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ABSTRACT 

The f o r m u l a t i o n of the B a i r e category theorem found' 
i n most elementary topology te x t s deals w i t h two d i s t i n c t 
c l a s s e s of spaces:, l o c a l l y compact spaces, and complete 
metric spaces. This "dual theorem" status of Ba i r e ' s theorem 
suggests the problem of f i n d i n g one c l a s s of t o p o l o g i c a l spaces 
f o r which the B a i r e category theorem can be proved and which 
i n c l u d e s both the l o c a l l y compact spaces and the complete 
metric spaces. This t h e s i s surveys and compares the three 
approaches to t h i s problem taken by three methamticians-. 

The c l a s s i c a l r e s u l t s of E. Cech achieve a u n i f i e d 
B a i r e theorem by a Aefinl.ti.on of completeness d i f f e r e n t from 
that i n current common usage. Johannes de Groot introduced 
a n o t i o n of subcompactness, g e n e r a l i z i n g compactness. K. Kunugi 
worked i n the s e t t i n g of complete ranked spaces which g e n e r a l i z e 
uniform spaces and e l i m i n a t e the need to assume r e g u l a r s e p a r a t i o n 
i n the space. This l a s t p o i n t i s the b a s i s f o r the c o n s t r u c t i o n 
of a complete ranked space which i s n e i t h e r subcompact nor 
complete i n the sense of Cech. I t i s a l s o shown i n the paper 
that there e x i s t spaces subcompact but not complete i n the 

v 
sense of Cech, and that i n c e r t a i n s p e c i a l cases completeness 

V 

i n the sense of Cech i m p l i e s subcompactness. 

http://Aefinl.ti.on
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UNIFYING THE BAIRE CATEGORY THEOREM 

Formulations of the B a i r e category theorem found 

i n most elementary topology t e x t s are a c t u a l l y two some

what d i s t i n c t theorems: A l o c a l l y compact Hausdorff space 

cannot be w r i t t e n as the countable union of nowhere dense 

subsets ( i . e . i s of second B a i r e c a t e g o r y ) ; a complete 

m e t r i c space i s of second B a i r e category. This p e c u l i a r 

s i t u a t i o n suggests the problem of f i n d i n g one p r o p e r t y of 

t o p o l o g i c a l spaces f o r which the f o l l o w i n g three a s s e r t i o n s 

are t r u e : Every l o c a l l y compact Hausdorff space enjoys 

t h i s p r o p e r t y ; every complete m e t r i c space enjoys t h i s 

p r o p e r t y ; every space e n j o y i n g t h i s p r o p e r t y i s of second 

B a i r e category. T h i s t h e s i s i s a survey of three papers by 

three mathematicians, each w i t h a d i f f e r e n t s o l u t i o n f o r t h i s 

problem. 

S e c t i o n 1 deals w i t h the c l a s s i c a l r e s u l t s of 

E. Cech [ l ] who proved the B a i r e c a t e g o r y theorem u s i n g a 

d e f i n i t i o n of completeness which i s more g e n e r a l than that 

c u r r e n t l y i n use. For m e t r i c spaces completeness i n the sense 

of Cech i s e q u i v a l e n t to t o p o l o g i c a l completeness. I t b e i n g 

the case that every l o c a l l y compact Hausdorff space i s complete 
c 

i n the sense of Cech, the d e s i r e d u n i t y i s achieved. 

In 1 9 o 3 Johannes de Groot - .apparently without 

r e f e r e n c e to the xwork of Cech - approached the u n i f y i n g 

problem w i t h h i s g e n e r a l i z a t i o n of compactness: •subcompactness. 
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De Groot also had the intention of achieving a formulation of 
Baire's theorem which allowed the countability conditions to 
be changed to an arbitrary cardinality. In our presentation 
of his work in section 2 we have supressed these generalizations 
somewhat. Specializing to the standard classical definitions 
has facilitated the comparison of de Groot's subcompactness 
with completeness in the sense of Cech. This comparison is 
the content of the third section. 

Kinjiro Kunugi proves the Baire category theorem 
in the settings of ranked spaces which is a generalization 
of uniform spaces [5]. This work is of particular interest 
in virtue of being the only formulation of the Baire theorem 
known to us which eliminates a l l separability requirements. 
This important weakening of the hypotheses allows us to close 
section 4 with an example of a "complete ranked" topological 
space which is neither complete in the sense of Cech nor ' 
subcompact as defined by de Groot. 

r 
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Throughout t h i s paper the d e f i n i t i o n s used w i l l 

f o l l o w the ustyage of R. E n g e l k i n g where h i s t e x t [2] c o n t a i n s 

the c o r r e s p o n d i n g terms. With important e x c e p t i o n of 

paragraph 4 the t o p o l o g i c a l spaces under c o n s i d e r a t i o n 

w i l l be r e g u l a r (T-^ s e p a r a t i o n ) u n l e s s a s t r o n g e r s e p a r a t i o n 

axiom i s s p e c i f i e d . I t may be h e l p f u l to r e c a l l (or make, 

as the case may be) these few d e f i n i t i o n s : Given two subsets 

U and V of some set X the s e t t h e o r e t i c d i f f e r e n c e of 

U and V w i l l be w r i t t e n as U\V; U\V i s the i n t e r s e c t i o n 

of the subset U wit h the complement ( i n X) of the subset 

V . We w i l l tend to use c a p i t a l Roman l e t t e r s from the f i r s t 

p a r t of the alphabet to denote f a m i l i e s of subsets, and to 

use c a p i t a l Roman l e t t e r s from the l a s t p a r t of the alphabet 

tc denote s i n g l e subsets. In keeping w i t h t h i s tendency one 

w i l l see the n o t a t i o n 

A = s e S 

where A w i l l be a f a m i l y of subsets U indexed by some 

s u i t a b l y l a r g e index set S . 

A f a m i l y of subsets i s s a i d to have the f i n i t e  

i n t e r s e c t i o n p r o p e r t y i f each f i n i t e s u b c o l l e c t i o n of sub

se t s from the f a m i l y has nonvoid i n t e r s e c t i o n . A f a m i l y of 

subsets i s s a i d to have the descending c h a i n c o n d i t i o n i f every 

s t r i c t l y d e c r e a s i n g sequence.of subsets from the f a m i l y i s 

f i n i t e . A t o p o l o g i c a l space i s a B a i r e space i f i t s a t i s f i e s 

e i t h e r of the two e q u i v a l e n t c o n d i t i o n s (a) The i n t e r s e c t i o n 

of every countable c o l l e c t i o n o f open everywhere dense subsets 
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i s everywhere dense,, (b) The union of every countable c o l l e c t i o n 
of nowhere dense subsets i s a boundary set. A boundary  
set i s a subset having v o i d i n t e r i o r ; a set i s nowhere dense 
i f f ( i f and only i f ) i t s c l o s u r e i s a boundary s e t . 

(1) COMPLETENESS IN THE SENSE OF CECH. 
This s e c t i o n i s devoted to a summary of the 

c l a s s i c a l treatment of the B a i r e Theorem of E. Cech who 
formulated the d e f i n i t i o n of completeness i n the sense of 
Cech i n 1957 [ l ] . Further b i b l i o g r a p h i c notes can be found 
i n [2] whose text we are summarizing, pages 142 to 146. 

Given a Tychonoff t o p o l o g i c a l space X , we s h a l l 
use a symbol of the form cX to denote a c o m p a c t i f i c a t i o n 
of X ; cX denotes a compact t o p o l o g i c a l space and c 
denotes a homeomorphic embedding of X i n t o cX . c(X) 
s h a l l denote the image of X under the mapping c , hence 
c(X) = cX .. I t i s w e l l known that every t o p o l o g i c a l space 
has a c o m p a c t i f i c a t i o n i f f i t i s a Tychonoff space. The 
symbol BX s h a l l be reserved to denote the Cech-Stone 

/ 

c o m p a c t i f i c a t i o n . 
The f o l l o w i n g theorem i s fundamental to the d e f i n i t i o n 

of completeness i n the sense of Cech. 
THEOREM (1.1): Let X be a Tychonoff space ( T ^ s e p a r a t i o n ) ; 
then the f o l l o w i n g are equivalent. 

( i ) For every c o m p a c t i f i c a t i o n ' cX of the space 
X the remainder cX\c(X) i s an F -set i n cX . 

a 
( i i ) The remainder B A 8 ( X ) i s an F -set i n BX . 
( i i i ) For some c o m p a c t i f i c a t i o n cX of X the 
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remainder cX\c(X) i s an F^-set i n • cX . 
A Tychonoff t o p o l o g i c a l space i s s a i d to be complete  

i n the sense of Cech~i"f"~'i~t" s a t i s f i e s one of the equivalent con
d i t i o n s of Theorem ( l . l ) . 

An i n t r i n s i c c h a r a c t e r i z a t i o n of completeness i n the 
sense of Cech i s given by 
THEOREM (1.2): A Tychonoff space i s complete i n the sense of 
Cech i f f there e x i s t s a countable f a m i l y {A. I 0 0 of open 

1 i = l 
coverings of the space X s a t i s f y i n g the c o n d i t i o n : I f 

• 0 i s a f a m i l y of closed subsets of X w i t h 
S S £ o 

(a) the f i n i t e i n t e r s e c t i o n property and (b) f o r each 
i = 1,2,... there e x i s t a v

s (•__") a n d a n 0P e n subset 
IJ(i) e A^ w i t h v

s
 c ^ ( i ) ' ^hen the i n e q u a l i t y 

n V £ 0 holds. To i l l u s t r a t e the r o l e of the f a m i l y 
seS s 

of open coverings, ^ i ^ i - i w e i n t e r p o l a t e the f o l l o w i n g 
example. 

Let X be the h a l f open i n t e r v a l (0,1] w i t h i t s 
usual topology. Then X i s complete i n the sense of Cech 

CO / 
where f o r the f a m i l y we may choose the s i n g l e open 
covering k = { ( l / n , l ] : n = 2,3,...l . Indeed i f [V "I 

i s a f a m i l y of closed subsets s a t i s f y i n g (a) and (b) of 
Theorem (1.2), l e t ^^^) ^he closed set'and the 
i n t e g e r w i t h V ^ - ^ c ( l / r ^ , . 1 ] . Then {V g n v " ^ ^ ' e g 

i s a f a m i l y of subsets of the compact t o p o l o g i c a l space 
[ l / ( n , + 1 ) , l ] . But t h i s new f a m i l y of cl o s e d subsets 
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r e t a i n s property (a) of Theorem (1.2), hence 

0 <Vs n V s ( i ) ) ^ 0 ' seS s s^- ; 

We conclude that 

and a l s o that X Is indeed complete i n the sense of Cech. 
The f o l l o w i n g theorem summarizes some of the 

p r o p e r t i e s of completeness i n the sense of Cech. 
THEOREM ( 1 . 3 ) : ( i ) Completeness i n the sense of Cech i s 
a h e r e d i t a r y property w i t h respect to closed subsets. 

( i i ) Completeness i n the sense of Cech i s 
a h e r e d i t a r y property w i t h respect to subspaces which are 
Gg-sets. 

( i i i ) The t o p o l o g i c a l sum of a f a m i l y of 
d i s j o i n t t o p o l o g i c a l spaces i s complete i n the sense of Cech 
i f f each component of the sum is,. 

( i v ) The C a r t e s i a n product of a countable 
number of t o p o l o g i c a l spaces complete i n the sense of Cech 
i s complete i n the.sense of Cech. 

Before e x p l i c i t e l y r e c o r d i n g Cech's form of the 
B a i r e theorem, two remarks are i n order. A l o c a l l y compact 
Hausdorff space v i s complete i n the sense of Cech. To 
apply the d e f i n i t i o n we s h a l l use c o n d i t i o n ( i i i ) of theorem 

C-

( l . l ) . Indeed., the remainder of the space i n i t s Ale x a n d r o f f 
one p o i n t c o m p a c t i f i c a t i o n i s a s i n g l e p o i n t ; hence t h i s 
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remainder i s c l o s e d , so i n p a r t i c u l a r i t i s an F - s e t . In 
a 

the paper p r e v i o u s l y c i t e d [ l ] E. Cech showed that i n a metric 
t o p o l o g i c a l space the notions of topological:completeness 
and completeness i n the sense of Cech are eq u i v a l e n t . 
THEOREM ( 1 . 4 ) : (Baire) Every space completein the sense of 
Cech i s a B a i r e space. 

(2) SUBCOMPACTNESS OF DE GROOT 
The work of Cech gives a u n i f i e d B a i r e category theorem 

i n the sense that i t t r e a t s one c l a s s of t o p o l o g i c a l spaces 
which i n c l u d e s simultaneously l o c a l l y compact Hausdorff spaces 
as w e l l as complete metric spaces. J . de Groot [ j 3 ] deals w i t h 
another c l a s s of t o p o l o g i c a l spaces-subcompact ones-which a l s o 
has t h i s u n i t y . The work of de Groot a l s o explores the 
p o s s i b i l i t y of a fo r m u l a t i o n of Bai r e ' s theorem which replaces 
the c o u n t a b i l i t y c o n d i t i o n s w i t h m-conditions, m being any 

c a r d i n a l . A l l spaces are assumed to be r e g u l a r (T^ s e p a r a t i o n ) . 
v 

Let A denote a base of nonvoid open subsets of 
the space X . A nonvoid subset F of - A i s a r e g u l a r 

/ 

f i l t e r base r e l a t i v e to A i f 
( i ) Each set U e F contains some set U' e F w i t h 

U*' c U- , 
( i i ) F has the f i n i t e i n t e r s e c t i o n property. 

Let F ="{U s] g s be a r e g u l a r f i l t e r base i n 
X r e l a t i v e to some open base. F i s preconvergent i f 
H U0• 0 . A t o p o l o g i c a l space i s subcompact i f there 

scS s 
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e x i s t s an open base A such that every r e g u l a r f i l t e r base 
r e l a t i v e to A i s preconvergent. S p e c i a l i z i n g to the countable 
case, a t o p o l o g i c a l space i s countably subcompact i f there 
e x i s t s some open base A such that every countable r e g u l a r 
f i l t e r base w i t h respect to , A i s preconvergent. Completeness 
i n the sense of Cech i s i n general only preserved by the f o r 
mation of countable C a r t e s i a n products. Subcompact spaces 
enjoy the stronger property: 
THEOREM (2 . 1 ) : ( i ) The C a r t e s i a n product of subcompact spaces 
i s subcompact. 

( i i ) The t o p o l o g i c a l sum of d i s j o i n t sub-
compact spaces i s subcompact. 
Proof of ( i ) : Let ' [X 1 a be a c o l l e c t i o n of t o p o l o g i c a l 
— — — — — — — — — — S S £ o 

spaces w i t h X g subcompact w i t h respect toopen base A g 

f o r each s e S. I f the whole space X i s not an element 
s 

of A e f o r any s , then add X to the open base A 
so that ( A J p Q may be used to con s t r u c t a b a s i s f o r the 

S S 6 o 

Tychonoff topology of P X . I t remains to show that 
seS s 

p X i s subcompact wi t h respect to t h i s open b a s i s . 
seS s 

I f } -n i s a r e g u l a r f i l t e r base i n P X , 
x i fc x\ ~ S 

seS 
then f o r each s , the p r o j e c t i o n s {ir F } p w i l l be a 

o X X t Ix 

subset of A and a r e g u l a r f i l t e r base. But each X i s 
S -yt S 

assumed subcompact so D (TT- F ) / 0 f o r each s e S . 
' reR ' s r 

Hence n F ^ 0 and P X i s subc'ompact w i t h respect 
reR r seS s -y 

to the base generated by the bases A 
s 

Proof of ( i i ) : Suppose again that {X 1 _ a , i s a c o l l e c t i o n 
S S 6 o 
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of d i s j o i n t t o p o l o g i c a l spaces w i t h X subcompact wi t h respect 
to open base A f o r each s e S . Let {F^}^ „ be a 

o x X t i \ 

r e g u l a r f i l t e r base i n the t o p o l o g i c a l sum of the X o and 
s e l e c t any r' from R . F ' i s then a union of b a s i s elements 
s e l e c t e d from among the bases A„ , s e S . Some of the base 

s 
sets of t h i s union may be the v o i d s e t , but not a l l of them; 
l e t X„, denote one of the spaces such that F , O X , ^ 0 . 

S X* s 
R e l a t i v i z i n g now to the subcompact space X 1 we can see that 

s 
{F^, fl X ,1 p w i l l be a r e g u l a r f i l t e r base i n X , . So 
in v o k i n g the d e f i n i t i o n of subcompactness, n (F 0 X ,) ̂  0 . 

R x o 
A f o r t i o r i D F ^ 0 , and the t o p o l o g i c a l sum of the spaces 

reR r 

X„ i s subcompact. 
I f one imposes the r e s t r i c t i o n that the c a r d i n a l i t y 

of the index set R be that of the n a t u r a l numbers, the 
proofs j u s t given become a p p l i c a b l e to the 
COROLLARY ( 2 . 2 ) : ( i ) The C a r t e s i a n product of countably 
subcompact spaces i s countably subcompact. 

( i i ) The t o p o l o g i c a l sum of countably 
subcompact spaces i s countably subcompact. 

Before proceeding to the B a i r e theorem f o r sub-
compact spaces, i t i s i n order to present the f o l l o w i n g two 
theorems. 
THEOREM ( 2 . 3 ) : A l o c a l l y compact space i s subcompact. 
Proof: For one v having i n mind the Bourbaki d e f i n i t i o n of 
compactness, i t i s c l e a r that a compact t o p o l o g i c a l space i s 
subcompact r e l a t i v e to any open b a s i s . The l o c a l l y compact 
case i s reduced to the compact case as f o l l o w s . 
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Por each p o i n t x i n the l o c a l l y compact space 
X , s e l e c t some open neighborhood of x w i t h compact c l o s u r e , 
V . Let A be the f a m i l y of a l l open neighborhoods of 
x which are contained i n t h i s V . B = {A : x e X l i s 

x x 
an open b a s i s f o r the space X . 

.Suppose that P i s a r e g u l a r f i l t e r base i n B 
and s e l e c t one subset U from the c o l l e c t i o n P . Since F 
i s a s u b c o l l e c t i o n of B and each b a s i s element i n B has 
a compact c l o s u r e , U i s compact. As was noted at the onset 
the compact space U w i l l be subcompact. But the f a m i l y 
E = [U n W : W e F} i s a r e g u l a r f i l t e r base i n the sub-
compact space U . Hence 

0 ^ n ( u n w ) c n w 
WeF WeF 

which shows the l o c a l l y compact space X to be subcompact. 
The countable case r e q u i r e s no f u r t h e r proof. 

COROLLARY (2.4): A l o c a l l y count a b l y compact space i s countably -> 
subcompact. 
THEOREM (2.5): A m e t r i z a b l e space i s complete i f f i t i s 
subcompact. 
Proof: We s h a l l f i r s t assume that the m e t r i z a b l e space X 
i s complete and co n s t r u c t a base f o r the space w i t h respect 
to which X i s subcompact. We w i l l s e l e c t a base from 
among the open sets of diameters 1/n, n = 1,2,..., by means 1 

of the f o l l o w i n g 

A 
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LEMMA: Every cover of a set by a c o l l e c t i o n of subsets has 
a subcover s a t i s f y i n g the descending chain c o n d i t i o n . 
Proof of lemma: The lemma hinges on the f a c t that every 
decreasing sequence of o r d i n a l numbers i s e v e n t u a l l y constant. 
Let any cover be indexed by w e l l ordered set S . Prom the 
cover [C_,"L _ c s e l e c t a subset B by the r u l e 

S S £ o 

B = {C : C szf C. f o r a l l t < s i n S] . 
s s x> 

B i s a cover f o r X , and every sequence of decreasing sub
sets of B w i l l correspond to a decreasing sequence of 
o r d i n a l numbers. So B possesses the descending chain 
c o n d i t i o n . 

For each p o s i t i v e i n t e g e r n the open sets of 
diameter l / n c o n s t i t u t e a cover f o r the space, hence we 
may apply the lemma to o b t a i n K n , a cover of the space which 
s a t i s f i e s the descending chain c o n d i t i o n and c o n s i s t s of 
open sets of diameter l / n . Denote by K the c o l l e c t i o n of 
a l l of the elements of a l l of these covers . Since K i s 
a c o l l e c t i o n of open covers of X by sets of diameter l / n , K 
i s a base for X . We complete the f i r s t h a l f of the proof 
by showing c o n t r a d i c t i o n upon the assumption that X i s not 
subcompact with respect to K . 

To t h i s end assume that there i s a r e g u l a r f i l t e r 
base i n K which i s not preconvergent. I t i s c l e a r that each 
member of t h i s r e g u l a r f i l t e r base must p r o p e r l y c o n t a i n some 
other member; i n p a r t i c u l a r , l e t 1 j_ be a p r o p e r l y 
decreasing sequence of f i l t e r base elements. Because each 
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of the f a m i l i e s s a t i s f i e s the descending chain c o n d i t i o n , 
only f i n i t e l y many of the sets "v\ can be s e l e c t e d from K n 

f o r each n = 1,2,... . Thus (v"^}^ ™ ^ n o t o n l y a 

decreasing sequence of subsets In complete space X but the 
diameters of the sets must tend to zero. We conclude that 
the i n t e r s e c t i o n of the c l o s u r e s of the ' i s nonvoid. Let 
x be some p o i n t i n t h i s i n t e r s e c t i o n and suppose that U i s 
a member of the given r e g u l a r f i l t e r base such that x' jL U . 
Since the f i l t e r base i s r e g u l a r we may s e l e c t a U' i n the 
f i l t e r base w i t h U' c U . C l e a r l y x £ U' , so by the 
s e p a r a t i o n i n the space X we may f i n d an i n t e g e r j 
s u f f i c i e n t l y l a r g e such that V . n U' = 0 . This gives the 

J 
c o n t r a d i c t i o n i n our f i l t e r base: V . fl U 1 = 0 . From t h i s 

3 

we conclude that x ' . i s an element of every member of the 
given r e g u l a r f i l t e r base; hence the f i l t e r base i s preconvergent 
and X i s subcompact w i t h respect to K . 

Before proceeding w i t h the d e t a i l s , we w i l l o u t l i n e 
our procedure f o r showing a subcompact m e t r i z a b l e space to 
be complete. Given m e t r i z a b l e space X , the metric completion 
of X i s a metric space X such that X can be mapped onto 
a dense subset of X by a metric p r e s e r v i n g homeomorphism. 
Considering X as a subspace of X , f o r each subset U open 
i n X there i s a subset tt open i n X such that U = tj n X , 
and the c l o s u r e of U i n 1 contains tt . I t i s w e l l known 
that a Gg-set i n a complete metric space i s a complete metric 
subspace [2, p. 189 ] . In p a r t i c u l a r given a 'subcompact metric 
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space X , we s h a l l demonstrate that X can be w r i t t e n as a 
Gj-set i n X . 

Suppose that the metric space X i s subcompact 
r e l a t i v e to some open base A = {U 1 „ . In the metric 

S S G o 
completion X of X we can f i n d a U open i n X such 
that U_ = U H X , f o r each s € S . Let t h i s he done f o r s s 
each s e S and define A = {U } „ . Each U has a 

S S € o S 

non-negative diameter, and since U i s dense i n U , 
s s 

diameter of U c equals diameter of U f o r each s i n S . s s 
For each p o s i t i v e i n t e g e r i l e t 0 ^ be the union of a l l 
the sets^ u\ i n % whose diameters are l e s s than 1 / i . Then the 
sets CL are open i n X and n 0 . 'is a G. set i n X . 

1 1 = 1 1 6 

For each i , the space X i s covered by base elements 
of diameter l e s s than l / i . Since U g cz ff f o r a l l s we have 
X c 0' f o r each p o s i t i v e i n t e g e r iv.., and i n p a r t i c u l a r Xa 0 

i ' 1 = 1 

To show that X = 0j_ we w i l l show the reverse i n c l u s i o n . 
, i = l ° 5 „ „ ~ 

Take x e Pi 0 . and l e t Vn be any element of A 
1 = 1 1 1 

of diameter l e s s than one w i t h x e . Such a e x i s t s 
because x e 0 ^ . Let n be an i n t e g e r greater than one and 
assume that the have a l l been s e l e c t e d f o r i l e s s than 
n , subject to the c o n d i t i o n s 

(a) x e V. , 
(b) "v\ e A w i t h diameter of l e s s than l / i , 
(c) V i c ( c l o s u r e taken i n X). 

Now x i s an i n t e r i o r p o i n t of V n so the distance from x 
n-1 

to the complement of v"n ^ i s some nonzero number,L d . Let 
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V be any element of A which contains x and has diameter 
l e s s than minimum { l / n , d/J>) • Such a V e x i s t s because 

CO „ 

x e fl 0. assures us that we can f i n d elements of A 
1=1 1 

c o n t a i n i n g x and having diameter l e s s than 1 / i f o r "each 
p o s i t i v e i . The c o n d i t i o n that the diameter of V i s l e s s 

n 
than d/3 assures that x € v

n
 c V n 1 ' I n d u c t i v e l y we have 

constructed a sequence of elements of A s a t i s f y i n g ( a ) , ( b ) , 
and (c) above f o r a l l i greater than 1 . 

Note f i r s t that the sequence ^ / • l ^ _ i s a 
decreasing sequence of nonvoid subsets of X w i t h diameters 
tending to zero. Since X i s complete Hausdorff space, the 
i n t e r s e c t i o n of the V\ must be e x a c t l y one p o i n t . A 
f o r t i o r i , {x} = n V . 

i = l 1 

R e c a l l now t h a t . f o r every element of A , and i n 
p a r t i c u l a r f o r the sets V. we have V. 0 X = V. •% where V. 
i s an element of the given b a s i s A . C o n d i t i o n (c) can be 
r e l a t i v i z e d to the space X : 

Y7 a V . n f o r each i g r e a t e r than one. 1 x-1 

CO CO 

Thus ( V -}. , i s a r e g u l a r f i l t e r base i n A and fl V. ^ 0 . 
co — 1 = 1 • 1 

CO • 

But t h i s i n t e r s e c t i o n i s contained i n fl V. because 
i = l 1 CO 

V. <= V. f o r each i . We conclude immediately: {x} = n V. ; 
' i = l 1 

and. t h e r e f o r e "x e X . So fl 0. c X . This concludes the 
i = l 1 

proof that X = f*l 0. , a G.-set i n complete metric space X 
i = l 1 6 
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Thus X i t s e l f i s m e t r i z a b l e In a complete manner. 
In the above theorem the proof that every subcompact 

metric space i s complete only required the assumption that 
every countable r e g u l a r f i l t e r base i n A was preconvergent. 
Since a subcompact space i s t r i v i a l l y countably subcompact, 
the f o l l o w i n g theorem i s seen to be true. 
THEOREM ( 2 . 6 ) : In a me t r i z a b l e space the f o l l o w i n g are 
equivalent: 

( i ) subcompactness, 
( i i ) countable subcompactness, 
( i i i ) completeness i n a s u i t a b l y chosen m e t r i c . 

The metric s e l e c t e d according to pa r t ( i i i ) w i l l 
of course give r i s e to an equivalent topology i n the space. 

De Groot sta t e s a form of the B a i r e category 
theorem i n a s e t t i n g where the c o u n t a b i l i t y c o n d i t i o n s are 
replaced by co n d i t i o n s w i t h an a r b i t r a r y i n f i n i t e c a r d i n a l , ]A 
as a parameter. S p e c i f i c a l l y : 

D e f i n i t i o n . Let be an i n f i n i t e c a r d i n a l . 
' A (e.g. closed) subset S of a t o p o l o g i c a l space 
T i s c a l l e d ]A-thin, i f the i n t e r s e c t i o n of 
any f a m i l y of l e s s than yi op.en subsets of T 
i s not ( f u l l y ) contained i n S , unless t h i s 
i n t e r s e c t i o n i s empty. 

Complementarily, a (open) set 0 i n T i s 
c a l l e d jyT-puffed, i f the i n t e r s e c t i o n of any 
f a m i l y of l e s s than. ]A open subsets of T meets 0, 
unless t h i s i n t e r s e c t i o n i s empty. So the complement of 
an'K-puffed set i s J^-thin and conversely. 

For the countable case we have 
THEOREM ( 2 . 7 ) :

 X A subset i s T^-thin i f f i t i s a boundary set. ' 
Proof: Let U be a n l ^ o - t h i n subset o f t o p o l o g i c a l space X. 
We must show that U has v o i d i n t e r i o r . But the i n t e r s e c t i o n 
of l e s s than {Vi0 open sets i s a f i n i t e i n t e r s e c t i o n of open s e t s , 
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which i n t e r s e c t i o n i s an open set. So U contains no open 
subset and hence has v o i d i n t e r i o r . 

Conversely i f U i s a boundary set i n X then i t 
contains no nonvoid open set; hence i t does not co n t a i n a 
f i n i t e i n t e r s e c t i o n of open sets i m l e s s that i n t e r s e c t i o n i s 
v o i d . Hence U i s - t h i n . 
COROLLARY (2.8): ( i ) A closed subset i s Wo - t h i n i f f i t i s 
nowhere dense. 

( i i ) An open set i s f\!0 -puffed i f f i t Is 
everywhere dense. 
Proof:" We' r e c a l l that a set i s nowhere dense i f f i t s c l o s u r e 
i s a boundary set. A l s o , the complement of an everywhere' 
dense set i s nowhere dense and conversely. 

A t o p o l o g i c a l space i s c a l l e d an yi-Baire space i f 
i t i s not the union of at most yi closed j4-thin subsets. 
With t h i s d e f i n i t i o n an 7\j0 - B a i r e space corresponds w i t h B a i r e 
space as defined p r e v i o u s l y . De Groot s t a t e s both an yi-Baire 
theorem and its s p e c i a l i z a t i o n to the countable case. We w i l l 
not repeat h i s proof of the >1-Baire theorem but w i l l supply 
the proof of the countable case which he omits. 
THEOREM (2.9): (Baire-de Groot): A subcompact r e g u l a r space 
i s an yi-Baire- space f o r every i n f i n i t e c a r d i n a l yi . 

THEOREM (2.10): ( B a i r e - deGroot): A countably subcompact 
r e g u l a r space i s a B a i r e space. 
Proof: Let there be given a t o p o l o g i c a l space X which i s 
subcompact w i t h respect to base A , and l e t { U ^ } b e 
a sequence of nowhere dense subsets of X . I f 0 i s any 
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open subset of the space we must show that 0 jzf U U. . 
i - 1 1 

Since i s nowhere dense there e x i s t s some p o i n t 
x / 0\b"̂  . Since X i s r e g u l a r we can f u r t h e r f i n d some open 
neighborhood of x whose c l o s u r e does not meet U^. Now A 
i s a base f o r the space, so s e l e c t some non v o i d base element 
V-̂  e A such that x e V"1 c 0 and n = 0 . 

Take some i n t e g e r • n greater than one and suppose 
that f o r each j = 1 , 2 , . . . n - 1 we have determined base 
elements V- e A subject to the c o n d i t i o n s 

• J 
(a) V. c V . ^ , 

. ( b ) n v / 0 , 
i = i x 

(c) v. n u . = 0 . 
We would s e l e c t a V s a t i s f y i n g ( a ) , ( b ) , and (c) . 

n-1 n 

Now fl V. i s an open set which by v i r t u e of the 
i = l 1 

i n d u c t i o n hypothesis i s nonvoid. U i s a nowhere dense set 
n - 1 _ 5 

so there i s a p o i n t x e ( Pi V. )\u . Since X ^ i s r e g u l a r 
i = l 1 ' n 

we can a l s o f i n d some open neighborhood.of x whose c l o s u r e 
does not meet IT" . S e l e c t a base element V e A w i t h 
_ _ n _ n-1 n 

V n U = 0 and x e V c V c n V. . This V s a t i s f i e s xi xi 1*1 1*1 i 1 

c o n d i t i o n s ( a ) , ( b ) , and ( c ) , a f o r t i o r i . 
CO 

The sequence a countable r e g u l a r f i l t e r 
base i n A ; since c 0 "and X i s subcompact w i t h respect 
to A we have 

0 3 n V, / 0 
1=1 1 
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But from c o n d i t i o n (c) v/e see that ( n V. ) 0 ( U U.) = 0 . 
i = l "L j = l J 

We have thus produced a nonvoid subset of the a r b i t r a r y open 
set 0 which i s d i s j o i n t from the union of the closur e s 

CO 
of the nowhere dense sets U. . Hence U U. i s a boundary 

1 i = l 1 

set and the space X i s a B a i r e space.. 

(3) TOWARD A COMPARISON 
The c l a s s i c r e s u l t s of E. Cech achieve a B a i r e 

category theorem by means of a d e f i n i t i o n of completeness 
which i s a b i t more general than completeness as the term 
i s c u r r e n t l y used. The work of J . de Groot has accomplished 
a s i m i l a r end wit h a g e n e r a l i z a t i o n of compactness. The 
task of comparing these two approaches to the B a i r e category 
theorem i s , , u n f o r t u n a t e l y , only p a r t i a l l y accomplished i n 
t h i s t h e s i s . 

Subcompactness i s an h e r e d i t a r y p r o p e r t y under the 
formation of a r b i t r a r y C a r t e s i a n products (Theorem (2.1), i ) . 
Completeness i n the sense of Cech i s i n general only preserved^ 
by the formation of countable C a r t e s i a n products (Theorem 
(.1.3), i v ) . These general c o n s i d e r a t i o n s give b i r t h to the 
f o l l o w i n g example which demonstrates a r e g u l a r t o p o l o g i c a l 
space- which i s subcompact but not complete i n the sense of 
Cech. 
EXAMPLE (3.1): Let R be the r e a l numbers and f o r each 

N 

r e R l e t X be the h a l f open i n t e r v a l (0,1] w i t h the 
usual topology. Let X = P X w i t h the (usual) Tychonoff 

reR r 

topology. 
J c • 
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Each space X r Is a l o c a l l y compact Hausdor.ff 
space and, as a r e s u l t , subcompact (Theorem ( 2 . 3 ) ) . As was 
r e c a l l e d immediately above , X , being the C a r t e s i a n product of 
subcompact spaces* i s subcompact. 

To show that X i s not complete i n the sense of 
Cech we w i l l show that X cannot be a G -set i n some 

6 
c o m p a c t i f i c a t i o n . For each r e R l e t X^ be the closed 
i n t e r v a l [0,1] w i t h the usual topology. Then X = P X 

reR c 

i s a c o m p a c t i f i c a t i o n of X .. 
For an open set i n the Tychonoff product topology 

i t i s the case that the component p r o j e c t i o n s map onto 
the components w i t h at most a f i n i t e number of exceptions. 
So f o r a G^-set i t w i l l be the case that the component 
p r o j e c t i o n s w i l l map onto components, w i t h at most countably 
many exceptions. In p a r t i c u l a r i f X could be represented 
as a Gg-set i n X i t would be necessary that the component 
p r o j e c t i o n s of X i n t o the spaces X r would map onto a l l 
of the X w i t h at most countably many exceptions. This 
i s not the case and so X i s not/ a G f t-set i n X and, by 
d e f i n i t i o n , X i s not complete i n the sense of Cech. 

This example e s t a b l i s h e s that some subcompact 
spaces .are not complete i n the sense of Cech. To the 
converse question we can only answer that i n c e r t a i n s p e c i a l 
cases spaces complete i n the .sense of Cech are subcompact. 
In the case of m e t r i z a b l e t o p o l o g i c a l spaces completeness 
i n the sense of Cech and subcompactness are mutually 
equivalent to t o p o l o g i c a l completeness, hence equivalent to 
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each other. Another p a r t i a l r e s u l t i s 
THEOREM (3.2): Let X be a r e g u l a r t o p o l o g i c a l space. Then 
X i s subcompact i f there i s an open cover A^ of X such 
that f o r every f a m i l y of closed subsets {E_}_ „ w i t h 

s s e o 
(a) the f i n i t e i n t e r s e c t i o n property, 
(b) some element of {E } i s contained i n some element 

s 
of A1 , 

we have 0 E o / 0 
seS 0 

According to the Theorem (1.2) X i s complete i n 
the sense of Cech i f f i t has T-^i. sepa r a t i o n and has a 
countable f a m i l y of open coverings such that f a m i l i e s 
of closed subsets w i l l have nonvoid i n t e r s e c t i o n i f they 
s a t i s f y c o n d i t i o n s (a) and (b) f o r a l l i = 1,2,... . 
Proof: Let X be a r e g u l a r t o p o l o g i c a l space and A^ an open 
cover of X as described i n the hypotheses of the theorem. 
For each p o i n t x e X suppose ¥ i s an open set i n A, 
c o n t a i n i n g x . Define\ A tojbe the f a m i l y of a l l subsets of 
X which can be w r i t t e n i n the form W H O where x e X 
and 0 i s open i n X . We s h a l l prove that X i s subcompact 
w i t h respect to t h i s open b a s i s , A . 

Suppose that F = {U } 0 i s a r e g u l a r f i l t e r 
S S € O 

base i n A . For each U e F s e l e c t some U 1 e F w i t h 
s s 

U • c UJ c U . Define V = LP . 
S S S S S f" 

[V }- o i s a f a m i l y of cl o s e d subsets of X . 
S S € a 

To see that i t has the f i n i t e i n t e r s e c t i o n p r o p e r t y , we note 
that i f H V = 0 , then since each V i s the c l o s u r e of 

i = l ' s i 
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an element of F (namely U' ) we have 
s i 

n n n 
n u' c n u' = rv v r = 0 , 

S S cj ' J 

1=1 " i 1=1 i i = l 1 
a c o n t r a d i c t i o n . 

By the way_the.._base A v/as constr u c t e d , c o n d i t i o n 
(b) i s s a t i s f i e d a f o r t i o r i . By the hypotheses of the 
theorem concerning the open cover A^ v/e conclude that 

fl V A 0 . But then since V c U f o r each s e S , 
seS 5 3 

n u r> n v { 0 
seS s seS s 

showing X to be subcompact w i t h respect to the open b a s i s 
A 

J-l . 

COROLLARY (J>.J>): Let X be a r e g u l a r t o p o l o g i c a l space. Then 
X i s subcompact i f there i s a f i n i t e f a m i l y of open covers 
{ A ^ } / ^ of X such that f o r every f a m i l y of closed subsets [E 3 c w i t h 1 s J s e S 

(a) the f i n i t e i n t e r s e c t i o n property, 
(b) f o r each i = 1,2,... '', n there i s some U. e (E ] 

and some open subset e A^ w i t h c , 

we have H E d 0 . 
seS S 

Proof: The extension to the case of f i n i t e l y many open coverings 
i s not e s s e n t i a l l y d i f f e r e n t from the main theorem. Set 

B = {V, n V 0 n . . . n V Iv. e A, f o r each 1 2 n 1 i l 
w 1 
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Then B i s a s i n g l e covering of the space and everything 
reduces to the previous theorem w i t h B p l a y i n g the r o l e of 
A j • Indeed suppose v/e have a f i n i t e f a m i l y of open coverings 
of X. and a f a m i l y of closed subsets s a t i s f y i n g c o n d i t i o n s 
(a) and (b) . So we have l ^ ) ^ c 1

E

S
1 a n d • w i e A i w i t h 

U. c ¥. f o r each i = 1,2,... , n . Having assumed the 
f i n i t e i n t e r s e c t i o n property we see that 

h n 
0 £ n U. c fl W. e B . 

i = l 1 i = l 1 

S u b s t i t u t i n g f o r {E } the f a m i l y of a l l f i n i t e i n t e r s e c t i o n s 
s 

of elements i n [ E l , theorem (3.2) a p p l i e s . 
. We s t a t e e x p l i c i t e l y the a p p l i c a t i o n of these 

r e s u l t s to spaces complete i n the sense of Cech. 
COROLLARY (3-^): I f X^ i s a t o p o l o g i c a l space complete i n 
the sense of Cech and_the_equivalent c o n d i t i o n s t a t e d i n 
theorem (1.2) can be achieved wl.th only a f i n i t e f a m i l y of open 
coverings, then X i s subcompact. 

Cases to which c o r o l l a r y (3.4) apply e x i s t . 
EXAMPLE (3-5)' Let Q . denote the r a t i o n a l numbers and l e t 
X = (0,1 )\Q w i t h the topology of the E u c l i d i a n m e t r i c . For 
each r a t i o n a l number q define V = (0,l)\{q} . X = fl V 

q qeQ. q 

i s a r e p r e s e n t a t i o n of the metric space X as a G^-set i n 
the complete metric space [0,1]. Then i t i s w e l l known that 

*- / 
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t h i s i s s u f f i c i e n t f o r X to be t o p o l o g i c a l l y complete 
[2, p. 189]; so X i s both subcompact and complete i n the 
sense of Cech. We a s s e r t that c o r o l l a r y (3.4) does not apply 
to X . To demonstrate t h i s we w i l l show that every open 
subset of X contains a decreasing sequence of closed sub-

'sets w i t h v o i d inters-ec-ti-on. To t h i s end v/e consider X as 
a subspace of the u n i t i n t e r v a l (0,1) w i t h the induced top
ology. Any open set i n X contains the i n t e r s e c t i o n of X 
v/ith some nondegenerate i n t e r v a l . I f q i s a r a t i o n a l p o i n t 
i n t e r i o r i n t h i s i n t e r v a l (speaking of q has meaning i n the 
space (0,1)), then e v e n t u a l l y the subsets defined to be 

X H [q, q + l / i ] w i l l be contained i n t h i s i n t e r v a l ; i f N 
i s the f i r s t i n t e g e r f o r which t h i s i s t r u e , then [v\ 0 

w i l l be a decreasing sequence of subsets c l o s e d i n X and 
having v o i d i n t e r s e c t i o n . 

(k) RANKED SPACES OP KUNUGI 
The Japanese mathematician K. Kunugi has proved a 

form of the B a i r e category theorem which does not assume 
an axiom of s e p a r a t i o n . In a d d i t i o n the theorem of Kunugi 
allows i n some cases the c o n c l u s i o n that more than countably 
many open everywhere dense subsets have dense i n t e r s e c t i o n . 
This g e n e r a l i z a t i o n i s obtained without strengthening the 
d e f i n i t i o n of everywhere dense set as was the case v/ith the 
j4-puffed sets defined by J. de Groot. The work exposited 
here i s to be found i n [5 ] . 

Before p r e s e n t i n g the d e f i n i t i o n s of the s t r u c t u r e s 
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used by Kunugl we r e c a l l that P. Hausdorff formulated these 
three neighborhood axioms i n h i s c l a s s i c t e x t [4, p. 2591' 

(a) Every p o i n t x has at l e a s t one neighborhood U ; 
X 

and U v always contains x . 
(b) For any two neighborhoods U and V of the same 

p o i n t , there e x i s t s a t h i r d , W a U n V 
^ ' ' X X X 

(c) Every p o i n t y e U has a neighborhood U c u 
x y x 

Pro f e s s o r Kunugi deals w i t h a p o i n t set X together 
w i t h a system of (open) neighborhoods s a t i s f y i n g axioms (A) 
and (C) of Hausdorff. A decreasing sequence ( p o s s i b l y t r a n s 
f i n i t e ) of neighborhoods of a p o i n t x e X i s maximal i f the 
i n t e r s e c t i o n of a l l neighborhoods i n the sequence does not 
co n t a i n a neighborhood .of x . Denoting a sequence of 
neighborhoods by {V (x)} 0 < s < B , the o r d i n a l number S 
i s the type of the sequence. 

We define the depth of the space X at the p o i n t 
x to be the l e a s t o r d i n a l number W(X,x) f o r which x has 
a maximal sequence, subject to the two conventions: ( i ) i f 
axiom (B) of Hausdorff i s not s a t i s f i e d at some p o i n t x , 
W(X,x ) i s equal to zero; ( i i ) i f some p o i n t has no maximal 
sequence (i.e.- the p o i n t has a smallest neighborhood) then 
the depth at that p o i n t Is equal to the f i r s t o r d i n a l of potenc 
2X . W(X) = i n f (W(X,x) : x e X] i s the rank of the space. 

The space X i s ranked i f f o r some l i m i t o r d i n a l 
number b <_ w(W)" , there e x i s t s a f a m i l y of open coverings 
B = {A }a < b indexed by the o r d i n a l s l e s s than b such that: 
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(a) Let there be given x an a r b i t r a r y p o i n t of X 
and V(x) i t s neighborhood, and an o r d i n a l l e s s than b . 
Then there e x i s t s some o r d i n a l a' wi t h a < a' < b and 
some subset U e A ' e B with U c V(x) . 

The o r d i n a l number b of t h i s d e f i n i t i o n i s c a l l e d 
the i n d i c a t o r of ranked space X . Note that i f the space 
X i s not a t o p o l o g i c a l space ( i . e . axiom (B) f a i l s at some 
p o i n t ) then b <_ w(X) = 0 ; i f X i s a t o p o l o g i c a l space then 
w(X) _> , the o r d i n a l of the n a t u r a l numbers. An open 

OwiC'jy? 

set has rank a i f i t i s a member of the cover A e B , 
a 

and i f t h i s i s not the case f o r any A ' , a' > a . 
a 

Let V a ( x & ) (a < c) be a decreasing sequence of 
neighborhoods where c < b , the i n d i c a t o r of X . The 
sequence i s fundamental i f the rank of each of the neighborhoods V (x ) i s i n c r e a s i n g and f o r each a < c there i s an a' , a x a 3 

a < a' < c such that x . = x ' , and the rank of V ,(x ,) — a a -|- J - a a 
i s s t r i c t l y l e s s than the rank of V , -, (x , , ) . A ranked 

.v a ' + l a ' + l 
space i s complete i f every fundamental sequence has nonvoid 
i n t e r s e c t i o n . 
THEOREM (4.1): Every complete metric space can be given the 
s t r u c t u r e of a complete ranked space. 
Proof: This theorem can be approached v i a the theory of uniform 
spaces. Take some metric d f o r which the space X i s complete 
and co n s t r u c t a uniform s t r u c t u r e f o r the space i n the 
usu a l manner. A base f o r t h i s u n i f o r m i t y i s given by the f a m i l y 

C(x,y) e X x X : d(x,y) < i}£ . 
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X thus takes on the s t r u c t u r e of a complete uniform space 
[2, p. 33o], which can a l s o be looked upon as a rank s t r u c t u r e 
w i t h i n d i c a t o r & . 

In a complete uniform space every Cauchy f i l t e r i s 
convergent [2, p. 341] . R e c a l l that a f i l t e r i n X i s ' 
Cauchy i f f o r each entourage of the diagonal some member of 
the f i l t e r i s contained i n a neighborhood generated by the 
entourage of the diagonal. Let £ Vi( xi^i-l ^e a fundamental 
sequence of neighborhoods-of the ranked space. The c o n d i t i o n s 
that the ranks of the neighborhoods V j _ ( x j ) must e v e n t u a l l y 
grow a r b i t r a r i l y l a r g e imply that f o r each p o s i t i v e i n t e g e r 
n some neighborhood v _ _ ( n ) ( X j _ ( n ) ^ ^ s contained i n an open 
b a l l of diameter i / n : 

V i ( n ) ( X i ( n ) ; ) c <y : d ( x i ( n ) ^ ) < 1 / n } ' 

Let F denote the (Cauchy) f i l t e r generated by {V\(x.l} . 
Then by the completeness of X as a uniform space we see 

CO 

that 0 V.(x.) 3 n W / 0 . Hence the fundamental sequence 
i = l 1 1 WeF ./ 

{ v \ ( x ^ ) l has nonvoid i n t e r s e c t i o n and so X i s complete 
as a ranked space. 
THEOREM (4.2): (Baire-Kunugi): Let X be a complete ranked 
space w i t h i n d i c a t o r o r d i n a l b . Then the i n t e r s e c t i o n of 
any nonvoid f a m i l y of open everywhere dense subsets, indexed 
by the o r d i n a l s l e s s than the o r d i n a l d <_ b , i s everywhere 
dense. 

Proof: Given a sequence of open everywhere dense subsets 
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{B
a
3 (o <_ a < d) we can, f o r t e c h n i c a l reasons, compress 

i t by d e f i n i n g f o r each even a < d , 

A = B D B n . 
a a a+1 

The sets A w i l l each be open everywhere dense subsets, a 
Suppose U i s some nonvoid open subset of X . To 

•show that U fl ( 0 B ) / 0 i t w i l l now s u f f i c e to show that 
a<d a 

U n {n A a : a< d , a even] jL 0 . 

We begin the ( t r a n s f i n i t e ) i n d u c t i o n by s e l e c t i n g 
a a 

some x Q e U . By the d e f i n i t i o n of ranked space there i s 
a rank c and an open neighborhood V (x ) of rank c o o v o o 
w i t h V (x ) c (U 0 A ) . Let a < d be given and suppose o o o , 
that f o r each e < a there has been defined a p o i n t x , 

r e 
a rank c , and a neighborhood V (x ) of rank c wi t h e 3 e x e e 
the neighborhoods decreasing and the ranks i n c r e a s i n g . Suppose 
f u r t h e r that f o r each even o r d i n a l e < a , x = x , , 

e e+1 
c < c , , and V (x ) c A e e+1 3 e v _er e 

Suppose f i r s t that a i s an even n o n - l i m i t ordinaL. 
Set TJ = V , (x , ) and l e t x be any p o i n t i n the open a a—± a—x a 
nonvoid set A fl U . This set i s nonvoid because A i s 

cX 3, cl 

everywhere dense. I n the case that a i s a l i m i t o r d i n a l 
set U = fl V_(x Q) . U i s nonvoid i n v i r t u e of the a . Q e e a e< a • 
f a c t that { V e ( x e ) } (e < a) i s a fundamental sequence i n 
the complete ranked space X . We a s s e r t f u r t h e r that U 

a 
i s open. Indeed i f y e D V (x ) f o r each e we can 

e<a e e' . 
f i n d a neighborhood V ,(y) w i t h ranks i n c r e a s i n g , the 
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neighborhoods V ,(y) decreasing, and V ,(y) c V (x ) . Then 
{V e,(y)3 (©' < a) w i l l be a decreasing sequence of neighbor
hoods of type les's than than the depth-of the space w(X) ; 
i n p a r t i c u l a r t h i s sequence cannot be maximal. We conclude 
that there i s some neighborhood V'(y) w i t h 

y e V»(y) c n V (y) c U . 
e<a e a 

So U i s open and we may ther e f o r e designate by x some a • a 
p o i n t i n the nonvoid open set A fl U 

a a 
In both cases the c o n s t r u c t i o n performed immediately 

above can be accomplished f o r the case y = x to f i n d a 
a neighborhood V (x_,) of rank c w i t h c > c and ^ a a a a e 

V" (x ) cr V" (x ) f o r a l l e < a . In p a r t i c u l a r , V c A . a a e v e r a a . 
F i n a l l y i f a i s some odd o r d i n a l set x = x -, 

a a-1 
and s e l e c t according to the d e f i n i t i o n of ranked space a rank 
c > c n and a neighborhood V ( x 0 ) o f rank c w i t h a a—x Y a a a 
• V (x ) c V , (x n ) . aK a- a - l v a - l y 

that 
Thus we have a fundamental sequence {V (x )} such 

a a 

a<d V
a ( x a ) c U n ^ n A

a
: a < d , a even] . 

a 

Since X i s complete t h i s fundamental sequence has 
nonvoid intersecti-on-an-d--so' D B fl U i s nonvoid, the 

a<d a " 
des i r e d r e s u l t . 

c 

I t w i l l be r e c a l l e d that ranked spaces need not 
be t o p o l o g i c a l spaces. But i n the case t h a t axiom (B) 



- 2 7 -

of Hausdorff f a i l s f o r any p o i n t of the space the above theorem 
reduces to the a s s e r t i o n : In a complete ranked space every 
open everywhere dense set i s everwhere dense. This becaaue 
the i n d i c a t o r of a n o n - t o p o l o g i c a l ranked space i s defined I D 

be zero. 
COROLLARY (4.3): A ranked t o p o l o g i c a l space i s a B a i r e space. 
Proof: A f o r t i o r i . 

We c l o s e t h i s s e c t i o n w i t h the f o l l o w i n g example 
demonstrating a t o p o l o g i c a l space which i s a complete ranked 
space but i s n e i t h e r complete i n the sense of Cech nor 
subcompact. 
EXAMPLE (4.4): Let X c o n s i s t of the r e a l numbers w i t h the 
c o f i n i t e topology. That i s , every open set i s a subset of 
X which i s the complement of some f i n i t e p o i n t set i n X . X 
i s a T^ separated space but i s not . T^ ; s o / i s n e i t h e r complet 
i n the sense o£ Cech nor subcompact. 

Define U ( x
1
, x

2
, . . . , x n , x,n) = xACx^, . .., x n ] ; 

where n i s a p o s i t i v e i n t e g e r , x e X , and x^ i s a p o i n t 
of X d i f f e r e n t from x f o r each i = 1 , 2 , . . . , n . Further 

/ 
d e f i n i n g 

A n = {U(x 1, x n , x,n) : x n e X ; n f i x e d ] , 

X i s seen to be a ranked space w i t h ranking s t r u c t u r e B and 
i n d i c a t o r <jj . Indeed B contains every open set and given 
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U(x-^, . .., x n , x, n) an open neighborhood of x and m > 0 , 

set p = maximum {n + 1 , m] . S e t t i n g x = x , = . . . = x 
we have x e \](x^,;.., x^, . .., x^, x, p) c U ( x 1 , ..., x n , x, n) . 

For the completeness note that the i n t e r s e c t i o n of 
any countable sequence of subsets i n B w i l l have the 
c a r d i n a l i t y of the continuum; a f o r t i o r i such an i n t e r s e c t i o n 
i s nonvoid and X i s a complete ranked space. 

(5) CONCLUDING REMARKS 
A f o u r t h approach to the problem of u n i f y i n g the 

B a i r e category theorem i s given by E. E l i a s Zakon i n [ 8 ] . 

There i s presented a B a i r e - l i k e theorem i n the context of 
uniform t o p o l o g i c a l spaces [ 8 , theorem 5-1, p. 3 8 3 ] . L i k e 
the work of de Groot, t h i s paper attempts to formulate a 
theorem which allows f o r uncountable unions. While the 
work of Zakon i s i n t e r e s t i n g i n the cases of higher card
i n a l i t y , i t dbes not s p e c i a l i z e to the usual B a i r e theorem. 
A p p l i e d to the r e a l l i n e w i t h the usual topology, Zakon's 
theorem gives conclusions a p p l i c a b l e only to the coarser 
i n d i s c r e t e topology (the whole space and the n u l l set being 
the only open s e t s ) . 

Completeness i n the sense of Cech i s defined i n 
the s e t t i n g of Tychonoff spaces; but the proof of the B a i r e 
theorem only r e q u i r e s r e g u l a r i t y . If i n the s e t t i n g of 
r e g u l a r spaces one uses the equivalent i n t r i n s i c c o n d i t i o n of 
Theorem ( 1 . 2 ) as the d e f i n i t i o n , then one achieves a modified 
d e f i n i t i o n of completeness f o r which a l l of the r e s u l t s presented 
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i n t h i s paper remain true. 
Using the f a c t that a complete ranked space need 

not have any separation p r o p e r t i e s i t was not d i f f i c u l t 
to c o n s t r u c t a space which was a complete ranked space but 
n e i t h e r subcompact nor complete i n the sense of Cech. I t 
seems that a very p e r t i n e n t question i n t h i s regard would 
be the r e l a t i o n s h i p among spaces complete i n the sense of 
Cech, spaces subcompact, and r e g u l a r spaces w i t h a completely 
ranked s t r u c t u r e . 

Conspicuously l a c k i n g from s e c t i o n 4 i s the theorem 
which assures that every l o c a l l y compact Hausdorff space 
can be given the s t r u c t u r e of a complete ranked space. This 
theorem i s announced i n [ 5 ] and a proof i s sketched i n [ 6 ] ; 

the present w r i t e r has been unable to v e r i f y that proof. 
Y. Yoshida, a student of Kunugi, has proved t h i s theorem only 
a f t e r strengthening the hypotheses [7]. 

A l l of the paper*encountered i n the research f o r 
t h i s t h e s i s d e a l t w i t h the task of f i n d i n g s u f f i c i e n t 
c o n d i t i o n s that a space be a B a i r e space. A f i n a l f u l l y 

/ 
/ 

u n i f i e d B a i r e theorem would be achieved by d e f i n i n g some 
property-property B-which would allow the theorem: Let X 
be a r e g u l a r t o p o l o g i c a l space; then X i s a B a i r e space 
i f f X has property B . The r e s u l t s of Kunugi give hope 
that the assumption of r e g u l a r s e p a r a t i o n could be e l i m i n a t e d . 

X . 
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