
exact in M , comsequently = 0 —> Q(U) — Q(R) — QR/U) —=> 0
is exact in A . But R/U 'is o-torsion, so Q(R/U) = 0 and we have
Q(U) = Q(R) in A . Since E preserves isomorphisms ('always 1)
EQ(U) = EQ(R) in M .

The objective of such localization is to study the ring R
by means~of* EQR)- which-should-also-bearrings In~order-tow~give
EQ(R) a suitable ring structure, notice that as é_‘is an abelian
category on.its own right, the adjunction n : A(QQ),A) = M(®,E(A))
is an isomorphism of abelian groups. Putting M = R there is an
isomorphism “E(A) = A(Q(R),A) of abelian groups which says that E

is representable ( in the sense of [17] ). It is clear from the

general theory of representable functors that (¢ QR), ¢(1) ) is a

. representing pair for E , where we write ¢ =

¢R for the canonical

map R — EQ(R) . The rest of the story now follows immediately

from [17,Prop 1.1] which is stated here in its entire gederality.

(3.17) Proposition: ( Lambek ) If C is an additive category,

U:C— M a representable functor with representing pair

R

( Ao’ s, ), s, € U(Ao) , such tha# Uu(c) = C(AO,C) is an abelian

group isomorphism for every C € C , then the following are true:
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i) U(Ao) can be made into -a ring S = C(AO,AO) with underlying
abelian group same as that of U(AO)

ii) the map R —> U(AO) given by 1t +—> s is a ring homomorphism
B8.: R—> S

1ii) for each C ¢ C U(C) is a left S-module, call it T(C)

iv) for each f : C~— C' in C U(f) is an S-map, call it T(f)

g is a functor such that .UBT

V) T :C-— U ( where

8

S

U M — R@ is change of rings functor via 8 - see [l12] )

S—-

vi) T is representable with representing pair ( Ao’ 8, ) .and

S — T(AO) by xt+—> xs is an isomorphism.

From thisvproposition it noQ folloﬁs that EQ(R) = Q(R) is
a ring with unit ¢(l) such that Q(R) = A(Q(R),Q(R)) and
¢ : R —> EQMR) is.a ring homomorphism such that the induced
R—structure by change of rings cpincides with tﬁe original structure
as in [9,Thm 4.1]. There is a functor T : A ~_—?EQ(R)¥ such that
UéT =E and T & é(Q(R),i) giving each faithfully ¢-injective
R-module an EQ(R)-module structure ( see qlso [9,Cor 4.2] ). In
Lambeck's terminology [17], ( Q(R), T ) is called the completion
of (R, E ). Putting together the facts thus far, we have the

following commutative diagram of categories and functors:

(3.15)




It should be pointed out here that this functor Q cannot

be considered the same as Goldman's localization functor Q which
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is actually EQ . This is most dramatically illustrated by the fact.

that Q 1is exact while EQ dis not in general right exact. It will
be easy to give a counterexémple in Section 4 after a discussion
of the important '"property T'", but the basic reason is that A
need not be an abelian subcategory of Rg . In fact, it turns out
to be an abelian subcategory if and only if EQ is exact - see
{33,Thm 3.13].

Since the endofunctor EQ arose from a pair of adjoints

Q —E , it gives rise to a monad [25] which by Corollary (3.14) is

particularly simple. Explicitly it is given by the commutative

diagrams:
g —2E%. (mg)* (£Q)°> 2L (m)°
(3.19) EQo l . 1EQ j )
(BQ) dmmtmEQ (BQ) et 5Q

written ( EQ, ¢, 1 ) where ¢ : IdM — EQ 1is the unit of the

adjunction n : Q — E and 1 = E1Q : (EQ)2 — EQ is the identity

natural transformation since the counit. 1 of n is the identity
2.
and (EQ)° = EQ .

Having Theorem (3.8) at our disposal, we can apply

[25,Thm" 2,p.75] to conclude that E is a monadic functor ( caution:

our coreflective as in [22] corresponds to reflexive in [25] ).

-This means the following: the endofunctor EQ gives rise to a

category M?Q of socalled EQ algebras. The objects of MFQ are

pairs (A, a ) where AeM and o : EQ(A) — A .is a morphism in

M such that the following diagrams commute:



30.

| A | | ) a) —EHL gqa)
(3.20) ¢A1\ lAl ' . »la
EQ(A) —%—A EQ(A) ——%— A
Morphismg from ( A,’a ) to ( B, 8 ) are morphisms: fiA— B
in . M such that the diagram |

rq(a) —24E), 5 (p)

(3.21) o l 1 B

£

A ——— B commutes.,
We get a functor L : A —> yFQ by defining L(A) = ( E(4), E(lA) )
I‘IEQ

on objects and the obvious one on morphisms. That M, is indeed a.

N

category and L a functor has been shéwn in great generality by
Pareigis [25,Thm 1,p.62]. Now E monadic means that- L : A —> yFQ
is an isomorphism of categories., Furtliermore By THéorem (378Y),
yFQ ‘is abelian. Hence we can regard the category A as an abelian
catégory of EQ algebras. This was done by Heinickeb[lO,Thm 4.3] under
somewhat more general cilrcumstances using the Eilenberg-Moore
construction directly. In [10], localization functors are defined

via natural transformations and made to correspond with certain

monads deemed localizing. However, the functor EQ and its monad

( EQ, ¢, v ) are ﬁhe canonical choices as seen by [10,Thm 2.4].

Several otﬁer equivalent descriptions of ‘this localization

process can be found in the literature. In [9] Goldman gives an
explicit elementwise chafacterization of EQM) which for any

o~torsion-free R-module C 1is essentially given by

BGC) = M(U,0) / =
Ue}"_‘0

where = is an equivalence relation such that f e M(U,C) and
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g € M(V,C) are related when there exists some ¥ ¢ F  with
W& UMV on which £ and g agree. We can translate this
description of EQ into

(3.22) EQ() = lim M(U,M/o(4)) for any M e M

Uef‘
. —0 N

by making the observation that inclusion in F  induces a direct
system of the abelian hom-groups with the required R-module structure

defined on the direct limit by letting v[f] be the equivalence

class of ({U:r) — M

x > f(xr)

"for any r € R, and any equivalence class [f] , £ e M(U,M).
This coincides with the constructtion in [2] as well as that in
[7,33] using the quotient category of M with respect to the,

strongly complete Serre class Sc .
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Let EQ be the localization functor relative to ¢ e IKF(R)

and ¢ the unit of the adjunction n : Q —¥1E . Denoté the localised

ring EQ(R) by Q ( all other notations will be the same as in the

previous section ).

(4.1) Lemma: There 1s a natural transformation « : Q @R 7?7 — EQ

of endofunctors. on RM given by Kw(qem) = q(¢M(m)) for any M e M
- . L kg

and me M, qe Q.

Proof: The set map Q X M — EQ(M)

(@,m) — a9, ()
" is bilinear and R-balanced for any R-module M , thus extends
uniquely to an R-map Ky Q“@é M — EQM)

by the universal property of the tensor product. Let £ : M — N

be any R-map and consider the diagram:

¢ K -
1 EQM) 2 q ® M
4.2) £ l | l BQ(E) l 19f
¢N . KN
N > EQ(N) +——"——Q & N

Now for any generator qBm.e Q B M
EQ(£) *k, (a8m) = BQ(£) (a ¢y m)))
= q(EQ(E) * 4, (m))

= Q(¢N‘f(m)) by naturality of ¢

cg (18F) (q0m) = x (4OF ()
= q(¢N°f(m))_

Hence extending linearly, we have naturality of « . I
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(4.3) Lemma: If Qb(I) = Q then ILekF

Proof: Exactness of I R R/I 0 implies the exactness
of QI 2> Q8R —— Q8R/I —> 0 . The image of a is Q¢ (I)

But Q¢$(I) = Q = Q8R . Thus Q8R/I = 0 , which implies 0

“ry1 T

and so ¢R/I = 0 . Hence R/I = ker ¢ = ¢(R/I) which implies

R/L
that I € F .- i
. -

(4.4) Lemma: Q @R(R/U) is o-torsion for every U e F_ .

Proof is given in [27,Lemme 1.,3]

The three Lemmas above provide some information about the
_generalvcase of localizing relative to an arbitfary idempotent
kernel functor. They also raise the following 4uestions:
i) when-is- the natural~ transformation-inemma  (4+1) a* natural~ isomorphdsm?~
ii) when is the converse of Lemma (4.3) true ?
iii) when is . Q @R(R/U) =0 ( ie. "really'" torxsion ) for every U
in the strongly complete filter F . |
We shall see from the answers in Theorem (4.5) below that these
questions ‘are intimately related.
It is also of interest to know when the functor

AQR),?) : A— M ( see diagram 3.18 ) 1is a natural isomorphism.

Q

For if this is the cése,'every X e M is isomorphic to A(Q(R),A)

Q...
for some A € A . Then regarding X as an R-module by change of
rings U? via ¢ , P& = UPAQ@),A) = E(A) is faithfully
o-injective. Cn the other hand, if for every X g Qg , U¢(X) is
faithfully o-injective, then QU¢§(Q(R),Z) = IdA and

CAQR),QU 2) = Id M by diagram (3.18) which implies that

A(Q(R),?) 1is a natural isomorphism .
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-The following Theorem establishes the connection between

the foregoing remark and the above questions.

(4.5) Theorem: For any ¢ £ IKF(R) , the following statements are

equivalent:

M- is a natural isomorphism

Q

ii) U¢(X) is o-torsion-free for every X & M

Q_

i) the functor A(Q(R),?) : A —>

iii) Q¢@U) = Q for every U ¢ Ec

iv) U¢(X) is faithfully o~-injective for every X e M

Q
v) x : Q @RZ_——+ EQ 1is a natural isomorphism.

vi) the functor EQ is right exact and commutes with direct sums
vii) Q @R(R/U) = (0 for every U € Ec

' viii) the functor EQ is right exact and EO ha§ a cofinal subset

- of finitely gepepated left ideals_

ix) the functor EQ preserves colimits .

EEQSff The initial remark establishes i) <=> iv) ;s vi) <=> ix) is
an immediate consequence of the dual statement to [22,Cor 6.3,p.55]
since R@ is a conormal category with direct sums. In facﬁ ix) is
equivalent to the weaker statément: the functor EQ preserves direct
limits j ii) <=> 1{ii) <=> iv) <=> v) <=> vi) by [9,Thm 4.3] with
naturality following by Lemma (4.1) ; vii) <=> v) <=> iii) <=> ii)
by [33,Thm 3.2] ; wviii) => i) and viii) => v) by [7,Cor 2,p.4l4] ;

vii) <=> ii) <=> viii) <=> v) <=> i) by [27,Prop 2.8] where a new

proof is offered. ]

(4.6) Definition: We say that o € IKF(R) has property T [9] ( for
tensor product ) if any ( hence all ) of the conditions of the

above Theorem (4.5) are satisfied.
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In [9] Goldman proves two more interesting equivences
ﬁhich are uséful in determining property T :
(4.7) the functor EQ commutes with direct sums if and only if
'0 is noetherian
(4.8) the functor EQ is right exéct if and only if every U e Eo
is "g-projective" in the sense of the followin;:
Definition: An R-module P 1is called o-projective if for ahy
epimorphism C — C" of o-torsion-free modules in M , any R-map
P —> C" can be lifted to aﬁ R-map P' —> C on a submodule vP'

of P with P/P' o~torsion making the diagram

0 P! P
C. c" 0. commute,

(4.9) Example: Since any projective R-module is clearly o-projective
fqr any o € IKF(R) , it is evident that for a left noetherian
hereditary ring R , evéry o ¢ IKF(R) has property T .

(4.10) Example: If R is a left semisimple artinian ring, thén R

is '( left ) hereditary by Wédderburn's Theorem [13] and also left.
noetherian [16,p.69]. Hence by Example (4.9) every o & IKF(R) for
a left semisimple artinian ring R has property-T .

(4.11) Example: Let S C R be a multiplicatively closed system
with associated idempotent kernel functor o as in Example (1.12).
Suppose S has the common left multiple property (1.13). Then Eq
contains Rs for every s ¢ S and EG has a cofinal subget of
principal left ideals. Let UeF ,seS U, p: C-— c"

an epimorphism of o-torsion-free R-modules, and £ 2 U — C" any

R-map. For some ¢ e C, p(c) = £(s) . The R-map Rs —— C defined
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by rs v+ rc makes the diagram'

0 -~ Rs U
C P c" — 0 commute

Also U/Rs € R/Rs and so U/Rs 1is G—torsion.hThis ﬁeans that every
Ue Ec is O—projéctive which by (4.8) implies EQ is fight exact,
Hence by Theorem (4.5,viii), o has property T .

Therconversé of the above need not hold in general, ie. the ’
common leftAmultiple property is not a necessary condition for ¢
to have property T . For a counterexample, consider the ring R of
2x2 matricies over-a division ring D and the multiplicativly closed
.system S consisting of matricies of the form (S 8) with 0 # d ¢ D.
Let- p=« bewt‘;he»f-asrsoewisaet.ed‘.:--‘idémpo‘t\an’t'eu-lceﬁne»l#»funcrt»or*; ~Sidnce- Re. i

simple artinian, p has property T by Example (4.10), but S does

not have the common left multiple property because taking

11 10 do(ll)_’ -(10) o _
(oo)sR’(oo)as’ (oo)oo = W@i910 0 implies d = 0.

Returning to the general situation of a multiplicatively closed
.system S din a ring R , the common left multiple property does insure
that every ¢(s) for s ¢ S under the canonical map ¢ .: R —> EQ(R)
has a left inverse in EQ(R) . To see this, pick any s € S and define

ks : R—> R by rt—> rs . This induces the exact sequence
k

(4.12) 0 K R —2» R —> R/Rs — 0

where K = ker"ks , R/Rs ='cokfks . Since ¢ has property T ,
we have an exact sequence
EQ(R) —» EQ(R) —> EQ(R/Rs) —> 0

where y = EQ(kS) is the unique extension by faithful o-injectivity
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‘of EQ(R) defined by qr—.q (s) .. N;w R/Rs e F  implies

EQ(R/Rs) = 0 and so u 1is an-epimorphism. Hence 1 =_q[¢(s)) for
some ¢ € EQ(R) and we obtain the desired left inverse.

If we demand that each ¢(s) 1is also to have a right inverse in EQ(R)
then rs = 0 dimplies $(r)¢(s) = ¢(rs) = 0 and consequently ¢(r).= 0
ie, 1 € o(R) which means there is some tra S such that tr =0
Hence a necessary conditioﬁ for right invertibility of ¢(s) 1is
(4.13) if rs =0 with r ¢ R then tr = 0 for some t e S .

This condition is also sufficieﬁt because it implies K& O(R).

in (4.12) so EQ(K) = 0 making u = EQ(ks) a monomorphism ( hgnce
an isomorphism ) . Again letting q be a left inverse of ¢(s).,
from ~u(d(s)q - 1) = (¢(s)q -~ 1)¢(s) =0 we have $(s)qg = 1 and
hemcewv¢439~‘hasnamzrsidedminverseﬂinp,EQ&RLM“VWQ»hayegxhusaarmiyedw
at the full generalization of the classical Ore condition:

(4.14) Definition: A multiplicatively closed system SC R is called

a left denominator set [4] if S satisfies both the common left

multiple property (1.13) and condition (4.13) above.
(4.15) Definition: Let S &€ R be a multiplicatively closed system.

A ring of left fractions for R with denominators in S [2,7] is

a pair (Q, ¢y ) where Q is a ring and ¢ : R—> Q is a ring
homomorphism satisfying the following three conditions:

i) 4if ¢(r) = 0 then sr =0 for séme s evS

ii) ¢ (s) 1is iunvertable in Q for every ‘s g S8

iii) every element of Q has the form ¢(s)_lw(r) reR, se S«

(4..16) Theorem: For a multiplicatively closed system S in a ring R

with associated idempotent kernel functor a the following are
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i) R  has a.ring of left fractions with denominators in S

ii) S is a ieft denominator set

iii) for every s e_S', ¢ (s) wvia.the canonicalv $ : R —> EQ(R)
is invertable in EQ(R) . -
Proof: ii) => iii) follows from the preceeding discussion.

iii) => i) follows from Proposition (3.10) and the fact that every
UeF_  meets S . The pair ( EQR), ¢ ) becomes tﬁe ('unique
up to isomorphism ) ring of left fractioné for R which in this

case is also the universal S-inverting object in [&4].

i) => ii) 1is easily proven as in [7,Prop 5,p.415]. B

If S contains only the non-zero divisors, a ring of left
fractions with denominators in S ( if it exists ) is called a

classical ring of left quotients for R . From the Theorem we can

.immediately deduce [16,Prop 1,p.109] :

(4.17) Corollary: A ring R has a classical ring of left guotients

i1f and only if it satisfies the classical Ore condition.

For a commutative ring A , every multiplicatively closed

- system S 1is a denominator set. Therefore the ring of fractions

38.

of A with denominators in S always exists and can be constructed

in the classical way as in [1,Chap 3]. Because of property T , this

construction extends to every A-module M by  EQ(A) @A M  exactly"

as in [1,Prop 3.5] which gives the module of fractions with

denominators in § .
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(4.18) Proposition: If o ¢ IKF(R) has property T , then the canonical
map ¢ ¢ R —> EQ(R) is a ring epimorphism and EQ(R) . is flat as a

right R-module.

R

Proof: The isomorphism EQ(R) = (EQ)Z(R) EQ(R) 8R EQ(R) is induced
by multiplication, so ¢ : R —> EQ(R) is a ring epimorphism by
[28,Prop 1.1]. Since EQ = EQ(R) @R ? is a natural isomorphism,

EQ(R) is flat in My 1

In particular, the reéults of [28] apply to any o e IKF(R) -
with property T din which case ¢ + R—> EQ(R) 1is a left localization
in the éense of Silver. However, the converse of Proposition (4.18) is
not true in general,

(4.19) Example: Let A = k[x,y] be the commutative polynomial ring

in two indeterminants over a field k . Let M = (x,y) be tﬁe

maximal ideallof A , and take F to be the,filter consisting of
ideals cbntaining a power of M ., Since F is clearly multiplicative,
F is a strongly complete filter by Corollary (2.19). Let p be the
associated idempofent kernel functor. Clearly A is é—torsion—free
-(as A is an integrai doﬁain ) so the canonical map ¢ : A —> EQ(A)
is inclusion.If we lét K denote the field of fractions k(x,y) of A

we have K= I(A) and p(K/A) = 0 . Hence A 1is faithfully p-injective

and hence A = EQ(A) . By Observation (3.16) EQ(M) EQA) = A .

Consequently EQ(M) 1is not isomorphic to A @A M= M and thus p does

not have property T . Nevertheless ¢ : A —> EQ(A) = A is a ring
epimorphism and A 1is certainly flat as a right A-module.

This example shows more:

(4.20) Since A is noetherian, p 1s also noetherian. Hence EQ



cannot be(right exact relative to this p . But Q dis still exact

as always.

(4.21) Not every torsion theory for a commutative ring arises from
a multiplicatively closed system since all these do have broperty T .
(4;22) The product of torsion-ﬁodu;es need not be a torsion module.
In the present example, nﬁlA/Mn is not p;torsion ( the element
{1+ M }:=l cannot be killed by any single power of M ) but
eéch A/Mn is p-torsion by construction of the filter, A similar

example of this can be found in abelian groups. Comnsider the group

2(pw? ( written additively ) with generators cl,éz,...,cn,... and
relations pcy = o, PCy = € 5eees PO g T Coonenn The groups
Z(pm)/Zc:.L i=1,2,... are all torsion in the usual torsion theory
for Zg , but their product is no; a torsion group.

The above Example (4.i9) is a concrete version of. one
indicated in [9,Ex 2,p.45].

Even though the converse of Proposition (4.18) is not true
in general, a partial converse in this connection can be found in

the literature.

(4.23) Theorem: A ring map Y ¢ R—> Q  1is an epimorphismfand’ Q- is”
- flat as a right R—mbdule if and only‘if the set of left ideals 1 in
R such that. QU(I) = Q is a strongly complete filter and for the
localization relative to this torsion theory there is an isomorphism

Q ~ EQ(R) making the diagram

EQ(R) ~commute .



Proof is given in [17,Thm 2.7] and [27,Prop 2.7].

In the light of the above Theorem we may regard the left
localizations of Silver [28] as arising relative to an idempotent

kernel functor which appears very close to having property T .

41.
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5. REPRESENTATIONS OF IDEMPOTENT KERNEL FUNCTORS

AND THEIR RELATIVE LOCALIZATIONS.

Let ¢ € IKF(R) be arbitrary.and let (F, S, V) be its
corresponding torsion theory.‘Again'notations.from previous-sectiqns
will be retained.

- The o-~torsion modules S are generated by the cyclic
modules R/U with U € F , in the sense that for aﬁy M € § there
is én epimorphism

@ rt ——n .
Uek -
The o-torsion-free modules V are cogenerated by the modules
I(R/I) where I is a left ideal in R 'such that o(R/I) = 0.
( called closed left ideals in [17]1 ) , 171 the sense that for any
C € V there is a monomorphism
C——— MW { IR/ | o@®/I) =0 }'= \Y
via a factorization through the injective hull of C and then by a
consfruction of Janéd ( described in [17,p.6] ) .
Let M Dbe any R-module and put
k@) = () { ker(f) | £ e MQLV) } .
Clearly o) G k(M) by (1.9) as V is o-torsion-free. On the other
hand, for any m e k() , M(Rm,V) = 0 because we can always fill the

diagram 0 —>Rm —> M

g

Ve
by injectivity of V . Now if C is any o—torsipn—free module, we have
a monomorphism C —> V . Hence 0 — M(Rm,C) — M(Rm,V) =0

is exact which implies M(Rm,C) = 0 for every C e V . Consequently"



43.

by (1.9) Rm ¢ S and therefore m € g(M) . Hence V completely
determines the torsion theory as: | |

(5.1) o) = (\{ ker(f) | £ eMQ1,V) }

‘By reversing the procedure, it is clear that any R-module S determines
a kernel functor if we take - V = I(8) . We denote the kernel'functor
which arises in this way by TS ’and obser?e that TS is idempotent

and in fact is the largest idempotent kernel functor for which S 1is
torsion—-free [9,Thm 5.1].

From the above discussion we have:

(5.2) Proposition: For every o € IKF(R) there exists M & M such

that § = TM e

Notice that an’ R=modile™ X7 1571 ~LotSion
L

<=> ME,I)) =0

<=> VXEX VmEM ,_'—_‘]reR > rx=0 and rm # 0
Clearly the R-module M whose e%istancé was assertéd in

Proposition (5.2) is not unique - not even up to injective hull.

But it is unique up to a relation that is manufactured to do

precisely that job.'.

(5.3) Definition: i) We say that a module M is cogenerated by a

module G if M can be embedded in a product of coppies of G .

ii) Two modules are called similar [22] if they cogenerate eachother.

(5.4) Lemma: Two modules M, N give rise to the same torsion

theory ( ie. ™~ Ty ) 1if and only if M and N have similar

injective hulls.

Proof: ( Storrer [17, Appendix] ) We first remark that a necessary
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énd sufficient condition for a module X to be Ts;torsion—free is
that X be cogenerated by 1I(S) . This condition is obiously
sufficient because products and submodules bf>torsion—free monules
are again torsion-free. Necessity follows from the fact that
M(Rx,I(S)) # 0 for any O‘# x € X since Rx & X is Ts—torsion—free

By injectivity we can £ill the diagram

0 Rx - X
l o f400
L
I1(S)

which by the universal property of direct products gives a map
X — i(S)X into the X~fold product of I(S) which must be mono.

Now if I(M) amd I(N) are similar, then YT =V

-t
M N -
because cogeneratlng‘is transitive; and hence EYE
Conversely if Ty = TN then M is TN—torsion—free and we

have an embedding e : M —> I(N)J for some J-fold product of "I(N) .

By injectivity we can £ill the diagram

0 > M > T(M)

N
I(N)Jﬂ’

with a mono since I() is essential over M . Therefore I(M) is
cogenerated by I(N) . By symmetry, I(N) is cogenerated by I(M)

and hence M and N have similar injective hulls. I

(5.5) Proposition: An idempotent kernel functor ¢ = Tg has
property T if and only if the localization EQ(R) of the ring

relative to ¢ 1is flat as a right R-module and 1(S) is similar

to the injective left R-module W =-ZM(EQ(R),Q/2) .
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Proof: If o has property T ,'it has already been shown in
Proposition (4.18) that EQ(R) 1is flat as a right R-module. It remains

‘to show o = T . Now ' R@(M,W)

R

HEQR) 8, M,0/2)

iy

AEQ0D ,0/2)
for any M ¢ R@ . If me o®™) then EQ(Rm) f.O and so Rg(Rm,w) =0 .
This means Tw(Rm) =Rm and so m ¢ TW(M) . On the o;her hand if
m € T&(M) t@ep Rg(Rm,W) = 0 and Z@(EQ(Rm);Q/Z) =0 . By‘[l6,p.89]
we have EQ(Rm) = 0 . Consequently Rm is o-torsion. Hence o = Ty
and we get the desired similarity by Lemma (5.4) .

Conversely, let- U e Ec . Théﬁ .R/U is Tw—torsion which
means  M(R/U,W) = 0 . But 0 = M(R/U,W) = M(EQ(R) 8 R/U,0/2)
implies EQ(R) 8R R/U =0 . Henée by Theorem (4.5,vii) ¢ has

property-T .. |
Tachikawa [30] mentions the following result:

(5.6) Proposition: The localization of any M in M relative to
T = Tg is given by |
EQM) = { X € I(M/ ™) | ¢(x) = 0 for all ¢ ¢ & }

-where o ={ ¢ e MIM/ M),V) | ¢$M/™) = 0} and" V is any
injective similar to TI(S) .

Proof: Putting C = M/tM , the Proposition follows from

ED(C)/C = 1, (I(C)/C) = M { ker(£) | £ e M(T(C)/C,V) }
and thét : ﬂ*.: M(I(C)/C,V) —> @ ", induced by the

canonical projection m : I(C) —> I(C)/C - is a bijection since

we can fill the diagram
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0 C I(C) — 1(C)/C ——— 0
¢ l 37
v o

g

with a unique g for any ¢ € ¢ .,

If V is any injective in R@ s if is temptinguto try and
construct injective resolutions from products of copies of V as
far as possible because the further we can push such a resolution,
the more closely the module being resolved is pinned down by the.
torsion theory associated with V .

(5.7) Definition: Let U ¢ Rg . We say that an R-module X has

U~dominant dimension > n [23] ( notation: U-dom.dim(X) > n )

if there is an exact sequence

0 — X X = oo — X

such that each Xi is a product of copies of U .

(5.8) Lemma: If V and W are similar injective R-modules, then
V-dom.dim(X) > n if and only if W-dom.dim(X) > n for every X e M.
Proof: Suppose V-dom.dim(X) > n . Then there is an-exact sequence

0 — X —~+~X1 — . Xn such that each Xi is a product of cbpies
of V . Then each Xi is cogenerated by W because of the similarity
and the fact that a product of monos is mono in RM . From

[17,Lemma A.4,p.87] we conclude that W-dom.dim(X) > n . The coverse

implication follows by symmetry . ' i

Out of the similarity class of an injective, we wish to

pick out a distinguished representative having the finiteness condition:
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(5.9) Definition: An R-module X is called finitely cogenerating [23]

vif there is a finite number of elements fi e MR,X) i=1,...,n
such that fh\{ ker (g) l g € MR,X) } = /Ai{ ker(fi) l i=1,...,0n1}
Notice that this i1s the dual of finitely generated.
Since (o:x) = ker(g) for g & M(R,X) defined by r v+ rx
x € X and M@R,X) =X by fvr— £(1) , X is finitely cogenerating
if and only if there exists elements kl,...,xn € X such that

(5.10) 3 0:x) = N { (0:x) | i=1,...,n}

(5.11) Lgmggg Every injective in R@ is similar to a finitely
cogenerating injective.

Proof: Suppose V is any injective R-module. Let W = VV be ;he
V~-fold product of copies of Vl, Obiously W and V are similar.

"
If £ 1is the element of W whose v'h coordinate is v for any

v eV, then (0:W) = (0:§) and W is finitely cogenerating. i

Since the dominant dimension of a module is uniform over a
similarity class of injeétives in the sense of Lemma (5.8), wé make
the fdllowingf
(5.12) Definition: For o e IKF(R) we say that an R-module X has

- o-dominant dimension » n ( notation: o-dom.dim(X) 2 n ) if

V-dom.dim(X) > n for any injective V such that o = Ty -
Using this terminology and keeping Lemma (5.8) in mind,

we state:

(5.13) Proposition: For any o ¢ IKF(R) and M e M
i) M is o-torsion-free if and only if o-dom.dim(¥) > 1

ii) M is faithfully o-injective if and only if o-dom.dim(M) > 2 ,
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Proof 1is given in [17,Prop A.6,p.88] and [23,Lemmas 5.1 & 5.2] ,

This Proposition provides yet another characterization of-
the faithfully O—injective modules. Thus bvaemma (5.11) the full
subcétegory, D(V) of M consisting of modules with V-dom.dim » 2
for a finitely cégenerating injective V considered by ﬁorita [23]
is exactly our category ‘éo associated with o = Ty - The fact that
A 1is an abelian subcategory of M if and only if EQ is exact,

a condition which does not hold in general, caused trouble in

Section 3. Property T is a good éttempt at patching up this difficulty
and also provides some fringe benifits. In [23,Thm 6.1] Morita:gives
another answer to this problem: for o e IKF(R) , the category A

is an abelian subcategory of M 4if and only if o-dom.dim(A) = «

for every A e A . |

Lemma (5.11) tells us that for any idempotent kernel functor

1l

¢ there is sone finitely cogénerating injective V such that o Ty
This method of picking a distinguished representative from the
"similarity class of an injective is exploited in [23,Thm 5.6] as

follows:

(5.14) Theorem: ( Morita ) Let o0 € IKF(R) and V a finitely
cogenerating injective such that ¢ = Ty If DC 1is the double
centralizer of V , then EQ(R) = DC where EQ . is the localization

functor relative to o .

(5.15) Observation: From this Theorem and Proposition (3.12) we get
very cheaply a result of Kato [15,Thm 2] which says that a faithful

finitely cogenerating injective V has the double centralizer
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‘ property if and only if R is faithfully T _~injective. However this is

v
a particular case of a more general result [23,Thm 3.4] for which we
have to‘ﬁork considerably harder.

The Theorem (5.14) no longer holds in general if we‘drop the
condition that V be finitely cogenerating. prever if W is any
injective such that o =-Tw and DC the double centralizer of W ,
we do in fact obtain a ring homomorphism EQ(R) — DC which is a
monomorphism ! ( see I18] )

(5.16) Example: For any ring R , the injective hull I(R) —is
always finitely cogenefating injective. Then Theorem (5.14) says
that EQ(R) relative to R 'is the double centralizer if I(R)

This is exactly the definition of the complete ring of quotients
given~ i [L65p. 94l | )

We shall return to this Example again later, but first a
generalization of the notion of dense left ideal.
(5.17) Definition: Let I be a left dideal in R . A left ideal J

in R dis called I-dense if

Vrlaf‘I VrzaR EreR Q—rrlél and rrzeJ.

(5.18) Proposition: ( Popescu .) For any left ideal I in R the

strongly complete filter F associated with T for N = R/I

N
consists exacfly of the I-dense left ideals.

Proof is given in [26] of this Proposition and of the following: .

(5;19) Corollary: If A is a commutative ring, 1 an ideal, N = AlI
and F the strongly complete filter associated with TN ,~ then

UeF if and only if a € A such that Ua & I implies a e L .
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(5.20) Example: Recall that in the Goldie Torsion Theory 22 the

R-module N = R/zz(R) has zero singular ideal and so is Zz—torsion—free.

This means Z2 Ty In order to prove that the converse implication
also holds, suppose U 1is a Zz—dense left ideal in R , and let x ¢ U .

If r ¢ ZZ(R) , then Er ¢ Zl(R) .forvsome essential EL.

If Er = 0 then (U:r) 2 (0:r) @ E is essential.

If Er # 0 then O # xr e Zl(R) fof some x e E which we can pick so
that xr ¢ U ( otherwise (U:r) @ E 1is essential already ). Now there
is an essential E' such that E'xr =0 e U so (U:xr) 2 E' is also
essential. Suppose r ¢ ZZ(R) . If (U:r) dis not essential, there is

a left ideal B # 0 such that- (U:xr) M B =20 . Let 0O#beB,

so br ¢ U . If br ¢ ZZ(R) then because U 1is ZZ(R)-dense there
exfsts X"such?that“"xbrwéwZ§QR)““and““beWEWU*W P xbws 0, xb%e*B;
and xb ¢ (U:r) - impossible. Hence br ¢ ZZ(R) . This means

Ebr ¢ Zl(R) for some essential E which is what we want , for

s
if Ebr = 0 then (U:br) 2 (0:br) 2 E 1is essential already.

If‘ Fbr # 0 then O # xbr ¢ Zl(R) for some x e E and we can pick
x such that xbr ¢ U - (otherwise (U:br) ? E is essential ):

Now there is an essential E' such that E'xbr = 0 so (U:xbr) 2 E'
is essential. In any case, we can always find s ¢ R such that

(U:sr) is proper. essential . Hence by Lemma (1.15,ii) every

This shows 7t =7

< Z N 2

ZZ(R)—dense left ideal is maxi de. ™S Zy -
is the largest torsion theory for which R/ZZ(R)’ is torsion-free,

and we obtain another characterization of the maxi left4ideéls as being
ZZ(R)—dense . |

(5.21) Example: The O-dense left ideals are just the usual dense left

ideals. Hence the strongly complete filter of dense left ideals is
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exactly the filter associated with Ta .For the case 1 = TR s comparing

Proposition»(S.G) with [16,Prop 1,p.94] it is clear that EQ(R) is the
complete ring of left quotients, which we denote here by .Qm. This
agrees with the conclusion of Example (5.16). Since R is
T_-torsion-free, we consider R as a subring of Qm .

R
Let O € IKF(R) such that o(R) = 0 . The resulting localised

ring EQ(R) relative to such a ¢ 1is called a faithful ( left )

quotient ring of R . The importance of the complete ring of quotients
Qm of R comes from.phe fact that it exists for every ring R,

( which was seen not to be the case for the élaésical ring of quotients )
and that any faithful quotient ring of R is a subring of Qm . This

- is because o(R) = 0 dimplies o € T so that every left ideal in F

R
must be dense. Now by Proposition (37I0)"

EQR) = { x € I(R) I (R:x) ¢ EO }E { x e I(R) l (R;x) is dense} = Q -

(5.22) Proposition: The idempotent kernel functor 1Y has property T
if and only if Qm has no proper dense left ideals.

" Proof: Suppose N has property T . Let D be a dense left ideal

“in Qm . Then R/AND is dense in R . To see this, take r # 0 and
r in R . Now there exists ¢ ¢ Qm ~such that qr,. # 0 and qr,. € D .
For some dense U in R, Uq R by Proposition (3.10) and

Uqu # 0 as Qm is torsion-free. Hence for some. u e U , uqu # 0

and uqr, € R D which shows that RMD is dense.

2
Now ) Qm = EQRAD) = Q_ 8y (RMD)
= Qm(Rlﬁ D) as Qm is flat in MR
¢qQp & D

and so Qm has no proper dense left ideals.
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Conversely, let D be dense in R . Then QmD is dense in
Qm : take 43 0, q, in Qm . For some dense J 1in- R we have
Jqlg R and Jq2C R with Jql #0 .S 0#%# aq; and aq, are
in R for some a.e J . As D 1is dense, there exists r € R such that
raq # 0 and. raq, € DC QmD . This shows QmD is dense in Qm and
so QmD = Qm'. By Theorem (4.5,iii) we conclude that = has

R
property T . H

(5.23) Remark: The above Proposition has.an obvious generalization:
if o ¢ IKF(R) with ¢ : R — EQ(R) canonical then o has
property T if and only if EQ(R) has no proper left ideals J such
that ¢_1(J) € EG . The same argument as in the Proposition shows

this statement is equivalent to Theorem (4.5,iii) .

One of the objectives of such a localization process is
of course to determine 'local propérties". By this we mean the
following: let SUB(R) be a subset of IKF(R) and suppose
is a property satisfied by the pingl R ( or by an R-module M ).
Then Q@ dis called a SUB(R)iiggal property when R (M ) has @
if and only if EQ(R) ( EQMM). ) has @ fpf every localization
relative to a member of SUB(R) . Now the advantage of having every
idempotent kernel functor in the form Tg allows us to distinguish
a subset of IKF(R) by means of a distinguished class of modules,
like simples or indecomposable injectives for example. This is done
in [9] and in [26] by an equivalent method.
| Another objective'of this localization is to obtain

information about the structure of R via the structure of its
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localizations EQ(R) by imposing conditions on the rings R and
EQ(R) - see for example [24]. A classical example of this is

of course the Goldie Theory ( as in [11,Chap 7] ).

In this thesis the machinery of local;zation has been
developed as it is being used to date, aloﬁg with some fundamental
results and‘of course examples where, aé usual, the real action of
the theory is taking place; Indications are that thé generalised
concept of torsion with its relative localization will prove itself

increasingly valuable in the further study of rings and modules.
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