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ABSTRACT 

The conditions required for a s o l u t i o n of general non-linear 

programming problems of the form 

rain{f(x): x € X , g(x) ±0 , h(x) = 0} ; 

where f i s c a l l e d the objective f u n c t i o n , g the i n e q u a l i t y constraint 

and. h the equality c o n s t r a i n t , are presented i n t h i s t h e s i s . The following 

cases are studied: 

(1) X, a f i n i t e dimensional space; f , a r e a l valued function; 

and g and h f i n i t e dimensional vector functions. 

(2) X, an i n f i n i t e dimensional space; f , a r e a l valued function; 

and g and h either f i n i t e or i n f i n i t e dimensioanl vector 

functions. 

An a p p l i c a t i o n of t h i s type of problem to optimal control w i l l be given 

and the recent developments i n t h i s area w i l l be discussed. 
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CHAPTER ONE; PRELIMINARY MATERIAL 

1.0 Introduction 

During the l a s t decade, the.problem of optimization has attracted 

a l o t of a t t e n t i o n , since such problems a r i s e i n many f i e l d s ; f or example, 

i n automatic control theory, economics and even i n biology. Although 

optimization problems are not new i n mathematics, owing to the demands of 

economics and control theory and also owing to the appearance of the com

puter, an intensive and systematic i n v e s t i g a t i o n of such problems has only 

recently been s t a r t e d . 

The f i r s t category of problems was studied as early as 1925. 

This f i e l d i s c a l l e d Calculus of Variations and deals with problems of 

maxima and minima where d e f i n i t e i n t e g r a l s i n v o l v i n g one or more unknown 

functions are considered, subject to equality c o n s t r a i n t s . G. A. B l i s s 

and 0. Bolza did s i g n i f i c a n t work with t h i s type of problem. 

The next type of problem to be c l a s s i f i e d were l i n e a r programming 

problems; problems where the objective function and constraints are a l l 

l i n e a r . The theory for t h i s problem was widely developed by G. B. Dantzig 

and can be dated to 1948. 

By 1951, the Kuhn-Tucker theory was developed. This gives the 

necessary conditions for an extremum i n convex programming problems and, 

when i n d i f f e r e n t i a l form, formulates the necessary conditions for non-

convex programming problems i n a f i n i t e dimensional space. 

In the decade f o l l o w i n g , the theory of optimal control was de

veloped. The basis of t h i s theory i s Pontryagin's Maximum P r i n c i p l e . This 

p r i n c i p l e permitted the,solution of various problems of mathematical and 
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applied nature and thus stimulated work i n mathematical programming. 

The embedding of optimal c o n t r o l theory into a general theory of 

necessary conditions was f i r s t c a r r i e d out by A. A. M i l y u t i n and A. Y. 

Dubovitski. They with H. Halkin and L. W. Neustadt have taken the present 

"modern" i n f i n i t e dimensional approach. 

This thesis presents the conditions required f o r a s o l u t i o n of 

general non-linear programming problems. The general problem i s of the 

form 

min{f(x): x £ X, gCx) < 0, hCx) = 0} ; 

f i s c a l l e d the objective function, g the i n e q u a l i t y constraint and h 

the equality constraint. In Chapter Two, the following assumptions are 

made: the space X on which f, g, and h are defined i s f i n i t e dimen

s i o n a l , f i s a real-valued function and g and h are f i n i t e dimensional 

vector functions. In Chapter Three, X i s assumed to be i n f i n i t e dimensional 

and f a fu n c t i o n a l defined on X . From here the problem breaks down to 

two d i s t i n c t problems depending on the dimension of the range of the constr

a i n t functions; that i s , f i n i t e or i n f i n i t e dimensional. Chapter Four gives 

a b r i e f introduction to optimal control problems and to t h e i r s o l u t i o n using 

mathematical programming r e s u l t s . Also an example i s given. 

F i n a l l y , Chapter Five discusses the. recent developments i n non-linear pro

gramming problems. The rest of t h i s f i r s t chapter deals with the tools 

required i n the l a t e r chapters. 

1 . 1 D i f f e r e n t i a b i l i t y Concepts. 

Let X, Y be normed l i n e a r spaces and f be an operator defined 
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on a domain contained i n X and range contained i n Y . 

1.1.1 D e f i n i t i o n 

The operator f : X .-> Y i s Gateaux d i f f e r e n t i a b l e at x i n 

X i f there e x i s t s an operator 6f(x;e) which i s l i n e a r ^ i n e for a l l 

e i n X and which s a t i s f i e s 

f ( x + Ae) - f(x) = X6f(x;e) + r ( x , A e ) where 

l i mte-UM2l = o for a l l e i n X . 
„ A 

A-K) 

1.1.2 D e f i n i t i o n 

The operator f: X -* Y i s Frechet d i f f e r e n t i a b l e at x i n X 

i f there e x i s t s a continuous l i n e a r operator f C x ) : X -> Y s a t i s f y i n g 

f(x) - f(x) = f ( x ) ( x - x) + r(x;x - x) for a l l x i n X 

where the function r(x,z) i s such that lim ^ ^ > l ^ I = 0 . 

|z|^o P T 

The Frechet d e r i v a t i v e of f i s continuous at x i f given 

e > 0 there e x i s t s 6^-0 such that ||x - x|j < 6 implies ||f'Cx) - f ( x ) | | < e . 

If the d e r i v a t i v e of f i s continuous i n some open sphere S, f i s con

tinuously Frechet d i f f e r e n t i a b l e on S . 

Remark: 

If f'(x) i s a Frechet d i f f e r e n t i a l then i t i s also a Gateaux 

d i f f e r e n t i a l i . e . f(js)e = <5f(x,e) for a l l e i n X . But the converse 

i s not always true 

1) In the usual d e f i n i t i o n of Gateau d i f f e r e n t i a b i l i t y , the l i n e a r i t y i s 

not assumed. 
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1.1.2.1 Some Elementary Properties of Frgchet D e r i v a t i v e s . 

If follows from the d e f i n i t i o n that i f f and g are Fre*chet 

d i f f e r e n t i a b l e at x then af + gg i s Frechet d i f f e r e n t i a b l e at x and 

(af + (Bg)'(x) = af'tx) + gg'Gx) . 

The chain r u l e and an i n e q u a l i t y which replaces the Mean Value 

Theorem f o r the ordinary d i f f e r e n t i a b l e functions also.hold f o r Frechet 

d i f f e r e n t i a b l e f u n c t i o n . The proofs w i l l not be given here but may be found 

i n Luenberger [10]. The i n e q u a l i t y w i l l be stated here as i t w i l l be r e 

ferenced l a t e r . 

Let f be Frechet d i f f e r e n t i a b l e on an open set X i n X . 
r
 o 

Let x be i n X and suppose that x + ah i s i n X for a l l a , 
o o 

0 < a < 1 . Then 

|| f (x + h) - f (x) 1 < ||b.| sup ||f'(x + ah) || . 

0^a<l 

1.1.3 D e f i n i t i o n . 

A f u n c t i o n a l f defined on a normed l i n e a r space X i s said to 

be q u a s i - d i f f e r e n t i a b l e at a point x i f there exists a convex weak 

- * 

closed set F(x) C X such that 

lim f (x + Xe) f (x) = f * c ^ f ( j r a U & ± n x 

x->oH ,+
 A

 f*6.FCx) 
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1.2 Inverse arid I m p l i c i t Function Theorems 

This section deals with the major r e s u l t s from analysis under

l y i n g the l a t e r theorems i n optimization. The commonly known versions of 

the Inverse and I m p l i c i t Function Theorems f o r continuously d i f f e r e n t i a b l e 

functions i n R
n
 w i l l be stated. The reader i s referred to Rudiri [14] 

for proofs of these theorems. An I m p l i c i t Function Theorem generalized 

to functionals defined on l i n e a r spaces and an Inverse Function for Banach 

spaces w i l l be presented. We. follow the proofs i n [10] and [13]. 

1.2.1 Inverse Function Theorem. 

Let f be a continuously d i f f e r e n t i a b l e mapping of an open set 

E of R
n
 into R

n
 where f ''(x) i s i n v e r t i b l e f o r some x i n E and 

where y = f(x) . Then 

(a) there e x i s t open sets U and V i n R
n
 where x i s i n U 

and y i s i n V and where f i s one to one on U and f(U) = V ; 

(b) i f g i s the inverse of f (which ex i s t s by (a)) defined i n 

V by g(f(x)) = x f o r a l l x i n U then g i s a continuously 

d i f f e r e n t i a b l e function on V . 

1.2.2 I m p l i c i t Function Theorem. 

Let (x,y) be a vector of an open set E contained i n R
n + m

 and 

l e t f be a continuously d i f f e r e n t i a b l e n-dimensional vector function 

defined on E which s a t i s f i e s the following conditions: 

(1) f(x,y) = 0, 

(2) V f(x,y) i s non-singular; that i s , ; V^f(x,y)K = 0 implies K = 0 . 
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Then there i s a neighbourhood Z i n R
n
 of x, and an m-dimensional 

vector function e which i s continuously d i f f e r e n t i a b l e on Z such that 

(a) y = e (x) , 

(b) f(x,e(x)) = 0 for a l l x i n Z . 

1.2.3 Generalized Inverse Function Theorem. 

Before the theorem can be s t a t e d , a d e f i n i t i o n i s required. 

1.2.3.1 D e f i n i t i o n . 

Let f be a continuously Fre*chet d i f f e r e n t i a b l e mapping from 

an open set E i n a Banach space X into a Banach space Y . If x i n 

D i s such that f̂ Cx) maps X onto Y , the point x i s said to be a 

regular point of the transformation f . 

1.2.3.2 Theorem: 

Let x be a regular point of a continuously Frechet d i f f e r e n t i a b l e 

transformation f mapping the Banach space X into a Banach space Y . 

Then there i s a neighbourhood V of the point y = f Cx) and a constant 

K such that the equation f(x) = y has a,solution for every y i n V 

and the s o l u t i o n s a t i s f i e s ||x - x|| <_ K||y - y|| . 

Proof: 

Let L be the n u l l space of f'(x). Since L i s closed, the 
o
 r

 o ' 

quotient space X / L q i s a Banach space. If [x] denotes the class of 

elements equivalent to x ,modulo L q and i f A i s an operator on X / L Q 

defined by A[x] = f̂ (x)x then A i s well-defined since equivalent elements 

x y i e l d i d e n t i c a l elements y i n Y .- A l s o , by d e f i n i t i o n , A i s l i n e a r , 
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continuous, one-to-one and onto and hence, by the Bounded Inverse Theorem 

[Appendix, Theorem 1 ] , A has a continuous l i n e a r inverse. 

Let y be an element of Y close to y and l e t g Q = 0, the 

zero element i n L^ . Now define the sequence of elements from 

X / L q and a corresponding sequence d"gn} with § n >
 a n

 element from L^ , 

r e c u r s i v e l y by 

L - L = A
_ 1
( y - f( x + g^ •-•)). . CD 

n n-1 n-1 

As IIL - L , I] = i n f l|g - g ., || , s e l e c t g from the coset L such 11
 n n-1" , T

 1 1 6 6
n - l " ' ° n n 

^ a t | | g n - g n . 1 f l i 2 | | L n - L n _ 1 | 

Rewriting ( 1 ) , 

.-1. 
L n = A (y -H± + Bn_1)) + L n _ x ,. 

= A "'"(y
 -
 f ( x + g T) + A[g -]) by the d e f i n i t i o n of L .. \J \ ° n - l ° n - l n-1 

and the properties of A , 

= A
- 1
( y " f ( x + g .) + f ( x ) g ..) by the d e f i n i t i o n of A J
 n-1 ° n - l 

and s i m i l a r l y , L = A
 1
( y ~ f (x + g _„) + f ( x ) g _ „ ) . Thus 

Define g = tg ± + (1 - t ) g n _ 2 and l e t F(x) = - A
_ 1
( f ( x ) - f'(x)x) . 

Applying the generalized mean value i n e q u a l i t y f o r Frechet d i f f e r e n t i a b l e 

functions (Section 1.1.2.1), t h i s implies 

||F<* + g ^ ) " F(x + g n_ 2) || = ||g n_ 1 - g ^ s u p J l T f e + gfc) || . 
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Hence 

l L
n "

 L
n - l ' l - l A _ 1 H "

g
n - l ~

 8
n-2"

 S U p
 H

f
'<*

 + g
t

}
 "

 f
'
(
*>H '

 ( 2 ) 

0< t<l 

By the s e l e c t i o n of and by the d e f i n i t i o n of , 

h±\\ - || 8 l - g j l 1 2||Ll - L j | =211^11 = 2f|A-
1
f| ||y - y|| . 

This implies for ||y - y|| small enough that ||g]_lj < "J
 r
 f 9

r
 some r > 0 

and hence, i n t h i s p a r t i c u l a r case ||gtH
 =
 || t g ^ +

: 0- ~ t) g Q || < r for 

0 < t < 1 . By the cont i n u i t y of f " at x , for a given e > 0 there 

exists an r > 0 such that ||f'(x) - f "(x) || < e for j|x - x|| < r . There

fore (2) becomes: - L̂ || < e||A "'"H ||g^ - gQ|| . By the s e l e c t i o n of > 

the preceding i n e q u a l i t y implies that ||g2 - g j | <_ 2\\h^ - I. || <_ 2e|[ A "*"|| || g^ - g£ 

Hence for s u f f i c i e n t l y small e , 

|g 2 " Sill 1 2
| l g

l " U
 ( 3 ) 

S i m i l a r l y i f flgj = || t g f c _ 1 + (1 - t)g k _ 2 | | < r , then 

I'
g
k "

 g
k-lH l-lK-l "

 g
k J '

 ( 4 ) 

Moreover i f (4) holds f or a l l k <_ n , then 

IIgj - I I 8 l + ( g 2 - g_):+ ••• + ( g n - gn__>H 

I2|| g l|| < r , 

so that ||gt|| = ||tg n + (1 -
 t
) g n _ 1 | | <

 r
 •

 T
h

u s
 by induction (4) holds for 

a l l k. Hence the sequence converges to an element g and correspondingly 
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the sequence {L^} converges to a coset L . Thus 

f (x + g) = y and ||g| < ^ g j < 4||A _ 1 || ||y. - y|| . 

F i n a l l y , by l e t t i n g K = 4||A''^|| , the theorem i s proved. 

1 . 2 . 4 Generalized I m p l i c i t Function Theorem. 

Let x be a m-dimensional v e c t o r , l e t X € R and l e t f\ (A,x) 

for i = 1 , . ... , m be continuous r e a l valued functions which s a t i s f y the 

following conditions: 

(a) f ..(0,0) = 0 for i = 1 , m ; 

(b) f_j.(A,x) i s d i f f e r e n t i a b l e at X = 0, x = 0 ; 

(c) V-.f.CO.O) =0 f o r i = 1 , m 

A X 

(d) V xf(0,0) i s non-singular 

Then the system of equations f_^(A,x) = 0 has a s o l u t i o n for s u f f i c i e n t l y 

small X and there exists a s o l u t i o n x(A) with the property that 

o A 

Proof: 

Condition (b) i s equivalent to 

f(X,x) - f(0,0) - AV^fCO.O) - xV xfC0,0)|| < r c A
2
 + j|x||

2
 ) CD 

z 

i n e q u a l i t y ( 1 ) becomes 

where ^* -> o as z -> 0 . Now applying conditions ( a ) , (s) , Cd) , the 

z: 

f(X,x) = (V xf(0,0))Cx) +rCX,x) C2) 



where ||r(A,x) || £ x(A 2 + ||x||2 ) . 

Gonsider the mapping g(X,-x) = x - (V f(0,0)) 1
f(X,x) . Applying 

(2), t h i s becomes g(A,x) = - ( V ^ CO ,0)) _ 1
r (X ,x) and ||gCA,x)|| 

£ r ( A
2
 + ||x|

2
 )|| (V xf (0,0)) - 1|| . Without any loss of g e n e r a l i t y , the 

assumption that rCz) i s a non-decreasing function can be made since i f 

i t were not, r ( z ) can be replaced by wCz) = sup rCt) where 

0<t<z 
w(z) > rCz) and thus

 W
^ -*• 0 . 

Now set T(A) = i n f i x : K r ( A
2
 + x

2
 ) < x} (3) 

where K = || (? f(0,0)) 1
|| . Since Kx(A 2 + A 2

) < A f o r s u f f i c i e n t l y small 
X 

A , T (A) <_ A for a l l such A . By d e f i n i t i o n of infimum, f o r every such 

A , there ex i s t s a T (A) such that it (A) T CD £. t ( A ) + A and 

K r ( A
2
 + ( T * ( A ) )

2
 ) <_ x * ( A ) . By d e f i n i t i o n of x(A) , 

2 - / 2 2 2 -T ( A ) - A < Kr(/A + (T(A) - A ) ) . Since r(z) i s a non-decreasing 

/2 2 

function and since v A + w <_ A + w f o r A > 0 , w > 0 , th i s implies 

Kr( A
2
 + (x(A) - A

2
)

2
) £ Kr (A + ix(A) - A

2
 I) . Thus, 

x(A) - A
2
 < Kr"(A + |r(A) - A

2
|) . 

Further since x(A) < A f o r s u f f i c i e n t l y small A , 

Kr (A + |x(A) - A
2
1) <_Kr(A + A) = Kr C2A) . 

Thus TCA) - A2
 < KrC2A) or <

 2 K
* (

2
D + A a n d s i n c e 

— A — Za • ^ 

+ 0 as z * 0, -> 0 as X -* 0 . Thus
 T W -> 0 as A + 0 

Z - A A 
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If ||x|| '< T*(X) then 

|| gCX ,x) || < K r ( A 2 + ||x||
2 ) < KrcA2

 + ( T * ( X ) )
2
 ) < t*CA) . 

t h i s implies that the continuous l i n e a r map g(X,x) maps the b a l l 

||x|| <_ T (x) in t o i t s e l f . Hence, by Brouwer's Fixed Point Theorem [Append

i x , Theorem 2], g(X,x) has a f i x e d point; that i s , there exists a point 

x(X) such that x(X) = g ( X , x ( X ) ) and ||x(X) || < x (X) . But the d e f i n i t i o n 

of g(X,x) implies f(X,x(X)) = 0 ; that i s the set of non-linear equations 

r consideratic 

ie s MU 0 

under consideration has a s o l u t i o n . A l s o , since lk_i_ll< ^ } t h i s 
A A 

implies •> -> 0 as X 0 



CHAPTER TWO: OPTIMIZATION PROBLEMS IN FINITE DIMENSIONAL SPACES. 

2.0 Introduction 

This chapter presents the necessary and s u f f i c i e n t s conditions 

for optimality when the objective function and constraints are f i n i t e 

dimensional. The mathematical programming problem to be studied here i s : 

M: min f ( x ) : x € X q , g(x) 1 0 , hCx) = 0 where f 

i s a f u n c t i o n a l , g i s an m-dimensional vector fun

c t i o n , h i s a k-dimensional vector f u n c t i o n , a l l 

defined on X , a subset of R° . 
o 

2.1 Necessary Conditions. 

In the necessary optimality conditions, the d i f f e r e n t i a b i l i t y 

property of the functions play a c r u c i a l r o l e since t h i s i s used to l i n 

earize the nonlinear programming problem. 

Lemma 2.1.1 

Let X • be a convex set i n R
n
 with a non-empty i n t e r i o r : 

i n t X ^ , and l e t E be an open set i n R
n
 . Let f be an -^.-dimensional 

vector function and l e t h be a k-dimensional vector f u n c t i o n , both defined 

on some open set containing X q . Let x be an element from E , 

fCx) = 0 and h(x) = 0 . Let f be d i f f e r e n t i a b l e at x , l e t h be 

continuously d i f f e r e n t i a b l e i n an open set containing x and l e t Vh^(x) 

for j = 1, k be l i n e a r l y independent. I f the equations f(x) < 0 

and hCx) = 0 have no s o l u t i o n x i n X r\ E then the equations 
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VfCx)(x - x) < 0 and Vh(x)(x - x) = 0 have no s o l u t i o n x i n i n t X 
o 

Proof: 

Case k > n : This case i s excluded because the assumption that Vh.Cx) , 

j = 1, k , i s l i n e a r l y independent implies that k i n . 

Case k == n : Since the l i n e a r independence of Vh '(x) , j = 1, ..., k , 

i s equivalent to the n o n - s i n g u l a r i t y v o f Vh(x) , Vf(x)(x - x) < 0 cannot 

hold because Vh(x)(x - x) = 0 implies that (x - x) = 0 . Thus neither 

the l i n e a r nor the nonlinear equations Vf(x)(x - x) < 0 can be solved. 

Case 3 0 < k < n : 

The proof for t h i s case follows from an i n d i r e c t attack because 

the way the lemma i s stated i s the way i t w i l l be a p p l i e d , not the way i t 

i s proved. Instead the proof shows that i f the equations Vf(x)(x - x) < 0 

and VhCx)(x - x) = 0 have a s o l u t i o n x i n i n t X then the equations 

o 
fCx) < 0 and h(x) = 0 have a s o l u t i o n x i n X A E . 

o 

Let x i n i n t X q be. such that Vf Cx) (x --x) < 0 and 

Vh(x) (x - x) = 0 . For a l l x i n R l e t Cx^.x,,) form a p a r t i t i o n of 

n-k k - -
x such that x^ i s i n R and x 2 i s i n R . Then Vh(x) = (V h(x) , 

X
l 

V h(x)) Since VhCx) i s non-singular, t h i s implies i n p a r t i c u l a r that 
X
2 

V hCx) i s non-singular. Thus, since hCx) = 0 , "and since V hCx) i s 

^2 ^2 

non-singular and h i s continuously d i f f e r e n t i a b l e i n an open set containing 

x , the I m p l i c i t Function Theorem [section 1.2.2] states that there e x i s t s 

n-k -
an open set W i n R containing x^ and a k-dimensional d i f f e r e n t i a b l e 
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vector function e on W such that 

(a) x 2 = eCxD and (b) hCx^,e(xD) = 0 for a l l • x^ i n W . 

Since W i s open and since x. i s i n W , . there e x i s t s 6 > 0 
1 o 

such that for a l l 6 < 5 , • (x- + S(x •-•x,-)) i s i n W . Thus, since e 
o 1 1 1 ' • 

i s d i f f e r e n t i a b l e at x^ i n W , t h i s implies that 

e(x, + - x n)) = e ( x j + 6ve(x-)(x - x j + o(6) f o r a l l 6 < 6 . (1) 
1 i l l 1 1' O ' 

Since h i s d i f f e r e n t i a b l e at x and since hCx^,eCxD) = 0 . f o r 

a l l x i n W, by chain r u l e , V h(x) + V h(x)Ve(x..) = 0 and m u l t i p l y i n g 

^2 

by (x, - x ) t h i s becomes V h(x) (x - x ) + V h(x)Ve(x )(x - x ) = 0 . 
-L - i - ^2 

But the assumption Vh(x)(x - x) = 0 i s equivalent to 

V h C x ) ^ - x.) + V h(x)(x 9 - x„) = 0 . Thus V h(x) (x 0 - x„) x ^ 1 1 x 2 I I x 2 2 I 

V : hCx)Ve(x,)(x n - x..) and the non-singularity of V K(x) implies 
x 2 . i i i x 2 

(x 2 - x 2) = V e C x J C ^ - x j . (2); 

Using C2) and the f a c t that x 2 = eCxD , equation (1) becomes 

e C ^ + 5 0 ^ - x j ) = x 2 + <5(x2 - x 2) + o(6) f o r a l l 6 < 6 q . (3) 

Because x i s i n i n t (by assumption) and by d e f i n i t i o n of 

^
 A

 o (o) 
o(6) , there e x i s t s 6^ > 0 such that for a l l 8 < 6^, (x^,x 2 H j ~ - ) 

i s i n X . In p a r t i c u l a r 5, can be chosen such that 0 < 6, *<<5 . Since 
o

 r
 1 1 o 

— * — —
 a

 o(6)~ 
x i s i n "

7
X and since " X i s convex, (1- 6)(x.,x 0) + 6(x-,x 0 -\ ~ - ) 

o o - J V / v
i » 2 1' 2 . o 

i s i n X q for a l l 6 < 6^; that i s , (x^ + S(x - x^) , * 2 + 6(x 2 - x 2) + o(6)) 
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i s i n X q which by applying equation (3) i s . equivalent to (x^ + <S(x^ - x ^ ) , 

e(x, + S(x - x,))) • i s i n X f o r a l l 6 < 6. . Furthermore since x i s 
1 1 1 o 1 

i n E and since E i s open, there exists <$2 > 0 such that for a l l 

6 < 6^, Cx^ + S(x^ - x ^ ) , eCx^ + 6 Cx^ - x^))) i s i n E . Hence, l e t t i n g 

6^ = min{6 1,6 2} , 

Cx, + <5(x, - x j . - ^ i c . + 6(x '- x.))) i s i n X P\ E f o r a l l <5 < 6. . (4) 
1 1 1 " ! 1 1 o 3 

Since h(x^, e(x^)) = 0 for a l l x^ i n W , and since for a l l 

6 < 6 Cx, + clCx, - x,-)) Is i n W and since 6„ < 6 0 < 6 4 then for 
o l 1 1 3 — 2 • o ' 

a l l 5 < 6 ., h ^ + S(x± - x±) , e(K± + 6 (2^---x^-))) = 0 . 

F i n a l l y , since f i s d i f f e r e n t i a b l e at x, t h i s implies the 

existence of <5. such that 6, < 6„ and such that for a l l 6 < 6, 4 4 o 4 

f ^ + - X;L) , e(x;L + 6(x 1 - x^))) 

f f ( X ; L + 6( X ; L - x x) , x 2 + 6(x 2 - x 2) + o(5)) , by equation (3) , 

= f CCx 1,x 2) + 6 ( 3 ^ - X ; L , x 2 - x 2 + )) , 

= fCx) + elfVv f(x)(x. - x.) + V f(x)Cx 9 - x„) +
r
 V f(x) ] + 0(6) 

x^ 1 1 x 2 2 / x 2 0 

by the d i f f e r e n t i a b l i t y of f at x , 

= 6{VfCx)Cx - x)] + 7„ ftx)o(<5) + o(j5) 

since f(x) = 0 . 

x 2 

But by assumption -Vf(x)(x.- x) < 0 which implies that there exists ^5 > 0 

such that 6_ < <S, and such that 
5 4 

f C ^ + S(x± - x ^ , e(K± + 6 ( 2 ^ - x 1 ) ) ) < 0 for a l l 5 < <55 . 
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Hence, l e t t i n g 6 = min{6^,(5^} , for a l l 6 < <5 

f + 6( X ; L - x ^ , e O ^ + 6 0 ^ - x 1 ) ) ) < 0 

and h(x x + 6 ^ - x±) , e(x± + 5(i± - x^))) = 0 

where (x.. + 6(x. - x.)) i s i n X H E . 
i l ± o 

Case 4 k = 0 : 

Suppose there e x i s t s x i n i n t X q s a t i s f y i n g Vf(x)(x - x)
 <
 0 . 

Then i t must be shown that there exists x i n X q E s a t i s f y i n g f(x) < 0 

Since x i s i n X /~\ E (by hypothesis) and since X q i s convex 

and E i s open, there e x i s t s <5 > 0 such that for a l l 8 < 6 < 1 , 

o o 
(x + <5(x - x ) ) ' i s i n X H E . By the d i f f e r e n t i a b i l i t y of f at x , 

there e x i s t s 6.. > 0 such that cL < <S and such that f or a l l 6 < cS, 
1 1 o 1 

f( x + S(x - x)) = fCx) + S[Vf (x)(x - x) + ^1^- ] , 

= S[Vf (x)(x - x) + ] since f(x) = 0 . 
o 

By the assumption Vf (x) (x - x) < 0 and by d e f i n i t i o n of o(<$) , there 

ex i s t s §2 > 0 such that 6^ < 6^ and such that for a l l 6 < 6^ , 

f (x + <5(x - x)) < 0 . 

'Lemma 2.1.2 

Let X , E, x and f be as given i n Lemma 2.1.1. Let h be 
o 

a k-dimensional vector function which i s continuously d i f f e r e n t i a b l e i n an 

open set containing x . If f(x) < 0 and h(x) = 0 have no solu t i o n i n 

- SL ' - k - - - / 
X Q n E then there e x i s t s p i n R , q i n R with p f- 0, (p,q) F 0 
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satisfying 

[pVf (x) + qVhCx)]Cx - x ) >. 0 for a l l x in the closure of X 

Proof: 

o 

Case 1: Vh.Cx), j = 1, ... , k .linearly dependent. 
- k -

This, implies that there exists q in R where q ̂  0 such 

that ' qVh(x) = 0 . Therefore for p = 0, [pVf(x) + qVhOOKx - x) = 0 

for a l l x in the closure of X 
Case 2: VhjCx), j = 1, ..., k, l i n e a r l y independent. 

Since X i s convex, then i n t X i s convex. Let FCx) = Vf(x)(x - x) 
o o 

and HCx) = VhCx) Cx - x) . Define for each x i n i n t X q , the set 

SCx) = (Cy.z): y€ R£, z € Rk, y > FCx), z = H(x)} and l e t S = VJ S(x) . 
x i n t X 

o 

Observe that S i s convex since i f Cŷ >z-j_) a n C* ^2^2^ a r e ^ n ^ ' t n e n 

for 0 < X < 1 , 

Cl - X)yx + Xy2 > (I - A)FCx1) + XF(x2) , 

(1 - X)VfCx)Cxx - x) + XVf(x)(x2 - x) , 

= Vf(x)[Cl - X ) ( X l - x) + X(x 2 - x)] , 

and 

= F((l -X ) x x + Xx2) ; 

Cl - X)z± + \z± = (1 -. X)RCx1) + M(x2) , 

= (1 " ^)Vh(x) ( x 1 - x) + XVh(x) (x 2 - x) , 
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= Vh(x) [ ( 1 - A) ( X ; L - x) +.\A(x2 - x) ] , 

= H [ ( l - \)x1 + Ax 2] . 

Since f(x) < 0 and h(x) = 0 have no s o l u t i o n x i n X H E , by 
o J 

Lemma 2 . 1 . 1 , F(x) < 0 and H(x) = 0 have no so l u t i o n x i n i n t X 

o 
Z k 

This implies that ( 0 , 0 ) i s not i n S which i s i n R x
 R • Apply the 

separation theorem [Appendix, Theorem 3 ] f o r the convex sets S and 
Z k 

{ ( 0 , 0 ) } . Then there e x i s t s p e R and q fc R where (p,q) ^ 0 such 

that for (u,v) i n S , pu + qv >_ 0 . . Note that p > 0 since each u.̂  

can be made as large as desired. 

Let e > 0 , u = FCx) + ee where e i s the a l l ones vector 

and v =,H(x) where x i s i n i n t X q . Then obviously (u,v) i s i n 

S(x) and hence i n S . Thus pu + qv = pF(x) + pee + pH(x) >̂  0 or equiv-

a l e n t l y , 

pF(x) + qK(x) >_ - epe for a l l x i n i n t X Q . 

But since e > 0 i s chosen a r b i t r a r i l y , one must have 

pF(x) + qH(x) >_ 0 for a l l x i n i n t X Q . 

Hence: i-nf (pF(x) + qH(x)) > 0 . ( 1 ) 

x€int X 
o 

F i n a l l y , since [pVf(x) - qVhCx)](x - x) i s continuous i n x and 

i n f a c t l i n e a r , equation (1) holds for a l l x i n the closure of X Q . 

Theorem 2 . 1 . 3 

Let X be a convex set i n R n with a non-empty i n t e r i o r : o 
i n t X . Let x be a so l u t i o n to the minimization problem M . Let f o 
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and g be d i f f e r e n t i a b l e at x and h be continuously d i f f e r e n t i a b l e 

i n an open set containing x . Then there exists V Q i n R , r i n 

R and s i n R such that 

(a) Cr QVf(x) + ieVg(x) + sVh(x))Cx - x) >_ 0 for a l l x i n the 

closure of X ; 

o 

(b) rg(x) = 0 ; 

jCc) CrQ,-f) > 0 ; 

(d) G0,r,s) i 0 . 

Proof: 

Let I = { i : g ± Cx) = 0} and J = { i : gAx) < 0} then 

I U J = {I, 2, m} and l e t m̂ ., m̂  denote the number of elements i n 

the set I and J r e s p e c t i v e l y so that m̂  + nij = m . Since g i s de

fined on some open set containing X q and since g i s continuous at x , 

there e x i s t s <5 > 0 such that 
o 

E = {x: g < 0,||x - x|| < <5 } i s an open set i n R
n
 . 

J o 

If Lemma 2.1.2 can be a p p l i e d , the theorem i s proved. Let F be 

the mapping from R
n
 to R x where F(x) = [f(x) - f ( x ) , g I(x)] . 

Note that F(x) = (f (x) - f Cx) , gjCx)) = (0,0) and that F i s d i f f e r e n t i a b l e 

at x since f and g are. A l s o , since x i s i n X q and x i s i n E, 

x i s i n XQP\ E . Now, since x i s the s o l u t i o n to the minimization pro

blem, then the equations f (x) — f(x) •< 0 and h(x) = 0 have no so l u t i o n 

x i n X n E , or equivalently F Cx) < 0 and H(x) = 0 have no solu t i o n 

i n X- O E . Hence, by Lemma 2.1.2, there e x i s t s Cr ,r T) i n R x R » 
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s i n R.k with ( r ^ r ^ . ) >_ 0 , ( r o , r ^ , s ) / 0 . s a t i s f y i n g 

CC^.rJVFCx) + sVh(x))(x - ic) > 0 for a l l x i n the closure of X ,., and, by 

d e f i n i t i o n of F, t h i s implies that ( r Q V f Cx) + -r^Vg '(it) + sVh(x))(x - x) > 0 . 

By d e f i n i n g Xj = 0 and r = (r ^ r ^ . ) . i n R™, rg(ic) = r^Cx) + r^jCx) = 0 

and rVgCx) = r Vg Cx) + r Vg Cx) = r Vg Cx) . Hence the theorem i s proved. 
i- JL J J J_ J-

Remark: 

If the convexity requirement on X q i s replaced by the r e q u i r e 

ment that X q be open then a stronger necessary optimality condition than 

condition Ca) i n the previous theorem i s obtained. This i s known as the 

Fritz-John Stationary Point Necessary Optimality Theorem. 

Theorem 2.1.4 

Let X q be an open set i n R n . Let x be a (global) so l u t i o n 

of the minimization problem M or a l o c a l s o l u t i o n thereof; that i s 

fCic) = min{fCx): x £ X C\ B.Cx), gCx) < 0 , hCx) = 0} where B.(x) i s an 
o o — 0 

open b a l l around x with radius 6 I Let f and g be d i f f e r e n t i a b l e 

at x and h be continuously d i f f e r e n t i a b l e i n an open set containing 
— — •*• m — lc x . Then there e x i s t s r i n R, r i n R ,. s i n R where o 

Crd,r,s) f 0 such that r Q V f ( x ) + rVg(ic) + sVh(x) = 0 , rg(ic) = 0 and 

( r o , r ) >_ 0 . 

Proof: 

Let x be a global or l o c a l s o l u t i o n of the minimization problem. 

Then since X q i s open, there e x i s t s B^Cx) > an open b a l l around x with 

radius X such that B. (x) C B„(x)C X and such that 
A O O 

fCx) = min{fCx): x € B (ic) , g(x) <^0, h(x) = 0} . 
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Since B. Cx) i s convex and has a non-empty i n t e r i o r (x € B Cx)) , 
A A 

Theorem 2.1.3 can be.applied thus giving TQ i n R, r i n R
m
 , s i n 

R
k
 , Cr Q,r,s) f 0 where (r"0>-r) >_ 0 such that 

(r VfCx) + rVg(x) + sVh(x))(x - x) > 0 f o r a l l x i n B. Cx) CD 
o A 

and rg(x) = 0 . 

Since, for some p > 0, Cx - p[r QVfCx) + rVg(x) + sVh(x)]) i s 

i n B^Cx), then, by i n e q u a l i t y ( 1 ) » t h i s implies 

r Q V f ( x ) + rVgCx) + sVh(x) = 0 

Remark: 

In the Fritz-John necessary optimality c r i t e r i a , there i s no 

guarantee that r ^ > 0 . I f ' r = 0 the necessary op t i m a l i t y c r i t e r i a 

does not say much about the minimization problem since the function f , 

i t s e l f , disappears; thus any other function could play i t s r o l e . I t i s 

possible to exclude such cases by introducing r e s t r i c t i o n s , known as con

s t r a i n t q u a l i f i c a t i o n s on the constraints g(x) <_ 0 and h (x) = 0 . There 

are many constraint q u a l i f i c a t i o n s , some.weaker than others but a l l giving 

the same r e s u l t , namely r Q > 0 . The one presented next gives a very 

elegant proof although i t s r e s t r i c t i o n s are not the weakest. Other con-' 

s t r a i n t q u a l i f i c a t i o n s can be found i n Mangasarian [11]. 

The mod i f l e d Arrow-Hurwicz-Uzawa Constraint Qualif icat i o n . 

Let X q be an open set i n R
n
 , l e t g and h be m-dimensional 

and k-dimensibnal vector functions on X q and l e t X ={{x: x 6 X Q , gCx) ±_ 0, 

hCx)'= 0} . The functions g and h are said to s a t i s f y the modified 
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Arrow-Hurwicz-Uzawa constraint q u a l i f i c a t i o n at x i n X i f 

Ca) g i s d i f f e r e n t i a b l e at x 

Cb) h i s continuously d i f f e r e n t i a b l e at x 

Cc) Vh^(.x) for i = 1, k are l i n e a r l y independent 

Cd) there e x i s t s a s o l u t i o n - z i n R
n
 . such that Vg^Cx)z > 0 

and Vh(x)z = 0 where I = { i : g^Cx) = 0} . 

Mangasarian r e f e r s only to the r e s t r i c t i o n s . o n the constraints 

and not on the objec t i v e f u n c t i o n . A d i f f e r e n t approach where the constraint 

q u a l i f i c a t i o n s involve both the/objective function and the constraints has 

been developed by Geoffrion [6]v : This approach s i g n i f i c a n t l y weakens the 

hypothesis demanded by Mangasarian but i n t h i s chapter Mangasarian's approach 

w i l l be described. 

The following theorem i s known as the Kuhn-Tucker Stationary-

point Necessary Optimality Theorem. 

Theorem 2.1.5 

Let X q be an open set i n R
n
 and l e t x be a global s o l u t i o n 

of the minimization problem M or a l o c a l s o l u t i o n thereof. Let f and 

g be d i f f e r e n t i a b l e at x and let. h be continuously d i f f erentiable i n 

an open set containing x . Let g and h s a t i s f y the modified Arrow-

Hurwicz-Uzawa constraint q u a l i f i c a t i o n at x . Then there e x i s t s u i n 

R
m
, v i n R

k
 such that VfOO + uVg(x) + vVhCx) = 0, u > 0, and ugOO = 0 . 

Proof: 

Since X q , f , g, h and x s a t i s f y the assumptions of 

Theorem 2.1.4, t h i s implies that there e x i s t s r i n R, r i n R
m
 , 
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and s i n R
k
 where ( r Q , r , s ) ^ 0, Cr Q,r) > 0 such that 

rQVfCx) + rVg(x) + sVh(x) = 0 and. rg(x) = 0 . Note that i f TQ > 0 

then by l e t t i n g u = r / r Q and v =
 s

/
r

0 '
 t n e

 theorem i s proved. 

Suppose r^ = 0 . 

Case 1: r = 0 . 

This implies that s ^ 0 and sVh(x) = 0 . Since h s a t i s f i e s 

the constraint q u a l i f i c a t i o n , Vh. '(x)' f o r i = 1, k are l i n e a r l y 

independent therefore i f sVhCx) = 0 then s = 0 which i s a c o n t r a d i c t i o n . 

Thus, i f r = 0 then r. > 0 . 

o 

Case 2: r f'0 . 

This implies that r > 0 . Let I = { i : g±Cx) = 0} and 

J = { i : g^G). < 0} . Then 

rg(x) = r̂ gjCx) = 0 (1) 

and 

?VgCx) + sVh(x) = r IVg I Cx) + r / g / x ) + iVh(x) = 0 . (2) 

By d e f i n i t i o n of I and J , equation (1) implies that r = 0 thus 

Tj. > 0 . Substituting t h i s into (2), t h i s implies that 

?IVg ICx) + s"Vh(x) = 0 • (3) 

Since f and g s a t i s f y the modified Arrow-Hurwicz-Uzawa 

constraint q u a l i f i c a t i o n , then there e x i s t s z i n R
n
 such that 

- - - k 
Vg][(x)z > 0 and Vh(x)z = 0 . Thus, since r ]. > 0 for a l l s i n R , 

r IVg ] .Cx)z + sVh(x)z = (r ; [Vg I(x) + sVh(x))z > 0 contradicting equation (3). 



Therefore, for r / 0, r > 0 . 
o 

2.2 -Sufficient Optimality Criteria. • 

Theorem 2.2.1 

. Let X q be an open set in R
N
- and let f, g, h be, respec

tively, a numerical function, an m-dimensional vector function and a 

k-dimensional vector function, a l l defined on X . Let x be in X 

o o ' 
let f and g be convex and differentiable at. x and let h be a linear 

_ lc 
equality constraint. If there exists u in R and v in R such 

that (x,u,v) satisfy the following conditions: 

Ca) VfCx) + uVgCx) + vVhCx) = 0 , 

Cb) ugCx) = 0 , 

(c) gCx) < 0 , 

Cd) hCx) = 0 , 

(e) u > 0 , 

then x is a solution of the minimization problem M . 

Proof: 

Let X = {x: x € X q, gCx) ± 0, hCx) = 0} . Since h is a 

linear equality constraint, hCx) = Bx - d = 0 for a l l x in X where 

B is a k x n matrix and d is some constant vector in R . Then 

Bx = d can be substituted for hCx) = 0 and VhCx) = B . 

Since f is convex and differentiable at x , 

fCx) - fCx) 1 VfCx)Cx - x) for a l l x in X . CD 
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Condition Ca) implies that Vf(x) = - uVgCx) - vVhCx) or equivalently, 

Vf (x) Cx - x) = - uVgCx) Cx - x) - vVhCx) Cx - x) . C2) 

Since h(x) = 0, Bx = d, and by: the linearity of h , 

VKCx) Cx - x) = BCx - x) = 0 for a l l x in X . Also, since g is convex 

and differentiable at x , Vg(x) (x - x) ^gCx) - gCx) . But because 

u 0, gCx) f_ 0 and ugCx) = 0, for a l l x in X 

- uVgCx) Cx - x)>^ u"[ - gCx) + gCx) ] = - ug(x) >. 0 . 

Therefore equation (2) becomes: 

VfCx) Cx - x) >_ ^ ugCx) >_ 0 . 

Hence by inequality (1)» f Cx) - f Cx) >_ 0 for a l l x in X and since 

g(x) <_ 0 and h(x) = 0, x- is i n X . Thus x is the solution to M . 

Remark: 

The assumptions of this theorem, namely, the convexity of f 

and g and the linearity of the equality constraint, can be weakened 

somewhat since not a l l the properties of convex functions are needed. For 

example, f need only be.pseudo-convex at x ; that is i f f is d i f f e r 

entiable at x in X and i f x is in X where VfCx)Cx - x) >_ 0, then 

f Cx)' >_.f (x) > g be quasi-convex at x , that is for x in X where 

g(x) <̂  g(x) and where for, 0 < A < 1 , Cl - A)x +? Ax is in X , then 

gCCl - X)x + Ax) <̂  gCx) ; and f i n a l l y the equality constraint hCx) = 0 

need not be linear so long as h is differentiable, quasi-convex and quasi-

concave at x . The proof is very similar to the previous proof and can be 

found in Mangasarian [11], 
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CHAPTER THREE: OPTIMIZATION PROBLEMS IN LINEAR SPACES 

3.0 Introduction: 

In t h i s chapter, optimality c r i t e r i a are developed for mathematical 

programming problems where the objective f u n c t i o n a l and the constraints 

are defined on l i n e a r spaces. The f i r s t s e c tion deals with the necessary 

and s u f f i c i e n t conditions f o r the problem with constraints which are map

pings from a l i n e a r space into a normed space. The necessary c r i t e r i a are 

approached i n two ways: the global theory r e l y i n g on convexity and the 

l o c a l theory using d i f f e r e n t i a b i l i t y . A lso, necessary conditions f o r the 

case where only equality constraints are present i n the problem w i l l be 

developed. Section 3.2 deals with the necessary c r i t e r i a f o r a s l i g h t l y 

modified problem; namely, where the constraints are a c t u a l l y functionals 

defined on a l i n e a r space. F i n a l l y , i n Section 3.3, a comparison of the 

necessary, conditions for the two problems i s presented. 

3.1 General C r i t e r i a f o r Optimization by Linear SpaCe Methods. 

This presentation follows Luenberger [10] 

3.1.1 Global Necessary Conditions. 

The basic problem to be considered i n t h i s section i s : 

L^: min{f(x): x 6 X q, gCx) 1 8} where XQ i s a convex 

subset of a l i n e a r space X , f i s a convex f u n c t i o n a l 

on X q and g i s a convex mapping from X Q into a 

normed space Z which has a p o s i t i v e cone P . 
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Consider t h i s problem i n the space R x Z . I f u were the 

s o l u t i o n to t h i s problem then, by convexity, there would ex i s t s a hyper-

plane which l i e s below f(x) for a l l x i n X q where gCx) 1 9 and 

which goes through the point (y Q,8) . This separating hyperplane cor-

responds to the point ( l , z )• i n R x Z where 

y = i n f {f(x) + z* gCx)} . 
° x€X 

o 

Theorem 3.1.1.1 

Let X be a l i n e a r space and X a convex subset of X . Let 
r o 

Z be a normed l i n e a r space with p o s i t i v e cone P having a non-empty 

i n t e r i o r . Let f be a real-valued convex fu n c t i o n a l on X q and g a 

convex mapping from X to Z . Assume the existence of a point x^ i n 

X q for which gCx^) < 8 ;• that i s , g(x^) i s an i n t e r i o r point of 
N = - P . l e t y = i n f { f ( x ) : x € X , gGO < 0} and assume y i s o o — o 

* * * 
f i n i t e . Then there i s an element z i n Z , z > 8 such that 

o o — 
y = i n f { f Cx) + z gCx): x € X } . o o o 

Furthermore, i f the infimum i s achieved by an x i n X for which 
J o 

gCx) <. 8 then z Qg(x) = 0 . 

Proof: 
In the space W = R x

 z> define the following sets: l e t 
ACx) = {Cr»z): r >_ f Cx), z >_gCx)} for each x i n X ; l e t A = U A(x) 

0 x^X 
o 

and l e t B = { ( r , z ) : r <_ y , z <_ 8} . Obviously CMo,8) i s i n B and, 
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since x^ i s i n X q , .the'point CfCx^)., gCxD) i s i n A . 

Since f and g are convex, the sets A, and B are convex 

and by d e f i n i t i o n of U q , A contains no i n t e r i o r points of B . A l s o , 

since N = - P has an i n t e r i o r p o i n t , by the d e f i n i t i o n of B i t contains 

an i n t e r i o r p o i n t . Thus by the separating hyperplane theorem, [Appendix, 

* * * 
Theorem 4] there e x i s t s a non-zero element w = (r ,z ) i n W such 

o o' o 

that 

* * 
r Q r ^ + Z Q Z ^ ±_ r 0

r
2
 + Z

0
Z
2 ^

o r a 1 1
 1

, Z
1^ "'"

n
 ^

 a n t
^ ^

r
2'

Z
2 ^

n
 ^ 

Since x^ — V
Q
 and /.9 Cby d e f i n i t i o n of B), equation Cl) implies 

* * 
that r > 0 arid z > 0 . But suppose r = 0 then since w i s non-o — o — rr Q w Q 

* 
zero, Z q > 0. Since (y o,0) i s i n B , for r Q = 0 equation Cl) 

implies that Z Q Z ^ >_ 0 for a l l ^xi'z\} *
n
 ^ . In p a r t i c u l a r for 

* 
CfCx^), gCxD) i n A , t h i s implies that z Qg(x^) >_ 0 . But t h i s contra-

* 
d i e t s the f a c t that gCx,) < 0 and z > 0 . Therefore r. > 0 and 

° 1 o o 

without loss of g e n e r a l i t y , take r = 1 . 

Now applying x^ = 1 and the fa c t that (U q,0) i s an element 

of B and i s a r b i t r a r i l y close to A , equation 1 then imples that 

it 
u = i n f { r + z z: (r,z) € A} ; 
o o 

= inf { f C x ) + z*gCx): x 6 X q} by defn. of A ; 

* 
< i n f ( f C x ) : x € X , gCx) < 9} since z > 0 and 
— o — o — 

considering only those x i n X q for 

which gCx) <_ 0 ; 

= u by d e f i n i t i o n of u 
o
 3

 o 
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Thus the f i r s t part of the theorem i s proved. 

Suppose there e x i s t s an x i n X q such that g(x) <_ 0 and 

— — ?t _ 
y Q = f(x) . Since by above, ŷ . < fCx) + zQgCx) , t h i s implies 

— * _ * _ 

y < f Cx) because z > 9 , and g(x) < 6 . Thus z g Cx) = 0 . 
O — O — o v • — O 

Remarks; 

Ca) The theorem depends p a r t i a l l y on the convexity of the set 

A . The way the theorem i s s t a t e d , the convexity of A i s guaranteed by 

the convexity of f and g . As i n the f i n i t e dimensional study, t h i s 

may be somewhat weakened as A may be convex without f and g being 

convex. 

Cb) The assumption the existence, of an i n t e r i o r point of P, 

and the assumption that gCx^) < 9 for some x^ i n X q guarantee the 

existence of a n o n - v e r t i c a l separating hyperplane. 

Cc) Only convex constraints of the form gOO 1 9 have been 

considered. Linear equality c o n s t r a i n t s , h(x) = 9 , although equivalent 

to convex i n e q u a l i t i e s hCx) 9 and - hCx) ^_ 9 cannot be treated i n 

the same way as there never ex i s t s an x^ which simultaneously renders 

hCx1) <_ 9 and - hCx^ _< 9 . 

3.1.2 Local Necessary Conditions 

The l o c a l theory of optimization p a r a l l e l s the theory for f i n i t e 

dimensions since generalizations of the concepts of d i f f e r e n t i a l s , grad

ients , and such to normed l i n e a r spaces are used. It also p a r a l l e l s the 

global case as the underlying p r i n c i p l e s are s u b s t a n t i a l l y the same: 

the separating hyperplane argument i s again used. 
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The basic problem here i s : 

L : min{f (x): x € X, g(x) <_ 0} where X i s a normed 

l i n e a r space,, f i s a real-valued f u n c t i o n a l on X 

and g i s a mapping from X into the normed space 

Z which has a p o s i t i v e cone P . 

Again, as i n the globa l case, an assumption must be included i n 

the theorem to guarantee the existence of a non-vertical hyperplane. The 

analog to the i n t e r i o r point condition i s the following d e f i n i t i o n of a 

regular point of an i n e q u a l i t y . 

Def i r i i t i o n 3.1.2.1 

Let X and Z be normed l i n e a r spaces. Let P be a p o s i t i v e 

cone i n Z which has a non-empty i n t e r i o r . Let g be a mapping from 

X to Z which i s Gateaux d i f f e r e n t i a b l e at x i n X . The point x i s 

said to be a regular point of the i n e q u a l i t y g(x) <_ 6 i f g(x) < 8 and 

i f there e x i s t s an e i n X such that gCx) + <SgCx;e) < 6 . 

Theorem 3.1.2.2 

Let X be a normed l i n e a r space and Z be a normed l i n e a r space 

with a p o s i t i v e cone P having a non-empty i n t e r i o r . Let f be a 

Gateaux d i f f e r e n t i a b l e real-valued f u n c t i o n a l on X and g be a Gateaux 

d i f f e r e n t i a b l e mapping from X to Z . Suppose x i s the s o l u t i o n to 

problem and x i s a regular point of the i n e q u a l t i y g(x) <_ 0 , then 

there e x i s t s a z i n Z such that 
o 

f'(x)e + z* 6g(x;e) = 0 for a l l e i n X 

& — 
and futhermore z g(x) = 0 . 
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Proof: 

For each e i n X define the set 

A(e) = {(r,z) e R X 'Z: r > f'(x)e,' z > g(x) + g'(x)e} and l e t A = U ACe). 

e€X 

Also define the set B = { ( r , z ) : r <_ 0, z <_ 0 } . Obviously A and B are 

convex, ( 0 , 6 ) i s i n A ( 0 ) , and B i s a cone with vertex at ( 0 , 0 ) . Hence 

( 0 , 0 ) i s i n both A and B . A l s o , from the d e f i n i t i o n of B one may-

observe that B contains an i n t e r i o r point since N = - P has an i n t e r 

i o r p o i n t . 

In order to apply the Separating Hyperplane Theorem (Appendix, 

Theorem 4) i t must be shown that A contains no i n t e r i o r points of B . 

Suppose A does. Then there e x i s t s an e i n X such that 6f(x;e) < 0 

and g(x) + 6g(x;e) < 0 . Consider the l a t t e r i n e q u a l i t y . This implies 

that there e x i s t s an open sphere of some r a d i u s , say . p, and center 

g(x)•'+ 6g(x;e) such that the sphere i s contained i n N . For 0 < a < 1, 

the point a(g(x) + Sg(x;e)) i s the center of an open sphere of radius 

ap contained i n N . Thus the point 

(1 - a)g(x) + a(g(x) + Sg(x;e)) = g(x) + a6*g(x;e) i s i n N . 

For f i x e d h since g i s Gateaux d i f f e r e n t i a b l e , 

|g(x + ah) - g(x) - aSg(x;e)| <_ o(a) , i t follows that for s u f f i c i e n t l y 

small a , g(x + ae) < 0 . S i m i l a r l y <5f (x;e) < 0 implies that 

f ( x + ae) <̂  f(x) . This contradicts the optimality of x . Hence A 

contains no i n t e r i o r points of B . 

Thus, by the Separating Hyperplane Theorem, there i s a closed 



- 32 -

hyperplane H separating the sets A and B ; that i s , there e x i s t s a 

non-zero element (r ,z ) i n R x Z such that 
o o 

A A 
r r „ + z z- < g < r r . + z z. 
o 2 o 2 — — o 1 o l 

for a l l (r^,z^) i n A and {v^z^) i n B . Since (0,9) i s i n both 

A and B , t h i s implies that 5 = 0 and that 

* 
r r . + z z. > 0 for a l l ( r i , z . ) i n A Cl) 
o 1 o 1 — • 1' r 

and 

* 
r r „ + z z_ < 0 for a l l Cr 0 , z 0 ) i n B • (2) 
o I o 2 — I I 

In order for equation C2) to hold, the d e f i n i t i o n of B implies that 
* * 

r >• 0 and z > 9 . Suppose r = 0 . Then since (r ,z ) i s a 
o — o —

 r r
 o o o 
* " * * 

non-zero element i n R x
 z
 » Z

Q

 > 9 . Equation 1 implies that
 Z

D
Z
^ 0 

f o r a l l (r^,z^) i n A ; i n p a r t i c u l a r , since by the d e f i n i t i o n of A , 

the point C6f(x;e), g(x) -I- <5g(x;e)) i s i n A for a l l e i n X, t h i s 

* - -

implies that z Q(g(x) + <5g(x;e))>^ 0 . But there e x i s t s an e i n X such 

that g(x) + 6gCx;e) < 9 since x i s a regular point of the i n e q u a l i t y 

gCx) <_ 9 . Thus a contradiction i s reached since Z Q > 0 . Therefore 

r Q > 0 and without loss of g e n e r a l i t y , one can assume that r = 1 . 

Applying XQ = 1 and the fact that C<5f(x;e), g(x) + <5gCx;e)) i s 

i n A , for a l l e i n X, equation Cl) becomes 
6fCx;e) + z*Cg(x) + <SgCx;,e)) > 0 for a l l e i n X . 

A _ 
In p a r t i c u l a r , since 9 i s i n X , t h i s implies that ZQgCx) >_ 0 . But 

A _ A _ A _ 

Z Q > .9 and g(x) £ 9 imply that zog'Cx) <_ 0 . Thus z og(x) = 0 . 
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F i n a l l y , by the l i n e a r i t y of Gateaux d i f f e r e n t i a l s with respect to e , 

5f(x;e) + z . 6g(x|e)' = 0 . 

Remark 

With the r e g u l a r i t y condition on x , t h i s theorem cannot be 

extended to include equality constraints h(x) = 0 since there never 

exi s t s an e i n X such that h(x) + Sh(x;e) < 6 and - h(x) - 6h(x;e) < 0 . 

3.1.3 Necessary Condition^ for Equality Constraints. 

For problems with equality constraints only, a necessary optim

a l i t y theorem by L u i s t e r n i c k as done i n Luenbe.rger [10] w i l l be presented 

here. References w i l l be made to the d e f i n i t i o n of a regular point of a 

transformation [Section 1.2.3J and to the Generalized Inverse Function Theorem 

[Section 1.2.4] . 

The basic problem i s 

{min f ( x ) : x (£. X, h(x) = 0} where X i s a Banach 

space, f i s a real-valued f u n c t i o n a l on X and h 

i s a mapping from X into a Banach space Z . 

Lemma 3.1.3.1 

Let f achieve a l o c a l extremum subject to h(x) = 0 at the 

point x and assume that f and h are continuously Frechet d i f f e r e n t i a b l e 

i n an open set containing x and that x i s a regular point of the 

transformation h (see d e f i n i t i o n 1.2.3). Then f'(x)e = 0 for a l l e 

i n X s a t i s f y i n g h^Cx)^ = 0. 
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Proof: 

Assume that the l o c a l extremum i s a l o c a l minimum. 

Suppose there e x i s t s an e i n X such that f ' C x ) e ^ 0 and 

h ' C x)e = 0 . Define the mapping T: X->R)j Z such that T(x) = ( f C x ) , h(x)) 

then T i s continuously Frechet d i f f e r e n t i a b l e i n an open set containing 

x and T'(x) = ( f ( x ) , h ' C x ) ) . Since x i s a regular point of h , t h i s 

implies that h'(x) maps X onto Z; that i s , f or a l l z i n Z there 

exists a y i n X such that h ' C x)y = z . By the l i n e a r i t y of Frechet 

d i f f e r e n t i a l s , t h i s implies that h 'Cx)Cy + Ae) = h'(x)y and 

f ' C x ) ( y + Ae) = f'(x)y + A f ( x ) e - f or a l l A . For any t i n R , A can 

be chosen such that f ' C x ) C y + Ae) = t , and hence T'(x) i s an onto map 

from X to R x Z . Thus x i s a regular point of the transformation 

T . By the Generalized Inverse Function Theorem [Section 1.2.4], for any 

e > 0 there e x i s t s a vector x i n X and <5 > 0 with |x - x| < e 

such that T(x) = (f(x) - 6, 9) , contradicting the assumption that x 

i s a l o c a l minimum. 

Theorem 3.1.3.2 

Let f , h and x be as i n the previous lemma. Then there 

A * — * — 
e x i s t s an element z i n Z such that f ' C x ) + z h 'Cx) = 9 . 

o o 

Proof: 

Lemma 3.1.3.1 implies that f'(x) i s orthogonal to the nullspace 

of the transformation h 'Cx) . By the d e f i n i t i o n of Frechet d i f f e r e n t i a l , 

h 'Cx) i s a bounded l i n e a r operator. Since h 'Cx) niaps X onto Z , a Banach 

space, t h i s implies that the range of the operator h 'Cx) i s closed. Thus, 
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by the property of bounded linear operators defined on Banach spaces 
— * 

(Appendix, Theorem 5), f C x ) is an element in the range of h'(x) . 

This implies the existence of z in Z such that 

f-(x) = - h'Cx)* z* , 

or an alternative notation 

f ( x ) •+ z* h'(x) = 0 . 

3.1.4 Sufficient Conditions 

By the necessary conditions for optimality in problem L as 

seen in theorem 3.1.1.1, convexity and the existence of interior points 

guarantee the existence of a separating hyperplane. But these are too 

strong to impose for sufficiency since the appropriate hyperplane could 

exist in the absence of these conditions. 

Theorem 3.1.4.1 

Let f be a real-valued functional defined on a subset X of 
o 

a linear space X . Let g be a mapping from X q into the normed space 
Z having a non-empty positive closed cone P . Suppose there exists an 

element z in Z , z > 0 and an element x in X such that o o — o 

f Cx) + z*g(x") 1 f Cx) + z*gCx) 1 f (x) + z*gCx) 

* * -for a l l x in X q, z >_ 0 in Z . Then x minimizes f Cx) subject 

to g Cx) < 0 with x in X . 
— o 
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Proof: 

& ic 
Since f ( x ) + z g(x) <_ f Gx)' + "Z g(x) for a l l z >_ 6 i n Z , 

it it — it it 
t h i s implies that z g(x) < z g(x) . If z.> 0 then Gz, + z ) > 0 

— o 1 — 1 o — 
* * * _ * _ 

since z^ >_ 0 and thus Gz^ + z Q ) g ( x ) • <_ z QgGx) or equivalently 

z^g(x) <_ 0 for a l l z^ >_ 0 . Then, since N = - P i s a closed cone, 

* _ 
t h i s implies g(x) <_ 0 and thus, z QgGx) <_ 0 . Therefore, since 

it it it it it 
z g(x) <_ z^g(x) for a l l z >_ 0 i n Z , t h i s implies that z Qg(x) = 0 . 

Assume that x 1 i s i n X q and that g C x ^ <_ 0 . Therefore, since 

- * - * 
f (x) + Z QgCx) _< f (x) + z^gCx) f o r a l l x i n X q , t h i s implies that 

_ * * * _ 
f Gx) + z^gGx) <_ f GxD + z Qg(x^) . Since z^g(x) = 0 by the previous 

* 
part of t h i s proof and also since Z Q >_ 0 , g(x^) <_ 0 , t h i s implies 

that f ( x ) ^ f C x D . Therefore x minimizes fGx) subject to gCx) £0 

and x i n X . 

o 
3.2 Pshenichnyi's Approach 

The necessary c r i t e r i a f o r optimality derived i n t h i s section 

are f o r the following problem: 

P: min{fCx): x € X Q , gGx) <_ 0, h(x) =0} where X q i s 

some set i n the l i n e a r space X and f , g^ f o r 

i = 1, m and h f o r j = 1, k are functionals 

defined on X . 

This presentation follows Pshenichnyi 113]. The,major r e s u l t s are: 

1) Theorem 3.2.2 i s the basic theorem of the s e c t i o n . I t ' s 

assumptions on X , f , h are the weakest given for t h i s type of problem. 
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The method of proof i s very s i m i l a r to the others i n that a separating plane 

argument i s used. 

2) Theorem 3.2.4 r e s t r i c t s theorem 1 to the case where f and 

g are q u a s i - d i f f e r e n t i a b l e , h i s Gateaux d i f f e r e n t i a b l e at x and X 

i s a Banach Space. 

3) Theorem 3.2.5 r e s t r i c t s theorem 1 to the case where f and 

e are convex and bounded, h i s l i n e a r and X i s a convex set i n the ° o 

Banach space X . 

Pshenichnyi's f i r s t theorem i s s i m i l a r i n statement to Mangas

aria n 's /Minimum P r i n c i p l e Necessary Optimality Theorem [Section 2.1.3] in"the 

f i n i t e dimensional case.. R e c a l l that Mangasarian's required assumptions on 

X q, f, g, h were: 

1) X q i s a convex set i n R n with a non-empty i n t e r i o r . 

2) f and g are d i f f e r e n t i a b l e at x . 

3) h i s continuously d i f f e r e n t i a b l e ' i n an open set containing 

x . 

Pshenichnyi's basic assumptions are: 

1) X i s a l i n e a r space, X q i s some set i n X . 

2) there e x i s t s a convex cone K such that i f e i s i n K 
k 

then for A>> 0 s u f f i c i e n t l y small, x(A) = x + e + E r.CA)e. i s i n 
i = l 1 1 

X where e. for i = 1, k are any vectors i n X and the functionals o 1 
r.CX) 

r . s a t i s f y l i m — : = 0 . 
•X-0 x 

, , - n u g,(x(A)) " g(X> 
3 ) l j J U f(x(A)) - f(x) £ F C e ) a n d l i m _ i ^ - < G ± ( e ) 

• A-s-0 A A->0 A 



- 38 -

for i = 1, m where F and are convex functionals with respect 

to e . 
. h . ( x ( A ) ) - h.(x) 

4) l i m -H.(e) where H. i s a l i n e a r func-
A+0 A 1 1 

t i o n a l . 

Observe that Pshenichnyi makes no convexity assumptions d i r e c t l y on X Q 

nor any d i f f e r e n t i a b i l i t y assumptions d i r e c t l y on f, . g and h . Thus 

h i s r e s u l t s are i n terms of F, G, > and H . 

Thelemma preceding theorem 3.1.2 proves that i n the case where 

H^, are l i n e a r l y independents, the separating plane argument can 

be applied i n Theorem 3.2.2 . 

Lemma 3.2.1 

Let x be the s o l u t i o n to the minimization problem P where 

X ,• X, f, '.g and h s a t i s f y assumptions 1 through 4. Also, l e t 

E. , ...., H, - be l i n e a r l y independent.?;". Define I = {.i: g. (x) = 0}'. •, 
X tv 1 

J = { i : g.Cx) ¥• 0} and l e t m , m denote the number of elements i n 
X X J 

each set. Then the convex h u l l of the set 

m , 
K = U ( C r , s , t ) € R X R X R : r - FCe), s = G (e), t = HCe)} 

e^K 
and the set 

M I k 
P = {'Cr,s,t) e R x R X R : r < 0, s < 0,. t = 0} 

have an empty i n t e r s e c t i o n . 

Proof: 

Suppose the i n t e r s e c t i o n were not empty. Then i t must be shown 

that the existence of an element i n the i n t e r s e c t i o n contradicts the 
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minimality of f(x) . Let ( r , s , t ) be an element i n coK A P . This 

implies that since (r>s,t) i s i n coK there e x i s t s Cr
3
 ,s

3
 , t

3
) i n K 

such that 

(r , s , t ) = Z X. ( r 3
, s

3
 , t

3
) where X. > 0 and Z X. = 1 . 

j J J j J 

Furthermore, since ( r
3
, s

3
, t

3
) are i n K then f o r some e

3
 i n K , 

r
3
 = F ( e

3
) , s

3
 = GjCe3) and t

3
 = H(e J

) . Let e° = Z A.e3
 and observe 

that e° i s i n K since K i s convex and Z X. = 1 where X . > 0 . 

i 3 3 

Therefore 

FCe°) <_ Z X. F(e
3
) since F i s convex with respect to e , 

j 3 

- Z X. r 3
 , 

j J 

= r ; 

s i m i l a r l y G^Ce°) 1 s and, since H i s l i n e a r , H(e°) = t .. Thus 

FCe°) •< 0, Gj.Ce0) < 0 and HCe°) = 0 since ( r , s , t ) i s also i n P . 

Consider the set of equations 

k 

Tl)^(X,r^,r2, • • • ,r^) = h^Cx + Xe° + Z r.a 3
) = 0 f o r i = 1, k where 

j = l
 3 

a
3
 are i n X and are chosen such that H.Ca ) = that i s 

5.. = 0 i f i 4 i and 6.. = 1 i f i = i . Then by the Generalized 
i j i j 

I m p l i c i t Function Theorem [Section 1.2.5] the system of equations 

ijj. (X,r 1,.... ,r, ) = 0 for i = 1, . . . , k has a s o l u t i o n r . (X) for 

r±CA) 

i = 1, . . . , k where lim — - — = 0 . 

A->0
 X

 _ _ k 

Consider the points x(A) = x + Ae° + E r . ( A ) a
3
 where .".A > 0 , 

3=1 3 

http://Gj.Ce0
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then since e° is in K , x(A) is in X̂ . . Thus by definition of F 

f(xCX)) <_f(x) + XFCe°) + o(X) . 

but FCe°) < 0 implies that fCxCA)) < fCx) for sufficiently small Â  . 

Similarly by definition g±, g^xCX)) < g^x) + X^Ce 0) + oCX^ for 

i = 1, :..., m, thus implying ĝ -CxCX)) <_ gjCx) + XjGj.Ce0) + oCAj.) . But 

gj-Cx) = 0 and G^(e°) < 0 . Thus for sufficiently small X , 

gjCxCX)) < 0 . Finally by construction of xCX) , hCx'CX)) = 0 for 

sufficiently small X . Therefore a contradiction to the assumption that 

x is the solution to P is obtained. 

Theorem 3.2.2 

Assume 1 through 4 again. If x i s a s o l u t i o n to the minimization 

problem P then there exists r 6 R , r 6 Rm
 , s £ R

k
 where Cr ,r,s) ^ 0 

_ • _ _ o o 

such that r Q F ( e ) + r G(e) + sH(e) >_ 0 for a l l e i n K where ( r Q , r ) >_ 0 
and rg(x) = 0 . 
Proof: 

Case 1: 
set (r 

o 

Case 2: 

lemma coKA P = <f> . Since coK and P are finite dimensional convex 

sets, they can be separated; that is, there exists a vector Cr,Sj.,t) in 
m T k 

R X R X R s u c h that r r + + >_ 0 >_ x^r + s ^ + t 2 t for a l l 

Cr^.s^jt^) in coK ,' thus for a l l point s in K , and for a l l 

^c2>S2't2^ "*"n P ' This implies that 
rFCe) + Sj-Gj-Ce) + tHCe) > 0 for a l l e in K 

http://XjGj.Ce0


and also that ( r , i j ) >_ 0 since < 0 and < 0 . B y . l e t t i n g S j . = 0 

and s = ( s ^ j S j ) , the theorem i s proved since 

?F(e) + sG(e) + tH(e) >_ 0 f o r a l l e i n K with (r,s) > 0 

and sg(x) = s^g^Cx) + Sjgj(x) = 0 since g-j-Cx) = 0 and s^. = 0 . 

Next, the p a r t i c u l a r i z a t i o n of Theorem 1 to the case where X 

i s a Banach space and f and g^ for i = 1, m are q u a s i - d i f f e r e n 

t i a b l e w i l l be presented. R e c a l l that the c l a s s of a l l q u a s i - d i f f e r e n t i a b l e 

functions contains a l l Gateaux d i f f e r e n t i a b l e functionals and a l l convex 

f u n c t i o n a l s . It w i l l be shown that i f f and g^ also s a t i s f y a 

L i p s c h i t z condition then 

•• fCx(X)) - f (x) _ „ * 
lxm r? =, -,.,sup r \e) 

A+0 A
 fVCx) 

and 

g ±(xIX)).- g.(x) A 

l i m = sup g (e) 

A+0 A
 g*€S.Cx) 

i . e . the q u a s i - d i f f e r e n t i a l s . The r e s u l t s of Theorem 3.2.4 are comparable 

to Luenberger's l o c a l case (Theorem 3.1.2.2) which i s i n terms of Gateaux 

d i f f e r e n t i a l s . 

Lemma 3.2.3 

Let X be a Banach space. Assume the existence of K as i n 

assumption 2. Let f , g± for 1 = 1 , m be functionals defined on 

X which are q u a s i - d i f f e r e n t i a b l e and l e t h^" be such that f or 
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h.(x(A)) - h.(x) ^ A * 
i - 1, ...., k , lim •• = h. (e) for some h. in X 

A+0 • 1 1 

where x is the solution to the minimization problem V ~. If the sets 

FCx) and GJj*-) for i = 1,;..., m are bounded then i f 

A M _ * K _ A 
r sup f (e) + Z r. sup g (e) + Z s.h.Ce) > 0 
°f*€FCx) 1-1 1g?t6;c5)i- 1 1=1 1 1 ~ 

I r 
for a l l e in K , it is necessary and sufficient that there exists 

* r - * r. -
functionals f t F(x) and g± 6 G^x) for i = 1, m such that 

- *
m

_ *
k

_ * * 
r- f + Z r. g. + Z s. h. is in K 

1=1 j=l
 J J 

Proof: 

The proof for sufficiency is obvious. 

A" A A — A _ A K * 
Let N = {x : x = r f + Z r. g. + Z s. h. wher 1-1. 1 1 j-1 3 3 

e 

"f 6 F(x) and g± € G±Q) for i = 1, m} . Since F ( £ ) and ^(x) 

for i = 1, m are convex by definition, N is convex. Also since 

F(x) and G^(x) for i = 1, ..., m are, by definition, weak closed and 

bounded, F (x) and <3. (x) for i = 1, m are weak compact. These 

* * * 
in turn imply that N is weak closed and weak compact. 

Suppose there does not exist f in F(x) and g^ in ^.(x) 
* m * k * * 

for i = 1, m such that r f + Z r. g. + Z s. h. . is in K . O . .. 1 1 . .. J 1 
l - l j=l

 J 

* * 
This says that K and N have an empty intersection, or equiyalently 

* * * * 
that K - N • does not contain the zero functional Since N is weak 

* * 
closed and.compact and since K is weak closed, this implies {Appendix; 

A A A A A 
Theorem 6] that K - N is weak closed. Also since N and K are 
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convex, K - N i s also convex. Thus K - N i s r e g u l a r l y convex 

[Appendix Theorem 7,]; that i s , f o r every functional X q not i n K - N 

there e x i s t s e i n X such that 

jit jit • ' it it "ft 
z (e) < x (e) - e for a l l ' z i n K - N , e > 0 . 

o 

Since the zero f u n c t i o n a l i s not i n K. - N , t h i s implies that 

it it it it it 
z (e) < - e < 0'., Thus y (e) - x (e) > e > 0 for a l l y i n K and 

* * * * * 
x i n N . This implies that y (e) i s bounded for a l l y i n K 

but since K i s a cone, mt y ( e) = 0 . Thus e i s i n K by prop

y l K* 
* * * 

e r t i e s . of conjugate cones and x Ce) < - e for a l l x i n N 

Since F(x) and G .Cx) are bounded, there e x i s t s e i n K 
1 o 

where Ie - e I i s so small that 
' o

1 

A M A K * 
|r I Ix. Ce - e ) I + E J r . I Ix Ce - e ) + E s J J h . Ce - e ) < e/4 
1
 o

1 1
 o o

 1
 . ' i

1 1
 o o

 1
 . , j J o

 1 

i = l . 3=1. 

for a l l x i n ' Cx) and x. i n 0 . Cx) f o r 1 = 1, ..., m . Then by 

supremum property 

A M A K A 
0 < r sup f (e ) + E r . sup g. Ce ) + E s. h.Ce ) 

- ° f * ° i = l
 1
 g*

 1
 ° j= l

 1 1
 ° 

A • M * K A 
< r f Ce ) + E r . g.Ce ) + E s h Ce ) + e/4 
-
 0

 ° i = i
 x 1

 ° j = l
 3 3 0 

A M A K A 
< r f (e) + E r . g.Ce) + E s. h (e) + e/4 + e/4 
- o . = 1 x x j = 1 j 3 

= x*Ce)'+ e/2 
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it it it it 

Thus, x (e) 2l - e/2 .contradicting x Ce) < - e for a l l x i n N 

and so necessity i s established. 

Theorem 3.2.4 

Let f , g_̂  for i = 1, ... , m and for j = 1, ... , k 

be functionals on a Banach space X . Let X be some set i n X . Assume 
r
 o 

the existence of K as i n assumption 2.: If f and g^ for i = 1 m 

s a t i s f y a L i p s c h i t z . c o n d i t i o n and are q u a s i - d i f f e r e n t i a b l e and i f h^ for 

j = 1, k s a t i s f y a L i p s c h i t z condition and has a Gateaux d i f f e r e n t i a l 

hj for j = 1, k, then i n order that x be a s o l u t i o n to the 

minimization problem P , i t i s necessary that there e x i s t s r Q i n R , 

r i n R
m
 and s i n R^ where ( r o , r , s ) ^ 0, and functionals< f i n 

— it 
^ Cx) and g_̂  i n G^Cx) for i = 1 m such that 

*
 m

 *
 k

 * * 
r f + E r . g.+ I s. h. £ K with Cr ,r) > 0 
O . . . X X . . . X X v

o — 
1=1 i = l 

and futhermore r gCx) = 0 . 

Proof: 

I f i t can be shown that the given assumptions on f , g_̂  for 

i = 1, m and f o r j = 1 , k imply that the conditions on 

f , e. and h. i n theorem 3.2.2 are s a t i s f i e d and that F Cx) and G': Cx) 
° i j l 

for i.= 1, m ,are bounded, then by Lemma 3.2.3, this.theorem i s 

proved. 

Since f and g_̂  f o r i = 1., .„..., m s a t i s f y the same conditions 

i t i s s u f f i c i e n t to consider ju s t f . Since 
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f C x ( A ) ) r f ( x ) = f(x(A)) - f ( x + A e ) ^ f ( x + A e ) - f(x) ^ a n d s i n c e > b y 

d e f i n i t i o n of x(A), 
f Cx(A)) - f (x + Ae) 

A 
< L 

E r.CA)e. 
i - l

 1 1 

because 

f s a t i s f i e s a L i p s c h i t z c o n d i t i o n , then taking l i m i t s , 

l i m
 f
(x(A)) - f(x) = s u p ^ f * C e ) f o r a l l x ( a ) i n x s i n c e 

A-H-0 A f V ( x ) 

l i m L 

A-H-0 

E r.CA)e. 
i = l

 1 1 

= 0 and by the q u a s i - d i f f e r e n t i a b i l i t y of f 

— f (X + A e ) - f ( x ) = s u p f * ( . e ) ^ T h u g b y s e t t i n g F(ey = s u p f * ^ ) 
l i m 

A-H-0 f*6F(x) fx6FCx) 
and s i m i l a r l y G.(e) = sup g.(e) for i = 1, . . ., m, t h i s implies 

1
 g*€GCx)

 1 

that F and for i = 1, m are convex with respect to e and 

assumption 3 required of f and g^ for i = 1, . .. , m i s more than met 

since equality has been established. 

F i n a l l y , since h^ for j = 1, k has a Gateaux d i f f e r e n t i a l 

* -
hj at x for j = 1, k and since f o r j = 1, k s a t i s f y 

a L i p s c h i t z c o n d i t i o n , a s i m i l a r argument as used f or f and g^ for 

i = 1 m y i e l d s 

l i m 

A-H-0 

h,(x(A)> - h (x) * 

* =h.(e) for a l l xCA) i n X 
A 3 

Thus s e t t i n g H.Ce) = h.( e ) , H., by d e f i n i t i o n of Gateaux d i f f e r e n t i a l s J J 3 

[Section 1.1.1] i s the required l i n e a r f u n c t i o n a l f o r assumption 4 . 



Suppose F(x) i s not bounded. This implies that f o r every 

n > 0 there e x i s t s e with le I = 1 and a fu n c t i o n a l f i n FCx) 
n
 1

 n
1
 n 

* 
such that f C e ) > n - e for some e > 0 . Since f i s a quasi-

n n " — » 

d i f f e r e n t i a b l e f u n c t i o n a l , t h i s implies that 

fCx + Xe ) - fCx) = X sup f*Ce ) + oCX) 
n
 f *€ F(x) n 

> X f*Ce„) + oCX) 
— n n 

> X Cn - e) + oCX) . 

Since f also s a t i s f i e s a L i p s c h i t z c o n d i t i o n , ]fCx + ̂ >̂ n) ~ fCx)| <_LX , 

t h i s now implies LX >_ X(n - e) + oCX) . Thus L > n - e . But n can 

be chosen so large that n - e > L since L i s f i x e d . Thus, a contradiction 

i s reached. F i n a l l y , since the same argument holds f or G^Cx), i = 1, m, 

the theorem i s proved. 

The f i n a l theorem presented i n t h i s section i s a p a r t i c u l a r i z a t i o n 

of the problem P to the case where f and g^ f o r i = 1, m are 

convex bounded f u n c t i o n a l s , where h_. f o r j = 1, k are l i n e a r 

f u n c t i o n a l s , and X i s a convex set i n the Banach space X . This theorem 

o 

i s s i m i l a r to Luenberger's global case [3.1.1]. 

Theorem 3.2.5 

Let f and g^ f o r i = 1, m be convex bounded functionals 

on a Banach space X . Let h^. for j = 1 , k be bounded l i n e a r 

functionals on X and l e t X be a convex set i n X . If x i s the 

o 
so l u t i o n to the minimization problem P , i t i s necessary that there 
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— ~~ xn. — lc ~~ ^ 
exists r Q in R , r in R and s in R with (r Q,r,s) ̂  0 such 

that 

r Q f Cx) + rg Cx) + shCx) > t Q f Cx) + rg Cx) + shCx) 

for a l l x in X where (r ,r) > 0 and moreover rgCx) = 0 . 
o o — f 

Proof: 

Let K = {e: e = ACx - x) for x in X Q, X f x, /.A >• 0} . 

Then K is a cone and i f e i s in K then x(X) .= x + Ae is in X 
o 

for small A since X is convex. Since f is a convex functional 
o 

i . f Cx + Ae) - f Cx) 9f Cx) ^ C F - , ^ C F ~ \ T j_ -r. / \ j r /
-
, \ 

lim — - — < f Cx + e) - f Cx) . Let FCe) = fCx + e) - f Cx) . 
A-H-0 S e _ 

.Then F i s a convex func t i o n a l with respect to e . S i m i l a r l y define 

G.Ce) f o r i = 1, .... m . Since h. i s a l i n e a r f u n c t i o n a l , 
x x 

h.(x + Ae) - h.(x) 3h.Cx) 
lim — — = —1 = h.Cx + e) - h.Cx) = H. Ce) . Thus 
A^+0

 X
 9e x x i 

by theorem 1, there exists r Q i n R , s i n R^ where Cr o >r,s) f 0 

such that 

where 

r FCe) + rGCe) + sH'Ce) > 0 for: a l l e in K o — 

(r ,r) > 0 and r (x) = 0 ; 
o ' — S 

or e q u i v a l e n t l y r Q C f C x + e) - f C x ) ) + rCgCx + e) - gCx)) + sChCx + e) - h(x))- > 0 

and by s e t t i n g e = x - X q f o r some x i n X Q , t h i s i m p l i e s 

r Q f ( x ) - rgCx) + shCx) >_ i Q f Cx) + r g(x) + shCx) f o r a l l x i n X Q . 
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3.3 Comparison of Pshenichnyi's Approach:to Luenberger's . 

In Luenberger's minimization problems there can be an i n f i n i t e 

number of constraints since the i n e q u a l i t y constraint g i s a mapping into 

Z , a normed l i n e a r space of any dimension, f i n i t e or i n f i n i t e and sim

i l a r l y the equality constraint h i s a mapping into Z , a Banach space 

of any dimension. Thus Pshenichnyi's problems are a c t u a l l y a p a r t i c u l a r -

i z a t i o n of Luenberger's to a f i n i t e number of c o n s t r a i n t s . In t h i s case 

Pshenichnyi's r e s u l t s are better than Luenberger's since Pshenichnyi's 

assumptions are weaker. 

In t h i s s e c t i o n , a comparison of assumptions and r e s u l t s of 

Luenberger's.problem L r e s t r i c t e d to the case where the number of 

constraints i s f i n i t e , to Pshenichnyi's problem P w i l l be presented. 

Since, in
1
Luenberger's presentation, global and l o c a l eases with i n e q u a l i t y 

constraints and the case with equality constraints only are a l l handled 

separately, the comparison with Pshenichnyi's assumptions w i l l ' a l s o be 

handled separately but f i r s t observe that the problems L^, and 

can be deduced from P by s e t t i n g X q to be the whole space X . The 

choosing of X q from the l i n e a r space X i s a way of further q u a l i f y i n g 

a mathematical programming problem. For an example of where t h i s i s used 

r e f e r to Kushner's paper: Necessary Condition f o r Continuous Parameter 

Stochastic Optimal Problem [8J.; 

3.3.1 Inequality Constraints — Local Case. 

F i r s t i t w i l l be.shown that Theorem 3.2.2 can be applied to 

derive Theorem 3.1.2.2. The set X and the cone K can both be defined 
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as X . The assumption of Gateaux d i f f e r e n t i a b i l i t y of f and g implies 

that assumption ( 3 ) (Theorem 3 . 2 . 2 ) holds with F and G being the 

Gateaux d i f f e r e n t i a l s . Hence from theorem 3 . 2 . 2 , there exists r € R , 

o 

r € R
m
 where Cr ,-r) f 0 such that r F ( e ) . + ?GCe) >_ 0 for a l l e • i n 

X where Cr Q,r) >_.0 and such that rg(x) = 0 . 

Now, i f the condition that x be a regular point of the. i n e q u a l i t y 

constraint i s assumed i n Theorem 3 . 2 . 2 t h i s would imply the existence of 

e i n X such that g(x) + 6gCx;e) < 6 and g(x) < 0 . But Theorem 3.2.2 

says that rg(x) = 0 , Cr o,r) >_ 0 , Cr o,r) ^ 0 and r^fCxje) + r5g(x;e) > 0 

for a l l .e i n X . If r = 0 t h i s then implies 

o
 r 

ir6g(x;e) >_ 0 for a l l e i n X . ( 1 ) 

If e i s as given i n the r e g u l a r i t y c o n d i t i o n , then r(g(x) + <5gCx;e)) < 0 

since r > 0 . But rg(x) = 0 hence r<5g(x;e) < 0 contradicting Cl) • 

Thus r ^ 0 and, without loss of g e n e r a l i t y , r Q can be taken as 1 . Hence 

with the regular point assumption added, theorem 3.2.2 says FCe) + rG(e) >_ 0 

for a l l e i n X . T h i s , i n turn, "implies that 6fCx;e) + r6gCx;e) > 0 

and so, by the l i n e a r i t y of the Gateaux d i f f e r e n t i a l s i n e , 

6f(x;e) + rSgCx;e) = 0 , the r e s u l t of theorem 3 . 1 . 2 . 2 . 

3.3.2 Inequality Constraints - Global Case 

As stated e a r l i e r , Theorem 3.2.5 i s very s i m i l a r to Theorem 

3 . 1 . 1 . 1 . In f a c t , both require convexity of X q , f and g . Thus the 

r e s u l t s of Theorem 3.2.5 follow. If the i n t e r i o r point assumption i s added 

to Theorem 3 . 2 . 5 , then the assumptions of 3.2.5 are equivalent to 3 . 1 . 1 . 1 

R e c a l l that the i n t e r i o r point condition implies the existence of x 1 i n 
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X such that g(x^) < 6 .. . With t h i s condition added, the r e s u l t s of 

Theorem 3.2.5, namely ( r Q , r ) ^ 0, ( r Q , r ) >_ 0, rgCx) = 0 and 

r Q f ( x ) + rgCx) ^ r Q f ( x ) + rg(x) for a l l x i n X , would imply r Q > 0 

since i f r = 0 then rg(x,) < 0 . Hence, with r > 0 , without 
o •

 6 1 o 

los s of generality r = 1 and the r e s u l t s of Theorem 3.1.1.1 appear. 

3.3.3 E q u a l i t y Constraints 

The assumptions of Theorem 3.2.2 w i l l be derived from those of 

theorem 3.1.3.2. The set X and the cone K can both be defined as 

o 

X . Since i n 3.1.3.2, the equality constraint h and the objective func

t i o n a l f are continuously Frechet d i f f e r e n t i a b l e , assumption 3. and 

assumption 4 i n 3.2.2 follow immediately with F and H equal to-the 

Frechet d i f f e r e n t i a l s . Thus theorem 3.2.2 can be applied and the following 

r e s u l t s hold: 

(r ,s) = 0 , r G(e) + sH(e) > 0 for a l l e i n X and r > 0 . 
o . o — o — 

Now, l e t the condition that x be a regular point of the t r a n s 

formation h be added to the assumptions of theorem 3.2.2. This implies 

that h'(x) maps onto R
k
 . If r Q = 0 then sh''(x)e >̂  0 for a l l e i n 

X , and thus, by the l i n e a r i t y i n e of the Frechet d i f f e r e n t i a l s , 

sh/Cx)e = 0 . Since s ^ 0 , t h i s implies that some of the components 

of h'(x)e must be 0 for a l l e i n X , hence the rank of h'(x) i s 

- k 

le s s than k but t h i s contradicts the fact that h^(x) maps onto R 

Therefore, without loss of g e n e r a l i t y , r = 1 and f'Cx)e + sh''(x)e >̂  0 

for a l l e i n X so that by l i n e a r i t y i n e of the Frechet d i f f e r e n t i a l s , 

f"(x) + sh(x) = 0 . 
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CHAPTER' FOUR: APPLICATION TO OPTIMAL CONTROL 

4.0 Introduction 

In an optimal control problem, the dynamics are described by a 

system-of d i f f e r e n t i a l equations of the form 

^ - f ( x ( t ) , uCt)) CD 

where xCt) i s an n-dimensional "state" v e c t o r , u.(t) i s an n-dimensional 

co n t r o l vector and f i s a mapping of R
n
 x R

1
" R

n
 . This system when 

supplied with an i n i t i a l state
 x

( t 0 ) and a control input function u , 

produces a vector-valued, function x . Let the i n t e r v a l [t ., t'^J represent 

the i n t e r v a l on which x and u are defined. A l s o , i n addi t i o n to t h i s 

dynamic system, the c l a s s i c a l . o p t i m a l control problem has an objective 

f u n c t i o n a l of the form 

t. 

1
 £ ( x , u ) d t J = 

J i 

"0 

and a f i n i t e number of terminal c o n s t r a i n t s . 

g.(x(t.)) = c. for i = 1, ... r 

°x x i ' 

or e q u i v a l e n t l y gCx(t^)) = c 
C2) 

Thus, an optimal control problem consists of f i n d i n g the pair of functions 

Cx,u) minimizing J while s a t i s f y i n g the system Cl) and the terminal 

constraints C2)• 

By considering the problem as one formulated i n R
n
 x ^ a n

d by 

t r e a t i n g the d i f f e r e n t i a l equation Cl) and the terminal constraint (2) as 
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connecting u arid x , the optimal c o n t r o l would reduce to a mathematical 

programming problem. Some assumptions must be made f i r s t . Let the vector-

valued function f have continuous p a r t i a l d e r i v a t i v e s with respect to 

x and u . Let u €. u C .C m[t ,t^] where U i s the cl a s s of admissible 

c o n t r o l functions and C m [ t ,t-] the set of continuous m-dimensional 
o 1 

functions on [ t ^ t ^ ] . Also assume for any given u £ U and for an i n i t i a l 

condition x ( t Q ) » equation (1) defines a unique continuous function x(t) 

where t > t . If x i s the function r e s u l t i n g from the a p p l i c a t i o n of 

a given c o n t r o l u , then x i s said to be the t r a j e c t o r y of the system 

produced by u . Let X denote the clas s of a l l admissible t r a j e c t o r i e s . 

F i n a l l y assume that I. and g have continuous p a r t i a l d e r i v a t i v e s with 

respect to t h e i r arguments. 

Now, l e t X = C n [ t , t j , U = C m
I t , t j and define 

o 1 o 1 
A(x,u) = x(t) - x ( t Q ) 

h 
f ( x ( s ) , u(s))ds = 0 . Observe that t h i s i s 

•v t 
o 

i s simply the integrated form of the d i f f e r e n t i a l equation (1). Then A 

i s a mapping from C n [ t o , t ^ ] x C m [ t o , t ^ ] into C n [ t o > t ^ J . Thus the 

Fre'chet d i f f e r e n t i a l of A e x i s t s , i s continuous and i s given by the 

formula 

A'(x,u)(h,v) = h(t) -
t 

V f(x,u)hCx)ds 
t X 

fcl 
V fCx,u)vCs)ds . (3) 

t U o o 

for a l l (h,v) i n X x u • Also, since g has continuous p a r t i a l d e r i v a 

t i v e s , the terminal constraint g i s a mapping from C n [ t o , t ^ ] into R r 

with Fre'chet d i f f e r e n t i a l : 

g'(x)h = V g(x)h(t ) f o r a l l h i n X . (4) 
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Since the transformation A and g define the constraints of 

the optimal c o n t r o l problem and since these constraints are a c t u a l l y ones 

of e q u a l i t y , the question of r e g u l a r i t y of these constraints i s equivalent 

to asking i f , at the optimal t r a j e c t o r y , that i s , at (x,u), the Frechet 

d i f f e r e n t i a l s A'(x,u) and g'(x) , taken as a p a i r , map onto X x
 R 

(see d e f i n i t i o n 3.1.2.1). To e s t a b l i s h t h i s , two assumptions are needed: 

(i) V^gCx) has rank r and ( i i ) the system (3) i s c o n t r o l l a b l e , that 

i s , f o r any e i n R
n
 there e x i s t s v i n U such that 

h(t) -
x
 V f(x,u)h(s)ds — 

t
 x 

t
l 

V f (x,u)v.Cs)ds = 0 , (5) 
t -

 U 

o o 

and 
M t J - e • (6) 

have a s o l u t i o n h i n X . Using ( i ) , i t i s clear that the p a i r 

(A
>
,g'') i s onto i f for any e i n R

n
 and any y i n X there i s an 

(h,v) i n X x U such that 

rt 

net) - J 
1
 V f(x,u)h(s)ds -

t
 X 

X
 V uf(x,u)v(s)ds = y(t) (7) 

o o 

and 

h ( t x ) = e (8) 

If v = 0 then by the fundamental existence theorem for l i n e a r V o l t e r r a 

i n t e g r a l equations [Appendix, Theorem 6 ] , equation (7) has a s o l u t i o n 

ii . Now, l e t h be the s o l u t i o n of C5) and C6) w i t h e = e - h(t^) . 

Then I t i s clear that h = h + h s a t i s f i e s (7) and (8). Hence the constr

a i n t s are r e g u l a r . 
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4.1 Basic Necessary Conditions For Optimality. 

The.basic necessary conditions s a t i s f i e d by the s o l u t i o n to the 

optimal c o n t r o l problem w i l l be given here. 

Theorem 4.1.1 

r t 

Let (x,u) minimize J = ^ £ ( x , u ) d t subject to ^ = f ( x , u ) , 

fc
o 

xCt Q) fixed- and g(x(t^)) = C . A l s o , assume that the r e g u l a r i t y con

d i t i o n s are s a t i s f i e d at (x,u) . Then there i s an n-dimensional vector-

valued function A(t) and an r-dimensional vector y such that f or a l l 

t i n I t j . t ^ ] 

(a) - | ^ = [ V x f ( x ( t ) , u ( t ) ) ]
T
A ( t ) + ! V x £ ( x ( t ) , u ( t ) ) ]

T
 (9) 

(b) ACtj) = [ V ^ g C x C t j ) ) ] ^ (10) 

(c) [ A ( t ) ]
T
V u f ( x ( t ) , u (t)) + V u £ C x C t ) , GCt)) = 0 . ( I D 

Proof; 

dx 

Since - j— = f (x,u) can be rewritten i n the form A_(x,u) = 0 

as seen i n the introduction and since g(x(t^)) - C = 0 , the minimization 

problem to be considered.has only equality c o n s t r a i n t s . Since A, g and 

J are continuously Frechet d i f f e r e n t i a b l e since the r e g u l a r i t y conditions 

are s a t i s f i e d , and since .(x,u) i s the s o l u t i o n to the minimization problem, 

by theorem 3.1.3.2, there e x i s t s X 6 N B V [ t Q , t j ] , the normalized space of 

functions of bounded v a r i a t i o n (see Luenberger 110J, Dual of C[t , ^ 3 ) , 

and. y 6 R such that 
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V Kx,u)h(t)dt + 
X t 

_ 1
 d[X(.t)]

T
[h(.t) - V fCx,u)hCs)ds] 

X 

and 

+ y V xg(xCt I))hCt 1) = 0 

V J l(x,u)v(t)dt + 
_ 1
 d[.X(t)]

T 
V uf (x,u)v(s)ds = 0 

CL2) 

(13) 

for a l l (h,v) i n X x U • Without l o s s of g e n e r a l i t y , set X(t^) = 

Equation (12) i s equivalent to 

V Jt(x,u)h(t)dt + 
X 

ft 
h(t)dACt) - dX(t) V^f(x,u)h(s)ds 

X 

+ y
x
V x g ( x ( t 1 ) ) h ( t 1 ) = 0 

Then in t e g r a t i n g by parts the t h i r d term of the above equation and sub

s t i t u t i n g \ ( t j ) = 6 , equation (12) can be rewritten as 

V xHx,u)h(t)dt + h(t)dX(t) + 1
 [ X ( t ) ]

T
V x f ( x , u ) h ( t ) d t 

+ y V xg(x(t 1))h(t 1) = 0 for a l l h i n X . (14) 

Thus, i t i s cl e a r that X can have no tumps i n (t ,t,) since otherwise 
o 1 

a s u i t a b l e h i n X can be constructed to make the second term of (13) 

large compared with the other terms. However there must be a jump at t ^ 

of magnitued - Vg (x(t,))y . Since (13) holds for a l l continuous h , 

X JL 

i t holds, i n p a r t i c u l a r f o r a l l continuously d i f f e r e n t i a b l e h with 

hCt-^) - M b ) = 0 . Therefore, integrating by parts the second term, 



equation (12) becomes 

1
 { Vx^Cx,u)hCt);^ 1:^ = o 

or. e q u i v a l e n t l y , 

rt 
1 {CVxACx,u) + [ ( t ) ] T V xfCx,u))hCt) - l X ( t ) ] T }dt = 0 . (15) 

Let B(t) = {V £ ( x , u ) • + IX-(S)] V f(x,u)}ds . Integrating by p a r t s , 
X X 

; IVx£Cx,u) + [X(t)]Vf(x,u)]h(t)dt = 1
 B(t) dt since 

t
 d t 

o 

h ( t Q ) = h ( t o ) = hO^) = 0 . Thus equation (15) becomes 

1
 {B(t) + U ( t ) ]

T
}

:
| £ ' d t = 0 . 

This implies that - X(t) = [B(t)] + c [Appendix: Theorem 8] for some 

constant c arid hence by the d e f i n i t i o n of B , equation (9) holds. 

Equation (13), a f t e r i n t e g r a t i n g the second term by p a r t s , 

becomes 

V u>l(x,u)v(t)dt + 1
 [ X ( t ) ]

T
V u f ( x , u ) v ( t ) d t = 0 

or e q u i v a l e n t l y , 

rt 
1
 I V u £ ( x , u ) + !X.(t')]

T
V f (x,u)]v(t)dt = 0 for a l l v i n U . (16) 

Let D(t) = V u £ ( x , u ) + TX(t)] V uf(x,u) . Then equation (16) becomes 

rt. 
D(t)v(t)dt = 0 (17) 
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If Dtt) :f 0 at a p o i n t , say D ( t ) > 0, then by c o n t i n u i t y , D(t) > 0 

i n a neighbourhood of that p o i n t . Let v be any continuous function which 

i s zero outside the neighbourhood but which i s greater than zero somewhere 

r t l 
D(t)vCt)dt > 0 , contradicting (17). Thus D(t) 

t 
o 

i n s i d e . Then 

i s equal to zero and equation (11) holds. 

F i n a l l y , by changing the boundary condition on A(t^) from 

T A(t,) = 6 to A O O = JV- g ( x ( t T ) ) J y to account for the jump, X w i l l 
J- X X X 

be continuous throughout f t ^ j t ^ J and the theorem i s proved. 

4 . 2 A n Example Problem i i i ; Optimal Co n t r o l . 

Consider the problem of f i n d i n g the m-dimensional c o n t r o l 

function u that minimizes the quadratic objective f u n c t i o n a l 

1
 ( [ x ( t ) ]

T
 Q x(t) + I u ( t ) J

T
 R u ( t ) ) d t 

t 
o 

subject to the l i n e a r dynamic constraint 

Ay; 
^ = F x(t) + B u ( t ) , xCt ) f i x e d , (18) 

where Q i s an n x
 n
 symmetric p o s i t i v e - s e m i d e f i n i t e matrix, R i s an 

m x m symmetric p o s i t i v e - d e f i n i t e matrix, F i s an n x
 n
 matrix and 

B i s an n x m matrix. 

Applying the necessary conditions of Theorem 4.1.1, 

- f£ = F
T
A(t) = Q x ( t ) , X ( t J =.9 (19) 

[ A ( t ) ]
T
 B + [ u ( t ) ]

T
 R = 0 . 
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Since R i s p o s i t i v e d e f i n i t e , t h i s implies that 

- I T 

u(t) = - R B X(t) . and thus the dynamic l i n e a r constraint (18) becomes 

^ = F x C t )— B R
_ 1
B

T
ACt), x ( t Q ) fi x e d . (20) 

Observe that equations (19) and (20) form a l i n e a r system of d i f f e r e n t i a l 

equations whose s o l u t i o n s a t i s f i e s the r e l a t i o n : 

A(t) '= P(t ) x ( t ) where P(t) i s the n x
 n
 matrix sol u t i o n 

of the R i c c a t i d i f f e r e n t i a l equation 

HP T - I T 
££. + P F + F P - P B R B P + Q = U, P(t,) = 0 . 
dt 1 
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CHAPTER FIVE:./DEVELOPMENTSt 

In the l a s t few years, a l o t of work has been done in.the 

development of necessary optimality c r i t e r i a f o r programming problems 

wit h both equality and i n e q u a l i t y c o n s t r a i n t s . The general form of t h i s 

problem i s 

G: min{f(x): x € X, gtx) <_0, h(x) = 0} where 

f : X R, g: X ^ Y and h: X -> Z . 

The following cases have been presented: 

1) X, Y, Z f i n i t e dimensional 

2) X, Y l i n e a r spaces and no equality constraints 

3) X, Z Banach spaces and no i n e q u a l i t y constraints 

4) " X, a l i n e a r space and Y, Z f i n i t e dimensional spaces. 

D i f f e r e n t i a b i l i t y assumptions were required for optimality r e s u l t s i n the 

l o c a l case of (2) a s w e l l as cases Cl) and (3). In case (4), Pshenichnyi 

required the existence of convex approximations of f and g and a 

l i n e a r approximation of h as well as a convex approximation of X . 

B. D. Craven [4] does an extension to case (3). In h i s problem 

f i s not a f u n c t i o n a l but rather a mapping into a Banach space. His 

main r e s u l t w i l l be stated here for comparison to Theorem 3.1.3.2. 

Craven's Main Result. 

Let X, Y and Z be Banach spaces and l e t U . be an open 

subset i n X . Let f : U -> Y be Frechet d i f f e r e n t i a b l e and fi.:'. U -> Z 

be continuously Frechet d i f f e r e n t i a b l e . Assume (by r e s t r i c t i n g Y and Z) 

that fQJ) i s dense i n Y and h(U) i s dense i n Z . Let 

E = {x: x € U, h(x) = 0, h'Cx) i s an onto map} . Then. fCx) i s stationary 
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subject to the constraints h(x) = 0 at x = x € E i f and only i f there 

ex i s t s a continuous l i n e a r map M: Z -> Y such that f'(x) = Mir Cx) . 

H. Halkin and L. Neustadt [7] and L. Neustadt [12] present the 

case where the number of i n e q u a l i t y constraints i s i n f i n i t e and the 

number of equality constraints i s f i n i t e ; that i s , i n problem G, the 

spaces X, Y are infi n i t e . d i m e n s i o n a l and Z i s f i n i t e dimensional. 

The assumptions on f, g, h and X were s i m i l a r to Pshenichnyi's; that 

i s convex approximations were used and thus, the r e s u l t s were i n terms of 

these convex approximations. M. Altman [1] developed the necessary c r i t e r i a 

for the reverse problem; that- i s where the number of equality constraints 

i s i n f i n i t e and the number of i n e q u a l i t y constraints i s f i n i t e 

In Bazaraa and Goode's paper [3] , the necessary conditions f or 

the case where there are i n f i n i t e l y many equality and i n e q u a l i t y c o n s t r a i n t s , 

are developed. These r e s u l t s are probably the most general so far a v a i l a b l e . 

Before the main r e s u l t s can be stated a few d e f i n i t i o n s are required: 

Ca) The problem to be considered i s : 

8: min{fCx): x 6 S, gCx) e cSL C, h (x) = 0} where 

f: X -> R, g: X + Y and h: X -> Z; X, Y, Z are 

normed l i n e a r spaces; S i s a subset of X, c% C i s 

the closure of C where C i s a convex cone i n Y . 

Cb) The cone of i n t e r i o r d i r e c t i o n s f o r an a r b i t r a r y set S 

and x i n c% S i s defined.as: 

DCS,x) = {x: there i s a b a l l B about the o r i g i n and 

<S > 0 such that y£x + B and H CO,6) 

imply that x + Xy £ S} . 
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Cc) The cone of tangents for an arbitrary set S and x in 

ci S is defined as: 

T(S,x) = {x: given any 6 > 0, there exists a A 6 Co,<5) 

and z 6 B. such that x + Ax + Az € S where 
o 

Bg is a ball:around the origin with radius 5} . 

Cd) The functions• f and g are differentiable at x with 

derivatives F and G in the following sense: 

1/A Cf Cx + Az) - f (x)) -> FCy) for A -f; 0+, z -> y 

and 

1/A (g(x + Az) - g(x)) + G(y) for A ̂  0+, z -> y . 

Ce) G is ci C-convex if • GCAx + Cl - A)y) - AGCx) - Cl - A)GCy) € cJl C 

for each x, y and A •= (0,1) . 

Cf) The level set L is defined as L = {x: hCx) = 0} . 

CNote: if x is the solution of B then, obviously, 

x L) . 

Remarks 

(1) The cone of i n t e r i o r d i r e c t i o n s i s s i m i l a r to the cone K 

used by Pshenichnyi. 

C2) If f and g are d i f f e r e n t i a b l e at x i n the above sense 

then f and g are obviously Gateaux d i f f e r e n t i a b l e at x when z = y . 

But Gateaux d i f f e r e n t i a b l e at x need not imply the above d e f i n i t i o n 

since z may not converge to y . 
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Main Result;; 

Theorem: 

Suppose that x solves problem 8 and suppose that D(S,x) 

i s convex. Let M be a nonempty convex subset of TCL,x) . Then, 

there e x i s t s a non-zero (u,v,w) i n R x Y x
 x
 such that 

: CD u >_ o, v t c , w e M 

( l i ) vg(x) = 0 

C i i i ) (uF + vG + w)x >_ 0 for a l l x i n DCS,x) . 

Extensions: 

Cl) If x i s i n the i n t e r i o r of S then uF + vG + w = 0 

C2) I f S i s convex and has a non-empty i n t e r i o r then condition 

C i i i ) i s equivalent to CuF + vG + w) Cx) _̂ CuF + vG + w) Cx) for a l l x 

i n S . 

C3) If b i s Frechet d i f f e r e n t i a b l e at x with d e r i v a t i v e H, 

i t can be shown that T(L,x) C N(H) . I f TCL,x) = NCH) then the set M 

can be chosen such that M = NCH) and thus w £ CNCH))"
1
. The assumption 

N(H) C T(L»x) can be viewed as a r e g u l a r i t y assumption. Here N(H) i s the 

n u l l space of H . This condition i s . implied when either 

(a) h i s af f i n e 

or Cb) X, Z are Banach spaces, h i s continuously Frechet 

d i f f e r e n t i a b l e , at x , and the range of H i s equal to Z . This i s 

equivalent to Luenberger's regular point d e f i n i t i o n CSection 1.2.3) 

C4) I f either Z i s f i n i t e dimensional or X and Z are 

Banach spaces and range of H i s c l o s e d , then w can be. written as a 

composition of H and a continuous l i n e a r f u n c t i o n a l on Y . 
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From t h i s theorem and points. (3) and C4) the.following two 

theorems are immediate. 

Theorem: 

Let X, Y, Z be normed l i n e a r spaces, where Z i s f i n i t e 

dimensional. Suppose that f and g are d i f f e r e n t i a b l e : i n the sense 

of d e f i n i t i o n Cd) with, d e r i v a t i v e s F and G and l e t H be a continuous 

l i n e a r transformation fronr X . to Z with N(H) C T(L,x) , . eg. by 

l e t t i n g h be a f f i n e . I f x i s the s o l u t i o n to 8 then there exists 

a non-zero (u,v,w) £ R x Y x Z such that 

( i ) U >_ 0,;. V & C 

Cii ) vgCx) = 0 

C i i i ) CuF + vG + wH) (x) >̂  0 for a l l x i n D(S,x) . 

Theorem: 

Let X and Z be Banach spaces and Y be a normed l i n e a r 

space. Suppose that f and g are d i f f e r e n t i a b l e at x as i n d e f i n i t i o n 

(d) with d e r i v a t i v e s F and G. Further suppose that h i s continuously 

Frechet d i f f e r e n t i a b l e at x with d e r i v a t i v e H . If x solves B then 

* * 
there e x i s t s a non-zero (u,v,w) i n R x X X

 z
 such that 

* 
( i ) u > 0, v € C 

Cii) vg(x) = 0 

C i i i ) CuF + vG + wH) Cx) >. 0 for a l l x i n DCS,x) . 

Remark: 

I f , i n the above theorem, S i s convex, f i s convex, g i s 
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cl C-convex and g i s a f f i n e then condition C i i i ) i s equivalent to 

uf Cx) + vG(x) + wH(x) >_ uf Cx) + vg Cx) + whCx) - uf Cx) . 

Hence i f x solves 8 then there e x i s t s (u,v,w) f 0 such that cond

i t i o n s C i )» ( i i ) and the above i n e q u a l i t y . h o l d . 
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APPENDIX 

1. Bounded Inverse Theorem [2] 

Let X be a Banach space, D a subspace of X and Y , a 

normed l i n e a r space. Suppose A: D -* Y i s a closed l i n e a r transformation 

and suppose the range of A , A C D ) i s of- category II . Then: 

(a) . A i s onto; that i s A C D ) = Y 

(b) there ex i s t s an m > 0 such that f o r any yfe Y there i s 

some x 6 D such that Ax = y and ||x[| <_ mfl.y'|| . 

(c) I f A
 1
 e x i s t s , i t i s a bounded l i n e a r transformation. 

2. Brouwer's Fixed Point Theorem [5] 

Any continuous map f of a closed b a l l i n R
n
 into i t s e l f has 

at lea s t one fix e d point; that i s , a point x such that f Cx) = x . 

3. Separating Plane Theorem [ l l ] 

Let X and Y be two non-empty d i s j o i n t convex sets i n R
n
 . 

Then there e x i t s a plane {x: x R
n
 , cx = a} , c f 0 which separates 

them; that i s , cx <_ a <_ cy for a l l x i n X , y i n Y . 

4. Separating Hyperplane Theorem [.10 ] 

Let and be convex sets i n the normed l i n e a r space X 

such that Kj- has i n t e r i o r points and has no i n t e r i o r points of . 

Then there i s a closed hyperplane H separating and K̂ ;. that i s , 

it it it it 
there i s an x i n X such that sup x Cx) 1 . i n f x Cx) • 

xfeK^: x f r ^ 

5. Property, of Bounded Linear Operators i n Banach Spaces [10] 

Let X and Y be normed spaces and l e t f be an element i n the 

normed space of a l l bounded l i n e a r operators from X into Y . Let the 
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range of f , denoted by R(f) , be closed. Then R(f ) = [N(f)] where 

N(f) i s the n u l l space of f . 

6. Fundamental Existence Theorem of Linear V b l t e r r a Integral equations [9] 

If 

cx 
(a) y(x) = h(x) + X K ( x , t ) y ( t ) d t where a i s constant; 

a 

(b) K(x,t) i s r e a l and continuous i n the rectangle a <_ x <_ b , 

|K(x,t)| < M i n R , K(x,t) £ 0 ; 

(c) h(x) t 0 i s r e a l and continuous i n I: a <_ x <_ b ; 

then the equation (a) has one and only one continuous s o l u t i o n y(x) . 

7. Regularly Convex Sets [11] 

* 
D e f i n i t i o n : Let B be the conjugate space to a Banach space B 

* * 

A set X i n B i s said to be r e g u l a r l y convex i f , f o r every fun c t i o n a l 

A * 
x not i n X , there e x i s t s an element x i n B such that 
o ' ' o 

x ' ( x ) < x ( x ) - e for a l l x i n X and some e \> 0 . 
o o o -

* 

Theorem: A set X i s r e g u l a r l y convex i f and only i f i t i s convex and 

* 
weak closed. 

8. Property of Euler-Lagrarige Equations__[l_pv] 

rt 
If a(t) i s continuous i n [ t ^ j t ^ ] and 

2
 a(t)h.(t)dt = 0 

fc
l 

for every h i n the normed l i n e a r space c o n s i s t i n g of a l l functions on the 

i n t e r v a l [t^,t2] which are continuous and have continuous d e r i v a t i v e s with 

h(t^) = hO^) = 0 then a(t) = c i n f t ^ , t 2 ] where c i s a constant. 
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