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ABSTRACT

Let X and Y bevtopologicél spaces and C and ﬂvsemigroups
under composition of maps from X to X and Y to Y respectively;b
Let H be an isomorphism from C to b; it is shown that if both
C and # contain the constant maps then there exists a ‘bijection

h from X to Y such that H(f) = hefeh~!

s VLeC. We investigate
't'his Tsi':bua“bi on and find sufficient conditions for thi s, h to
ibe :a-homeomorphism., In this regard we study the familiar
semigroups of continuous, closed, and connected maps.

An auxiliary problem is the case when C = f and H is_én
automorphism of-f, We then ask when is every automorphism is
inner, The question is answered for certain particular |

semigroups; e.Z., the semigroup of differentiable maps on the

reals has the property that all automorphisms are inner,:
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ISOMORPHISMS BETWEEN SEMIGROUPS OF MAPS

1., Introduction. If ‘X 1is a topological space, then by XX we denote
.the.set of. .all maps from X to X . Then :Ckx,d) is .a semigroup under

composition; we write f(g(x)) as (fog)(x) . In the following we discuss

certain subsemigroups of .XX' . Suppose X 1is a given topological épace
and T(f) 1is a statement about f ¢ x= . Then by T(X) we denote
X

{f e X" : T(f)}. , and we consider only those T's sufficient to make
T(X) a subsemigréup-of XX . A class of topological spaces is said to
be a T—admissiblelclaés if for every pair X , Y in the class for which
there is an isomorphism H : T(X) » T(Y) , then @h : X+ Y , such that
h is a homeomorfhism and H(f) = héfoh—l ,V£fe T(X) . We note that for our
purposes by isomorphism we will always mean a one-to-one, onto homomorphism.
We then have a criterion for two spaces beiqg homeomorphic; i.e., if X
and Y are both T-admissible and there exists some isomorphism from
T(X) onto. T(Y) , then X and Y are homeomorphic. In fact, there are
at least as many homéomorphisms from X to Y as isomorphisms from
T(X) to T(Y) . We will investigate T-admissibility for certain familiar
semigroups; e.g., the semigroup of continupus mapé,bwritten as. S(X)
and we will give examples of quite large T-admissible classes.

Another problem to be considered is the case of automorphisms;.
Viz., when is‘every aﬁtoﬁorphism of T(X) an inner automorphism. We
note that an automorphism, H , on a semigroup, T(X) , is said ?o be
inner iff 3 h ¢ XX su;h that h is a bijection (i.e., is invértible)

with both h and h™% 4in T(X) and such that H(f) = hofoh ¥, Y £ e T(X).

1 This definition of - TQadmissibiiity is adapted from that of S-—admissi-

bility defined by Magill in [3].



2. Definitions. Let ‘X  be a topological space, then

Definition 2.1. If x e X , then by [x] we denote that map in XX

which is constantly x ; i.e., V’x e X, [x}(y) = x ,\f ye X . Also

et K(X) = {[x]) : x ¢ X} .

Definition 2.2. T(X) = {f ¢ X%

: f_lv({x}) is .closed',VX e X}

Note: we are not being consistent here - T(X) need not be a semigroup.

{f ¢ XX : £ is continuoﬁs} .

X

Definition 2.3. S(X)

Definition 2.4. c(X)

subset of X , then so is £(a)}

{fe X" : f is closed; i.e., if A is a closed

Definition 2.5. UX) = {f ¢ XX : f is connected; i.e;, if A 1is connected,

then so is f(A)} .

3. Preliminary. Lemmas. We now prdve the following simple lemmas.

First we note that an element, 2z , of a semigroup, 0 , is called a

left-zero of D iff zd =2z ,¥de D
, |

Lemma 3.1, If R(X) G T(X) , then K(X) 4is precisely the set'of.

left-zerces of T(X) .
Proof. This follows from the following circle of arrows:

zero of T(X) => fo[x] = £ ,Vx e X

=> (£oIxD)(y) = £(») ,¥Vx,y € X => £(x) = £(3) ,¥x,y € X

=> f ¢ K(X) => fog = £ ,¥g ¢ T(X)

=> f 1dis a left zero of T(X)

f is alleft-

Lemmas 3.1, 3.2, and 3.3 are all straightforward generalizations 6f

parts of the discussion and proof of theorem 2.1 of [4].



Lemma 3.2. If K(X) S T(X) and K(Y)< T(Y) and H : T(X) + T(Y)
is an isomorphism, then H maps K(X) bijectively onto K(Y) .
Proof. This follows from the following list of equivalent statements:

o f e K(X) <=> fog = £ ,Vge T(X) -, by Lemma 3.1

]

<=> H(fog) = H(E) ° H(g) = H(E) ,¥ g e T(X) ,

<=> H(£) ¢ K(Y) ©, by Lemma 3.1

Lemma 3.3. Under the hypotheses of Lemma 3.2, there exists a unique
'bijection h:X~>Y suéh thét H(f) = h°f°h._1 ,VE e T(X)

Proof. Define h by h(x) =y iff H([x]) = [y] . Then, .by Lemmas 3.1
ghd 3.2, h is a Well—defined bijection. Now we simply note that

Vy eY and V£ ¢ T(X) we have:

(hofoh ™) (v)

(£ (7)) , by definition of "o"

(L™ () 1) |
HUIEG N D &) . by definition of h
H(Ee [0 1 (r) 1) (y) |

(H(f) °H([h—1(y)]))(y) , H 1is a homomorphism,

[}

= (H(H) e[y (y) s by definition of h ,
= H(£)(y) .
Hence H(f) = h°f°h—1', Vf e T(X) . Uniqueness follows éasily since

if k 1is another 'map from X + Y such that H(f) = k°f°k_l ,\{f e T(X) ,
then Vx.g: X we would have: . H([x]) = ho [x]°h—1 = [h(x)] = keo[x] Ok_l =

[k(x)] => h = k



Now becaﬁse,of Lemﬁa 3.3 we maké the. following conventions:

“a) Ffom ﬁow on all T(X) will be such that'vK(X)ga'T(X) , for -every
topological space X .

b) If ‘H: T(X) » T(Y)_lis an isomorphism, then by h we denote the .
‘map from X to Y such that H(f) = hofc’hn1 ,Vfe T(X) . That is,
we tacitly use Lemma 3.3 and write the bijection- that corresponds to
an isomorphism as the lower case .latin letter of the upper case latin
Jetter which represents the isomorphiém.

The usefulness Sf Lemma 3.3, after we abide by the above conven-
tioné, then becomes clear. To determine whether a certain class is
T—admissible we merely have to show that all such h;s are homeomorphisms.
Similarly, an automorphism, H , is inner iff ‘h and h_l 'ére both

~iIn-the domain of "“H .

4, T-Admissibility. We first concern ourselves with the space S(X)

and the question of ‘S—admissibility. We define below and S-space and
show that S-spaces are S-admissible. We then give examples to show

how large the class of S—épaceé is, Let X be a topological space,.then..

Definition 4.1.3- If xe¢ X and xe¢ G, G an open set in X , then

we say that G is an S-neighbourhood of x if either
a) - G = {x}

or b) ' there exists a continuous f : G - X such that £(x) + x but

£5) =y ,NyeG -6 .

Note: By G we mean the closure of ‘G , and by Eﬁ we mean the

closure of G relative to B<X . So G = Ek .

3 The discussion of S-spaces and hence results 4.1 through to 4.6.2

are due to Magill in [5].



We say that. X is an S-space if X 1is Hausdorff and every.point in

XA has a basis of S-neighbourhoods. This basis is called an ‘S—basis._

,Theorém 4.3. S—-spaces are S-admissible. .

Proof. Let X and Y ‘be two S-spaces 'énd suppose' H: SX ~» S(Y)
‘is an isomqrphiém, then’we need only show that h is a homeomorphism,
To do this we need only show that h ‘and- h_1 are closed, and to

do this we only require that they be closed on basic clc;séd sets.

Because of this we first prove the following lemma.

‘Lemma 4.4. If X is an S-space and ¢(f) = {xe X : f(x) = x} ,

"\;,Jf e S(X) , then {p(£) ¢ £ e S(X)} 1is a basis for the closed sets
of X .
Proof. It is well known that the set of fixed points of a continuous

- function is closed, hence ¢(f) 1is closed, Vf e S(X) . Now let F
be a closed subset of X ., Then. YxeX-F ', there is an S-neighbour-

hood, G , of x such that G&X ~ F ; and there is a continuous

function q_: G » X such that 'qx(x) ¥ x but qx(y) =y ,\'l'_y e G-~G .

. Define gx:X—>X by g(y) y,an~E

Then clearly . is .continuous. Also F g__‘:q)(gx)' ,Vx e X~ F , :
Yo e ) s
Hence Fcn q;(g ) . But x ¢ q;(gx) ,VX' g X~F=> (X . F) n (xsX~F X

. xeX~F
=0 = m o (g )SF . So, in fact, m ¢(g ) . Hence these .
XEX”E X XEX

sets form a basis for the closed sets.

1



Now back to the theorem., Let .f E_S(X) , then ¢(H(L)) ‘is
closed. And y e ¢(H(£)) ‘ |
<= (hefeh () =y

~ “1 o -1,
<=> f(h "(y)) = h “(y)
<=> 1 7N(y) € 6(£)
<=> y & h($(£))
Hence ¢(H(£)) = h(4(£)) ,¥f e SX . So h(s(£) is closed,

V£ ¢ S(X) . 8o Lemma 4.4 implies that ’h-l is continuous. Similarly,

¢(H_1(g)) = h_l(¢(g)) , Vg esS(¥) . And so h is a homeomorphism.

Thebrem 4.5. If X is Hausdorff and.if \fx € X , x has a basis,

Bx , of open sets such that G -~ G 'is at most a singleton, %/G e B
then X is an S-space.

~ Proof. If X is a singleton, mnothing to prbve, s0 ‘we assume X  has

more than one point. Let. x € X and x & G ¢ BX , and chose any

y € X- such that x + y. . Define f : G > X by
f = [yl , if §:~ ¢ =~¢ .. Then f is continuous with the desired proper--:

[zl , if G~ G={z}" : Ny -
ties, and BX is én S-basis. Hence X 1is an  S-space.

If a space has a basis of sets which are both open and ciosed,

then we say that X is "0O-dimensional.

Corollary 4.5.1;1 A O-dimensional Hausdorff space is an S-space.




A space is said to be locally Euclidean if each point has an
opeﬁ-neighbourhbod about it that is homeomorphic to Euclidean n-space, -

E" 'y for some n > 1 (n depends on the point in question).

Theorem 4.6. A iocally'Euclidean space is an S-space.

Proof. First we note that every loéally Euclidean space.is regular;
Hausdbrff, and a‘union of hémeomorphic images of E , possibly for many
different n's. - Also we note that homeomorphic images of S-spaces are

again- S-spaces. .So tﬁe'proof is complete with the following two lemmas.
Lemma 4.6.1. . En is an S-space, ¥n >1 .
Lemma 4.6.2. If X 1is a regular Hausdorff space which is the union of

a collection of open subspaces which are S-spaces, themn X 1is an S-space.

. . n
Proof of Lemma 4.6.1. If xe E and d the usual Euclidean metric,

then-b’s >0 we‘defiﬁe 'Ne(x) = {y ¢ E* d(x,y) < e} . Also let %y

denote the ith coordinéte of x ,‘Vi =1,2,...,n . Now define

£,1 -I:I_e_(—x—f > EL as follows: fi(y) = v, + d(x,y) - e,Vy ¢ W ,

V& =1,2,...,n . Then each fi is continuous, so the function

£ ﬁ;f§3'+ E"  defined by f(y) = (fl(y),...,fn(y)) ,V’y é E;?QY s

is continuous, since éach projection map is continuous. And f has the
property that f(y) =y ,\fy € ﬁ;f§7f~ Ne(x) and. f(x) = (x - g..f,xn—e) + X .
n

Hence neighbourhoods of this type form an  S-basis for E' . So E

is an ‘S-space.



Proof of Lemma 4.6.2. Let xe X . Let H be an open subset of X

-which is itsglﬁ an S-space containing x ., Let Bx be an S-basis for
x in H . Since X 1is regular, there éxists an.open subset V of

X aﬁd'a closed subset F of X such that x e VGFEH . let
B:Y=V{G £ Bx : GgV}l , then B: is a basis for x in X . We want
to show that it is an S&bgsis. let G g B: ,> If G ={x} , we

are done. Otherwise we know that there is a continuous function " =

f :EH—,—»VH such that f£(x) %x , but f£(y) = vy ,Vy £ GH ~ G . (Note

X

= GX'= G . So

G, means the closure of G relative to H , so G=

1 .) But note

(]

that E;§F§H3 , and F is closed in X , so
G 1is in fact an S-neighbourhood ¢f x in X . So X is an S-space.
Now we try to broaden our knowledge of which spaces are T-admis-

sible, and for what T's. So we define two more classes of spaces.

* ,
4 X 1is a T -space if it is Tl

subset, F , of X and Vy e X~ F , there exists a ky e T(X) and an

Definition 4.7.1, and for every closed

-1 .
b'q X such that k )DF .
y © 7¢ y (b 2

Definition 4.7.2. X is a T, -space if it is Tl and for every closed

subset, F , of X there exists a kF g T(X) such that kF(F) is finite

F
-1
kF (kF(F)) =F .

(i.e., k_ assumes only a finite number of values on F ) and such that

: : *
In [6, p. 295, Theorem 1] Magill proves that .S -spaces are

S-admissible, We generalize this to:

4 : A
* .
The definition of T -space is adapted from Magill's definition of

. . -
S -space in [6]. The condition of T*—'ness was found by the author.



Theorem 4.8. If ‘T(XDIQEF(X) , for every T, - and T*-space YX ,

then T*— and T,-spaces are both T-admissible classes.

Proof. let F be any closed subset of X ana suppose - H.: T(X) » T(Y)
is an isbmorpﬁism.'

‘Case 1) X and Y are T*—spaces,.then Yy e X ~ F let ky e T(X)

and xy e X be as in definition 4.7.1. Then clearly FC /ﬁ\ k_l({xy})

yeX~F
But \!y eX~F,vy ¢ k ({x D o= (X ~ F)(] ( (’\ k_ ({x DY=6¢ .
yeX F Y
[A) k ({x }) . Hence the class {f V({x}) : x ¢ X and

yeX F.

feT(X)} forms a basis for the élosed sets of X (each member of this
class is closed since T(X)S;F(X)) . Similarly A{él({y}) : yeY and
g € T(Y)} 1is a basis for the closed sets of Y

' So now to show ’h_1 is continuous we need only show that
n(E T ({x})) 1is closed, Y x ¢ X and V£ e T(X) . So let fe T(X) and
x ¢ X , then H(f).= g <=> hofoh—1 =g

= h(£TH(x)) = g xh)

But h a bijection => h({x}) 1is a singleton, and g & I'(x) 'imﬁlies
that g_l(ht{x})) is closed; Hence h—l is :continuous. Similarly we

get that h is continuous.

. Case ii) X and Y are T -spaces. lLet kF e T(X) be as in definition

4.7.2, then if g = H(kF) we have h°kah_1 = g => h(F) = h(k;l(kF(F))) =
g M(h( (1)) . But ky(F) is finite => h(ky(F)) is finite. And |
g € T'(X) now says in fact that h(F) is closed. So h ~ is continuous.

In the same manner h  is continuous as well.
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It is easy to see that some T,-spaces are T -spaces, and
vice-versa. Whether one is class is bigger or how largely the classes
intersect is unknown as yet. Below we show some idea of how large the class

%
of T -spaces is,

Tﬁeorem 4.9, Suppose X 1is a O-dimensional Hausdorff space and suppose
'T(X) is such that whenever X = AV (X ~ A) , where A is a ﬁon—empty,
open, and closed subset of X with X ~ A also non-empty, then for some
a e A the function. f : X »~ X defined by : . R

, A x
~ A belongs to T(X) . Then X is a T -space.

Proof. let F be a closed subset of X and -y € X.~ F , then there
existe a subset, € , of X which is both cpen and closed such that

yeG SEX ~'F . Then by assumptién Hdx e X ~ G such that the function

z ,2 € G

x )z * s belongs to T(X) . But now

£ ¢ XX defined by £(z) ={

-1 %
vef ({x})ga F . So X is a T -space.
In [6, Theorem 2] Magill proves that O-dimensional Hausdorff

%
spaces are S -spaces. Using our Theorem 4.9 we generalize this to:

Corollary 4.9.1. If X is a O-dimensional Hausdorff space, then X
* ’ .

is a T -space if S(X) N c(x) < I(x) .

Proof, Any function f defined as in the statement of Theorem 4.9

is continuous and closed. We note here that if Tl(X)QE_I (X) and X

*

,~Space as well, The same holds for

* .
is a Tl—space, then X is a T

T,-spaces as well. So we get the following restatement for theorem 3 of [61. -
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Theorem 4.9.2.5 If X 1is a completely regular Hausdorff space containing

at least one non—degeﬁerate path between‘two distinct points, and if
S(X) & T(X) , then X is a- T*—sface.
Proof.  1Let F be a closed subset of X and let .y e X ~ F . Then
;coMplete.regularity implies that there exists a continuoﬁs function
f : X~ [0,1] =1 such that £(F) =0 and f(y) =1 . By assumption
_there are two distinct points x,z ¢ X ‘and a continuous function
g : I X__such that g(0) = x and g(l) = z . _ .

Then gofeSX =>geofeg T(X) . But also y ¢ (gof)fl({x});Z.F
So x 1is a T*—SPace. :

If X and ﬂY are two topological spaces, then by XU Y we

denote the space with a basis of open sets consisting of those which are

open in either X or ¥ ., We assume X and Y are disjoint.

"Corollary 4.9.3. If X is a completely regular Hausdorff space then

X is a subspace of an S*-space; viz., of Y=X{UI .,
"252251 Y certainly satisfies the hypothesis of Theorem 4.9.2.

There exist completely regular Hausdorff spaces which-are not
'S*—spaces. For example in [1] Cook gives an example of a compact, metric,
one—dimensional, indecomposable continuum, Z , such that S(Z) consists
entirely of K(Z) band the identity map. Therefore Z cannot be an

%
'S -space; and we have

e

. * . :

> The following discussion of S -space, hence 4.9.2 to 4.10, is due to

Magill in [6]. Where possible we make the obvious generalizations to
* - . ;

T -space. .
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*
~ Corollary 4.9.4. _The property of being an S -space is not hereditary.

Proof. Let  Y=2UI , then by Corollary 4.9.3 Y is an Sf—space
with Z as a subspéce.'

Coa

‘Now continuing with Cook's example we get:

) * .
‘Theorem 4.10.. There is an S -space which is not an S-space; viz.,

Y=2 UI is such a.space.

Proof. 1ILet x e Z and G any_bpen subset of Z:- such that Z ~ G
has more than one point.: If Y dis an S-space, then there would exist
a contiﬁuous'fungtion f :.E'+ Y | such that f(x)-+ x and f£(y) =y ,

Vy € G .G . Define g e'YY_ by g(y) = (f(y) , v ¢ G . Then g is
| y ,yeY~GC

continuous if £ ‘fs; But since Z is -connected, then g(Z) would be
connected, But Z ~ G is not emp‘ty, so Aw € Z ~ G such that.
glw) = w=> g(Z).(} Z + ¢ . Then Z connécted impiies that |
g(Z)C Z = ge S(Z) . Bﬁt g. is neither a constant (sincé Z~G
has more than one pdint) nor the identity (since ' g(x) + x ), so g'k s(z) ,
which is a contradiction. So Y is not an. S-space, but by Corollary 4.9.3
Y is. an S*—space:‘
| To extend some of the results above we look at a class of semi—.

~groups referred to as A-semigroups.

" Definition 4.11.1. Let A(X) be a family of subsets of X such that

X e A(X) ;f{k}.e A(X) ,\/X g X ; and ¢ ¢ A(Xj . Then we say that

6 The following discussion of A-semigroups, hence 4.11,1 through to

4.12.3 are due to Magill in [3].



13.

CT(X) is a A—semigrpup if

X0ea) e a0 ,YAae A}

i) TX) = {fe X
‘and 11) VA e A(X) ,3f e T(X) such that £(X) = A .

" Note ‘that K(X) giT(X) because of property ii).

Lemma 4.11.2, et T(X) and T(Y) be A-semigroups and ‘H : T(X)
+ T(Y) be an isomorphism, then
i) h(A) e A(Y) ,VAe A(X) ,
and 1) W NB) € A0 ,V3B e a(Y)
EEQEE!‘ Let Ae A(X) , theﬁ 3f ¢ T(X) - such that £(X) = A , then

h(A) = h(fX)) = h(f(hnl(Y))) = H(£)(Y) € AC(Y) . Similarly for part ii).

Theorem 4.11.3. The class of 'Tl—spaces is C-admissible.

‘Proof. let X and Y be Tl-spaces‘and H: CX) » Cc(Y) be.an isomor-
phism, Define A(X) = {F €X : F is closed and- F + ¢} . -Similarly
for A(Y) . Let F e A(X) , then choose any x ¢ F and define

fe XX by f(y) =f{y ,yeF , then f 1is clearly closed and
X ,yeX~F

f(X) =F . So C(X) is a A-semigroup. Similarly C(Y) is a A-semigroup.
‘But by Lemma 4.11.2 both h and h_l are closed. So h is a homeomprphism.

Now we use somewhat the‘same approach to the space of connected
functions. Unfortunately a weaker result must follow.

‘Definition 4.12.1. | X 1is a U-space if it is connected and for every

connected subset A of X , 3f e U(X) such that £(X) = A .
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One can easily see that not aii U-spaces are U-admissible.
We look at X = {(x,y) : ¥y = sin(l/x),V);g (0,1] and y = 0 if -

x =0} . Then X , with the induced tépology froﬁ E2 , and I ;
with tge usual topology, are U-spac;s.: But the map h : X > I defined
by h(x,y) = x ,\/(X,Y) e X , is one-to~one, onto; and biconnected

and so inducesban isomorphism, H , from U(X) to U(1). given by
CH(f) = h°f°h—1} VQSe U(X) . But h_l is not continuous at ‘0 .

But, of course, from the same‘type of argument as in tﬁélﬁfoof.
of theorem 4.11.3 we get that if H : U(X) » U(Y) dis an isomorphism'
and X and Y are U-spaces, then ‘h is biconnected; i;e., both
h and h_1 . are éonnected. ‘The question then is: when is such an h
a homeomorphism? From Pervin and Levine in [7, Tﬁeorem 3.10, p. 4951]
we get that any bico#nected map between two locally connected, compact,

Hausdorff spaces is a homeomorphism.  Hence:

‘Theorem 4.12.2. Locally connected, compact, Hausdorff U-spaces are a
U-admissible class.

For usefulness we need some knowledge of the extent of U-spaces,

‘Theorem 4.12.,3. If X is a connected, completely reguiar, Hausdorff

space with cardinality c (the cardinality of the continuum), then X

is a U-space. |

Proof. let x,y ‘be two distinct points in X . Then completé'regu— :
larity implies that Jf : X~ I such that' f is continuous and f(x) =0
and f(y) =1 . DNow since £(X) is conneéted and contains both 0

and 1 , then f(X) =1 , If ae I , let
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O-alaz...an... (where a, = O'or 1)
denote the non-terminating binary expansion of a . Define g on I
by g(a) =\0 , a=0

n

lim sup (%- z ai), a f 0
i=1

Then from Kurotowski [2, p. 82] we see that g has the property thaﬁ if -
A is any non-degenerate half-open, open, or closea interval in I ;
then g(A) =1 , If B<CI is éonnected, then by assumption'the
cardinality of B is less.than or.equal to ¢ , hence there exists_some
ontomap h : I > B -, Thus h°g°f,e.XXA, . Let. D be any connected
subset of X , tﬁen f(D) 1is either a singléton or a non-degenerate
interval. Inrthe;former éase >Chog°£)(b) is.a singléton, hence, .connected.,
In the latter case g(f(D))'= I; , so (hogof)(D) = B , which is assumed
connected. Hence hegef e}U(K) and (hegef)(X) = B.

As an end to this chapter, and as an introduction to the

. neat, we note:

‘Corollary 4.13. Let X be a topological space; then every automorphism

of T(X) is inner if any of the following hold: -
i) X is an S-space and T(X) = S(X) ..~
* _ ' , :
ii) X 4dis either a T -or a T,-space and {h E'XX ¢+ h 1is
a homeomorphism} & T(X) € T(X)
iii) TX) is a A—seﬁigroup;_

or iv) X is ‘Tl. and T(X) = C(X) .
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.Proof.‘ i)

" Theorem 4.3;
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ii) Theorem 4.8;
 iii) Lemma 4,11.2;
and iv) Theorem 4.11.3.
5. Automorphisms'ofb T(X). Before we begin we introduce a few more

facilitate the discussion. Suppose 7 is sqme'subsemi—

~group of XX , then:

" Definition’

5.

1.1.

‘Definition

5

1.2,

“Definition

‘5

.1.3.

5.

1.4,

"Definition

'S5

.1.5.

‘i-ev, iA

- 2(D)

Aut(D)
Inn(D)

B(D)

For any set A , i

.

the set of all automorphisms of D .

{H € Aut(D) : H 1is inner}

center of D = {f ¢ D : fog = gof, Vg e D} .

{bijections h e D : pt e D} .

A denotes the identity map on A ;

is that map in AA such that iA(x) =x , b6< e A .

We always here assume that K(X)<& T(X) .

Lemma 5.1.6.

¢

X

e T(X) , then 2Z(T(X)) ='{iX} .

Proof. Certainly we always have 1, ¢ Z(T(X)) . Now let f e Z(T(xX)) ,

X

then fog = géf ,\fg e T(X) => [£(x)] = fo[x] = [x]of = [x] ,b’x e X <=>

f= ix

‘Lemma '5.1.7.  Suppose . i

X

e-T(X) and ¢ : B(T(X)) ~ Inn(T(X)) 1is

defined by ¢(h) = H where H(f) = hOfoh-lg Vs é T(X) . Then ¢ is

an isomorphism aﬁd Z(B(T(X))) =4{ik} .
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Proof. That ¢ 1s a homomorphism onto is trivial. And the uniqueness

part of Lemma 3.3 tells us that if ¢(hl) = ¢(h2) , then h_.=nh

L =hy
i.e., ¢ is one-to-one.

Now suppose h e Z(B(T(X))) , then ¢(h)(f) = hofoh ™l ,
VEe T(X) . But he Z(B(T(X))) = ¢(h)(£) = hofoh™ = £ = i ofeill

so h=1, .
So for any T(X) we can describe the inner automorphisms of
T(X) . We are here interested in the case where every automorphism

is inner. - Corollary 4.13 yields many results in this regard.

We first concern ourselves with a specific problem.

X

Theorem'5.2.7 Let X be the reals and D = D(X) = {f ¢ X" : £ has

a (finite) derivati&e everywhere} , then -Aut(D) Inn(D) .
Proof. Let H ¢ Aut(D) . It is clear that X 1is a D,-space. For
example, suppose F is a closed subset of X , then X ~ F = (4) (a ,b)
: 2o non
as a disjoint union of non-degenerate open intervals, Define
kg XX by k(x) =10 _ ' , x e F
: 2nx-n(a +bn) v
)y + 1] , x ¢ (an’bn)

(bn—an)[cos( (bn_an)

then k ¢ D and k-l({ 0}) =F . So by Theorem 4.8 we have that h
is a homeombrphism. But being a homeomorphism of the reals we know that
h is strictly monotone, hence is differentiable somewhere (see Royden

"[8, p. 96]), say at x Let x e X and define

1

7 A
This is Theorem 2.1 of [4].
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£(x)

=x -+ X, Xy \ ,
VX e X
t(x) = h(x+xl) - b(xl)
Then £ ¢ D and t is a homeomorphism such that t(0) =0 . So we

" sget that if x‘+-0 and g = H(f) = hofoh—1 s then

gh(x)) + £(x)) - g(h(x))  hix;+x) - h'(xl_)v» h(x_+x) - h(x )
ey _ . = ,‘ e

This equation is seen to be valid if we merely substituto for f(x) and
t(x) and note that gech = hef . Now since the limit as x > 0 on the

left side of this équation exists and equals g'(h(xl)h'(xl)v, then thé

limit on the right sidg exists and must eqoal; by definitioo, .h'(xo)

But Xo is arbitrary, hence h € D . Similarly (by considering H_l )
-1

h T v .

From Lemma 5.1.7 we immediately now get:

Corollary '5.2.1. Under the assumptions of Theorem 5.2 Aut(D) 1is iso-

morphic to B(D) = the set of strictly monotonic functions in XX which
have a- finite derivative everywhere,

In [4, Corollary 2.3] Magill proves that if X is the reals and

D(X) is the differentiable maps, then every automorphism of D(X)
~has a unique extension to an inner automorphism of S(X). Ve

can generalize this to:

"Theorem 5.3. :Suppose ‘B and C(C are subsemigroups of XX such that
K(X)é;lﬁé;C and Aut(B) = Inn(B) , then every automorphism of B has

a unique extension to an inner automorphism of C .
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Proof. Let He Aut(B) . Define H : C-» C by H (f) = hofoh s
: . * . .
V@ e C « Then H is an extension of H , because Aut(8) = Inn(B) =>
% , S .
h ¢ B(B) = h ¢ B(C) => H ¢ Inn(C) . Now, if K is some other exten-

sion .of - H , then, using Lemma 3.3, we have,'V}ce X
, ' %
KC[x]) = [k()] = B({x]) = [h(x)] = h=k=> H =K .

Now to try to extend Theorem 5.2 to say the gntire (everywhere
analytic) maps on the cqﬁplex numbers, we immediately run into difficulty:
if P 1is this semigroup of entire maps and h is the complex conjugate'
function (i.e., if z = x + iy, x,y re#l,vthen "h(z) = x - iy =z )
then H ¢ Aut(D) defiﬁed by H(f) ¥.hofoﬁ—l',\ff eD , is an automof-
phism but is not inner since h % D .

Aﬁother'method of extension has been-attempted,-and.this is to
the semigroup of Fréchet—differéntiable maps on a real Banach space, X ‘,
To say a function f e-XX is Fréchetfdifferentiable_we mean_ﬁhat there

exists a map 6f : X x X » X which is continuous and linear in the second

variable and is such that k/a e X we have

k) = £(a) - g a0l _
lim 0
' BIE '

- x>0
Then §f(a,x) is called the first derivative of f at a with increment
x . The problem, stated by Yamanuro in [9], is: if D is,the set of
all Fréchet-differentiable maps on X , then is Aut(D) = Ihn(D) ?
The answer is not yet known;‘ Thé.best résult so far is that of Yamanufo
in [10]: an automorphism H ¢ Aut(D) is inner iff it is pniférm; where

uniform means that VYe > 0 and for every sequence of real numbers

. AN 0 . ’ .
{un}n=l. such that o $ 0 "/n but o >0 as n -+ , there exists
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a 6§ >0 such that if “x” < § , then

Iha b (e#0(0))) - h(0) |

Y

<efxf .

sup
n>1

n

1

The 'proof of this is long and complicated.
If we.try and look at other semigroups, we find there is usually
‘very much difficulty in showing whether or not all automorphisms are inmer.

An example which is not so difficult is the following..

Theorem '5.4. Llet: X be a set and D a subsemigroup of XX such that
RK(X)<D . If there exists a collection of subsets of X', § , con-
taining all finite subsets of. X ., such that |

1) D={Ee X W) e §_, Yae S}
and ii) Vae S,3f e D and a finite subset F of X . such that

£ =4 >

then Aut(D) = Inn(D) .
Proof. Let H e Aut(D) and A e S . Then by assumption there exists
an f ¢ D and a finite subset F of X such that f_l(F) = A . Let.

1. Then h(A) = h(£ X)) = g L(h(F)) . And since

g = H(f) = hoefoh™
h(F) is finite, propérty i) says that h(A) € S . Hence h_l e D '._
Similarly h e D

Examples of where Theorem 5.4 would apply are any measure épace

where finite sets are measurable.and S 1is the collection of measurable

sets, or where S 1is the collection of closed sets of some S*fspace.

N
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6. Cpnglusiéns. 'Somé of the results given above give criteria for two
spaces being hqmeomorphic. For example if X apd Y are T-admissable
and there exists an H s T(X) +vT(Y) ‘which is an isomorphism, then Xv
and‘ﬂY are homeomorphic.'

if Aut (T(X)) = Inn(T(X)) we can sometimes say something too.
Fof,instance,if D(X) = the near-ring of Fréchet~differentiable maps,
where sum and compesition .are the near-ring operations, then it is easily
seen that all ring automorphisms of D(X) are uniform, hence inner.

So D(X) and D(Y) are isomérphic iff X and Y are diffebmorphic.

It is of general ﬁatﬁematical interest to know when all'fhe
a@toﬁorphisms of a semigroup -are inner. In this regard there is much
room for research. For instance;'more examples of familiar semigroups
with this property could be searched for. Also open for investigation
is the question, if D is a semigroup-such'thét Aut(D) = Inn(D) ,
whatfthen can we conclude about the semigroup D itself?

These questions for research are interesting in that they can
be simply stated and understood, but not so simply can they be answered.
For examble Theorem 5.4 concefns semigroups having the property that
there is some collection S of subsets such that the property
f-l(AQ e S, VA e S , completely characterizes the elements of the semi-
~group. If for é certain semigroup such a collecﬁion of subsets is found,
then much about the semigroup may be deducible from study of the co1lec—
tion of subsets. If such a collection were found for say the Fréchetf
differentiable maps, then perhaps the question of whether all automor-

phisms are inner or not could be answered,
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