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Abstract

Superprocesses are measure valued diffusions that arise as high density limits of particle systems un-
dergoing spatial motion and critical branching.The most closely studied superprocess is super Brownian
motion where the underlying spatial motion is Brownian. In chapter 1 we describe the appfoximating
particle systems, the nonstandard model for a superprocess and some known path properties of super
Brownian motion.

Super Brownian motion is effectively determined by its closed support. In chapter 2 we use the
approximating particle systems to derive new path properties for the support process. We find the
growth rate of the support for the process started at a point mass. We give a representation for the
measure at a fixed time in terms of its support. We show that the support at a fixed time is nearly a
totally disconnected set. Finally we calculate the Hausdorff dimension of the range of the process over
random time sets.

A superprocess can be characterised as the solution to a martingale problem and in chapter 3 we
use this characterisation.to study the properties of general superprocesses. We investigate when the
real valued process given by the measure of a half space under a super symmetric stable process is
a semimartingale, We give a description of the behaviour of a general superprocess and its support
near extinction. Finally we consider the problem of recovering the spatial motion from a path of the

Superprocess.
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Chapter 1

Construction

1.1 Introduction

Consider a population containing a large number of individuals. Each individual moves through space
and produces offspring during its lifetime. The rules for the spatial motion and the number of offspring of
any individual may depend on its location. To obtain a tractable mathematical model for the behaviour
of such a population we make some assumptions. The future motion of each individual depends only
on its present location. In particular the motion is independeﬂt of the behaviour of the rest of the
population. At the end of its lifetime each individual produces a random (possibly zero) number of
offspring independently of the other individuals. This model could be used to predict the dispersion
of an asexually reproducing species. It also applies to the distribution of a rare gene in a diploid gene .
pool where the chance of two rare genes meeting and hence interacting can be ignored. Because of
the assumption of no interaction between individuals many quantities of interest can be calculated. In
Sawyer [21] the distribution and joint distribution of new individuals is calculated under a variety of
initial distributions.

This thesis studies a continuous limit of such a model in which the mean number of offspring is one.
To capture the positions of the whole population we consider the state as a measure consisting of small
. point masses at the locations of each individual. Then as the population size increases and the. mean
lifetime decreases we obtain a limiting rheasure valued process. The total mass represents the size of the
population and the measure of a set A represents the number of individuals situated inside A.b In some
cases the limit process will have a density which can be thought of as a population density.

In passing to the limit some features of the original model are lost. For convenience we shall take the
lifetimes of the individuals to be of fixed length but the same limiting process is obtained if the lifetimes
are exponentially distributed. The exact distribution of the number of offspring is lost and only the
variance Is preserved, so we shall take critical binary branching where the number of offspring is 0 or 2

each with probability 1/2.



This thesis investigates the limiting measure valued process as a mathematical object and many of
the theorems describe properties that are of purely mathematical interest. However the estimates needed
to prove these properties might be interpreted to give information about the dispersion of a population.
For example in section 2.3 we show that the support of the limiting process where the spatial motion is
Brownian is nearly a totally disconnected set. To prove this we break the measure into groups of closely
related individuals and estimate the fraction of the poulation that occurs in groups that are isolated

from the remaining population.

1.2 Watanabe’s Theorem

We first give an informal description for a construction of a branching superprocess. We will describe a
particle system called a binary branching Feller process which will depend on a parameter u . The idea
is that as we let u increase to infinity the particle system will converge in law to a superprocesls.

Fix a large integer p. At time zero we position O(u) particles in space. On the time interval [0,1/p)
these particles move independently according to the law of a fixed Feller process. At time 1/u , for each
particle independently we toss a fair coin. If the céin lanas tails the particle dies and‘ vanishes. If the
coin land heads the particle splits into two. On the interval [1/p,2/p) the particles that are still alive
move indepehdenﬁly according to the Feller process. At time 2/u these particles again independently
die or split into two. We continue this process for all time. Figure 1.2 shows the evolution for three
generations (where we have drawn the particle motion as continuous paths for convenience).

One way to keep track of all the particles is to attach mass 1/u to each particle and consider the state
at any fixed time as a measure. This measure will be a finite sum of point masses of size 1/p. As the
branches grow so the measure evolves in time. It is this measure valued process that will approximate
a superprocess.

We wish to let 4 — oo . Notice that the parameter u has several roles. There are O(y) initial
particles. The mass of each particle is 1/p so that taking u large and choosing the initial positions
carefully we can let the measure at time zero approximate any finite measure. However 1/u is also the
time between each branching generation. We now investigate the approximating particle systems and in
doing so we shall see that a branching rate of 1/u should lead to a nontrivial limit.

The number of particles descended from any one fixed particle is a Galton Watson process. We recall

some results from branching processes (see Harris [11] p21-22.) Let (X (n,i) : i,n € N) be L1.D. random
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Figure 1.1: Binary Branching Feller Process.
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variables on some probability space (2, F, P) taking values 0 or 2 each with probability 1/2 . Let Z5 = 0
and Z, = 327" X(n,i). Then

Jim nP(Z,>0) = 2 (1.1)
"lingo P(Zn > nz|Z, >0) = exp(—2z) for all z > 0. (1.2)

We use these results to analyse the measure at a fixed time ¢t > 0. Look back in time a short distance
a > 0. Let I({,a) be a list of those particles at time ¢ — a that have descendants alive at time t. We
consider only those branches between times ¢ — a and ¢ that end with a living particle at time ¢ ( see
figure 1.2 ).

We see that the mass at time t comes in ’clusters’ rooted at points in I (t,a). Each particle at time
t — a has an equal and independent chance of having descendants alive at time t. So the number of

clusters is a Binomial random variable with parameters (n, p) where

n = # of particles at time (f — a) = p X mass at time (¢ — a)

p = Prob (one particle having descendants time a later) = P(Z,;, > 0)
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Figure 1.2: Decomposing the measure into clusters.

Now equation (1.1) shows that for large p, conditional on the mass at time ¢ — a
D . .
# of clusters &~ Poisson with mean equal to (2/a)x mass at (I — a) .

The masses of particles in each cluster are independent random variables and equation (1.2) shows that
for large p

. . D . .
mass of particles in a cluster & Exponential with mean equal to (a/2):

Note that if the spatial motion is homogeneous then the exact shape of each cluster about its root is
identically distributed.

Thus the measure at time t is the superposition of an approximately Poisson number of clusters
whose masses are independent and approximately exponentially distributed and which are rooted at
points uniformly chosen according to the measure at time ¢t — a. This description becomes more and
more accurate as g — 0o and is the basis for many properties of superprocesses.

As the parameter g — o0, if we pick the positions of the initial particles so that the initial measures
converge, we hope that the approximating particle systems will converge in law to a finite measure valued
process. That this is so and the exact way in which the spatial motion meshes with the branching is the
content of Watanabe’s Theorem. In the remainder of this section we will develop the notation to state
this Theorem.This is essentially taken from Dawson,Iscoe and Perkins [5] section 2. We will descibe a
labelling system ( first used by Walsh [24] ) which will allow us to point to any branch on a binary

branching Feller process. This labelling system is used extensively throughout this thesis.



Notation.

E = locally compact separable metric space.
€ = Borel g-algebra on E.

b€ = bounded Borel measurable functions f : £ — R.

C; = continuous functions f : E — R with limits at infinity.

Cy = continuous functions f : E — R vanishing at infinity.

M(E) = all measures on (E,£).

Mp(E) = finite measures on (E,£).
M(E) = p‘robability measures on (E,£).

MEB) = ((/w)TiL, 8. : 2 € E, K € No).
m(f) = [z f(z)dm(z) for all m € Mp(E), f € b€.
fH@) = f2)AO.
Ern = FU{A} where A is added as a discrete point.
N = {1,2,...}

NO' = {0,1,}
For any metric space M we write D(M) for the space of right continuous paths with left limits

mapping [0,00) — M with the Skorohod topology and C(M) for the space of continuous paths with the
topology of uniform convergence on compacts. We give Mp(E), M1(E) the topology of weak convergence
(which is metrizable);

Throughout thxs thesis C will denote a constant whose exact value is unimportant and may change
from line to line. Distinguished constants will be denoted ¢;,¢s, ...

There are two underlying sources of randomness for a branching superprocess, a spatial motion and
a branching mechanism. As in the above description we shall take the spatial motion to be a Feller
process and the branching mechanism to be critical binary branching. This will be sufficient for all the
results of this thesis. We shall briefly describe more general branching superprocesses at the end of this
section. v

Let ((Y; : t > 0),(Py : y € E)) be a Feller process with state space E defined on some probability

space (2, Fo). Thus (PY : y € E) is a strong Markov family and its associated semigroup satisfies
Ty : Co(E) — Co(E) for all £ > 0

ITof = f| — 0 as t — 0 for all f € Co(E).



Define A : D(A) C Ci(E) — Co(E) by

Af(z) = lm(Tif(z) - S/t
D(A) = (feC(E): 'li_r:r(l)(T,f(z) — f(z))/t exists uniformly in z)

It follows that D(A) is dense in C;(E). We may extend the Feller process to E5 by setting PA(Y; =
A, Vt>0)=1. '

Let e be a coin tossing random variable defined on (€, F1, P,) taking the values 0 and 2 each with
probability one half.

Let I = UneN(NO x {0,1}"). The elements of I will label the branches of the branching Feller process.
If B = (Bo,Br,--.,0;) € I we write |B| = j for the length of the label 8 . If # is of length 7 then it will
label a branch upto time (j + 1)/p . Write 8 ~ t if |8|/u < t < (J8] + 1)/u so that B labels a branch
upto the first branching time after t. Let 8| = (Bo, ..., 8:) for i < j .Call B a descendant of ¥ and write
B > v if ¥y = Bl for some i < |B]. Let ¢(8,7) = |B| — inf(j : B]; # 7|;) be the number of generations
back that f§ split from +.

Let Q; = (D(Ea) x {0,1})!,F, = product o-field . Writing w € Q3 as w = (Y*,e%)q¢s We define
Gn=0((Y*, €% :|a] < n).‘ Fix 4 € N and (zi);cN € EI‘;I. We wish to find a probability P on (Q5, 7,)
which satisfies for any measurable A* C D(EA),B* C {0,1} and alln > 0

P(w: (Y% e%)a=0 € ][] A% x B%)

Il 7~ (YA(I/u) € A%). [[ Pi(ee B*)  (13)

] lal=0 lal=0 lal=0
P(w: (y e )|a|_n € [T 4° x B1Ga)(w) =TI P*°(Vacmsrym) € AIY Ay = Y in 7y (@)
laj=0 lej=0
x [ Pi(e € B®) (1.4)
la]=n

By an adaption of the Kolmogorov extension Theorem there exists a unique probability measure P =

P{F)4# satisfying (1.3) and (1.4). It follows that
P(Y® € A) = Fy™° (Y.a(lal+1)/u € A)

so that each Y has the law of the Feller process upto time (Ja| + 1)/u when it is frozen. Also from
(1.3),(14) (e*: a € I) are L1.D. copies of e and are independent of (Y : @ € I). The e* will indicate
whether the particles split or die at the branching generations and this will be independent of the spatial
motion. Finally from (1.3),(1.4) the random variables (Y,* : |a| = n) are conditionally independent given

G, indicating that the particles move independently between branching times.



Let

QO = ENxQ,
F = product o-field.
P('r")""‘ = 6(1.'.)_. X P"EZ‘-').',IJ

Then for w = ((z;)i, (Y, e%)aer) particles will start at those z; that are not equal to A. Define the

death times for the branches as

0 ifag=A
7% =4 min((i + 1)/p : €®i = 0)  if this set is nonempty
(le| + 1)/ otherwise

To each branch « € I we associate a corresponding particle which moves along the branch until the

death time. So the position of the particle on the branch « is given by

Y® fort<t®
NP =
A fort > r°

Define a filtration where if j/p <t < (7 + 1)/1
f=o(Yo et lal <)V [ o(YP : 1Bl =j,s <)
u>t
Also let A# = V,?0 A For By,...,Bn € I define the information in the branches £, ..., 3, by
Ap,,. . p.=0(YPi efiii=1,...n).

Now we attach mass 1/u to each particle and define a measure valued process N* : [0,00) —+ Mp(E) by

NE(A4) -

(1/p) x #(N8 e A ey t)
(1/p) Y 1N € A).

art

For f € b€ we write

NE(f) = /E f(2)dNEE) = (1/m) T SN

an~t
where we shall always take f(A) = 0. Then N* € A, for all t and N* € D(MFp(E)) almost surely.
We shall sometimes need the total mass descended from one branch. Define

N(B)y=(1/n) Y INZ#A).

an~t,a>f3



Ifm, = (1/n) Efil bz, € ME(E) then we extend (z;)i<k to (i), N by setting z; = A for i > K.
We write P™# for P(¢9)#, This ignores the order of the (xi)s but note that the order does not affect
the measure on o(N{ : t > 0) in which we are mainly interested.

We shall need a strong Markov property . Let T# = (j/p :j =1,2,...). In Perkins [16] Proposition
2.3. some shift operators are defined and a strong Markov property is proved for stopping times taking
values in T#. (The construction in Perkins [16] for super stable processes is slightly different but the

proposition applies here.)
Theorem 1.1 (Watanabe [25].) Suppose m, € ML(E) — m € Mp(E) weakly as p — oo. Then
P™(N* €)= Q™(:) on D(Mp(E)) as p — 0. (1.5)

The law Q™ 1s supported on the subset of continuous paths. Writing Q™ again for the resiriction to
C(MFp(E)), X for the coordinate process and F{X for the canonical completed right continuous filtration

then Q™ satisfies the following martingale problem

Xo=m
(M) § X(f) = m(f) + 5 Xo(Af)ds + Zi(f) for all f € D(A) (1),
Z4(f) is a continuous FX martingale s.t. (Z(f)): = f(: X, (f*)ds

The family (Q™ : m € Mp(E)) is a strong Markov family.

We reserve the symbol Q™ for the law of the branching super Feller process on path space starting at
m.

In Watanabe [25] the convergence of the finite dimensional distributions is proved as well as the
continuity of the suberprocess under some conditions on the semigroup 7;. Also the Laplace functional
of the superprocess is identified as follows. For fixed f € D(A) let u, be the unique strong solution of
the evolution equation

{ dug/dt = Auy — u?/2
uo = f
Then :
E™(exp(—X(f))) = exp(— /u,dm). (1.7)
For convergence as distributions on D(M) and for the continuity of the paths of the superprocess in

general see Roelly-Coppoletta [19] where it is shown that the law of a Markov process has Laplace

* functional given by (1.7) if and only if it satisfies the martingale problem (M).



From the construction we see that a superprocess inherits from the approximating particle systems
the following ’branching’ property. If m;,ms € Mp(E) and X}, X? are independent superprocesses
started at m;, m, then the process X} + X? has law Qm1t™3,

One can build branching superprocesses with more general branching mechanisms. If the number
of offspring has mean zero and a finite variance o(z) that depends continuously on the position of the
parent £ € E then the convergence in Theorem 1.1 still holds and only the variance o of the offspring
distribution enters into the limiting process. Fitzsimmons [10] considers infinite variance branching that
depends measurably on position and also spatial motion given by a Borel right process. The correct,
Laplace functional is formally identified and a measure valued Borel right process that has this Laplace

functional is constructed.

1.3 The nonstandard model

Why use nonstandard analysis to study a superprocess 7 In taking the limit in Watanabe’s Theorem we
have lost the particle picture. The limiting process takes values in the space of measures. It no longer
makes sense to talk of particles dying or having descendants. To do calculations using the intuition of
the particle picture we must work with the approximating systems and use weak convergence arguments
to obtain results about the superprocess. The idea is to work in the nonstandard univebrse and to
construct a binary branching Feller process exactly as described in section 1.1 but with an infinite
branching rate u This will give a process taking values in the nonstandard measures. Theorem 1.2 will
show that we can derive from this nonstandard process a standard measure valued process in a very
simple manner and that this standard process has the law of a superprocess. Now we can argue using
particle caiculations on the nonstandard model and transfer results to the superprocess . Many of the
limiting arguments seem to be built into the model. Thus nonstandard analysis provides a tool to
handle weak convergence arguments efficiently. The nonstandard model was introduced by Perkins and
used successfully in Perkins {16],[17],{18] and Dawson, Iscoe and Perkins [5]. We now give an informal
description of some definitions and results from nonstandard analysis that we hope motivate Theorem
1.2. Cutland [3] gives an introduction to nonstandard analysis for probabilists which is sufficient for our
needs.

We start with a superstructure V(S) . S will be large enough to contain the basic spaces for éon-

structing the binary branching processes i.e. it will contain the reals ,the metric space E, various measure



spaces (g, Fg) e.t.c. V(5) is the superstructure obtained by repeated use of the power set operation and
is large enough to do any calculations with the binary branching processes . The nonstandard model} will
live in an extended superstructure V(*S). We assume the existence of an embedding * : V(S) — V(*S).
Every object in V(S) has an image under * and the embedding satisfies three properties.

i. *R is a proper extension of R This will imply the existence of infinitesimal elements of *R. We
will write elements of "R as underscored characters g,1, ... We identify the image of real numbers r € R
with their images *r .

ii. The transfer principle. This allows us to transfer true statements about objects in V(S) to true
statements about their images under the embedding. It will imply, for instance, that *R is an ordered
field. A € V(*S) is called internal if A € *B for some B € V(S). These are precisely the sets in V(*S)
that we can describe using the transfer principle. We give one example. Suppose the underlying Feller

- process was a Poisson process of rate one. Then
Py(Yi=2)=¢""t?/2for allt € Ry
The transfer principle now implies that
*Po(*Yy=2)=ett?/2forallt € "Ry

where we have identified the reals 2, e with the nonstandard reals *2, "e.

ili. The saturation principle. This is needed, for instance, in the construction of Loeb measures but
its statement WoJld not be helpful here.

We can consider the construction of the binary branching Feller processes as a map P : E‘I;I x N—
M; () where ((z;)i, #) — P(#i#, Under the embedding we obtain a map *P : ‘(E‘I;I xN) — *M(9). So
if 4 € °N, (2:); € "EY then "P(=)u# is an internal probability on ("R, *A). We also have the embedding

of all the particle structure e.g.
*N,? € *Ea for all “f € *I,1 € ‘R4

To avoid a notational nightmare we drop the * whenever the context makes clear we are talking about

a nonstandard object. For instance we write
Nl €*Epforall f€ It € "Ry

The transfer principle will allow us to do calculations with the nonstandard branching processes as easily

as with their standard equivalents.
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Call r € "R infinite if || > n, Vn € N. Otherwise it is called finite.

Call r € "R infinitesimal if |r| < 1/n, ¥n € N. For every finite r € “R there is a unique r € R such
that r — r is infinitesimal. This unique r is called the standard part of r . We write ¢, ~ roifry —r,is
infinitesimal.

Similarly for any metric space M we call mon(y) = (z € "M : *d(z,y) < 1/n, ¥n € N) the monad
about y € M. If z € mon(y) we call z nearstandard, y the standard part of z and write y = star(z).
Let ns(*M) be the set of nearstandard points in ‘M. When the space we are working with is clear it
is common to write °z for the standard part of z . Indeed for r € *R we shall write r for the standard
part .

Let (X,X,v) be an internal measure space i.e. X is an internal set, X is an internal algebra of
sets ( closed under *-finite unions) and v is a finitely additive inFemal measure on X. ( For example
(CE,"E,Ny) and (*Q,°A,"P™#) are both internal measure spaces.) Define a real valued set function °v
on X by

v(A) = *(v(A)) for all A € X.

Loeb showed that the finitely additive measure °v has a o-additive extension denoted by L(v) on the
o-algebra o(X') generated by A'. Let L(X’) be the completion of 6(X’) under L(v). Then (X, L(X), L(v))
is a standard measure space called a Loeb space.

If E is a complete separable metric space and v € "Mp(E) then there are two ways of obtaining a
standard finite measure; we may take the Loeb measure L(v) or if v is nearstandard we may take its
standard part stp.(g)(v). These are connected by the following result (see Lemma 2 in Anderson and
Rashid [2].)

v € ns("Mp(E)) if and only if L(v)(ns(*E)¢) =0

and in this case

starn ey (V)(A) = L(v)(st5}(A)) for all A € £. (1.8)

Finally we have an elementary nonstandard criterion for convergence in a metric space M . Consider a

sequence a(n) € M as a map a: N — M. We have an extension *a: *N — *M. Then
a(n) — a € M if and only if stpr("a(p)) = a for all p € "N\ N. (1.9)

Now we state the main Theorem of this section. Fix 7 € *N\ N and let u = n! ( this ensure that
QcTH).

1



Notation. We write (*Q,F, P™+) for the Loeb space (*Q, L(*A), L(*P™*)) . Also when m,, is fixed
we shall often write P, E| ‘P, *E for P™s E™s *P™s *E™e respectively.

Theorem 1.2 Let m € Mp(E) and choose m, € "ML(E) so that sty.(p)(mu) = m. Then there
is @ unique (up lo indistinguishability ) continuous Mp valued process X, on (.‘Q,f, P™#) such that
P —a.s.

X:(A) = L(N{)(st™(A)) for allL € ns([0,00)), A € €. (1.10)

Moreover

P™ (X € C) = Q™(C) for all C € B(C(Mr(E))). -

This is nearly immediate from Theorem 1.1 and (1.8),(1.9). For the proof see Dawson,Iscoe and .Perkins‘
[6] Theorem 2.3.

We shall use the nonstandard model for super Brownian motion in R? throughout chapter 2. In this
case there are two very useful results connecting the nonstandard support of the process (N; : £ > 0) to
the support of the process (X, : t > 0). These are proved in Dawson, Iscoe and Perkins [5] Lemmas 4.8,
49.

Lemma 1.3 a. For each nearstandard t € *[0, 00) such thatt > 0 , with probability one
S(X:) = stRa(S(Nf)). (1.11)
b. With ﬁmbalﬁh’ty one, for all nearstandard 5,1 € *[0,00) and y ~ 1

if0<s<tand NJ # A then °N] € S(X,). (1.12)

1.4 Super Brownian motion

Super Brownian motion is the most intensively studied superprocess. We give a summary of those path
properties that will be used in this thesis. We assume that the process is started at a finite measure.
In dimension one the measure X, has a density X (t,z) which is continuous in (0,00) x R. We shall
not consider this case until section 3.1 and delay a careful statement of this result until Theorem 3.1 .
In dimension d > 2 the measures X, are singular with respect to Lebesgue measure for all ¢ > 0. Thus
even if the process starts with a smooth density it instantly becomes singular. This result is proved in
Dawson and Hochberg [4] for a fixed time and is extended for all times in Perkins [18] in a remarkable

way which describes the exact nature of the measure X;. We explain this result now.
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For any continuous onto increasing function ¢ : [0,00) — [0,00) define a function on the subsets of

R? by

oo
¢m(4) = lim  inf Zd)(dxam(D.-)) (1.13)
diam(D;)< 6 =1

where the supremum is taken over all countable covers of A C R? using sets of diameter less than 6.
Then ¢m(-) is a Borel measure called Hausdorfl ¢-measure. If ¢(la:) = z¢ then ¢m(.) is a;, multiple of
d-dimensional Lebesgue measure. In general however, ¢m(-) is not a o-finite measure. If ¢(z)/z¢ — o
as z — 0 it gives a way of distinguishing between d-dimensional Lebesgue null sets. If ¢(z) = z" then
¢m(-) is called Hausdorff r-measure and will give positive measure to smoothly embedded subsets of R"

e.g. for a smooth curve C 'm(C) = length(C) ). Define for Borel A € R4
g
dim(A) = inf(r > 0 : £"m(A) < o0)

Then dim(A) , the Hausdorfl dimension of A, takes values in [0,d] . Note that for A of dimension r we

have
0 fs>r

#m(A)={ e[,00] ifs=r
o) fs<r

Notation. For any Borel measure m we write S(m) for the closed support of m.

Theorem 1.4 (Perkins [18]) Let ¢(z) = z?log*log*(1/z). Let X; be super Brownian motion staried
atm € Mp(Rd) in dimension d > 3. Then there exist constants 0 < ¢; < ¢z < 0o depending only on d

such that with probability one
c1dm(ANS(Xy)) < Xi(A) < ca¢m(ANS(X:)) Yt >0, V Borel A (1.14)

So, upto a density bounded inside [cl;c2], the measure X; is a deterministic measure spread over a
random closed set S(X;). This implies immediately that S(X;) has Hausdorff dimension 2 and hence is
Lebesgue null for all ¢ > 0. In dimension 2 there is a less precise result which still implies singularity.

Theorem 1.4 allows us to concentrate on the support process (S(X;) : ¢ > 0) of super Brownian
motion. The following two Theorems (proved in Dawson, Iscoe and Perkins [5] Theorems 1.1,4.5 ) show
that the support moves with finite speed and gives a modulus of continuity for that speed.

Notation. For closed A C R? and € > 0, let A® = (z : d(z, A) < ¢).

Theorem 1.5 Let h(t) = y/t(log(t—1) Vv 1).
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a. For Q™ — a.aw and each ¢ > 2 , 3 6b(w,c) such that if 0 < t — s < § then
S(X:) C S(X,)ht-9). |

b. For eacht >0, for Q™ — a.aw and each ¢ > V2, 36(w,c) such that if 0 < s < & then S(X,4,) C
S(X,)eh®,

This Theorem can be derived from a global and local modulus of continuity for the motion of the particles

in the nonstandard model. The key is that we can control the motion of all the particles simultaneously.

Theorem 1.6 Let h(t) = \/t(log(t-1) v 1).
a. For P™+ —a.a.w and each ¢ > 2, 3 8(w,c) such that if 0 <t—s < § for nearstandard 5,1 € *[0, 00),
B~tand Nf # A, then [N — NP| < ch(t - s).
b. For each nearstandard { € *[0,00] , for P™* — a.aw and each ¢ > V2, Bg(w,c) such that if

0<s<8 B~t+s Ny, # A then |Nf,, — N| < ch(t-s).

Theorem 1.5 follows from Theorem 1.6 and equations (1.11),(1.12) on the support of the nonstandard
model.(The local modulus of continuity is not stated in Dawson, Iscoe and Perkins but the proof is

entirely similar and simpler than the global modulus.) From the proofs of these results we also note that
Q(5(c) < p) < P(5(c) < p) = O(p/D=D) a5 p — 0 (1.15)

Super Brownian motion has a space-time-mass scaling property. For 8 > 0 define Kz : M, F(Rd) —

Mp(R?) as follows
/f(z)Kﬂm(d:z:) = /f(ﬁ:c)m(d:c) for all measurable f.

Proposition 1.7 For m € M[-"(Rd) the law of the process (X, : t > 0) under Q™ equals the law of the
process (B~ 1Kg-1/2Xp; : t > 0) under QﬁKﬁ"’m.

For a proof see Roelly-Coppoletta [19] Propositon 1.8.
Exact asymptotics for the probability of super Brownian motion giving mass to small balls were

proved in Dawson,lIscoe and Perkins [5].

Theorem 1.8 a. For d > 3 there erists a constant cg € (0,00) depending only on d such that for

any 6 > 0 there erxists g9 and

le24Q™ (X:(B(z,¢€)) > 0) — ¢3 /R‘ pi(z, y)m(dy)| < 6m(1) + e(c3 + 6)*m(1)?/2
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for alle < go,t > 6,z € R%, m € Mp(R?). In particular

i(1/e42)Qm (X B(z.€) > ) = ea [, pea,v)m()

and for any § > 0, K < oo the convergence is uniform overt > 6,z € R% m(1) < K.

b. For d > 3 there erists a constant cq € (0,00) depending only on d such that for allz € R% ¢ >
0,1>¢e?, me Mp(R?)

Q™(X«(B(z,€)) > 0) < cae?™? /R‘ Pryea(z,y)dm(y).

c. There erists a constant c5 € (0,00) depending on d such that for all e,t, m,z

@ X(Bx,e) > 0 zes (42 [ pi(aamis) A1)

The proofs of parts a,b follow from the proof of Dawson,Iscoe and Perkins [5] Theorem 3.1 and part ¢

follows from Evans and Perkins (8] Lemma 1.3 .

Finally we state a result on the effect of changing the initial measure on the law of of the process

(Evans and Perkins [8] Corollary 2.4).

Theorem 1.9 For any my,m;y € Mp(Rd) and 5,t > 0 the laws Q™ (X; € -) and Q™*(X, € ) are

mutually absolutely continuous.

When trying to prove almost sure results about Q™ (X, € -) this will allow us to choose m and ¢ > 0 at

our convenience.

15



Chapter 2

The support process of super Brownian motion

2.1 The support process started at a point

For super Brownian motion started at a point mass the growth of the support is controlled by the local
modulus of continuity Theorem 1.5b. We show that in this case there is a limit result for the rate of

growth.

Theorem 2.1 Let g(t) = /2tlog(t~1) and p(t) = inf{r: S(X;) C B(0,r)}. Then

For Q% —e.aw: lim Bg—t)- =1

1=0g(t)
First we reinterpret the classical results on Galton Watson processes in (1.1),(1.2) in terms of the

nonstandard model.
Lemma 2.2 For nearstandard {,z > 0 such thatz,t >0 and y ~ ¢

a. p*PETMo(NE(L) > 0) ~ 2671

b. PETSo(NF(1) > g|Nf(1) > 0) = =22/

c. P“_16°(N£‘(1) > z]N] # A) > 2zt~ exp(—2z/t)

PROOF OF LEMMA 2.2. Parts a,b follow from (1.1),(1.2) and the transfer principle. For part c, fix
j€{0,1,...,2#'}. Then a counting argument shows

"PHTO(uNE(1) = 5, N # A) = j27HPET R (uN = ).

So for z € {0, 1/p,2/p, e 24 fu}

"PHTR(NE() 2 ZIND #8) = 2PHTRNE() 2 2,N] # 4)

ant

‘e -1 ° "
= D §P*T(uNE(1) = j)
j=pzr

> pzPPT(NE(L) 2 g)

= z(uP*7 (N (1) > 0))PHT(NE(1) 2 I NE(L) > 0)
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and the result follows from parts a,b.0

PROOF OF THEOREM 2.1. The local modulus of continuity (Theorem 1.5b ) implies it is enough to

show
.. L
For Q% — g.aw: hmmf—fM >1
=0 g(t)
We use the nonstandard model for super Brownian motion taking z; = 0, ¢ = 1,..., z so that the initial

mass m, equals 5. Fix # € Q , € € R such that €,0 € (0,1).Define
An={w: sup(INLu B ~67) < (1-e)g(6™)}

Recall that I(87",6™) lists the particles at time zero that have descendants alive at time §”. For each

v € I(6",6™) pick ¥ ~ 6" such that ¥y < ¥ and N:,. # A.
P(4,) < P (sup(INga|: 7 € 1(6™,6™) < (1-€)g(67))

= E| JI -PUNLI<(1-¢)g(8)
veI(8".6m)

= E[(1-1,)7¢"")]

where I, = Po({Bs=] > (1 — €)g(6™)) and Z(87",60") is the cardinality of I(f",0"). Lemma 2.2 shows
that Z(6",0") has a *-binomial distribution B(n,p) with n = p and up ~ 26™. Using the bound
Po(|B1| > z) > C(d)x?~2e~="/2 for = > 1 we have |
P(An) £ °((1-IL.p)*)
= exp(—207"1,)

< exp(—Cni-26—°")
Borel Cantelli implies there exists N(w) < oo almost surely such that
For all n > N(w), 38 ~ 6" such that |N£,.| > (1—¢€)g(d™)

Now fix w such that N(w) < oo and outside a null set so that the support relations (1.11),(1.12) and the
modulus of continuity for particles Theorem 1.6a holds. Choose n > N(w) such that 6" < §(w,3). Find

B ~ 6" such that |N£,.| > (1 —¢£)g(6™) .The modulus of continuity implies

INFI > (1-¢)g(6”) ~ 3y/Bn(1 = 6)\/log((6"(1 - 9))~?)

for "t <t <o
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v

9(0) (1 - € = (3/v2) (1 - 8)(1 + log(1 - 6)/nlog(6))'"?)
9(2) (1 - e = (3/V2) (1 - 6)(1 + log(1 — 6)/nlog(9))/*)

v

But °Nf € S(X:) by (1.11) so

liminffg—)ZI—e—&/l—()
1~0 g(t)

Now take sequences €, | 0,8, T 1 to show that with probability one

lim inf M >1
t—0 g(t) ~

Finally we note that the set {w : liminf;_op(t)/g(t) > 1} is Borel in C([0,00), Mr) and so we may
transfer the result to path space.0 .

Thus for small t the support is approximately contained in a ball of radius g(¢). We may normalise
the support so that it has radius one. We show in Corollary 2.5 that as t — 0 this normalised support

fills’ the whole unit ball. The following Lemmas examine how fast holes appear in the support.

Lemma 2.3 Ford>3,0<r<1
a. Ifk < (1—r?)/(d—2) then with probability one

lim t~* sup d(z,S(X,)/g(t)):O."
=0+ zeB(0r)

b. Ifk>(1- _7‘2)/(d— 2) then with probability one

limsupt~* sup d(z,S(X:)/g9(t)) = 0.
t—04 _ z€B(0,r)

PROOF. a. Fix r € (0,1),k < (1 - r?)/(d — 2). We look for holes inside S(X,) N B(0,rg(t)) of size
t¥+(1/2) Define

Grid = ((t,z) it=n"3 n=1,..., ze @ VD2/A)Z% 2| < rg(t))

We first show that for small t there are no holes centered at a point of the Grid. For (n~/3,z) € Grid

we have

Q% (Xp-1/a(B(z, (1/4)n@+D/6) = 0) = Q" (X,(B(n/%z, (1/4)n7*/3)) = 0)

n1/3

1l

[1 Qb (Xl(B(nl/Gz, (1/4)n=*/3)) > o)]
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by first the space-time-mass scaling and then the branching property of super Brownian motion. From

Theorem 1.8¢
Q% (Xl(B(nI/G:c,(l/4)n"‘/3)) > o) > C(n~*d=2/3p (nM/82) A 1).

Pick ¢ such that k < (1 — (1 — €£)~'r2)/(d — 2) and choose ng such that (1/4)n;*/® < €. Noting that
[n/8z| < r\/(2/3)logn we have for n > ny ‘

Q% (Xp-1s(B(z, (1/4)n=C+1/%)) = 0)

nt/3

IN

[l — Cn~F@=2)/3 exp(—r? log(n)/3(1 — e))]
exp(_cn(l/s)—k(d-z)/s—r’/a(l-e))

IA

Therefore
Z Qéo(Xi(B("’: (1/4)tk+(1/2))) =0) < E Cn"dla(log n)dexp(—Cn(l""(d—2)—f’/(1-—=))/3)
(t,::)GGrid:tSno_ll3 n>no

This sums over n and Borel Cantelli implies AN (w) < oo almost surely such that
if (t,z) € Grid and t < N~/3 then X,(B(z, (1/4)t*+(/2)) > 0 (2.16)

Fix w such that N(w) < oo and off a null set so that the global modulus of continuity (Theorem 1.5a)
holds.Now argue by contradiction. Suppose 3t < min(6(w,3), N~1/3,2-20) and an z € B(0, rg(t)) such
that X,(B(z,t¥+(1/2))) = 0 .Pick n > N such that (n+ 1)~1/3 < ¢t < n~1/3. We use the global modulus
of continuity for the support to show there must be a hole (of smaller radius) centered at a grid point.The

modulus of contiﬁuity implies

X1 (B(z,t’“f(‘/?) = 3h((n)M3 - (n+ 1)-173))) =0

. But

tk+(1/2) _ 3h((n)—1/3 _ (n + 1)—1/3)

v

n—(2k+l)/6 _ (3n—4/3 log(3n4/3))1/2

v

(1/2)n'(2"+1)/6
so that
X, -175(B(z,(1/2)n=(2k+1)/6)) = ¢

But we can find 2 such that (nY/3,z) € Grid and B(zo, (1/4)n~(2¥+1)/6) C B(z,(1/2)n~(2¥+1)/6),
Thus
Xp-173(B(zq, (1/4)n~k+1/6)) = ¢
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which contradicts equation 2.16 . So for small t , for all z € B(0, rg(t)) we have t~*~(/2)d(z, S(X,)) < 1.
Thus

limsupt=*(2log(t~!))/? sup d(z,S(X:)/g(t)) < 1.
t—0+

z€B(0,r)
But k < (1 —r2)/(d — 2) was arbitrary and the result follows.

b. Let z; have coordinates (rg(t),0,...,0) for t < 1. Then using Theorem 1.8b

Q% (Xy(B(zy,1')) > 0) < Ct'@=Ip(t + 1% rg(t))

< C't'(d'z)-(d/2).+.r’(1_H21_,),_l

If I > (1/2) + (1—r?)/(d—2) this probability tends to zero as ¢ — 0 so that along a fast enough sequence
t, — 0 Borel Cantelli guarantees X, (B(z:,,(tn)')) = 0 for large n. So if k > (1 — r?)/(d — 2)

limsup t~*(2log(t~1))!/?
t—0+4

z€B

sup d(z,5(X:)/g(t)) > 1.
(0"‘)

But k > (1 —r?)/(d — 2) was arbitrary and the result follows. O

In dimension 1 and 2 we do not have estimates on the probability of charging small balls given by
Theorem 1.8.The following Lemma gives such an estimate and hence an upper bound for the rate at
which holes appear in the support in these dimensions .While this bound is certainly not best possible

it will be sufficient to prove Corollary 2.5.
Lemma 2.4 a. Forallz e Rt>0
QU (Xu(B(z,6)) = 0) < exp (~2(2m) 264~/ exp(—t71 (] + ¢)?))
b. Ford=1,2 and 0< r <1 if k < (1~ r?)/d then with probability one

liﬁ t™% sup d(z,S(X,)/g9(t)) = 0.

=0+ z€B(0,r)
PROOF. a. It will be enough to prove this for the nonstandard model with
z; =0, i =1,...,u. I(t,t) lists the particles alive at time zero that have descendents alive at time t.

For each v € I(t,t) pick ¥ ~ t such that v < 4 and Nj # A. Using (1.11) we have

P(X:(B(z,¢)) =0) < P( N (Nje!B(z,E)))

YEI(1,t)
Ela- 1)?69)
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where I = Py(B, € B(z,¢)). Z(t,t) has a x-binomial distribution B(u,p) where up =~ 2t~1. So

P(Xi(B(z,e)) =0) < *((1-1ip)")
= exp(—2t7'L)

< exp (—2(2m) 2l DN exp(—471(|J2]| + £)?) )

The bound is continuous in € so we may replace B(z,¢) by B(z,¢).

b. We follow the proof of Theorem 2.3a. replacing the equation 2.16 using the bound above by
Q% (Xn-1s(B(z, (1/4)n=(24+D/%)) = 0) < exp(~Cn~ (x4 D= (@42)+2/5)

The remainder of the proof carries through.O ‘
The Hausdorff metric on compact subsets of R is defined as follows. For K, K, nonempty compact

sets

du(K1,K2) = max(sup d(z,K3)A1l, sup d(z,K;)A1)
ZT€EK, T€K;

dg(Ky1,0) = 1
Combining Theorem 2.1 and Lemmas 2.3,2.4 we obtain

Corollary 2.5 Ifd > 1 then with probability one

dy(S(X:)/9(t),B(0,1)) -0 ast —0+.

2.2 Recovering the measure from the support

For a fixed time ¢ > 0, Theorem 1.4 can be improved as follows. For d > 3 there is a constant cg

depending only on the dimension so that with probability one
X:(A) = cedm(A N S(X,)) for all Borel A.

The proof, due to Perkins (private communication), uses the 0 —1 law explained in Proposition 2.11.
Thus for d > 3 and fixed ¢ > 0 the measure X; can be completely recovered from its support.

We now give an alternate method for recovering X; from its support. It is an analogue of a Theorem
of Kingman on Brownian local time.Let [(¢, z) be the local time of a Brownian motion B;. Let Z(t,z) =

{s <t:B, =z} . Recall that for a closed set A we write A for the set {z : d(z, A) < ¢}. We also write

21



Leb(A) for the Lebesgue measure of a set A. In Kingman [13] it is shown that there exists a constant c;

such that for fixed z,¢ with probability one

lim e~/2 Leb(Z(t,z)) = cql(t, z).

Theorem 2.6 Ford > 3,t > 0 and Borel A of finite Lebesgue measure, with probability one

e2-9Leb(S(X,)* N A) & c3X((4) ase — 0
where c3 is the universal constant occuring in Theorem 1.8 a.
PROOF. Fix t > 0 and Borel A. Let Kf = £2-9Leb(S(X,) N A). We shall show

limsup E((K{)?) < cZE((X:(4))?)

lim E(K;Y)
& -t 6>0

The result then follows for
limsup E((K{ — c3X1(A))?)
e—0 .
= limsgp(E((Kf)z) — 2c3 E(K; X1(A)) + 3E((X1(A))?))
£~

<0

since t — X;(A) is continuous and hence X(A) € L%(V; o Fi-s).
Proof of (2.17). We shall prove this for the nonstandard model.

E((K?)?) = 42 / P(X:(B(2,€)) > 0, Xs(B(y, ¢)) > 0)dzdy.

Ax A

caE(X4(A)Y) for all Y € L2 (\/ Fizs).

(2.17)

(2.18)

(2.19)

To calculate the probability that occurs as the integrand in (2.19) we use the following idea. Recall that

the support moves with a modulus of continuity given by ch(t) where ¢ > 2. We shall choose a suitable

value of ¢ later. Using the notation of Theorem 1.6 let Ga = (w : §(w,¢) > a) be the set where the

global modulus of continuity for particles holds for time intervals less than a . For a path in G; , the

only particles that can enter B(z,€) at time ¢ must lie in B(z, e+ ch(é)) at time t — §. So if the distance

between B(z,c) and B(y,¢) is at least 2ch(§) then on the set G; , if we condition on the measure X;_s,

the events (X;(B(z,¢)) > 0) and (X;(B(y,¢)) > 0) are independent.
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Fix a > €2,6 € (¢2,a) and z,y such that |z — y| > 3ch(5).We write m|p for the measure m restricted

to B. Using Theorem 1.8a we can find ¢¢ such that for all € < ¢

e =28 P(X(B(z,¢)) > O,X,'(B(y, €)) > 0,Gal0(Ai-5))

IA

64-2dPX¢-5|B(:.c+ch(6))(X6(B(z,5)) > O)va-ala(y,¢+ch(6))(X6(B(y, 5)) > 0)
32 pXi-e(X5(B(z,¢€)) > 0)PX-¢(X4s(B(y,€)) > 0)

(c3 /pg(z, 2)Xi-6(dz) + 6 Xe—s(1) + €(e3 + 6)2Xf_6(1)/2)

IA

IN

x ( / Po(y, 2) Xe-s(d2) + 6Xoos(1) + £(ca + 6)2X3_6(1)/2)

IN

/ po@,2)Xi-a(d) [ po(w, )Xems(ds) + (6 + €)1+ XLy(1)

So for e < gg

E4-2d/ /P(X,(B(:z,E)) > 0,X¢(B(y,€)) > 0,G,)dzdy
Ax An(jz — y| > 3ch(6))
< BE(XIA) +C(6+e)AP(1+ E(X{ (1)) (2.20)

Similarly using Theorem 1.8b and conditioning on o(F;_.3)
e [ [ PGB, 0) >0.X(B.e)) > 0,Gu)dzdy
A x AN(jz — y| < 3ch(6))
< / / P(X:(B(z,¢)) > 0,G,)dzdy
A x AN (jz — y| < 3ch(e?))
+et "2 E( / / PX1-(X,2(B(z,€)) > 0)PX1-2(X,2(B(y,€)) > 0)dzdy)
Ax AN (|z — y| < 3ch(6)) _ ’
< Cm(1)|Ale?*~(elog(1/e))® + ClAI(R(8) B(X]_.2(1)). (2.21)
Combining (2.20) and (2.21) we see that
limsup E((K{)*ls,) < 3E(X7(A))+ C§
e—0
where C depends only on m,d,t,A. However § < a was arbitrary and so limsup E((K{)?lg,) <

c2E(X}(A)). To remove the restriction to G, we note that P(G;) — 1 as a | 0 and so it is certainly

. enough to show sup, o E((K{)*) < co.

g84d P(f[ X((B(z;,€)) > 0)dz; ...dzys)
/Ax'{ll =1 .
(l&i — ;] > 3ch(e?) : i # j)
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<ef [[]f E(f[P"*-ﬂ(xe:(B(zf,e))>0)+P<Gsa))
=1

AXAXAXA .
(lz: — z;] > 3ch(e?) i # j)

< E ((/p,z(a,x)X,-,:(dz))“) + Ced-1dge’-4
using equation (1.15) . Fixing ¢ so that ¢? — 4 > 4d — 8 this expression is uniformly bounded in €. The

other regions of A x A x A x A give smaller contributions as in the derivation of (2.21).

Proof of (2.18). Fix 6 > 0 and C € F¢—s. Using Theorem 1.8a

lim (oK |Fees) = lime?le / QX -4(Xs(B(z,)) > 0)de
€~ & — A
= c3IcAA‘p6(z,y)X,_5(dy)dz

By the uniform integrability of the K§

lim E(Ic K7) E(cslc /R" ps(y, A)X:—5(dy))

csE(Ic X:(A)).

Since sup, 5 E((K{)*) < 0o we may extend to all Y € L¥*(\/45,¢ Fi—s). O

2.3 The connected components of the support

The arguments that lead to the upper bound on the Hausdorff measure of the support use covers of the

support that have a Cantor set like structure. Don Dawson asked the following question:
For fixed t > 0, is S(X;) a totally disconnected set ?
We now prove the following partial answer.

Theorem 2.7 Let Comp(z) denote the connected component of S(X;) containing z. If d > 3 then for
allm € Mp(R?) and t > 0, with probabdility one

Comp(x) = {z} for X; —a.a.z.
Notation. For t,a,8 € T# ,5 ~ 1 let

ZP@=p" Y N, #A)

y~i+a? v >-p
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Wh(a,8)=p' Y LN}, — N|>ab)
y~ite? -8
ZP(g) is the mass of the ’cluster’ of particles descended from N/ that are alive at time £ + a®. The
following lemma shows that there is a good chance ( independent of g ) that these particles have not
spread more than a distance O(a) from their common root. For m € Mp(R?) choose m, € *MA(RY)

such that stpr.(m,) = m.

Lemma 2.8 For nearstandard g,8 € *[0,00) such thata = °g > 0,0 = °f > 0 we have

P™ (WP (a,8) =0|2°(a) > 0) = p(8) (2.22)
E™ (ZP(@)I(WP(a,8) = 0)12°(a) > 0) = r(8)a’ (2.23)
where if § € R,0 > 0 then p(6) > 0,r(0) > 0 and
Q(‘/2)50(X1(B(0’3)°) =0) = exp(p(h)-—-1) (2.24)
EQ/2% (X, (B(0,6))I(X1(B(0,6)°) =0)) = r(6)exp(p(d) — 1) (2.25)

PROOF. This is essentially due to scaling (Proposition 1.7.) Fix nearstandard g, 8 such that a,6 > 0.
For f such that Blo # A define

r(a,9)

r(a,f)

P (WP (g, 8) = 0|27 (a) > 0)

"E™(Z°(2)I(W*(a,0) = 0)|2° (2) > 0)

The values of p(g, ), r(a,8) do not depend on the choice of m, or . Take z; = 0 for i = 1,...,[pa?/2]
and z; = A otherwise , so that sty (m,) = (62/2)6p. Then

QU/Me(X, (B(0,6)7) = 0)
— Q(“’/”“(X,,:(B(O,ae)c = 0)
= P™(Nga(st™!(B(0,06)%)) = 0)

= P™(Na2(B(0,28)°) = 0)
using scaling and the fact that X,(0B(0,r)) = 0, almost surely for any r. So

QU/ % (x,(B(0,6)°) = 0)
(#a?/2]

= P™( ) (W™(a,0)=0)

i=1
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[ua®/2]

Tl P a0 =0)

i

[ug®/2)
° II CP™(W*(a,0) =0127(a) > 0)P™(2(a) > 0) + "P™*(2(a) = 0))

1=1

i

|+ ot - Pz @ > 0) ]
= exp(p(a,8) - 1)
since [pa?/2)*P™#(Z%*(a) > 0) ~ 1 from Lemma 2.2a. So °p(g, ) is constant in g and (2.22) and (2.24)
follow taking p(6) = °p(a,8).
Sinﬁlarly
E%/2(X1(B(0,6))1(X1(B(0,6)°) = 0))

= .Eanﬁo/2 (a_zxaa(B(O, ae))l(xﬂa(B(O’aa)c) = 0))

[ua®/2] (na®/2)
= (a'?)"('E( S @i ) W’f(g,a)=0)))
[ra®/2] {#a®/2)
= (a-’>°( Y. B @IV a0 = 0P ) W*f(a&):“)
(na®/2]
= (@ exp(p(®) - 1)1 Y "B(Z™ @UW™(a,0) = 0)2°*(a) > 0)

x“P(Z%'(a) > 0)/"P(W*/(a,8) = 0)]
= (a7 exp(p(6)) - 1))° (Ina’/2"P(27*(a) > 0)r(a,8)/(1 - (1 - p(a.8))"P(Z"*(a) > 0)))
= (a7*exp(p(6)) — 1))°r(a, )

So (a~2%)°r(a,8) is independent of g and (2.23) , (2.25) follow taking r(8) = (a~2)°r(g,8) .
Finally Q%/2(X;(R?) = 0) = exp(—1) so that p(6), r(§) > 0 will follow if we can show

Q%/?(X1(B(0,6)°) =0, X, (R%) £ 0) > 0 (2.26)
" But since the support of the process moves with finite speed , for small enough s we have
Q%/2(X,(B(0,0)°) = 0, X,(R¥) # 0) > 0

and Theorem 1.9 implies (2.26) holds.0
Notation.
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For a € (0,00) define

Q={rHeQxQxQ:r6>0,lyl<r—6, |yl +r+6<a}
For a € [0,00), m € Mp(R?) define Ann(m, a) C R? by
Ann(m,a) = U {zeRd:m(z:r—6<|z—:r—y|< r+6)}
(v,r,6)€Q.
For a € *[0,00), m € *Mp(R?) define Ann(m,a) C "R® by

Ann(m,a) = U {ge‘Rd:m(gzr—6<lg-—z_—y|< r+6)} ‘
(v,r.6)€EQ.

Ann(m, g) is defined so that for z € Ann(m,a) there is a mass free annulus of positive standard
rational thickness that disconnects z from B(z,a)°.

Note that if z € Ann(X4,a) then Comp(z) C B(z,a) . Thus

T € ﬂ Ann(X;,n"!) = Comp(z) C {z}

n=1

Fort,0,0 € T#, B ~1t,Nf # A define

VA8 =p~' Y. IIN] - Nf|<2a8)
'Y~!_+Q’,‘Y¥ﬁ

Note that if ¢,0,t € T#, a > 0, 0 < 0 < 1/2, B ~ t are such that Nfi_‘12 # A, Vﬁli—e’(g,g) =
Wﬁli‘i’-?(g, 8) = 0 then there is a particle free annulus surrounding Nf
Nf(z:5a0/4 < |z— NP .| <7af/4)=0
INf — N 5] < ab

We may shift the annulus slightly to be centered at a rational and have positive rational thickness so
that Nf € Ann(Nf, a).

The following lemma shows that on average a positive fraction of the initial particles will lie inside
Ann(N{,a).
Lemma 2.9 For nearstandard a,t € T* with 0 < a < 1, 2a'/3 <t < 0o, d > 3 if styy(m,) = m €
Mp(R%) then there exists a constant p > 0 depending only on d such that

E™ (,,-1 ST IN] € Ann(NE,q), N} # A)) > pm(RY)

y~L
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PROOF. The remark following the definition of V7(a,#) shows that

E (,rl S TKN] € Ann(Nf,a),N] # )
T~L

v

E (u‘l SOUN] # AW (g,0) =0,V (g,0) = 0))

Y~

E( > 2@I(V(e,8) = W(a,0) = 0))

y~i-g?
= E| ¥ "E@@I(W(@.0) = 0lAz) P(V7(2,0) = 0} As-q2) (2:27)
~i-g?
since conditional on A;_4» the random variables V7(g,§) and Z7(2)I[(W7(a,8) = 0) are *-independent.

Now using the *-Markov property (see Perkins [16] Proposition 2.3. )

P (V7(a,8) = 0)|4;42)

N* =V~
oo p 1-a3 Nr-sﬂ (Ng_ﬂ(B()ZQ.Q)) — 0) N7

i-g?

= QX2 (Xa3(B(-,2a0)) = 0)

"N Z—z’
where in the second step we used the continuity in 8 of Q™(X,(B(x,2af)) = 0) and the fact that

m
StM(NL—Q.’

—p 8Ny ) = X¢_qa. Also
t-g?
*E (42" (a)[(W7(g,8) = 0)|4;_y2)

_ ep (# 2(@)I(W(g,0) = O[N]z # A) (N . # A)

[ B (2 @17 (a.0) = 0127(a) > 0 P (27(2) > OINT o # A) | N7 o # 8)
r(B)N] o # A)

using Lemma 2.8 and Lemma 2.2. Substituting into equation 2.27 we get

E (u'l ZI(NZ € Ann(N{',a), N{ # A))

T~

v

2r(0)E [u‘l DMWY g # A)Q¥ 13 (Xaz(B(-, 200)) = 0)

T~t

°N z—.e’]

2r(6)E [ /R‘ QX -+?(X,2(B(z,2a6)) = O)dX,_az(:c)]
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file:///7~i-a3

> 2r(§)E [ /R‘ (1——C4(2a0)d‘2(27r02(1+402))'d/2 ,
2 2 2y\—
o 80 = 9720204 48) X ) ) X2

using the estimate on hitting balls in Theorem 1.8b. Lemma 2.10 gives an estimate on the expectation

of this double integral and leads directly to

v~t

E (;rl Y I(N € Ann(Nf,a), Ny # A))
> 2r(0)m(RY) (1 - CO42(1 +46%)} -2 (22 4 m(R)))
Now take 8 > 0 small enough so that the right hand side is strictly positive. O
Lemma 2.10 If0 <a < 1,t>a'/3,d > 3,me Mp(R?) then
E™ [ / / exp(—(z — y)2/2a)dX, dX,] < am(R%)(2%/% + m(R%))

PROOF. Let pi(z) be the Brownian transition density with associated semigroup P;. We have for positive

measurable f,g (see Dynkin [6] Theorem 1.1)

™ (XNXo)] = [Puf(@)im(z) [P(@him(e)+ [dm(z) [ Pis(PsPip)@)as
By approximating positive measurable h(z,y) by functions of the form |, fi(z)gi(z) we have
E'"[//h(:c,y)dX,(z) dX(y)] = /dm(zl) /dm(zz) /d-’t /dyh(:c,y)pt(:c — 21)pe(y — 22)
+ fam@z) [ds farpi(a =) [tz [azapo = )puty - 22h(er, 2
< (m(RY)? sup B [n(B}, BY] + m(R") [ swp B[nBLBD]  (229)
21,22 0 21,22

where B}, B} are independent Brownian motions satrting at z;, zs.For h(z,y) = exp(—(z — y)?/2a) we

have

sup E [h(B;,B?)] = /exp(-—:cz/2a)p2, (z)dz < (2a/a + 25)%/2.

21,22

Substituting into equation (2.28) and using the bounds on a and t gives the result. O
" Proof of Theorem 2.7 We prove the result first for the nonstandard model with z; = 0 for ¢ =
1,...pu, z;i = A for i > pso that if my = u= 3,6, 1(z; # A) then P™+(X € -) = Q% (X € -). From
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Lemma 2.9 we have for nearstandard a,t € T* such that 0 < a < 1,2a'/3 <t < 0o

0<p < E (,rl D I(N] € Ann(Nf, ), N} # A))

Y~E

T~L

= E (p‘l Z‘P(Nz € Ann(N{',a)|N; # B)I(N] # A))

P (N] € Ann(N},)IN] # A)

where P(:|N; # A) is the Loeb measure induced by "P(:|N; # A) . Since Ann(N/,a) decreases as g
t i L

decreases we have for any v ~ ¢

o0
P(N] € () Ann(N{,n"Y)IN] #4) 2 p> 0 (2.29)

n=1

We now use a zero-one law to show this probability is in fact 1.

Notation. Fix y ~ ¢ . For u,v € T# u < p define
Hyo = ‘o'(Nf - Nf_”_,a(ﬁﬁ) ru<pto(B,y) < y)V’a(Nz - N, u<s5<0)
Hypy = 0(Hyy)
Hy = \Hn-ry
n
How = [|Hn-s
n
The following two results are due to Ed Perkins ( personal communication.)
Proposition 2.11 For A € Ho., P'(AlN;_' #A)=0or1.
Proposition 2.12 If0 < o < 2%/4 then P(-|Nz # A) almost surely , for r small enough
d ({Nf s n720(B,7) 2 (2} NY ) > r
For (y,r,6) € Qq, u,v € T#, u < v define

Tyrsus(y) = {w HINf = N] —yl @ (r= 8,7+ 6) forall st u < u'0(8,7) < 2}

[(y) = U ﬂ U ﬂ Lyrsi-16-1(7) € Hoy

k=1n=1(y,r6)€Q ~1 j=k+1 ) .
If w € Moz, {N/ € Ann(Ny,n"!) then w € T(y) and so equation 2.29 and the zero-one law imply
P(T(7)INy # A)=1. Let

A(7) = {w : for small r | d({Nf : #—ld(ﬁ,’ﬁ > (2r)?}, NZ) > "}
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so that Proposition 2.12 says P(A(y)|N{ # A) = 1. Then

E (#“ D 1w g T()NAM), N # A))

T~

E (#‘1 S Pw & T(1) NAMIN # A)I(N] # A))

= P(wgTMmNAMIN, #4)

= 0

From the global modulus of continuity for particles, with probability one all the particles move only an
infinitessimal distance in an infinitessimal time. So equation (1.11) and the above imply we can pick a

single P null set N such that if w € N we have simultaneously

. (,,—1 31w ¢ T(v) NA(), Ny # A)) =0 (2.30)

y~L
For all nearstandard s < fand 8 ~ {, Nf £A
we have Nf ~ Nf (2.31)
st(S(Np)) = S(X1) ~ o (232)

Now fix w ¢ N, ¥~ t such that NJ # A, w € T(y) NA(7y) - We claim

°N/ € ﬂ Ann(X,,n71)

n=1

. To show this find k so that

we ﬂ U ﬂ Lyrsi-1,6-2(7)

n=1(y,r6)€Q,—1i=k+1

Find rg such that (2r0)/2 < k~! and
d ({Nij cpte(B,y) > (21‘0)1/2},Ng) >rg (2.33)
Pick n so that n™! < ry and find (y,7,8) € Q-1 so that

o0
w€ [ Tyrss-1-1(7) (2.34)
j=k+1
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For 8 ~ t such that p='o(B,9) > (2ro)!/? equation (2.33) ensures that |N£S - N/| > n~! and so
INF —N] —y| & (r—6,r+6). '

For 8 ~ t such that 0 < °(up~¢(B,7)) < k™! equation (2.34) and the definition of I‘y’,'é,;_,»’k_l('y)
ensure |Nf N —ylg(r—6r+6).

For B ~ 1 such that p~1o(B, ) =~ 0 equation (2.31) ensures Nf ~ N/. So

{ze‘Rd:r—6<|z—NZ—y|<r+6}ﬂ{Nf:[3~1}=0
Equation (2.32) now gives
{zeRd:r—6<|z—-°Nz—y|<r+6}ﬂS(Xt):0

Since we were free to pick n arbitrarily large this proves the claim. Now equation (2.30) and the claim
give .
o0
*|u™t YICN] ¢ () Ann(Xe,n7h), N] #£A)| =0
y~t n=1
so that for P% — a.a.w

X(R3\ ﬁ Ann(X;,n"1)) =0 (2.35)

n=1
~ It is possible to show that the map m — m(R?\ (22, Ann(m,n~')) is Borel measurable. So we can -

apply Theorem 1.9 and conclude that for any m € Mp(Rd) equation (2.35) holds for Q™ — a.a.w.O

2.4 The range of the process over random time sets

In Perkins [17] it is shown that with probability one the support process (S(X:) : t > 0) has right
continuous paths with left limits in the Hausdorfl topology on compact sets. If we write S(X,)- for
lim,1: S(X,) then S(X:)- 2 S(Xy) and U,>o0 S(X1)- \ S(X;) is shown to be almost surely a countable
set of points. We deduce that if A is a Borel subset of (0, 00) then (J,¢ 4 S(X;) is almost surely a Borel

subset of R? since for any 2o > 0
U s&xoN U s g U SX)-\S(x).
tEAN[tg,00) te An[tg,00) t>0
Note also that Hausdorff dimensions are unaffected by the addition of countably many points .
In Dawson,Iscoe and Perkins [5] , if d > 4, suitable Hausdorff measure functions are found for the

set Ugct1<3S(Xy) from which it follows that the Hausdorff dimension is 4. We now find the dimension
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of UteA S(X;) for possibly random time sets A. This is an analogue of a Theorem of Kauffman for
Brownian motion. In Kauffman [12] it is shown that if B, is a two dimensional Brownian motion then
with probability one .

dim(B, : t € A) = 2dim(A) for all Borel A C [0, 00)

and the result is true for Brownian motion in dimensions d > 2.

Notation. For R, K € [0,00) define
7 = inf{t > 0: X,(R%) = k)
or = inf{t > 0: X{(B(0,k)°) > 0}

Theorem 2.13 For d > 4 and any initial measure m € Mp(Rd), with probability one
dim (U S(X,)) = 2+ 2dim(A) for all nonempty Borel A C (0, 7) (2.36)
teA
PROOF. Lower bound. Let Ty = k A7 A 1.—1 A 0. We will show that if m € Mp(Rd) is of compact
support, k € N satisfies m(R?) € (k~1,k) and € > 0 then for Q™ — a.a.w
dim ( U S(X,)) > 2+ 2dim(A) — 2¢ for all nonempty Borel A C (K1, Ty)  (2.37)
teA
If m € Mp(R%) is of compact support then almost surely the total mass remains bounded and the
support remains bounded so that T; T 79 < 00 as k — oo and dim(A N (k~1,T%)) 1 dim(A N (0, 70)).
So we may take sequences k, T o0o,en | 0 to conclude that if m € Mp(Rd) is of compact support
then the lower bound on the dlmensmn of Ui 4S(X1) in equation (2.36) holds Q™ almost surely. For
initial measures m € M F(R ) we can argue by decomposmg m into countably many finite measures with
compact support and use the branching property.
Fix m € Mp(R?) of compact support, k € {2" : n = 1,2,...} satisfying m(R?) € (k~!, k) and
. € € (0,1).Define a time grid as follows. Let =427 T ={t] : j=1,2...}, I} = [t},1},,). Along
any fixed sample path we say I?' charges B(z,a) if there exists s € I} such that X,(B(z,a)) > 0. For
large n we do not expect many balls B(z,2"") to be charged repeatedly by many of the IJ-2ﬂ ’s. The

following Lemma shows that there is not much mass in such balls .

Lemma 2.14 For Q™ — a.aw and sufficiently large n

X4 {:c : Z I(I?"chargesB(z,2™")) > 2"‘)} < 2-(@+8)n (2.38)

InClr-1,8)
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for all t € T3*+¢N [0, k]

For any fixed ball of radius a , if it is charged by the measure X; we do not expect it to be charged much
more than a? . In Perkins [16] (proof of Theorem 4.5) the following very precise result is shown. There

exist constants cq4,cp > 0 such thé.t for @™ — a.a.w and sufficiently large n

Xe{z : Xo(B(2,27™)) > calog(n)272"} < cp/n®for all t € [k™!,k] (2.39)
Define a space grid as follows . Let G} = d~1/?27"Z% N B(0, k + 1). Note that any point is in at most
34 of the balls {B(z;,27") : z; € G}).
Lemma 2.15 For Q™ — a.a.w and sufficiently large n

sup X;(B(z,27")) < 2<d+4>"x,;n(3(x,2-("-1))) (2.40)
teld”

for all t € T3* N[0,k], z € G}.
We delay the proofs of Lemmas 2.14 , 2.15 . The strategy of the proof is as follows . Given a cover C
of | J,c 4 S(X1) we will construct a cover C4 of A x [0,1/2k]. Since A x [0,1/2k] has dimension at least
1 4 dim(A) (see Falconer [9] Corollary 5.10 ) this will lead to a lower bound on how efficiently we can
cover J,¢ 4 S(X4).
Fix w and ng < oo so that equations (2.38), (2.39)-,2.40 hold for n > ng and so that 392-"e224+10 <

1/4k and Zﬂz"ncb/n2 < 1/4k. Fix Borel A C (k=1,T}) of dimension a. Since A C [0,0;) we have
Utea S(X:) € B(0, k). Choose a cover of | ;¢ 4 S(X1)

C= {B,’ = B(.’D,’,2_"") 11=1,2.. } with z; € GZ‘,‘R" > ng+ 2. (2.41)
We assume all the balls in C are distinct . Split the cover into two parts C; = {B; :i € I,},C, = {B; :

i € I,} where

Sni—2) =< z: Z I(IJ?("‘_z) charges B(z,2”("i=2))) > 2(ri=2)¢
k-1 k)

i€l if B(zi, 27V C S
i€l if B(z:,27™"D)NSE, _, #0
For each i € I, find z; such that B(z;,2~("~1)) C B(z;,2-("~2) and less than 2(*i=2)¢ of the intervals

IJ?("‘_z) C [k~1, k] charge B(z;,2~("—2).
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Now we form the cover C4 of A x [0,1/2k] . Consider the balls in C; one by one in order of d_ecreasing
radius. For a ball B(z;,27™) € C; there are less than 4.2("i=2* of the intervals I?** C [k~*, k] that
charge B(zx;,2"*). For each If"‘ that does charge B(z;,2™"¢) choose a rectangle in [k~1, k] x R based
above Ijz"" and of height ¢, log(n; — 1)272("=1) 5o that the base of the rectangle lies on top of any
previous rectangle above Ijz"" ( or the x-axis if there are none ). Repeating this procedure for each ball
B; € C, gives a collection of rectangles which we call C4. Note that each B(x;,27"+) gave rise to at most
4.9(ri—2)¢ rectangles of diameter less than (1 4 ¢,)log(n; — 1)2-2("i=1),

We now check that C, covers A x [0,1/2k). Fixt € A and let {* = sup{t} : t] <t}. Let J, = {i €

I :n; = n} so that Ity = Upspog2 In-

> X(B(z;,2™")

je-’n
< oU+am E X (B(z5,27 1) (by equation (2.40))
je-,n

< 2(d+4)n3dxih( U B(zj’g—("-l)))

Jj€J, .
< AMHIFx {e: Y I charges B(z, 27 (")) 2 2007

13 =gk k)

< d+ngdg=(d+5)(n=2) (}y equation 2.38)

So

EX:(B,) Z Z Xt(B(zj’2—n))

s€l, ) n2no+2j€J,
< 39924+109-no < 1 /4k.

Since t < ;-1 we know that X¢(R?) > 1/k. Let G = Upnynos2){Z : Xe(B(2,27")) > calog(n)27"}.
Equation (2.39) now gives .

3/4k < Xi(S(X)\C)
< Y Xu(B)U(B;i € Ci, X:(Bi) > 0)
i€l ul; _
< 1/4k+ Y X(B)I(B; € Ci, Xi(B:) > 0)
iel,

35



If B(z;,2"") € C; choose y; € B(z;,27")NCf. Then

2% < 3 Xu(Bl, 2 ONIX(B) > 0,B: € C)
(13 P

< Y op(ni — )22 D[, 27 4 2727) charges B) (2.42)
i€l;

The right hand side of equation (2.42) is the total height of the rectangles in C4 that lie above t. So

indeed C4 covers A x [0, 1/2k].

Now suppose that dim(|J,¢ 4 S(X1)) < 27 < 4. Then we can find a sequence of covers {C™}m of the
form 2.41 satisfying diam(C™) — 0 and

S BT =) 27" <1 forall m
B;eCcm™

Then diam(C7') — 0 and

SR < 3T42 (14 e)(ns — 122D
Recy i

< Constant for all m.

So
1+a<dim(4x[0,1/2k]) <vy+¢
Therefore
2Y>2+2a—2
and

dim(| J S(X)) > 2+ 22 — 2
teA
and the lower bound is finished.

Upper bound. The upper bound is a straightforward application of the global modulus of continuity
for the motion of the particles in the nonstandard model for super Brownian motion.

It will be enough to show that if m € Mp(R?) and m(R?) < k then for Q™ — a.a.w.

dim({_J S(X:)) < 2+ 2dim(A) for all Borel A C (0,7 Ak).
teA
Fix m, € "MA("R?) so that stp.(m,) = m and fix k € N so that m(1) < k. Define for t,g € {j/n:j €
"N}
Ite)={r~t:30~t+g B> N, #4)
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Z(t,e) = (¢t o)

Conditional on Ay, Z(t,£) has a *-Binomial distribution under "P with parameters uN{'(1) and p, =
‘P"—16°(N£(1) > 0). From Lemma 2.2 °(up,) = 2/¢ whenever ¢ is nearstandard . Let Poisson(n) be a

random variable having the Poisson distribution with mean n under F;.

P (3t} € [0,k Am] such that Z(t],27") > k2("+?))

< Y P (Z(t;',2‘") > k2004 > t;.')
t7€[0,k] '
< k2" Py(Poisson(k2"+1) > k2(n+2))

< E2%exp(=k27t1(2 — €'/?))

which sums over n. Thus for w off a single null set we may find no(w) < oo so that Z(t},27") < k2(n+2)
for all t7 € [0,k A 7] and n > no, so that the global modulus of continuity for particles (Theorem 1.6a)
holds with 2="°¢ < §(w,3) and so that equation (1.12) holds.

Fix w so that no(w) < 0o. Fix A C (0,7 A k) of dimension a. Given € > 0 we can find a cover

C={I];:i=1,2...} of A so that diam(C) < ¢ and

E 2n.j(a+e) <1

Using the modulus of continuity we have

Usxy ¢ U U s

teA i ter

U U B 3k (243)

§oyer(; 27 m)

N

The right hand side of (2.43) forms a cover Cs of U;e 4 S(X;) of diameter less than 6h(2¢) satisfying

Z |B|2a+2+3e:

BeCs

IA

Z k2n;+2|5\/'1—i2—ng/2|2a+2+3e
$

< Constant

Choosing a sequence of covers of decreasing diameter gives

dim(| J S(X¢)) < 2+ 2dim(A) for P - a.aw.
teA

It is possible to show that the set

{w : for sufficiently large n, if I?' C [0,k A 7] then ;1 S(we) can be covered
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by k2"+1 balls with rational centers and radius 3h(2'(""1))}

is Borel in C([0, 00), M}:‘(Rd)). So by transfering to path space at the correct point in the proof we can
show the lower bound holds Q™ almost surely.0
Notation.
Define A
GMC, = {w : INf - Nf[ < 3h(t — s) for all nearstandard 5,1,8 ~ ¢

satisfying 0 < ¢ —s < 27", Nf # A}

Then from (1.15) P(GMC:) — 0 geometrically fast.
Proof of lemma 2.15. It is enough to prove the lemma for the nonstandard model.

P (Elt €T N[0,k),z€G}st. sup X,(B(z,27")) > 2<d+4)"X,(B(x,2-("-1>)))
s€[t,t+2—37)

< ¥ ZP(GMCanI"I{ sup X,(B(z,2"‘))>2("“)"X:(B(r,2'(""))}))

teT3"n[0,k] z€G} s€[t,142-3n]
+ P(GMC%,) (2.44)

Now

P (GMC;.;,, N( sup X,(B(z,27")) > 2<d+4)"x,(3(x,2-<"-1>))))
s€ft,142-37)

15[012—"”] 7~t+£

s“‘P( sup ' 3 N, # AN € B(z,2D))

> 26+ =tV I(N] € B(z,z—("-1>)))

yr~t
Let v = p! 2o IV € B(z,27(™~1)). Then using the *-Markov property at time ¢ the process
W i N # AN € B(z,27("=1))} : 5 > 0} has the same law as {NE(1) : £ > 0} under P¥
. But

PY( sup NE(1) > 204+9nNE(1)
g€f0,2-3)

P*(sup X, (R?) 2 20497 X (R7))
820

IA

— 2—(d+4)n

since X,(R?) is a continuous martingale. Substituting into (2.44) and noting the summation is over less

than (k + 1)4+12(4+3)" terms , Borel Cantelli gives the result. O
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Lemma 2.16 For s € T***6n[0,k],p € N there ezists a constant C = C(p,k,m,d) such that for all
n > (5 + logy(p))/e

E™ |X,(z: Y I(X;an(B(z,en27")) 2 2727) > 2'")} < CnPld+l)g—nep,
t2n ek~ k]
2

PROOF. Fix n and write B; for B(z,en2™") . C will be a constant depending on p, k, m, d but indepen-

dent of n whose value may change from line to line.

.-

E|XJ(z: 3, IXpe(B:)227")>2%)
tngk=2,k]

< E|X,(z: > I(Xian(Bz) 2 277") 2 2772)
tIngls+2-3n+1 k]

-

+E | X,(z : > (X (B:) 2 277") > 2"‘-2)] (245)

.‘;nelk—l‘._z—ﬁnﬁ»l]
We will bound the first term on the right hand side of (2.45). It is similar and slightly easier to show

the second term has the same bound.

E X, (z: > I(X2n(Bz) 2277") > 2'"-2)]

t?n6[5+2—2n+l’k]

L

(

IA
&

P
X, |z: Z HI(ng.f-(Bz) > 2-2n) > 9(ne—3)p

120 e3ngp43—3n41 3] =1
N Ip

i an_yan|>2-3n41
mmk',|tn t“‘|22

L

)4
< o™ > E [ / [11(Xen(B2) > 2'2")dX,(:c)]
'2;'5..-«3;-e|-+a-=»+1,».| i=1
ming It?:_H —t§:|22—2n+1
< Coner 92np Z " E [/ Xt?xn (Bz) .. -th:(Bz)dX, (1:)] (2.46)
rgadnelda=Intl
min, 't-?:-n —t?:|_>_2-2n+1

The following lemma gives an upper bound for such expectations.

Lemma 2.17 Ifk‘l§s<t1<12<...<tPSkthen

E [/X,l(B(:c,a)) . ..X,P(B(:c,a))dX,(:c)] < Ca”d[(tp —tp_1). (g —t)(t — s)]l"’/2

where C depends on k,d, m,p bul not a or the t;’s.
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Proof of Lemma 2.17 . The required expectation is the standard part of

‘£ #—(p+1)z Z Z ﬁ1(|Nf’_N;§-'|5a)]

P~son~ty ap~tpis1
p—1 ,
= w7y 3 X CE[[JWN - Nl <a)
Brs ayrvty ap_y1~tpey i=1
Hiyp
X #_1 E Z .E[I(IN::P - Nfl < a)lA(ﬁ,a.,...,a,_,)] (247)
i=u(ty—tpo1) ap~tp

o(apiBa1, . apmy)=i
where o(a :71,...,7n) = la| —inf(j : al; # %l; Vi = 1,...,n) is the number of generations back that «
branched off from any of the branches v;,...,7n.
Recall Y (2) is a *-Brownian motion under “Po. If i € {u(tp —tp_1),...,utp} then

> *E[I(IN:? — NP| < 0)|Ag,a4,..cp)]

clp-i,,
o(ap:B,oq,...,ap1)=t

{ P Po([Y (ip™Y)| < a) if i # pt,
(pmP("RY) = 1) Po([Y (s +1p)| < a) ifi=pt,
So

Ktp

S S B[N - NS O]

i=pu(ty—tp—y) ap~tp
o(ap:f,ay,...,ap_1)=1

) i ptp—1

< c(m(R")a"(s+tp)"‘/2+a‘u*‘ > (in'l)-"’z)
. i=p(ty—tp-1)

< Cal(ty —tpy)' "2,

Substituting into (2.47) and using induction over p gives the result .0

Completion of proof of Lemma 2.16. Using Lemma 2.17 and the bound in equation (2.46) we have

E [Xs(z : > I(X2n(B:) 227°7) 2 2""2)]

t3ngls42- 2741 k)

d —d- 2 2 2 2 2 —d
< CnPdg(2-d-e)np 2 [@r — 20 ) ... (77 ~ 3720 — s)]! /2
tIng 1dnglaga—2n+1 iy
N IJp
min |17, #7227
< CnPd2(4-d-t)np/ dty / dt, .. / dty [(tp — tp—1) ... (t2 — t1)(t1 — §)]} /2
542" t42-3" tp142-2"
< Cn(P"H)dQ—nep.
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Notation. Define for j,n € N,z € *R the events

Alz) = {Ir~(G-127% st. Nj_ -2 € Blg, 9h(2’2"'))7,Nj2_z..(7‘) > 0}
Bj(z)

{37 ~ (] — 1)2_211 s't'\N('yj—l)Z""‘ € B(&, 9h(2_2"))’ sz—nn(")’) > 2—2n}

fi;‘(a:) {3s € I’", v ~ 5 such that °N] € B(z,12h(27%"))}
BMz) = {Xjz-a(B(z,12h(27%"))) > 27"}
Note that up to a null set

A (z)NGMCan

1N

43(2) (2.48)

N

B} (z) NGMCan, B}(z) (2.49)

Lemma 2.16 gives a bound on

kz?n
E [ / Y IB?(:)Z?”‘)dX,] (2.50)

i=k-122n
whereas to prove Lemma 2.14 we wish to bound
k22n _ »
E / I( Y LAR(z) > 27)dX, | . (2.51)
izk-123n

By restricting to GM C>, equations (2.48), (2.49) will allow us to replace f-i;‘ (z), B;‘(:c) by A}(z), B} (z)-
We will show that each time AT (z) occurs there is a good chance that B}(z) occurs and use the following

Lemma to convert our bound on (2.50) into a bound on (2.51).

Lemma 2.18 On a probability space (Q,(fj)j€z+,P) let A,,B,,n=1,...,N be events satisfying for
some g € [0,1]

1. A;,B; € F;.
ii. B; C Aj.
in. P(Bj|Fj-1) > ¢P(A;j]1Fj-1).

Then

i=1 =1

N N
P (Z I, 27,3 Ip, < a]fo) < Py(B(n,q) <a) P—a.s.

where B(n,q) has a Binomial distribution under Py with parameters n,q.
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PROOF. Define 7o = 0,7, =inf(m > 7, :w € Ay) for j=1,...,N. Let X; = 14,,Y; = 1p;.We claim
E[Y; (75 < 00)|Fr;_,] 2 ¢E[I(7j < 0)|Fy;_Jforj=1,...,N. (2.52)
To prove this pick C € F;;_, .Note that

{i=n}= |J 4an{X1,...;Xn1)=2)}

z€{0,1}n~1
Ti=j-1

and this union is disjoint. If z € {0,1}"~! satisfies )" z; = j—1 then {(X1,...,Xn-1) =2} C {11 =k}

for some k=1,...,n—1, so that
Cn{(Xl,...,X,,_l)=1:} = Cﬂ{(Xl,...,X,,_l) =z}ﬂ{rj_,~ = ,C} an-b

Then
N

Y, {r; <oc0)dP = / Y,.dP
»/C ’ (J ) Z cn{r;=n} "

n=1

-2 = |

n=1 :G(O.l)"_‘ "n{(xlv“'lxﬂ-l)=z}

DREICIES
Y i

n=1 se{0,1}»~1 Cn{(xl!'“vxn—l):x}
Z:i:j—l

N

DINDY
n=1 ceo,1}n~1

Zz‘g:j—l
= ¢ / X, 1(7; < 00)dP
C

I\

/ XndP
Cn{(X1,..Xn-1)=7}

= q/ I(r; < c0)dP
e 7

which proves the claim.

We now check by induction on n thatforn=1,...,N,a=0,...,n
n
P ZYU <a,m < o|F | < Py(B(n,q) < a) (2.53)
i=1
The case n = 1 is immediate from (2.52). Assume equation (2.53) forn=1,... k.
k+1
P(E Y:; < a,7k41 < 00|F7,)

j=1
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I

k k
1) Y, = a)P(Yr,,, = 0,741 < 00|72 + 1)V, < a— 1)P(1i41 < 00| Fr,)
j=1 i1

j=1 =1

k k
< ((1 —QI) Yy =a)+ 1D Y, <a- 1)) P(7e41 < 00| F7,)
: j=1 j=1
k k
< ((1 —QIQ_Yr<a)+q1()_ V¥, <a- 1)) I(re < 00)

since {r; < 00} C {rk41 < 00}. So taking conditional expectations given Fy and using the induction
hypothesis

k+1

P(> Y, <a,m41 <oolFo) < (1-q)Po(B(k,q) < a)+ qPo(B(k,q) < a—1)
j=1

Po(B(k+1,q9) < a)

completing the induction. Finally

- N N N
P(ZIA,- > n,ZIBJ. <alF) = P(ra< oo,EYj < a|Fo)
j=1 i=1 i=1
< P(ra <00, Y, < a|Fo)
ji=1
< Py(B(n,q) < a).
w}
Proof of Lemma 2.14. Fix n € N and nearstandard ¢ € {j/u : j € *N},8 ~ t such that Nf # A.

Let j”(t) = sup{j : j2™ < t}. We will apply Lemma 2.18 to the events A7}(Nf), B}(Nf), j =
k=1227 . k2%, j # 7°"(t) + 1 and the internal filtration

G = Ajp-2a V o(NF 15 < 1) G=k12%, k2% j#7"(@) +1

under the internal probability *P. Conditions i. and ii. of the Lemma is immediate and we claim that
condition iii. holds , namely that there exists ¢ € *R¢ satisfying g = exp~2 such that for j # ji"(z) +1
"P(B}(N{)IG]-1) 2 ¢ P(A7(N])IG]-1) (2.59)

Before proving (2.54) we complete the proof of Lemma 2.14. For t € T3"+% N[0, k]

k22"
E|Xdfz: Y 1(A}Nz) 22" }(GMCan)

j:k—lz?n
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k2?7 .
< E|Xdz: Y, UBPz)22/?) (2.55)
j:k—lz?n
k23" _ k22" R
+E [ Xifz: Y IA} @) 22", Y I(BP(z)) < 2"/*}(GMC)
j=k=123n j=k-122n

Lemma 2.16 gives the upper bound CnP(d+1)9-nep/2 for the first term in (2.55). The value of the second

term in (2.55) is less than the standard part of

k23" k2°" .
pY P WANND) z 2, YT I(BR(NS)) < 27¢/%,GMCaa, NP # A

Bt j=k—133n j=R—1l23n

#5041 i#i(H+1
But by Lemma 2.18

kz]n k22n |

Pl AN 22T YD KBNS 272, GMCon | Gfsgan
j=;“—132n j.—.-.)i-lﬁa"
j#£i%(1)+1 J#i (41

< CR(Y(27g) < 270?)
So (using (2.48)(2.49)) the second term of (2.55) is bounded by

l“—l Z .P(N,ﬁ # A).Po(y(2nt—1’ q) < 2ne/2)
Bt

< mRYH(1 - e‘z)zmlS for large n

So

P|Xi{z: Y I(I}" charges B(z,27")) > 2"} > 2~ +5) for some ¢ € T3+ N [O,k]}]
13nClk-1,k] '

’ k2°"
< D PrE X {z: Y AM(2) > 2"} (GMCy,) | + P(GMCE,)
teT3r+en[0,k] j=k—123n

< C23n+62(d+5)n {n(d+l)p2—ntp/2 + (1 _ e—2)2n¢/s] + P(GMC;n)

for large n.Taking p = 2(d + 9)/¢ , Borel Cantelli gives the desired result.
It remains to prove (2.54).Fix n, j,¢,8 ~ t such that ¢ ¢ [(j — 1)272",j22"]. For v ~ (j — 1)n2-2"
define

A;"('Y’Q-) = {N(‘;'_l)z—ﬁn € B(E; 9h(2_2")),Nj2_3..(7) > 0}

B} (1,2) = {NJ_jp-an € B(z, 9(27")), Njgosn(n) > 2-2)

44



Then

Af(z) = U  A7(.2)
y~(j~i)2- 3

Bl(z) = U Brraz)
y~(j-i)2-3n

Fix S = (m,...,7r) where 7; ~ (j — 1)272",r > 1. Consider the set

As@@) = (4r) N () A (o) (2.56)
=1 y~(i=1)2m 2"
v€S

As S ranges over nonempty subsets of {y: v ~ (j — 1)272"} the sets Ag(z) form a disjoint partition of
A} (z).

"P (B} (N)IG7-, As(ND))

"P (Njz-ae(m) 2 271G}, As(N]))

"P (Njs-m(m1) 2 272 |Njp-2a(11) > 0) UAs(N)I(Blj-1)2-2 # 1)
+ *P(Njz-n(Bl(i-1)2-2) = 27| Nja-2n(Bl(j-1)2-2) > O, Nf # A)

X I(As(Nf))I(ﬁl(j-nz-?" =)

v

v

Lemma 2.2 b. ¢. gives

*P(Njz-an(11) 2 27| Njz-2n(71) > 0) x ™2
*P(Njg-an(Bl(j—1y2-) 2 272" |Njz-2n(Bl(j-1)2-2+) > 0, N # A)

= .P(sz—in(ﬁl(j_l)2—25) > 2_2"|Njﬂ2_,,, #A)~ 2¢~2

So with g &z e~2

"P(B}(N)IG}-1, As(ND)) 2 g 1(As(N)).

Since this is true for all sets As(Nf) of the form (2.56) we have
"P(B}(N{)IG7-1) 2 ¢ "P(AF(ND)IG]_1)

and the proof is complete.O
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Chapter 3

The martingale problem characterisation

3.1 The measure of a half space

The martingale problem satisfied by a superprocess gives a semimartingale decomposition for X,(f)

where f is in the domain of the generator A of the underlying spatial motion, namely
t
X(f) = m(f)+ [ X(Af)ds+M(S) (3.57)
: 0
1
M = [ X077

We look for a similar decomposition of X;(f) for general bounded measurable f. Perkins has shown
(private communication) that if the semigroup of the underlying process satisfies a continuity condition,

for instance

3C,B1,0: >0such that forall 0 < § < v, f € bE

ITo4sf =TI < CUAIEP (P2 v 1) (3.58)

then with probability one the processes t — X;(f) for bounded measurable f are all continuous on
(0,00). The proof shows that if f, € D(A) are uniformly bounded and converge pointwise to f then
almost surely the paths X;(f,) converge to X.(f) uniformly on compact subintervals of (0,00). Also

m(fn) — m(f) by dominated convergence and

] |
E(sup(Md(f) = Mu(fm))?) < 45( / Xe((fn = Fun)?)ds) = 0 (3.59)

as m,n — oo again by dominated convergence. So along a subsequence n’ the martingales M,(fy:)
converge almost surely and uniformly on compacts.to a continuous martingale M:(f) . So under the
hypothgsis (3.58) ,with probability one the processes fot X,(Afn)ds have a subsequence .which converges
uniformly on compacts in (0,00) to a continuous limit. ‘

We examine the case where X, is a super symmetric a— stable process (so that hypothesis (3.58) is

satisfied with §; = B = 1) and f is the indicator of a halfspace . Theorem 3.2 shows that X;(f) fails to
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be a semimartingale if 1 < & < 2. We will need the existence of a density for X, in dimension 1 when

1 < o < 2. We state the necessary results as a Theorem.

Theorem 3.1 Let m € Mp(R) have a continuous density u(z).Let o € (1,2] and X, be a one dimen-
sional super symmetric a—stable process starting at m defined on a probabilty space (0, F, P). Then X,
has a density X (t,z) which is continuous on [0,00) x R. There is a space-time white noise W, , defined

on an enlargement of (Q,F, P) such that for all f € C*(R) of compact support

X(f) = m(f) + /0 X,(Af)ds + /0 /R\/X(s,z)f(x)dw,,, Vi > 0 (3.60)

For fizedz € R,t > 0

X(t,z) = Tu(z) + /0 /R Pi—s (Y, 2)V/ X (s5,y)dW, 4 (3.61)

where pi(z,y) ts the a—stable transition density.
If u(z) is bounded and uniformly Holder continuous then there ezist ¥ > 0 and C depending only on
m and o such that

E((X(t,z) — X(5,2))?) < C(t —5)" forallt,s >0 (3.62)

The existence of a jointly continuous density satisfying (3.60) is proved in Konno and Shiga {14] Theorem
1.4. Equation (3.61) is established during the proof in Konno and Shiga (although they consider more
general initial measures and thus work on {to,00) for to > 0, it is easy to extend (3.61) to [0, co) for
initial measures ti;at have a continuous density.) The proof uses moment estimates of the type in (3.62)

but since we can’t point to exactly what we need we give a proof.

PROOF OF (3.62) . From (3.61)

X(t,2) - X(5,2) = (T~ T,)u(z)
4 [ [tires) = pumr e )RRy
+ _[ /pt_r(r, VX (r,y)dW,
Find C, 8 € (0, 1] such that |u(z) — u(y)| < Clz — y|? for all z,y € R. Then

Tz — To)ul] (Ti-s = Dull

A

< CEo([Yi-sl?)

< Ct-s)fl®



The stable density satisfies p;(z) < C(|z|~(1+*) A1) and the scaling equation p(z) = t=Vep (1-1ayg),

E(( / Pror (2, VX)W, ,))) = / mT, (o2 (z - ))dr

t—3 %)
bl [ [ pa)daar
0 oo

t—3
C/ r=legy
0

C(t — s)le=b/=

IA

IA

it

Similarly
E((/ o Pror = Pa-r)VX(r, Y)dW,y)?) < C(t — s) @~ D/2e.
s—(t—s)1/3

Finally ||p; — p,s|| < C(t — s)s~(**V/* for 0 < s < t s0

2= (t-38)2/?
E(( / (Pror (2, 5) = Po—e(2, DIVE T 9) AW,y )?)

Cm(1) (t- s)zr’z(""'l)/“dr
(t—0)1/2

C(t — 5)3/D-0/a),

IN

IA

O

Theorem 3.2 Let m € Mp and X, be a super symmelric stable process of indez a. Let H be the
indicator of a halfspace .Define

#(a) =2a/(a+1) ifa>1

Then for any T > 0 we have the following decomposition.

where M, is a continuous L? martingale satisfying (M), = f‘ X,(H)ds and V; is continuous on (0,T].
If0 < o < 1 and m has a bounded density then X,(H) is a semimartingale and V; has integrable
variation on [0,T].
If1 < a <2 and m has a bounded density then V; has integrable ¢(a) variation on [0,T). If in
addition the density is uniformly Holder continuous and satisfies w(0,z) > 0 for some = on the boundary
of the halfspace then with probability one V; has strictly positive ¢(a) variation on [0,T] and hence X,

fails 10 be a semimartingale.
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The proof uses the following well known Green’s function representation for X,(¢) ,¢ € b€.

X =m)+ [ [ 160z (3.63)

where T; is the semigroup of the underlying motion and Z, : is an orthogonal martingale measure
satisfying

([ [ ez = [ (16 0 (359
for any measurable f(s,z) such that E(fot X,(f%(s,-))ds) < oo, Vt. For the theory of stochastic inte-

gration with respect to martingale measures see Walsh [24].Briefly, equation (3.63) may be derived from

the martingale problem as follows. Rewrite (M) as

xX(n=mn)+ [ Xi(AP)ds+ / t [ 1@z

Considering functions of the form f;(z) = }_ gi(z)hi(t) and then passing to the limit we have

X,(f,):m(fﬂ+/o X,(Afa+df,/ds)ds+/; ‘/I‘:f,,(:r:)dZ,,,c (3.65)

for sufficiently smooth f,(z). Fixing ¢t > 0 and checking that f,(z) = T:—,¢(z) is smooth enough to
apply (3.65) we immediately obtain (3.63) for nice ¢. Extension to all ¢ € b€ is straightforward.
PROOF OF PROPOSITION 3.2. It is enough to consider the case d = 1 and H = I(z > 0). We start

with the Green’s function representation.

"
X =m@m+ [ [ 1.,Haz..
o /R
If we set M, = fot JHdZ, ; then M; is a continuous L? martingale satisfying (M), = fot X,(H)ds. The

decomposition follows by setting

t
V=m(@-DE)+ [ [ (Tiey - DHEZ,..
o JR
Now
m((T; - H) = m((T: — I)(H)I(z 2 0)) ~ m((I — T:)(H)I(z < 0))

is the difference of two decreasing processes and so of bounded variation. It remains to check the variation
of

t

Wi :=/ /(Tt_, - NHdZ, .. (3.66)

o JR

An upper bound for the expected value of the size of an increment of W; can be obtained using the

.isometry for Z, ; (equation 3.64 ) . We delay the calculations and state the result as a Lemma.
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Lemma 3.3 If m has a bounded densily then there is a constant C depending only on T, a,m such that

for0<s<t<T
(t—s)etD/a 4fa>1

(t - s)? ifa<l

Since we are interested in a continuous version of W, it is enough to check the variation over one sequence

E(W,-W,)%) <C {

of decreasing nested partitions .Let A = T'//n and 5; = jA . If 1 < o then -

E Z IW.J- - W.J»__l'¢(a) < Z (E((W,J. _ le_1)2))¢(a)/2
j=1 i=1
\ < CT.

So W, and hence V; has integrable ¢(a) variation on [0,7]. Similarly if « < 1 then V; has integrable

variation on [0, T
We now assume that u(0, z) is bounded, uniformly Hélder continuous and satisfies u(0,0) > 0. If

1 < a £ 2 then X has a jointly continuous density u(t, z) and
t t
: / / f(s,2)dZ, . = / / f(s,z)Vu(s,z)dW, 5
o JR o JR

where W, , is a space-time white noise (see Theorem 3.1).

We split an increment of W; into three parts as follows. Fix n and let t; = j/n .
t; ’
J+1 Wtj = / / (711_,'.4.1—8 - 71!,'~6)HdZa,.t
o JR
541
[ @anma = DD fults, 2)W e
i R
. pti4a
t [T @es = DDV = fults, 2w,

t;

= (Gtet

Wi

+

We wish to show that W, has strictly positive ¢(a) variation . We will first show that |n;{#(®) is small and
.does not contribute to the variation. Then noting that (; is F;; measurable , we will show that conditional
on Fi; , €¢; has a mean zero Normal distribution with variance more than Cn~1Xy,(B(0, n;l/a)). Since
X; has a density u(t,z) bounded away from zero at t = z = 0, this variance will be of the order of

n—(e+1)/@ and the increment |¢; + €;]#(®) will be of the order of n=?.

B < B[ [ (Tree = DAHYuG,2) - \fulty, 2)ds d)
1) R
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IA

|7 @eams = DPUDIBGG,2) - utty, ) s e

IN

ti41
Cn™? / /R(T,H,_, — D%(H)dsdz
5

where 7 > 0 from Lemma 3.1 which uses the Holder continuity of (0, ). Using the bound (T, - I)H (z) <

Cr|z|~* A1 ( see equation 3.71) we have

—1/a

ti41 n oo
/ / (T‘t_,-.ﬂ—a b I)Z(H)de.’D S C'n‘l / d:B-|- / n—2I3|—2adz
t R 0 n—1/e

Cn~(etD)/a

IN

So

IA

[nT)-1 nT)-1
E| > inl* > (E(md))?r?

j=0 j=0
n{T]-1
C Z (n= (et an=7)#(e)/2
j=0 ‘

IA

= Cnvel/(etl) (3.67)

Conditional on Fy; , ¢; has a Normal mean zero distribution with variance

ti+1
Xt)- (/ (ﬂj+1_, —I)szs) .
s

2

Let Y; be a syn;metric a-stable process under Pp.
(T - DH@)| = Po(¥: 2 |zl/r'/®)
> Po(Y1 > 2Y) (e < (2r)Y/°)

So

-1

ti+t n
[ Cpma =171 > [ (R0 2 272 Kl < ()
¢ (

35 2n)-1

= Con I(|z| < n~He)

where Cz = (Po(Y1 > 21/)?/2.

Let N have a Normal mean zero variance one distribution under Pj.

QU I*™ 2 xn™Fy) 2 Po(N? > O 'R On(=28070 X, (B(0,n2/®)))

v

(1/5)1 [Xe;(B(0,n™1/%)) > C5 k3 ¥dn=1/a]
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using Po(N?2 > 1) > 1/5. Since ¢; is Fy; measurable
Qles +¢1%®) > kn~1F,,) 2 (1/10)1 [X,,(B(0,n™2/*)) > C5 w?/#@In=21e]

The density u(t, z) is jointly continuous and u(0,0) > 0 so given £ > 0 we may find ng > 1,k > 0,15 > 0

so that for all n > ng

Q(X(B(0,n~Y) < C5 k2 ¥ @) p=1/a for some 0 < t < tg) < €.

Then for n > ng

[nT]-1

QU D e +¢IP™ > woto/20)
j=0
[nT]-1

Q( Y. (lej + ¢1%*) > Ko/n) > nto/20)

§=0

[nT)-1
Q ( S U(Xe; (B0, %)) > Corl/ HDn1e) > nto)

v

v

j=0

nT]-1
- ( 3 W(Xey(BO,n7Y) > Cond/ #Pn=1) > i,
j=0

[nT]-1

" Wlej + G194 > Kko/n) < nto/20)

j=0
> (1—¢)— Py(B(nto, 1/10) < nty/20)

where B has a Binomial distribution under Py, using Lemma 2.18.
So for large n
n[T)-1
QU Y e + 1% > moto/20) > 1 — 2.
j=o
But from (3.67) for large n
n[T]-1

Q( Z In;19(®) > Koto/40) < e.

j=o

Now Minkowski’s inequality and Fatou’s Lemma give

n[T]~-1

Q( > Wiy, — Wi 1?®) > koto/80 infinitely often ) > 1 — 3e.
i=0

Since ¢ was arbitrary it follows that the ¢(«) variation of W, over [0, 7] is strictly positive. O
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PROOF OF LEMMA 3.3 . From (3.66)

E[(W, - W,)?]

" E [([(T,_, ~-1)HdZ, . + /OJ(TH - Ta—r)Her,z‘)z]

/ t mT,((Ti-r — DH)*)dr + / ’ T (((Ti=r — Ty—r)H)?)dr. (3.68)
s 0
For fixed £ > 0

(Tr4s —T)H(z) = Po(Yrys 2 —z) — Po(Yr 2 —2)

Po(Y1 € [z/(r + 6)Y/%,2/r!/°])

I(2/r%) = (2/(r + 6)*/*)|pr(z/(r + 6)*/%).

IN

C will be a constant depending only on T, a, m whose value may change from line to line.Using the

bound p;(z) < C(jz|~(1+%) A 1) we have for r > &

[(Trs = T)H(z)] < C(8|z|~% A lz|r— (ot o)

< Cé(lz|"*ArY) (3.69)
for r <6
(Tr+s — T)H(2)l < Po(Y; € [|21/6Y/°,00))
< Cblz|™* A1 (3.70)
and for r > 0

(T, —DH(z)] < Po(Y1 € [Jz]/r'/?, 00))

< Criz|™? A1l (3.71)

Find a constant K so that the densities of the measures mT, are bounded by K for all » >'0. From

(3.69),for 0<r<s—(t—s)

mT((Ti-r — To—r)2)H

(a=r)t 1
< 2t —s)? (K(s - r)'2/ dz + K/ |z|~2*dz + mT,(|z] > 1))
0 (s=r)t/e
14 (s—r)M/)-2  ifa#1/2
< C(t_s)z{ (s =) #1/

14+log*((s=r)"Y) fa=1/2
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From ( 3.70),for s —(t —8)<r<s

mTr((Tt—r - l—")z)H

(t—a)/° : 1
< 2CK / dz +2CK (1 - 5)? / le|2%dz + 2C(t — 8)?mT, (2] > 1)
0 (t-s)1/e '
6 (t - 5)@AG/a) ifo#1/2
(t—=8)21 +log*((t—5)"1) ifa=1/2
So
/ T (Timr — Ty_p)?) Hdr
0
) a=(t-0) | 14 (5—r)(1/0)-2
< C(t-s) / dr +C(t - 5)? / (=) dr
0 (t-2) 14+logt((s —r)Y)

e e
== | (= 8)2(1 +log* ((t - 5)7))

C{(t—s)2 ifa<l

IA

(t—s)et/e ifa>1

Similar arguments give an upper bound of no larger order for the first term in (3.68). O

Remarks.

- 1.For any m € Mp(R?) similar arguments show that if 0 < S < T, 0 < & < 1 then V; has integrable
variation on [S, T}.

ii. If 1 < @ < 2 then the instantaneous propagation of the support (see (3.78) ) implies that V; will
have strictly positive ¢(a) variation on [0,T] for any T > 0. If & = 2 and m # 0 then there is positive
probability that for some s > 0 the measure X, will have a uniformly Hélder continuous bounded density
that is strictly positive at some point on the boundary of the half space. Thus for any Xo # 0 the process
X, fails to be a semimartingale.

ili.Sugitani [23] shows that for super Brownian motion in dimension one the local time process
Y(t,z) = fg X (s, z)ds is differentiable in z and that if m is atomless the derivative D,Y (¢, z) is jointly
continuous in ¢, z almost surely. We can easily identify the drift term 1 in the decomposition of X;(H)
as (1/2)D,Y (¢, z) .

Take m € Mr(R) atomless and of compact support. Define fo(z) = ((z — a) v 0)2. We may find
fn € D(A) so that f, 1 fa(z) and Af, — I(z > a) bounded pointwise. We have enough domination
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(e.g- E(sup,c7 Xi(f2)) < 00 ) to take limits in the martingale problem and obtain

Xi(fa)

m(fa) + /0 X,(I(z < a))ds + Mq(fa)

m(fa)+/°° Y(t,2)dz + My(fa) (3.72)

We wish to differentiate (3.72) twice with respect to a and again we have enough domination. Thus for

a fixed t
2Xi((z—-a)VO0)=2m((z—a)V0)+ Y (t,a) + M(2(z — a) V0) (3.73)

Now continuity of both sides in t gives (3.73) for all t. Repeating the argument and using the continuity
of DY (t,z) gives

Xo(I(z < ) = m(I(z < @) + (1/2)D.Y (t,0) + Mi(1(z < a)).
3.2 The death point

We use the characterisation of a Superprocess X, as a solution to a martingale problem (equation 3.57)
to study the sample path behaviour near the time of death. Set £ = inf{t > 0 : X:(1) = 0} where we

write 1 for the constant function with value one. If m € Mg then £ < oo almost surely. Define

C, =/0 1/X,(1) ds.

In Konno-Shiga [14] Theorem 2.1 it is shown that with probability one C; is a homeomorphism between
[0,€) and [0,00). Let Dy : [0,00) — [0,£) be the continuous strictly increasing inverse to C,. Shiga [22]
uses D; as a time change together with a renormalisation to convert a class of measure valued processes
* into a class of probability valued processes. The Superprocesses studied here do not seem to fall directly
into his context. However the time change will still be useful.l By stretching out the interval [0,£) into
[0,00) we can use the behaviour at infinity of the time changed process to give infomation about X,
before death.
For ¢ € [0,00) define

Y1 = Xp,

G = }-D‘
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Note that {Y; : ¢ > 0} is a probability valued process.We derive the martingale problem for Y;. For
f € D(A)

D,
m(f) + A X,(Af)ds + Mp,(f)

Yi(f)

I

min+ [ F(ART2(1)ds + Fu(f)

where, since D, is a continuous time change , N;(f) is a continuous G, local martingale satisfying

(N = OD'X,(ﬂ)ds
= /O'f’.(fz)f’s(l)ds.
In particular
(@ = m(tl)+1V,(1)
(N()e = /0(?,(1))245

(N(f), FQ)): / Y, (f)¥,(1)ds

Applying Ito’s formula and noting that ¥;(1) > 0 for all t > 0 we have
t
V)= m()+ [ Va(Ads + Ni(p) (3:74)
0

where N;(f) is a continuous G; local martingale satisfying

(N(F))e = /0 Y,(/?) - (Ya(f))%ds

The martingale problem for Y; is frustratingly close to that for the probability valued diffusion known
as the Fleming-Viot process ( where the drift term in (3.74) would be replaced by [Y,(Af)ds ). In
Konno-Shiga [14] this ’connection’ between the martingale problems is used to derive the existence of a
continuous density for the Fleming-Viot process in dimension 1 from that for super Brownian motion .

The following result shows that as ¢ — £ , what mass that remains is concentrated near a single

point.

Theorem 3.4 For m € Mg there exists an E valued random variable F such that with probability one

Xs/Xe(1) — 6p ast — € | (3.75)
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where the convergence is weak convergence of measures.The law of F' given the history of the total mass

process H = o(X(1) : t > 0) satisfies _
E™(f(F)[H) = 1/m(1) /E T, f dm. (3.76)

Remarks.

i. Equation (3.76) implies that the law of F' can be constructed as follows. Position a particle in
E at random according to the measure m(-)/m(1). Let the particle move according to the underlying
spatial motion but independently to the process. Stop the particle at time £. The final position of the
particle will have law F'.

il. The law of £ is given by P(§ <t) = exp(—2m(1)/t)

PROOF. First assume E is compact. Take f € D(A).

/ ands < fafl [ Fids
0 0

1
A X 1)d
IAf) / p.(1)ds
IlAFID: < |IAfIlE.

i

So
N(f) 2 —m(f) - ||Af|l€.
For any continuous local martingale (M,;t > 0) , with probability one either M, converges to a
finite limit or lilr;sup M; = —liminf M; = oo (see Rogers Williams [20] Corollary 1V.34.13 ). So N,(f)

converges as ¢ — oo to a finite limit. Also

t .
/ V. (Af)dr| < [IASI(Ds = D) — 0 as 5,t — oo,

So fot Y,(Af)ds converges as t — 0. Thus Y:(f) converges a.s. to a finite limit which we call Yoo (f).

Since C(E) is separable and D(A) is dense in C(E) we may pick {¢,}, C D(A) dense in C(E). Off
a null set N we have Y;(¢n) — Yeo(¢n),Vn. Fix w ¢ N. Then by approximation Y;(f) converges to a
finite limit Yoo (f) for all f € C(E). Also f — Y (f) is a positive linear functional with Yo(1) = 1 and
thus arises from a probability which we call Yor. For f € D(A)

N2(f) - /0 Y,(f%) — (Y.(f))%ds

is a continuous local martingale. Since N;(f),Y,(f?),Y,(f) all converge to finite limits this local martin-

gale must converge requiring Yoo (f2) = (Yoo (f))? a.s. So the probability Y, is concentrated on a level
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set of {. But E is a metric space so that C(F) and hence {¢,}, separate points and this forces Y, = ép
a.s. for some F.

We have been unable to deduce the law of F' directly from the martingale problem but it comes
immediately from the particle picture. Take the nonstandard model with m, = p~! 3", é,, satisfying
sty (mu) = m. Let G be the internal algebra generated by the total mass process {Ny(1) : ¢ > 0} and
o(G) the standard o-algebra generated by G. Note that N;(*E) is G measurable for all ¢ so that H is a
sub o - algebra of 0(G). Let &, = inf(t > 0: Nf'(1) < 1/n). For any f € C(E),n > m(1)~!

"E(N¢. (*f)/N¢, (1)IG)
nE(u™ ) Cf(N7)IG)
Y~En

= nu! Z 'P(Ngn # A|G) T, f(7lo)

Y~En

Now p=*P(N{ # A|G) is independent of 7, so

"E(NE CH/NE(DIO)
= 2 (u™t YT, f(2)

Y~En

= n/m(1) [E Te. f(2)dm, ()™t 3 “P(NY. # AIG))

= 1/m(1) /:ETfnfdm,,.
So
E(Xop ()] Xop (DIo(£)) = 1/m(1) /E T, fdm

using Albevario et al. [1] Proposition 3.2.12.Now °¢, T £ as n — oo so that

E(f(F)H) =1 /m(1) /E Te f dm. (3.77)

When FE is only locally compact we can extend the semigroup 7T; to E U {oo} the one point com-
pactification of E by taking Ti(oo, {o0}) = 1,Ti(2,{o0c}) = 0 for all z € E,t > 0. Working with this
new Feller process on E' U {00} the above argument gives the existence of a death point F taking values
in E U {oo} and satisfying {3.75) and (3.76). Since P(£ < o0) = 1 the characterisation of the law of F
(3.77) ensures P(F € E)=1. O ‘

Example. Let X, be a super Poisson process. Define T} = inf(¢t > 0 : X,({0,...,k=1}) =0). In
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Perkins [17] Corollory 3.1 it is shown that T} 1 £ and
Se=1{k,k+1,.. } for Lebesgue a.a.t in [Ty, Tiq1),k € Z+,P"‘v— a.s.
Theorem 3.4 shows that only finitely many of the T} ’s are distinct. Indeed
0= <N <..<Tr<Tpp1=Tp42=...=E P" —a.s.

There is positive probability for any combination of equalities amoung Ty, T3, ...,TF.

3.3 The support near extinction

The closed support of a superprocess X; at a fixed time has been studied in Perkins {17] and Evans and
Perkins [8] . If the spatial motion is a Lévy process on R? with Lévy measure g then in Evans and
Perkins [8] Theorem 5.1 it is shown that for all t > 0

oo

U S(u** * X1) € S(Xy) P™ - as.

k=1

where u*¥ is the k’th fold convolution of u with itself.For a super symmetric stable process this implies
S(X:)=0or R P™ —as. Vt>0. (3.78)

Similar results for certain Feller processes are obtained . Consider a Markov jump process with bounded

generator A so that
Af@) = [ e )W) - £=) (3.79)

with p > 0 and u a probability kernel such that z — [ u(z,dy)f(y) € Co(E) for all f € Co(E). Then
fort>0

QS (/-~-/X:(d¥1)u(z1,dzz)...,u(xk,-)) C 5(X:) P" ~a.s. (3.80)

We shall show that (3.78),(3.80) are far from being sample path properties and that near the time of
death there will be exceptional times at which the support is concentrated arbitrarily close to the death
point.

We start by examining the case where the spatial ‘motion is a Markov jump process as described
above. Note that Af is well defined by (3.79) for any bounded measurable f . A monotone class
argument shows that for any bounded measurable f the process X¢(f) is continuous and satisfies the

usual semimartingale decomposition.
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Theorem 3.5 For alle > 0, with probabilily one there exist distinct t,, T £ such that
5(X:,) C B(F,e).

PROOF. Take A C E and let f = I(z € A). We shall use the time changed process Y;(f) as in section
3.2. Let B, be an independent Brownian motion defined if necessary on an extension of the original

probability space. Define |
Bi= [0 =YY # 00N () + [ 100 = 0)dB,
so that B, is a Brownian motion and |
V() =min)+ [ ands+ [ (0= V() 2aB,

If Yi(f) = Oor 1 then Y; is supported on A° or A respectively. So we look for times at whicﬁ Y:(f)(1 -
Y:(f)) becomes zero. Fix N € N and define Z;(f) = Yn4:(f)(1 — Yn4¢(f)). By Itd’s formula we have

Z:(f) Zo(f) + /01(1 = 2Yn4s () (YN+s(£)(1 = Yn1a(£)))!/2dB,

+ [ W= s (A0)ds = [ Ywaul (U= Yovsa($)ds
0 0

20+ [ 4.~ Zu(as + | (2L - 4Z,()) /4B,

where

B, (1= 2Yn4s ()Y (AS)
N4t

B, = / sgn(1 — 2Y,(f))dB,
N

so that By is another Brownian motion. Since the function (z(1—4z))'/2 satisfies the Yamada-Watanabe
criterion (see Rogers and Williams [20] Theorem V.40.1 ) we have a unique solution on the same prob-

ability space to the stochastic differential equation
X, = Zo(f) + [((1/8) - X,)ds + /ot |X,(1-4X,)|*%dB,.
Lemma 3.6 shows that X, takes values in [0,1/4] and zero is a recurrent point . Define
Ty = inf(t > 0: Yiv4e(1) > (1/8]|AFI]))
which is a Gy 4: stopping time. For s < Tn
181 = I(1 = 2¥n4o(F))Yn4a(AF) < 1/8.
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So by a comparison Theorem for one dimensional diffusions ( see Rogers and Williams [20] Theorem
V.43.1 ) we have
Z(f) < Xy fort<Ty P™ —a.s.

{We have applied the comparison Theorem up to a stopping time .The changes needed in the proof of
Theorem V .43.1 are easy. )
Since zero is recurrent for X; , on the set {Tnv = oo}, Z;(f) must hit zero infinitely often as t — oo.

Since )7,(1) —0ass— o0, P(Ty =o0) T. 1 as N — oo. So with probability one
there exist ¢, T oo so that Y; (f) =0 or 1. (3.81)

Given € > 0 let (A;n)m be a countable collection of open balls of radius £/2 that cover E . Fix w so that
(3.81) holds simultaneously for all fn = I(z € Am). Find mo(w) so that F(w) € Apmy(w). Since Y; — ép
then Y;(Am,) — 1 . So there exist £, 1 0o so that Y; (I(z € Am,)) = 0 and

S$(Xp,,) = S(Y:,) C B(F,¢) for all n.
a

Lemma 3.6 Let B, be a Brownian motion defined on a probability space (2, F,P). Let X7 be the

unique solution to the stochastic differential equation

dXy = ((1/8) — Xi)dt + |X.(1 — 4Xy)|*/%dB, (3.82)

Xo -’!26[0,1/4]

Then P(3n such that X; >0 forallt >n)=0.
PROOF. Equation (3.82) is pathwise exact so we may find a pathwise unique solution on any space and
any two solutions have the same law. Let P* be the law of X* on path space. Then the laws (P?),

form a strong Markov family. We write z; for the coordinate function on path space.

Let Y; be the unique solution on (2, F, P) to the S.D.E.

dX ((1/8)_X')A0dt+IX'(1-4X1)|1/2dB,

Xo-_-O

By uniqueness Y; = 0, ¥t > 0. So by a comparison Theorem (see Rogers and Williams [20] Theorem
V.43.1) X7 >0, Vt P™ — a.s. We may treat the boundary z = 1/4 similarly and conclude

Pz, €[0,1/4], Vt>0) =1
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It is enough to show that there exist tg so that
P40 <t<tp, 2:=0)=¢c>0 (3.83)

for then by the strong Markov property P7(30 < t < tg, z: = 0) > ¢ for all z € [0,1/4] and setting
An = (3t € (nto,(n + 1)t], z: = 0) we have P*(Apn|A1,...,An-1) > ¢ and P*(A, i.0.) = 1 which

implies the result.
On the interval [6,(1/4) — 6] where 0 < § < 1/8 will be chosen later , we can construct a weak
solution to (3.82) using a scale and time change of Brownian motion in a standard manner (see Rogers

and Williams V.44 .) We shall then examine the behaviour near the endpoints seperately. Set

s(z) = /z (u(1 - 4u))~Y4du for z € [6,(1/4) — §]
5/2

so that s(z) is a strictly increasing C? function taking [6, (1/4) — 6] — [a,}]. Set h(z) = s'(z)z(1 — 4z)
and g(z) = h(s~!(z)) . Then g is a continuous function on [a, b} bounded away from zero by a constant

K.

Let B, be a Brownian motion on ({2, F, P) started at s(z) € [a,b] . Set T, = inf(t > 0: B, = y) and
t
A= / g(Eu)"zdu fort <71, A Ty.
0

Let 7: be the continuous strictly increasing inverse to A;. Then Y; = B.,, solves the S.D.E. dY; =
9(Y:)dB; for some Brownian motion B; and Z; = s~1(Y;) is a weak solution to (3.82) up till the time
inf(t > 0: Z; € {6,(1/4) — 6}). Now for t, > 0

P(T,<Ty<tg)>0
so if T, = inf(t > 0: z; = y) then
PA(Ty < Tajos < K'%0) > 0 Ve € (5,(1/4) — 8) (3.84)
For the behaviour near :c. = 1/4 we need only that we can find 19,6 > 0 so that
PY4(z,, < (1/4) — 26) > 0 (3.85)

and this follows since X, = 1/4 is not a solution to (3.82).
For the behaviour near z = 0 we use another comparison . Let Y; = (1 + cos(2B;))/8 where B, is a

Brownian motion started at zo and & = (1 4 cos(2z0))/8. Itd’s formula gives

Yi=6+ 2—/1((1/8) - Y,)ds+ /t()f;(l - 4}’,))1/2dW,
0 0
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where W, is another Brownian motion. Let X; be a solution on the same space to the equation (3.82)
with z = 1/4 and W, the Brownian motion. Then the comparison Theorem shows X; < Y; up till the
time

T=inf(t>0: X, AY; =1/8) =inf(t > 0:Y; = 1/8).
But the construction of Y; implies that there exists g such that with positive probability , Y; = 0 for

somet <ty <7T. So

P%(To < Tyys < to) > 0. (3.86)

Equation (3.84),(3.85),(3.86) together imply (3.83). O
Example. We examine the simplest nontrivial superprocess. Let E = {a,b} and the underlying
spatial motion be a Markov chain leaving each state at rate one. Then if we write X;(a), X(b) for

X:({a}), X:({b}) the martingale problem reduces to a pair of linked stochastic differential equations.

X¢(a)

Xo(a)+ | (X,(b) - X,(a))ds + | (X,(a))'/?dB? (3.87)
0 0

X(b)

X0+ [ (Xuta) ~ Xu@)ds + [ (X, (0)2aB: (3.86)

where B¢, B? are independent Brownian motions. So we consider the superprocess as a diffusion on R'i.
Let D = ((z,0) : 2 > 1/2)U((0,y) : y > 1/2) . We will show that with probability one (X;(a), X:(b))
never hits D.Define

D, = ((z,0):z2>(1/2)+r)
R, = ((zy):y>z—-(1/2)-r)

It will be enough to show P((X:(a), X¢(b)) € D, for some ¢t > 0) =0 for all »r > 0.
The properties of the a-dimensional Bessel process ( see Rogers and Williams [20] V.48 ) show that
if Z; satisfies

dZ; = adt + (2,)*/?dB, ' (3.89)

then for @ > 1/2 , P(Z; > 0,¥t > 0) = 1 and a = 1/2 is critical. By comparing (3.88) to the
S.D.E. (3.89) solved on the same space with respect to B} we see that X,(b) > 0 up till the time
So = inf(t > 0 : (X¢(a), X:(b)) € Ro). Define

T, = inf(t > Sp-1: (Xe(a), Xe(b)) € R:/2)

inf(t > T, : (X((a), X;(b)) € Ry)
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X:(b)

1/2

Xt(a)

R 1/2

Figure 3.3: Typical sample path of (X:(a), X,(b)).

Then by the strong Markov property and the same comparison argument X;(b) > 0 for T, <t < S,,.
By continuity of paths 7,, T co and the result is proved.

The finite lifetime of the process implies that the diffusion converges to (0,0) and Theorem 3.5
shows that it approaches the origin in a particular manner . There exists R(w) > 0 such that inside
B((0,0), R) the diffusion will not hit one axis and will hit the other axis at an infinite number of points
that accumulate at (0,0).

We would like.-to extend Theorem 3.5 to superprocesses with more general spatial motion. We take
one step in this direction by showing that the semimartingale decomposition for X;(H) in section 3.1
allows ué to extend Theorem 3.5 to super symmetric stable processes of index o < 1/2. Note also that
the result is true for super Brownian motion (see Liu [15] where it is shown that the diameter of the

support of super Brownian motion converges to zero at extinction ).

Lemma 3.7 Let X; be a one dimensional super symmelric stable process of indezr o started atl m €

Mp(R). If 0 < o, B < 1/2 then the path t — X;(|z|~#) is continuous on (0, 00).

PROOF. We use a stopping time argument similar to that in Perkins .[16] Proposition 4.4. Take the
nonstandard model with m, =~ m. Find &, [ so that 0 < max(e, ) < B < & < 1/2. Write B, for
B(0,2-") and rB for (rz : £ € B). Fix integer M > 1 and define

T, =inf(t €e T* N[1/M,c0) : Ny(By) > 2,2—nﬁ')_
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Let t7 = j27"%, I = [t7,t7,,) . Then

P(T.€1I}) = P(Tn €I}, Ne, (2Bn) 2 27"F)
+ P(T.elf,p™" 3 UN] €B., N} #A4)<27) (3.90)
Liadd 78
+ P(Ta€If,u™' D UNJ, € Bo,INL = N7.|>27") 2 N, (B,)2")
T~

Denote the terms on the right hand side of (3.90) as LII and IIL.For ¢} > 1/m

I

IA

—_— —YI[;
P(MNiy,, (2B,) 2 277
< 2"E(X,, (2B.))

< 2m(1)M~Veg-n(-A)

T, is a A, stopping time so by the strong Markov property

= —N
11 =F (I(Tn e Pt 3 IV € Ba, N g # ) < No(Bn)/2))
'7~t;+‘_Tﬂ(w)
< P(T, € I) exp(—2"@=P) /4)
using Perkins [16] Lemma 4.1.a. Similarly
I11
< E (I(T,, eP W Y N, gy = N31> 277 2 Nryo(Ba) - 2—"5))
Yl = Talw)
< P(T-n€I})2.Py([Ya-ns| >27")

< CP(T, € I})2~"(6-2)
using Perkins [16] Lemma 4.2.a. Summing (3.90) over I} C [1/M, M] we have
P(T, € [1/M, M]) < C(27"1=37) 4 exp(—27(3-H)) 4 g-n(a-a))
which sums over n. So for large n , for all t € [1/M, M]
X ((=27",27™) < 2.2

Thus X(|z|=?) is uniformly bounded for ¢ € [1/M, M] and (X(|z]"? An) : n = 1,2,...) is a Cauchy
sequence in C[1/M, M], P™ — a.s. So X,(]z|~?) is continuous on [1/M, M] for any M. O
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Remark. In Perkins {16] Theorem 6.5 it shown that if @ < 1 then there exist constants 0 < ¢z < ¢g <

oo such that for any m € Mp(R) , setting

da(z) z%log* log+ 1/z

A

(z: limlsoup X:(B(z,a))pa(a)™?! € [cs,¢5])
a
then
Xi(Af)=0,Vt>0,P™ —a.s.
We call a point in A; a point of density for X;. For a < 1 it follows from the facts that

i. A; is Lebesgue null for all ¢ > 0 (Perkins [16] )

ii. The laws of super symmetric stable processes on o(X, : 8 > ¢y > 0) are equivalent under translation

of initial measures (Evans and Perkins {8])

that for any fixed z , P(z is a point of density at some { > 0) = 0 . This also follows ( for a < 1/2)
from Lemma 3.7 for if 0 € A then X(]z|~*) = oo. Contrast this with the fact that equation (3.78)

implies that for a fixed ¢t > 0 the points of density are dense in R.

Proposition 3.8 If X; is a super symmetric stable process of indez @ < 1/2 in dimension one started

at a finite measure then the conclusions of Theorem 3.5 still hold.

PROOF. Fix an open ball B = (a,b) of finite radius in R. From Theorem 3.2 and the following remark

we have the decomposition

Xi(B) = Xo(B) + Vi + M:(B)
where (M(B)): = ft X,(B)ds and V; has finite ‘variation on [S,7T] for any 0 < S < T' < oo. Define

| { limp—os(Vign — Vi)/h  if this limit exists
v =

0 otherwise

We will find an upper bound on |v,|. Note that for any § > 0, T5Ig(z) is a C* function vanishing
at infinity. Let g(z) = supss, |ATsIp(z)|. Scaling arguments show there exists C such that g(z) <
Clz—al~*+ |z —b|7%). Forfixed 0 < s <t

| Xe(Ts1p) — Xs(Ts1p) — Mi(T51p) + M(T518)|

1 t
= |/ X,(ATJIB)drIS/ X, (g)dr.
8 ]
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Letting 6 | 0
\V; = V,| = | Xe(B) — X,(B) — M:(B) + M,(B)| < / Xr(g)dr.

Xr(g) is continuous and bounded by Lemma 3.7 so V, is absolutely continuous and |v.} < X,(g) for a.a.r Q™

a.s. Now we follow the proof of Theorem 3.5. Recall that

t= /D' 1/X,(1)dr B
and we set Y;(B) = Xp,(B)/Xp,(1) and Z;(B) = Yi(B)(1 - Y;(B)). Then Z;(B) satisfies
oy = Zp+ /t((l - 2YN+,(B))‘UDN+' - Z,)ds + /t(Z,(B)(l - 4Z,(B)))1/2dB,.
0 0

Now the comparison argument of Theorem 3.5 will work provided we can show
P(lvpy,,l <1/8fora.as) = 1as N — oo (3.92)

But from (3.91) we have [t—s| < |D;~D,| max(p,<r<p,)(1/X-(1)) so that |vp,| < Xp (g) fora.a.r. Q™ -

a.s. From Lemma 3.7 Xp_(g) — 0 as r — oo and (3.92) follows. D

3.4 Recovering the spatial motion

How much can you tell about the underlying spatial motion from a single path of a superprocess? In

the following result we use an arbitrarily short piece of the path but recover only partial information.
\

Lemma 3.9 Let X; be a superprocess started al m € Mp(E) with spatial motion a Feller process with
generator A . For f € D(A) satisfying m(|f]) =0 and

Var(X«(f)) = 0@t ast — 0 (3.93)
there is a sequence t; | 0 such that
(1/n) D451, (f) & m(Af). (3.94)
i=1

PROOF. Set Z; = (1/1)X;(f).Then

E(Z,)

(/t)(m(f) + / E(X,(Af))ds

(l/t)/o mT,(Af)ds = m(Af)ast—0 (3.95)
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Hypothesis (3.93) ensures that Var(Z;) remains bounded so it remains only to show that we can pick
t; | 0 fast enough that the Z;,’s are hearly uncorrelated. Using a product moment formula (Dynkin [6]

Theorem 1.1 ) we have for s < ¢

CO‘U(Z,, Zt)

1/st) [ am | T (T (F)Tamr (F))dr
/O AImT(f1):

IA

Note that mT,(|f]) — m(|f]) = 0 as s — 0. Now pick ¢c > 0 arbitrarily small and ¢,, inductively so that
Cov(Zi,, Z,) < 27Im=nl. (3.96)
Then

E(((1/n) ) Z:; - m(Af))?)
j=1

= (1/n) Y E((2:; = m(AN)*) + (1/n*) Y Cov(Ze,, Z¢))

j=1 i#j
+(1/n%) > E(Zy, ~ m(Af))E(Z¢; — m(Af))
i#j

(3.93),(3.95),(3.96) ensure that all three terms go to zero. O
Remark. Since

(/2 Var(Xe(f) = (1/7) / mT, (T2, (f))dr < (1/)mTi(f?)
a sufficient condition for hypothesis (3.93) to hold is that f2 € D(A) for then
(1/tymT (5% = (1) / mT,(AF)dr < [|A(F)Im(1).

If this condition holds then we may take t, = 27" in (3.94).
As an example we take the underlying motion to be a pure jump Levy process on the line (Y; : ¢t > 0).
Hence '
Blexp(-i0%) = exp(t [ (6% = 1= (i8/(1 + #%)u(d2))
where p, the Levy measure , gives finite mass to (—a,a)® for any a > 0. We show that from any initial

segment of a path of the super Levy process X; started at 6, we can recover the Levy measure u. Fix

a > 0 and let f = I(a,00) Then although f & D(A) it can be shown that
(T.A(0) = £(0))/t = P(Y; € (a,00))/t — (a0 as t — 0. (3.97)
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Find ty so that P(|Y,| > a/2) < 2su([—a/2,a/2]°) for all 5 < 1.

]
Ver(t(f) = [ T2, 0
< [ PV a2+ (PO € (af2,00)ar
0
< 2u([~a/2,a/2°) /0 (r+ (t = r)?)dr = O(£?) (3.98)

The proof of Lemma 3.9 shows that the bounds (3.97),(3.98) together will imply
: . ‘
Sn 1= (1/n) 3279 X-5(f) & p(a, )

and along a subsequence (n;); therefore S,, — p(a,00) almost surely . From a countable number of

intervals all bounded away from zero we can recover the entire measure g in this way.

Corollary 3.10 Suppose Ay, A, are generators of two conservative Feller processes on E and that there
ezists f € C(E) satisfying f, f2 € D(A;) N D(A2) and A; f(z) # A2f(z) for some z € E . Let P; be
the law of the superprocess with spatial motion generated by A; and started al 6, .Then Py and P, are

singular.

PROOF. For conservative Feller processes we have A;1 = 0 so that replacing f by f — f(z) € D(A;) we
may assume that f(z) = 0. The proof of Lemma 3.9 and the following remark shows that we can find
an explicit subseg}lence (nr)x such that Py lives on the measurable subset
na
Q) ={w: (l/nk)E?wz-,’(f) — Ay f(z) as k — oo}
j=1 A
Since (1/ng) 3_"* 27w,-;(f) will have a subsequence that converges almost surely to A, f(z) , under P,
we have P;(©,) = 0.0
We return .to the example of section 3.3 to show that it may not be possible to recover the entire
underlying motion.
Let E = {a,b},2 = D([0,00), Mp(E)), X¢(w) = w(t),F = (X, : § > 0). Let P2 be the law
on  of the superprocess with spatial motion a Markov chain on E with generator Af(a) = —Af(b) =
rf(b) — f(a) and started at agé, + b6, .Thus the ’particles’ jump from a to b at rate one and from b to

a at rater.

Proposition 3.11 For r1,ra > 0 there ezist ag, by > 0 such that P,(f"’bb) and P,(:°’b°) are not singular

measures.
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PROOF. We write X;(a), X;(b) for X({a}), X:({b}). Define
T inf(0 <t < €: Xq(a)/Xe(1) <1/2) if this set is non-empty
+00 otherwise
We will find M > 0 50 that if Qg = {T = +00,€ < M,sup,c¢ X:(1) < M} then P{{°*)(Qq) > 0 and
then give an explicit Radon-Nikodym derivative for

b b
dP(eot|o, [dP{o o,

From the characterisation of the law of the death point ( equation (3.76)) we have P,(,l’l)(F =a)> 0.
So
P (Xo(a)/Xe(1) = 1) > 0.

Pick n so that if £, = inf(t > 0: X((1) < 1/n) then
POD(Xy(a)/X(1) > 1/2 for all &, <L < &) > 0.

Then by the strong markov property if F(z,y) is the distribution function of the pair (X, (a), X¢,(}))
under Pr(,l'l) then

= =] (==}
0< / / PEYNT = +o0)dFz,y.
0 Jo

So we may pick ap,be so that P.§,°°’b°)(T = +00) > 0 and since £ < oo and sup,¢¢ X:(1) < co almost
surely we may find M so that P,gf°'b°)(ﬂo) > 0.

Let R=TAinf(t > 0: X¢(1) > M) Ainf(t > M : X;(1) > 0) where we let inf(@) = oo. Under
P'(:lo,bo)

' AR
Mi(e) = X:AH(G) = ao —- /o (r1X,(b) — X.(a))ds

ME(b)

tAR
Xan®)=bo= [ (X.() - X, 0))ds
. Y i
are martingales satisfying (M ®(a)); = JAR X,(a)ds, (XR (b)), = IOMR X,(b)ds and (MR(a), ME()); = 0.

Define

Z

| (ra = r1)X.(5)/ X (a)AMP(a) + /( _ r)dME ()
E(Zy) = exp(Z, - (1/2)(2)1)

1

™

Then AR
(2): = /0 (ry = r2)2((X2(8)/ X, (a)) + X, (5))ds.
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For t < T, X,(b)/X,(a) < 1so that (Z); < M?(r, — r)? for all t . This ensures that 7, is a uniformly
integrable martingale ( see Elliot [7] Theorem 13.27 ) . Define Q by dQ/ dP,(;' obe) — p o Then (see Rogers
and Williams [20] Theorem 1V.38.4 ) under Q

tAR
M (a)— (M%(a),Z): = Xian(a)—ao- /0 (r2X,(b) — X,(a))ds
tAR '
MJE(b) — (MR(}),2)¢ = Xar(b)~bo— /0 (X,(a) — r2X,(b))ds

are martingales with the same brackets processes as MJ(a), ME(b). This characterises the law of Q on
Fr which must agree with P{¢*) But Qg = {R=00}s0if AC Qg then A= AN{R =00} € Fr .
Thus Qla, = P§**|q,.D
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