
M A T C H I N G S W I T H A SIZE C O N S T R A I N T

Bo Zhou

B. Sc., Beijing Institute of Technology

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF MATHEMATICS

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September, 1990

© Bo Zhou

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

A b s t r a c t

We study the matching problem and some variants such as 6-matching and (g, /)-factors.

This thesis aims at polynomial algorithms which in addition have other properties. In

particular, we develop a polynomial algorithm which can find optimal solutions of each

possible size for weighted matching problem, and a strongly polynomial algorithm which

can find a (g, /)-factor of fixed size.

11

Table of Contents

Abstract ii

A C K N O W L E D G E M E N T S v

1 , Introduction 1

1.1 Introduction 1

1.2 Definitions 1

1.3 Outline of The Thesis 4

2 Fixed Size Weighted Matching 6

2.1 Preliminaries 6

2.2 Variable Size Weighted Matching 10

2.3 Fixed Size Weighted Matching 17

2.4 A Transformation Approach 21

3 The Fixed Size Weighted 6-matching Problem 23

3.1 The Weighted 6-matching Problem 23

3.1.1 Introduction and Definitions 23

3.1.2 Characterization of the Optimal Solution 25

3.1.3 The Blossom Algorithm 27

3.1.4 About Complexity 34

3.2 The Fixed Size Wighted 6-matching 35

3.2.1 A Possible Generalization 35

iii

3.2.2 A Transformation Approach 36

4 Fixed Size (g, /)-Factor Problem 39

4.1 Preliminaries 39

4.2 An /-Factor Algorithm 40

4.2.1 Network Flow Formulation 40

4.2.2 Symmetrizing a Directed/-Factor 41

4.2.3 Algorithm for Finding an Alternating Walk 44

4.2.4 /-Barrier 47

4.3 Fixed Size (g, /)-Factor 48

4.3.1 Network Flow Formulation 48

4.3.2 Symmetrizing a Directed Size 2p (g, /)-Factor: Phase One 48

4.3.3 Symmetrizing a Directed Size 2p (g, /)-Factor: Phase Two 51

4.3.4 Fixed Size (g, /)-Barrier 54

4.4 Augumenting Walk Theorem 57

Bibliography 61

iv

A C K N O W L E D G E M E N T S

I am greatly indebted to my advisor, R.P. Anstee for suggesting this topic, for his guid

ance and criticism, and his patience with me throughout the preparation of this work.

I also thank S. Thomas McCormick for reading the manuscript, and providing much

constructive advice.

I express my gratitude to the University of British Columbia and the Natural Sciences

and Engineering Research Council of Canada for their generous financial support.

v

Chapte r 1

In t roduct ion

1.1 In t roduct ion

The renowned weighted matching, weighed b-matching, and (g, /)-factor problems are all

well solved in literature, and a number of algorithms for each of these problems already

exist. The motivation of this thesis is to add a constraint to each of these problems which

forces our optimum solutions to have a fixed size. We study how this extra constraint

affects the original problems. Algorithms are established or modified to handle these

new problems, and transformation techniques are also explored either to solve the new

problems or prove some theorem.

1.2 Definit ions

This section will present notation and definition of many concepts used throughout this

thesis.

• A graph G = (V(G), E(G)) is a finite set of vertices V(G), and a finite set of edges

E(G). Each edge e,j in E(G) is a set of two vertices {vi,Vj}. Each edge e,j is said

to be incident to v, and Vj. Edge is called a loop if u, = Vj. Usually we denote

a graph by G = (V, E).

• A graph without loops is called a simple graph. If we allow more than one edge

between any pair of vertices u, and Vj, then a simple graph with such multiple

edges is called a mul t igraph. The Figure 1.1 shows a multigraph with a loop.

1

Chapter 1. Introduction 2

Figure 1.1: A multigraph with a loop

To simplify the exposition, we assume G has no loops throughtout this thesis, this

does not fundamentally change the problem.

• A weighted graph G = (V, E, c) is a graph with a real number c t J associated with

each edge e,j, where c = (c,j : e,_, G E) is understood as a vector.

• A walk in G is a non-null sequence w = u 0 e 1 u 1 e 2V2 • • • ^kvki whose terms are alter

nately vertices and edges, where edge = {u t, for each i. We say that w is a

walk from vq to Vk of length k. Vertex vq is called the or igin of w, and Vk is called

the terminus of w.

• A walk is called a t ra i l , if the edges et, e-i,..., of w are distinct. It is called a

path if, in addition, the vertices Vo, u l 5 u 2 , . . . , Vk are also distinct.

• A walk is called a cycle if vq = Vk and the vertices v\, V2,..., Vk are all distinct.

• A graph H = {V{H),E(H)) is a subgraph of G = (V,E) if V(H) = V, and

E(H) C E. For V0 C V , a graph with vertex set Vo, and whose edge set is the set

of edges of G that have both ends in V0 is called the subgraph of G induced by V0

and is denoted by G[VQ].

er 1. Introduction 3

Two vertices u and v of G are said to be c o n n e c t e d if there is a path from u to

v in G. Connection is an equivalence relation on the vertex set V. Thus there is

a partition of V into nonempty subsets V i , V2, V3,Vr such that two vertices u

and v are connected if and only if both u and v belong to the same set Vj-. The

subgraphs G^Va], G/fV^L • • • >G[Vr] are called c o m p o n e n t s of G. If G has exactly

one component, G is connected.

The degree degc(v) of a vertex v in G is the number of edges of G incident to v.

It is a fundamental fact that half of the sum over all the vertex degrees is equal to

the number of edges in G. This fact will be used in the last chapter.

The a d j a c e n c y m a t r i x of a graph G = (V, E) is the |V\ x | V | matrix A(G) — (a,j),

in which a t J is the number of edges joining u, and Vj. If G has no loops, then A(G)

has zeros entries on the diagonal.

A subset M of E is called a m a t c h i n g in G = (V, E) if no two edges of M are

incident to the same vertex.

A b - m a t c h i n g of G — (V, E) is an assignment of integers to the edges of G so that

the sum of the weights on the edges incident to a vertex v is at most bv (b denotes

the vectors of 6„'s). When bv = 1 for all vertices v in G, then 6-matchings are the

usual matchings.

An / - f a c t o r is a subgraph of G with degree /,• at the ith vertex for i = 1,2,..., n.

A /) - f a c t o r is a subgraph of G with degree di at the ith vertex, where < <f, <

/ , , for i = 1,2, . . . , n .

A vertex v is M - m a t c h e d if there is some edge of M incident to v, otherwise v is

M - u n m a t c h e d .

Chapter 1. Introduction 4

• An M-a l t e rna t ing path in G is a path whose edges are alternately in E\M and

in M.

• An M-augument ing path in G is an M-alternating path whose origin and ter

minus are M-unmatched. In general, we just say it is an augumenting path if no

confusion may occur.

If M is a b-matching in G, this concept can be generalized to M-augument ing Walk .

If the given graph is not a weighted graph, we usually call a matching (or 6-matching)

M a cardinality matching (or 6-matching), otherwise we call it a weighted matching (or

6-matching).

A l l of the optimization problems discussed here are finite and thus enumeration would

always find an optimum solution, but with increasing problem size, enumeration is im

practical. At present it is well accepted that a practical algorithm should have its ele

mentary computation steps bounded by a polynomial in term of the problem size. We

call such algorithm a po lynomia l a lgor i thm, which were called good algorithms by

Edmonds in 1965.

For graph related problems, a good measure of problem size is their natural sizes

such as the number of vertices, or the number of edges or the size of weighted vectors . . .

etc. A polynomial algorithm for a graphical problem is called a s trongly po lynomia l

a lgor i thm if the polynomial is in term of only the number of vertices and the number of

edges in graph G. Further details on Complexity Theory can be found in Papadimitriou

and Steiglitz [9].

1.3 Out l ine of The Thesis

Algorithms, complexity analysis, and transformation techniques for the Fixed Size Match

ing problems are presented in this thesis. The contents of each chapters is summarized

Chapter 1. Introduction 5

below.

• Chapter Two deals with the fixed size weighted matching problem. A primal-dual

algorithm is demonstrated to solve the variable size weighted matching problem in

polynomial time. The algorithm has the property that at any step, if there are p

edges in the matching, then those p edges constitute an optimum matching of size

p. Thus p is regarded as a variable in the algorithm. Then we show how to use this

algorithm to find a fixed size optimum matching, and a small example is worked

out. Finally an alternative approach to solve the fixed weighted matching problem

is also given.

• Chapter Three tackles the fixed size weighted b-matching problem. First, we rewrite

Pulleyblank's [8] blossom algorithm for the weighted 6-matching problem to obtain

experience . Then we transform our fixed size weighted fr-matching problem into a

weighted 6-matching problem which thus can be solved by the blossom algorithm.

• Chapter Four is devoted to fixed size (g,/)-factor problems. We first review

Anstee's [1] /-factor algorithm, then apply his ideas to our fixed size (g, /)-factor

problems. We consider our approach a direct one and hence perhaps more prac

tical than a transformation approach. We can either find a fixed size (<?, /)-factor

or display a fixed size (g, /)-barrier showing that no fixed size (g, /)-factor exists

and do this in 0(n 3) operations, where n is the number of vertices of a multigraph.

At the end we prove an augumenting walk theorem which leads to a conclusion

that the size of all feasible (g, /)-factors forms an interval, that is, we can start

with a (<7, /)-factor found by any known algorithm and apply our augumenting (or

decreasing) walk algorithm to achieve the fixed size p if a (g, /)-factor of size p

exists. In particular, we can find the largest and smallest cardinality (g,/)-factor.

Chapter 2

Fixed Size Weighted Matching

2.1 Preliminaries

Given a weighted graph G — (V,E,c) with weight vector c = (c,j : {i,j} G E) and

| V | = n, the general weighted matching problem is to find a matching of G with the

largest possible sum of weights. The problem can also be stated as an integer program

as below.

Max cTx

subject to:

xij e{o, l}, Vx { j e E

where x,j = 1 iff edge {i,j} is in the matching. We cannot ignore these explicit integer

constraints x t J G {Oil} and solve the problem via linear program since we may obtain

a nonintegral solution which does not correspond to a matching. See Figure 2.2 for an

example. If we let c = 1 on our pentagon, then the unique maximum weighted solution

without integer constraints is x\2 = %23 — £ 3 4 = ^45 = £51 = 0.5, which has weight 2.5.

However the weight of a maximum weighted integer matching is clearly 2.

It is well known that the odd cycles of a graph cause this problem. Edmonds [5]

found that the following set of linear constraints are sufficient to ensure integrality. For

any subset of 2r + 1 vertices there can be at most r matched edges with both ends in the

6

Chapter 2. Fixed Size Weighted Matching 7

Figure 2.2:

subset. This leads to a linear programming (LP) without explicit integrality constraints

whose associated polyhedron has only integer vertices. The L P formulation is:

Max cTx

subject to:

E,-j e s f c x 0 - < s f c, WSkC V,\Sk\ = 2sk + l (2)

Xij > 0, Vxn e E, (3)

We choose Sk to be any subset of { l , 2 , . . . , n } which has cardinality that is odd and

greater than one, so we have N = 2 n _ 1 — n subsets in total. One may not feel comfortable

with these exponentially large number of new constraints. However, this causes no trouble

for Edmonds' primal-dual algorithm in which all but a polynomial number of the dual

variables have zero value throughout the algorithm. Before moving on we need to review

some result and concepts about the cardinality matching problem.

Theorem 2.1 (Berge 1957): A matching M is of maximum cardinality if and only

if there exists no augumenting path.

The proof is not hard, but we will skip it because it is a special case of the augumenting

walk theorem that we prove in Chapter 4.

Definitions:

Chapter 2. Fixed Size Weighted Matching 8

- t

Figure 2.3: An example of augumenting tree

An al ternat ing tree w.r.t. a matching M is a tree that satisfies conditions 1, 2 and

3 below.

1. Exactly one vertex of the tree is unmatched, which is called a base (or root) of the

tree.

2. A l l paths from the base are alternating paths.

3. A l l maximal paths from the the base are of even length.

4. At least one path from the base is an augumenting path.

A tree which satisfies conditions 1, 2 and 4 is called an augumenting tree (see Figure

2.3). Throughout this thesis we always use straight lines to denote the edges not in the

matching and zigzag lines to denote the edges in the matching. An inner vertex of an

alternating(or augumenting) tree is a vertex which is at the end of a path of odd length

from the root, and an outer vertex of an alternating (or augumenting) tree is a vertex

which is at the end of a path of even length from the root.

A blossom B w.r.t. a given matching M is an odd cycle consisting of 2r -f 1 edges

and 2r + 1 vertices, where r of the edges are in M.

Chapter 2. Fixed Size Weighted Matching 9

d>

Existing Blossom New Blossom

Figure 2.4: An example of blossom construction

In the cardinality matching algorithm, when a blossom is found it is shrunk into one

vertex which is called pesudovertex. We could have a nest of blossoms, and a blossom

not contained within some other blossom is called an outermost blossom. An example

is given in Figure 2.4.

A blossom tree is an alternating tree with one additional edge joining two outer

vertices of the tree.

A Hungar i an tree is an alternating tree for which any edge incident to an outer

vertex is also incident to another vertex of the tree.

The cardinality matching algorithm is initialized by specifying an initial matching,

possibly empty, and proceeds by searching for an augumenting path. A tree rooted at

an unmatched vertex r is grown by adding non-matched and matched edges alternately,

shrinking blossoms whenever encountered. Finally we either find an augumenting path

or end up with a Hungarian tree. In the first case we can produce a new matching with

cardinality increased by one by tracing the augumenting path (expanding a pseudovertex,

if discovered, into the original blossom) back to the root and then interchanging the role

Chapter 2. Fixed Size Weighted Matching 10

of matched and non-matched edges along the path. In the second case, we know that

no augumenting paths starting from r will exist any more. Clearly one iteration of the

algorithm takes 0(| -£ |) operations since we need only to look at each edge 0 (1) times.

To find a maximum cardinality matching, we only need to grow n trees, so the total

complexity is 0(|V~| |£ |) .

In this chapter we add a size constraint to the weighted matching problem, and we

explore the primal-dual procedure with an extra dual variable a0. Our algorithm has

the property that at any step if there are p edges in the matching, then these p edges

form an optimum matching of p edges. Urquhart [10] (1967) briefly explained a weighted

matching algorithm with this property using geometric intuition in his Ph.D. thesis;

this algorithm is actually the same as the one in Lawler's book [6], (1976). However

another primal-dual version of the weighted matching algorithm given by Papadimitriou

and Steiglitz [9] doesn't have this property, and one can find a counterexample with no

difficulty.

2.2 Var iable Size Weighted M a t c h i n g

We add a size constraint to the weighted matching problem and formulate the new

problem into L P form as:

(P):

Max cTx

subject to:

<*o : Ei<j *ij = P • (4)

E " = i ^ + 2 / i = l, V i e V (5)

nt : Etjgs* XH + zk = 8k, VSk C V, \Sk\ = 2sk + 1 (6)

xn > 0, yi > 0, zk > 0, Vi,j,k.

Chapter 2. Fixed Size Weighted Matching 11

Here p is any positive integer which can be thought as an variable, y,-,^ are slack vari

ables, and oro, a,, rjt are the corresponding dual variables. The dual (DP) of the above

(P) is:

(DP):

Min pctQ + £<*< + £ s^k

subject to:

V{M ' } 6 E : ct0 + oti + aj + J2i<jeSk

 rk > c{j (7)

a 0 free; a,- > 0 Vi ; > 0 Vfc.

Now we define

•Je = (e = '• <*o + <*i + « j + E.jes,, r * = c e} (8)

J 6 = {fc : rk = 0} (9)

Jm = {i : a,- = 0} (10)

Here Je is called a set of admissible edges, and Jb is called a set of admissible odd

sets. We use Jb to denote the set of all odd sets not in Jj,. Our algorithm will solve the

problem by starting from the feasible dual solution

a0 = max{cij}

7T : < a, = 0 Vt 6 V

rk = 0 \/k

Then we consider the following restricted primal (RP).

(RP):

Max-xg

subject to:

Chapter 2. Fixed Size Weighted Matching 12

Et<j xij ~r xo — P (11)

E?=i xn + Vi + xi = 1 (12)

(13)

3 ^ = 0 V{i,j}eJe
(14)

V i = 0 Vi € 7 m (15)

zk = 0 V5 f c € 7 6 (16)

*u > 0 Vi , j € V(G) x a > 0

Note that (RP) is in fact a Phase I LP, and the x°'s are Phase I artificial variables. We

know by the Complentary Slackness (C.S.) that a feasible x = (x t J : {i,j} G E) in (P) is

optimal if and only if it satisfies

(C . S .) :

Exn=p < W 0 (17)

xn = 0 V { i , ; } ^ J e (18)

Vi = 0 Vi £ Jm (19)

zk = 0 V5 f c g J 6 (20)

So we attempt to solve (RP); if we find an optimal solution of (RP) with zero value then

this solution is feasible in (P) and satisfies the above C.S. conditions (17-20). Thus it

must be an optimal solution of (P). If we find the optimal solution of (RP) is strictly

negative then we will adjust our initial feasible dual solution 7r to a new feasible dual

solution 7r' S O that the new (RP) induced by n' will have an improved optimal solution.

We keep performing this cycling process until we find an optimal solution of (RP) with

zero value or we end up with an optimal solution of (RP) with nonzero value which implies

that no matchings of size p exist. Note our algorithm always preserves primal and dual

feasibility as well as the C.S. conditions, except (4). When the algorithm terminates,

if (4) is satisfied then we obtain an optimum matching of size p, otherwise we conclude

Chapter 2. Fixed Size Weighted Matching 13

there doesn't exist a matching of size p. Before solving (RP), we need to present its dual

as follows.

(D R P) :

Min p a 0 + E «i + £ Sk?k

subject to:

Ve = {i,j} eJe: a 0 + 67, + a,- + Ei,,es* r* > 0 (21)

a 0 ^ - 1 ; a, > - 1 ; rk > - 1 ;

o70 > 0 Vi G Jm) rk > 0 Vfc G J 0 .

We solve (RP) as maximum cardinality matching problem and preserve the following

assumptions:

(a) : xe G {0,1}, i.e., x corresponds to a matching M.

(b) : rk > 0 G[Sk] has precisely sk edges of M.

(c) : r,-, r, > 0 and St f| Sj ^ 0 =• 5,- C Sj or 57 C 5,-.

We work in an admissible graph Gj corresponding to Je and Jj. Graph Gj consists of

the graph (V, Je) after shrinking all odd sets in J&. We call a matching of Ge = (V, Je)

proper if all odd set in Jb are full (assumption (b) holds). A maximum proper matching

of Ge need not be a maximum matching of Ge. The following lemma ensures that we

can find a maximum proper matching in Ge by finding a maximum matching in Gj.

L e m m a 2.2: There is a matching in Gj with d unmatched vertices iff there is a

proper matching in Ge with d unmatched vertices.

Proof: From a proper matching in Ge, we can go to a matching in Gj by simply

shrinking maximal odd sets in J j ; this doesn't change the number of unmatched vertices

since we start with a proper matching in which all odd sets in J j are full. Conversely,

a matching in Gj can be turned into a proper matching of Ge by expanding odd sets

and filling them with matching edges as appropriate. Since each odd set comes from

Chapter 2. Fixed Size Weighted Matching 14

the shrinking of a nest of blossoms, an odd set is unmatched only if some blossom of

those contains an unmatched vertex. A n alternating path from the unmatched vertex

will allow any specified vertex in the odd set to be unmatched when the blossoms are

expanded; the lemma then follows.

Q . E . D .

Now we can apply cardinality matching algorithm on Gj to find a maximum cardi

nality matching, but how is this matching related to the optimal solution of (RP)?

Theo rem 2.3: An optimal solution {xij} of (RP) is just a maximum proper matching

of Ge, namely, a maximum cardinality matching of Gj.

Proof: Suppose we have found a maximum matching of Gj by the cardinality match

ing algorithm. Thus we have failed to discover an augumenting path in a current graph

Gc, resulting from Gj by shrinking a number of blossoms (be aware of the sequence

Ge = (V, Je) — > Gj —• Gc)- The vertex set of Gc consists of pseudovertices. A

pseudovertex can be any of following:

1. A vertex of V .

2. A maximal odd set in J j .

3. Several vertices of V and maximal odd sets in Jf, merged into an outermost blossom.

A pseudovertex of Gc can be either outer or inner or neither. Let 0 be the vertex set of

outer pseudovertices, and I be the vertex set of inner pseudovertices. We then partition

the vertices of Gc that are not vertices of V into <J>o (maximal odd sets corresponding

outer pseudovertices or blossoms), (maximal odd sets corresponding to inner pseu

dovertices), and the rest.

L P theory says if a primal feasible solution and a dual feasible solution both have the

same objective value, then both are optimal. We are going to prove the optimality of

Chapter 2. Fixed Size Weighted Matching 15

(RP) by exhibiting a feasible solution of (DRP) that achieves the same cost. We define

our solution of (DRP) as:

W = (a o , ^ , . . . , c 7 „ , r i , r 2 , . . . ,rN) where

a 0 = -1

a, = < 1

1/2

i G O

i G /

else

1

-1

0

Sk G $o

else.

This definition of W is different from that in the primal-dual algorithm given in [6] and

[9]. Why is this feasible? The constraint (21) can be violated only if Vi,Vj G O, but this

means V{ and Vj belong to the same outer pseudovertex (they cannot belong to different

outer pseudovertices since then the two pseudovertices would form a blossom), hence

rk — 1 offsets d70 = —1 and salvages its validity. A l l the other constraints of (RP) are

obviously satisfied.

Why is this optimal? With the assumption (a), we may forget about the constraint

(12) in (RP). Since if i £ Jm, vertex i is matched, t/,- = xf — 0. If i G J m , we can let

Hi = 1 to fill the gap and still have = 0. Thus we can always let = 0. Similarly,

with assumption (b) we may forget about constraint (13) in (RP) and always assume
xn+k = 0- Now consider the objective value of (RP):

- X Q Ylxi —H xn+k

= — (p — number of edges in the matching)

= ~(P ~ E « i - Ê jfeFfc)

= Po + E«i ' + T,skrk.

Therefore our W is the optimal solution of (DRP), and the theorem is proved. Q.E.D.

Chapter 2. Fixed Size Weighted Matching 16

R e m a r k : If there are p edges in the current matching then Xq = 0. A l l feasibility

and C S . conditions are satisfied, so these p edges constitute an optimum matching of

size p.

What if the number of edges in the current matching is less than pi We then need to

adjust our dual solution ir to ir' such that ir' = ir + 0W where 6 is determined as follows:

9 = Min(6i, 62,63)

61 = a0 + a,- + aj - cij \fi, j E O

62 = 2(a 0 + a; + aj - Cij) VieO,j <£0\JI

63 = rk \/Sk e $/

Our definition of 9 ensures the feasibility of ir', we then solve a new (RP) induced by n'.

We repeat the same procedure and each time obtain an improved solution. But how do

we know that the algorithm will eventually terminate? Let us examine the complexity

of our algorithm.

Theorem 2.4: The complexity of our algorithm is 0(pn3).

Proof : Let's call each search for an augumenting path a step, and the sequence of

steps between two successive augumentations a stage. Clearly there can be at most p

stages. Now let's bound the number of steps in each stage.

A step can only be one of the three types, depending on whether 6 = 61, 0 = 62, or 0 =

63. In the first case, two outer vertices of Gj are joined by a new edge, which means

that in the next step we shall discover either an augumenting path or a blossom. Since

the shrinking of each blossom decreases the number of vertices of the current graph by

at least 2, we can have at most n/2 + 1 steps of this case in one stage.

If 9 = 62, a new outer vertex is found in the next step, which means that the number

of steps of this case is also bounded by n/2. Finally if 9 = 63, we remove from Jf, an

Chapter 2. Fixed Size Weighted Matching 17

odd set Sic that corresponds to an inner pseudovertex of Gj, so the number of such steps

in a stage is clearly bounded by the number of odd sets in Jb at the conclusion of the

previous stage. But this number is bounded by n/2 by assumption (c).

Now we see we have a total of 0(pn) steps, and each step can be carried out in 0(n2)

time by the cardinality matching algorithm. The determination of 0, I, $o , and $/ can

also be done in 0(n2) time, as well as the construction of Gj, the calculation of 0 and

the variable modification. Therefore the total complexity of our algorithm is 0(pn3).

2.3 F i x e d Size Weighted M a t c h i n g

In the primal-dual algorithm given in the previous section, each time we obtain a new

dual solution x' = tc + $W, we may have one of the following cases before we have to

adjust dual variables again.

1. There is no augumenting path found.

2. There is exactly one augumenting path found.

3. More than one augumenting path is found.

When the third case appears, we should pay more attention. If we wants an optimum

matching of size p and there are r < p edges in the current matching, suppose we fail to

find any more augumenting paths and have to adjust to a new dual solution 7T* = n + &W.

After doing so, if we suddenly find q augumenting paths simultaneously before we have

to adjust dual variables again, and r + q > p, then what should we do?

Theorem 2.5: We can pick any p — r among these q augumenting paths and still

obtain an optimum matching of size p.

Proof: At the beginning we take the initial dual variable on each vertex to be zero,

i.e. Vi 6 V cti = 0. In any later steps, each time we look for an augumenting path on

Chapter 2. Fixed Size Weighted Matching 18

Figure 2.5:

Gj we start from an unmatched vertex i with a, = 0; if an augumenting path can be

found, the path must terminate at an outer vertex j also with aj = 0. If any one of i

and j is a pseudovertex corresponding some maximal blossom Sk, then Sk contains at

least one vertex r such that aT = 0. So all of our augumenting paths both start from

and end at a vertex with zero dual variable. Therefore, if we pick any p — r among these

q augumenting paths we still preserve all the feasibility and C S . conditions, i.e., we are

still at optimality. Q .E .D.

We are going to work out! an example which may help in understanding our primal-

dual algorithm in Section 2.2

Example : Find a maximum weighted matching of size 4 in the graph in Figure 2.5.

Solut ion: At each step, a nonzero value of a, will appear on the corresponding vertex,

a0 = 0 throughout the algorithm, and admissible graph Gj is presented at every step.

Step 1: a~i — 0 for i ^ 5,9; a, = 1/2 for i = 5,9. Also, 6X = 1 because of edge {2,

4}; 62 = 2 because of edge {5, 8}; 63 = 00 because of = 0, and 9 = 1. Edge {5,9} is

an optimal matching of size 1.

Step 2: a, = 0 for i ^ 2,4,5,9; aj = 1/2 for i = 2,4,5,9. Also, Sx = 5 because of

edge {3, 8}; <52 = 1 because of edge {5, 8}; 63 = 00 because of = 05 and 9 = 1. An

Chapter 2. Fixed Size Weighted Matching 19

0 CD C X Q = 14

(D © © (£ >

Q CD G) (g)

Figure 2.6: Step 1

0 « 0 = i s

®

© C D @: ©

Figure 2.7: Step 2

optimal matching of size 2 is {{2,4}, {5,9}}.

Step 3: 57,- = 0 for i ^ 2,4,5; a~i = 1/2 for i = 2,4; 575 = 1. Also, 5X = 1 because of

edge {8, 9}; d>2 = 1 because of edge {1, 2}; 63 = 00 because of <&/ = 0, and 5 = 1.

Step 4: Q; = 0 for i ^ 2; a 2 = 1; r{ 5 | 8 i 9} = 1. Also, Si = 2 because of edge {4, 5};

62 = 00 because of / = 0; S3 = 00 because of = 0, and 9 = 2.

Step 5: 57, = 0 for i = 3, 6, 7,10; a,- = 1/2 for the other vertices. Also, Si = 7 because

of edge {3, 7}; S2 = 2 because of edge {1, 3}, {6, 9} and {9, 10}; S3 = 00 because of

$/ = 0, and 9 = 2. An optimal matching of size 3 is {{1,2}, {4,5}, {8,9}}.

Figure 2.10: Step 5

Chapter 2. Fixed Size Weighted Matching 21

= 7

= 2

Figure 2.11: Step 6

Step 6: a, = 0 for i = 6,7,10; a, = 1 for i = 5,8,9; c7j = 1/2 for t = 1,2,3,4;

F{5,8,9} = —1. Also, Si = 6 because of edge {6, 10}; 82 = 2 because of edge {2, 6}; 63 — 2

because of Sk £ $1, and 9 = 2. We now have a Hungarian tree, so the algorithm stops.

A maximum weighted matching of size 4 is {{1, 3},{2, 4},{5, 8},{6, 9}}.

2.4 A Transformation A p p r o a c h

In this section we provide an approach which transforms the fixed size weighted matching

problem into a general matching problem.

Let G = (V, E,c) be a weighted graph with | V | = n. We create a new graph

G = (V,E,c) such that

c

E

V • V \J{n — 2p new vertices}

: E\J{{s,i} : i 6 V,all new vertices^}

{cij • € E}, where

: max{cij : {i, j} € E] + 1, and

Co otherwise.

Chapter 2. Fixed Size Weighted Matching 22

6

> 6

n-2p new vertices

Figure 2.12: An example of graph G

See Figure 2.12 for an example. Then we can apply any known algorithm to find a full

size maximum weighted matching on G. When this optimum matching is restricted to

G, it induces an optimum matching of size p on G.

Remark: G has n(n — 2p) more edges than G. So G will be become very dense for

small p; we can no longer take advantage of the sparsity (if any) of G. This is particularly

relevant if the complexity of Theorem 2.4 is more carefullly calculated with respect to

the number of edges as well as the number of vertices.

Chapte r 3

The F i x e d Size Weighted 6-matching P r o b l e m

3.1 T h e Weighted 6-matching P r o b l e m

In this section, we introduce the blossom algorithm for the weighted 6-matching problem,

which is due to Pulleyblank [8].

3.1.1 In t roduct ion and Definit ions

Let G = (V, E, c) be a weighted graph, and 6 = (6,- : i G V) be a vector of positive

integers. The general weighted 6-matching problem can be formulated in the following

L P form:

(P) :

Max cTx

subject to:

(3.1) £ ? = 1 x t j < 6 , VieV

(3-2) rk : EijeRk

 XH < sk Vi? f c C V, £ t € ^ 6,- = 2s* + 1

(3.3) xtj > 0 V{i , ; } 6 E.

Where ct.'s and r^'s are the corresponding dual variables.

Defini t ion 3.1 A feasible solution x = : {i,j} E E) of the above (P) is called a

6-matching.

Def in i t ion 3.2 Given a b-matching x, the deficiency of a vertex i is 6, — £Tj=i xij

which is denoted by defx{i). Vertex i is called a deficient vertex if defx(i) > 0.

23

Chapter 3. The Fixed Size Weighted b-matching Problem 24

Edge j such that Xj >] ^ s ^ y ^ . Xj > o

Figure 3.13: Sample Blossom

Definition 3.3 A walk w = u0e1u1e2U2 • • • e2fc_it>2ib-i, where e, = is an aug

menting walk w.r.t. a b-matching x if v0 and u2fc-i are both deficient vertices and

%k > 1 2 if occur twice) if k is an even edge of w.

Definition 3.4 The deficiency of a graph G w.r.t. a b-matching x and its corre

sponding dual solution y = (a,r) is £y i>odefx(i) which is denoted by &(G;x,y).

Definition 3.5 A blossom (see Figure 3.13), w.r.t. a b-matching x, is a connected

graph B = (V(B), E(B)) containing no even cycles, exactly one odd cycle C and for

which the degree constraints satisfy the following conditions. Let v £ V(C).

(3.4) T2=lXij = bi VieV(B)-{v}

(3.5) E ? = 1 = &„ - 1

(3.6) X j > 1 V; e E(B) - E(C)

(3.7) Xj > 1 \/j € E(C), and j is the even edge

of a path in C rooted from v

By shrinking a blossom B in the graph G, we mean that all the edges of G which

have both ends in B are contracted. We call the resulting vertex s a pseudovertex and

define b, — 1.

Chapter 3. The Fixed Size Weighted b-matching Problem 25

There is an important property of a blossom, which ensures we can do the shrinking

in our blossom algorithm. See the following proposition.

P ropos i t ion 3.1 Let B be a blossom w.r.t. a 6-matching x. Then for any i € V(B),

there exists a new 6-matching x' that can be obtained from x by an alternating walk such

that B is also a blossom w.r.t. x' and defx>(i) = 1.

During the course of the blossom algorithm we construct forests having special prop

erties. Let T be a tree contained in G , and r € V(T) be the root of T. Then an edge

{i, j} € E(T) is even or odd according as {i,j} is the last edge of the path in T rooted

from r to an outer or inner vertex of T.

Defini t ion 3.6 We call T an a l ternat ing tree w.r.t. a b-matching x (see Figure 3.14)

if

(3.8) E"=l Xrj < K

(3.9) TlUxii = bi V t ' 6 F (r) - { r }

(3.10) {i,j} e E(T) Vxtj > 0 and i or j g V(T)

(3.11) Xj > 0 V ; is an even edge of T.

We call a nonempty collection of alternating trees an al ternat ing forest.

Def ini t ion 3.7 Let k be an edge of a tree T with root r. If we delete k from T then the

resulting graph will consist of two trees, one of which, T', will not contain r. We call T'

the por t ion of T above k.

Defini t ion 3.8 A Hungar ian Forest is an alternating forest that can not grow any

more.

3.1.2 Charac ter iza t ion of the O p t i m a l Solut ion

First let's consider the dual problem (D) of the primal 6-matching problem (P).

(D) :

Chapter 3. The Fixed Size Weighted b-matching Problem 26

P : root.

Figure 3.14: Alternating Tree

Min £ bicti + £ skrk

subject to:

(3.12) a, + aj + j e R f c r f c > C i j V{i , j} G £ (G)

(3.13) a,- > 0 Vi G V

(3.14) r f c > 0 Vfc.

The blossom algorithm is also a primal dual procedure: We work on an admissible graph

Gj (see Chapter 2 for the definitions of Gj, Je, Jm, Jb, etc.) and find a maximum cardi

nality 6-matching x on G . Then we check if A(G; x, y) = 0. If so, we are at optimality; if

not, we adjust our dual solution y = (cti,rk) to y and obtain a new Gj on which we can

find an improved maximum cardinality ^-matching x . We continue this cycling process

until we terminate with A(G;x , r /) = 0.

We state the C S . conditions of our problem as follows:

(3.15) xn > 0 = • a{ + aj + j e R k rk = c t j V{ i , j } G E

(3.16) a{ > 0 => £ ? = 1 Xij = k Vi G V

(3.17) rk > 0 => £ i j € ^ Xij; = sk V/? f c

Chapter 3. The Fixed Size Weighted b-matching Problem 27

The blossom algorithm always preserves all the primal and dual feasibilities, as well as

C.S. conditions except (3.16). At each stage of the algorithm, we have a 6-matching

x = (xij : {i,j} G E) and a feasible dual solution y = (a,-,rjt : Vi,i2jk).

Define G+{x) = (V(G), E+{x)) where E+{x) = {{», j} G E(Gj) : x{j > 0}, and let H

be any component of G+(x). Then H has the following properties:

(3.18) H contains no even cycles;

(3.19) H contains at most one odd cycle;

(3.20) if H contains an odd cycle, then H contains no deficient vertices;

(3.21) if H contains no cycles, then H has at most one deficient vertex.

We also have an alternating forest F contained in Gj such that

(3.22) Each i G V such that J2]=i xij < °i iS the root of a tree in F.

Forest F is partitioned into F° and Fl: F° consists of all those trees in F such that

a r = 0 if the root r G V or a, = 0 if the root r C V is a pseudovertex and t E r ; and F1

consists of all other trees of F. Then

(3.23) A((7; x, y) = £ a i > 0 defx(i) = Yl(defx(i) : i is the root of a tree of F1)

It will be seen in the algorithm that as long as there are vertices in F1, we are not

at optimality, and as soon as V(F1) = 0, namely A (G ; x , y) = 0, we implictly have an

optimal solution.

3.1.3 The Blossom A l g o r i t h m

(3.24) Initially we may take rr,̂ = 0 G E, a,- = 1/2 max {c t J : {i,j} G E},

and rfc = 0 Vi?*. F will be the spanning forest of G in which every tree consists of a

single outer vertex.

Pa r t One: Ca rd ina l i t y M a t c h i n g A l g o r i t h m .

Chapter 3. The Fixed Size Weighted b-matching Problem 28

©: vertex not in forest
r

Figure 3.15: Forest Growth

Step 1: Scan E(Gj) to find an edge j = {vi,V2} joining an outer vertex vt of Fx

to a vertex v2 that is not an inner vertex of F1. If no such edge exists, then the current

forest is Hungarian; go to Step 8. Otherwise, go to Step 2.

Step 2: Examining Vertex v2.

If v2 is in a component of G+(x) which is not contained in F, go to Step 3.

If v2 is an outer vertex of a tree in F which is different from the tree containing Vi

then go to Step 4.

If v\ and v2 belong to the same tree of F , go to Step 5.

If v2 is a n inner vertex of a component of F°, go to Step 7.

Step 3 (Grow Forest F): Let K be the component of G+(x) containing v2. If K

contains a cycle, go to Step 3b.

Step 3a (see Figure 3.15): If K contains no cycle, we grow the alternating tree T

containing v\ by attaching v2 and K by means of the edge j. Go to Step 1.

Step 3b (see Figure 3.16): K contains an odd cycle C. Let Wi be a vertex of C

which is an odd distance from v2 in K and for which this distance is as short as possible.

Let w2 be a vertex of C adjacent to w\ in C which is no closer to v2 in C than W\. Let

k be the edge of C joining W\ and w2, and K' be the tree obtained from K by removing

Chapter 3. The Fixed Size Weighted b-matching Problem 29

Figure 3.17: Two Tree Augmentation

the edge k. Add K' to the forest by using edge j as described in Step 3a. Go to Step 5.

Step 4 (see Figure 3.17): Augmentation (Two Trees).

Step 4a: Calculation of cr.

Let rx (r 2) be the root of the tree I \ (T 2) of Fl (F) containing (u 2). Let crx = min

{xk} where k is an even edge of the path 7Ti in T i from rt to v\; let <r2 and 7r2 be analogously

defined for T 2 , v2 and r 2 . By (3.11) c ^ , ^ > 1. Let cr = min {<Ti, <J2, defx(ri), defx(r2)}.

By (3.8), cr > 1.

Step 4b: Augmentation.

Chapter 3. The Fixed Size Weighted b-matching Problem 30

Figure 3.18: One Tree Augmentation

Define x to be the new 6-matching obtained from x by subtracting cr from xk if k is

an even edge of tti or TT 2 and adding cr to xk if k is an odd edge of 7Ti or 7r2, or k = j.

Then

&(Gj;x',y) < A(Gj;x,y) - 1.

Step 4c: Computation of new F.

If defx'(rx) = 0 (resp. defx<(r2) = 0) then remove Tx (resp. T 2) from F . If is an

even edge of or 7r2 for which a:̂ = 0 then remove k and the portion of the tree above

it from F. Go to Step 1.

Step 5 (see Figure 3.18): Augmentation (One Tree).

Step 5a: Calculation of cr and Blossom Test.

Let r be the root of the tree of F1 containing vx and u2. Let tti (7r2) be the path in T

from r to vx (v2). Let tts be the common position of n\ and 7r2. Then E(-kx) \JE(ir2) U{ j } \

E(ira) are the edges of an odd cycle C.

Define <7i•= min {xk: k is an even edge of ir3}, and cr2 = min {xk: k is an even edge

of 71"! or 7r2 and k ^ E(ws)}. Then <TI,<T 2 — 1- Let

<r = min {[cr1/2},cr2,[defx(r)/2]}.

Chapter 3. The Fixed Size Weighted b-matching Problem 31

Where [a] denotes the largest integer no greater than a. If a > 1 then go to Step 5b

where we augment; otherwise, go to Step 6 where we shrink a portion of Gj.

Step 5b: Augmentation.

Define x to be the new 6-matching obtained from x by subtracting (adding) cr from

(to) Xk if k is an even (odd) edge of TTI or 7r2 not belonging to w3, and subtracting (adding)

2cr from (to) xk if k is an even (odd) edge of w3. Then

A{Gj;x',y) < A(Gj;x,y)-2.

Step 5c: Computation of new F.

If defx'(r) = 0 then remove T from F and go to Step 1.

If defx>(r) > 0, but there are / £ E(tt3) such that x\ = 0, let k be the first such edge

in 7TS, and T' be the portion of T above k. Remove T' and k from F and go to Step 1.

If defx>(r) > 0 and x\ > 0 for all / £ E(tr3), but x'k = 0 for some edge & of C , remove

all such edges k from F and go to Step 1.

Finally, if defx>(r) > 0 and x\ > 0 for all / £ £(TTI) U £ (x 2) U{i}> then there must be

an even edge k of ir3 for which x'k = 1 or defx>(r) = 1. Go to Step 6.

Step 6: Shrinking Step (see Figure 3.19).

We now identify a blossom in Gj. T is the tree of F 1 containing vx and u 2, and tt3

is the path in T from its root r to the nearest vertex q of C , the odd cycle formed by

adding j to T. Let w be the first outer vertex of tts such that the path it' in T from w to

contains no even edge k for which xk < 2. Note 7r' could be empty. Let C' = x (J C;

we regard C ' as an odd cycle in the sense that we split each vertex of 7r', except for w,

into two vertices and split the edges of x' properly. Then the blossom B consists of C'

and any component H of G+(x) such that V(H)f] V(C') ^ 0 except for the even edge

of T incident with w if it exists. Note £ > e V (B)
 xwj = bw — I. Shrink blossom B and go

to Step 1.

Chapter 3. The Fixed Size Weighted b-matching Problem 32

Figure 3.19: Shrinking Step

Step 7 (see Figure 3.20): Grow Forest F 1 (pseudo forest growth).

Edge j joins an outer vertex vx of a tree T\ rooted at rx in F1 to an inner vertex v2 of

a tree T 0 rooted at r 0 in F°. Let k be the first edge of the path from t>2 to r0 in T0, and

T be the portion of T0 above k. We adjoin T and the component H of G+(x) containing

i>2 to V\ by means of the edge j thereby obtaining a larger tree T[and a smaller tree T'Q

as indicated in Figure 3.20.

If r 0 g V(T[), then replace Tx by T[and T 0 by T'Q in F . Go to Step 1.

If r 0 6 V(TX), then remove T 0 from F ° . Let T denote Tj and perform the following

steps.

Step 7a: Pseudo Augmentation.

Let 7r be the path in T from rx to ro- Observe that both ro and rx are outer vertices of

T. Let <7\ = min {xj : j is an even edge of 7r}. Let a = min {ax,defx{rx)}. Then a > 1.

Let x' be the new 6-matching obtained from x by adding (subtracting) a to (from) x^ if

k is an odd (even) edge of it. Then

Chapter 3. The Fixed Size Weighted b-matching Problem 33

Figure 3.20: Pseudo Forest Growth

A(Gj;x',y) < A(Gj;x,y) -1.

Step 7b: Computation of new F.

If defx(ri) = 0, then remove T from F1, reroot T at r 0 , and add T to F°. Go to Step

1.

If def'x(r-i) > 0, then we must have x\ = 0 for some even edge of 7r; let k be the first

such edge, and T be the portion of T above k. Remove T and k from T, reroot T at r 0

and add it to F°. Go to Step 1.

Part Two: Optimality Test and Dual Variable Change.

Step 8: If A(Gj; x,y) = 0, stop: the current 6-matching is optimal.

Step 9: Dual Variable Change.

Step 9a: Calculation of 9.

Let 8i = min {a,- + ctj — c,j} where {i,j} joins an outer vertex of F1 to a vertex not

in F1.

Let 82 = min 1/2{a; + ctj — c,j} where {i, j} joins two outer vertices of F1.

Let 63 = min {rjt/2} where Rk is an inner pseudovertex of F 1 .

Let 84 = min {a^} where i is an outer vertex of F1.

Chapter 3. The Fixed Size Weighted b-matching Problem 34

Finally, let 6 = min {<5 l562,63,64}.

Step 9b: Change of Dual Variable.

We define new dual solution y = (c^r^) as follows:

ai — 9 i is an outer vertex of F1.

<X = < a,; + 9 i is an inner vertex of F1.

ai otherwise.

rk + 29 Rk is an outer pseudovertex of F 1 .

rk — 29 Rk is an inner pseudovertex of F1.

rk otherwise.

Then update edge set Je by this new dual solution.

Step 9c: If 9 G {Si,S2}, w e w m get new edges in Gj. Go to Step 1.

If 9 = £ 3 , we must properly expand an inner pseudovertex of Fl for which = 0 and

properly update the new alternating forest F. Then go to Step 1.

If 9 = 84, let I = {i : a) = 0} where i is an outer vertex of F1. For each i £ I such

that i is the root of a tree T,' in F1, remove from F1 and add it to F°. Then go to

Step 1. Note that

A(Gj;x,y')<A(Gj;x,y)-l.

If there is no i £ / such that i is the root of a tree in F 1 , then choose any r 0 G / , and

let r i be the root of T. Go to Step 7a.

3.1.4 A b o u t C o m p l e x i t y

A n upper bound on the amount of work required by the blossom algorithm to solve a

weighted b- matching problem is of the order

A(G;x° ,y°) . |V | . |F |

Chapter 3. The Fixed Size Weighted b-matching Problem 3 5

where x° and y° are the initial 6-matching and dual solution. The details of the proof

are available in Pulley blank [8] .

If we start with an initial 6-matching and its corresponding dual solution as described

in (3 . 2 4) , the blossom algorithm will take 0 (| 6 | . | V | . | J E |) operations which is dependent

on vector b. So this is not a strongly polynomial algorithm nor indeed a polynomial

algorithm in the seting of a multigraph; a strongly polynomial algorithm for weighted

6-matching problem was given by Anstee [2] (1 9 8 3) .

3.2 The Fixed Size Wighted 6-matching

Let G = (V, E , c) be a weighted graph, V- [j V= be a partition of V , and b = (6,- : i £ V)

be a vector of positive integers. Then the fixed size weighted 6-matching problem can be

formulated in the following L P form: (P):

Max cTx

subject to:

£t'<j xij — P

£?=! Xij = bi Vi e V=

Vi g v±

xtj > 0

V#* C V, £ bi = 2sk + 1

Note in the previous section we have taken V~ = 0 for brevity's sake.

3.2.1 A Possible Generalization

Conjecture: The fixed size weighted 6-matching problem can be solved by the primal

dual algorithm in Section 2 . 2 also.

Chapter 3. The Fixed Size Weighted b-matching Problem 36

This conjecture is very likely to be true since there is no essential difference between

these two problems. One can exactly follow the same procedure as in Section 2.2: Apply

Part One of the blossom algorithm on Gj instead of using the cardinality matching

algorithm for the general matching problem, and pay some care to the computation of

the dual variable change parameter 9.

3.2.2 A Transformation Approach

We explore the same idea used in the previous chapter, namely, we want to transform

the fixed size weighted 6-matching problem into a weighted 6-matching problem so that

we can solve it by the blossom algorithm in Section 3.1.

We create a new graph G = (V, E,c) such that

V = V{J{v0}

E = E\J{{vo,vj}:vj € V±)

bo - E i € v k - 2p

b=(bi-.iev)

c = (cij :{i, j}€ E), where

Vi e v
bi={ , and Cij =

6,-

60 i = v0

We create a new problem (P) on (7 as follow:

(P):

Max cTx

subject to:

0
0 , j }e£
otherwise.

Chapter 3. The Fixed Size Weighted b-matching Problem 37

No edges f r o m v to y =

Figure 3.21: The construction of (7

E , j 6 ^ xtj < sk Vi? f c C V s.t. Z i e R k bi = 2 ^ + 1

Note we have partitioned V into V~ \J V^, where V~ = 0 (see Figure 3.21). In fact

(P) is also a weighted /-factor problem.

Theorem 3.2: (P) has a feasible 6-matching iff (P) has one; an optimal 6-matching

on (P) induces an optimal 6-matching of (P); conversely, an optimum solution of (P) can

be extended to an optimum solution of (P).

Proof:

1. Assume x is a feasible matching of (P), and define x as follow:

x = (x^ :{i, j} & E) where

Xij {i, j}e E

bi - Erev xir j = v 0 , i E V^.

Then £t<j x^ = bi, Vi € V, so x is a feasible 6-matching of (P); Conversely, if x is

a feasible 6-matching in (P), then (X | G) is obviously a feasible 6-matching of (P).

Chapter 3. The Fixed Size Weighted b-matching Problem 38

2. Let x be a maximum weighted matching of (P), and define x as above. Then x is

a maximum weighted matching of (P). If not, assume x* is a maximum weighted

matching of (P) such that

cTx' > cTx

but c r x ' = C ^ X ' I G) > c T x , so x is not a maximum weighted matching, a contra

diction!

Conversely if x is a maximum weighted matching of (P), then (x|cr) is a maximum

weighted matching of (P). This is also because of

cTx = c r (x | G) .

Q.E.D.

C o m p l e x i t y : Our transformation doesn't increase complexity significantly since we

have only added one vertex and at most n edges.

Remark : In (P), if we set b = 1 (i.e. 6, = 1 : Vi G V) , we come to a general fixed size

weighted matching problem; when we create the new problem (P), we have b0 = n — 2p.

This transformation is better than the one given the previous chapter if we want to solve

this special case weighted fe-matching problem (P) by Pulleyblank's algorithm, since in

the previous one, we added n — 2p vertices and n(n — 2p) edges.

Chapter 4

Fixed Size (g, /)-Factor Problem

4.1 Preliminaries

Let G = (V(G), E(G)) be a multigraph where for each e G E(G), we let ue denote the

multiplicity of an edge e in G. We may understand G as a simple graph with a capacity

vector u = (ue : e G E(G)).

Let g = (gv : v G V(G)), / = (/„ : v G V(G)) be vectors of nonnegative integers

satisfying

Vv G V(G) : 0 < gv < fv < degG(V),

where dega(v) measures the degree of v in G counting multiplicities. A (g, /)-factor is a

subgraph D of G with

\/v G V(G) : gv < degD{v) < / „ .

This might be called a capacitated /)-factor since an edge can be used at most ue

times.

A 6-matching is a /)-factor with g = 0, and an /-factor is a (g, /)-factor with

f = g.

It is convenient to state the problem in matrix terms. Let G = (V(G), E(G)) have

the adjacency matrix u = For the brevity's sake, we do not allow loops in our

graph. We wish the row and column sums of an adjacency matrix A to correspond to

the degrees of the associated vertices. Then a (g, /)-factor corresponds to a symmetric

integral matrix A with zero entries on the diagonal, ith row and column sum is bounded

39

Chapter 4. Fixed Size (g,f)-Factor Problem 40

by (gi,fi) for i = l , 2 , . . . , n and satisfying 0 < A < u. When g = / , a (g,/)-factor

reduces to an /-factor for which we require the ith row and column sum to be / , for

i = 1,2,.. . , n.

4.2 A n / -Fac to r A l g o r i t h m

A number of algorithms for solving /-factor problems are known. One restriction of the

problem is to take the G to be a simple graph with capacity vector u = 1, in which case

the /,'s are bounded by n — 1 which is a polynomial in n. However in the general case

the / / s are not bounded by a polynomial in n and so this technique will not yield a

polynomial algorithm.

The algorithm introduced in this section is due to Anstee [1] which solves the prob

lem by either finding an /-factor or showing one does not exist and does this in 0(n 3)

operations. This complexity bound is independent of the size of u or the size of /,'s, and

so is strongly polynomial.

4.2.1 Ne twork F low Formula t ion

Our search for an /-factor is split into two parts.

First, network flows is employed to find an integral matrix A with i th row and column

sums /,• for i = 1,2,... , n, and satisfying 0 < A < u. We call such a matrix a directed

/-factor. If no directed /-factor exists, then clearly no /-factor exists.

Second, we are left only with the problem of making A symmetric since our network

flows will, because of the lack of loops, automatically give zero entries on the diagonal.

We compute an half integral symmetric matrix

x = (A + AT)/2

where AT is the transpose of A. Then we eliminate the halves by an alternating walk

Chapter 4. Fixed Size (g, /)-Factor Problem 41

algorithm (see Section 4.2.3). If the alternating walk algorithm can not delete all these

halves, then we will prove that no /-factor exists by displaying an /-barrier (see Section

4.2.4).

A directed /-factor correspond to an integral flow in the following network. There is

a source s, a sink t, and nodes i ? l 5 R2,..., Rn, Si, S2, • • •, Sn- There are directed edges

from s to Ri and 5, to t both with capacity / , for i = 1,2, . . . , n . There are directed

edges from Ri to Sj with capacity Uij for i,j = 1,2,..., n. Assuming there is an integral

maximal flow of size /j + f2 + . . . 4- / n) form a matrix A = (a,j) from the flow by letting

a,j be the flow from Ri to Sj. We deduce that A has i th row and column sum fi and

satisfies 0 < A < u and thus is a directed /-factor.

Note that our network has \V\ = 2n-f-2 vertices, so a directed /-factor can be obtained

in O d ^ l 3) = 0(n 3) operations or OdVH-EI/oglVl) if you wish to take advantage of the

sparsity of G and hence of our network.

4.2.2 Symmet r i z ing a Di rec ted / -Fac to r

Let A be a directed f-factor, and form a matrix

x = (A + AT)/2.

Now x is symmetric, has the the desired row and column sums and satisfies 0 < x < u.

Unfortunately, it need not be integral, merely half integral off the diagonal and zero

entries on the diagonal. We find that the remaining problem of removing the halves is

bounded in that it does not involve the /,'s and only some of the edges of G. One may

view the directed /-factor as the bulk of the solution.

These are two phases in making A into an /-factor. Define a graph H on the vertices

of G with edge {i,j} in H whenever x^ is not integral. Thus we can add or subtract 1/2

from these entries and keep 0 < x < u. Since the row sums of x are integral, we deduce

Chapter 4. Fixed Size (g, f)-Factor Problem 42

Figure 4.22: Two cycles in H joined by an alternating walk in G

that the degrees of H are even, and so H can be decomposed into closed trails. If H has

an even length closed trail, then alternately adding and subtracting 1/2 from the entries

of x corresponding to the edges of the closed trail leaves the row and column sums of

x unchanged with 0 < x < u. Thus we wish to remove all the even length closed trails

from H, which can be done by the following simple algorithm. We call it Eliminating

Algorithm One.

E l i m i n a t i n g A l g o r i t h m One: Start with any path and extend it using the fact

that the degrees are even. Eventually some vertex appears twice, yielding a cycle. If the

cycle is even, then eliminate it as described; if the the cycle is odd, remove it from the

graph but save it. Continue this process, starting over with as much of the original path

as was left. If at any point two odd cycles have been found with any vertices in common,

then the edges of the cycles can be decomposed into one or more even length closed trails

which can be eliminated from H. Thus the algorithm terminates with H consisting of

only vertex disjoint odd cycles.

The algorithm takes 0 (| £ |) operations, since each edge of H can be investigated at

most twice.

With H consisting of vertex disjoint odd cycles, we start our second phase which is to

eliminate the odd cycles from H in pairs as in Figure 4.22. The cycle abode and ghi are in

Chapter 4. Fixed Size (g, f)-Factor Problem 43

Figure 4.23: A key example of alternating walk

H, but edges {e, / } , {/,<?} are not (they are edges of G). The numbers next to the edges

are added to the corresponding entries in x. Row and column sums are preserved, and

the operations on the edge {e, /} and {/, g} must be chosen so that after the changes, we

still have 0 < x < u. In performing these changes, the two odd cycles of H are removed

as described. Note we are always left with even number of odd cycles.

Thus we search for walks of edges not in H which always allow us to alternately add

and subtract 1 and join two odd cycles of H.

Let us define these walks precisely. Consider a walk t>ieii>2e2u3.. .en_ivn, where no

edges of H are allowed since then we could terminate sooner. The walk will be called

an al ternat ing walk starting at v\ and ending at vn if we may perform the following

changes to x and still keep 0 < x < u: add 1 to entry ei, subtract 1 from entry e2, add 1

to entry e 3 , . . . , or the same series starting with subtraction. We say that the walk ends

in addition (resp. subtraction) if we are adding to (resp. subtracting from) entry en_!.

We require our alternating walk to be minimal (not necessarily minimum) subject to

these conditions. Thus an edge may be used twice but only if both times we are adding

to it or subtracting from it and the second time it appears with its ends in reverse order.

See Figure 4.23. Our definition ensures that we can eliminate two odd cycles if they are

joined by an alternating walk.

Chapter 4. Fixed Size (g, f)-Factor Problem 44

4.2.3 Algorithm for Finding an Alternating Walk

Let H consist of vertex disjoint odd cycles C\, C2, • •., Ct. We start at any odd cycle of

H, say C i , and try to find an alternating walk from any vertex of C\ to any vertex of

any Ck for k > 1. This takes 0(n2) operations and there are at most ra/3 cycles in H,

so we need only find n/6 such walks. Thus assuming we are successful in finding the

alternating walks, the algorithm will take 0(n 3) operations to remove all the odd cycles

from H and arrive at the desired f-factor.

In the algorithm we form a multigraph G* on the vertices of G with edges in two

classes M , M. Because an alternating walk may use an edge at most twice, we will allow

up to two edges in each class to join the same pair of vertices. The edges in M correspond

to entries for which we may subtract 1 (two edges if we may subtract 2) and edges in

M correspond to entries for which we may add 1 (two edges if we add 2) and yet all the

while keeping 0 < x < u.

We form a directed tree directed out from a base vertex which corresponds to C\.

The tree grows vertex by vertex (Step 5). Using the notation p(v) = w to denote that w

is the precursor of v in the tree, the directed paths in the tree correspond to alternating

walks. The edges of the tree are stored separately from G to keep them from being used

again. A vertex is given a label S (resp. T) if there is an alternating walk from a vertex

of C\ to the given vertex ending in addition (resp. subtraction).

When an edge is added to the tree that creates a cycle it is called a blossom. We

shrink the vertices of the blossoms to a single pseudovertex, and there may be nesting

of blossoms. An outermost blossom or pesudovertex in this inductive structure is called

exposed.

For each blossom, one vertex (possible a pseudovertex) is distinguished as the base

vertex, being the vertex of the blossom closest to the base (root) of the tree. If the base

Chapter 4. Fixed Size (g, f)-Factor Problem 45

of a blossom is not a pseudovertex then it is called a true base, otherwise the true base

is inductively defined as the true base of the base of the blossom.

In the shrinking operation, edges joining vertices on the blossom may be deleted as

redundant. The edges of the blossom are saved. Further multiple edges may arise in the

shrinking process, but for a given pair of vertices only 2 from M and 2 from M could

be used, the others could be deleted if desired. We keep track of the original ends of an

edge as well as its new ends, which is useful in finding the alternating walk in G from a

directed path in the tree. The tree also shrinks but we end up with a tree. We give the

pseudovertices labels S,T, and these labels apply to all vertices of G contained in them.

Throughout the algorithm, we use the term dual to refer to the replacement of xe by

ue — xe, label S by label T, addition by subtraction, M by M, and vice versa.

Algorithm for Finding an Alternating Walk

• Step 1: Shrink the vertices of C\ in G into a single vertex which forms the base of

the tree and gets labels S,T. The vertex is put on the list of unscanned vertices

Y. Form a multigraph G* whose edges are divided into two classes M, M. The

edges of M consist of Min(xe,2) copies of edge e. We ignore the edges of the odd

cycles of H. The edges of M are given by the dual definitions.

• Step 2: If Y is empty, then stop, there is an /-barrier (refer to next section), else,

pick a v E Y where u is automatically a vertex of the tree.

• Step 3: If v has label 5, do Steps 4 and 5.

• Step 4: (searching for blossoms) Search for any edge {v,w} 6 M , where w is in the

tree and has label S. If there is such an edge, it forms a blossom in the tree which

we shrink to a pseudovertex. The pseudovertex is given labels S,T and is added to

Chapter 4. Fixed Size (g, f)-Factor Problem 46

Y. The vertices contained in the pseudovertex are deleted from Y. Return to Step

2. If there is no such edge, continue.

• Step 5: (grow tree). For all vertices w not in the tree, do the following. If there

is an edge {u, w} £ M, then put w in the tree with p(w) = v, and label T. The

chosen edge {v,w} is deleted and w is added to Y. If in addition w 6 Ck for some

k > 1, then stop. There is an alternating walk from a vertex of Cx to a vertex of

Ck.

• Step 6: If v has the label T do the duals of steps 4 and 5.

• Step 7: Consider v to be scanned and delete v from Y. Return to Step 2.

The algorithm will certainly terminate. The assertions made in Steps 2 and 5 are

verified by the following lemmas (for the proofs refer to Anstee [1]).

Lemma 4.1: Consider a pseudovertex u with true base b. Then there is an alternating

walk in the original G* from b to any vertex of G (not in Cx) of the pseudovertex ending

in addition and another ending in subtraction. Both these walks start with addition

(resp. subtraction) if the label of p(b) is S (resp. T). If there is no p(u), then we do not

care how the walks start since b will corrspond to C\.

Lemma 4.2: If a vertex v of G has a label S, then there is an alternating walk from

a vertex of C\ to v ending in addition. The dual also holds.

Lemma 4.3: If a vertex v is reachable from a vertex of C\ by an alternating walk

ending in addition then v will have the label S if the algorithm terminates at Step 2.

The dual also holds.

Chapter 4. Fixed Size (g, f)-Factor Problem 47

4.2.4 /-Barrier

We will only characterize the structure of our /-barrier; for the rigorous proof one should

see Anstee [1].

Suppose at any stage we can not find an alternating walk, then we can find an / -

barrier as follows. Define a vertex y as reachable from a vertex x if there is an alternating

walk from x to y. A vertex is considered to reachable from itself by an alternating walk

of no edges which can be considered to end in either in addition or subtraction.

Assume we were unable to elnminate C\. Define a partition of the vertices of G into

sets S, T, U as follow. Let S be the vertices reachable from vertices in C\ only by

alternating walks ending in addition, and let T be the vertices reachable from vertices in

C\ only by alternating walks ending in subtraction. The remaining vertices U decompose

into two sets W, L where W is the set of vertices each one of which is reachable from

a vertex of Cx by an alternating walk ending in addition and from a vertex of Ci by an

alternating walk ending in subtraction. The set L consists of the vertices not reachable

from a vertex of C\ and so includes the vertices of C 2 , C3 , . . . , Ct.

We define an edge {i,j} to be empty (resp. full) if = 0 (resp. u,j — = 0).

Then each edge joining a vertex of S to a vertex of S\J L is empty. Each edge joining a

vertex of T to a vertex of T\J L is full. There are no edges in G joining vertices of L to

vertices of W. In the subgraph of G induced by the vertices of W, there are components

Ui, U2, •. •, Ui. Let Ci C Ui, then every edge joining Ui to S (resp. T) will be empty

(resp. full). The same will be true for each Uk (k > 1) with one exceptional edge for

each Uk as follows. Either there is an edge {i,j} with i G Uk, j G S, and x^ = 1 or

there is an edge {i,j} with i G Uk,j G T, and x,j = 14. A l l these properties plus some

network results and computations constitute the proof that no /-factor exists. One can

consult Anstee [1] for the details. Therefore, our partition of the vertices of G: S, T, L,

Chapter 4. Fixed Size (g, f)-Factor Problem 48

Ui, U21 • • •, Ui is called an / -barr ier .

4.3 F i x e d Size (y , /) -Factor

Necessary and sufficient condition on the existence of a (g, /)-factor are given by Lovasz

[7]. An 0(n3) algorithm for finding a (#,/)-factor on a multigraph is due to Anstee [3].

This section is mainly my work; I am going to explore the same idea used in the /-factor

problem to find a fixed size (g, /)-factor or displaying a fixed size (g, /)-barrier and do

this in 0(n 3) operations.

4.3.1 Ne twork F l o w Formula t ion

Form a network with a source s 0, a sink t, and nodes s, Ri, ..., Rn, Si, S2,..., Sn.

There is a directed edge from So to 5 with upper bound = lower bound = 2p. There

are directed edges from s to Ri, and Si to t both with upper bound /,• and lower bound

<7, for i = 1,2,3, . . . , n. There are directed edges from Ri to Sj with capacity u,j for

i,j = 1,2,... ,n . (see Figure 4.24). Assume there is a feasible flow of size 2p. Form a

matrix A = (a,ij) from the flow by letting a t J be the flow from Ri to Sj. We deduce that

A has ith. row and column sum between 5, and / ; and satisfying 0 < A < u. We call A

a directed size 2p (g, /)-factor. If no directed size 2p (#,/)-factor exists, then clearly no

size p (g, /)-factor exists.

4.3.2 Symmet r i z ing a Di rec ted Size 2p (g, /) -Factor : Phase One

Symmetrization is much more involved than that in the /-factor problem, since we will

have to preserve the fixed size 2p on the network (i.e., size p on graph G).

Let A be a directed size 2p (g, /)-factor. Form a matrix

x = (A + AT)/2

Chapter 4. Fixed Size (g, f)-Factor Problem 49

Figure 4.24: Network For Size p (g, /)-Factor Problem

so that x is symmetric and half integral. We can view a; as a fractional subgraph of G,

with 0 < x < u, and gi < degx(i) < /,• for i = 1,2, ...,n. We still define H as the

subgraph of G whose edges are half integral. This time the row sums of x need not be

integral, so some vertices of H may have odd degrees. We need some definitions before

going further.

Less Than Upper Bound (LTUB) vertex: A vertex v G V is called an L T U B if

gv = degx(v) < fv.

Greater Than Lower Bound (GTLB) vertex: A vertex v G V is called a G T L B if

gv < degx(v) = / „ .

Strictly in Between (SB) vertex: A vertex v G V is called a SB if gv < degx(v) < fv.

Note V can only have even number of odd degree vertices, and these vertices are all

SB's. We can decompose H into

1. Even length closed trails.

2. Vertex disjoint odd cycles.

3. Even length paths between two odd degree vertices.

Chapter 4. Fixed Size (g, f)-Factor Problem 50

Figure 4.25: A pair of odd length paths

LTUB

Figure 4.26: A pair of odd degree cycles

4. Odd length paths between two odd degree vertices.

For 1. and 3. we can eliminate them by alternately adding 1/2 and subtracting 1/2 on

these edges and we still have a directed size 2p (g, /)-factor. For 4. we can eliminate any

pair of such odd length paths by the similiar change (see Figure 4.25).

Note vi, v2, v3, t>4 all have odd degrees in H, so they are all SB's so that we can on one

path start with addition and on another start with subtraction. Let us call this kind of

change a double change. After enough double changes we are left with only one such

odd length path or none. For 2. we can also eliminate a pair of odd cycles by a similiar

double change if there is an L T U B on one cycle and a G T L B on another. Here a SB can

be used either as an L T U B or a G T L B . (see Figure 4.26)

We need an algorithm to accomplish the above eliminations.

Eliminating Algorithm Two:

Chapter 4. Fixed Size (g, f)-Factor Problem 51

• Step 1: If H has odd degree vertices go to Step 2, else, go to Step 4.

• Step 2: Start with any path starting with an odd degree vertex and extend it if

possible. When some vertex appears twice, a cycle is found. If the cycle is even,

then eliminate it as described; if it is odd remove it from the graph but save it.

Continue this process, starting over with as much of original path as was left. If

at any point, two odd cycles have been found with any vertices in common, then

the edges of the cycles can be decomposed into one or more even length closed

trails which can be eliminated from H. When we are stuck we must end with an

odd degree vertex. If this is same as the initial vertex we get a cycle which can

be handled as above, otherwise we are left with a path between two odd degree

vertices, then go to Step 3.

• Step 3: If the path between two odd degree vertices has even length, eliminate it

as described. If odd length, remove it, but save it. Whenever we have two such

paths, we eliminate them as a pair by the double change, go to Step 1.

• Step 4: A l l vertices have even degree now. Run the Eliminating Algorithm One

given in the Section 4.2.2.

The above algorithm also takes O d ^ l) operations which is the same as the Eliminating

Algorithm One. When the above algorithm stops we are left with either an even number

of vertex disjoint odd cycles or one odd length path plus an odd number of vertex disjoint

odd cycles.

4.3.3 Symmet r i z ing a Di rec ted Size 2p (g, /) -Factor : Phase T w o

An odd length path can be regarded as an odd cycle by pasting both end vertices into

one, we call the resulting cycle a pesudocycle. Later on, one will see that an odd length

Chapter 4. Fixed Size (g, f)-Factor Problem 52

pesudocycle

<
\

Figure 4.27: Type 1 example

path plays the same role as an odd cycle: When it appears in Type 1, it can be eliminated

with another odd cycle as in Figure 4.27. In Type 2, it can be used as a cycle joined to

either a L T U B or a G T L B by an alternating walk of zero length ending in either addition

or subtraction; this is because the both end vertices of an odd length path are SB's, and

thus the pasted vertex in a pesudocycle is a SB. It is obvious that a pesudocycle can

never occur in Type 3. Thus we can simply assume when Eliminating Algorithm Two

stops we are left with only vertex disjoint odd cycles C i , C 2 , . . . C ĵt- In order to keep the

same size we can only eliminate these cycles in pairs if possible.

Before going further let's check the vertices of these cycles. Whenever we find a L T U B

on one cycle, and a G T L B on another, we can eliminate them as in Figure 4.26 by a

double change. Here a SB can still be used as either an L T U B or a G T L B . To eliminate

more cycles we have to employ alternating walks again, we first examine how we can

eliminate these cycles.

• Type 1: Two cycles are joined by an alternating walk, we can perform the following

changes as illustrated in Figure 4.27.

• Type 2: One cycle is joined to an L T U B by an alternating walk ending in addition

Chapter 4. Fixed Size (g, f)-Factor Problem 53

v: GTLB

Figure 4.28: Type 2 example

-1 -1 +1

Figure 4.29: Type 3 example

and another cycle is joined to a G T L B by an alternating walk ending in subtraction,

then these two cycles can be eliminated (see Figure 4.28). Note a SB could be used

as either an L T U B or a G T L B , u could be on C\ and v also could be on C2-

o Type 3: Each of the cycles is joined to an L T U B (resp. G T L B) by an alternating

walk ending in addition (resp. subtraction) and an odd length alternating walk

between two G T L B ' s (resp. LTUB's) or SB's or a G T L B (resp. LTUB) and a SB

(see Figure 4.29).

Note: Changes on C\ and C 2 totally increase size by 1 and changes on the walk P decrease

Chapter 4. Fixed Size (g, f)-Factor Problem 54

size by 1 (We are actually considering the edge size on G; the size should doubled if on

the network). Now we give the the following algorithm to deal with these cycles of Types

1, 2, and 3.

E l i m i n a t i n g A l g o r i t h m Three (E . A . T .) :

• Step 1: Apply the alternating algorithm on each cycle. If at any stage, a cycle is

joined by an alternating walk to another cycle, then eliminate them as in Type 1.

• Step 2: For each i, grow tree T, with C, as base. Whenever we encounter Type 2

with an L T U B (or a SB) on one tree and a G T L B (or a SB) on the other, then the

two cycles can be eliminated as in Type 2.

• Step 3: If two T,'s each have at least one L T U B (resp. G T L B) or SB vertex reach

able from base ending in addition (resp. subtraction), then seek an alternating walk

joining two G T L B (resp. LTUB) or SB vertices starting and ending in subtraction

(resp. addition). If we succeed, we can eliminate C\ and C2 as in Type 3.

Remark : We apply the alternating walk algorithm at most n times, so the total

complexity of steps 1, 2, and 3 is still 0 (n 3) .

We will prove in next section if we still have cycles left after using elimination of

Types 1, 2, and 3, then there does not exist a size p (g, /)-factor.

4.3.4 F i x e d Size (g, /) -Ba r r i e r

First we present an alternate method to solve our fixed size (g, /)-factor problem by

transforming it into an /-factor problem. Create a new graph G = (V, E), such that

V = V{J{s}, E = E{J{{s,z}:ieV},

with the multiplicity u defined as:

Vi e V : uai = fi - g{; Ve € E : ue = u e ,

Chapter 4. Fixed Size (g, f)-Factor Problem 55

G

G

Figure 4.30: An transformation from G to G.

and / is denned as:

/ i = / „ V i 6 V ; and7, = £ / « - 2 P -

R e m a r k : Assume each gi of g = (gi : i G V) can only be 0 or /,-. Define V- = {i G V :

gi = 0} and V= = {i E V : gi = / , } , then this transformation is exactly same as the one

in Figure 2.21. Thus this one is in fact a generalization of the one given for fixed size

weighted 6-matching problem.

T h e o r e m 4.4: There is a size p (g, /)-factor on G iff there is an /-factor on G;

an /-factor on G induces a size p /)-factor on G (this transformation also solves the

weighted case fixed size (g, /)-factor problem, see Figure 4.30).

P r o o f : Assume a: is a size p (g, /)-factor of G. Define x as follows:

x = (xij :{i, }}£ E) where

_ J {i, j}e E
Xij — <

/» ~ HrevXir j = s,ieV.

Then xsi < fi - gi Vi e V since £ r 6 y x,> > gt; Y,jevxsj = h = 22 f>: - 2 p . The other

Chapter 4. Fixed Size (g, f)-Factor Problem 56

Figure 4.31: Figure for Theorem 4.6.

vertices of V are clearly all saturated by x, thus x is an /-factor on G Conversely, if x

is an /-factor on G, then it easy to see that x\o is a size p (g, /)-factor.

Secondly, by using this transformation we will deduce a fixed size (g, /)-barrier on G

via an /-barrier on G.

Lemma 4.5: If in (7 there is no alternating walk joining any pair of odd cycles,

then no /-factor exists in G which implies no size p (g, /)-factor in G. An /-barrier in G

induces a fixed size (g, /)-barrier in G.

Theorem 4.6: If Eliminating Algorithm Three fails to eliminate all the odd cycles,

then there does not exist a fixed size (g, /)-factor in G.

P r o o f (see Figure 4.31): Consider an alternating walk w, which must pass through

5 in view of Step 1 of E . A . T . , from C\ to C% in G Without loss of generality, assume

w first reaches s from T\ with subtraction from a vertex p. We deduce by definition of

G and the chosen subgraph that p £ L T U B or SB. Now the reversal of w goes from C2

to C i , and so first reaches s from a vertex q by subtraction with q £ L T U B or SB (if by

addition then q £ G T L B or SB, violating Step 2 of E .A.T .) . But since w is an alternating

Chapter 4. Fixed Size (g, f)-Factor Problem 5 7

walk, there is an alternating walk from s to s starting with addition to a vertex u (which

then is a G T L B or SB) and also ending in addition from a vertex v (which must also be a

G T L B or SB), and so there is an alternating walk joining u and v starting and ending in

subtraction; but now Step 3 of E . A . T . would have been used. So we have a contradiction.

Q .E .D . .

Now we can conclude there does not exist an /-factor on G. If we define 5, T, L,

U\, U2, • • •, U\ for G as in the previous section, our new vertex s will be in L for the first

two cases, and in T for last two cases. When we restrict this partition to G, we can call

it a fixed size (g, /) -barr ier .

4.4 Augumen t ing W a l k Theorem

Assume G = (V,E) is a simple graph with capacity vector u = 1. This assumption is

only for brevity's sake; our result actually holds for multigraphs. Let a subgraph M be

a (<7, /)-factor found by any known algorithm. Then an augumenting walk w.r.t. M is

defined as below.

Def in i t ion: A walk P = t>oeiz;ie2U2 • • • v 2 n e 2 n + \ v 2 n + \ is called an augumenting walk

if we can add 1 on e l 5 subtract 1 on e2, add 1 on e 3 , . . . , subtract 1 on e 2 n , add 1 on e 2 n+i
and still get a (g, /)-factor.

Note if P is an augumenting walk, both v0 and V 2 n + \ must be either an L T U B or a

SB (see Figure 4.32). An augumenting walk can help get another (g, /)-factor with size

increased by 1. By proving an augumenting walk theorem, we ensure that a maximum

size (g, /)-factor can always be found. We are going to prove this theorem by developing

a walk growing algorithm. Note this algorithm can also be used to find an augumenting

walk if one exists.

Theorem 4.7: If M is a (g,/)-factor such that no augumenting walks w.r.t. M

Chapter 4. Fixed Size (g, f)-Factor Problem 58

Figure 4.32: An example of augumenting walk

exist, then M is a maximum size (g,/)-factor.

Proof: Suppose M is a maximum size (g, /)-factor, we only need to show \M\ < \M\.

Consider

H = MAM

For any component D of H if we can show \MD\ = \Mf)D\ < \MQ\ = \Mf)D\, then we

can conclude that \M\ < \M\. We show this by the following algorithm.

• Step 1: If H is empty: stop; else: pick any component D of H and go to Step 2.

• Step 2: If for all v,- £ V(D) : degjj(vi) < degM(vi) then replace H by H \ D

(since in this case \MD\ < |M£>|). Else: pick an vertex Vo £ V{D) such that

degjj(vQ) > degM(vQ) and go to Step 3.

• Step 3: Find a vertex vx £ V'(.D), s.t. {vQ,V\} £ M. Vertex vx cannot be an

L T U B or a SB (w.r.t. M) , otherwise an augumenting walk is found; so there must

be a vertex v2 £ V(D), s.t. {vi,v2} £ M. We keep visiting edges of M and of

M alternately until we are forced to stop. Finally we obtain an alternating walk

P = v0eiVie2v2e3v3 . . . e2kv2k and go to Step 4.

Chapter 4. Fixed Size (g, f)-Factor Problem 59

Figure 4.33: An example showing terminal vertex

Note: P must be of even length and none of Ui, i > 3 , v 2 k - \ could be either an L T U B or a

SB, otherwise an augumenting walk will be found. Moreover we must have degjr(v2k) <

degM(v2k)i otherwise v2k can not be the terminal vertex. In Figure 4.33 v4 is a terminal

vertex where a straight line denotes an edge of \M\ and a zigzag line denotes an edge of

M.

• Step 4: First, do /,• = /,• — 1 for i = 1 to 2k. Second, delete e i , e 3 , e 2 k - i from M

and delete e2, e 4 , . . . , e2k from M. Namely we replace H by H \ P. Go to Step 1.

Decreasing /,'s by 1 except /o makes each M-matched vertex have the same deficiency

as before deleting P from H. Since edges of H decrease montonically, our algorithm only

takes 0(n3) operations. When the algorithm stops we can deduce \M\ < \M\ because

each time we delete P from H we are deleting edges of M and of M in pairs. Q . E . D .

R e m a r k 1: We can define a decreasing walk similarly (see Figure 4.34). A decreasing

walk can help get another (g,/)-factor with, size decreased by 1. A theorem can also be

proved that if M is a (<?, /)-factor without any decreasing walks, then M is a minimum

size (g, /)-factor.

R e m a r k 2: The size of all feasible (<?, /)-factors forms an interval, i.e., a (g, /)-factor

Chapter 4. Fixed Size (g, f)-Factor Problem 60

\

Figure 4.34: An example of decreasing walk

of any integral size between a and b exists where a is the size of a maximum size (g,f)-

factor and b is the size of a minimum size (g, /)-factor. If we want a (g, /)-factor of some

fixed size p, we could start with any feasible (g, /)-factor M and apply the augumenting

(or decreasing) walk algorithm to achieve this size; if we fail we know that no (g, /)-factor

of size p exists.

Note that we could use this result and binary search on size using the fixed size

(<?, /)-factor algorithm as an alternative approach to determine the interval is a specific

instance. This approach would often be more efficient.

Bibliography

R.P. Anstee, A n algorithmic proof of Tutte's /-factor theorem, J . Algorithms

6(1985)112-131

R.P. Anstee, A polynomial algorithm for b-matchings: An alternative approach,

Information Processing Letters 24(1987) 153-157,North-Holland.

R.P. Anstee, Simplified existence theorems for (g, /)-factors, Discrete Applied

Mathematics 27(1990)29-38, North-Holland.

J .A. Bondy and U.S.R. Murty, Graph Theory With Applications, Elsevier, New

York, 1976.

J . Edmonds and E .L . Johnson, Matching: A well solved class of integer programs,

Summary in: Combinatorial Structures and Their Applications (Gordon & Breach,

New York, 1970)89-92.

E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &

Winston, New York, 1976,

L. Lovasz, Subgraphs with prescribed valencies, J . Combin. Theory 8(1970)391-416.

W.R. Pulleyblank, Faces of matching polyhedra, Ph.D. thesis, Dept. of Combina

torics and Optimization, Univ. of Waterloo, 1973.

Christos H. Papadimitriou, Kennneth Steiglitz, Combinatorial Optimization: Al

gorithms and Complexity. Prentice-Hall Inc, Englewood Cliffs, N J 07632, 1984.

61

Bibliography 62

[10] R .L . Urquhart, Degree constrained subgraphs of linear graphs, Ph.D. Thesis, The

Univ. of Michigan,1967.

