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ABSTRACT

The Problem The integral cohomology algebra functor, H*

was introduced to algebraic topolog& in hopes of deciding when spaces
are homotopy-equivalent. With this in mind, let T(A) = {XIH*(X) = A},
the collection of all simply-connected‘finite complexes X , for which
the cohomology algebra H*(X) is isomorphic to A . We ask: when are
there oniy a finite number of homotopy equivalence classes in T(A) ?

The Result Let A satisfy the condition:

k ni
ABQ B alx1/(x )
ij=

Then there are only a finite number of homotopy-equivalence classes in
T(4) .

The Methods For a given A we construct é "model space" 1
and ghow that for any X e T(A) there exists a continuous map X $ 1
"within N" . The concept of a map within N is less restrictive ﬁhan
that of a homotopy-equivalence, but more restrictive than the concept
of a rational equivalence.

We then show that in the category TN/M , whose objects are
$ M , maps within N , having range M , there are only a finite
number of equivalence classes. This is proved with the use of Postnikov
Towers and algebraic arguments similar to Serre's mod C theory. The

result then follows.
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i

Applications The result applies to spaces having rational

cohomology isomorphic to the rational cohomology of topological groups,
H-spaces, Stiefel manifolds, the complex. and quaternionic

projective spaces and of some other homogeneous spaces.
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CHAPTER THE TIRST

Premises what 1s necessary to be known; concerns a few common-
places of the cohomology Functor H* , 1ts early successes followed
closely with a somewhat melancholic discourse on its later disappointments;
finally a revelation of some bold aspirations for H* , and a promise of

a satisfactory conclusion, tho' the Reader perhaps will guard sundry doubts-



N

The early pioneers of algebraic topology Alexander, Eilenberg,
Whitney and Zilber noticed that the integral cohomology functor H* was
equipt with a natural multiplicative structure, the cup product. It
was hoped that H* could thus distinguish homotopy equivalence classes
of spaces, or homotopy types.

let us agree that H* is a functor of the topological-homotopy
category T, to the category of integral algebras. Thus we consider the

h

category, Th with objzcts spaces having the homotopy type of a simply-

connected, finite CW complex, with basepoint, and with transformations

which are homotopy classes of continuous maps. Let Az be the category

with objects which are associative, graded commutative algebras over the
integers, and with transformations which are graded algbra maps.
%
H gives a representation of the spaces of Th in terms of

the algebras of A The early pioneers noticed, that in some cases,

7
it does this well:

Case 1: ‘!Moore spaces Yg have a nontrivial reduced integral homology
group G in only one dimension n . As always, Y2 is simply

G
connected, n > 1 .,

* n

I n
. 1.1 Lemma If HY=H YG

, then Y = YG .

Pf. by the universal coefficient theorem and the Hurewicz

isomorphism wn(Y;G) < Hom(G,G) + Exg (G,nn+1Y) =U[YZ,Y] and idé ,

induces’ an isomorphism of integral homology. ¥



Case 11: Complex projective n-~space CP(n) 1is the 2n diﬁensional
skeleton of K(Z,2) .
1.2. lemma If g*Y = H'CP(n) then Y = CP(n) .
Pf. The generator of HZ(Y) is a map in {Y;K(Z,2)] . It induces
a cohomology isomorphism on the 2n-skeleton. 1
In sﬁch cases, we shall say that the intégral cohomology H* uniquely
determines the homotopy type of the space.
Recently it was discovered that an associatéd functor H*( 3Q)
glves quite a good representation of another class of spaces:
Case 111: Finite dimensicnal H-spaces. Let G be a space which
supports a homotopy multiplication.

1.3. Theorem If H*Y(3 Q= H*G<X}Q and Y , an object of Tn , supports
a homotopy multiplication then Y must belong to one of a finite
number of homotopy types.

Pf. [Curjel-Douglas}. ¥
In this situation we may say that the underlying homotopy types of

'H-spaces are finitely determined by Hw( sQ)

Theorem 1.3, may be combined with another result of [Curjel] which
states that a finite CW complex admits at most a finite number of mutually
non-isomorphic structures as a group in Th . The result is that on the
. category E} of group objects of .Th e H*( ;Q) finitely determines

sg-type.



1.4, Definition Let F : C> C' be a funétor and X an object of

C . Then F finitely determines C-type at X if the preimage

of ihe C'-equivalence class of FX 1is a finite set of C-equiva-

lence classes.

Despite these early success of H* , és exemplified in Lemmas 1.1
and 1.2, pioneers of topology noticed that the functor did not give a com-
plete picture of some tangibly evident spaces. Representative examples
will demonstrate some of the weaknesses of H*

Case 1V: Let RP(n) denote n-dimensional real projective space and
"y" the wedge product.
1.5 Lemma K RP(3) = W EP(2)vSS , but RP(3)  # EP(2)vS° .
Pf. see [Hilton and Wylie]. This is.a particularly galling-example, since
even H*( 3Z2/22) gives. a better showing. ¢

Case V: Denote a Whitehead product of the three inclusions of 53 in

+
83vS3vS3 by k¢ ﬂ7(53VS3VS3) . For ne 2 , denote the
cofitre of nk by wn (obtained by attaching e8 with attaching
map nk ).
% %
1.6 Lemma: HW “HW but W #W 4if m# n .
—_— n m n m
%
Pf. The cohomology groups of H’wn nay be determined from the
3 8

exact sequence for the cofibration S vS3vS3 i wn ) . The

gradation shows that all multiplication except by the identity is

trivial. >



k is of infinite order [Hilton 2]. Moreover n7wn = n7(V33)/(nk)
vhere (nk) 1is the subgroup of 1r7VS3 generated by nk . In ﬂ7Wn ’
j#(k) is of order n . Thus W # v if nédm .

{an is an infinite family of spaces of mutually distinct homotopy
types, but with isomorphic cohomology algebras. In this situation, H*
does not finitely determine homotopy type.

Nevertheless the main result of this thesis will be that :for many of
the spaces of Th s H* finitely determines homotopy type.

1.7. THEOREM Suppose that A is an algebra of AZ which satisfies

. -k Q[Xi]
the condition AQ > ® —=—— . let HT(A) be the set of homo-

i=1 (x:’i)
*
topy types Y with HY = A . Then FET(A) 1s a finite set.
PE. see THEOREM 4.3.4.
Thé cohomology algebras of Cases 1, 11 and 111 satisfy the conditions
of 1.7. Tor more examples see 5.3.0.
The proof of the THEOREM will progress in three stages. In Chapter
Two we give a description of a "model space” M which has the desired
rational cohomology. TFor any space X with H*X = A ,-a map ¢x : X+ M
is constructed so that X is "near” to the model space. ¢x is_"almost"
an equivalence. With the help of the transformations ¢x » we show in

Chapter Three that the homotopy groups of any space X with HX A

must also be "near" to those of ¥ . Then in Chanter Four, again with



the help of the maps ¢x , we show that the k-invariants of X must be
"near' to those of M . TFinally we remember that k-invariants provide
a complete description of homotopy type, to affirm the THEOREM.

For a more complete discussion of the result, see Chapter Five.



CHAPTER THE SECOND

In which the quest commences H*'s rationalizations give rise
to an abstract model to which it can give the appropriate ring structure (at
least rationallyl)., However such is the vexatious estate of the topological
wiiverse that an abstract model space can seldom satisfy our functor's
tntegral requirements. Frovidently, and at wondrous length, the Author
recites how 1‘1‘G begins to take stock of integrally satisfactory prospects,
to discern the Similarities and Particularities between them and its rationgl
model. The recitation includes an account of caleulations of so BASE a
character, that some may not think it worthy of their notice. The Reader

t8 encouraged to approach the chapter with Charity and Eclectic Diligence.



2.1.0 MODEL SPACES
let us agree on some nomenclature:

2.1.1 Definition An algebra of A, over Q is rather nice if

k Q[xi]
A= & — - Here Q[x] 4is the (graded-commutative)
i=1 (x i)

polynomiallring on one generator X , and (xn) is the ideal

therein generated by Xt .

Colloquially, we shall eay an algebra over the integers A 1is
rather nice if A® Q is; a space, or homotopy type, or even rational
homotépy type is rather nice if H*( Q) dis.

We shall now construct a space ¥ for which H*(M;Q) = A ., This
particular space shall be éalled the model space for A
2.2.0 1LOOP SPACES OF SPUERES AND TilEIR SKELETA

The loop space of a space Y in 'l’.n is the function space of
all continuous basepoint preserving maps o : Sl + Y , with the compact

‘open topology. It is denoted Q(Y), Q is a functor. There exists a

natural isomorphism nn(Y) = nn_l(QY)

The loop space of an odd dimensional sphere S“ﬁ'-l (m eveﬁ) is
infinite dimensional, with rational cohomology H* nsm+1 g Q = 0[x]
the free polynomial ring of one generator of dimension m , over § .
The integral cohomology is a divided polymomial algebra on one generator
1

(see 2.5.6 Example). We shall denote the loop space of Sm+ as '(Sm)m

for m even, cf [James]. For m odd, let (Sm) denote ST . In
o



eithef:case, (Sm)°° has rational homotopy groups trivial in all dimensions
except m .

[James] gives a canonical skeletal decomposition of (Sm)°°
Denote the mn dimensional skeleton of (Sm)m by (Sm)n . Then 1its
rational cohomology is H*(Sm)n D9 = Q[xn] /(xn+1)_ , where x is an
m vdimensionél generator. Hore recondite is the fact that (Sm)n (m even)
has exactly two non-trivial rational homotopy groups: nm(sm)n XPQ =qQ
and T(n+Dn-1(s") ®Q = Q. [Todal.

2,2,1 Definition Let A bé élrational, rather nice algebra. i.e.

k. Qlx,)
A< ® ——=—=—— and the degree of x, 1is called m, . Then
n,+1 i i
1=1 (x.17)
* k m
the model space for A is M= X (S i)n , where X indicates
i=1 i '

topological direct product.
11 may also be called the rational model space for any Z algebra
A" with A" ®Q - A ,

A simple calculation gqyg;y@pg.the Kuenneth Theorem sliows that
') =4 .

Another fact of prime importance for later theorems of this chapter
is a result of [Mimura-Toda; Lemma 2.4]: If i # (n+l)m , there exiéts
an endomorphism of the relative complex ((Sm)w , (Sm)n) which induces
a trivial map on the ith relative homotopv group ni((Sm)Q . (S?)n) s

while maintaining an induced automorphism on all rational relative homotopy
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groups ”k((smln . (Sm)nMZ)Q . This is why rational model spaces are
useful. They have internal transformations which preserve their rationaj
structure, yet which ignore torsion in their cohomology and homotopy
groups.

*
2.3.0 BROW H  COMPARES SPACES o0/ IN SEAPCH OF A WHITEHEAD THEOREM WITHIN N .

+2.3.1 Definition Let ¢ ¢+ A > B be a homomorphlsm of finitely—
generated abelian groups. ¢ is a (group)map within N if Ker(¢)
-and Coker(é) are finite groups of order a factor of N.
. A map ¢ : A » BD of graded abelian groups is within N if
_the order of the kernel of %" = o(ker ¢ ) raised to the nth power
is a factor of N, for all n.
_An’ alpebra map of A, is-within N if it induces a map within N
on the underlying graded abelian groups.

Amap of T diswithin N 1f H'(4) is within ¥ .,
Finally, two spaces Y and Y' are within N if there exists

a T, morphism within N between them.

=y

Group maps within N enjoy some elementary properties: ‘

2.3.2 lemma Let Ang B, B ¥ C be group maps within ¥ and N' resp.
Then ¢ ¢ ¢ is within N'H . ¢

2.3.3 lemma let ¢ : A+ B be an abelian group map within W . Then
_there exists amap ¢ : B+ A (within Nz ) such that ¢ o P= NZ

and )"°¢"=N2 . -

N

¢
1.e. A ;/B
NZ l //, 1 N2 is a commutative diagram.
A B

GJ"‘
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2.3.4 Llemma let ¢ : C, » C; be a map of chains of abelian groups
within N . Then the maps induced on the homology of the chain
complexes, Hn(¢) are maps within N2
Pf. Diagram hassling. 9
Suppose that A 1s a given, integral, rather nice algebra.
The main result of this chapter will be to show that all spaces Y with
H*Y = A are within a uniform N of the model space M .

2.4.0 OBSTRUCTIONS

To construct maps within N between rather nice spaces and the
model, we recall some of the results of obstruction theory. See [Hu;

Chapter V1, in particular E].

let * ;i> Y1 919 Y2 —> ... ~> Y be a skeletal CW decomposition

+
for Y . Suppose a map has been defined £, : (¥,¥") » (Z,2') has been

t

defined and we wish to extend this map to 2 map £ (Y,Yt+1) + (Z2,2")

1
so that
£
B
(3541) >(f,z )
r
(1,it)i e is a homotopy commutative.
7
: v f
Y

.7
Yayt

It is a standard result of obstruction theory {[Fu] that an

.+ .
obstruction class Y(ft) e u® 1(Y;n1 (2,2') measures the obstruction

+1



1z.

to this extension. The map ﬁt-l can be extended to ft+1 iff

£) = .
Y(£) =0
The obstruction class is defined naturzlly in the following two
senses,
2.4.1 Lemma Consider the following diagram in the category of excisive

pairs of Th

l) £ n+l

+
Gy ——— (X, X7 )

f

W,y —— (XX —E— (y,v)

.___.l}.__.> (Z,Z')

o+l hy

Then a) h induces a coefficient map : H (X;wn+l(Y,Y')) —

ntl, . - _ R
B (Xsm 1(2,27))  and hy (2(g)) = ¥(hog) .

b) f induces a cohomology map Hn+1(X,nn+l(Y,Y')) S——>Hn+1

; 4
(‘1 ’"n+l (Y :Y _2_)
%
and f Y(g) = Y(gof) .
Pf. from definitions. §

2.5.0 MEDITATIONS ON THE INTERNAL STRUCTURE OF A Z-ALGEBRA

Let A be an integral rather nice algebra in AZ . Then

ko QX
ARQE B
i=1 (xi i ")

with degree X, =m .

let iO : A+ AR Q Ue the rationalization of A . For each

_ __ni+1
i=1,2, ,k we have the inclusions Q[xi]/(xi )

> AZQ .
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2.5.1 Definition The i" faculty of A , Fac,A 1is the subalgebra

-1 ni+1
10 QE /G T )

th

In dimension m, the 1 faculty, considered as an abelian group,

- has free rank 1. Choose a non-torsion generator of this group, called

Xi .

' 2.5.2 Definition The power subalgebra of x , Pow(x) 1is the subalgebra
of a generated as a Z-module by the vpowers of x (xo = 1,x,x2 etc.)
For the next definition, we consider only the torsion-free graded
quotient algebras of the two subalgebras. Call them FreePow(xi)‘
and FreeFac A .

i

2.5.3 Definition The depth of Fac,A is the order of the cokernel of

i

the inclusion FreePow(xi) — FreeFac,A , considered as a map of

i
graded abelian groups.
It can easily be shown that defipition 2.5.3 is independent of the
choice of #i : any two choices have + the same representative in
- FreePow(x) . Similarly for more than one generator,
-2.5.4 Definition The power algebra of (xl,xz, ,xk) ., denoted
Pow(xl,,xk) is the subalgebra of A generated as a Z-module by
all products of the xi
The algebra Pow(xl,,xk) modulo the ideal of torsion elements will

be denoted FreePow(xl,,xk) . Similarly for Free A .
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2.5.5 Definition The depth of A , dA is the order of the quotient of
the inclusion Freer‘r(xl,,xk)-—-——> Free A considered as a map of
graded abelian groups.

An example will surely not further mystify the situation. Perhaps it will

clear up most of the fog:

2.5.6 Example The free divided polynomial algebra on one generator
of height n+l may be denoted rn(x) . It is a free Z-module
of rank n+l with generators (x(o),x(l),,x(n)) . It has a
multiplication defined by the relations Xem) X)) = (ngm) X (i)

n choose k" . In particular, let x = X1y -

(;) means
Then xk = k!x(k) . The power algebra of x 1is the free module
generated by the powers of x . There is exactly one faculty and
its depth in the kth dimension is k! ., The depth of Pn(x) is
11213, .n!

One more definition and we can start demonstrating something.

2.5.7 Definition The torsion number of A in dimension k is the order, tn(A)
of the subgroup of torsion elements of degree L .

2.6.0 HOW THE OBSTRUCTIONS ARE OVERCOME; A COMPARISON IS POSSIBLE

We consider the class of all spaces Y such that Y= A , a
given particular, rather nice algebra. For each such space, we wish to
produce a map ¢Y : Y>> , While we shall be doing this, we shall take

care that all maps ¢%. are maps within some (uniform) N , an integer

A
defined solely in terms of A . A sometimes delicate quantification
puzzle presents itself at this time. Think it through! The result of

this chapter will be



2.6.1

Theorem Pick a rather nice algebra A . Then there is an

*
(explicitly stated) integer NA so that all spaces Y with HY = A

are within NA of A's rational model space M .

.. Pf, The discussion will largely follow [Mimura and Toda; lemma 2.5]

Since A ds an integral rather nice algebra in AZ

k

a®oe @ alx /Gt ) sw= x h
im ’ ’ i=1 i
vhere m, is the degree of x

1 1

a) Ve can consider the model space one factor at a time:

-.To .obtaln -a.-map-within I A~¢‘-’ Y M, Lt -is sufficient to
' - m
sl:v+ (Y . Indeed if
Y n
i
i x Uy
¢Y* : H (S )n -+ FreePow(xi) is within Ni for all Y  , set
{
k

construct a map within (a uwniform) Ni

1.2

n
@I @ i'ti(A)) .. Then set ¢, = (4%,0 ,,05) and the

g=1 1
result will follow .
- i
let us now agree to suppress the index 1 from xi,mi,ni,Ni,FaciA,tb

b) If m is odd: Then n(=ni) = 1 and [Serre] demonstrates there

exists ¢ : Y * s™ "« One observes that,-upon the required restriction,
- ) dimA~-m dima mdtm‘ £
this induces a map within N = 2 i (order of T7,(5))
: : ' j=mrtl i

‘Since the order of u,S" is finite for i>m, N .is"aﬁi,_we'll

3

«~defined integer, an invariant of A .
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¢) If m is even: the demonstration is more complex. [Berstein]

is credited with early work in this direction. The idea is to

produce amap 6 : Y - (Sm)°° . By cellular approximation, 6 may

be viewed as a map (Y,Ymn) - ((Sm)oo . (Sm)n) . Ve then try to

extend this to a map (Y,Y) > ((Sm)°° , (Sm)n) . This almost works,

but not quite; we must modify ® by an endomorphism of ((Sm)w ,

(Sm)n) to get a map which does extend, and this map will be the

required ¢Y

Choose a torsion-free generator x of dimension m 1in FacA .
Without loss of generality we may assume 1 (x) = x (see 2.5.1) x is

Q

an m + 1 dimensional cohomology generator of Y . Let us call the

url-lsm+l

generator of H s u , and let u be a generator of Hm(Sm)

Again invoking the work of [Serre], we know there exists a map 8 EY + S
§n+1 such that 5%(53 = N'E x vhere N' is given by the formula in b)
substituting m+ 1 for m , and dim A+ 1 for dim A
m+l m, .
The adjoint map 6 : ¥ - QS = (8 )°° has the similar property
*
8 (u) = H'x . We thus have amap (Y,¥") » ((s™_ , (sm)n) . A

moment's reflection on the cell structure of (Sm)Oo indicates that this

n(n+l)-1

may automatically be extended to a map (Y,Y¥ ) > ((Sm)°° , (Sm)n) .

Thus the first (and most difficult) obstruction to extending & to

a map (Y,Y) - ((Sm)co , (Sm)n) occurs in Hm(n+l)(Y;ﬂm(n+1)((Sm)w .

(Sm)n)). Now 7 is easily calculable: "m(n+1)((sm)m s (sm)n):

m(n+15

Hm(n+1)((sm)m , (Sm)AF Z . The obstruction cocycle c(e) is also readily
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calculated: Let w = m(ntl). c(8) 1is equivalent to 0,y ¢ CW(Y) = HW(YW,

- *
Yh s w8, L M) =R E™, 2z . Y6) = §(u,_,,,) , vhere

(n+1)
u is the generator of the wth degree of T (u) = H*(Sm)
(n+l) - w
. % -4
We now note that (n+l)W @) =O (un rl) vhich must be a torsion
* ' -
element: @ (un+l) = (N'X)n+1 and xn+l is torsion for §n+1 =0 . Thus

Y(@) 1is a torsion cbstruction.

In all other dizcnsions, the obstruction to extension of any map
is a torsion cohomology class since all the coefficient groups "k“Sm)w .
(Sm)n) are torsion groups. Let us denote the order of the group nk((SmX” ,
(™) by B

[imura Toda; Lemma 2.4] show the existence of endomorphisms of
((Sm)°° R (Sm)n) vhich trivialize torsion homotopy groups. We compose
theta with a sequence of these endomorphisms, and call the composite ¢ .
From Lemma 2.4.1 we confirm that the obstructions to extending to (Y,Y)
all vanish and the theorem 2.6,1 shall be proven.

[Mimura Toda; Lemma 2.4] supplies us with an endomorphism hq

o+l nm(n+l)

which induces a map of degree ¢ ((Sm)°° . (Sm)n) . For

this reason 1if we let gq tw(A)

n+1

% %
Y(hqoe) =8 hq(u ) =q Y() =90 . hq o Y extends to the next

(m(nt+l)
dimension.
[Mimura Toda; lemma 2.4] also shows the existence of h(p ) an

endomorphism which induces a map of degree P, on “k((sm)m , (Sm)n)

when k # m(nt+l) . lHence
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oh oh o = ¢
Pp@mt1)+1) ¢

h oh O essvse
gy Paima-y’

has no obstructions and extends to a map ¢ : (Y,Y) » ((S%m , (Sm)n) .

A laborious calculation gshows that h ( induces

) .
k! m,, o *

a map of degree Py in " ((S )n) « So finally ¢ (u) = Nx where

dimA

It p,j! . 0
jem(n+1)+1 3

A

= | [ *
N=N tm(n+1)

The main result of Chapter Two has been proven: All spaces Y with
H*Y = A , a given rather nice algebra, are within some uniform N of the
model space M . Recall that two spaces are within N if there exists a
map with induced cohomology map within N between them. We shall see that
this kind of comparison "H* - within N" 4is important in discovering how

- T, compares spaces.
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CHAPTER THE THIRD

Containing such serious matter that the Reader eanmot laugh once
through the whole chapter, unless peradventure he should laugh at the
author,

The Reader is cautiomed that without Familiarity of the Riggings of
the language of the following introduction, or without Sensibility of the
direction of the demonstration, he will soon welter in a desolate Sargasso

of minutiae and conundra.

HERE BE SERPENTS !l

To the Intrepid Reader, the Author now pledges Solemn Promise of
Prodigious Treat upo: completion of his Endeavours.

To the Prodigal Reader, the Author imparte begrudgingly that hereto-
fore bespoken Treat might perhaps be ferreted out at 4.3.5.

Of the Disciplined Reader, the Author commends Zeal and Patience,

and invites him to prove his Mettle forthwith.
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3.1.0 A NOVEL CATEGORY AND A QUESTION OF INFLUENCE.
Let us agree that A denotes a rather nice algebra in A , M
its rational model space as defined in 2.2.1 and N the integer defined in

*
Theorem 2.6.1, If Y is a space of T and HY= A , we have already

h
constructed a map ¢ : Y- M whick is within N . Let us affirm the
importance of the role of ¢ with a change of viewpoint (and a dextrous
modification of our categories).

3.1.1 pefinition The category of spaces within N over M, TN/M has
objects which are homotopy classes of continuous maps : Y i M
within N . Maps are (homotopy) commutative triangles of Th .
On TN/M let us introduce auxiliary functors D and Fb which

distinguish respectively the domain for ¢ , and its fibre. There is a

fibration Tb($) - D) » M ,

We shall also require a notion of when a functor ¢ influences a

functor ¢ .

3.1.2 Dpefinition Let ¢ Cl -> C2 and ¥ : C1 > C3 be two functors.
Denote the class of equivalence classes of a category C by' c .
Then the functors ¢ and V¥ induce maps 3 : ¢, > C, and

: El -+ E3 . ¢ finitely determines y 1f V¥ ¢ x 1is a finite

set, for all x in C

<l

2 -
* *
3.1.3 Example OCn Th , B finitely determines H ( ;Z/pZ2) . Similarly

* : : %
H ( ;Z/pZ) finitely determines. H“( ;z/pzz) . Thus H finitely

* * *
determines H ( ;z/pZZ) . H uniquely determines: H ( ;Q) 1.5.
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Similarly for several functors:
3.1.4 Definjtion Let V¥: C-~ Co be a functor and {¢i : C+ Ci} be a
set of functors. Then {¢,} finitely determine Yy if ¥ (N ;;l((ii))
‘ i

is a finite set, for all §1 in Ei

) n 3
3.1.5 Examples En—l( 32) and Hn( :Z) finitely determine H ( :Z) .

Indeed by the universal coefficient theorem, they uniquely determine

.Hn( 32) . More difficult: see Theorem.3.4.1 '{nn(Fb) n (Fb)

’ n~-1
and ﬂnM} finitely determine wn(D) on TN/M

+
3.1.6 lore Examples Consider the category Z whose objects are the

non-negative natural numbers. If m # n Map;+£ (m,n) has only

one element, * ., If m=n , Map +' (m,m) ﬁas exactly two elements
* and id . Compesition with tge id ~ does pot change any map.
A1l other compositions = * , This might be called the discrete
category on the set Z+ . The functors C -+ Z+ are exactly the
integer invariants of C

Let At be the category of finitely generated abelian groups,

Rk : Ab » z' be such that BRk(G) is the minimal number of cyclic
direct summands of G . It is an invariant of Ab~isomorphism class,
and hence a functor. Similarly Tn : Ab -+ Z+ is the order of the
torsion subgroup. Then Rk and Tn finitely determine the iden-
tity functor on Ab , or in the language of 1.4, Rk and Tn

finitely determine Ab-type.
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3.1.6 Exposition The §inst aim of Chapter Three shall be to d emonstrate
that on the categony of rather nice spaces, H"r finitely determines
T, gdon all wn . 1In other wonds if A 4is nather nice, we Ahall
deduce that the class {wn(V) ] -H*V = A} nesolves into a ginite
rumben of Lsomorpiism classes of groups. e shall approach this
nesult (Theorem 3.4.2) canefully, Lin three stages (3.2,3.3,3.4).

Task the Finst: Let Fblg) be the §ibre of the map ¢ : YV > 4
given in Theonem 2.5.1. With the help of the Sewre spectral Sequence,
H*(D) finitely detenmines Hn(Fb) for atl n . Moreover m,(Fb)
A8 finitely determined by H*(T‘)) (Hureudez)

Task the Second: Let CCU(Fb) be the nth connective av ening
0f Fb . There is a §ibration Kix Fb,n) + cC'(Fb) » cC"! (Fb)
Applying ithe Serne Apectral sequence again {1r“(Fb) , HL(CC’“")

H e T (Fb) I < k) §initedy detormine H, (CCY(Fb))

Task the Thind: = (Fb) = # (cC™ T{Fb)) grom (Huremicz)

We can calailate the homotopy groups of D 4grom those of Fb and

M


http://ru.ce
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3.2.0 THE FIBRE SPACE OF A AP WITHIN N

Given a map ¢ :Y » n of Th » within I we may construct the fibre
of ¢ , Fb{(¢) , so that TFb(¢) » Y+ i1 is a fibration. There are twc
things to notice initially. Fb(¢) is not in general finite dimensional,
though for our purposes this will not matter. nn(Fb(¢)) and Hn(Fb(¢))
are finite groups for n > 0 , by the use of "mod (" theory [Serrel.

Vle shall limit the cohomology groups of the fibre by applying the

Serre spectral sequence for cohomology with integral coefficients.[Serre 2].

The E, 1level of the spectral sequence has the property

P = WP uni(m)) — @ ¢
ptq=n

* %
vhere G °Y is the graded group associated with Y D($) with respect to

¢

* q_l *sq R
the filtration (F&’ —_— Fb ) of E D(¢p) .

x N
3.2.1 Llemma qg,q is finitely determined by E D (on the category TN/PD

Pf. Consider

E:’q = Gosq << Fo’q A FlsQ‘I-(_____) Fq’o = Eqso
o~ ~ had
; q |
)2
cokrl(¢) < 19 < H7(g) 1%

Show that © exists and is epic. Thus the number of direct irreducible

summands Rk(Eg’q) < rkH%D » and the torsion order Tn(Eg’q) SN . 9
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3 % ‘
3.2.2 lemma ({ Eg’J}j<q and H D finitely determine Eg’q .

Pf. The number of isomorphism classes of subgroups of a finitely
generated abelian group is finite. The number of isomorphism classes

of quotient groups of a finite abelian group is finite,

E;’J =t esdm) =l @ B9 @ Tori L pdm)

i

@ Eg’J + ‘I‘or(Hi+1M,Eg’j)

is uniquely determined by Eg’j . It is also a finite group

(-valued functor) when j #0 , because Eg’j is, when j #0 .

E:’j , a sub-quotient of Eg’J is finitely determined by Eg’j it

j # 0 .
et d_ : Ed—> g5 9 o an P aifferential. When
s #q+1 In(d) is finitely determined by E2,Q-s+l .
s

When s = q + 1 consider

Im d cgdTL0 L patl0 Eg+1’o

7] [

kerHQ+l — Hq+1M > Hq+1D
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Show that 6 exists and is epic. Then Th(ImdS) < Tn(kequ+1) <
N. Bence Im(ds), a finite group (~v.f.) d1s finitely determined

0,q-s+1

by E2 for all s . We have a short exact sequence

29 ey 059
s

ot —>> Im(ds) for all s

n
Since the isomorphism class of E;’q is uniquely determined by the
extension class of ds which is in Ext(Im(ds), ESL%) , a finite

group (v.f) it might not be a tad idea to notice that Ext( )

. , 0,q 3,3 =259
is finitely determined by Es+1 and {E2 }j<q - E_ is
0,q 0,3
finitely determined by Es+1 and {EZ } j<q By the convergence

properties of the Serre spectral sequence Ei;g = Eg’q , and by
Lemma 3.2.1, Lemma 3.2.2 is proved. ¢
3.2.3 Corollary H*D finitely determines Eg’q = 19m , for all ¢
Pf. Induction on q of lemma 3.2.3. 1
For the next task, we shall find it somevwhat more convenient
to restate this as

%
3.2.4 Corollary H D finitely determines Hqu .

Pf, Universal Coefficient Theorem.
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3.3.3
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THE nth CONNECTIVE COVERING OF THE FIBRE

The homotopy exact sequence includes the sequence

D oe— 1r22v1—->> 'anb — nlD =90

"2
This implies that anb is abelian and there is a natural isomor-
anb = HlFb . Comparing this with Corollary 3.2.4 we get

Lemma Fb is finitely determined by I § (on TN/H)

Ty
We now perform the Cartan-Serre-Whitehead method of killing

higher homotopy groups [Mosher-Tangora)] with a map i, : Fb >

W
K(wlFb,l) . The fibre of this map will be denoted Ccl(Fb)
and is called the simply-connected covering of Fb .

Recursive Definition The nth connective covering of a space

X , denoted CCnX is the fibre space of the Whitehead-Serre~Cartan
map iw : ccn'lx - K(nnX,n)

As 1its name implies, it is n-connected, Furthermore njCCnX =
mX if j> o . ‘
Lemma Let :;a be the set of functors {nan,HqCCn—lFb,HjCCanlj<q} .
Then 32 finitely determines HqCCan
Pf. Note that all are finite abelian (group valued functors),

from "mod C theory".
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Consider the Serre spectral sequence of cc"m > CCn—lFb >

2 2 ) )
K(r_Fb,n) . The E° level: Es’t-Hs( K(r_Fb,n) ,Ht(CCan))

- ; D = : "n
HSK(jan »1) QDHtCCnI‘b s Tor(Hs_lK(‘fran »n) Hth Fb)

is uniquely determined by :%q if t<q .

1

On the E° 1level E: is a sub-quotient of E2 and hence is

>t s,t
finitely determined by it. If t < g :;ﬁ finitely determines

r
E .
s,t

th

Consider the r differential dr : Er r

r’Q“r+1 N anq « The

image of a* is a quotient of E- and so is finitely deter-

r,q-rtl
mined by 5@ .

We have an exact sequence Im(dr)c——-> Er —_—> Er+1 . From
0,q 0,9
the properties of Ext, we have that E; q is finitely determined
2
r+1
b V{E. 7}
y‘;q 0.9

By the convergence of the Serre spectral sequence, and by the

use of the edge homomorphism we have Eq+2 =5 & F = H CCn-lFb .
0,9 0,9 %9 q
Hence Eq+2 is finitely determined by HqCCn_lFb , and hence by (;; .

0,q
Lemma 3.3.3 follows by downward induction om r , of the previous
paragraph. 1
3.3.4 Corollary .wn(Fb) is finitely determined by H*D .
Pf. Remark that nan = HnCCn-lFb . Apply Lemma 3.3.3 inductively
first on q , themon n , to show that EpCCmFb is finitely

&
determined by H D for any p,m . €
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3.4.0 THE HOMOTOPY GROUPS OF A RATHER WICE SPACE

x
3.4.1 Theorem On TN/M ﬂnD is finitely determined by H’D .

Pf. The homotopy exact sequence includes the seguence

i

n B,
n Fb ——>7 D —i—> T H —>7 Fb and so
n n n n-1

Im(in) — nnD > Im(¢) d1is short exact.
Considered as a quotient of nan , Im(in) is finitely determined
by H*D (Lemma 3.3.4). Im(4) is a subgroup of nnM , and there
are only a finite number of extensions, up to isomorphism. 1

3.4.2 Corollary 1Let A be an integral, rather nice algebra.
Then '{nnYlH*Y = A} reselves into only a finite number of group
isomorphism classes.

3.4.3 Lemma There exists an integer Ng such that « n(q>) is within
Ng for all objects ¢ of TN/M

s

Pf. Let Nn be the least common multiple of the finite set

{Ta(n Fo($)) , Tn(r, _ P4 |6 e obj T'/M} . g
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CHAPTER THE FOURTH

A wonderful long chapter concerning the marvellous; containing
much clearer matters, but which flow from the same fountain with those
in the preceding Chapter. The memorable Transactions which occur within
may encourage the Reader felicitously to adapt some of his Categories.

In any case, these Transactions are indeed integral in a happy resolution

of our Recitation.



30.

4.1.0 n-TYPE AND POSTNIKOV ‘TOWERS

4.1.1 Definition: Two CW complexes K,L have the same n-type

if there exist maps £ : ' > 1" and g " 5 1" where Ln*, K" are

the nth dimensional skeleta of K and L

. The maps satisfy:
a) For every map from any (n-~1) dimensionel (Y complex

h .

24

h : i+ K® gofoh

b) TFor every map from any (n~l1) dimensional CW complex

h:M-> 1" fegeh

"

h .
One of the most important otservations about n-type is

4.1.2 Lemma Let X and L be n-dimensional complexes. Then they
have the same (ot+l) tyne iff they have the same homotopy type. 1

Given a O7 complex ¥ there is a canonical space ?nY with

the same (n+l) type as Y : The Cartan-Serre-"Thitehead method of
killing higher homotopy groups constructs a map iw : ¥ > PnY s
with the property that iw# : ﬂiY = wiPnY for 1isn , and
niPnY =0 for i>n .

4.1.2 lemma X and Y have the same (n+l) type iff PnX = PnY .
Pf. Whitehead theorem.
If we now apply the Cartan-Serre-Whithead method of killing the

(n+1)st homotopy group of Pn+1Y , we obtain a map Pn+1Y - PnY . Such

maps form a Postnikov tower for Y in the sense of [Mosher-Tangora].
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4.1.5
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Definition: If X 1s a simply connected complex, the diagram

n+2

B‘x"-

X

—“’ -‘
\l‘ wtl pn+1
n
Py Yn

(4

X

-

is called a Postnikov Tower for X 1f it satisfies four conditioms:
a) the diagram is homotopy commutative
b) “iﬂm =0 for iz m

c) Pn induces isomorphisms nix‘i “1Xm for 1 <m

d) 02_1 is a principal K(nmx,m) fibration.

Happily, there is a classification theory for princiapl fibra-
tions [lMeyer] and 92-1 is classified by a homotopy class
k(ﬁ‘l)gpxm-l - K(nmx,m+l) . This homotopy class is often called Fhe
(m-1)st k-invariant of the Postnikov tower. Postnikov Towers enjoy
some functorial properties:
Lemma Let X and‘ Y be simply-connected CW complexes, and let
f:X+ Y be a continuous map. Suppose P.X and P,Y are Postnikov

Towers for X and Y . Then there exists a family of maps

Pnf: an:# PnY with the following properties:



a)

b)

Pf.

P £
n-1 l kY

k .

p . x —=2 >K(n_X,n+1)

n-1

£# is

P .Y -—"’——->1<(nn*z,m1)

n-1
p f
PX —2>py
n n
n n
pn-—l l l pn--l is
Pn--lx P f Pn=1
n-1
X >PnX
°n
f P £ is
n
Y >P Y
n

[Kahn, Mosher-Tangoral. 1
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homotopy commutative

homotopy commutative

homotopy commutative

It will be important to know when two spaces having the same

n-type have the same

(n+1) type.

4.1.6 Lemma Consider the following diagram:
n X
Pa-1 kn
PX— X ———> K(w_X,n+l)
n n-1 n
ol l( kY
n-1 0
PY —> P _Y—"—s K(r _Y,n+l)
n-1 n

There exists a homotopy equivalence, allowing the diagram to

commute.:, on the left, iff there exists one on the right.
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4.1.7
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Pf. If there exists a homotopy equivalence on the right (commutative)

the induced fibre map is the required commutative homotopy equivalence

on the left.

If there exists a homotopy equivalence on the left (commutative)

say Pnf: PX= PnY , note that {P X} , {PmY} for m £ n form

n n

Postnikov rowers for an and FnY . Let the map on the right be
Pnf# . Property a) of Lemma 4.1.5 shows that the diagram commutes
on the right, and the homotopy exact sequence for fibrations shows
that it is a homotopy equivalence.

Ye shall now begin to prove the main result of this thesis:

* N,
H D finitely determines homotopy type on ™/Mn .

-~y
)

Recall that an object of TN/N is a homotopy class ¢ : Y » ii
which is within N , and that a map of Tﬁ/ﬁ is a (homotopy)
commutative triangle.

Definition If ¢ and ¢' are objects of TQ/M , they have the

same (n+l) type (over 11 ) if there exists a homotopy commutative

diagram
Pn(Dd>) —_— Pn(DqB "

Pn¢ Pn¢'

av)
.
—

Since everything is simply connected, all objects in TN/M

have the same 1~type.
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o .
4.1.8 Explication Suppose we have demonstrated that H D f§initely

*

determives n-type. Ue wish to show that {n-type, nnt" and H D!

§initely 1etermines (n+1) type. Consider the foflowing diagram

ke :
PVL’I%‘ - V’K(Tl'n:)(bv,n"")
P10 ke —> Kin Dyt nr1)
3 AW
\ Pn\:IM '{ 7 K(ﬂ}f‘",n*‘,)

¢ and ¢' have the same (n+1)-Lype iff there exirts a
homotopy equivalence o , indicated as a dotted Line, which allows
the entirne diagham to commie.

The existence of a homotopy equivalence allowing the night-hand
tniangle to commte {8 a purely group /theona/t@ question abait the
Asomonphisms of m D¢ > m Do’ . 1 shall be dealt M’L ut 4.2,

The question of the homofopy commutativity of the z)hol_e diagram
shall be considered in 4.3, with our knowledge of mb - Thus shall

we perform the induction step..
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4,2.0 THE CATEGORY Ab/C

4.2,1 Definition The category of abelian groups over C, Ab/C has
.objects which are group homomorphisms B.$ c , where B and C are
‘finitely generated abelian groups. Morphisms'in Ab/C are commutative
--triangles. |
| The éull subcategory of groups over C and within N , denoted
AbN/C has objects which are group maps within N .
Of course, two objects ¢ and ¢' will be equivalent in AbN/C

Aff

¢\\\ 4//;, is commutative.

4.2.2 Theorem There are only a finite number of equivalence classes in
mlc . |

Sketch of proof: let D(p) denote the domain of ¢ . Then
the _free rank of D(¢) = free rank of C and the order of ;he torsion
subgroup of D(¢) must divide N times the order of the torsion subgroup
of C . Thus there are only a finite number of group isomorphism classes
for D ‘.

Since Hom(B,C) = Hom(FB,FC) & Hom(FB,TC) % Hom(TB,TC) where
ﬁ ZTB® FB , the torsion and free summands of B , we may restrict our
~attention to tﬁe case when B and C are free groups. The result then follows
from elementary observations. ¢
4.2.3 Definition The category Abn\p, abelian groups under C and within N

‘has objects which are group maps C<$ B within N .

4.2.4 Theorem There are only a finite number of equivalence classes in AbNNC .

T

e it R R T
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4.3.0 THE MAIN RESULT ; THE WHITFHEAD THEQRE:: WITHIN N
{

%

Let us review: with the assumption that H D finitely determines
the n-type of ¢ , we consider the following diagram for two objects
¢ and ¢_ of ™m

4.3.1 Diagram

> K(ﬂnD(¢),q+1)

P
n-
ar e
- ), ; #
n-1 kn~1”¢o N i

D) > K(n_D(6_),m+1) ™ (0

Pn—1¢o e “nfo _ ¥
> K(nnH,n+l)

or schematically,

/7& e’
&

That we can consider side 1 to be (homotopy) commutative

is a consequence of the induction hypothesis. (Definition 4.1.7).
Sides W and E are homotopy commutative, from the properties
of Postnikov towers. (Lemma 4.1.5 a)).
That we can consider side S to be commutative is the result

of 4.,2.2 .
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To decide when the cover C is homotopy comnutative, is to
decide when ¢ and ¢ = have the same (n+l)-type. (Take fibres "to
the north" and compare Definition 4.1.7).
The direction of the proof should noﬁ be evident.
4,3.2 Lemma: Under the assumption that W,E,¥,S are commutative, the

_n+
torsion elements of il 1

(Pn_lD(¢o), nnD(¢°)) characterize commuta-
tivity of C .

Pf. For any ¢ , an object of TN/M for which there exists a Diagram
4.3.1, let £(¢) = “#°(kn_19¢)°a-l - kn_1D¢o , where each of the

n+l

terms is considered as an element of H (Pn_1D¢o, nnD¢o) . If

t(p) = t(¢') , then

‘ n—1L¢
P -1(D($)) ———> K(w _D(¢),n+1)
{L a'“l o O {“ “#_1 o oy is commutative,
kn—ln¢' | ‘

4 1
> +
Pn_lD(¢ ) K(nnD(¢ ),nt+l1)
To see that t(p) is a torsion element, note that ¢o¢ is a
k!

rational equivalence. From the commutativity of #,E,W,S,

t(¢)°¢°# =0 . 9
4.3.3 THEOREM ('"Whitehead Theorem within N"): There are a finite number

7
of homotopy types of objects in TL/M .
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Pf. Llemma 4.3.2 shows that H*D finitely determines n-type for
all n . Apply Lemma 4.1.2 to show that H*D finitely determines
homotopy-(equivalence) type. Then note there are only a finite
number of isomorphism classes of {H*E(¢)|¢ € objTN/H } .09
COPOLLARY let A be a finitely-generated, associative, graded-

commutative simply-connected algebra such that

k Nx.]
AXo~ G ——m— .
=1 "1)
Xy

Then {YlH*Y = A,Y has the homotopy type of a simply connected finite
CY complex} resolves into only a finite set of homotopy types.
TREAT WNow define two finite (7 complexes X and Y to Le within

N 1if there exists a CJ complex Z such that there exist maps £
f:2Z2~ X within N and g : Z+ Y within ¥ . TDualize the argu-
ments of Chapter Three and Four to show that there are a finite

number of homotqpy types of TN\&1 . Choose an object X of a
rational homotopy' type (5.1;1). Nefine w§ to be the class of all
spaces within ¥ of X . Shov there are only a finite number of
homotopy types of wi . Finally, lim W, = i
S X

v

)%

the rational
homotopy type of X .

For rather nice spaces, Theorem 2.6.1 shows there is an easily
calculable invariant, namely H*Y which guarantees that all such
spaces are in some WN filtration of the rational homotopy tyve.

Can the Reader thinl of a larger class of spaces for which the same

result is true?



CHAPTER TIE FIFTH

Showing what kind of History this is; what it is like and what 1t

18 not like. Lastly a heartfelt farewell to the Reader.
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DISCUSSION
THE HISTORICAL SETTIHG

In 1969 [Quillen] introduced the concept of rational homotopy
theory, With apologies to that author, a rational homotopy type may
be considered a subcategory of Tb » Where the morphisms are
O-equivalences. (i.e. within ¥ for some N ). :loreover, for
any two objects X,Y there exists another object Z and morphisms
Z> ¥ and Z-+Y .

In 1970 {Mimura and Toda] announced that for rather unice spaces,
the rational cohomology functor unicuely determines rational hcmotopy
type. In parﬁicular, given a rational, rather nice algebra A ,
one can construct a space Z0 such that 1) H*(ZG;Q)ﬂ: A and
2) for any other space X with H*X;Q) = A there exists a
O-equivalence X -+ Z0 .

In the same year {Curjel and Douglas] succeeded in showing that
there are a finite number of homotopy typeo of dimonsiom H  «rhioh
support an H-space multiplication. In other words, the dimensiom
finitely determines the underlying namotopy type.

Then in August of 1971 [Curjel and Douglas 2] asked:

Let A be a condidate for H*(X;Z) i.e. an associative, graded
simply comnected algebra over the integers 72 . Let T(A) be the
set of homotopy types of simply comnected finite complexes having
integral cohomology ring isomorphic to A .

Question For which A s 1(A) a finite set?
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[Curjel and Douglas] then announced a proof of a positive
result wvhen AL Q is an exterior algebra on odd dimensional genera-
tors. In some 8ense, the result is the easy case of Theorem 4.3.3:
m

. . i .
the obstructions to getting a map from ¥ to XS are torsion
i

due to the work of {Serre]. 1lloreover all k-invariants must be torsion.
Thus this thesis is a generalization of the announced result of
[Curjel and Douglas 2], and in the same spirit.

COGNOMINA AND METEODS

[Larry Smith] discusses "nice" and "super-nice' algebras in a paper
which introduced the author to the conept of a space over a space.
Since the algebras we are concerned with in this thesis are all nice,
though somewhat less free tham super-nice algebras, they merit the
appellation "'rather nice”. lloreover this thesis demonstrates that
they permit a rather nice distinction of homotopy types.

Some of the methods of demonstration have been cormonplace and
sometimes perhaps elephantine. The Serre spectral sequence,
Postnikov Towers and the higher connective coverings are heavyduty
methods of producing results; the author is certain the Reader is
well aware of their manifest and wide~ranging applicability.

Three novel concepts are central to this thesis and deserve

comment .
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Categories over a base. The question of when two spaces are

homotopy equivalent has long puzzled topologists. Yet the problem

we consider is apparently much more difficult: When are two spacés

over a model space homotopy equivalent? i.e. when does therc exist
a homotopy commutative triangle

X — v

N

M

That this apparently more difficult problem sometimes admits a
solution rests perhaps on the fact the category of abelian groups
over a group. has more structure than the categorv of abelian
groups considered in isolation. Ilence when a classification in

A /C is possible, there may be more chance that it will carry over
to the topological situation.

Maps vithin 1  Consider a (Serre) congruence class of groups

"modulo finite groups'. There is a free group in the class. Call

. N : . . .

it ¢ . Then /5 /C 1may be considered to be a filtration of the
<]

congruence class Ab /C . Ioreover therc are a finite number of

-
isomorphism classes in each &/c .
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The result of this thesis is that we can perform a similar
procedure on rather nice rational homotopv types with the added
feature that such a filtration is compatible with integral
cohomology. When this happens we may conclude as in Theorem 4.3.3
that HT(A) is a finite set.

5.2.4) Category theory seems sadly lacking in language to describe
how well a functor functions. Thinikk of a homotopy functor as
draving a likeness of a space. Can we recognize the original from
its likeness? If we can, let us say that the functor uniquely
determines the (equivalence class of the) space. It is with this

in mind that the author introduces the notion of "finitely deter-

mines'”. The name however seems fraught with unvonted ambiguities,

and the Author will welcome emendations.
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5.3.0 APPLICATIONS AND EXAMPLES

5.3.1 By an early theorem of Hopf, finite dimensional rational Hopf algebras
are multiplicatively exterior algebras on odd dimensional spheres genera-
tors. Thus Lie greouns, topological groups, H-spaces and H-spaces mod ¥

are all rather naice.

5.3.2 From the work of [Borel] and [Cartan], real and complex Stiefel
manifolds also have rational cohomology algebras which are exterior algebras.
In general, homogeneous spaces are often ratier nice. See [Atiyah-Hirzebruch]
and [Baum] for some interesting examples,

5.3.3 By the Ruenneth Theorem, a product of spaces is rather nice iff

each factor is. More generally

”

5.3.4 lemma If X,Z ¢ objT , and ¥ is a retract of Z a rather nice
=a N}

h

space, then X is also rather nice.

Sketch of proof: Let q : A—>>QA be the quotient map onto the

(Q~vector space) of indecowposables. i.e. 0A = A/Az . An endomorphism

a of A is an automorphism iff the induced man o : QA+ QA 1is also.
Characterize rational rather nice algebras as follows:

%) For any set of elements X13%Xy5s 5X € A such that q(xl), q(xz),, q(xk)

k m,
are linearly independent, then J Xy Y40 , where m, is the largest
i=1
m,
integer such that X T+0 .

*) 1is equivalent tc the statement that A is rather nice,

13 R . * x
If X is a retract of Z QM X®Q “—— oM ZPQ and HXPQ >
% *
H2Z®0 are both monomorphisms. Apply *) to show that H X ® 2 is rather

nice. ¢
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