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Abstract

Proximal normal analysis is a relatively new technique whose power and breadth of applicability
are only now being vrealized. Given an optimization problem, there are many ways to define a “value
function” which describes the changes in the problem’s minimum value as certain parameters are
varied. The epigraph of this function, namely the set of points lying on or above its graph, is a
set whqse geometry is intimately connected both with necessary conditions for optimality in the
original problem and with the problem’s sensitivity to perturbations. Proximal normal analysis
is the geometrical technique which allows such information to be derived from a study of this
fundamental set. In the first chapter we illustrate the technique in the simple model framework of a
finite-dimensional mathematical programming problem, and describe its consequences for parameter
sensitivity in optimal control.

Chapter II presents a detaiied proof of the fundamental geometric result, called the “proximal
normal formula”, in Hilbert space. The proof is distilled from the more general work of Borwein and
Strojwas (1985), who were the first to make this basic ingredient of the method available in infinite
dimensions. This extension is of considerable practical interest: in Chapter III it makes possible a
proximal normal analysis of state constraints in optimal control, which gives rise to a new form of
the maximum principle for state constrained problems.

Limiting techniques and existence theorems are key ingredients in proximal normal analysis.
Chapter IV gives a new existence theorem for open-loop stochastic optimal control problems in
which compactness of the control set is not required, but instead a growth condition is imposed
on the problem’s running cost. In addition to their independent interest, the methods and results
of Chapter IV enable us to use proximal normal analysis to investigate parameter sensitivity in
stochastic optimal control in Chapter V. A byproduct of this analysis is a new proof of the Stochastic

Maximum Principle which is more direct (if slightly more technical) than the proofs current in the

literature, and which provides a rigorous interpretation of the multipliers.

(1)
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Chapter 1. An Overview of Proximal Normal Analysis

Proximal normal analysis is a young technique which is quickly establishing itself as an
indispensable tool in the study of optimization. This thesis is an attempt to explain and add
momentum to this process. The body of the work stands on two legs: expositioh and research.
First, Chapter I introduces proximal normal analysis in the model framework of finite-dimensional
mathematical programming. This simple context clarifies the general form of the method and
suggests the sort of results it can be expected to yield in more general settings. Chapter I continues
with a review of parameter sensitivity in optimal control, one of the earliest triumphs of proximal
normal analysis in dynamic optimization. After gathering the necessary technical equipment in
Chapter II, most notably an infinite-dimensional version of the crucial “proximal normal formula”,
we go on to demonstrate two new applications of proximal normal analysis in the field of dynamic
optimization. In the first of these (Chapter III) we show how it allows the derivation of a new form of
the maximum principle for deterministic problems with state constraints. In the second (Chapter V)
we apply it to stochastic control problems to obtain a new proof of the Stochastic Maximum Principle
which affords a precise interpretation of the multipliers. Chapter IV contains an existence theorem
for a stochastic optimal control problem in Bolza form which is used in Chapter V, but is also of
independent interest. In each case, proximal normal analysis reveals an interplay between value
functions, geometrical objects, and necessary conditions which is deep enough to yield impressive

new results and wide enough to suggest many other areas for fruitful investigation.



Section 1. On Lagrange Multipliers
Consider the optimization problem
1) - i : =
(1.1) min {¢(z) : ¢(s) =0},

where £ and g are smooth real-valued functions defined on a Banach space X. No matter how large

the space X may be, this problem has a natural “image” in R?, namely the set
(1.2) C = {(9(=),£(z)) : z€ X}.

In the example illustrated in Figure O below, C is the lightly drawn curve.
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Fig. 0. The “image” of problem (1.1) in R?.

The minimization problem above can now be viewed as a two-step process: first find the lowest point
on the y-axis lying in C, and then find an element of X realizing this image. If we were to seek the
lowest points on other vertical lines, the following value function V:R — R U {+00} would emerge:

V(a) =min{v : (a,v) € C}

= ;%1)12 {l(::) : g(:l:) = a} .



In Fig. 0, the heavy line traces the graph of V. Note that in spite of the smoothness of g and ¢,
the function V' may easily be discontinuous or even take the value +oco. Without more hypotheses,
we can only reasonably expect V to be lower semicontinuous. But suppose for the moment that
V is finite-valued and differentiable at o = 0, with V(0) = £(Z) for some Z € X. Then the point
(v'(0),—1) is the downward normal to the graph of V at the point (0,v(0)). If V is convex near 0,

as illustrated in Fig. 0, it follows that one has

(1.3) ((v'(0),-1), (o V(@) = (0,¥(0))) < 0

for all a near 0. In particular, for all z near Z, one has g(z) near g(z) = 0, so
((v'(0),-1), (s(2), £(z)) - (o(2), £(5))) < 0

= £(2) - V'(0)g(2) < £(z) — V'(0)g(=)-

(1.4)
Hence the right side has a local minimum over X at Z, which forces its derivative to vanish:
(1.5) D¢(z) - V'(0)Dg(Zz) = 0.

(Here DZ is the Fréchet derivative of £.} This is the familiar Lagrange multiplier rule for constrained
minimization problems, with the “multiplier” being —V’(0). Thus in the usual Lagrange multiplier
rule one may interpret the multiplier corresponding to a given solution as an index of the marginal
effects of perturbations of the corresponding constraint.
This simple introduction demonstrates three things:
1. Differential analysis of the value function can be used to prove multiplier rules. The
analysis proceeds by applying known necessary conditions for an unconstrained problem to
é, “perpendicular inequality” like (1.3).
2. Conversely, known multiplier rules involve constituents which may have.an interpretation
as the marginal value associated with some appropriate perturbation.
3. Even for problems with smooth data, the value function can behave very badly.
The promising tone of articles 1 and 2 is in sharp contrast with the sad facts of life set down in
article 3: differential analysis of V may indeed be profitable, but is often impossible. Besides the
cowardly option of simply giving up in despair, there are two ways to deal with this conflict. The

first is to impose a sufficient number of additional conditions (linearity, convexity, etc.) to guarantee



that V is smooth. Such conditions often disallow the study of many problems of substantial practical
interest. The second possibility is to broaden the scope of the phrase “differential analysis” in some
way which allows its application to ill-behaved functions. This has been attempted by many authors
for many reasons, but the “generalized gradient” discovered by Frank H. Clarke in 1973 has proven
especially useful in the study of dynamic optimization. We now review those aspects of Clarke’s

theory most essential to the study of proximal normal analysis.

Section 2. Generalized Gradients

Let X be a Banach space, and let f: X — R U {400} be an extended-real-valued function on
X. Suppose f is lower semicontinuous, and that Z € X is a point where f(Z) is finite. It is quite
possible that f may fail to be differentiable at Z: one way to explain this situation is that there is no
single point D f(Z) € X* which adequately summarizes the local behaviour of f near Z. Often there
are several points in X* which each give partial information about f’s local behaviour. Clarke’s
generalized gradient of f at Z, denoted af('f), is a weak*-closed convex subset of X* which contains
all such points. In this section we discusé the precise definition and properties of the set-valued

operation 8f(-). All the definitions and theorems are taken from Clarke (1983).

Lipschitz Functions. Let us begin by considering the case when f is Lipschitz near Z, that is,

when there is a constant A and a neighbourhood U of Z such that

|f(y) ~ f(z)| < K ||y — || Vz,y € U.

In this case, the following quantity is finite for any v € X:

f(z + hv) = f(2)
- .

(2.1) P&v) = lim sup

Tx—T
hl0

This quantity is called the generalized directional derivative of f at Z in direction v. As a function of

v, it is positively homogeneous and subadditive, so we may define

(2.2) 3f(8) = {s € X* : (¢,v) < f°(&;v) YveX}.



This is the generalized gradient of f at Z: it is a nonempty, weak*-compact, convex subset of X*.
Notice that the set 3 f(Z) is truly a generalization of the usual gradient. For if f is continuously
differentiable (“smooth”) near %, then f°(Z;v) = (Df(%),v) Vv € X, and thus 8f(Z) = {Df(3)}.

The following is a useful converse.

2.1 Proposition. If 8f(Z) = {¢} for some ¢ € X*, then

iy 10220~ 1)

k1O

={,v) VveX

and convergence in uniform on every compact set of v-values. In Clarke’s terminology, f is strictly

differentiable at Z, with D, f(Z) = ¢.

The utility of generalized gradients is based not only upon the evident similarity between their
definitions and those of the classical concepts, but also because this similarity is preserved in many
of the rules of calculus. For example, the classical rules concerning the derivative of a sum of two
smooth functions, or of a scalar multiple of a smooth function, have natural counterparts in terms
of generalized gradients. Moreover, differentiation rules for certain nonclassical means of combining

functions can be easily expressed in terms of generalized gradients.

2.2 Proposition. Let f;,..., fi: X — R be functions Lipschitz near Z.

(a) For any scalars ¢; and c,,

8(e1fy + c2fs) (8) € c10£1(8) + ¢202(3).

Equality holds if c; = 0, or if f, is continuously differentiable near 7.

(b) 3($1£2) () € 11(2)9£2(8) + f2(2)11(5).

(c) The minimum function V (z) := min{fi(z) : ¢ =1,...,k} is Lipschitz near Z and
av(z) Ceo | J{0£:(B) : 1€ I(3)},

where I(Z) := argmin{f;(Z) : © = 1,...,k} is the set of indices at which the minimum
defining V is attained. -

(d) If f, takes on a local minimum value at %, then 0 € 3f,(%).



Part (c) of Prop. 2.2 is especially suggestive in the present context because it can be viewed
as a very simple instance of our general problem, namely the differential analysis of a certain
minimum-value function V' as perturbations z displace the data of the associated minimization
problem. The problem in (c) is admittedly elementary—one is simply reqpired to choose the smallest
of k scalars—but the issues noted in Section 1 are already perceptible. For instance, the function
V may well fail to be smooth even when each f; is linear, so classical differential analysis of V is
impossible. However, an elegant and illuminating description of the loc;al behaviour of V is available
in terms of generalized gradients. At the risk of some oversimplification, the goal of this thesis may
be summarized as an attempt to find calculus results analogous to (c) in which the minimum defining
V is taken over more general sets than {1,2,...,k}.

of course,v Clarke’s conception of the generalized gradient as a set-valued mapping instead of a
point-valued one raises issues with no obvious precursors in classical analysis. For instance, one must

consider the closure properties of the mapping 8 f(-).

2.3 Proposition. Let z; and ¢ be sequences in X and X* such that ¢; € 3 f(z:) Vi. Suppose that

z; converges to Z and that ¢ is a weak*-cluster point of {¢;}. Then ¢ € 3f(%).

In our discussion of Lagrange multipliers in Section 1, the geometrical significance of the classical
derivative was prominent, as it led to line (1.3). Generalized gradients also have their geometrical
side, which is best understood in terms of the “epigraph” of the function f. The epigraph of f is the

set of points (z,r) in X x R lying on or above the graph of f:
epif:={(z,r) e X xR : r > f(z)}.

Let us first consider, for fixed Z, the set

(2.3) | epi fO(%;) = {(v,r) e X xR : r‘2 2z}

Since fO(%;) is sublinear, epi f%(%;-) is a closed convex cone with vertex at 0. This cone is
the (Clarke) tangent cone to epif at (Z, f(Z)). In the case of a smooth function f:R™ — R,
fO(z;v) = (Df(Z),v) is a linear function of v and its epigraph, which we are calling Tep,; 7 (Z, (%)),

is the half-space lying above the hyperplane through (%, f(Z)) and supporting the graph of f. Thus

-6 —



the Clarke tangent cone corresponds to our usual notion of tangency in the classical case. Moreover

the (Clarke) normal cone to epi f at (%, f(%)), defined by

(24)  Neis(316) = {(c.) € X" xR : {(,8),(0,7)) SO V(v,7) € Tepis (2, £(2))}

is a closed convex cone with vertex at O obeying the rule
(2.5) ¢€3f(2) <= (¢,—1) € Nepis(3, f(2))

This corresponds to the well-known classical result that if f is C! near Z, then the vector (D f(%), —1)

is normal to the graph of f at (z, 7(2))-

Non-Lipschitz Functions. The Clarke tangent cone can be defined in considerably more
generality than the previous paragraph suggests. Indeed, generalized notions of tangency and
normality are the foundations of a whole theory of “nonsmooth analysis”, a structure whose keystone
is the generalized gradient. These foundations are also basic features of this thesis, and we have
devoted all of Chapter II to their study. Let us therefore be content with a sketch of their significance.
For any closed set C C X and any point ¢ in C, it is possible to define the tangent cone to C
at ¢, denoted Tc(c), in a way consistent with that cited above when C = epi f for f Lipschitz. (This

is done in Definition II.3.1 below.) The normal cone to C at c is then given by (compare line (2.4))
Ne(e)={¢ce X" : {¢,v) <0 VveTc(c)}.
By analogy with line (2.5), it is now possible to define a set 3f(Z) via

(2'6) . 3]'(5) = {§ € X" : (5: —1) € Nepil(ia f(?:))}

This set may also be called the generalized gradient of f at T since it agrees with the previous
definition when f is Lipschitz near Z. However, the definition in line (2.6) makes sense for any
function f for which epi f is locally closed near (':E, f(i)) In particular, the generalized gradient is
thus defined for any lower semicontinuous function f: X — RU{+o0} and point Z where f(Z) < +oco0.
However, in this broad class of functions the generalized gradient is known only to be a weak*-closed

set (perhaps not weak*-compact); furthermore, it may be empty. To obtain 8 f(Z) = @, it is necessary



that each vector in Nep;7(Z, f(Z)) have zero in its second component. The local information about f

near 7 is then concentrated in the asymptotic generalized gradient of f at T, namely
(2.7) 8% f(&) ={¢ : (5,0) € Nepi# (2, £(2))} -

The asymptotic generalized gradient is always a closed convex cone containing 0, which can
be intuitively understood as the set of directions in which f is particularly badly-behaved
(i-e., nonLipschitz). Together, 8f(Z) and 8° f(Z) contain all the local information inherent in

Nepi £ (2, £(2)):
(28) Nt (5, 7(8)) = (Me,=1) : A >0, ¢ € fE)}U{(6,0) : ¢ €3=F()}.
The Finite-Dimensional Case. When X = R", the following desirable results become available.

2.4 Proposition. Let f:R" — R U {+oo} and a point Z where f(Z) < oo be given. If epi f is

locally closed near (%, f(Z)), then one has Nepi 1 (%, f(2)) # {0}. In particular,

21U (5°7(@)\ {0}) #9.

2.5 Proposition. Let f:R®™ — R U {+oco} and T € R™ be given. If f(Z) < +oo and epi f is locally
closed near (%, f(Z)), then the following are equivalent:

(2) 3f(Z) is a bounded nonempty set;

(b) 8= f(£) = {0}; ’

(c) f is Lipschitz near Z.

An invaluable tool in actually computing 8 f(Z) for a function f satisfying the conditions of
Prop. 2.5 is the “proximal normal formula”, which indicates how to calculate Nepi (%, f(%)). For any
closed set C C R™ and point ¢ € C, we say that a vector v € R"™ is perpendicular to C at ¢ and write
v L C at &, if the closed ball (Z+ v) + |v] B meets C in the single point &. (Here B denotes the open

unit ball of R™.) In terms of an inequality, v L C at ¢ means

(2.9) (v,c—a<%|c—ﬂ2 Vee C\ {3}


http://JV.pi/
file:////c-cf

The proximal normal formula states that

(2.10) N¢(9) EBU )\{‘lim Y :vy; L Cate —7T, v,-—+0}.

S0 Jvi
Chapter II proves a version of this formula valid in any Hilbert space, and provides more details
concerning the general theory of normal and tangent cones. Before beginning that study, however,

let us reconsider the problem treated informally in Section 1.

Section 8. Lagrange Multipliers Revisited

In Section 1 we suggested that differential analysis of a certain value function was the key to both
the proof of a Lagrange multiplier rule and the interpretation of the multipliers, and moreover that
Clarke’s nonsmooth analysis allowed such progress despite the inapplicability of classical calculus.
This section justifies that claim, relying to a certain extent on Clarke (1983), Section 6.5, and on
Rockafellar (1982). We consider locally Lipschitz functions & R™ — R, g:R" — R?%, and define
V:R® —» RU {+o0} by

V(a) := min{(z) : z € R", g(z) + o =0}.

The minimization problem defining V(o) is called P(a): we say that z solves P(a) if g(z) + a =0
and £(z) = V(a). Let us make the following hypothesis throughout this section:

(H) V(0) < 400, and for some € > O the level set K = {z € R" : £(z) < V(0) + &} is compact.
Hypothesis {H) guarantees that a satisfactory existence theory can be developed for this family of

problems, and is crucial to the convergence arguments of Prop. 3.3 below.

8.1 Lemma. (a) For any a such that V(a) < V(0)+ ¢, problem P(c) has a solution lying in int K.

(b) The set epiV is locally closed near (0,V (0)).

Proof. (a) If V(a) < V(0) + ¢, then no generality is lost in restricting the set of admissible values of
z to a compact subset K' of int K = {z € R™ : £(z) < V(0) + ¢}. Let z; be a minimizing sequence

in K'. Then by passing to a subsequence if necessary, one has z; — z for some z € K’, and also

1
g(zi) +a=0, £=z;)<V(a)+ L



In the limit as ¢ — oo we find that g(z) + @ =0 and £(z) < V(). Hence :z:‘E K' solves P(a).

(b) Let (i, v;) be a sequence in epiV converging to a point (a,v) with v < V(0) + €. Then
without loss of generality we may assume v; < V(0) + ¢ Vi. By part (a), problem P(a;) has a solution
z; in K’ for which

g(zi) + s =0, Vies) = &(z) < v Vi.

Along a subsequence, z; — z for some z € K'. Taking limits above then gives g(z} + & = 0 and

£(z) < v. In particular, V(a) < v implies (a,v) € epiV, as required. i

Lemma 3.1 assures that Np;v (0,V(0)) is well-defined. To evaluate this set using the proximal

normal formula (2.10), let us first analyse the properties of a single perpendicular.

8.2 Proposition. If (§,—A) L epiV at (a,v) for some (a,v) € (0,V(0)) + B, then P(c) has a

solution z lying in K for which
~ ~ "~ ~ —A
0ea[%e() + (F.o())](2), where (,-) = (B, =2)
Proof. If (B,—A) L epiV at (o, v), then inequality (2.9) asserts that

(*) (B, =), (o, v) = (e, 0)) < S (e, v') = (,0) [ V(a',0) € epiV.

N

Now since o € €B and V(a) < v < V(0) + ¢, problem P(a) has a solution z lying in K. Moreover,

for any z’ € R™, we have

V(-g(z') < £(z') < £(z') + v — £(z)
= (-9(=), {z') +v— £(z)) € epiV.
Hence (*) implies that for all z’ € R™, one has

(8,9(2)) + (=) < (B, 9(a")) + 2() + 5 lo(=") - o(a) + 5 le(=') = £(a) .

That is, the locally Lipschitz function of z’ on the right side has a global minimum at z’ = z. By

Prop. 2.2(a)(d), it follows that
0 € a[Ae() + (6,9())] (a)-

Dividing both sides by |(8, —A)| # O gives the result. 111/

- 10 -



The next step is to consider a limit of normalized perpendiculars.

8.3 Proposition. If (5, —3:) = lim (E,-, -—X,-) for a sequence of perpendiculars (B;, —X;) L epiV at

(o4, v;) — (0,V(0)), then P(0) has a solution z for which

0 8[Xe() + (F,90))] ().
Proof. Write
(1) Xe() + (Bio()) = Xe() + (B 90)) + (% = X)) + (B = B.9()) -
For each i one has z; € K such that
0 o[%ie() + (B 9())] (=)
< 8[X() + (B, 90))] (a) +&F,
where e; is the Lipschita rank of the last two terms in (1) on K. Note that &; — 0 as i — co. Along a

subsequence, z; — z in K for some z solving P(0). (This follows from Lemma 3.1.) Then the closure

property of the generalized gradient (Prop. 2.3) gives
0 a[Xe() +(F,90))] (),
as required. 111/

Now let Y denote the set of solutions to P(0). The proximal normal analysis above leads to the

following Lagrange multiplier rule.
8.4 Theorem (Lagrange Multipliers). Ifz € Y, then there exists (8,—)) € R* X R such that

re{o,1), oea(x()+(Ba(D)(=), A+]pl>0.

Proof. Assume first that Y = {z}. By Prop. 2.4, Nepiv (0,V(0)) # {0}. Hence the proximal normal
formula (2.10) asserts that some sequence of normalized perpendiculars has a nonzero limit. This
limit must obey the conclusions of Prop. 3.3. If X = 0 in those conclusions, the statement of our
theorem holds with (8, —A) = (E, 0). If X > 0, then our statement holds with (B,-A) = (E/X, ~1).

If the set Y contains more than one point, fix any Z € Y and repeat the development above with

¢ replaced by 2(z) = £(z) + |z — 2|°. Hypothesis (H) remains valid for this new problem, which has

- 11 -



the unique solution Z. It follows from the previous paragraph that there exists (8,—1) €e R x R

such that

xe{o1),  0ea(Xe()+AI() =27+ (Ba(N)E), A+l8l>0.

Since the second term in the sum whose generalized gradient is computed above is smooth, with

derivative O at Z, the desired conclusion follows from Prop. 2.2(a). 111/

The development leading to Thm. 3.4 shows how proximal normal analysis permits the derivation
of a Lagrange multiplier rule. More specifically, it allows necessary conditions for a constrained
problem to be derived from known necessary conditions for an unconstrained problem. (See the
proof of Prop. 3.2.) This proof of the Lagrange multiplier rule is more elementary than that given
by Clarke (1983), Thm. 6.1.1, p. 228, which relies on Ekeland’s theorem. But in addition to its
debatable aesthetic advantages, Thm. 3.4 has two unquestionable merits. First, if the functions £ and
g are smooth, the auxiliary problem leading to Prop. 3.2 is also smooth. In fact, the whole proof of
the Lagrange multiplier ru.le then requires no nonsmooth analysis at all, except for the definition of
Nepiv (0,V(0)) which suggests the appropriate auxiliary problem. This is in contrast with the proof
based on Ekeland’s theorem, in which nonsmooth terms enter the auxiliary problems even for smooth
data. (Another general technique for proving necessary conditions, called “exact penalization”,
also introduces nonsmooth auxiliary elements into problems whose data are smooth. Chapter III
below shows that by avoiding this, proximal normal analysis allows a significant improvement in the
necessary conditions for optimal control problems with smooth state constraints.) The second main
advantage of the current proof is that it adds rigor to the traditional interpretation of Lagrange
multipliers as marginal values. This is the content of Thm. 3.6 below, which can be viewed as a
precise version of the results suggested in Section 1. (Theorem 3.6 is due to Rockafellar (1982); the

development in this section follows Clarke (1983), Section 6.5.)

Fl

8.5 Definition. Let z € R™ and A > 0. A vector § € R? is an indez A multiplier corresponding

to z if

G a[Ae(-) + (ﬁ,g(-)>] (z)-
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The set of all such vectors is denoted M*(z); we also write

M Y) = | M*(a).
€Y

8.6 Theorem. Assume (H). ThenY # @, and one has
8V (0) = [ M*(Y) N8V (0) + M°(Y) n 8=V (0)).
If MO(Y) = {0}, then 3=V (0) = {0} and the previous equation becomes
8V (0) = co [M*(¥) NV (0)] .
Proof. To prove the first statement, we Wiﬂ apply Prop. 11.6.2 with
D=M\Y)naV(0) and D™ = M°(Y)Na>V(0).

It therefore suffices to show that Nepiv (0,V(0)) = co[N U N*°], where

N ={X¢,-1): ¢e M}(Y)ndV(0), A >0}

N ={ (5,0) : c€ M°(Y)n3>V(0)}.
The inclusion Nepiv (0,V(0)) 2 C_O[N U N°°] is an obvious consequence of the definitions of 8V (0)
and 8°°V(0) (lines (2.6) and (2.7) above). To see the reverse inclusion, note that by the proximal
normal formula (2.10), Nepiv(0,V(0)) is the closed convex cone generated by certain limits of
perpendiculars. If (E,—X) is such a limit with A = 0, then f € M°(Y) by Prop. 3.3, while
(,E, 0) € Nepiv (0,V(0)) by construction implies g e 3%V (0). Hence (ﬁ, 0) € N®. And if (ﬁ,—X) is
such a limit with X > 0, then § = f/X € M(Y) by Prop. 3.3, while (8, —1) € Nepiv (0,V (0)) by

construction implies § € 3V (0). Hence X(ﬂ, —1) € N. Combining these two possibilities gives
Nein(O,V(O)) c EE[N V) Noo],

as required.

To prove the second statement we note that if M?(Y) = {0} then the cone D*® = {0} is
certainly pointed. The result would then follow from Prop. I1.6.5 if we could prove D 2 0% D. (This
notation is introduced in Lemma II.6.3.) It is quite easy to show that M°(Y) 2 0 M*(Y), while
d%°V(0) 2 03V (0) for any function V is a well-known result of nonsmooth analysis. Combining

these two statements justifies the application of Prop. I1.6.5. 111/
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Corollary 1. If M°(Y) = {0} and M(Y) is the singleton {8}, then V is strictly differentiable at 0

and D,V (0) = B.

Proof. By Thm. 3.6, M°(Y) = {0} implies 8V (0) = {0}. Consequently V is Lipschitz near 0 by

Prop. 2.5. In fact, Thm. 3.6 implies that 8V (0) = {8}, so the result follows from Prop. 2.1. /1l

Among the interesting byproducts of the first-order information provided by Thm. 3.6 is the
following sufficient condition for local surjectivity of the mapping g: R™ — R?®. In the smooth case, it
reduces to the well-known Surjective Mapping Theorem, which states that if the a X n matrix Dg(z)

has rank a, then g is locally surjective near z.

Corollary 2. Suppose M°(z) = {0} for so:_rie z € R"™. Then there exist positive constants n and M

such that for all o« € nB, there exists some y € R™ obeying g(y) + « =0 and |y — z| < M |a].
Proof. Define £(y) = |y — z| and consider the value function
V(a) := min {£(y) : g(y) + « =0}.

The unique solution to P(0) is z, and M%(z) = {0} implies 3V (0) = {0} by Thm. 3.6. According

to Prop. 2.5, V is Lipschitz near 0. That is, there exists M > 0 and n € (O,e/M) such that
V{a) £V(0)+ M |a| Va € nB.
Noting that V(0) = 0 and applying Lemma 3.1(a) gives the desired result. /1]/

A result like Corollary 2 is of interest in optimization theory because it says something about
the stability of the set of feasible points under perturbations of the data. Clarke (1983}, Section 6.6
proves a more general result involving inequality constraints and an abstract constraint as well as

equality constraints.
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Section 4. Parameter Sensitivity in Optimal Control

The previous section showed how proximal normal analysis allows both the derivation of
necessary conditions and a sensitivity analysis for a simple problem. In this section we review some
results of Loewen (1983) which show that even when necessary conditions are known in advance,
proximal normal analysis can be used to interpret them and perform an independent analysis
of parameter sensitivity. The first-order dependence of a problem’s minimum value on various
parameters is of considerable interest in its own right. It finds theoretical application in dynamic
programming and the Hamilton-Jacobi equation, for example, and also has consequences for such
practical issues as controllability. There is also its obvious utility in identifying which parameters
have the greatest effect on the problem’s value. In linear programming, the latter application is
sufficient to explain “why the dual vector is cherished by oil company vice-presidents and not just by

mathematicians.” (Franklin (1980).)

The Problem. In this section we study perturbations of the following differential tnclusion

problem:
(P) min {£(z(0),z(T)) : z(t) € F(t,z(t)) ae.[0,T), (z(0),z(T)) € S}.

The objective of problem (P) is to choose an arc (i.e., an absolutely continuous function)

z:[0,T] — R"™ satisfying the dynamic constraint
(4.1) z(t) € F(t,z(t)) a..[0,T]

and the endpoint constraint (z(0),z(T)) € S while minimizing £ over all such arcs. Line (4.1) is a
differential inclusion phrased in terms of a set-valued mapping, or multifunction, F:[0,T]xR" — R™.
An arc z obeying (4.1) is called an F-trajectory; if it also obeys (z(0),z(T)) € S, then z is called
an admissible F-trajectory. A special case of problem (P) is the Mayer problem arising when one is
given a control set U C R™ and a function f:{0,T] x R® x R™ — R" and instructed to solve (P)

with the modified dynamics

(4.2) z(t) = f(t,z(t), u(t)) a.e. [0, T for some measurable u:[0,T] — U.
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Filippov’s lemma asserts that if we take F(t, z) := f(t,z,U), then any F-trajectory actually obeys
(4.2). The converse is clear, so the admissible arcs for the Mayer problem built around (4.2) are the
same as those for (P).

Under the following hypotheses, necessary conditions for problem (P) are known. Throughout

this section, B denotes the open unit ball in R™.

(h1) The multifunction F:(0,T] x R®™ — R™ has nonempty compact convex values. For each
fixed z € R"®, F(-,z) is measurable on [0, T]. That is, for any closed set C C R", the
following “inverse image” is a Lebesgue measurable set: {t € [0, T] : F(t, z)NC #08}.

(h2) There is a function k(t) € L1{0, T] such that
(2) F(t,z) C k(t)B Vte[0,T), z € R",

(b) for each fixed t € [0, T] and z € R™, one has
F(t,y) S F(t,z) +k(t)ly—z|B  VyeR"

We define Kr = exp (f(;r k(t) dt).
(h3) The constraint set S C R™ x R"™ is closed, and {z : (z,y) € S} is compact.
(h4) The objective function £: R™ x R™ — R is Lipschitz of rank K; on R™ x R".
Note that the convexity hypothesis in (h1) means that we are working with the “relaxed problem” in
the sense of Warga (1972).
The necessary conditions are phrased in terms of the Hamailtonian H:[0,T] x R x R™ — R and

the distance function ds: R?® — R defined by
H(t,z,p) :=sup{{p,v) : veE F(tz)}

v ds(v) :=inf{lv—s| : s € S}
4.1 Theorem. Assume (h1)-(h4), and fix any r > (2K, + 2)(1+ Kr In Kr). If the arc z(-) solves

(P), then there exist a scalar u and an arc p: [0, T] — R™, not both zero, such that
(a) we{o,1},
(b) (=5(t), &(t)) € 8H(t,z(t),p(t)) ae. [0,T],
(c) (p(0),~p(T)) € 1s + r|(, E)| ds((0), (T)) for some ¢ € 3¢(z(0), z(T)).

Here G H signifies the generalized gradient of H in the (z,p) variable only, and E := u¢+(—p(0), p(T)).

Proof. This follows easily from Clarke (1983), Thm. 3.5.2, p. 147. //]/
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A full discussion of the relationship between Thm. 4.1 and Pontryagin’s maximum principle is
given by Clarke (1983).

Note that since Ng(s) = U rddg(s) (Clarke (1983), Prop. 2.4.2, p. 51), condition (c) implies
the simpler form =0

(c') (p(0), —p(T)) € p¢ + Ns(z(0), z(T)) for some ¢ € 3¢(z(0), :c(T))I.
Conclusion (¢’) is only slightly weaker than (c) for large values of r, and has the advantage of
containing no explicit r-dependence.

Hypotheses (h1)-(h4) specifying (P) restrict the application of Thm. 4.1 to global solutions z(:).
This is not an essential restriction. In fact, for any § > 0, the result remains valid whenever the arc

z(-) only solves (P) relative to all feasible arcs y(-) obeying the relationship |ly — z||,, < 6. This is

equivalent to the requirement that the graph of y be contained in the set
Ty(2) = {(t,9) € [0, T] x R™ : |y —2(t)| < 6},

called the tube of radius § about z. The key point here is that for the purposes of Thm. 4.1,
hypotheses {(h1)-(h4) need only hold within T5(z). This observation is important in Chapter III,

where we will use it to reduce the size of the constants Kr and K, once a solution is known.

Perturbations. Let us now consider the effect of a finite-dimensional parameter o in R* on

problem (P). We define a family of problems P(a) by
P(c) min {£(z(0),z(T), &) : %(t) € F(¢,z(t), ) a.e. [0,T], (z(0),z(T),x) € S}.

The value function V:R® — R U {+oco} is then given by V(a) := inf P(a). Here we intend to
explain (omitting most proofs, which are given in Loewen (1983)) how proximal normal analysis
leads to a valuable formula for 8V (0). First, however, we must place some mild restrictions on the
a-dependence of the data defining P(c). These hypotheses also involve the set Y, which consists of
all arcs solving the nominal problem P(0).
(H1) The multifunction F:[0,T| x R* x R®* — R" has nonempty compact convex values. For
each fixed (z,a) € R™ x R?, F(., z,a) is measurable on [0, T.

(H2) There is a function k(t) € L![0, T| such that
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(a) F(t,z,e) Ck(t)B V(t,z,a) €[0,T] x R* x R?,

(b) for each fixed t € [0, T] and (z,a) € R™ x R, one has

F(t,y,p) C F(t,z,a) + k(t) |(v,B) — (z,a)| B Y(y,B) e R* x R%.

(H3) The set S C R™ x R™ x R® is closed and {z : (z,y,a) € S} is compact. Moreover, for any
z(-) € Y, the multifunction Ng(-) is closed at (z(0), z(T),0).
(H4) The objective function £ R™ x R" x R® — R is globally Lipschitz of rank K,.
The closure hypothesis of (H3) requires that if (s;, v;) is a sequence converging to (s,v) and obeying
v; € Ng(s;) Vi, then one has v € Ng(s) at least whenever the limit point s has the form (z(0), z(T), 0)
for some z € Y. This mild assumption holds automatically if the cone Ng(z(0), z(T),0) is pointed.
(A set is pointed if zero cannot be obtained as a pogitive linear combination of its nonzero elements.)

A detailed discussion of other conditions ensuring the validity of (H3) is given by Loewen (1983).

4.2 Lemma. (a) If V(a) < +oo then problem P(a) has a solution.

(b) The function V is lower semicontinuous near 0.
Proof. See Loewen (1983). 1]/

Just as in Section 3, consideration of a single perpendicular vector leads to a certain auxiliary
problem which can be solved by known methods. Since the auxiliary problem depends on «, we must

introduce a more general Hamiltonian via
H(t,z,a,p) :==sup{(p,v) : veE F(t,z,a)}.

4.3 Proposition. Let (8,—)\) L epiV at (&,0). Then P(&) has a solution Z(-) to which there
corresponds an arc (p,q):(0,T] — R™ x R® and a constant u such that

(a) x20, pe{0,1}, wp+ll(p,9)ll >0,

(b) (=5(t),—d(t), (t) € OX(t, (t),&,p(t)) ae.[0,T),

(c) (p(0),—p(T),—q(T)) € Aus + Ns(£(0), 2(T), &) for some ¢ € 3£(2(0),2(T), &)-

(d) —g(0) = up.
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Proof. Since V(&) < ¥ < 400, Lemma 4.2(a) ensures that P(&) has a solution Z. For any o € R®

and any P-trajectory z(-) admissible for P(a), one has

V(a) < €(=(0), 2(T), ) < £(z(0), =(T), @) + & — £(2(0),%(T), 4),
so (@, £(z(0), z(T), @) — £((0), 3(T), &) + 9) lies in epiV. From inequality (2.9), it follows that
ME(%(0),(T), &) - (B, &) < Ag(=(0), z(T), a) - (B, a)+% |(a - &, &(=(0),2(T), o) - £(2(0), 2(7),&)) |

Since equality holds when z = Z and a = &, we find that the arc (fz?(), &) provides a global solution

for an unperturbed differential inclusion problem whose data are

Z(z: Z1, Y, yl) = Ae(z) Y, yl) - (ﬂ; 11) + % |y1 - a|2 + % |£(z’ Y, yl) - t(E(O),E(T), a) |2 ’
F(t,z,2,) = F(t,z,2;) x {0},

§_—_ {(:c,:cl,y, yl) : (Z,y, y1) € S, z3 ERG}.

The Hamiltonian for this unperturbed problem is

A~

7(t,2,21,5,0) = sup{{(p ), (0,0)) : (9,0) € F(t,2,22))
= ¥(t, z, z1,p).
Applying Thm. 4.1, we find that there is an arc (p, ¢):[0, T] — R™ x R® and a scalar p such that
(@) pe{0,1}, n+ll(p,q)ll > 0.
(b) (—p(t), —4(t), 2(t),0) € H(t,5(t), &, p(t),q(t)) a-e. [0,T]. This implies
(—B(), —d(t), 2(¢)) € AN (t,2(t), &, p(t)) a-e. [0,T].
(') (p(0),4(0), —p(T), —q(T)) € u[A(£,0,7,11) ~ (0,5,0,0)] + N5(2(0), & 2(T), &) for some
(&, m,m) € 8£(2(0), 2(T), &).
Condition (c') reduces to the pair of conditions

(p(0), —p(T), —4(T)) € uA¢ + Ns(%(0), %(T), &) for some ¢ € 3¢(%(0), %(T), &),

q(0) = —uP.

This proves the lemma. /11/
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The next step motivated by the proximal normal formula (2.10) is to take limits of normalized
perpendicular vectors. To obtain meaningful results, we require the following hypothesis.

(H5) P(0) has no solution z for which some nonzero arc (p, ¢):[0,7] — R™ x R® obeys

(=p(2), —d(2), 2(t)) € BX(¢, z(¢),0,p(t)) a.e. [0,T),

(p(0), —p(T), —4(T)) € Ns(2(0), 2(T),0),

g(0) =o.
If (H5) fails, we say that the perturbation structure of problem P(a) is degenerate. In the trivial case
when none of the data defining P(a) have explicit a-dependence, so that V(a) = V(0), then (H5) is
equivalent to the assumption that P(0) is normal. (See Clarke (1983) for a definition of normality.)
But in general, the nondegeneracy condition is a weak hypothesis which does not require normality:
Loewen (1983) presents several significant examples.

Suppose now that V(0) < +oo and that a sequence of perpendiculars (B, —);) to epiV at

points (e, v;) — (0,V(0)) is given, such that &Z:—::f‘\%l tends to the limit (8, ~)). Then there exist
solutions z; to P(c;) and corresponding arcs (p;, ¢;) and scalars u; as in Prop. 4.3. Hypothesis (H5)

implies that p; = 1 for all 7 sufficiently large. Since the conclusions of Prop. 4.3 are stable under

limiting operations, we obtain the following result.

4.4 Proposition. Let (8,—)) be the limit of normalized perpendiculars described above. Then
there is a solution z(-) of P(0) and an arc (p,q): [0,T] — R™ x R® such that

(a) x20, [(8,-N)l=1,

(b) (=5(2), —4(t), £(2)) € 8X(t,z(t),0,p(t)) ae.[0,T],

(c) (p(0),—p(T),—q(T)) € X¢ + Ns(z(0),z(T),0) for some ¢ € 3£(z(0), z(T),0),

(d) —q(0) = B.
Proof. See Loewen (1983), pp. 34-36. 111/

The appropriate definition of the multiplier sets is now clear.

- 20 -~



4.5 Definition. Let z solve P(0). An arc (p,q):{0,T] — R™ x R* is an indez A multiplier
corresponding to z if it satisfies conditions (b) and (c) of Prop. 4.4. The set of all such arcs is denoted
M?(z), and we define

M NY) = |J M*(2).
z€Y

We also define a mapping A from the space of multipliers to R?® as follows:
A(p,q) = —4(0).

The desired result describing the first-order dependence of V on o near 0 is the following

analogue of Thm. 3.6.
4.6 Theorem. Assume (H1)-(H5) and suppose V(0) < +oco. ThenY # @, and one has
8V (0) = & (A[M(Y)] N8V (0) + A[MO(Y)] N 8=V (0)).
If A[M°(Y)] is pointed, then the closure operation is superfluous and one also has
8=V (0) = co (A[M°(¥)] N 8=V (0)).
Proof. Similar to Thm. 3.6. 11/

Although sensitivity analysis was our primary objective, a new multiplier rule for perturbed

problems is a byproduct of this investigation.

Corollary 1. If z solves P(0) then it has an index A multiplier (p,q) for some A > 0, with

A+ 1g(0)| > 0.
Proof. See Loewen (1983). /1]

Other desirable results also emerge as corollaries. The fundamental issue of controllability, for
example, can be addressed as follows. {Note that since the hypothesis below involves only index 0

multipliers, it is independent of the cost function )
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Corollary 2. If A[M°(z)] = {0} for some arc z admissible for P(0), then there exists € > 0 such

that for every o € €B, one has an arc y(-) obeying
y(t) € F(t,y(t),a) ae.[0,T], (¥(0),y(T), @) € 8.

See Loewen (1983), Chapter IV, for a more detailed controllability result which generalizes

Clarke (1983), Thm. 3.5.3.

Extensions. Loewen (1983) also presents a sensitivity analysis for differential inclusion problems
with free terminal time. These results, together with a detailed investigation of their consequences
for controllability and the nonlinear time-optimal control problem, may be found in Clarke and
Loewen (1984) and Clarke and Loewen (to appear).

The following chapters extend the sensitivity analysis of this section in two more significant ways.
In Chapter II, infinite-dimensional perturbations are used, and a new form of the maximum principle
for state-constrained problems ensues. In Chapter V we revert to finite-dimensional perturbations,

but apply them to a stochastic optimal control problem.
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Chapter II. A Proximal Normal Formula in Hilbert Space

Clarke’s calculus of generalized gradients is distinguished by its mutually complementary
geometric and analytic aspects, which extend those of ordinary calculus. In calculus, one considers
a smooth function f: X — R for which the gradient Vf(z) is defined analytically in terms of
limits. The resulting object has a geometric interpretation: the ray in direction (Vf(z),—1) is
the outward normal to the epigraph of f at the point (z, f(z)). (The epigraph of f is the set
epif:={(z,7r) € X xR : r > f(z)}.) The pedagogical progression from analysis to geometry in
the smooth case accurately reflects the sequence of steps used to solve many applied problems: one
first computes a gradient, and then uses its geometric properties. In Clarke’s calculus, a generalized
gradient can be defined for any lower semicontinuous f: X — R U {+o0}: it is a weak*-closed convex
subset of X*. The resulting object has a geometrical side which is perfectly analogous to that for
smooth functions—if Nep;is(z, f(z)) denotes the (Clarke) normal cone to the closed set epi f at the

point (z, f(z)), then

(1) 8f(z) ={s € X" : (¢,—1) € Nepiy(z, f(2))}-

The fundamental difference between Clarke’s theory and the ordinary calculus becomes clear when
one turns to applications. In the problems to be considered in subsequent chapters, the desired
results are analytic statements which could be derived from a formula for 8 f(z); the appropriate
solution is ba;ed on dotng the geometry first, i.e. computing Nep;i s(z, f(z)), and then drawing the
analytic conclusions from (1). The geometric approach is valuable because, whereas the analytic
definition of 8f(z) is difficult to apply, an elegant sequential characterization of Nep;s(z, f(z)) is

available. This result, called a prozimal normal formula, is presented in Clarke (1983), Section 2.5.
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Theorem. Let C C R" be a closed set containing a point c. Then

Nc(e) = E{igrgo v; : v; is a bounded sequence of proximal

normals to C at base points ¢; — ¢ in C}.

Until very recently, this formula was known only for finite-dimensional sets C, so the geometrical
approach to 8 f(z) outlined above could be applied only to functions whose domain was R™. Even in
the finite-dimensional context, however, the proximal normal formula has made significant progress
possible in the study of sensitivity, controllability, and time-optimality in optimal control. (See
Section 1.4.) This useful formula has recently been extended to reflexive Banach spaces X by Borwein
and Strojwas (1985), under the hypotheses that the norm of X is Fréchet differentiable away from
0 and Kadec. This chapter shows that any Hilbert space satisfies these requirements and presents
a simple proof of the Borwein-Strojwas theorem in this context. Chapter III presents a significant

application of the theorem.

Section 1. Elementary Geometry of Hilbert Space

Throughout this section we consider a real Hilbert space H equipped with the inner product

(-,-) and the norm [|:||. The open unit ball of H is denoted by B, and its boundary by S.

2
1.1 Proposition. Let z,y € H. Then ||z|| =1 and ||z — y|| < § imply “i_—;—y“ > 1-6. (This

shows that H is uniformly convex.)

Proof. By the parallelogram identity, any z,y € H obey

| I+ ol = 212l + 2 lol? ~ =~ I
2 2zl + 2(I= - v}l = =l)? = ll= — v||®
= 4|z - 4=]| |z = ylf + llz - y®

2
2 4f|=l|” - 4l<l| |z - yll-

2

zty > 1— 6, as required. /1]

Hence if ||z]| = 1 and ||z — y|| < 6§ we obtain
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1.2 Proposition. Let z, y be any unit vectors in H. Then for any § > 0, (z,y) > 1 — § implies

llz — yl| < V26. In particular, (z,y) = 1 implies z = y.
Proof. By definition of the Hilbert space norm, any z,y € H obey
lz = yI? = ll=l* + llI* ~ 2(=, v) -
Hence ||z|| = ||ly|| = 1 and (z,y) > 1 — 6 imply the desired inequality:
lo— gl <2—2(1-6) = 26. 1111

1.3 Proposition. The norm topology and the weak topology of H coincide on the set S. (In other

words, a Hilbert space norm is a Kadec norm.)

Proof. Let N be a strongly open subset of S. We must show that N is also weakly open. To do so,
we will show that any point x € N has a weak neighbourhood contained in N.

Fix z € N. Since N is strongly open, there exists € > 0 such that (zr +eB)NS C N. Now
consider the weak-open set U = {y € H : (z,y) > 1— 1£?}: certainly z € U. Moreover,iff yc UN S,

then

lz— 9l = 1-2(z,y) + 1 =2(1~ (=,y)) < €%,

Thus UNSC(z+eB)NSCN. /11
1.4 Corollary. Let {z,} be a sequence in H. If z, — z # 0 and ||z, || — ||z||, then z, — z.

Proof. Consider the sequence y,, = in S. For any z € H, we have

In_
l|znl

1 1
(za yn> = ”_zn_ﬂ (z: In) - m (2, I) .

Hence y, — y = “—ZH By Proposition 1.3, y, — y, i.e.
z= lim <___||:c|| ):z:n.
n—co \ [|zn|
Since HUil” — 1 as n — o0, it follows that z,, — z. /1]
Tn
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1.5 Proposition. For any z € H\ {0}, the norm of H is Fréchet differentiable at z, with derivative

x

llll

Proof. Observe that
2 2 2
ol = llz + of" = l=]” — 2 (=, v)

= (ll= + vl = lI=ll) (= + vll + [|=]]) = 2 (=, v).

Rearranging terms in this equation yields the identity

=+ ol  llzll — {20 ol 2llzlf
= +{(+—y ) |+ — 1] .
ol Te+ol+ 0=l \T=l’ Tell/ LTz + ol + =]

8
<

Both terms on the right side evidently tend to 0 as v — 0. /111

1.6 Corollary. Let z # 0 be given in H. Then the following assertions about a vector v € H are
equivalent.
(2) llvll =1 and (v, z) = ||z|.
z

(c) v is the Fréchet derivative of the norm at z.
Proof. (b)<>(c) was the content of Proposition 1.5; (b)=>(a) is obvious; and (a)=>(b) is an instance of
Proposition 1.2 with § = 0. /11
Section 2. Best Approximation by Closed Sets

We continue to study the geometry of the Hilbert space H. If C C H is a nonempty closed

subset of H, we may define the distance function from C as follows:
de(z):=inf {||jz —¢| : c€C}.

(The alternate notati;)n d(z; C) = do(z) will also be used below.) A point ¢ € C at which the infimum
defining d¢(z) is attained is called a best approzimation to = in C, or else a nearest point to = in C.
When H is simply finite-dimensional Euclidean space, the Heine-Borel theorem implies that every

z € H admits a best approximation from C. For a general Hilbert space H, however, compactness is

a more elusive property and best approximations become harder to find. If the set C is convez, then
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every € H admits a unique best approximation (Rudin (1973), Thm. 12.3), but if C is not convex
then there may be points z with no best approximation. For example, consider the Hilbert space £2
of square-summable real sequences with basis elements ¢; = (1,0,0,...), e2 = (0,1,0,...), etc. In
this space, the origin has no best approximation from the closed set C = {(1+ %)e, : ne N}. It
can be shown, however, that “most” of the points in £2 do have best approximations from C. The
objective of this section is to prove a general theorem of this type, due to Ka-Sing Lau.

The following technical leﬁma about the shape of the unit ball in H will be used in the proof of

Lau’s theorem. For any unit vector z € H, r € (0,1), and § € (0, 1), we define
M (z,6)=[rz+(1-r+6)B]\B.
2.1 Lemma. Let r € (0,1) be fixed. Then for any € > 0 there exists § > 0 so small that for any

z€ S, one has ||y —y2ll <& Vy,yz € M,(:z:,‘ﬁ).

Proof. For any y € M,(z,§),

vl < fly—rzll +ral| (1 —r+8)+r=1+6.

Likewise,
2 2
1< lyll® = lirz + (y — ra|

= lIrz)l* + 2 {rz,y ~ rz) + |ly - ra]®

<ri42r(z,y) ~2r7 + (1 —r+6)2

Rearrangement of terms gives

2r(z,y) 2 1+7r°—(1—r+6)°
— (x,y)z1—<1-1)5——1—52.
r 2r

By Prop. 1.2, it follows that for § € (0, 1),

||$—y||5\/25 (1—1+ i) < KV,
r 2r

where K =4/ 3 —rZr is independent of z.

Hence for any z € S and § € (0,1), y;,y2 € M,(z,6) imply

lyr = wall < llys = =l} + |z = v2]] < 2KVG.

2
Given any ¢ € (0,2K), one needs only to choose § = (5%) to verify the Lemma. /1]/
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2.2 Remark. Let us define a nonnegative real-valued function d on H by

d(z) := lim sup{<” “l c1> . d(z;Cs(z)) < 6, cl,czng(z)},

where Cs(z) = [z + (dc(z) + 6)B] N C. Observe that d(c) = O for all ¢ in C. For if ¢ € C, then
Cs(c) = (¢ + §B) N C. Hence cy1,¢cz € Cs(c) imply |lcz — c1]| < 26: thus d(c) = 0. Contraposition

shows that if d(z) > 0 then z &€ C, so d¢(z) > 0.

2.8 Theorem. Let C C H be closed and nonempty. Then every point z in the set

G = {z € H : d(z) =0} has a best approximation from C.

Proof. Fl.x any z € G. We will construct a nearest point to z in C.

Consider any sequence {c,} for which ¢, € C1(z). Then {[[cn]|} is bounded, so along some
subsequence (we do not relabel), ¢, converges weakly to some point ¢; € H. This is our candidate
for the nearest point to z in C. Note that since |[cp — z|| < d¢(z) + L for each n, we have
llez — z|| < dc(z). Therefore it suffices to prove c; € C.

Fix any € > 0 The definition of d yields a corresponding 8¢ such that the indicated supremum

is less than ¢ whenever 0 < § < 8. Choose N > 1/6;. Then whenever m > n > N, we have
cs <_Ei,cn _cm> - <£_’f_,cn _z>+ <ﬂ,z_cm>
llen — =] llen — =] llen — 2|l

— <L:Z_”,cm—x>> llen — 2| — .

llen

Letting m — oo here, we find

h— T
de(z) 2 ez — z|| 2 <”c—_z—”-,c,, - z> > llen —zl| — e = de(z) —&.

Since £ > 0 is arbitrary, it follows that |c; — z|| = d¢(z) and that |jc, — z|| — ||cz — z||. Since
(¢n — z) converges weakly to (¢, — z) also, we deduce that ¢, — ¢, (Corollary 1.4). Since C is closed,

we have ¢, € C as required. /1]

The following theorem justifies the statement that most points of H have best approximations

from C by demonstrating that in fact, most points of H lie in G.
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2.4 Theorem. The set G = {z € H : d(z) = 0} is a dense G subset of H.

Proof. Consider the increasing sequence of sets F, = { € H : d(z) > 1/n}. It suffices to show that
each F,, is closed and nowhere dense, since then the G5 set G = n (H \ F,,) is dense by Baire’s
n=1

theorem.

To show that F,, is closed, fix any zo & F,,. Then there exists A > 0 such that 0 < § < A implies

<—z—_z—o,62—61> < l—A VZEC¢5($E0)+6B, 61,02605(20).
llz = 2ol n

Pick § = %A. Then z € 7o + §B implies dg(z) < dc(zo) + 6: hence Cs(z) € Ca(zo). In particular,
d(z;Cs(z)) < 6 implies d(z — (z — z0); Cs(z)) < 26, and thus d(z — (z — z0);Ca(z0)) < 26 < A.
Consequently z € zo + 6§ B implies that for all z such that d(2;Cs(z)) < 6 and all ¢;,¢c2 € Cs(z0) C

Ca (IO)’

< 2z — (2 — 20) — %o

1
) <R
By definition, d(z) < 1/n, i.e. o+ §B C H \ F,. So F, is indeed closed.
To see that int F,, = @, suppose the contrary. By translation, assume that 0 € int Fy,,
so that there is some r € (0,1) such that rB C F,. We may also take r < d¢(0), since
d(0) > 0 implies dc(0) > O by Remark 2.2. Finally, we lose no generality in scaling the inner

product in such a way as to make dc(0) = 1. By Lemma 2.1, there exists A > 0 such that

1
vz — v1ll < —— V1,42 € M, (z,4), z € S. Now for § = 1A, pick any zo € C5(0): Define

n+1
T = “2—0” and z, = rz;. Then Cs(z,) C M, (z1,26)}, so we have
0
<__z—:c, ><|lc c||<————1 Vey, ez € Cs(z,) €H
32— C > - ’ Zr), z .
PR A 2=l < o7 1,62 €Cs
In particular, d(z,) < 1/n, a contradiction. Thus each F,, is nowhere dense. 11/

Section 8. Proximal Normals and Clarke’s Normal Cone

As we saw in the introduction, the normal cone to a closed nonempty subset C of H is a key
ingredient in the theory of generalized gradients. However, it is not a basic ingredient: rather, it is

defined indirectly in terms of the tangent cone, which we now introduce.
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3.1 Definition. Let C be a nonempty closed subset of H containing some point ¢. The tangent
cone to C at ¢, denoted T¢(c), is the set of vectors y € H obeying any one of the following three

equivalent conditions.

(a) imsup do(z +ty) —do(z) _ 0.

z—c t

t\0
(b) For every pair of sequences ¢; — ¢ in C and t; \, 0, there is a sequence y; — y in H such

that ¢; + t;y; € C Vi,

{¢) For every & > O there exist § > 0, A > 0 such that
Cnz+tly+eB)]#8 VzeCn(c+6B), te (0]

The equivalence of definitions (a) and (b) is proven in Clarke (1983), Theorem 2.4.5; the same
method establishes (a=>c), while (c=b) is obvious.

Here is a particularly useful characterization of T¢(c), quoted from Treiman (1983), Thm. 2.1.

8.2 Proposition. Let ¢ and C be as in Definition 3.1. Then y € Tc(c) if and only if there exist

€ > 0 and sequences ¢; — ¢ in C and A; > 0 such that
Cnle+(0,X])(y+eB)] =6 Vi
Now the normal cone is defined by polarity with the tangent cone.

3.3 Definition. Let C be a nonempty closed subset of H containing some point ¢. The normal

cone to C at ¢, denoted Ng(c), is defined by
No(e)=Tg(c) ={ve H: (vy) <0 VyeTc(c)}.

Since the geometric features of the generalized gradient are more closely linked to the normal
cone than to the tangent cone, a direct characterization of Ng(c) would certainly be a useful
companion to Definition 3.3. Such a characterization is the goal of this chapter: it is given in
Section 4. The fundamental idea behind it is that there ought to be a relationship between normals

and perpendiculars.
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3.4 Definition. A vector v € H is perpendicular to C at a point ¢ € C if ¢ + v is a point whose
best approximation from C is ¢. This situation is written as v 1 C at ¢, and each of the vectors tv,

t > 0, is called a prozimal normal to C at c. The set of all proximal normals to C at ¢ is denoted

PNc¢(c).

8.5 Proposition. The following assertions about v € H and ¢ € C are equivalent.
(2) v is a proximal normal to C at ¢.
(b} For somet > 0, ||tv|| = dc(C+ tv).
(c) For somet > 0, (v,c—7¢) < % le-2* vecec.

Moreover, the same t will serve in both (b) and (c).

Proof. (a<+b) restates the definition of a proximal normal. To prove (b<¥c), observe that the following

three statements about ¢ € C are equivalent for any t > 0:
litol® = 1@+ tv) =2l < |18+ tv) — c||*,
2 ||v)® < (18— ¢l|® + 2 (E = ¢, t0) + £2 |||,
1. 2
(e =8 < o [E e 11/

8.6 Remarks. 1. Note that O is perpendicular to C at every point. Thus PN¢/(c) is never empty.
Moreover, the results of Section 2 indicate that most points of H have a best approximation from C.
Each of these points lying outside C gives rise to a nonzero element of PN (c) at some point ¢ € C.

2. In Clarke (1983), the definition of perpendicular requires that ¢ provide the unigue best
approximation in C for the vector ¢ + v. Since the ball of H is strictly convex, the proximal normal
vectors corresponding to Clarke’s more restrictive definition are identical to those discussed here.

3. Another widely used concept of normality to a given closed set involves “Fréchet normals.” A
vector v € H is Fréchet normal to C at a point T € C if for every € > 0 there is a neighbourhood N,
of ¢ such that

(v,c—=¢) <elc—7 Vee CN N,.

From Proposition 3.5(c), we see that every proximal normal to C at T is automatically a Fréchet
normal to C at ¢. The converse is false even in R?, where one may take C = {(z,y) : y < Ix[s/z},

¢=(0,0), and v = (0,1). In this example v is a Fréchet normal to C at ¢, but not a proximal normal.
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Section 4. The Proximal Normal Formula

The main result of this chapter is a formula which allows the computation of Clarke’s normal
cone in terms of the proximal normal vectors discussed in Section 3. It asserts that Nc(c) = Re(c),
where Rc(c) is the closed convex cone '

Rc(c) = @{w-lim v; : v; is a bounded sequence of proximal normals
to C at corresponding base points ¢; — c}.
As one might expect, this is proven by establishing two set inclusions, one of which is relatively

straightforward.
4.1 Proposition. N¢(c) 2 Re(c).

Proof. Let v lie in the set whose closed convex hull is computed to yield Rc(c). By definition, there
is a bounded sequence {v;} tending weakly to v a;nd a corresponding sequence of base points ¢; — ¢
such that v; € PN¢(c;) for each 1. By Proposition 3.5(c), there exists a sequence ; > 0 such that

(vi,z—c;) L g llz—¢ ||2 Vz € C. Choose a sequence t; decreasing to 0 such that t;e; — 0. Then
for any y € Tc(c), Definition 3.1(b) asserts that there is a sequence y; in H converging to y such that

¢; + tiyi € C  Vi. The proximal normal inequality quoted above gives

(vi, (e + teys) — e < e fl(ei + taws) —ell® W,

— (vi, ) < tees wl® Ve

Since t;e; — 0 and {||%;]|} is bounded, we find that lim sup (v;,y;) < O.

t— 00

Now since v; converges weakly to v, we have
(U;y) = hm (Ui,y)
1 —+ 00
< limsup (v;, ;) + limsup (v, y — v:) .
$—CO $—+ CO
The first term on the right side is known to be non-positive; the second is zero because {v;} is
bounded and y; — y. Hence {v,y) < 0.

Since y € T (c) was arbitrary, we find that (v,y) <0 Vy € T¢(c), i.e. vE Ne(c). Since Ne(e)

is known to be closed and convex, it must contain the closed convex hull of all such points v, namely
Re(c). /1117
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The assertion that Ng(c) C Re(¢) is considerably more difficult to prove. It is equivalent to the
statement that T (c) 2 RE(c), or H\ To(c) € H \ R (c). We prove this last fact by considering any
unit vector y € H \ Tc(c) and exhibiting a v € R¢(c) such that (v,y) > 0.

The construction is based on Proposition 3.2. Since y & T¢(c), there is an € > 0, a sequence of

points ¢; — ¢ in C, and constants A; > 0 such that

CNlei+(0,X](y+eB)]=08 Vi
For each ¢, we construct a unit proximal normal vector v; to C at a point ¢] near ¢; such that each v;
has a rather large inner product with y. The weak limit of a subsequence of {v;} then provides the
desired v.

The direction y will clearly play a significant part in this effort. We let y* denote the orthogonal
complement of the subspace Ry in H. Then every vector v € H can be written as v = Az + uy for
some z € y1 NS and A, u € R. In this decomposition, ||Az + py|® = A2 + u2.

The next few lemmas deal with the situation for a fixed 1. No generality is lost in translating

the problem so that ¢; = 0. For the € > 0 given above, we consider the cone

K= U t(y +¢B).

t>0
We also fix o € (0,1) (a specific choice will be made later) and define the set

)‘2
E={z+puy: §+u2<1, zeytnS}.

(In the simplest of all special cases, when H = RZ?, E is an ellipse whose major axis lies along the
y-axis, and each of the following five lemmas has a simple geometrical interpretation. Figures 1-6 at

the end of this section are included to justify this statement and to make the proof easy to follow.)

4.2 Lemma. Let z € y* NS. For any A\, u € R one has

V1—ze2
z+puyeK & uZ—e—EI/\|.

Proof. The point Az + uy lies in K if and only if there is a scalar p > 0 such that

lo(Az + py) - ylf® < €2

This inequality reduces to A2p% + (up — 1)2 < 2, the left side of which has a minimum value of
A? p : . 1 .
e when p = g Thus Az + uy € K if and only if 4 > 0 and mz— < . The result

follows. /117
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4.3 Lemma. Let p > 0. If \z+ puy € (y+ (1 + p)E) \ K for some z € y* N S and constants

A, u €R, then

< 1EVI+p(2+p)(1+a"2m"2)
K 1+ a2m—2

, where m =
(Note that the same estimate for u holds if we assume t(Az + py) € t(y+ (1+p)E) \ K for any t > 0.)

Proof. If u < 0 the conclusion is evident, so assume p > 0. Observe that Az + py € y+ (1 + p)E is

equivalent to

(*) SN+ (= 1) < (149,

while Az + py € K is equivalent to 4 < m|A|. Substituting this into (*) yields
(A+e2m ) p? —2u—p(2+p) <O.

The positive root of the quadratic function of i on the left here gives the maximum permissible value

of u, which is precisely the estimate written above. /1]

4.4 Lemma. Suppose points vo = Agzo + poy and v1 = A1z1 +p1y in H are given (zg,z1 € yt NnSs)
such that vy lies on the boundary of vo + pE for some p > 0. If {y,vp — v1) > pn for some n > 0,

then for the unit vector #i in direction —(A1z; — Aozo) — a?(p1 — o)y one has

[n=2 - (1-a2)]"/*

(R, y) >
Proof. Without loss of generality take vg =0, p = 1. Then observe that

2
l=Aiz1 — o2piy||” = A2+ atp? = a?(1 - p?) + a*p? = o?[1 - (1 - @?)ud].

This function of u; takes its maximum value on (—oo,—n] at g3 = —n. Therefore
2 2
~ a (*#1) a™n
(7, y) 2

T Fhm = et < Ve i- (- ad)n?]

The indicated inequality is a rearrangement of this one. /1]

- 34 -



Now the reason for studying E so closely is that it can be considered as the unit ball of a new

norm on H. Indeed, if we define a bijective linear mapping L: H — H by
A 1
L(z\::-{-py):;z—i-py Vzey-nS, MpeR,

then a new inner product on the vector space H is obtained by defining
(A1z1 + w1y, Aoz + pay) = (L(A121 + pry), L(A2z2 + pay))

A1
= ;22 (1, 22) + pape.

. . A2 . .
The new inner product induces the norm |||Az + py|||* = =t u? whose unit ball is E. Clearly the
new norm is equivalent to the original one, so (H,{(-,"))) is complete—i.e. is a Hilbert space in its
own right. The key fact to be used below is that |||-|||-proximal normals correspond to ||-||-proximal

normals.

4.5 Lemma. Suppose that A\1z; + p1y has a closest point T = (A1z; + p1y) + (Aozo + woy) € C

(z0,z1 € y* NS) with respect to the norm |||-|||. Then a proximal normal vector to C at T is

P ( Xozo + o poy )
[Aozo + a2 uoyl|

Proof. Without loss of generality, assume A; = p; = 0. Let r = |||¢|||, and note that
| Xozo + apoy| = I(Ao,a2p0)| where |-| is the Euclidean norm in R2. Then it suffices to show that
T+ o?rfi has ||-|-closest point ¢ in C. For this, we need only prove that ¢+ o?rfi + a?rB C rE, i..

that for any z € y* N S and any A, x € R with A% + p2 < 1, one has

|||E+ a?ri + o®r(Az + pcy)]”2 < r?

1 AoZo 2 a‘rp.o 2
<= = [[Aozo — &Pre——— + a%riz|| + - — 4 a?r < r?
a? ||7070 (Ao, a2 o = 1%, @2uo)] o
11z a’r ’ 2 a®r 42,2
< —/\ 1‘——‘—— +2a7'/\)\ (1———-—>$ :c—f-ar)\}
1% ( eman) °\!” G erma)]) 0¥
atrug 2 ]2 2
+ (o — o +a’ru| <r-.
[" (0, a2u0)]

This would be assured if we could prove that

1 oy 2 - a’r
15 (1_ ——-——) + 207 (1_ —__) Ao +a4r2/\2:|
,,2[ o\~ 1o azm0)] A
a*rug
+ _——
["° el

This, however, is precisely the statement of Corollary 7.2, in which one must simply replace (z,y) by

2
-+ azrp,] < r.

(A, p) throughout. /1]
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4.6 Lemma. Let ¢ € C be a point for which there exists A > 0 such that CN[c+(0,A](y+¢B)] = 0.
Then for any 1 > 0 there exists a point € € C and a unit vector v € H such that
(a) e —cll <,

(b) v is a ||-||-proximal normal to C at T,

(c) (v,) > (4m) 2 vi-e

(15 + (am)~2]1/2’ where m =

€

Proof. Without loss of generality, we may take ¢ = 0.

Let > O be given. Choose o = (4m)~!, where m = . Then for any p € (0,%) and

V1-—g?
€

0 < t < n/4, we argue as follows.
By Theorem 2.4, the open set t(y + pE) in (H, {(-,))) contains a point 5 = t(Az + uy) which has

a best approximation ¢ = AZ + Jzy in C. Note that since 0 € C,

(1) (117 = 2llf < NIplll < [11B — tylll + [Heylll < to+ .

Hence ||| < ||lel}l < lile =Bl + IIBll| < 2t(1 + p) implies (a), by our choices of p, t. If we choose t
so small that 2¢(1 + p) < (1 — €)A, then this also gives ||c]] < (1 — €)A. Since ¢ € C, it follows that
¢ must lie outside the cone K (or else ¢ = 0, for which the following arguments also remain vald).
Inequality (1) also asserts that

e~ tylll < llle =2l + [lIP — tylll < 21 +p) + tp = t(1 + 2p).

It follows from Lemma 4.3 that

—Zy,—2
Z<t 1+/1+2p(2+20)(1+ a"2m—2) . 1++/1+ 68p(1 + p) < 1,
1+a 2m—2 17 3
by our choice of «. Consequently
- — 1 1 1
(p,p-O)=tp—p2tlu-Z)2t(l-p—-3z) 2t
3 3 2
) t 1/2 .
by our choice of p. By Lemma 4.4, with n = — /2_ > / > 1/4, we obtain
WB—clll — 1+p
o (4m)~?
> =
¥) 2 BT oA T {5 (dm) 2]
where v is the ||-||-unit vector in direction
—(AZ — thz) — o®(E — tp)y.
By Lemma 4.5, this v is a proximal normal to C at t. 111/
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We may now complete the proof of the proximal normal formula.
4.7 Theorem. N¢(c) C Rc(c).

Proof. We follow the program set forth at the beginning of this section. Pick any unit vector
y & Tc(c). Then by Proposition 3.2, there is some € > 0 and a sequence of points ¢; — ¢ in C and

constants A; \, O such that
CNlci+(0,\)(y+eB)] =0 Vi
V1-—¢e? (4m)1?

= —— 6 =
Let m - and 15+ (4m) 2]\ 72

@ € (c;i + $B) N C at which there is a unit vector v; proximal normal to C and obeying (v;,y) > 6.

> 0. By Lemma 4.6, there exists for each ¢ a point

Now the bounded sequence {v;} must have a subsequence converging weakly to some v € H. By
definition, v € Rc(z). Along this subsequence (which we do not relabel), {v;,y) > § Vi implies

(v,y) > 6 > 0. Hence y & R2(c). This completes the proof. ‘ /1]

In the case where H = R"™, weak convergence and strong convergence are indistinguishable. In

particular, if v; is a bounded sequence converging (weakly) to v, then either v = 0 or ”v_,” — _“v_”
v; v
(weakly). (This is false in £?-take v; = e; +¢;.) Hence Clarke’s (1983) Prop. 2.5.7, p. 68, is embedded

in the proof given here.

4.8 Corollary. Let C C R" be a closed set containing a point c. Then Ng(c) is the closed convex

cone generated by the set

{.lim |:'| : v L C ate —ec, v,-—>0}u{0}.

Diagrams. The elementary nature of our proof of Thm. 4.7 becomes apparent when one coinsiders .
the simple geometric significance of each step in the argument. Figures 1-6 below facilitate this by
presenting the situation in R?. We have chosen y = (0,1) and z = (1,0) in these diagrams, and
labelled the axes A and u to reflect the general case. Figure 1 is introductory, and the enumeration

of Figs. 2-6 corresponds to that of Lemmas 4.2-4.6.
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Fig. 1. The sets E and B.

Fig. 2. Lemma 4.2 gives the slope of the sides of cone K.
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~

Fig. 3. Lemma 4.3 gives an explicit upper bound on g for all points (X, ) in
[v+ (1+ p)E] \ K, the shaded region.

TIJ.

Fig. 4. Lemma 4.4 asserts that if vy — v; has a large y-component, then so does the
related vector n. ‘
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Section 6. Proper Points

Given a nonempty closed set C in the Hilbert space H, a point ¢ € C is called proper if Nc{c)
contains nonzero elements. In the finite-dimensional setting, the proximal normal formula implies

that the proper points of C are precisely the boundary points of C.
5.1 Proposition. Let C C R" be a closed set containing a point c. Then
Nc(c)={0} <= ceintC.

Proof. («<=) If ¢ € int C, then T¢(c) = R™ by Def. 3.1, and N¢(c) = {0} follows by polarity.
(=) Conversely, if ¢ ¢ int C, then there is a sequence z; converging to ¢ such that each z; lies

outside C and has a closest point ¢; in C. Let v; = z; — ¢;. Then ¢; — ¢ because
les — ¢} < Jei — 2| + |z —¢| £ 2|z — ¢,

and v; — 0 by the same estimate. The proximal normal formula asserts that Nc(c) contains all

(weak) limit points of the sequence —. Since we are in a finite-dimensional setting, some unit vector

v;
vi]”

is such a limit point. Hence N¢{c) # {0}. /11/

The proof of Prop. 5.1 would carry over to arbitrary spaces H if only every sequence of unit
vectors had a subsequence converging weakly to a nonzero limit. However, this need not be the case.
A detailed account of what can go wrong in the infinite-dimensional case is provided by the following
proposition, which shows that a sequence of unit vectors converges weakly to 0 if and only if it is

“almost orthogonal”.

5.2 Proposition. For a weakly convergent sequence of unit vectors {v;} C H, the following
assertions are equivalent.
(a} U -l' 0.

(b) VK € N, lim  sup [v,ve)|=0.

300 k—1,... K

Proof. (a=>b) Obvious.
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(b=>a) We will prove “not (a) implies not (b)”. Thus, let vo, denote the weak limit of v;, and
assume ||ugo||? = € > 0. Then there is a sequence of convex combinations of the form
k k
W = Z/\‘(-k)v;, /\Ek) Z 0, ZAS’C) =1
=1 =1
for which wx — ve, strongly. Consequently there exists some K € N so big that [|wx — vo| < £/2.

Write
(viawK> = (U,‘,'.UK - Uoo) + (viavoo) > (vt':voo) - "wK - Uco”

> (vi,v00) — €/2.

The RHS tends to the limit e — ¢/2 > 0, so we find
liminf (v;, wg) > €/2 > 0.
The left side of this inequality is itself majorized by

liminf sup (v, vk),
10 k1.,

so (b} fails as required. /1]

Now‘suppose ¢ is a boundary point of C. The only way to obtain N¢(c) = {0} is if every sequence
" of proximal normal vectors (and there are a great many such sequences) is “almost orthogonal”. This
requires that the boundary of C be extraordinarily ill-behaved—so rough, in fact, that one might
expect a very mild regularity condition on C (weak closure?) to eliminate the possibility‘c'ompletely.
No such global result is known yet, but the proximal normal formula may be the key to solving this
problem. In the remainder of this section we outline three additional approaches.
One generic result on the propriety of C’s boundary is given by Borwein and Strojwas (i985b),

Thm. 5.1. Its proof involves Ekeland’s theorem; in our setting, the statement reduces to the following.

5.3 Theorem. If C C H is a closed set, then the set of points ¢ for which N (c) # {0} is dense in

the boundary of C.

A generic fact like Thm. 5.3 is tantalizing, but until proper points are completely characterized,
one often wishes to know whether a specific point is proper for C. Our next proposition shows that

if ¢ € C is a point supporting (locally) a cone with nonempty interior, then ¢ is proper.
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6.4 Proposition. Let C C H be a closed set containing a cluster point ¢. If K is a cone with

vertex at O for which there exists n > 0 such that C' N (c + (K ﬂnB)) = {c}, then
int K NTe(c) = 0.
In particular, if int K # 0, then T (c) # H and N¢(c) # {0}.

Proof. Observe that 0 ¢ int K, since this would force K = H and then ¢ + (K n r)B) = ¢+ nB would
meet C in a set strictly larger than {c}. So for any y € int K, there exists some ¢ € (0, 1) such that

0¢ y+eB C K. By assumption,

_—.—n =3
Cn[c+(0,1+”y”](y+sB)] ccnlc+ (KnnB)\{0}] =0.
Hence y & T¢(c) by Prop. 3.2; this completes the proof. /1]

Another approach to proving that a specific point ¢ € C is proper relies on the following notion,

due to Borwein and Strojwas (1984).

5.5 Definition. The closed set C C H is called compactly epi-Lipschitzian at ¢ € C if there exist

§>0,e>0,A>0, and a compact set K C H such that
Cn(c+6B)+teBC C+tK Yte(0,A).
Note that any finite-dimensional set is compactly epi-Lipschitzian at all its points.

5.6 Theorem (Borwein-Strojwas (1984)). Let C C H be a closed set which is compactly
epi-Lipschitzian at c. Then

Nc(c)={0} <= ceintC.

Section 6. Rockafellar’s Theorem

Previous sensitivity results based on proximal normals have relied on a geometrical result due to
Rockafellar {1982), Prop. 15. His statement and proof of this result are intrinsically finite dimensional.
In this section we extend Rockafellar’s proposition to arbitrary normed spaces, beginning with a

topology-free version of the result.
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6.1 Lemma. Let X be a real vector space containing a nonempty subset D and a cone D*® with
vertex at 0. Define cones Ny N® C X x R via
N={\(d,-1): A>0,de D},
N® = {(d*,0) : d*° € D*}.
Then (a) {v : (v,—1) € co[N UN®|} =co[D + D>},

(b) {v : (v,0) € co[NUN®|} =coD>.

Proof. Note that both (a) and (b) are automatic if D = @. We therefore assume D # 0.
(a) Let L= {v : (v,—1) € co|[N U N*|} denote the left-hand side of (a). For any d € D and

d® € D>, we have 2(d,—1) € N and (2d*,0) € N*°,
(d+d*®,-1)= -2—[2(d,—1)]+-2-(2d ,0) €co[NUN=|.

Thus d + d*° € L. This shows D + D* C L: since L is convex, we obtain co [D + D°°] C L.
To prove the reverse inclusion, pick any v € L. We will show that v € co[D+ D*|. By definition,
(v,—1) € co[N U N*]: thus there exist n € N and p; >0 (¢ = 1,...,n) with >, y; = 1 such that
Z,;.(d‘ ,0) + Z 7
i=k+1
for some d$°,...,d® € D*°, Agy1,...,2n >0, and di4y,...,d, € D. Now if k = 0 this shows that
v € co[D + {0}] C co[D + D*], so we assume k > 1. Also, the second component of this equation

forces k < n, and

i Midi = 1.

i=k+1
Now simply rewrite v as
k n-—-1 k
v="> mi(fundadn +d2)+ D mdidi +padn [ - %Zp‘] dn

i=1 i=k+1 i=

k k
=Y i tuadn(da Zp, (di +0) + to)n [ 15w ]d+0).
=1 t=k+1 1=1

This expresses v as a convex combination of n points in D + D®. (The coefficients are nonnegative

since Ef=1 pi < 1, and their sum is

k n-1 k n
%ﬂnAn Zﬂi + Z l‘iAi -+ l‘n’\n - %l‘n/\n ZI‘( = Z l‘t’Ai = 1)
i=1

i=k+1 =1 i=k+1
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Thus indeed L C co[D + D*|.

(b) The left-hand side of (b) is convex and contains D*, so
{v: (v,0) €co[NUN®]} 2 coD*.

For the reverse inclusion, note that any v in the left-hand side must be the convex combination of
finitely many vectors of the form (d¢°,0) for d° € D*. (Clearly, no nonzero vectors from N may be

included in this convex combination.) Hence v € co D*, as desired. /1l

6.2 Proposition (Rockafellar). Let X be a normed vector space containing nonempty subsets D
and D®; assume that D™ is a cone with vertex at 0. Define cones N, N* as in Lemma 6.1. Then
one has

{v: (v,—1) €[N UN®|} =c5[D + D*].

Moreover, if co[N U N°°] is closed, then one obtains
{v: (v,-1) €[NUN>®|} =co[D + D%|
{v: (v,0) €[N UN>®]} =coD>™.
Proof. The stronger conclusions follow immediately from Lemma 6.1 when one writes in o[ N U N*°]
for co [N U N*°|. The first statement is the only one requiring elaboration.

According to Lemma 6.1, it suffices to show that

{v: (v,-1) €eBNUN=®|} ={v: (v,—1) Eco[NUN>]}.

Upon defining the convex cone C = co[N U N*°]| and the closed affine subspace S = X x {—1} of

X x R, we find that this reduces to showing
SnelC =cl[SNC],

where cl denotes closure. Since S NclC is a closed set containing S N C, we only need to prove
SNclC C cl[SNC]. Suppose, therefore, that (veo, —1) € SNclC. Then there must be some sequence

(vi, —r;) € C tending to (v, —1). The norm on X X R forces v; — vy, r; — 1. Consequently the

sequence (v;/r;, —1) € S N C tends to (veo, —1), i.e. (Voo, —1) € cl{S N C] as required. 111/

Sufficient conditions for co [N U N°°] to be closed may be based on the following simple lemma.
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6.3 Lemma. Let D C X be a closed set, and let D™ C X be a closed cone with vertex at 0 such

that

D°°20+D={lim Ad; 2 Ay — 0, d;GD}.

1— 00

Then N U N js closed.

Proof. Clearly N*° = D> x {0} is closed. It therefore suffices to show that if a sequence ;(d;, —1)
in N converges to some point (v,—A), then this limit point lies in N U N°. When A > 0, the
sequence d; converges to v/A, which we may denote by d € D since the set D is closed. Hence

(v,=A) = A(d,—1) € N. Alternatively, when A = 0 we find v € 0t D C D* by assumption, so

(v,0) € N*°. /111

The following lemma, proven in Rockafellar (1982), leads to a useful simplification of Prop. 6.2

when X = R".

6.4 Lemma. Let C C R™ be a closed cone with vertex at 0. If C is pointed, then coC is closed

and pointed.

6.5 Proposition (Rockafellar). Take X = R". Suppose that the sets D and D™ of Prop. 6.2 are
closed, and that D> 2 0% D. If D* is pointed, then co [N U N°°] is closed and hence the stronger

conclusions of Prop. 6.2 hold.

Proof. The set N U N is certainly a cone with vertex at 0. It is closed by Lemma 6.3, so according
to Lemma 6.4 it suffices to show that N U N is pointed. If this were not the case, then there would

be positive scalars A{°,A%°,..., A% and A1, A2,..., A, such that
1142 ¢

[4 m
STAR(ER,0) + > Ak(dk, 1) = (0,0)
k=1 k=1

for some points dx € D, dg° € D\ {0}. This clearly forces m = 0, and thus implies that D> is not

pointed. This contradicts our assumptions. ////
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The only intrinsically finite-dimensional link in thfe chain of arguments sAupporting Prop. 6.5 is
Lemma 6.4. It can be false even in the Hilbert space £2 of square-summable real sequences. To see
this, let e; denote the sequence whose it* entry is 1 while all others are 0, and define

C=|Jxe: keN}.
A20
The set C is evidently a closed pointed cone with vertex 0 in £2. However, co C is not closed. For
the point z = (%, -i—, %, ...) lies outside co C, all of whose members are sequences with only finitely

many nonzero terms, but inside o C.

Section 7. Appendix: Some Euclidean Geometry

The Hilbert-space computations of Section 4 involve a distinguished direction y, and treat all
vectors in y* alike. Thus a good model for these computations can be displayed in the Cartesian
plane: we take the y-axis to correspond to the distinguished direction y in the general theory, and

visualize all of y! as the z-axis. For a fixed a € (0, 1), we now consider the ellipse
z2 2
E = {(z,y) : 2ty < 1}.

7.1 Theorem. Let (zo,yo) lie on the boundary of E. Then the outward unit normal vector to E at

. . ~ (107a2y0)
b =
(2o, y0) Is given by #(zo, yo) [(zo, c®yo)|

lies entirely inside the ellipse E and touches the boundary at (zo,yo). These two facts are unchanged

The ball of radius o® centred at (zo,yo) — a%7(z0, Yo)

by scaling and translation.

2
Proof. The normal vector to E is given by the gradient of % + y2. The radius of curvature of E at a
o

point (zo, yo} is given by

1 1 3/2
p(zo,v0) = — [042 + (&—2 - 1) x%] .

a
This has a minimum value of a? when z¢ = 0. Since E is smooth and convex, the circle of curvature

lies inside E, as claimed. Scale and translation invariance are obvious (but true). 111/
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z2
7.2 Corollary. For any (zo,yo) obeying a—g + y2 = r? and any (z,y) with 22 + y2 < 1, one has

1 o’r )2 o’y
Il -— zz+2a2r 1~ zz+a4r2z2
a4( Go,a?sa)l) o, a2w0)] ) 170

odr
+ [yo _ | Yo

2
2 < 2
waémn+“”]-"

Proof. The analytic inequality corresponding to the second statement of Theorem 7.1 is

o ryo
|(z0, @%yo)|

1 a?rzg
o2

2 2
-t azrz] + [ - + a®r ] <
(2o, aZyo)| %o Y

Expanding the first term leads to the desired inequality when one observes that it is valid for —z as

well as for z.
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Chapter III. State Constraints in Optimal Control

In this chapter we study a differential inclusion problem in which the admissible arcs must

satisfy not only the usual differential and endpoint constraints, but also a state constraint of the form
g(t,z(t)) <0 Vte[0,T]ae.

Here g is a function with values in some finite-dimensional space R?, and the relation g < 0 holds
iff each component of g is nonpositive. Inﬁnite-dimensiénal perturbations of the state constraint

give rise to a “value function” V: Lz([O, T), R“) — R U {+0c0}; proximal normal analysis then leads
to a new form of the maximum principle for state-constrained problems. The necessary conditions
presented here say more about an optimal arc than do the appropriate special cases of Vinter and
Pappas (1982) or Clarke (1983). The price to be paid for this improvement is twofold: first, a

constraint qualification called “calmness” (valid in many cases) is required; second, the function ¢

must be smooth.

Section 1. The Value Function

For each a € L?([0,T},R®), we consider the following differential inclusion problem P(a):
min{¢(z(T)) : z(0) € Co,
P{a) z(t) € F(t, z(t)) a.e. [0, T),
g(t, z(t)) + a(t) < 0 a.e. [0,T}}.
The value function V:L2([0,T],R*) — R U {+oo} is defined by V(a) := inf P(a). No matter
how smooth ¢, F, g, and Cy may be, we must expect V to be very badly behaved. For example,

suppose V(0) < +oco (so that P(0) has an admissible arc) and that g(t,z) = z. Under very mild

assumptions on Co and F, it follows that there is a constant M > 0, independent of «, such that
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every admissible arc z for P(a) obeys ||z||,, < M. Now it is easy to find a function o € L? with
arbitrarily small L?-norm such that « > M on a set of positive measure. For such an «, problem
P(a) has no admissible arcs and V(a) = +00. So we must be prepared to deal with the possibility,
even if V(0) < +oo, that every neighbourhood of 0 in L? contains points a where V(a) = +oo.
Even though the data of the problem are smooth, the resulting value function may be astonishingly
discontinuous.
Let Y denote the collection of all arcs z(-) solving P(0). (We will shortly show that Y # @.) The
following hypotheses will be used in this chapter:
(H1) The multifunction F : [0,T} x R® — R" has nonempty compact convex values. For each
fixed z € R", F(-, z) is measurable.
(H2) There is a function k(t) € L?[0, T} such that
(a) F(t,z) C k(t)B Vte[0,T}], z € R™,

(b) for each fixed t € [0, T] and z € R"™, one has
F(t,y) C F(t,z) + k(t)ly—z|B  VyeR"

We define Kr = exp (fif k(2) dt).
(H3) The set Cp constraining the initial point is compact.
(H4) The terminal cost £: R™ — R is Lipschitz of rank K, on R".
(H5) The state constraint function 9:[0,T] x R™ — R% is Lebesgue measurable in ¢ and
continuously differentiable in z, with |g;(¢, z)| < K for all (¢, z) € [0,T] x R™. Moreover,
T 2 n
Jy la(t, z)|° dt < +o0 Vz € R™.

Hypotheses (H1)—(H5) allow the existence of solutions to P(e) to be proven by the direct method.

1.1 Theorem. (a) Let a sequence z; of F-trajectories be given, with z;(0) € Co Vi. Then {z;}
has a subsequence converging uniformly to an F-trajectory z such that z(0) € Cj.

(b) If there is a sequence o; € L?([0,T],R®) for which the sequence z; in (a) also obeys
g(t, z:(t)) + i (t) £ 0 a.e. Vs, and if o; — o for some a, then along the subsequence in (a), one also
obtains

g(t,z(t)) + at) <0 ae.
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(c) If.V(a) < +oo for some a, then P(a) has a solution.
(d) The function V is weakly sequentially lower semicontinuous. (In particular, V' is norm-lower

semicontinuous.)

Proof. (a) This is a Corollary to Clarke (1983), Thm. 3.1.7, p. 118.

(b) According to (HS5), the difference
sup lg(t, 2:(t)) — 9(t: 2(t))] < Ko Jla: — 2llo,

tends to 0 along the subsequence described in (a). Hence the functions g(t, z;(t)) + a:(t) converge
weakly in L? to the function g(t, z(t)) + a(t). Now each element of this sequence lies in —P, where

P is the “positive cone” defined by
P={r()eL?: r(t)>0 ae}.

The cone P is convex and strongly closed, hence weakly closed. Therefore the limit function
g(t, z(t)) + a(t) lies in —P also, as required.

(c) Let z; be a minimizing sequence of F-trajectories. According to (a) and (b), in which we -
take a; = «, there is a subsequence along which z; tends uniformly to an arc z satisfying all the
constraints of problem P(a). And by (H4), £(z(T)) = ‘1_1’120 £(z;(T)) = V(a). Thus z solves P(a).

(d) Let a; — o in L?, with V(o;) — v. We must show v > V(). If v = +oo this is trivial, so

assume v < +oo. Then (c) gives solutions z; to P(a;) for which
V(ew) = €=z(T)) and g(t,zi(t)) + a:i(t) <O aee.

By parts (a) and (b), we have v = £(z(T')) for some limiting F-trajectory z obeying g(t, z(t)) + «(t) <

0 a.e. Hence V(a) < v as required. ‘ /1]

Section 2. Proximal Normals

Let (8,—)) be proximal normal to the (weakly sequentially-) closed set epiV at (&,9). Then
V(&) £ ¥ < +oo implies P(&) has a solution T with ¥ > £(Z(T)). Now for any F-trajectory z(-)

starting in Cyp, one has
V(=g(-z())) < &=(T)).
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Moreover, the inequality is preserved if a nonnegative s is added to the right side and a

ﬁonnegative-valned function r € L? is subtracted from the argument of V. Thus
(_g(.,z(.)) —r(), &(=(T)) + s) EepiV.

By definition of a proximal normal, there exists M > 0 such that
21)  {(B,-), (~glt,3) = r,£(z) + 5) = (&,9)) < M (9t, 2) + 7, () + 8) - (&, )]
First put £ = Z: then one finds
(2.2) 0<(Br+g(t,2)+&) +A[s +£(3) -0 + M|Ir +g(t,2) + &7 + M|s+ £(z) - 9.
Next put r = —& — g(t,Z) to obtain
(2.3) 0<AMs+£(3Z) -3]+Mls+£3Z) -5 Vs>o0.

This implies that § = § — £(Z(T)) gives a global minimum to the (smooth) right-hand side over
the set [0, +oo). Hence the right derivative of this expression must vanish if § > 0, or at least be

nonnegative if = 0. We write this as follows.

(2.4) A>0, A[0—¢(z(T)] =0.

If we now take s = §in (2.2), we obtain

(2.5) 0K (Br—-P+M|r—-7> VrePp,

where P = {r € L? : r(t) > 0 a.e.} and 7(t) = —&(t) — g(¢,Z(t)). This statement is the definition
of —B € PNp(7). By the proximal normal formula, it follows that —8 € Np(7). Finally, since P is

closed and convex, Np is the normal cone in the sense of convex analysis. Therefore (2.5} gives
(2.6) (Byr—7) 20 Vre P.
If we now put r = ¥ and s = §in (2.1), the result is

(2.7) (B, 9(t, 2)) + AU(B) < (B, 9(t, 2)) + Me(z) + M |lg(t, z) — 9(t, B) || + M |¢(=) - £(2) .
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This shows that Z solves the optimal control problem of minimizing the right-hand side over all
F-trajectories z with z(0} € Cp.

We are about to use the inner product in L? for the first time. Since it has not been used before,
lines (2.4), (2.6), (2.7) remain valid in any Hilbert space of functions G satisfying the mild conditions

(i) g(,z(")) € G for all F-trajectories z;

(i1) P is a closed convex subset of G.
Different choices for G yield different necessary conditions and raise different technical problems
in the proofs below. Such difficulties arise mainly in the weak convergence arguments of Section 3
below: the salubrious properties of the weak topology on L? explain why we have chosen this space
for G.

Here are our conclusions about proximal normality, phrased in terms of the Hamiltonian

H(t,z,p) = sup{(p, /) : f € F(t,2)}.

2.1 Theorem. Let (8, —)) be proximal normal to epiV at (&,9). Define the constant R depending
on {B,—2) by equation (2.9) belpw. Then for any R > R, problem P(3) has a solution & to which
there corresponds an arc p: [0, T] — R"” obeying the following conditions.

(a) x>0, (,r—7) >0 VreP,

(5) [ ‘;’((g A 0= (6, (1)) ] € 8H(t,2(t),p(t)) ae. [0,T),

(c) p(0) € R\/1+ |p(0)[*8dc, (2(0)), —p(T) € A3L(E(T)).

Here 7(t) = —&(t) — g(t,%(t)), P={r€ L* : r(t) > 0 a..}, and prime denotes transpose.

Proof. Conclusion (a) is a transcription of lines (2.4) and (2.6). The other two conclusions follow

from line (2.7), as we now show. The objective functional minimized by Z is
2 T T 2
M(a(T)) + M [6(a(T) ~ €EONP + [ Yotz e+ M [ lole 2(e) - ole, 2N at.
0 0

This functional can easily be transformed into Mayer form by introducing a new state variable

y{t) € R obeying

§(t) = B(t)'a(t, 2(t)) + M |g(t, 2(t)) — 9(t, Z(t))[>,  y(0)=0.
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We deduce that the arc (£(t),§(t)), where §(t) = fs B(r)'g(r, Z(r)) dr, minimizes
Ha(T), y(T)) = Ae(=(T)) + y(T) + M [&(2(T)) - LE(T))*
over all (n + 1)-dimensional trajectories for the multifunction
F(t,2,9) = F(t,2) x {B(t)'g(t,7) + M lg(¢,2) - (¢, 2)) "}

obeying (z(0),y(0)) € Co x {0}. This is a problem for which Thm. 1.4.1 provides necessary conditions.
These conditions involve the constants K? and Kﬁ, which we now estimate. On a sufficiently small
tube about the solution Z (see the remarks following Thm. 1.4.1) the Lipschitz rank of the quadratic
terms in £ and F can be made arbitrarily small, so any choices of these constants obeying the

following inequalities will suffice:

K2~> AKe+1,
T
Kg > exp /0 [k(6) + |8(6) | K,] dt | -
In particular, let us choose
K?= AK,+ 2,

i |
Kz > exp ( eSS Kg\/TllﬂHz) = Krexp (K,VT1Bl,)

Then we obtain the explicit expressioh
(2.9) R = (22K, +6) (2+ Kr exp(K,VT |B],) [In Kr + K, VT 6]l5]) -

Now in the terminology of Thm. 1.4.1, the endpoint constraint set for the problem we are
étudying is § = Cy x {0} x R® x R. This implies u = 1. The transversality condition (c) of
Thm. 1.4.1 implies that for some ¢ € 3¢(Z(T)), one has

(p(0),2(0), ~(T), ~a(T)) € 3(0,0,5,0) + (6,0,0,1) + R|(1, BY| [9 (2(0)) x B x {(0,0)}],

E = (0,0, ,1) — (p(0), 9(0), —p(T), ~4(T)) = (~p(0),~4(0),0,0).
We deduce that

p(0) € R|(1, E)| 8dc, (2(0)),
(2.10) - p(T) = X,

—-g(T) =1.
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The Hamiltonian for our auxiliary problem is
B(t,2,4,5,9) =sup {{(p,0), (v, ) : (v,0) € F(t,3,9)}
= H(t,s,p) +q (B(t)'g(t, ) + M |g(t, 2) — 9(t, ) ) -
Since H is independent of y, the costate g is constant; we find ¢ = —1. Thus E = (—p(0),1,0,0) and
(1, E)| = 1/2 + |p(0)|?. Conclusion (c) now follows from (2.10).

The Hamiltonian inclusion for the auxiliary problem leads to

~5(t) oty ) — 20)F°
[ g(t) ] € B(ap) [H(t, z,p) — B(t)'9(t, z) — M |g(t, z) — g(t, Z(t))] ]

= 9H(t, 2(t), p(t)) — (B(t)'02(2, 2(¢)), 0)-
Conclusion (b) follows from this. /1]

(¢.2(t),p(t))

The second statement of conclusion (a) can be regarded as a complementary slackness condition

on the function 8. The following result makes this precise.

2.2 Theorem. Let B € L?[0,T] and ¥ € P be given. The following are equivalent:
(a) (B,r—7) =0 VreP,
(b) B(t) >0 ae., A@)7{t)=0 ae.

Proof. (a=>b) Let b(t) = min{F;(t) : 1 =1,2,...,a}. Define E = {t : b(t) < 0} and

r(t) = {’r‘(t) ift¢E,

F(t)+e ifte E and ¢ = minargmin {5;(t)}.
Then (a) implies
T
0 (r(t) - 7)) dt = | b(t)d
<[ perem-rw)e= [ wd<o
so indeed m(E) = 0.

Next, consider F = {t : B(t)'7(t) > 0}. Since 7(¢t) > 0 a.e. by assumption and B(t) > 0 a.e. is

now known, we have A(t)'¥(t) > 0 a.e. Consider

r(t) = () Ip(t) + 7(t) Lo, o\ F (B)-

Certainly r(t) > 0 a.e., so (a) implies
0</ B(t) (r(t) — 7(t)) d =——/ﬁ 7(t)dt < 0.
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Thus m(F) = 0 and (b) is established.

(b=>a) If (b) holds, then certainly for B(t)'T(t)dt =0, so

T
(== [ ployre e
0
For any r € P, the integrand is nonnegative almost everywhere, whence the integral cannot be

negative. /111

Section 8. Convergence

Suppose that V' (0) < +o0, and that (B, —2) is obtained as the weak limit of a bounded sequence
of proximal normals (f;, —A;) to epiV at base points (o, v;) converging (strongly) to (0,V(0)). Let
z; be the corresponding solutions to P(c;), with multipliers p; as in Thm. 2.1.

By Thm. 1.1 we have z; — z uniformly along some subsequence, where z solves P(0). Also,
of course, A = '1_1210 A; is nonnegative. Just as in the proof of Thm. 1.1(b), g(t, z;(t)) converges to
g(t, z(t)) strongly in L?. In particular, the inner products (8;(-), —a:(-) — (-, %:(-))} converge to

(B(:), —g(-, z(-))). Since we also have (B;,r) — (8,r) Vr € P, it follows from Thm. 2.2 that
(3'1) (ﬂ,f‘() + g('az('))) 20 VreP.

Next, observe that the constants R; defined in terms of {8;,—2;) by (2.9) form a bounded
sequence. Hence we may use the same number R = sup{R; : : € N} for each ¢ when applying

transversality condition (c) of Thm. 2.1. This condition implies

Di (0)

€ Rddc, (z:(0))  Vi.
2+ |p; (0)[? o

Since the sequence on the left side is bounded, it has a convergent subsequence, whose limit we

denote by p(0)/1/2 + [p(0)|*. By Prop. 1.2.3, it follows that

(3.2) p(0) € Ry/2+ |p(0)*8dc, (2(0)) € Ne, (2(0))-

Similarly, we have —p;(T) € X;8£(z;(T)) with A; — A, z; — z, and 8¢(z:(T)) C KB Vi. Hence
along a further subsequence, p;(T) converges to a point we denote by p(T), for which Prop. 1.2.3

gives
(3.3) —p(T) € A3£(z(T)).

- 56 —



Let us show that sup ||p;||,, < oo. Integrating the first component of the Hamiltonian inclusion
[t
(Thm. 2.1(b)) and using the Lipschitz condition on H computed by Clarke (1983), Prop. 3.2.4, we

find

pi(t) — pi(T) + -/; Bi(8)'9z(s, z;(s)) ds € /;T k(s) |p:i(s)| B ds

T T
= lp: (8)] € M Ke + T§Kg I:/t |,B,-(s)|2 ds] +/; k(s) |pi(s)] ds,

The first RHS term is uniformly bounded in 1 because A; converges; the second, because f§; is a

bounded sequence in L?. Thus there is a constant C for which

T
lps(t)] < C + /t k(s) [ps(s)] ds.

Application of Gronwall’s lemma gives

T
lpi(t)| < Cexp (/; k(s) ds) < CKp.

The right side is independent of ¢ and ¢ as required.

To see that the sequence {p;} is equicontinuous, note that much as above,
t ' t
lp:(2) — pi(s) < / |B:(r) 9z (r, z:(r))] dr +/ k(r) lp:(r)] dr
8 L

< (- 91K, [/ 1Bi(r) P d,]% +M[k(r) dr.

Here we have written M for the finite number sup lIpill .- Again, since B; converges weakly in L?,
i
it is a bounded sequence in L?. Hence the first RHS term is majorized by K(t — s)‘} for some K
independent of . Thus uniform equicontinuity of the family {p;} follows.
Since the family {p;} is uniformly bounded and equicontinuous, it has a subsequence converging
uniformly to some continuous function p obeying (3.2) and (3.3).
Consider next the functions u;(t) = B;(t) 9z (¢, z:(t)) — p:(t). Hypothesis (H2) and Clarke (1983),

Prop. 3.2.4, p. 121, imply that

lui(t)] < k(2) Ipi(t)]

= fusllz < () llzsup llp:llco
%
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go u; is a bounded sequence in L? which must therefore admit a subsequence converging weakly to
some function u. Now the bounded convergence theorem implies that g,(, z;(t)) converges strongly
in L?[0,T] to g (t,z(t)). Hence B;(t)'gz(¢, z:(t)) converges weakly in L? to f(t)'g= (¢, z(t)) and the

relationship

—pi(t) = wi(t) — Ai(t) g2 (¢, =i (¢))

implies that —p; converges weakly in L2 to u — 'g;(t,z). This allows us to pass to the limit in the

relationship
t
p(t) = 5i0) = [ [uale) = Ao galerm)] &5 ve
and obtain

p) =70 - [ [ule) ~ BV aloa(N] do Ve

Hence p(t) is an arc.

Now for each %, conclusion (¢) of Thm. 2.1 implies that

[ ~pi(t) + Bi(t) 92 (t, zi(¢)) ] € 8H(t,z:(t), pi(t)) aee.

T; (t)

The proof of Clarke (1983), Thm. 3.1.7, p. 118 shows that this implies

(3.4) [‘ﬁ(t) + Alt) 92 (t, 2(t)) ] € 8H(t, (1), p(t)) ace.

z(t)

The followihg result summarizes conclusions (3.1)-(3.4).

8.1 Theorem. Assume (H1)-(H5). Let (B,—)) be a weak limit of a bounded sequence of proximal
normals as described above. Then P(0) has a solution z for which some absolutely continuous
function p(-) obeys

(a) A=>0, B(t) >0 ae., B(t)g(t,z(t)) =0 a.e.

(b) ( "I’%g +B(t)'92(t, (1)) ] € BH(t, z(t), p(t)) ave.

(c) p(0) € N, (z(0)),  —p(T) = A3&(=(T)).
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Section 4. Constraint Qualifications and Necessary Conditions

Conclusions (a)-(c) of Thm. 3.1 are those we wish to propose as a new set of necessary
conditions for problem P(0). However, Thm. 3.1 does not immediately justify this because it
contains no nontriviality condition. Lau’s nearest point theorem (see Section II.2) guarantees that
many sequences of proximal normal unit vectors exist, but cannot rule out the possibility that all of
them converge weakly to zero. If we take (8, —A) = (0,0) in Thm. 3.1 then conclusions (a)—(c) hold
trivially for the arc p = 0. So the final step in proving necessary conditions for problem P(0) is to
demonstrate that some sequence of proximal normal unit vectors has a nonzero limit. The proximal
normal formula of Chap. II comes in here. All the hard work in that chapter was devoted to proving

the inclusion
(4.1) Nepiv (0,V(0)) € Repiv (0,V(0)),

where R denotes the closed convex cone generated by weak limits of proximal normals. (See

Section II.4.) Our labours now bear fruit.

4.1 Theorem. If Nepiv (0,V(0)) contains nonsgero points, then there is a solution z to problem
P(0) for which one can find a scalar A > 0, a function € L?([0, T],R®), and an arc p(-) such that

A+ |8l > 0 and conclusions (a)-(c) of Thm. 3.1 hold.

Before comparing these conditions to those current in the literature, let us investigate the

condition Nep;v (0,V(0)) # {0}.

Calmness. Problem P is called calm at & if V(&) < oo and

lim inf M =

a—a “a - a”

Calmness is a well-respected constraint qualification in other settings—the calculus of variations and
mathematical programming, for example. See Clarke (1983) for a discussion of these matters. Our
present concern is to show that calmness guarantees the nontriviality of the necessary conditions

introduced in Thm. 4.1.
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4.2 Proposition: If problem P is calm at 0, then N.y;v (0,V (0)) # {0}. In fact, 8V (0) # 6.

Proof. We will apply Prop. I1.5.4, with H = L?([0,T],R°®) x R, C = epiV, and ¢ = (0,V(0)). Now
epiV is locally closed near (0,V(0})) and this point is a cluster point of epiV. So it suffices to exhibit

a cone K with nonempty interior such that for some n > 0,

0 epiV 1 {(0,V(0)) + (K nnB)| = {(0,V(0))}-

Our candidate for K is

K=/ t[(o,—1)+eB],

20
—V1—¢2
where € > 0 is chosen so small that __le__e_ < m — 1. Evidently, (0,—1) € int K. Moreover,
—J/1—¢2
Lemma I1.4.2 shows that (a,v) € K if and only if v < ———lg—i [|all. Thus for any n > 0, any
(e, v) € (0,V(0)) + K NnB with o # 0 obeys
- —/1—¢2
() O<laj<n and ”Z”(O) < 15 T <m-1

Now by the calmness condition, there exists n > 0 so small that whenever («, v} € epiV, one has

v—V(0) _ V(a)-V(0)
Tl > o

(*+) 0<llaff<n =

1
>2m-— -,
zm 2

Clearly no point (a,v) can obey both (*) and (%), so (1) follows. According to Prop. I1.5.4,
Nepiv (0,V(0)) # {0}.
In fact, Prop. I1.5.4 says more than this. It affirms that for any § € (0,¢) and any sufficiently

small value of ¢, the open convex set
t[(0,~1)+6B] Cint K C H

is disjoint from the closed convex set Tepiv (0,V(0)). Hence (Rudin (1973), Thm. II1.3.4(a), p. 58)

there is a unit vector (8,—X) in H for which
sup ((B, =), Tepiv (0, V(0))) < inf ((8,—A),¢[(0,-1) + 6B]).
Noting that 0 € Tepiv (0, V(0)) always holds and evaluating the right side gives
0 < sup((B, —A), Tepiv (0,V(0))) < t(A - 6).
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This clearly implies A > § > 0. But since Tepiv (0,V(0)) is a cone, the middle expression must
continue to satisfy the indicated inequality when multiplied by any positive number p. Thus it cannot

be positive, and the equation

sup ((ﬂ) _A)! Tein (0: V(O))) =0

implies (8, —A) € Nepiv (0, V(0)). It follows that /A € 3V (0). /1]/

Although the calmness condition is difficult to verify without further information about the
specific problem under investigation, it is possible to say confidently that “many problems are calm.”
Indeed, the following result implies that whenever £, F, and g are given satisfying (H1)-(H5), the set

of a for which P is calm at o is dense in
DomV = {a € L? : V(a) < +oo}.
It is quoted from Aubin and Ekeland (1984), Thm. V1.6.5, p. 281.

4.3 Proposition. Let X be a smooth Banach space and V: X — RU {+oo} a lower semicontinuous
function on X. For any € > 0, there is a dense subset of DomV in which each & obeys the following:

there is a continuous linear functional § € X* and a scalar n > 0 such that
Vie) =V(a) 2 (f,a—a) —¢|a—al Ya € &+ nB.

In our setting X = L? is certainly a smooth space, and a continuous linear functional § € X*

can be identified with an element of L2. The key inequality of Prop. 4.3 becomes

Vie) -V (a)
lle: =&l

-

>(pB,— >—e>—ﬂ —€ Vaea+n(B 0}).
Thus P is calm at @.

Multiple Solutions. If problem P(0) has a unique solution z then the conclusions of Thm. 4.1
provide new necessary conditions which z must obey. The only prerequisite on the data is the
requirement that Nepiv {0,V (0)) # {0}. However, if the set Y of solutions to P(0) contains more than

one element, this condition only guarantees that some solution of P(0) satisfies the new necessary
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conditions. To assert that every solution of P(0) has a nontrivial multiplier, we modify the problem

somewhat. Let Z be any fixed element of Y, and define a problem P(a) and a value function ¥ (a) by
7 (a) = min{&(z(T)) + [Y(T)* : 2(0) € Co, (1) € F(t,2(t)) ane.

¥(0) =0, 9(t) = la(t) - 2(t)° aee,

g(t, z(t)) + a(t) <0 ae}.
Note that the admissible arcs for P(a) are the same as those for P(a), and that the modified
objective function majorizes the original one. Hence v(a) > V(a) Va. Clearly, Z is the unique
solution of ﬁ(O), and in particular 17(0) = V(0). We wish to use Thm. 4.1 to find necessary
conditions for Z. The prerequisite for this is that Nein(O,V(O)) # {0}. Unfortunately, this is not an
obvious consequence of Nep;y (0,V (0)) # {0}, even though V(a) > V(a) Va. (For instance, it is not
necessary that Nein(O’V(O)) 2 Nepiv (0,V(0))—the reader is invited to find continuous functions
V,7:R — R such that V(a) > V(a) Vo, ¥(0) =V(0), and N, ;5(0,V(0)) N Nepiv (0,V (0)) = {0}.)

So this program will only succeed if we strengthen the constraint qualification. Calmness will do.

4.4 Theorem. Suppose P is calm at 0. Then for any z € Y there is a nonzero (f,—-)) € L2 xR
and an arc p(-) such that

(a) A >0, B(t) >0 ae., B(t)'g(t,z(t)) =0 a.e.

(b) [ ‘Z((g +B(8)'g=(t, 2(t)) ] € 8H(t,2(t), p(t) ae.

(c) p(0) € Noo(2(0)),  —p(T) = A8¢(=(T)).

Proof. Fix any % € Y, and consider problem P(a) defined above. Since V(a) > V(a) for all a
and ¥V (0) = V(0), the calmness of problem P at 0 implies the calmness of problem P at 0. Hence
N_.7(0,V(0)) # {0}, and Thm. 4.1 gives a nonzero (§,-}) € L? x R and an arc (p(-),q("))
satisfying certain conditions. These conditions imply that ¢ = 0, and that p(-) obeys the desired

conclusions (a)-(c). /111

Sensitivity Analysis. In addition to allowing the derivation of necessary conditions, Thm. 3.1

lends itself to an analysis of the marginal effects of perturbations to the state constraint.
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4.5 Definition. Let z be an admissible F-trajectory and X a nonnegative scalar. Then the pair
(p,B) € AC([0, T],R") x L?([0, T}, R®) is an indez A multiplier corresponding to z if conclusions
(a)=(c) of Thm. 4.4 hold. The collection of all such pairs is denoted M*(z), and M*(Y) is the union

of the sets M*(z) over z € Y. We define a mapping A from the space of multipliers to L? via

A(p,B) = 8.
4.6 Theorem. If V(0) < -+oo and (H1)-(H5) hold, then ¥ # @ and
av (0) = w(A[M(Y)] N8V (0) + A[M°(Y)] N8V (0)).
Proof. Similar to the first part of Thm. 1.3.6. //]]

Note that Thm. 4.6 holds trivially if 3V (0} = @, so the only way to get useful information from
it is to introduce conditions excluding this possibility. As Prop. 4.2 shows, the calmness condition is

sufficient to do this.

Section 5. Comparison to Known Conditions

The necessary conditions of Vinter and Pappas (1982) or of Clarke (1983), Thm. 3.2.6 are as

follows. For simplicity, we take the state constraint dimension a = 1.

5.1 Theorem. Assume (H1)-(H5), and assume moreover that g(t, z) is lower semicontinuous in t.

If z solves P(0), there exist a scalar X > 0, a nonnegative Radon measure u, and an arc q such that
(a) p is supported on the set S = {t € [0,T] : g(¢t,z(t)) = O}.

(b) [ _Z((?) ] € 8H (t,z(t),Q(t) + '/[o,t) gx(s,z(s))p(ds)),

(©) a(0) € Noy(a(0)),  —a(T)— [ 0als,2(s)) w(ds) € A3¢(=(T)).
(0.7}
We cah obtain these conclusions from Thm. 4.4 by defining a new arc ¢(-) as follows:
t
ale) =p(0) - [ aule,2(6))Bls) s
0

The conclusions of Thm. 4.4 then become

(a) A>0, B(t) >0 ae., B(t) g(t,z(t)) =0 a.e.
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. t

&) (7H9) con (t, 2(2),q(t) + /o g2(5, 2(5))B(s) ds).

T

(c) q(0) € Ngo (2(0)),  —q(T) —/0 9z(s,z(s)) B(s) ds € 23£(=(T)).
The advantages of Thm. 4.4 now become clear: it shows that the measure u appearing in the known
conditions can be assumed to be absolutely continuous with respect to.Lebesgue measure, with a
square-integrable density f. We obtain this desirable conclusion by an equally attractive method
of proof, based on the geometrical structure of a certain epigraph intimately related to the state
constraint itself. Moreover, g is allowed to be merely measurable in t. The cost of these advances is
a constraint qualification (calmness) which is not assumed in the standard results cited above, but
which is known to hold arbitrarily near any problem of interest. Smoothness of g in z, a condition
many problems obey, is a requirement of our theory but is merely a special case of the results cited

above.
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Chapter IV: Existence Theory for a Stochastic Bolza Problem

The previous chapters have confirmed the intimate connection between sensitivity to
perturbations and necessary conditions in optimization problems. The alnalysis itself, however, makes
frequent and essential use of limiting arguments—both in proving vital existence theorems and in the
proximal normal formula itself. For this reason, any attempt to study the sensitivity of a stochastic
control problem with proximal normals must begin with an investigation of appropriate limiting
techniques. In this chapter we introduce the techniques of convergence in distribution, tightness, and
martingale representation by showing them at work in a new existence theorem for a constrained
Boiza problem of stochastic optimal control.

These methods have been used before to study the existence of optimal stochastic control
laws, but never in such generality as that of Thm. 5.1 below. Our work owes its basic approach to
Kushner (1975), but it improves on his result by allowing the control set U to be unbounded, by
treating objective functionals of Bolza form, and by allowing the incorporation of soft constraints.
We also invoke stronger martingale representation theorems, and thereby weaken some of Kushner’s
technical hypotheses. Our method of proof also has the pedagogical advantage of replacing the
use of Skorokhod’s theorem with a well-known closure theorem from deterministic optimal control
which clarifies the connection between deterministic and stochastic existence theories. Finally, our
hypotheses are stated more explicitly than Kushner’s, making them easier to verify in practice.

This chapter reviews the required probability theory in Sections 1-3 and formulates th;e
stochastic control problem precisely in Section 4. The main existence theorem is proven in Section 5,
after which Section 6 adds several significant extensions. Section 7 is devoted to a comparison

between the main existence theorem and its counterpart involving a compact control set.
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Section 1. The Proba‘bility Background

Standard textbooks on the general theory of stochastic processes like Jacod (1979),
Dellacherie-Meyer (1975), and Ikeda-Watanabe (1981) present the extensive theoretical basis for our
Chapters IV and V in detail. Our aim in this section is simply to collect those aspects of the theory

which are critical to the development below. We begin with a summary of commonly used notation.

Notation.
[0, T] denotes a fixed time interval used throughout this chapter; V¢t means Vt € {0, T).
S denotes a metric space; S is Polish if it is complete and separable.
B(S) denotes the Borel o-field of S. (B(S) =o{U €S : U is open.}.)
B™ denotes B(R™).
C™ denotes C([0,t],R™).
C™ denotes B(C[™), completed with respect to Wiener measure. See text below.
C™,C™ denote CJ*, CF, respectively.
s At denotes min{s,t}.
zt(s) denotes z(s At), when z(-) is a function.
3"-x S denotes the product o-field, when two o-fields ¥ and § are given.
We write z: (Q2, F) — (S, S) if the mapping z:{} — S is measurable with respect to the o-fields 7 and

S. When § = B(S), we sometimes express this by writing z € 7.

Stochastic Processes. A filtered probability space (Q, 7, %, P) consists of a set {] equipped with
a o-field 7 on which a probability measure P is defined. The filtration {# : t € [0,T]} is a family of
sub-o-fields of ¥ obeying

7 €% whenever0<s<t<T.

The usual hypotheses regarding such a filtered space are the following three conditions:
(i) The measure space ({2, 7, P) is complete.
(i) The filtration 7 is right-continuous, i.e. % = % Vt, where %4 = MNy>o Fta-

(i) %o 2{A €7 : P(A)=0}.
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AnvS-valued stochastic process is a measurable mapping z:[0,T] X @ — S; the process z is called
Fi-adapted if z(t, ) is F-measurable for each t € [0, T]. It is conventional to simplify the notation
involving the process z by leaving the w-dependence implicit whenever possible. Thus z; or z(t) are
often used to denote either the mapping z(t, ) or one of its values z(t,w)—context distinguishes the

two possibilities. A given process z; defines a filtration {#® : t € [0, T|} as follows:
7z =a({{z, €A} :s<t, AcB(S)}u{AaeF: P(A) =0}>.

We say that a second process y is z;-adapted if it is F®-adapted.

An important o-field on the product space [0,T] x (1 is the predictable o-field, denoted by P,
which is the o-field generated by all continuous %-adapted processes defined on [0,T] x 2. An
S-valued process z is called predictable if it is P-measurable when considered as a mapping of
[0,T] x O into (S, B(S)). Most of the processes to be discussed below are continuous and hence

predictable; however, we need this terminology for the statement of certain key results in Section 3.

Brownian Motion. Let a filtered space ({1, 7, %, P) satisfying the usual hypotheses be given. An
F-adapted stochastic process w with values in R4 is an 7 -Brownian motion if it obeys conditions
(i)—(iii) below.
(1) wo(w) =0for allw € Q;
(ii) the R%valued random vector w; — w, is independent of 7, for any 0 < s < ¢;
(iii) the R%-valued random vector w; — w, has a Gaussian distribution with mean 0 and
covariance matrix (¢t — s)I forany 0 < s <t < T}

(iv) for P-almost all w, the function w(-,w) lies in C°.
The continuity hypothesis in condition (iv) implies that a Brownian motion can equally well be
considered as a measurable mapping w from {2 into C9. Indeed, a particularly important example
of Brownian motion is obtained when ({2, ¥) = (C?,(?) and the probability measure P is Wiener
measure, denoted by W. In this case the identity map is a Brownian motion, and (€2, ¥) = (C¢,C49)

is called canonical path space. The (completed) filtration generated by the identity map is simply

Ci=8(cy).
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1td’s Integral. Let (02, 7, %, P) be a filtered space satisfying the usual hypotheses. Stochastic
integration in the sense of K. Itd is an operation which exchanges one stochastic process for another.

If the input is an R"*%.valued process o; adapted to % and obeying
T
(1.1) E/ o, |? dr < +oo,
0

then for any %-Brownian motion w in R¢, the output is an R™-valued process denoted by f; oy dwy.
Integral notation for the new process is justified by the many similarities between the operational
properties of the stochastic integral and those of conventional measure-theoretic integrals. However,
it is not meant to suggest any particular computational strategy. For instance, it is usually incorrect
to try to compute f(: o(w) dw,(w) as a Riemann-Stieltjes integral for each fixed w. (See Fleming
and Rishel (1975), p. 112, for a standard counterexample.) This tactic only works on ra;ther simple
integrands—for example, those which are simple predictable processes in the technical sense.

We will use the two inequalities below throughout this chapter.

1.1 Proposition (An inequality of Burkholder). Let w; be a Brownian motion on R4, and let

o¢ be an n x d-matrix valued process obeying (1.1). Then for any §,¢ > 0 one has

()
P / o, dw,
0

1.2 Proposition (Burkholder-Davis-Gundy). For any exponent p € [0, co) there is a constant

t
>e}$6/62+P{/ o |2 dr>6} © vtelo,T].
0
t

Cp, depending only upon p and n, such that for any process o as in Proposition 1.1,

()
/ o, dw,
0

The Metric Space Z[0, T].

p

t p/2
(BDG) E < C,E ( / oy )? dr) vt € [0, T).
0

t

Let Z = Z[0,T] denote the set of all functions z:[0,T] — R with the properties

() Jlim =(0) = 2(s),

(il) 0 < s <t < T implies 2(s) < z(t).
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There is a one-to-one correspondence between functions z € Z[0, T'] and finite nonnegative Borel
measures defined on the compact set [0,T]. Indeed, for a given z € Z the corresponding finite

measure . is the unique Borel measure for which
pz(a,b] =2(b) —z(a) whenever0<a<b<T.

(See Royden (1968), Sect. 12.3.) Thus Z[0, T| may just as well be viewed as the set of all such
measures on [0, T]. (We will therefore feel free to write z(E) for the u,-measure of a Borel set F in
the following discussion.) As such, Z may be given the topology of weak convergence of measures.

Since [0, T is a compact metric space, this topology is metrizable: the Prokhorov metric is defined by
d(y,z) = inf{e > 0 : y(A4) < 2(A*) +¢, 2(A) < y(A®) +¢, VA€ B}.

(Here A® denotes the set {t € [0,T) : dist(t, A) < €}.) In fact d makes Z[0,T] into a complete
separable metric space. These facts are special cases of the results in Billingsley (1968) Appendix III;
they appear more explicitly in Prokhorov (1956). In terms of the increasing functions used to define
the space Z[0,T] in the first place, the topology of weak convergence corresponds to pointwise
convergence at continuity points (Billingsley (1968), Sect. 3, p. 17). The following proposition

summarizes these observations and incorporates the Helly-Bray selection theorem.

1.8 Proposition. Z[0,T) is a complete separable metric space in which a sequence of functions
{z*} converges to z if and only if z*(t) — z(t) for each point t where z is continuous, and for t = T.
A closed subset S of Z|[0,T] is compact if and only if there is a constant M > 0 such that z2(T) < M

forallz€ S.

Section 2. Convergence in Distribution

When proving existence theorems for optimization problems by the “direct method,” one seeks
to isolate a solution as the limit of a well-chosen minimizing sequence. Proximal normal analysis also
relies on limiting arguments. These two considerations motivate a search for the appropriate notion
of limits in stochastic optimal control problems. Weak convergence of probability measures appears

to be the correct answer: in this section we review this mode of convergence.
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2.1 Definition. Let any metric space S be given, and suppose that P and FPx, k = 1,2,..., are
probability measures on (S, B(S)). Then the sequence of measures P, converges weakly to P, denoted
P, -+ P, if and only if one of the following three equivalent conditions is satisfied.

(a) [gf(s) dPe(s) — /; f(s) dP(s) for all bounded, uniformly continuous f:S — R.

(b) li‘rcn sup Py (F) < P(F) for all closed sets FF C S.

—o0

(c) kllngo P (A) = P(A) for all sets A € B(S) such that P(bdy A) = 0.
(The equivalence of conditions (a)-(c) is proven in Billingsley (1968}, p. 11.)

It is clear that the weak limit of a sequence of probability measures is unique.

Weak convergence of measures is intimately related to the notion of “tightness.” A family II of
probability measures on (S, B(S)) is tight if for every € > O there is a compact set K C S for which
every P in Il obeys P(K) > 1 — €. The following theorem, proven in Billingsley (1968), Section 6,

p- 35, shows why tightness is so important.

2.2 Theorem (Prokhorov). Let S be a Polish space on which a family Il of probability measures
is given. Then I is tight if and only if every sequence chosen from Il has a weakly convergent

subsequence.

Whenever a random element z: ({1, ¥, P} — (8, B(S)) is given, a measure P; is induced on

(S, B(S)) as follows:
P,(A)= (Poz ')(A) = P{w : z(w) € A} VA € B(S).

This observation sets up a correspondence between random elements and probability measures which
allows the preceding notions to be reworded as follows. Suppose z,: (£, %, P.) — (S, B(S)), t€ I, is
a family of random elements of S. This family is tight if for every € > O there is a compact subset K
of S such that

(Poz;!)(K)21-¢ Vi€l

If I = N, then the sequence z, converges in distribution to the limit z: (0, 7, P) — (S, B(S)) if the

-1

~1 converge weakly to P oz~1. We denote this by zL—D-v:z:. Prokhorov’s

induced measures P, o z

theorem takes the following form in this alternate terminology.
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2.3 Theorem (Prokhorov). Let S be a Polish space equipped with a family of random elements
E={z.:(0,7%,P)—(58(S)}.es-

The family E is tight if and only if every sequence z; chosen from E has a subsequence converging in

distribution to some random element z: (2, 7, P) — (S, B(S)).

An important consequence of convergence in distribution arises from Def. 2.1(b). If zi-2oz and

F is a closed subset of S, then

P{z € F} 2 limsup F;{z; € F}.

$ =00

This fact will be used in Section 5.
The fundamental role of tightness makes it important to be able to detect this property.

Billingsley (1968), Thm. 8.2, p. 55, gives the following criterion in the space § = C".

2.4 Proposition. A sequence z;: (£, %, P;) — (C™,C") of random elements of C" is tight if and
only if the following two conditions hold:

(i) Jim sup F:{|z:(0)| > R} =0,

(ii) lim sup P sup |zi(t) ~zi(s)|>e =0 Ve>O0.
§—0% >N 0<t—s<é
N — 00 0<s<t<T '

Section 8. Martingales and Their Representations

Let us fix a filtered space ({1, 7, %, P) satisfying the usual hypotheses throughout this section. An
Fi-adapted process m; taking values in R™ and obeying mo = 0 is an % -martingale if E |m,] < +o0

vVt € [0,T] and if
(3.1) 0<s<t<T = E[m|7]=m, as

Clearly any %-martingale is also an #/™-martingale.

A square-integrable martingale m; is a martingale which obeys

(3.2) E|m)? <+c0 Vte|0,T);

71—



if m; has continuous sample paths, then there is a unique continuous increasing nonnegative
definite n X n matrix-valued process g; such that go = 0 and (m;) (m;)’ — g; is a matrix-valued
F-martingale. The process ¢; is called the quadratic variation of m,, and denoted by (m);. For each
4,7 =1,2,...,n, let {(m’, m?), denote the scalar process defined by the (4, 7)-component of (m),.
Then m;m‘,’ - (m‘,mf ) , is a scalar-valued F-martingale.

The following proposition shows that for continuous processes, convergence in distribution
preserves the martingale property. It uses the notion of “uniform integrability,” for which an excellent

reference is Billingsley (1968), pp. 32-33.

8.1 Proposition. Let (z*,m*): (QF, 7%, P¥) — (C™*%,C"*%) be a sequence of random elements of
C™*¢. Defining 7F to be the filtration generated by (z¥, m¥), suppose that m¥ is an 7¥-martingale
for each k. If (zk,m")i»(z,m) for some random element (z,m): (Q, ¥, P) — (C"*¢,C"*+¢) and if

the sequence {“m'c H} is uniformly integrable, then the limit process m, is an #,-martingale. Here 7

is the filtration generated by (z, m).

Proof. Fix any N € N and choose any 0 < s <t <Tand0<t) <tz < - <ty < s Let
g:RINn+N8 _, R be an arbitrary bounded, uniformly continuous function. Then for each k, the

martingale character of m* implies
E* [g (z*(t1), ..., 2% (tn), m*(t1), ..., m* (tn)) (m*(t) - mk(s))] =0.

Now since {”mk”} is a uniformly integrable sequence, so is the sequence of real-valued random
variables whose expectations are computed above. Moreover, this sequence can be viewed as the
image of the sequence (z*, m*) under a continuous map G:C"*t¢ — R. Hence the sequence of
integrands converges in distribution to G(z,m): by uniform integrability it follows that we can let

k — oo above to obtain

E[g (z(t1),--.,z(tn), m(t1),...,m(tn)) (m(t) — m(s))] =0.

Since N, g, and ¢;,...,ty are arbitrary, this shows that E[rm —m, I .‘7’,] = 0, as required. /1]
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Suppose that (2, 7, #, P) carries an %-Brownian motion w; with values in R%. If an %-adapted
process o, with values in R™"*4 is given satisfying (1.1), we can define fg o, dw,. This process i3 a
martingale. In other words,

t
0<s<t<T = E[/o,dw,
0

7,]=/ o, dw, a.s.
0

The quadratic variation of this martingale is the n X n matrix-valued process

() t
(3.3) / ordw, ) = / 0.0, dr;
0 0

t

in particular,
(3.4) E

t 2 t
/ oy dw,| = E/ |c7,.|2 dr,
) 0

where |o|> = tr (00'). Propositions 1.1 and 1.2 above are actually special cases of inequalities valid

for arbitrary martingales.
It is more than a happy coincidence that the process fot o, dw, turns out to be a martingale. The
relationship between martingales and stochastic integrals is strong enough that a sort of converse

to (3.3) is available. In the case o = I, it takes the following form:

8.2 Lemma (Doob). If m; is an %-martingale with continuous R%-valued sample paths for which

E |m:|> < 400 Vt > 0 and {m), = tI, then m is an F-Brownian motion. The converse is also true.

Doob’s lemma can be generalized substantially. In fact, virtually any continuous martingale
whose quadratic variation is absolutely continuous with respect to Lebesgue measure can be
represented as a stochéstic integral. Let us make this precise. Suppose a continuous R"™-valued
martingale m is given on our fixed space (0, 7, %, P), and that (m); = f(: 0.0l dr for some predictable
n X d matrix valued process o with d < n. In a certain rigorously definable sense, it follows that
there is a Brownian motion w in R® with respect to which m, = f(: o, dw,. This is the content of
Prop. 3.3, below.

Before stating the representation theorem precisely, let us note that it may be impossible to
construct w on the given space (2, #, %, P). For example, if m; = 0 and the o-fields ¥ and 7 are all

trivial, then there is simply no room for an #-Brownian motion of any dimension on this space. To
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eliminate this possibility, we augment the given space with a copy of canonical d-dimensional Wiener

space (C4,C%,C¢, W) as follows:

A A A

(0,7,P)= (A xC% FxC:PxW)

%= m (7t+h X Cf+h)'

h>

(3.5)

[=]

Now (ﬁ, %, z,ﬁ) is a filtered space satisfying the usual hypotheses, and any random variable
z originally defined on {1 can be readily replaced by a random variable £ = z o 7 on ﬁ, where
7(w,w') = w is the natural projection. Clearly 32s.

The fine points of the extension (3.5) are explored in detail by Jacod (1979), Section X.2(b),
p. 332. He shows that for the natural embedding 7~ (¥) of the original o-field 7 in ?{, a random

~

variable % defined on (£}, 7, P) is #~1(7)-measurable if and only if % = z o x for some random variable
z on (0, 7, P) with 223, Also, 7~1(7) = n~1(7) n %, and any 7~ 1(F)-measurable random variable
Z = z o r obeys

~r

E['5:'|E]:E[Ehr—l(?t)]:E[zl.’ﬂ]ow B as.

Thus all relevant properties of £ and # are retained in the passage to %, .:7’:, while the enlarged space
(ﬁ, ?, z, }’3) most assuredly has room to contain a d-dimensional Brownian motion.

We may now state the promised representation theorem, essentially due to Doob. The version
here, which allows d £ n and imposes no nonnegativity condition on o, is taken from Jacod (1979),

Thm. (14.45), p. 466.

8.3 Proposition. Let m; be a continuous R"-valued %-martingale with {m), = fg o.0ol dr for some
Fi-predictable n x d matrix valued process o with d < n. Then there is a d-dimensional ?t-Browm'an

motion @, on (ﬁ, ?, z, 13) such that, with m; = my o7 and &, = o, o w, one has
t ~
my = / &, di, vte[0,T}, P— as.
0

Moreover, if the rank of the matrix o is identically equal to d, this conclusion remains valid with

~ A A

(€, 77, P)=(0,7,%,P) and m = identity. That is, no extension of the given space is required.

A significant application of Prop. 3.3, first noted by Wong (1971), deals with “quasimartingales.”

Let z be an F-adapted process with cadlag sample paths in R™. For any partition 0 < ¢; < t; <
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-+« <t < T of [0, T}, define

var (zt1,... ) = O [Efz(tir1) — 2(&:) | %]+ |2(T)],

=1

(3.6)
Var (z) = sup {Evar (z;t;,...,ts) : k€N, 0<¢t; <--- <t <T}.

The process z is a quastmartingale if Var(z) < +oco. Note that any %-martingale m, is automatically

a quasimartingale, since for any partition
var (m;t1,...,t5) = 0+ |mrp|

and E|mr| < +oo. (In particular, a Brownian motion is a quasimartingale even though almost
all its sample functions have unbounded variation on every interval.) The linearity of conditional
expectation implies that the sum of a quasimartingale with a martingale remains a quasimartingale.
Conversely, we might expect that a typical quasimartingale should be decomposable into the sum
of a martingale and some other process. The properties of the other summand are described in the

following theorem, originally proven by Fisk, but quoted here from Jacod (1979), Thm (5.36), p. 174.
8.4 Proposition. A given process z on (Q, ¥, %, P) is a quasimartingale if and only if
(3.7) Ty — o = Mg + G Vt € [0, T], P- a.s.,

where m; is an %;-martingale and a, is a predictable process whose sample paths have finite variation

on [0,T| P — a.s. This decomposition is unique.

Jacod (1979), Prop. (9.14), p. 285, also shows that if a given quasimartingale z on (0, 7, %, P)
happens to be §;-adapted, where §; is a filtration satisfying the usual hypotheses and §; C 7 Vi,
then z is also a quasimartingale with respect to ({2, #, G¢, P). Of course, the canonical decomposition
of z given in (3.7) may change when one passes to this smaller ﬁltratioﬁ. Eugene Wong (1971)
has given an explicit construction of the §:-representation of a quasimartingale whose canonical

F,-decomposition takes the form

t
(3.8) Ty = Zo +/ frdr+m,.
0

We quote his result as Thm. 3.6 below, assuming that f is an %-adapted process obeying
. ‘

(3.9) E/ |fr| dr < +o0
0
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and that m; is a continuous second-order #-martingale with
(3.10) E{m)r < +oo.

Wong’s original proof is phrased somewhat differently, and is valid in the more general case when m

is a “locally square integrable martingale.” It relies on the following lemma.

8.5 Lemma (Wong). Let % and G, be two filtrations of (Q, 7, P) satisfying the usual hypotheses,
and suppose that m, and n; are continuous second-order %- and §G;-martingales. If m; —n; is a

process whose sample paths have bounded variation, then (m); = (n), ¥t € [0,T] a.s.

3.8 Theorem (Wong). Let z be an R"-valued 7,-martingale of the form (3.8) satisfying (3.9)
and (3.10). Suppose that there is an #;-predictable n X d matrix valued process o with d < n such
that (m), = f; orol dr. Then for any filtration G, obeying the usual hypotheses and 7* C G;: C %,
there is a d-dimensional gt-Brownian motion W, on (ﬁ, 7 §t, 13) such that

t

t
zt=&’o+/ E[f. | G dr+/ & d®, Vte[0,T), P— as.
0 0
(Here (§1, 7, P) is the product space defined in (3.5).)

Proof. We follow Wong (1971), Thm. 4.2, p. 629.
It is known that z; is a quasimartingale with respect to the filiration G;. Therefore there is a

Gi-martingale n; and a §;-predictable process a; of bounded variation such that
(3.11) Ty = To + G + Ny vVt e [OV, T], P— as.
Wong’s proof (his p. 630) shows that
t
(3.12) ay =/ E[f | Gr]dr vt e [0,T), P— as.
0
Subtracting representation (3.11) from the original representation (3.8) leads to

t
m,—ng=at—/ frdr vt€(0,T], P— as.
o
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Now the right side here is a process whose sample paths have bounded variation, P — a.s. So by

Lemma 3.5, we have

t
(n)e = (m)e = / o,oldr  WtE[0,T), P— as.

: 0

Hence Prop. 3.3 gives an R%-valued Brownian motion i on (ﬁ, 7, §t, 13) such that
t A~
(3.13) % = / 5.d%, Vte[0,T), B as.
: 0

As we have seen above, (3.12) implies that on the extended space ({1, 7, P),

t ~ ~ ~
(3.14) Tt =f E[f, | G-]dr Vte[0,T), P- as.

0
Combining (3.11), (3.13), and (3.14) gives the desired result. /1]

Because of the simple structure of the product space (ﬁ, ?, }‘5) and the fact that all processes
z on the original space ({1, 7, P) retain their essential properites in the passage to (1, 3, }“”), the
superscript tilde is often suppressed in applications of Wong’s theorem. We will use this convention

in the sections to follow.
Section 4. Problem Formulation

Stochastic Dynamics. We study a random dynamical system whose state z evolves in R™ under
the influence of a Brownian motion w in R (d < n) and a control signal u chosen from a preassigned
closed set U C R™. The motion takes place on the (given) finite time interval [0, T, starting from a

fixed initial value zo. Thus the dynamics are described by the Itd equation

t

t
(4.1) Ty = Zo + / f(ryz,u.) dr + / o(r, z} dw,.
0 0
It is conventional to write (4.1) in differential form as follows
(4.2) dz, = f(r,z,u,) dr + o(r, z) dw,, z(0) = zo.

Here the coefficients f:[0,T] x C™ x R™ — R"™ and 0:[0, T} x C™ — R"*4 must satisfy hypotheses

(H1)-(H3) below.
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(H1) f(¢,z,u) and o(t, z) are Lebesgue measurable in ¢, continuous and CF-measurable in z;
the continuity of o(¢, ) is uniform in ¢; and f(¢t, z, u) is continuous in u.

(H2) There are constants x; > 0 and 8 € (0,1) such that
lo(t, z)| < x1 (1 + ||z||;") vie [0,T], z€C™.
This assumption evidently implies that for some k;, one has
lo(t,z)| < ky (14 |z]|,) vte [0, T], z€ C™
we assume that k; also satisfies
[f(t,z,u)| < k1 (1 + |\z||, + |u]) vte[0,T], z€C* uel.

(H3) The initial value zo € R™"is fixed and non-rgndom.

Under these three hypotheses, a solution to equation (4.1) is to be understood as follows.
The solution consists of a filtered probability space (12, ¥, %, P) obeying the usual hypotheses and
carrying an %-Brownian motion w in R, an %-adapted stochastic process z; with values in R™,
and an z;-adapted stochastic process u;, with values in U, all related by equation (4.1). Note that
conditions (H1)-(H3) are too weak to imply any known existence or uniqueness theorems, so we
must specify all these elements when discussing a solution. However, for the sake of brevity, we will
often speak simply of “control-state pairs” (u,z), leaving implicit the associated space (Q, ¥, %, P)
and Brownian motion w.

Regardless of the underlying space, bounds on the moments of u and on the initial conditions

lead to bounds on the moments of any process z satisfying (4.1).

4.1 Lemma. Let p > 2, and assume (H1)-(H2). IfE |z0|° < K, and EfOT |u.|” dr < K, then for
any control-state pair (u, z) one has

E|z|I” < M,

for a constant M which depends only on T, k1, n, p, Ko, and K. In particular, M is independent of

the specific choices of zo and u obeying the indicated conditions.
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Proof. Hypothesis (H2) and (BDG) sponsor the following calculation.

t
/ o(r, z) dw,
o

t
= |ze|” < Kop <|z0|" +TP7 /0 k(1 + Iz, + |ur[)? dr +

t
lae] < || + / \£(r, 2, ur)| dr +
(]

t 4

/a(r,x)dw,. )
0
t t

— E[zf <K, (K0+T"“k’1’K,, (T+ /0 E || dr+K) +K,C, /0 (1+E|[:c||f)dr)

t
= Elalf <Co+Ci [ EJal? ar
o :
for some constants K, Cp, C;. By Gronwall’s inequality, M = Cpe“'T suffices. i

The Objective Functional. The cost of a given control-state pair (u,z) is measured by the

functional

T
(4.3) Alu,z] :=E [ﬁ(xT,EzT) +/0 L(r,z,u,) dr] .

An admissible pair (u,z) is a control-state pair for which Alu,z] < +co. The pointw.ise cost
£:R?" — R and the running cost L: [0,T} x C* x U — R in (4.3) must satisfy (H4)-(H5) below.
(H4) L(t, z, u) is measurable in ¢, continuous and C}-measurable in z, and continuous in u;
£ is continuous.
(H5) The function £ takes on nonnegative values, and there exists a > 0 such that
L(t,z,u) > a|u|? for all (t,z,u) € [0,T] x C* x U. (Note that if U is a compact set, this

requirement can be replaced by the assumption that L > 0.)

Cesari’s Condition. Even in the deterministic special case of our existence Thm. 5.1 below, a
certain upper semicontinuity property must be assumed. This hypothesis needs no fortification in

the stochastic case. It is stated in terms of the multifunction Q:[0,T] x C™ «— R" x R defined by
Qft,z) = {(f(t,z,u),L(t,z,u) +r) cuel, r2> 0} .

Cesari’s condition is the following hypothesis.
(H6) For all (t,z) € [0,T] x C*, with the possible exception of a set whose projection onto the

t-axis has Lebesgue measure zero, one has

(@) Qt,r)=[)w |J Q).

€>0 la—t|<e
fly—=[l<e
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Note that under (H6), Q(t,z) must be closed and convex because it is the intersection of closed
convex sets. It is easy to verify that under our standing assumption that U is closed, the growth
condition of (H5) ana our continuity conditions on f, L automatically make Q(t, z) closed. Fleming
and Rishel (1975), Sect. III.4, p. 68 show this. Moreover, they prove that if f and L are continuous
in t at some point o and Q(to,zo) is known to be convex for some zg, then property (Q) holds
at (to, zo). (Their Lemma IIL5.4, p. 72.) More general conditions implying (H6) are given by

Cesari (1983).

Problem (P). The stochastic control problem (P) is to choose an admissible pair (&,Z) such
that A[4, Z] equals the infimum of A[y, z] over all admissible pairs (u,z) as defined above. This
latter number is denoted inf(P): it is defined even if no optimal pair (%, Z) exists. (If there are no

admissible pairs, then inf(P) = +00.)

Discussion of Hypotheses. The measurability and continuity conditions of (H1) are standard.
In Kushner (1975) they are supplemented by an assumption, denoted (A3), that d = n and that

o is the positive square root of & = go’. These conditions may Poth be traced to Kushner’s use

of Wong’s theorem, whose original form required these conditions. However, the version of Wong’s
theorem presented above as Thm. 3.6 avoids these hypotheses—an improvement resulting directly
from Jacod’s careful formulation of our Prop. 3.3.

The growth conditions of (H2) are used not only in Lemma 4.1, but also to establish tightness
and uniform integrability in Section 5. Similar conditions are required even in the deterministic case.
The presence of two conditions on o, the second implied by the first, reflects a desire to make do
with the second one throughout. Our distinction between x; and k; clarifies the fact that the strict
inequality B < 1 is needed only in the proof of Prop. 5.5: everywhere else we use the weaker condition
involving k;. To be more specific, the proofs of Prop. 5.5 and Lemma 4.1 show that the size of § is
limited only by the modulus of integrability of the’ admissible controls. If the growth condition of
(H5) is replaced by L(¢, z,u) > «|u|?” for some p > 1, then any # < p will serve in (H2).

Hypothesis (H3) can be relaxed considerably: see paragraph 6.5.

The measurability and continuity hypotheses of (H4) are standard.
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Hypothesis (H5) is substantially weaker than the assumption that U isA a compﬁct set used by
Kushner (1975) and throughout the literature. This is the main contribution of the current chapter.

The requirement that the control process u be z;-adapted in the definition of a control-state
pair can be defended on the practical grounds that at any time £, the controller should use only the
information obtainable from observing the state process itself at times before t. This information is
defined by the o-field #*. For theoretical completeness, however, we should mention the apparently
larger class of controls u which are allowed to depend on anything in the known universe which takes
place before time t: that is, controls which are adapted to % rather than to 7*. We will now show
that this family of controls offers no advantage (as measured by A) over the more practical family
chosen above.

Suppose a filtered space ({1, 7, %, P) and an %-Brownian motion w, are given such that u, is
an %-adapted process satisfying (4.1) for some %-adapted process z;. Assume EfOT lup [ dr < +o0.
Then by Wong’s Theorem (Thm. 3.6), there is an extension of ({1, 7, %, P) carrying a Brownian
motion @; such that

t

t .
(4.4) zy = Ig +/0 E[f(r, z, t,) | .7,“‘] dr+/ o(r, z) dw,.

0

(We continue to denote this extension by (f2, ¥, %, P).) The objective value can be written as follows,

using conditioning and Fubini’s theorem:
T
(4.5) Alu,z] = E[Z(zT,E:z:T) +/ E[L(t,z, u) | .‘7’;”] dt] .
0
Now the process (f(t,w),z(t,w)) = E[(f(t,z,ut), L{t, z,u:)) l .7,“] is 7-adapted and obeys
(4.6) (f(t,w),i(t,w)) €Q(t,z(w))  ae te(0,T], as.
Equation (4.6) is justified by the following Lemma.

4.2 Lemma. (a) Let (22, ¥, P) be a given probability space carrying a set-valued mapping I': 1 — R"
and an F-measurable mapping ¢g: (! — R"™ with E|g| < +c0. Suppose that I' has nonempty closed

convex values, and that for some o-field § C ¥, the mapping w — sup{p-v : v € ['(w)} is
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G-measurable for each p € R™. Suppose further that the set {p € R" : supp-T'(w) < +_oo} has

nonempty interior almost surely. Then under these conditions,
g(w) €T(w) as. = E[g]J](w) eT(w) as.
(b) For each fixed t € [0, T], T(w) = Q(t,z(-,w)) and § = 77 obey the hypotheses in (a).

Proof. (a) For each p € Q", p-E[g | 9] = E[p g ] g] < E[sup(p - I‘) | _g] =sup(p-T) as. For
fixed w, the sublinear function of p on the RHS is finite on a convex set with nonempty interior: the
inequality therefore holds for all p € R"™ and (a) follows.

(b) The linear growth of f and the superquadratic growth of L imply
int {pe R"*! : supp- Q(t, z(,w)) < +o0} =R™ x (—00,0) as. /1]/

Let us now consider the measure space M = [0, T| x 2 equipped with the o-field M generated
by all sets F € B x ¥ such that for each fixed t, the projection {w : (t,w) € F} lies in 77 and
for each fixed w, the projection {t : (t,w) € F} lies in B. Bene¥ (1971) shows that a mapping of
[0,T] x Q into R™*! is z,-adapted if and only if it is M-measurable. Hence in particular (f, i) is
M-measurable.

Benes (1971), Lemma 5, p. 460, gives an implicit function lemma almost perfectly suited to this
situation. Using his notation, we take (M, M) as defined above, A = R"*1 and U=Ux [0,+00). A

typical element of U7 will be denoted by (u,v). Let us define k: M x U — A and M- T by
k(t,w,u,v) = (f(t,z(-,w),u), L(t, z{-,w),u) + v)
vit,w) = (Fit.w), L)),
Then k(t,w,u,v) is M-measurable in (t,w) for each fixed (u,v), and continuous in (u,v) for each
fixed (t,w). Also y is M-rﬁeasurable and obeys y(t,w) € k(t,w, 17) = Q(t,z(-,w)) by (4.6). Now the
set U is admitt;edly non-compact, but it is closed and o-compact, a case in which Bene¥’s lemma is

easily seen to remain valid. The conclusion of this lemma is that there is an M-measurable mapping

(%,%):{0, T} x @ — U such that

(Ft.0), Z(t,w)) = (0230, 0), 8(t, ), L, 2(,w), (e, 0)) + 3(Ew) ).
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Now (i, v) is 77-adapted since it is M-measurable, and (4.4) (4.5) become
t t
s = Tg +/ f(r,z,4,) dr+/ o(r,z) dib,
0 0
T T
Alu, 2] = E | £(zr, Eor) +/ L{t, =, %) dt +/ % dt| > A[T,a).
0 0

This demonstrates that any admissible pair (u, z) for which u is merely %-adapted can be replaced
by an admissible pair (%, z) for which @ is 7-adapted, without increasing the cost. In fact, we can
say more. Bene¥ (1971), pp. 450-451, shows that the M-measurability of % implies that there is a
measurable map v:[0,T] x C* — U such that v is C-adapted and %(t,w) = v(t, z(-,w)). Thus the
use of 7%-adapted controls is equivalent to the use of feedback controls.

In summary, there are two ways to define problem (P). The first uses nonanticipative controls,
i.e. U-valued stochastic processes u defined on a filtered space (Q, 7, %, P} with %-Brownian
motion such that u; is merely %-adapted and solves (4.1) together with some %-adapted process
z¢. The second seems more restrictive: it uses feedback controls. These are Cl*-adapted functions
v:[0,T] x C™ — U with the property that for some space (2, 7, #, P) carrying a Brownian motion
wy, there is an #-adapted process z; obeying

t t

(4.7) Ty = 2o + /(; f(r,z,v(r,z)) dr + /0 o(r, z) dw,.
The arguments above show that the use of feedback controls is not restrictive. Indeed, for any
admissible nonanticipative control there is an admissible feedback control giving rise to an objective
value at least as small. Of course feedback controls are not more general either, since an admissible
feedback pair (v,z) solving (4.7) gives rise to a nonanticipative solution pair (u,z) for (4.1)
by simply defining u(t,w) = v(¢,z(,w)). Thus the number inf(P) is the same in the feedback
and nonanticipative formulations, and the feedback problem has a solution if and only if the

nonanticipative problem does.

Section 5. Existence Theory

This whole section is devoted to the proof of the following fact.
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5.1 Theorem. Assume (H1)-(HG6).
(a) If problem (P} has an admissible pair then it has a solution.
(b) Indeed, let any sequence of admissible pairs {(u",z")} be given, such that the objective
values \¥ = A[u*, z*| converge to some real number X. Then there is an admissible pair

(u, z) for (P) such that, along a subsequence, 7*2.z in C" and Alu,z] < A

Clearly conclusion (a) follows from conclusion (b). For (H5) ensures that inf(P) > 0, while
inf(P) < 400 because an admissible pair exists. Hence one can construct a sequence of admissible
"pairs as described in (b} for which the objective values tend to A = inf(P). Then the admissible pair
(u,z) given by (b) solves the problem. However, statement (b) is somewhat more general than a
simple existence theorem. It can be viewed as a lower-semicontinuity conclusion about A which holds
globally and not just near optimality. The significance of this will become clear later. We now turn
our attention to the proof of (b).

Let any sequence {(u*,z*)} as described in (b) be given. Each entry (u*,z*) in this sequence
carries with it a probability space (2%, 7%, P*) and a Brownian motion w*. We will try to simplify
the notation in the following arguments by suppressing the superscript k on P* when evaluating thg
probability of an event which is clearly taken from 7*, and agreeing that for a real-valued function g
defined on (2%, 7*), we will write Eg for expectation with respect to P*.

Now the convergent sequence A[u¥, z*] is certainly bounded. Since A{u*,z*] > oE fOT |u,’?|2 dr

by (H5), there is some constant k3 > 0 such that
T 2
E/ |uf|" dr <ks  Vk.
0

The first step in proving (b) is to study the convergence properties of the state processes z*.

This commences with Prop. 5.2, using the notation

240 = [ 1o, ) ar
0

22k (1) = /t o(r, z*) dw,,
0

t
zk(t)=/ L(r, z*,u¥) dr.
0
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5.2 Proposition. The sequence of quadruples (z*,z'*,22* z*), considered as a collection of

random vectors in C*" x Z, is tight.

Proof. To prove tightness, we may consider each component sequence individually.

We begin with the sequence {21"‘}. For each w € {1 and k € N, one has

sup |z!*(t) — zV*(s)| < sup /|f(r,a: ,uk)| dr

O<t—2a<é <t—s<6

< sup /k1(1+||zk||,+|uf|)dr
O0<t—s<é

1
T 3
<k 5+5”zk”+6% (/(; Iu',f]z dr)

Taking expectations and using E ”1:" ” < M (from Lemma 4.1) and Efo |u I dr < k3 gives

E sup [oV*() - (o) <k [5 4 6M +53kE] .
O0<t—~a<é

It follows from Chebyshev’s inequality that there is some constant R > 0 such that

P{ sup |zVF(t) — VR (s)| > s} < Ré% /e

0<t—s<é
This verifies condition (ii) of Prop. 2.4. Condition (i) is immediate since z!'*(0) = O for all k. Hence
the sequence {z''*} is tight.

Let us now consider the sequence {z"’"‘}. Denoting the standard basis vectors of R™ by
€1,.--,€n, we first fix k and write 0% (t) for the matrix o(t, z¥). The t-component of the n-vector z**
is

d t
K k k
el z? (t) = Z[ a‘j(r) dwj (r)-
5=1"0
According to Jkeda-Watanabe (1981), Thm. II-7.2’, p. 91, there are Brownian motions &%, y = 1,...,d

(based perhaps on an extension of (2%, 7*, P¥)) such that

Therefore for any given §,& > 0 we have

P{ swp (40 = 4| > e <

o (o) ([ 2
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For each w, o* is a bounded measurable function on [0, T] so ”a'° ” is defined in L*[0,T]. We
partition the RHS into the sets {Ha"”z > R} aﬁd {”o" "2 < R}, whereupon it is evident that the

LHS is not larger than

-
P {”cr"”2 > R} +P sup Z |@% (') — @5 (s')| > e

o<t/ —s'<Ré =1

d
5E||a"”2/R+ZP{ sup  |@5(t) — DF ()] >e/d}.
J=1

0<t'—8'<Ré

Now for all k at once, Lemma 4.1 gives a constant upper bound for
E [o*|* < 2k (1+ E2*]7) .

Hence for any given £ > 0 and n > 0, we first choose R so that E ”0"‘”2 /R < n/2 for all k. Then we
note that the second term of the RHS above tends to 0 as § — 0 because almost-sure convergence
implies convergence in probability; hence the second term is also smaller than n/2 for all § > 0
sufficiently small. Also, the numerical value of the second term is independent of k and ¢. It is

therefore possible to combine the componentwise estimates for 1 = 1,2,...,n into the following:

lim su P{ su 22k (8) — z2*(s >e}=0.
§—0+ kp 0<t-—g<6| ( ) ( )|

Prop. 2.4 now shows that {:1:2"‘} is tight.

Since z*¥ = zo + z1* 4 z2* the tightness of {:ck} follows from the fact that {:cl'k} and {1:2*"}
are tight. |

Finally, the tightness of {zk} can be verified directly by Prop. 1.3. Simply consider the compact

sets Ky ={2€ Z : z(T) < N} for N € N. Then
T
P{zkgéKN}:P{-/ L(r,zk,uf)dr>N}
0

<lE /TL(r z* uk)dr ‘
—_ N o ) Yy “Yr .

Since the supremum over k of the RHS is bounded, it follows that
. f k _
Nh_x.noost;pP{z ¢ Kn}=0.
That is, the sequencé {2*} is tight. 111/
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Let us now apply Prokhorov’s Theorem (Prop. 2.3). It states that there is a subsequence (which

k 2,k

we do not relabel) along which (z*,z!'*,z2* 2*) converges in distribution to a random element

(z, 2, 2%,2): (0, 7,P) = C°" x Z.

We wish to use this limiting quadruple to construct the admissible pair whose existence is asserted
by Thm. 5.1(b). Let us start by considering the following subsets of Ca_" X Z:
Sy = {(z,xl,zz,z) : (z,2%,2%) e O, 2z € Z,
z(t) = zo + z'(t) + 22(t), ='(0) = z*(0) =0,
T

' € AC™, /0 |:i:1(r)|2 dr < N?,

z(T) < N,

(21(t), 2(2)) € Q(¢, z()) a.e.}.
Each set Sy is closed in C°" x Z. To justify this statement, let (z*,z1'*, 2% 2z*) € Sy be a sequence
converging to some point (z,z!,22,2). It follows immediately that z(t) = zo + z!(t) + z2(t) V¢,
that z!(0) = 22(0) = 0, and that 2(T) < N. The condition ||¢"*|, < N Vk implies that ' € AC™
and | & ”2 < N. (This is a standard fact in the calculus of variations, central to the proof of Tonelli’s

classical existence theorem.) It remains only to check that (2?(t),2(¢)) € Q(¢, z(-)) a.e. This is a

corollary of the following well-known closure theorem used in deterministic control theory.

5.8 Proposition. Assume that the sets Q(t,z(-)) satisfy hypothesis (H6). Let (z*,2F) € AC" x Z

be a sequence of functions obeying
(z*(¢), 2% (t)) € Q(t,z*(-)) a.e. on [0, T), Vk.
If z* — z uniformly for some z € AC and z* — z pointwise a.e. for some z € Z, then one has
(z(),2(t)) € Q(¢, z()) a.e. on [O,T]:

Proof. The statement is very similar to that of closure theorem 15.2.i given by Cesari (1983), p. 444.
Two differences are worth mentioning, however.

First, Cesari’s theorem involves a multifunction @ depending on (¢, z:) € [0, T| x R" instead of

on (t,z(:)) € [0,T] x C™. His proof requires only minor changes to treat the more general case.
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Second, Cesari uses a sequence of absolutely continuous functions for 2* instead of using
elements of Z. His exact conclusion is that if the pointwise limit z(t) has a representation as the
sum of an absolutely continuous function ¢(t} and a singular function s(t), then (z,c) € AC™t?
solves the indicated differential inclusion. Now in our context, the limit z € Z certainly has such a
decomposition, so our conclusion stated above follows from Cesari’s. However, the requirement that
each 2* be absolutely continuous is important to Cesari’s proof. We must therefore explain why his

argument remains valid despite the possibility of a strictly positive r in the statement
b
/ #*(t)dr = 2*(b) — 2*(a) + r for some r > 0.
a
Here the special shape of the sets @ intervenes. The identity
Q(t,z) = Q(t,z) + {0} x [0, +00)  V(t,z) €[0,T] x C"

is precisely the observation needed to extend Cesari’s proof to include the current proposition. ////

Now for each fixed k, we investigate P {(z*,z"*,z2* 2*) € Sy}. The follo wing conditions hold

with probability one:
25 (t) = zo + zV*(t) + 225 (t) Ve, zV*(0) = z%*(0) = 0,

ztF e AC™, (2% (2), 2*(t)) € Q(t, z*(")) a-e.

Only the upper bounds on “:i:l”‘”2 and z*(T) remain to consider. By (H2), we have

T <1,k 2 2 1 T ko ky|2
P / |zV*(r)|" dr > N 5—213[ |f(r, =%, uF)|" dr
0 N 0

1 T k 2 k12
S yadkB | L+ [l + [ur]) dr,
and the expectation on the right-hand side is bounded uniformly in ¥ by Lemma 4.1 and the

observation following Theorem 5.1. Also,
1 T
P{z*(T) > N} < —A—,E/ L(r, =, u¥) dr.
0

Here the RHS is uniformly bounded in k because we started with a convergent sequence of objective

values. We therefore have

A}Enoo iI":fP {(:z:k, bk 2k k) e Sy} =1

By Def. 2.1(b) (see text following Thm. 2.3), it follows that the limiting 4-tuple (z, z*, 22, z) lies in

o0
the set U Sy a.s.This proves the following assertion.
N=1
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5.4 Proposition. The limiting quadruple (z,z',z2,2) of Prop. 5.2 obeys the following conditions
with probability one:
z(t) = zo + z1(t) + 2%(t) V¢,  z'(0) = z%(0) =0,
2! € AC™, /OT 3 dr <o0,  2(T) < oo,
(2 (2),2(t) € Q(¢, z()) ae.
Let us now use Wong’s theorem to show that z? can be represented as a stochastic integral of

the required form. We first define a filtration % on (£, 7, P) as the filtration generated by (z;,z2).

5.5 Proposition. There exists an extension of ({1, ¥, %, P) on which the conclusions of Prop. 5.4
remain valid, and which supports a d-dimensional Bownian motion @, such that
t ’ t
z, = Zo +/ E[z}! | #7] dr+/ o(r,z) diis, Vte [0,T)], as.
0 0
Proof. From Prop. 5.4 we have

t
Zy = Zo +/ gldr+z2 Vtel[0,T), as.
0

Condition (3.9) of Wong’s theorem is evident; it remains to verify the martingale properties of zZ.

We first show that {sz'knz} is a uniformly integrable sequence. Indeed, (BDG) gives
2,k 1|2/8 T ky[2/8
B <G, [ Blotna")" ar
0

T
quA (1+ B |) or

The RHS is bounded uniformly in k; uniform integrability follows because 2/8 > 2.

Now for each k, zf’k is a martingale with respect to the filtration generated by (z¥, :z:tz‘k). So by
Prop. 3.1, it follows that zZ2 is an %-martingale.

Tile quadratic variation of xf’k is gf = fg o(r, z*)o(r,z*)" dr. By definition, this means that
(zz*k) (zz”‘)' — gF is a martingale for each k. The calculation above shows that this martingale has
a uniformly integrable sequence of supremum norms. Moreover, qf is a continuous image of the

k

convergent (in distribution) sequence z*, so on the space of continuous matrix-valued functions we

have

@) @ = 2o () () o
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where ¢ = fota(r, z)o(r,z) dr. According to Prop. 3.1, it follows that (z7) (:z:?)' — g¢ is an

F-martingale. By definition, the quadratic variation of z? is ¢, i.e.

(=), = /ot a(r, z)o(r, z)’ dr.

The process o(r, z) is clearly #*-predictable, so Wong’s theorem (Thm. 3.6) applies. It concludes
t

that on a certain extension of (2, 7, %, P) there is a d-dimensional Brownian motion @, such that
t t '
T, = xg +/ E[z; | 77] dr +/ o(r,z)db, Vte[0,T), as.
0 0

The explicit construction of this extension in Section 3 makes it clear that the properties of the

limiting quadruple described in Prop. 5.4 remain intact. /1l
Let us now examine the following conclusion of Prop. 5.4:

(il(t,w),é(t,w)) € Q(t, 3(-,w)).

Lemma 4.2 implies that if we define (f,(t,w), i(t,w)) = E[(:i:tl, 2)

.‘7:’], then
(f‘(t,w), z(t,w)) €Q(tz(hw)) Vte[0,T], as.
In this notation, the argument given in the text following Lemma 4.2 establishes the following result.

5.6 Proposition. There is an #*-adapted process (u,v):[0,T| x @ — U x [0, +o00) for which

~

f(t,w) = f(t, 2, u) a.e. 0,T], as.,
Z(t,w) = L(t, z, u;) + v a.e. [0,T], as.

The following Proposition completes the proof of Thm. 5.1.
5.7 Proposition. The pair (u,z) is admissible, and A[u, z] < A.
Proof. Propositions 5.4-5.6 show that u:[0,T| x @ — U is an #*-adapted process for which
dzy = f(t,z,w) dt + o(t, z) dwy, z(0) = zo.

Thus (u, z) is a control-state pair for the dynamics (4.1).
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Since 2*(T) = f: L(r, z*, u¥) dr converges in distribution to z(T), a version of Fatou’s lemma

(Billingsley (1968), Thm. 5.3, p. 32) gives
Ez(T) < liminf E2*(T).
k—oco
Now 2(T) > fOT 2(t)dt as.,so

T
likminsz"(T) > E/ L(t)dt=E
— 00 0

T T
/ L(r, z, u,)dr+/ vy dr] ,
0 0

T T
= E/ L(r, z,u,) dr < liminf E2*(T) — E/ v, dr. (%)
0 k~co 0

Since z*(T)-2z(T) and E |:::’°(T)|2 is bounded uniformly in k by Lemma 4.1, uniform

integrability implies Ez*(T) — Ez(T). The technical Lemma 5.8 below shows that this implies
£(z*(T), Ez*(T)) -2 £(z(T), E(T)).
A second application of Fatou’s lemma now gives
E¢(z(T),Ez(T)) < lim inf E¢(z*(T), Ez*(T)). (##)

Combining (*) and (**), we obtain the inequality proclaimed by Thm. 5.1(b):

T
Alu, z] Slﬁing[uk,xk]—EA v(r)dr < A 111/

5.8 Lemma. Suppose a sequence z¥ of R"-valued random variables converges in distribution to a

random variable z, and that moreover Ex* — Ez. Then for any continuous function £: R* x R® — R,

one has £(z*, Ez*)-24(z, Ez).

Proof. Let any € > O be given. Since {z*} converges in distribution, there is a compact set Ko
such that P{z* € Ko} > 1 —¢ Vk. Choose a;, compact set K; containing the sequence {Ez*}.
Then on K = Ky x K, the function £ is uniformly continuous, so there exists § > 0 so small that
(z,y) — (z',¥')| < 6 for (z,y)}, (z',y') € K implies |£(z,y) — £(z', ¥')] < e. Then choose N € N such

that £k > N forces IEzk - Ezl < §. It follows that
P{|¢(z*, Ez*) — £(z*, Ez)| > €} < P{z* ¢ Ko} < e.

Hence |¢(z*, Ez*) — £(z*, Exz)| -£.0. Now since £(-, Ez) is continuous, Z(zk,Ez)—Q—vl(z,Ez). By

Billingsley (1968), Thm. 4.1, p. 25, it follows that £(z*, Ez*)—2+¢(z, Ex). ////
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Section 6. Extensions of Theorem 5.1

The standing assumption that the running cost L and the terminal cost £ are nonnegative can
clearly be relaxed. We need only assume that L and £ are bounded below, and that L satisfies a

growth condition of the form
L(t,z,u) > a|ul> — « for some @ >0, ¥ 0.

This section is devoted to a collection of similar observations—most not quite so obvious—regarding

the hypotheses under which existence is assured.

6.1 The Deterministic Case. The case ¢ = 0, in which the stochastic dynamics of Section 4
reduce to deterministic functional differential equations, is permitted by the hypotheses governing
problem (P). When (H1) is further specialized so that f depends only upon the current position
of the state process =z and not on its past, Thm. 5.1 reduces to a standard existence theorem in
deterministic optimal control. See, for example, Fleming and Rishel (1975), Thm. 111.4.1, p. 68.
However, several issues raised by this comparison deserve comment. First, our result requires no
Lipschitz condition on f, whereas Fleming and Rishel make this assumption in their condition (2.4),
p- 62. The Lipschitz condition is used to ensure the existence and uniqueness of solutions to the
governing equation for every possible choice of u: our theory avoids this by ignoring uniqueness
completely and making the existence of a corresponding solution one of the prerequisites for the
admissibility of u. When existence and uniqueness are required in the stochastic context for other
reasons (as they will be in Chap. V), the Itd conditions are used. These are more stringent than
Fleming and Rishel’s hypothesis (2.4) on p. 62.

Second, the deterministic theory can be developed under the growth condition
L(t,z,u) > a|u|’ — v for some p > 1,

whereas we require p > 2. Here the stochastic theory cannot be strengthened. The exponent 2 is
essential because it is the reciprocal of Brownian motion’s index of Holder continuity. This accounts

for the special role of 2 in Propositions 1.1 and 1.2, which are crucial to our proof.
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Finally, note that setting o = 0 really does render the problem completely deterministic, since
we have shown that to any admissible control u(t,w) there corresponds a feedback control v(t, z) for

which the dynamics become
#(t) = f(t,z,v(t,z)), =z(0) = =zo.

No external randomization is present here. However, Thm. 5.1 must not be interpreted as implying
the existence of an optimal feedback control law for deterministic problems. This is because the
phrase “feedback control” unfortunately has two different meanings. 1n the stochastic theory, it refers
only to the functional dependence of the control law on the state process—something which is always
trivially present in the deterministic case. In the deterministic theory, “optimal feedback control”
designates a single function v(¢,z) which solves all the versions of problém (P) regardless of the
initial point in (t, z)-space. We have fixed the initial point (0, zo) throughout the arguments above,
so the optimal control generated by Thm. 5.1 is a feedback control only in the sense of functional

dependence, and not necessarily in the sense used by dynamic programmers.

6.2 Stochastic Calculus of Variations. A very important special case of problem {P) arises

when f(t,z,u) = u, U = R". Then the dynamics are simply

dzy = uyg dt + o(t, z) dwy, z(0) =z, u€R"?,

and problem (P) becomes a stochastic calculus of variations problem. See Fleming (1983). If we
assume that L is continuous in ¢, then hypothesis (H6) holds whenever L(t, z, -} is a convex function

for each pair (¢, z).

6.3 Incorporating Constraints. Suppose the criteria for admissibility in problem (P) are

tightened by adding a system of soft constraints such as
T
E |%4(z7,Ezr) +/ Li(r,z,u)dr| <X, i=-1,-2,...,—-1,
0

T
E [KJ-(:ET,E:I:T) +/ L(r,z,u,) dr] =X, J=12,...,J.
0

Under certain hypotheses, Thm. 5.1 can be extended to include this case. Let us write £y, Lo for the

objective functional’s constituents £, L.

— 903 -



The inequality constraints can be added by imagining a multidimensional objective functional
in Thm. 5.1. Thus we replace the scalar point cost £ and running cost L with the vectors
£=(ly,8-1,...,8-1)and L = (Lo, L_1,...,L_y) and assume that these vector-valued functions obey
(H4). Instead of (H5), we require only that each function &, L;, s = 0,—1,...,—I, be nonnegative,
and that any one of the functions L;, ¢ = 0,...,—1I, obeys the superquadratic growth condition

|° dr is

Li(t,z,u) > a |u|2. The growth of any single component of L suffices to imply that EfoT |uk
bounded uniformly in k for any sequence of admissible arcs with converging vector objective values,
and this leads to the boundedness of E ”:c" ”2 by Lemma 4.1. The remainder of the proof carries
through as before, except that we now consider the (I + 1)-fold product Z/*! as the metric space in
which z(t) = fg L(r, z,u,) dr takes its values. Hypothesis (H6) also involves the vector function L in
a natural way. (We will discuss this further below.)

To treat the equality constraints, we think of L;, 7 = 1,2,...,J, as additional components of
the function f and consequently require that L; obey the linear growth estimates and Lipschitz
conditions of (H1)-(H2). Since the proof of Thm. 5.1 shows Ez!*(T) — Ez!(T) along a sequence
with convergent objective values, it follows that these hypotheses will preserve the value of each
Ef(;r L;(r,z*,uk) dr in the limit as k — oco. To guarantee that the values E¢;(z*(T), Ez*(T)) are
also preserved in the limit, it suffices to make sure each of these sequences is uniformly integrable.

We therefore allow £; to be any continuous function obeying
(6.2) [€;i(z,€)| < ki(1+ |z]? + |e]") V(z,¢) € R?"

for some constants k; > 0, g € (0,2), and r > 0. Then the argument replacing the derivation of
(*#) in the proof of Prop. 5.7 would run as follows. (We suppress the subscript j.) Observe that

(=7, Ex?)LZ(zT, Ezr). Moreover,
E|e(ah, Bab)[** <k (1+ B[] + [E5[).

The RHS is uniformly bounded in k by Lemma 4.1 and the convergence of Ez%, so uniform

integrability implies equality in

E(zr,Ezr) = lim El(zk, Ezk).
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Having briefly described the hypotheses on £ and L; corresponding to (H1)—(H35), let us explicitly
mention that for the constrained problem the multifunction Q(t, z(+)): [0, T] x C™ — R"**7 x RI*!
becomes |

Q(t, z())) = {(F (¢, z,u), L(t, z,u) + r) : F = (f, L1, La,. o L;),
L= (Lo,L-1,L_2,...,L_j),
ue U, re R obeys r; > 0 Vi}.

The wording of hypothesis (H6) remains the same.

6.4 More General Point Costs. The point cost functional £ in problem (P) entered the proof
of Thm. 5.1 only in the last part of Prop. 5.7. (Also £ > 0 was implicitly used earlier.) A look at that
argument shows that £ could easily be allowed to depend on any number of points in addition to T.
In particular, f 0 < Ty < T3 < --- < Ty = T is any finite partition of [0, T], Thm. 5.1 remains valid

when £ R2N™ — [0, 00) is a continuous function of the form
¢ = ¢(z(Ty),Ez(Th), 2(T2), Ez(T3), . .., z(Tn ), Ez(Tn)).

Consideration of such general point-dependence is prompted by Kushner (1972). The remarks of

paragraph 6.3 show how such general point costs can also be used in any constraints added to the

problem.

6.5 Random Initial Value. Hypothesis (H3) regarding the initial point zy can be relaxed
considerably. For instance, Thm. 5.1 remains valid under the assumption that z( is a random variable
with a given distribution on R™. Under the additional hypothesis that E lzo|2 < 400, Lemma 4.1
remains valid for p = 2, and the tightness of any minimizing sequence is established just as before.
The proof of Thm. 5.1 then proceeds. The only change is that to deduce Prop. 5.4, one must add a
component accounting for o to the sets Sy, which now become subsets of R™ x C3" x Z consisting
of all points (zo, z, z*, 22, 2) satisfying the same defining conditions as before.

Indeed, the method of the previous paragraph will show that the random variable zo can be
considered as an additional choice variable, provided some condition is imposed to ensure that along
any minimizing sequence, E I:c'.fl2 is uniformly bounded. (This not only preserves the conclusion of

Lemma 4.1, but also implies that z¥ is a tight sequence of random elements of R™.) Demanding that
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the random initial value take its values in some predetermined compact set A C R"™ would certainly
accomplish this, as would several weaker conditions. Indeed, by eliminating w-dependence from these
arguments, we can see that existence is also assured if zp is assumed to be a deterministic choice
variable in the compact set A.

Constraints of the form discussed in paragraph 6.3 can be included in any problem where zg is
free and random, and the general point costs £ can then be allowed to depend upon zo, Ezo by the

explanation of paragraph 6.4.

Section 7. A Compact Control Set

The special case of Thm. 5.1 arising when the control set U is compact is rather widely
applicable, but it differs from standard results in several ways that deserve a closer look. In this
section we compare this special case to the results obtained when explicit appeals to the compactness
of U are allowed throughout the proof. Kushner’s work (1975) is representative of the latter.
When restricted to the deterministic regime, our discussion may be viewed as a comparison of
Theorems II1.2.1, p. 63, and IIL.4.1, p. 68, of Fleming and Rishel (1975).

To make for a meaningful discussion, let us sketch the usual theory for the case when U is
compact. It begins with hypotheses allowing random initial conditions (s'ee paragraph 6.5).

(h1) Same as (H1).

(h2) Same as (H2).

(h3) There are an exponent g > 2 and a constant k2 > 0 such that for all admissible initial values

zo, one has E |IO|E < k2. (Note: if § > 2 then we can take f =1, k; = k; in (h2).)

(h4) Same as (H4).

(h5) For some constants g € [0,9) and r > 0, one has a constant k3 > O such that

IL(t, 2, u)| < ks(1+ ||2]l7)

|€(v, €)| < ka([v]® + [e]")
for all (t,z,u) € [0,T] x C™ x U and (v,e) € R*".

(h6) The set Qoft,z) = {(f(t,z,u), L(t, z,u)) : u €U} obeys

Qtz)=[1 U Qolsv)

€0 ly—zll<e
ls—t|<s
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for all (¢,z) € [0, T} x C™, with the possible exception of a set whose projection onto the

t-axis has Lebesgue measure zero.

7.1 Theorem. Suppose that U is compact, and that (h1)-(h6) hold.
(a) If problem (P} has an admissible pair then it has a solution.
(b) Indeed, let any sequence of admissible pairs {(u*,z*)} for (P) be given, such that the
objective values A{u*, z*] converge to some real number X. Then there is an admissible pair

k

(u,z) for (P) such that, along a subsequence, z L,z inC" and Ay, z] = A

Proof. This is essentially Kushner’s (1975) Theorem 3.1, p. 350. We therefore simply sketch the
proof, emphasizing its differences from the proof of Theorem 5.1.
2,k

The sequence of 5-tuples (zk, z¥, z1* 22k 2*) is still tight, but in a different metric space. The

growth conditions (h5) imply that {z*} is tight in C. Indeed, we calculate

. -
sup [25(t) — z*(s)| £ sup / k3(1+ |[z* ”:) dr.
0<t—a<$é 0<t—a<6 /s

Taking expectations and using the uniform boundedness of E “z"”q (Lemma 4.1) then gives a

constant R > 0 independent of k such that

E sup [2*(t) —2*(s)| < Ré
O<t—s<$6

O<t—8<é

= ssz{ sup lz"(t)—zk(s)l>e}SR6/e.

Tightness follows from Prop. 2.4. So instead of Prop. 5.2, we find that along a subsequence,

D .
(zk, 2%, 21k, 22k 2%) (20, 2, 2%, 22, 2) in the space R™ x C4".

Thus we are led to consider the sets

Sy = {(zo,z,z*,2%,2) : o € R", (z,2%,2%,2) € C*",
z(t) = zo + = (t) + 22(¢), =z'(0) = z%(0) =0,
T — T -
(=%, 2) € AC™Y, / |#*(r)|* dr < N, / 12(r))¥? dr < N,
0 0

(2'(t), 2()) € Qo(t, z(")) a.e.}
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These sets are closed because of a different closure theorem than Prop. 5.3, namely Cesari (1983),
oo
8.6.i, p. 299. By Def. 2.1(b), we find that the limiting quantity (zo, z, 2, 2%, 2) lies in U Sy almost

N=1
surely. Just as in Prop. 5.5, Wong’s theorem now implies that

t t
e =z0+/ E[z! | 77] dr+/ o(r, z) dib,.
0 0

Upon defining (:fv(t,w), z(t,w)) = E[(z}, %) | ?;"‘] , the measurable selection theorem of Bene# gives

an adapted control u; such that

(f(t, w), L(t,w)) = (f(t, z(,w), ult,w)), L(t, z(-, w), u(t,w))).

Hence (u, z) is a control-state pair solving (4.1).

Moreover, Lis ezactly L, not something larger as in Prop. 5.7. (’i‘his is critical.) Since
zk(T)Lz(T) and {z*(T)} is uniformly integrable by (h5), we have Ez*(T) — Ez(T). Also,
E¢(z%, Ezk) — Ef(zk,EzX) by (h5) and the uniform integrability argument following equation (6.2)

in paragraph 6.3. So indeed A[u*,z*] — Afu,z| = A 111/

Now let us compare Theorems 5.1 and 7.1. The practitioner who only needs an existence result

will undoubtedly prefer Theorem 5.1. For hypotheses (h1)-(h4) are identical to (H1)-(H4} in the

_case of compact U, whereas (H5) now requires only that £ and L be bounded below—a considerably
weaker condition than the growth conditions of (h5). Also, (h6) implies that Qo(t, z) is compact and
convex for each (t,z), whence Q(t,z) = Qo(t,z) + {(0,r) : r > 0} is closed and convex: in the very
common setting when f and L are continuous in ¢, this is a situation in which (H6) is known to hold.
So in comparing Theorems 5.1{(a) and 7.1(a), we see that Thm. 5.1(a} obtains the same conclusion
as Thm. 7.1(a) under weaker assumptions.

However, the methods of Thm. 5.1 do not completely eclipse those of Thm. 7.1 because of the
differences manifested in their (b) parts. These show that the weaker hypotheses of Thm. 5.1(b) lead
only to a “lower-semicontinuity” result on A, whereas Thm. 7.1(b) concludes that A is “continuous”
in some sense. Of course these different statements lose their distinctiveness when applied to a
minimizing sequence in an attempt to prove existence, but there are situations in which the continuity

conclusions of Thm. 7.1 have other uses. We will discuss such a case in Chapter V.
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Appendix. Goor’s Existence Theory.

Robert M. Goor (1976, 1979) has recently proposed certain new existence theorems for stochastic
optimal control problems which appear to generalize the work of Kushner (1975). This appendix
demonstrates that a key lemma used in Goor’s “proof” of these results is false, and hence that his
assertions about existence must be regarded as conjectures—not as theorems. Goor’s statements
about existence are distinguished by their strong formulation. In other words, the probability space
(2, 7, P) and Brownian motion w; are fixed throughout his arguments, rather than being considered
as additional choice variables. The foundation for the strong approach is Lemma 1.7, p.909 of
Goor (1976). It involves a separable Banach space Y and a complete separable metric space X. Both
X and Y are equipped with their Borel o-fields, and the identity map on X is denoted by t1x. A

nonatomic probability measure g is given on X.

Goor’s Lemma. Let yo: X — Y, k = 1,2,..., be a sequence of measurable maps such

that [, |lye(z)|| du(z) < +oco for each k and such that the sequence of probability measures

P = u(ix,yx)”?, defined on the Borel subsets of X X Y, converges weakly to some probability
measure P. Then there exists a measurable map y: X — Y such that P = p(ix,y)”?, ie., (¢x, yx)

converges in distribution to (ix,y).

Counterexample. Let X = [0, 1] and write u for Lebesgue measure. Taking Y = R, define the
sequence of simple measurable functions y: [0, 1] — R via yi(t) = tk, where t = 0.t;t2t5 ... is the
binary expansion of t. (To ensure that yi is well-defined, we insist that the binary expansion of every
t € [0,1) contain infinitely many zeros, and set yx(1) = 1 Vk.) It is a simple matter to verify that

the probability measures Py defined on the Borel sets of [0, 1] X R by

P(S)=pu{te[0,1] : (t,yx(t)) € S}

converge weakly to the product measure P = u X (%6{0} + -;—5{1}). Goor’s statement claims that

there exists a measurable y: [0, 1] — R such that P = u(ix,y)”!. This is absurd. Indeed, if such a
mapping y did exist, then clearly y(t) =0 on aset Z C [O, 1] of measure p(Z) = % In terms of Z, we
may construct the measurable subset S = Z x {1} of [0, 1] x R for which u {t : (t,y(t)) € S} =0,

whereas P(S) = z(Z) > 0. This is a contradiction.
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Goor’s Proof. Goor’s proof of the lemma quoted above is marred by a subtle misuse of multi-index
notation. The basic idea is to construct mappings from the interval [0, 1] into X X Y which give rise
to the laws P, and P. Skorokhod (1965), p.10, provides a model for this construction: a sequence of
nested partitions of the range space is used to define a corresponding sequence of nested partitions of
the interval [0, 1]. Skorokhod’s construction ensures that the correspondence between the partitions
of X x Y and of [0, 1] preserves the relationship of set inclusion; Goor’s construction does not. So
paragraph 5 of his proof does not really “follow Skorokhod’s method.” The mappings defined in that
paragraph are not “defined in analogy to the construction of Skorokhod,” so convergence may well
fail. (In the case of the counterexample above, for instance, the mappings 2J* do not converge at all.)

Of course, the conclusions of Goor’s paragraph § can be rescued by taking more care with the
correspondence between the partitions of X x Y and [0, 1]. However, the incorrect correspondence is
essential to the development of paragraph 6. If paragraph 5 is to be salvaged then the assertion that
‘ h = hg, k=0,1,2,... in paragraph 6 must be discarded. (This assertion is manifestly false in the

counterexample discussed above.) But this statement is the key to the whole proof.

Acknowledgement. The author thanks Ulrich Haussmann and Ed Perkins for insisting on a

second look at Goor’s Lemma. Professor Perkins suggested the counterexample above.

- 100 ~



Chapter V. Parameter Sensitivity in Stochastic Optimal Control

This éhapter is devoted to a study of deterministic perturbations of the constrained stochastic
control problem introduced in Chapter IV. Our approach is based on a proximal-normal analysis of
the problem’s value function, and hence makes explicit use of the existence theory of Chapter IV,
the limiting techniques and representation theorems of Sections IV.2-3, and the unconstrained
Stochastic Maximum Principle. The latter, which necessitates a smooth formulation, is presented in
the first three sections below. Section 1 investigates how slight perturbations of the system’s initial
value and control law affect its evolution; in Section 2, the consequences of this variation for the
cost functional are considered. These preliminary results allow the derivation of the unconstrained
Stochastic Maximum Principle in Section 3. In that section we discuss the conclusions available in
the nonanticipative formulation, and describe a general type of feedback formulation which gives
more satisfying results.

Proximal normal analysis is the subject of Section 4, which is the heart of this chapter. There,
a family of stochastic control problems indexed by a finite-dimensional parameter is used to define
a “value function” whose generalized gradient is captured in Thm. 4.8. Section 5 explores some
consequences of this characterization, which include a new proof of the Stochastic Maximum Principle

for constrained problems.
Section 1. Perturbed Dynamics

Hypotheses. In this chapter we study stochastic systems of a more specialized form than those of
Chap. IV. We still assume that U C R™ is a given closed set, but now the system’s evolution on the

fixed interval {0, T| is determined by the Markovian Itd equation

: . t t _
(1.1) Zy = zo + / f(ryze u,)dr + / o(r, z,) dw,.
0 0
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Moreover, at least for the first two sections, we assume that the filtered space (2, 7, %, P) is fixed in
advance, and that it carries a d-dimensional %-Brownian motion w, which cannot be changed. The
coefficients f:[0,T] x R* x R™ — R™ and 0:[0,7] x R — R"*4 must satisfy (H1)-(H2) below,
which are stronger conditiqns than their counterparts in Chap. IV.
(H1) f(t,z,-) is a continuous function of u € U, uniformly in (t, z); also, for each (t,u) € [0, T|x U,
both f(t,-,u) and o(¢, ) are continuously differentiable functions of z € R™.
(H2) There is a constant k; > O such that for all (¢, z,u) € [0,T] x R™ x U, one has

£t 2, u)| + lo(t, 2)] < k(1 + =]),

|fz(t, =, w)| + |o=(t, 2)| < ki.
Hypotheses (H1) and (H2) imply the Itd conditions. Thus the standard theory of stochastic

differential equations implies that (on the fixed space (f2, 7, %, P) with w¢) any initial condition zo
and any F-adapted process u:[0,T] X {1 — U give rise to a pathwise unique process z; solving (1.1).
We need no longer discuss “control-state pairs” (u,z) as in Chap. IV, since the first element of such
a pair uniquely specifies the second. Thus we will concentrate on the controls u. Note also that since
the right-hand sides c;f the inequalities in (H2) are independent of u, Lemma IV.4.1 remains valid
without any hypothesis concerning the integrability of u. The moments of the solution process can
now be estimated solely in terms of the moments of its initial condition. This form of Lemma IV.4.1
will be used throughout this section.

In this chapter we consider a family of random initial conditions zy indexed by a parameter o
in R®. Given a constant g > 2, we fix our attention on a specific parameter value & and make the
following hypothesis.

(H3) There are Fy-measurable random vectors Xo € R™ and A € R™*¢ such that E|X, |E < +o0
and |A(w)| £ kz for all w, and zo(a) = X + A(a — @).
Note that when Xg = 0, a = n, and A = I, (H3) allows the case of a variable deterministic initial
condition zo{a) = o — &; and that when & = 0, a=1, and A is a bounded random variable in R",

(H3) allows the scheme zo(a) = Xo + aA remeniscent of the calculus of variations.

Variations. Suppose any %-adapted control process @ is given, and let Z denote the corresponding
solution of (1.1). We wish to investigate the difference between Z and the solution z obtained when a

pair (@, u) near (&, %) is used. The following Lemma will help.
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1.1 Lemma. Let ¢:[0,T] x 1 = R? be a measurable process for which fOT lp(t,w)| dt < +o0 a.s.

Then there is a null set N C [0, T] such that for each t ¢ N one has

d t
% p(r,w) dr = p(t,w) a.s.
0

Proof. See Kushner (1972), Lemma 1, p. 556. i

To apply Lemma 1.1, first take p(t,w) = f(t,Z(t,w), &(t,w)) to obtain a null set N(@). Then fix
any other %-adapted control process u; and take p(t,w) = f(t,Z(t,w), u(t,w)) to obtain a second

null set N(u). It follows that for all ¢ outside the null set N (@, u) = N (@)U N(u) U {0}, one has

t
(1.2) nn%é (F(r,Bryur) = £(r, 30, 8)) dr = £(t,50,ue) — F(t, B0, 8)  aus,
e t—s

To construct a family of perturbed controls, fix any s € {0, T]\ N(@,u), and define u§ for each £ > 0

by
%, ifte(0,s~¢]
ug = ue ifte(s—e,s
ﬁt ift e (S, T].
The perturbed parameter values will be a® := & + €. Let z° denote the solution of (1.1)

corresponding to (af, u€). In this section we will investigate the evolution of £f := z§ — Z;.
To improve the readability of the results, we will use the following notation:
Afe(tz) = f(t =z, 9) = f(t 2, Te),
76 = (6,20, 2()), Fa(t) = f2(6,2(2), 8(9)),
a(t) = o(t, 2(t)), G2(t) = a2 (t, 2(t)),

§(c) ~0 ¢ lim 6(c) =0.

¢e—0+
The key result is Proposition 1.8: it states that the discrepancy £f, which is defined by

t

Ete = (Io(ae) - Zo(a)) + A (f(r’ :L‘f.,a,) - f(f‘, in a") + Afe(ra :C:)) dr

(1.3) .
+/0 (o(r,z¢) — o(r, Z,)) dwy,

is very well approximated by the variation-of-parameters solution of the inhomogeneous linearized

equation
t

t
yf = eAa +/ (fo(r)ye + Af(r, 2,)) dr +/ Fz(r)ys dw,.
0 0
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1.2 Lemma. For each p € [0,7], there is a constant M > O for which
E |[¢¢||F < Me? Ve > 0.
Proof. Observe first that by Jensen’s inequality we have
Bl < (Bl veeloa)

Hence the general result follows from that for the case p = g, which we now treat.
Note that Af¢(r, z) = O unless r € (s —¢, s]. Hence there is a constant K; > 0 for which Jensen’s

inequality gives
1€ < Ky ( |zo () — xo(a)|7+/ |f(r, 25, 8,) — £(r, %0, 8,)|7 dr
0
_ ’ _ 7
+e"’1/ |[Afe(r, zE)| dr + )
o]

for all r € [0, T]. Taking the supremum over 7 € [0, t] and applying (BDG) gives, for some K; > 0,

./;T (o(r,z8) — o(r, %)) dw,

- — t —
Eflf < KzE(lxo(a‘) - z0(@)[ +/ \f(r,z5,80) = £(r, 20, 4,)|" dr
0
(1.4) ) . _ . _
a8 [ o) dr+ [ lo(ns) - oln 2 o).
0 0

Now |zg(a®) — zo(@)| < k¢ |a| by (H3), and

If(r: Iia ar) - f(ra Ery ﬁr')l <k Ifrl 3

lo(r,z7) = oln2:)| < ki |&|  (by (H2)).
Moreover, the linear growth condition of (H2) implies that

|AFe(r 2} < 1f(r 25, u)| + 1f(r 25, 80)] < 2ka (1 + 25),

so there are constants K3, K4 such that

E|afi(rzf)|” < Ks(1+E|z£[%) < K.

(The second inequality follows from Lemma IV.4.1.) Using these facts in (1.4) implies that, for some

constant Kg,
. - t p—
Bletf <k (74 [ Bleffar) el
0

The desired result follows from Gronwall’s inequality. ‘ 111/
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1.3 Corollary. There is a constant M > O for which one has

E sup |AfF(t,z5) — Af(t,2)° < MeT  Ve>o.
t€(0,T)

Proof. The Lipschitz condition implied by (H2} gives
|Afe(t, z5) — Af(t, Be)| < 1f(t, 25, ug) — £, Ze, )| + | (8 25, T) — f(2, 2, Be))
< 2k, [&]-

Thus the result follows directly from Lemma 1.2. : i

Now that we know £€ is a process relatively small in magnitude, we turn with confidence to the
linearization of (1.1) about (&, %, ©):

t t
(1.5) yf:eAa+/ (f,,(r)yf+Af°(r,?£,)) dr+/ Gz(r)y:dw,.‘
0 0

Note that since o is an n X d matrix, we must interpret

d
orydw = Z oky dw*,
k=1

where o* is the k-th column of o and w* is the k-th component of w. Note also that equation (1.5)
satisfies the It conditions, so has a pathwise unique solution yf for every € > 0. Let us compare y;

with ;.
1.4 Lemma. For any p € [2,7), there is a function §(e) ~ O such that
E| & - y¥||° < eP5(e) Ve > 0.

Proof. Let zf = £¢ — yf. Then by the mean-value theorem there are a constant §¢ and processes 5§,
t t t t

¥§, all with values in [0, 1], for which
t t
z = /(; fz(r)z; dr +/0 Gz(r)zt dw, + HS + I{ + Jf + K,
where H¢ = ¢(Dzo(& + ) — A)a,
If = /Ot[Af‘(r, z) — Afé(r, %,)] dr,
e = [ loutr3, + vi€) ~ (e du,

t -~
K:=/0 [f2(r 8 + €5, 8r) = fa(r)] &5 ar.
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Now for any p € (2,9),
(1.6) E|H¢|’ < e |a|’ E|Dzo(& + e8°a) — A|’ =: eh(e).

The function h(e) ~ 0 because Dzg is continuous for each w and uniformly bounded by (H3).

Next, Corollary 1.3 gives a constant M such that

'] P
B <B ([ 1870 - 8103 o)
a—e
<80~ [ 1ag(ra) ~ AP 2P dr
(1.7) o~ :
< ep_]‘/ MeP dr
< Me?r,

To control J§, we use (BDG):
T
BN <GB [ [(oalr 2o+ wi€) - 0u(r 2) €51 ar
0
T
<SGE (1€ [ loalr2+ i) = ()P ar
0
_ p/E T L (E—P)/E
< Cx') (E ||€6||q) (/ Elos(r 2, + ¥;€7) — 3._,,(7‘) |pQ/(q_p) d")
0 ,
< ePj5(e).
In the last step, the second factor is bounded by a multiple of € by Lemma 1.2, and the function
7(e) is then defined as the appropriate constant multiple of the third factor. Note that j(e) ~ 0

because o,(r,-) is a bounded continuous function and &f tends to O in probability for each r.

In just the same way, there is a function k(g) ~ O for which

E (K < G, (B¢ 7)"” (/TE

< ePk(e).

~

va/-n)  \ P
fz(r Zr 4+ 05 €&7) — fa(r) dr)

(1.9)

Let us combine estimates (1.6)—(1.9) into a function §(g) ~ 0 for which E(|H¢|" + ||I¢||” +
IJ€I” + | K<||I?) < eP6(€). Then in the original equation for 2§, we find using (BDG) and (H2) that
for some K > 0,

Bl < K ([ B2 o+ ens(e)).
0

Gronwall’s inequality now implies that E ||2¢||” < MeP§(e) for some M > 0, as required. /1/]
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To complete our study of the evolution of £, we use the variation of parameters formula to
write the approximate solution of the inhomogeneous equation (1.5) in terms of its homogeneous

counterpart

(1.10) dgot = ﬁ(t)@t dt + az (t)@t dwt.
Let &(t,7) be the fundamental matrix solution of this linear equation: that is, for each r € [0,T),
(., 7) obeys

t t

o(t,r) = I+/ fz(r)®(r,7)dr +/ Gz (r)®(r,7) dw,.

r T
Note that since f, and o, are uniformly bounded by (H2), each of the moments E |®(t, 7)|” for
p € [1,00) admits a constant upper bound independent of ¢t and 7. (Compare Lemma IV.4.1 and

paragraph 3.4, below.) This fact sponsors the final result of this section, which renders precise the

approximate §tatement; that for each ¢,
& = e(<I>(t,0)Aa+ I{t > s}@(t,s)[f(s,i,,u,) - f(s,i,,ﬁ,)]).
1.5 Proposition. For any p € [2,3) there is a function 6(¢) ~ O for which
E | ~ e(2(t,0) A + I{t 2 s}®(t, 8)[£(s,Ba, ) — (5,8, T)])|" < eP6(e)

holds for all t € [0,s — €] U [s,T| and for all e > 0. For t € (s — ¢,s) there is a constant M > 0 for

which the inequality remains valid if the right-hand side is replaced by eP M.

Proof. In view of Lemma 1.4, it suffices to prove this estimate with & replaced by y;. And by

definition of ®, the difference
ys — e(®(t,0) A + I{t > s}®(t,8)[f (5, %0, us) — f(s,24,8,)])

is zero for all t € [0, s — €], a.s. We therefore advance to the case t € (s — ¢,s), where we have

t

t t
(1.11) y; = e®(s — ¢,0)Aa + / fz(r)ysdr +/ T (r)ys dw, +/ Afe(r,%,) dr.
a—8 8 a—

—€

The first term obeys

(1.12q) E |e®(s — €,0)Aa — e®(s,0) Aa|’ < KePE |®(s — £,0) — B(s, 0)|" =: e (e).
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Since ® is jointly continuous and has moments of all orders, uniform integrability ensures that

S0{g) ~ 0. The first integral obeys

t 4 8
(1.125) / fo(r)ysdr| <eP™! IIyellp/
s—¢ B et

~ p
)| dr < kZer e,

and E |[y¢||’ = eP~16y(e) for some 8 ~ O by Lemmas 1.2 and 1.4. For the second integral, (BDG)
gives

4 [

(iz)  E SCEII [ 0. dr < CREEE I
8—8

t
/ Fz(r)ys dw,
8—6€

So the first two integrals introduce an error bounded by &P, (¢) for some §; ~ 0. As for the third,

we can only say

(1.13) E

4 8
Sep-lf E|Af(r,Z,)f dr < Koe?
a—e

/t AfE(r, %) dr

for some constant Ko which provides an upper bound for the integrand. (Such a bound exists by

(H2) and Lemma IV.4.1.) So for t € (s — ¢, 3), we have a constant M such that
E|y; — e®(s,0)Aa]’ < MeP.

Now when t = s, the three estimates (1.12) remain valid, and (1.13) may be strengthened: we

have

P P
= ¢PE

E

/' Af<(r,3,) dr — eAS<(s,5,)

1 L
L arnz)dr - are(s, 2,
(1.14) e/,_. £ %) fe.2)

=: eP6a(e).
Here §;(c) ~ O because the difference tends to 0 a.s. by (1.2), and is uniformly integrable. To prove

uniform integrability, simply observe that for some K > 0,

q

E

1/ Af(r,3.) dr — Af(s,2,)

<K ( [ Blares)r dr+E|Aff(sﬁ«)lE) :

and the right side admits a constant upper bound uniformly in € by Lemma IV.4.1 and the linear

growth condition in (H2).
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Now for all ¢t > s, Af¢(t,Z:) = 0, so (1.5) implies that y§ = ®(¢,s)y. For any fixed p in [2,7),
we choose a ¢ € (p, 7). Then the uniform boundedness of the moments of ® gives a constant K > 0

for which

E|y; — e®(t,s)Af(s,%,)|° < E|®(¢,s)|° |ye — eAf(s,Z,)|°

(E lys — eAf<(s,2,)[)7/*

< (E I‘I’(t, s) Ipq/(q—p))(Q—-P)/q

<K (eqé‘q(e))p/q

by the result of the previous paragraph. The choice of §(¢) = K (5, (s))p/q completes the proof. ////
Section 2. The Cost Functional

Hypotheses. We continue to work with the fixed probability space (f2, ¥, %, P) and Brownian
motion w, of Section 1 throughout this section. The cost of a given initial condition & and %-adapted

control process u: [0, T] x @ — U is measured by the functional

T .
Ala,u]:=E [(ﬁ,a) + &(z1) +/; L(t, z¢, ue) dt] .

Here, as in Section 1, z; denotes the pathwise unique strong solution of the It5 equation (1.1) under
Hypotheses (H1)-(H3). The constant vector # € R? is included for later theoretical use, even though
many applied problems are covered by the case § = 0. The pointwise cost £:R™ — R and the
running cost L:[0,T] x R™ x U — R must satisfy (H4) and (H5) below.
(H4) L(t,z,) is a continuous function of v € U, uniformly in (¢,z); also, for each fixed
(t,u) € [0,T] x U, both £ and L(t,-,u) are continuously differentiable.
(H5) There is an exponent ¢ € [1,§ — 1) and a constant k3 > 0 such that for all (t,z,u) €
[0,T] x R™ x U, one has
[L(t, 2, u)| < ks(1+ [z]" + [uf), |La(t, 2, u)| < ka(L+ (2" + [ul%),
|£(z)] < ks (1 + |2), |£(2)] < ks(1+ |2]77).
The It conditions and (H5) imply that Ala,u] is well-defined and finite for any %-adapted

stochastic process u: [0, T} x 1 — U obeying
. T _
(2.1) E/ lup[? dr < +oo0.
0
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Variations. Suppose now that the control strategies #i; and u; featured in Section 1 actually obey
condifion (2.1). Then so does u€ for every € > 0, so A[af,uf] is well—deﬁped for all € > 0. Moreover,
(H4) and (HS5) verify the hypotheses of Lemma 1.1 for the functions p(t,w) = L(¢t, Z(¢,w), u(t,w))
and §(t,w) = L(t,Z(t,w), (t,w)). Hence we may enlarge the set N(Z,u) if necessary and assume

that the analogue of (1.2) holds with L replacing f. That is, t ¢ N (&, u) implies

t
(2.2) lim = [ (L(r,8,u) - L(r, 8, 8,)) dr = L(¢, 5, ue) — L(t, 5, ) ass.

¢—0 g t—e

We now study the difference A[a®,u¢] ~ A[&, 4] as e — 0.
Corresponding to thc.a notation of Section 1, we set
AL(t,z) = L(t,z, uf) — L(t, z, ),
L(t) = L(t, 2, &), Lo(t) = Lo(t, %, B,
A€ = Aaf, uf), | A=1lg,1).

In terms of the difference process £¢ = z¢ — Z, we have

T
A*—A=E |e(8,a)+ L(Zr + &) — £(Zr) +/0 (L(r,z¢,8,) — L(r) + AL¢(r, z5)) dr]| .

The following linearization result is the natural counterpart of Prop. 1.5.

2.1 Proposition. There is a function §(€) ~ O for which A® — A equals

cE

T ~
(8,a) + (Zz(ET)Q(T,O) + [ Z.002(n0) dr) Ao
T ~
(2.3) + (lx(ET)<I>(T, s) + / L(r)®(r,s) dr) Afé(s,Z,)
+ AL(s, E,)] + 8(e).

(The n x n matrix ®(t,7) was defined in (1.10).)

Proof. First we estimate the variation in the running cost. By the Mean Value Theorem there is a

scalar process , with values in [0, 1] such that

T

T
/(L(r,x:,a,)-f(r))dr=/ Lo(r,%, +6,€5,8,)¢ dr
(2.4) °° 0

= e/sz(r)[CD(r, 0)Ac + I{r > s}®(r, s)Af(s,%,)] dr + I¢ + J°,
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T
where If= /(; L.(r)[€ — e(®(r,0)Aa + I{r > s}®(r, s)Af(s,%,))] dr,

T
Je = / (La(r, B + 0,£5,8,) — Da(r)) € dr.
[¢]

Now for a constant p < g sufficiently near § the conjugate exponent obeys pql < g, so Prop. 1.5

gives a constant M > 0 and a function §y ~ 0 such that

T
EII‘IS/ <E

0
SME/ (E

s—€

=: €6, (¢€).

f,,(r) Fﬁ) » (E !gf_ — e(<I>(r., 0)Aa + I{r > s}¥(r, s)Aje(s,a;‘,))lp): dr

p p=1 T
-1 4
) dr + e&o(e)/ (E
0

2\ 5
L.(r) L.(r) "") dr

~2_ — —_
Since E | L,(r) < KQ1+E]Z["+E Iﬁrlq) is integrable, so is its P

power: hence 6;(g) ~ 0.

Similarly, Lemma 1.2 implies that some K > 0 obeys

T
E|J‘|5Ke/ (E
[¢]

=: g6 (€).

=1

P
Lao(r, 2, +6,65,8,) - T.(r) ) " dr

Here 6;(g) ~ 0 because any sequence €, — 0% has a subsequence along which ||| — 0 a.s. by
Lemma 1.2. Uniform integrability gives the result.

Next we study
T
(2.5) / AL(r,zf)dr = eAL(s,Z,) + I¢ + J¢,
0
where IF=¢ (é/ AL (r,Z,)dr — AL‘(S,?;)) ).
8—¢8
JE = / (AL(r,zf) — AL(r, Z,)) dr.
s§—¢

Now the existence of i(¢) ~ 0 such that E [I¢] < ei(e) follows from assumption (2.2) just as line

(1.14) followed from (1.2). And

Je=/ (L(r, 26, w) — L(r, %, us)) dr+/ (L(r, 31, 8,) — L(r, 25, 8,)) dr.
a—8 a—8

These two integrals can be treated similarly, so we discuss only the first one. By the Mean Value

theorem there is a process §, with values in [0, 1] such that the expectation of the first integral is
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majorized by

8
E/ |La(r, 5 + 0,65, u,) €2 dr

] =1
< [ (BlLan +0.5w)) T @€ ar

p=1

gxs/ (E|L,(r,a,+o,5:,u,)|i‘-%) " dr

~
=: g5 (¢).

Here j(€) ~ 0 because the growth conditions of (H5) and (2.1) imply that the quantity in parentheses

is integrable.

Finally, we consider the point costs. These obey

(2.6) E(t(z) - £(2r)) = B[ea (2r) (8(T, 0) A + &(T, ) A(5,5,)) + I + ]

where I¢ = t,(3r) [e; — e(®(T,0) A + Q(T,S)Af‘(s,i,))],

Je = (e,(aT +0°¢5) — zz(fr)) §r

for some 6¢ € [0, 1]. Holder’s inequality, uniform integrability, and Lemma 1.2 give a function j(¢) ~ 0
for which E |J¢| < ej(¢) much as in the arguments above. Likewise, E |I¢| < ei(¢) for some i(g) ~ 0
follows from Prop. 1.5.

Combining (2.4), (2.5}, and (2.6) gives the desired result. 111/

Section 3. Necessary Conditions for an Unconstrained Stochastic Control Problem

The data of the previous sections allow the formulation of several stochastic control problems.
The most readily comprehensible of these is the strong problem with nonanticipative controls: given
(©, 7, 7, P) and w; as in Sections 1-2, find & € R* and an ft-adapted process #; taking values in U
and satisfying (2.1) such that A[&, @] equals the infimum of A[a, u] over all possible choices of (o, u).
Necessary conditions for optimality in this problem can be stated in terms of the pre-Hamiltbm'an

H:[0,T] xR* x R* x U — R defined by

H(t,z,p,u) =p'f(t,z,u) — L(t, z,u).
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(Prime denotes transpose.) Indeed, upon defining

T ~
(3.1) P, = —L,(Z7)®(T, s) —/ L.(r)®(r,s)dr,

L]

the key equation of Prop. 2.1 becomes
(3'2) A~ R =cE [(ﬂ;a) - 56‘40‘ + H(S,E,,ﬁ,,ﬁ,)“ H(s,:’f,,ﬁ,,u,)] + 55(5)'

If (&,4) solves (P}, then the left side must be nonnegative. Dividing equation (3.2) by € > 0 and

letting € — 0% then gives
(3.3) 0LE [(/3, a) — poAa + H(s,Z,,P,,8,) — H(s,Z,, P, u,)].

This conclusion is valid for all s ¢ N(€,u) and all € R*. We obtain the following version of the

stochastic maximum principle.

8.1 Proposition. Suppose (&, i) solves the strong problem with nonanticipative controls. Then the
process b, defined by (3.1) has the following properties. For any #;-adapted control u:[0,T|x Q — U

obeying the integrability condition (2.1), there is a null set N(%,u) C [0, T) such that

(3.4) EA'F, = 5,

(3.5) EH(s,%Z,,P,,u,) < EH(s,%,,P,,U,) Vs & N(4,u).
Proof. Line (3.4) holds because (3.3) is valid for all « € R*; (3.4) and (3.3) together imply (3.5). ////

The conclusions of Prop. 3.1 unfortunately involve the comparison contro! u; in the null set
N(Z,u) of line (3.5). The results of Kushner (1972) and Haussmann (1985) both offer global
versions of this condition. Kushner does this by introducing an explicit assumption regarding the
approximability of admissible controls (his Assumbtion 2.3, p. 552). Haussmann, on the other hand,
constructs a rather large family of comparison controls on which a global version of (3.5) holds
without further hypotheses. We follow his method here.

Suppose that an F-adapted process 1, with sample paths in C¢ is given. We will show that

line (3.5) holds for a single null set N(4,y) C [0, T}, provided that the comparison control u, is of

- 113 -



“y-feedback form”®—that is, provided u; is t;-adapted and obeys the integrability condition (2.1).

At each instant ¢t € [0, T, the random variable u, defined by such a control lies in the set
U(y) = LT(A, 7%, P;U)
(3.6)
= {v(p(tA) : ve LI(C™,C", Poy ;1) }.
Consider now the following set of “simple y)-feedback controls.” Let A be the algebra of subsets
of C* generated by all sets of the form {(-) € C% : p(t) € R}, where t is a rational number in [0, T}
and R C R%is a rectangle with vertices in the countable set Q¢. The algebra A has countably many

elements. Next, let U be a countable dense subset of U. A countable set V of simple y-feedback

controls v: C% — U is defined by

k
V= { (e(4) =z %I{p( e A} : keN, % el, 4 dls_]omtmﬂ}
i=1

Once the probability structure and i, are given, the set V gives rise to a countable set V of

ys-adapted control laws as follows:
(3.7) V= {ut,w) = v(¥(tAw)) : veV}.

Note that since every v € V is a bounded function, every control in V is bounded, hence admissible.
We may define the null set N(%,) as the union of N(&,u) over all u € V. Outside of this null set,
both (1.2) and (2.2) hold simultaneously for all u € V. Consequently the same is true of line (3.5),

which we may now extend by taking limits.

3.2 Theorem (Stochastic Maximum Principle). Suppose (&,%) solves the strong problem
with nonanticipative controls. Suppose further that a continuous 7-adapted process y; with values
in R® is given. Then there is a null set N(4,v¢) C [0,T)] such that for any y-adapted comparison

control u; obeying (2.1), one has

(3.8) EA'p, = B,
(3.9) EH(s,%,,P,,u,) <EH(s,%,,5,,4,) Vs & N(4, ).
Proof. The first conclusion follows immediately from (3.4); we need only to show how the second one

follows from (3.5). For this, we use the null set N (%, 1) defined above, outside of which (3.5) holds

simultaneously for all u € V.
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The key to the proof is that for each ¢, the countable set
Ve = {uft,’) : ueV}

is a dense subset of Uy() in the topology of L7(1, #¥, P;U). This is the content of Halmos (1950),
ex. 42(1), p. 177. (See also Halmos, Thm. 40.b, p. 168; a few more details appear in Haussmann (1985),
Section 5.) So for any fixed s ¢ N(&,v) and random variable u € U,, there is a sequence u* — u a.s.

and in L7 along which (3.5) holds for each k. We complete the proof by showing that
(3.10) EH(s,%,,7,,v*) = EH(s,%,,P,,u).

In view of the definition of H, we consider the summands p’'f and L separately. Hypothesis (H5)
implies that the sequence E lL(s, Z, u")]alq is uniformly bounded, so EL(s, £,,u*) — EL(s, Z,,u) by
uniform integrability. As for p'f, first choose any r € (¢,7) and consider the integral expression (3.1)
for §,. Using the fact that ®(t, ) has moments of all orders, each of which is bounded uniformly in k,

repeated application of Holder’s inequality gives a finite k-independent upper bound for E |5,|'/q. In

. - g—1 . . .
particular, choose r sufficiently near to g that ; -q—q— > 1: then there is an exponent ¢ in the interval
q
g r . . .
———, — ] which will necessarily obey
g—1g
ﬁﬁ < g, so we deduce

$ 1 < g. Therefore some power 8 > 1 obeys f¢ < r/q and

z,,v*)|’ = #e) /s o e Bs/(s=1)\ (s )/
E 5 f(s, 2, w9 < (EB*) " (Bl7(s,2, 0570
rig) /s g\ -1/
<k (B " (Ba+pf)" .
The right side here is bounded uniformly in k, so uniform integrability ensues, and results in

Eﬁ',f(s,?f,,uk) — Ep, f(s,%Z,,u) ask — oco.

Together with our previous treatment of L, this establishes (3.10). i

It is important to note that the existence of the continuous process t; places no restrictions
on ¥. Indeed, Thm. 3.2 does not require that #; be t;-adapted, and the choice ¥; = Z; is always a
legitimate possibility. However, if the filtration % happens to equal ?;'j' for some continuous process
¥ (for example, this is sometimes the case when ), = (Z;, w,)), then U;(¢) is precisely the set of all
7-measurable and U-valued random variables with finite ﬁ-th moments. It follows that @, € U, ()

for all ¢, and that the maximum condition (3.5) is truly global.

- 115 -



Quadratic Penalization. The necessary conditions of Thm. 3.2 do not change if the objective
functional incorporates a quadratic penalization term of a certain form. Indeed, let Zand I be

functions obeying (H4)-(H5) and defining the functional

Alo,u]:=E [(ﬁ, a> +8zr) + /OT L(r, z,,ur) dr] .

Suppose a pair (&, #) is given, and that the unconstrained stochastic control problem of this section

is considered with the modified cost functional
~ ~ 2
(3.11) Aoloyu] = Ao, u] + o |Kle, u] - K(3, 8|+ plo - &7

for some fixed p > 0. Now if (&, %) minimizes A, and we define perturbed pairs (a¢, u¢) as above,
then Prop. 2.1 applies to both A and A to give functions §(¢), &(¢) ~ O for which

Aplat, uf] — A @, 1) =eE (B, @) — PoAa + AH(s,u,)] + €b(¢)
(3.12) ~ ~t ~ ~ |2
+€e%p ‘E [<ﬁ, a> — poAa+ AH(s, u,)] + 6(5)‘ .

Here H and p are defined as above, H and 7 are their obvious analogues, and
AH(s,u) := H(s,%,,P,,8,) — H(3,%s,P,,u).

Just as (3.3) follows from (3.2), it also follows from (3.12), and the proof of Thm. 3.2 then proceeds

without change. This fact will be useful later.

3.3 Theorem. The statement of Theorem 3.2 remains true if we consider any objective functional

of the form (3.11) in which X obeys (H4)-(H5).

8.4 The Fundamental Matrix. In the convergence analysis to follow in Section 4, the structure
of the adjoint process p, must be clearly understood. Most of the properties of p, follow from those
of the fundamental matrix ®(t,r) given by (1.10), which we summarize here.

Let us introduce ®;(= &(¢,0)) and ¥, as the pathwise unique continuous n x n matrix processes

solving
(3.13a) d®, = [, (t)® dt + 8, (t)®, dw,, o =1,
(3.13b) 4V, = ~ W, [Fa() + 805, (8)] dt - VB (t) dwr,  Wo=1.
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Here we have used the following notation:

Gz(t)®e dwy = Z 5 (t)®, dwf,
52(t)5=(t) Z ek (t)a% (2),

U,5,(t) dw, = Z ,5%(t) dwk.
k=1

With these definitions, equations (3.13) imply that d(¥,®:) = O, so that ¥, &, = I V¢t a.s.

Consequently ¥, = @, ! ¥t a.s.; since the solution ® of (1.10) is pathwise unique, it must obey
(3.14) o(t, ) = &, ¥, = 9,0, ! Vi, 7 as.

Both ®, and ®; ! = V¥, solve linear SDE’s with bounded coefficients. Hence for every p > 2, the

proof of Lemma IV.4.1 yields a constant Cp, such that

(3.15) E( sup |®° + sup |<I> Y ) < Cp;
€[o,T) te[o,T

Holder’s inequality can then be used to get
(3.16) Esup |®(t,7)[" < Cyp.
t,7

Notice that the bounds on the coefficients of (3.13) are independent of the choice of @, U, Z, so the

right-hand sides of (3.15) and (3.16) are also independent of this choice.

Section 4. Constraints and the Value Fupction

Although the precise version of the Stochastic Maximum Principle derived in Section 3 has not
been given explicitly before, the linearization techniques used to obtain it are comparatively well
known. The main point of this chapter is still to come. In this section we will consider « not as part
of the control, but instead as a finite-dimensional perturbation vector which, once specified, dictates
the choice of the optimal policy. Our goal is to study the ways in which changes to the parameter «
affect the minimum value in a control problem incorporating equality and inequality constraints, and
to show how perturbation analysis will allow us to obtain and interpret the ‘results of a Stochastic

Maximum Principle for constrained problems.
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Proximal normal analysis inevitably involves both existence theory and necessary conditions.
These two prerequisites conflict with each other, in that existence theory requires fast growth of
the Lagrangian ((H5) in Chap. IV), whereas the SMP requires slow growth ((H5) in this chapter).
In fact, the only way to use a coercivity condition to guarantee that (2.1) holds for all admissible
controls u is to assume that L(t, z,u) grows at least as fast as |u|7. But this cannot be reconciled
with the requirements of (H5). The two contrary growth conditions on L coalesce only in the case
where U is a compact set. Throughout the remainder of this chapter, we assume that U 1s compact.
Under this hypothesis, we may use the special existence Thm. IV.7.1.

A somewhat less significant tension between existence theory and necessary conditions also
affects our formulation of the constrained problem. In Chap. IV, we proved existence theorems
for weak problems in which the probability structure was a choice variable; in Sections 1-3 of this
chapter, we developed necessary conditions for strong problems in which the probability structure is
fixed in advance. However, the necessary conditions of Thm. 3.2 clearly remain valid for an optimal
solution to a weakly formulated problem, since any optimal ¥ for the weﬁk problem must also solve

the strong problem obtained when its associated probability structure is regarded as immutable. We

therefore study the weak form of the problem.

The set of admissible controls, denoted U, consists of all U-valued stochastic processes u,
associated with some probability space ({1, #, %, P} and Brownian motion w;, such that u, is
Fi-adapted. In contrast to the definition of Chap. IV, we do not require that u; be #*-adapted,
where z is the corresponding solution of the dynamic equations. Recall, however, that subject to the
hypotheses listed below, the value of the infimum and the question of existence are both oblivious to

this distinction. Without loss of generality, we may assume that every u € U/ obeys
u(t,w) €U vt e [0,T], Vw € 0.

Our proximal normal analysis will be based on a rather general perturbation structure, indexed

by pairs (e, A) € R® x R'*7. Typically,

A= (A—I)AI—I)"-’A—I)A].:AZ)'"yAJ)-
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The family of problems of interest involves the I + 1 + J functionals

T
Aila, u] := E | & (z7) +/ Li(r, zr, u,) dr] , k=-1,1-1,.. . J,
)
as follows:
meizr}{Ao[a,u] 1dzy = f(t, 3¢, w) dt + o(t, 2:) dwe, z(0) = zo(),
P(a,A) Aloyu] € =N, i=-1,-2,...,~I,

Ajla,ul= =25, 7=12,...,J}

For ease of notation in the discussion below, we will use subscript + and — signs as follows:
Ao =(A-ndon-. A1) €RY AL = (A, Ag,...,05) €RY.

Thus A = (A_, A4). Similarly A € R/*1*7 will be defined as (A, Aq, A;), with like notation being
inherited by L and £. We will use the symbol Az for (A_,AL).

The value function V:R® x RTtJ — R U {400} is defined by V(a, ) := inf P(a, A). Stated
precisely, this section’s goal is to compute 3V (0) and 8°°V (0) in terms of the Lagrange multipliers

and adjoint process arising from solutions to P(0).

Hypotheses. For the sake of clarity, we now give the full statements of the standing hypotheses
required to apply both existence theorems and necessary conditions in a constrained context. The
rapid escalation of technical difficulties in what follows is relieved somewhat by an assumption of
continuity in t, whose removal would require a significant fortification of (h6).
(h1) Let F= (f,L+) € R® x R7. Assume that for each (t,u) € [0,T] x U, both F(t,-,u) and
o(t,) are differentiable; that f, j‘:;, o, 0 are jointly continuous in all their arguments; and
that the continuity of f(t, z,-) and f.(t,z,-) is uniform in (¢, z).
(h2) There is a constant k; > 0 such that for all (t,z,u) € [0,T} x R* x U,

|t 2,0)| + lo(t )l < b (14 12,

};(t,x,u)l + loa(t, 2)| < Ky

(h3) There are given random vectors Xo € R"™ and 4 € R"*® such that E IYOF < 400 and
|Z| < k. For any u € U with corresponding probability space ({2, 7, %, P), the initiai
distribution of z; obeys

Zo (a)%—}(-'o + Ac.
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(h4) Let T = (L_, Lo) € R? x R. Assume that for each (t,w) € [0, T] x U, both L(¢,,u) and £(/)
are differentiable; that T}, L, £, £, are jointly continuous in all their arguments; and that
the continuity of L(t, z, ) and L,(t,z, ) is uniform in (¢, z).

(h5) There is an exponent ¢ € [1,§ — 1) and a constant ks > O such that for all (t,z,u) €
[0,T] x R"™ x U, one has

|Z(t, z, ’u)| < ks(1+ Jz}9),

La(t2,u)| < ks(1+ 127,
le(2)] < ks (1 + |2]7), |2 ()] < ks(1+ [2[°77).
(h6) For each (t,z), with the possible exception of a set whose projection onto the t-axis has

Lebesgue measure zero, the following (compact) set is convex:

{(f(t,z,u), L(t,z,u), fz(t,z,u), Lz(t,:c,u)> : ueU}.

Hypothesis (h6) is more restrictive than the corresponding convexity condition (h6) in Chap. IV.
Technically, this extra convexity assumption on f; and L, is required for convergence of the adjoint
processes when we take limits as part of the proximal normal analysis to follow. Practically, however,
(h6) does not significantly weaken the theory to be developed below because it is automatically
satisfied by any problem which is “sufficiently relaxed.” See Clarke (1983), Section 5.5, and

Warga (1972).
4.1 Lemma. The value function is lower semicontinuous near Q.

Proof. Choose any (a, A) near 0, and let {(a*, A¥)} be any sequence with limit (o, A). Without loss
of generality, we may pass to a subsequence and assume that V (a*,A\F) — v = likrgigéfV(ak, Ak). We
must show V(a, A) < v. This is evident if v = 400, 80 assume v < +oo. In this case, Thm. IV.7.1(a)
applies at each k to give a control u* € U a,nd.a vector p* € R! with nonnegative components such
that (—pk - /\'i,V(ak,Ak),—A’_:) = Afa*,u*]. Since p* is bounded by (h5), this sequence has a
convergent subsequence, along which Thm. IV.7.1(b) gives a control u € U expressing the limit in the
form

(=p— Aoyv,=24) = Ao, u).

This shows that V(a, A) < v, as required. //]/
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Perpendiculars. Suppose that some vector (B, vz, —po) is perpendicular to epiV at a point
(g, X, v) near (0,0,V(0,0}). Then since V (&, X) < ¥ < +o0, problem P(&, 3:) must have a
solution—that is, a control ¥ € U for which

~

Aolg, 8] =V (&), A-[a,8)< -2, ALl8,8]= -2y

Now for any other @ € R® near 0, any control u € U assigns well-defined values to z, A. So for
any p > 0 in R? (this means p has no negative compénent values) and ¢ > 0, the control u gives rise
to the following point:

(a, (—-A_[c_z, u] — p, —A [, u]), Aol u) + t).
This point lies in epiV by inspection. Thus Prop. I1.3.5 implies
<(ﬁ, ©x,—o), (&, —A— — p,—A4, Ao + 1) — (3,3-,3+,9)>
(4.1) . .,
<3 I(a, A —p,—As, Ko +1) — (&,,\_,,\+,6)| .
If we choose @ = & and u = ¥ in (4.1), the constraints of problem P(&, X) are satisfied and substantial

cancellation occurs. We obtain

2

~ ~ -~ ~ 1 ~ ~ -~ —~
(4.2) 05¢0<V(a,)\)—v+t> +<qo_,A..+z\_+p>+§|(0, Ao+3_+p,0,K+t-9)

an expression valid for all p > 0 and t > 0. Since equality holds in (4.2) when

the RHS of (4.2) must have nonnegative right derivatives in (¢,p) at this local minimum point.
Therefore o > 0 and - > 0. In fact if any component of the minimizing (t, p) is strictly positive

then the derivative must actually vanish there. Thus we get the complementary slackness conditions
(4.3) 020, @o(V(&2)-9)=0,

(4.4) p_ >0, <go_,K_ +'X_> =

Line (4.3) simply restates the geometrically obvious facts that a perpendicular to an epigraph cannot
be directed upward, and that if it is based on a vertical side of the epigraph then it cannot be

directed downward either. Line (4.4) is the precursor of the usual complementary slackness condition

on the multipliers of the constrained Stochastic Maximum Principle.
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Let us now fix t = v — V (&, i) and p = —(X_ + X-) in (4.1), and observe that the inequality

becomes
(4.5) —(8,8) + 'R <~ (B,0) + o' Aloy u] + % (2 — &, Aler, ) - D)

This inequality is valid for all « € R®, u € U, and equality holds when (o, u) = (&, %). Hence this
choice represents the solution to an unconstrained stochastic control problem. This problem has a
weak formulation, since every element of U carries its own probability structure. But if we regard the
probabilistic framework specified by # as fixed, then # solves the strong problem with nonanticipative
controls in that setting. Therefore Thm. 3.3 provides necessary conditions. Recall from (3.6) the
notation

Ue(y) = {u:ﬂ —U: uis .?','p—-measurable};
we will choose ¢ later.

— (ﬂa V) _¢0)
(8, ¢5, —o)|
Then there is a solution @ € U to P(&,A) for which & obeys (4.3) and (4.4). Associated with @

4.2 Proposition. Let (8, o5, —wo) L epiV at (&, ’A\,’G , and set (ﬁ, 6;,—{50)

is a null set N(%,v¢) C [0,T] and a probability structure (Q, ¥, %, P), we, such that the R™-valued

process
T -,
(4.6) B = —& |e.(3r)0r + / Z.(r)®, dr| &7
) t
obeys
(4.7) EA'B, = —f,
(48) EH(t)Et)ﬁt)atra) ZEH(t,EEt,ﬁt,U,(Z) vueut(¢)) Vt¢ N(a:¢)

Here the pre-Hamiltonian H is defined by
(4.9) H(t,z,p,u,®) =p' f(t,z,u) — §'L(t, z,u)

and the fundamental matrix ®, is given in paragraph 3.4.

Convergence. Suppose now that a vector (E, &=x,—Po) is obtained via

~ ~ . (ﬂkap;)_w’(;) . 2k ~k ~k
4.10 B, &%,—@0) = lim ——F "o = lim (8%, 8%, —55)
( ) ( + 0) ks 00 |(,3k,¢':§:,—90’(§)l k—-'oo( F 0
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for some sequence (B*,%,—pf) L epiV at (o, A*,v*) — (0,0,V(0,0)). Do the conclusions

of Prop. 4.2 hold in the limit? The answer is yes, but the precise version of this statement
requires careful treatment of the sequence of underlying probability spaces and the extraction of a
subsequence—its proof is rather far from trivial. Indeed, it is highly rer;leniscent of the existence
proofs in Chap. IV,

Let such a sequence of perpendiculars be given. For each k, we have

V(e*, AF) < v* < oo,

so problem P(a*,)\F) has an optimal control-state pair (u*,z*), i.e. one for which Ala*,u*] =
(=X% — pF,V(aF, AF), =2k ), where p* > 0. Let the probability structure associated with u* be
labelled (2%, 7%, 7F, P¥) and w¥. Now since A{a*, u*] is a bounded sequence in R7+!+7J (this follows
from Lemma IV.4.1 and the growth conditions (h5)), we may assume that —A*¥ — p* — —p by passing
to a suitable subsequence. Also, V (a*, A\¥) < v* while v* — V(0,0): by Lemma 4.1, it follows that
V(a*, A*¥) — V(0,0). In short, we ma& assume that Aa*, u¥] — (—p,V(0,0),0) by passing to a
subsequence. Now as Thm. IV.7.1 shows, there is a further subsequence (which we do not relabel)
along which z* converges in distribution to a process £ which in turn can be realized by a control
solving P[0, 0). For each k, the conclusions of Prop. 4.2 hold for (5", 6’;,'—6’5) and some process B*.
But before any assertions concerning the convergence of * can be advanced, we must recall that the
methods of Chap. IV used to obtain z* Lz studiously avoided any assertion that the controls u*
converged in any way at all. In view of this, an elementary approach to convergence in, say, (4.6) is
out of the question. We must return to the methods of Chap. IV to show that the control realizing
can actually be chosen to facilitate convergence of the multipliers. Even this is less straightforward
than it might appear. The difficulty centres on the issue of %-adaptedness, which is critical to the
use of Bene#’s measurable selection theorem as in Chap. IV. To resolve it, we must make explicit use
the definition of 5, in terms of the fundamental matrix ®,. Each ®F is #*-adapted, and the estimates
of paragraph 3.4 will allow us to show that these matrix processes converge in the appropriate sense .
and then deduce the convergence of p* from definition (4.6). This programme follows the conceptual
lines of Props. IV.5.2-1V.5.7, but is technically more difficult because so rﬁany more processes are

required to converge simultaneously.
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We will use the following notation, based on the constituents of the dynamics, the objective

functionals, the adjoint process, and the pre-Hamiltonian.
2k (t) = /0 Cflr 2k, ub) dr,
2k (t) = /(: o(r, z¥) dwk,
() = /0 " Lir. 2% u*) dr,
P = L(a7) 27,
iz'k(t) = /Ot L,(r, z,’.‘,u,’f)@’,‘ dr,
w) = [ (@) sk o) o
W) = [ 7 (00)7 1ok, o) o
oLk(t) = /: fz(r, 2¥, uk) Ok dr,
84() = [ oalreh)0t duy,

v =(2h)7.

4.3 Proposition. The following sequence of 15-tuples is tight as a sequence of random vectors in

the space R™ x C3" x CT+117 x 03" x C x C x C4nxn) x C4;
(s5(e2), 2500, 22# (), 220D, 2200, B0, B8 87500, A4(), R25(), @, 1%, 925, 08, wh().
Hence it has a subsequence converging in distribution to a 15-tuple
(20(0), =0), 2 (), 22(0), 20), (), B4 B0, BA(), K2(), ., @2, 82, 0, w()).

Proof. Fortunately, tightness can be proven component by component. Recall also that any sequence
which converges in distribution is automatically tight by Prokhorov’s theorem. Thus z§{a*) is tight
because it converges in distribution to the random vector X, of (h3), and w*(-) is tight because this
sequence of Brownian motion processes is actually constant in distribution. (Moreover the limiting
process w(-) must therefore be a Brownian motion, but we will explore this later.)

Prop. IV.5.2 proves that (z*(-),z%'*¥(-),z%¥(")) are tight in C®". In fact, the proof given there
that z'* was tight applies equally well to 2%, h1*, h%* and ®1*. (It even simplifies a little bit in

the present setting.} Likewise, the treatment of z2* given in Prop. IV.5.2 applies also to ®>*. The
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relation ®* = I + &% + 2 then implies that ®* is tight also. The tightness of z*(-) is proven in
Thm. IV.7.1.
To prove that p* is tight in R", it suffices to show that E [p***| is uniformly bounded. And for

this, one simply uses (h5) to write
B[5*| < Blea(ah)| 2] < Bhs (1+ 4]7") f¥]

The RHS is uniformly bounded in k by Hdlder’s inequality, since ||<I>’° ” is uniformly bounded in any
LP,p>1,and ||z* “ is uniformly bounded in any L", r € [1,73).

The proof of tightness for ¥* = (<I>")_1 is left to the reader, with the following hint: the function
Uk satisfies the linear SDE (3.13b) with bounded coefficients. Writing this equation in integral
form and proving the tightness of each term on the resulting RHS separately, just as we have done
repeatedly above, will show that ¥* is tight also.

Finally, the tightness of bk, 2%, ®F, and U*, together with the relation
— ~ ' — — —
FE(t) = — (8%) [B* + P2*(T) — 57 ()] Wk
implies that 7* is tight also. 11]/

A word about the initial conditions is appropriate here. To each control u* there corresponds a‘
space (0%, 7%, P*) on which are defined random variables X% and A* such that X(’)‘éfo and A*27,
and z&(a*) = Xk + A*o*. Now since the pairs {(X}, A*)} all ha\;e the same distribution, they could
easily be adjoined to the 15-tuples considered above. Then the limiting probability space (2, #, P)
would be seen to support random variables Xoéyo and AZ7 such that z’g(ak)—"—»zo(o) = Xo, and
such that the joint distributions of (X%, A*) together with the 15-tuples above converge to the joint
distribution of (X, A) and the limiting 15-tuple.

At this point in the argument, closed sets analogous to the Sy’s of Chap. IV come in. (See
text preceding Prop. IV.5.3, and the proof of Thm. IV.7.1.) These sets consist of 16-tuples
constructed as follows: the first entry is a vector & € R/¥1%7; the next 15 entries are the 15
components of the second displayed vector in Prop. 4.3. With this notation, Sy is the subset of
RIFIHT w RM x O30 x CI+147 % €30 x € x € x C4(nXn) x C4 whose 16-tuples obey the following

relationships. Fix r € (q,7).
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z(t) = zo + 2 (¢) + 23(¢) V¢ 21(0) = z2(0) = 0,
p) = -& [p' +P(T) - 5" (®)] & Vt, F(0) =0,

O =TI+ +8 WV, ®1(0) = ®2(0) = 0,
v, = (&)1 Wi,

18l =1,

51 = z:D(:ET)QT)

z!() € AC™, fOT |:'c1 (r)|2 dr < N2,

(415)  2() e aCTHH, IT13(r) "/ dr < N7/,
p°() € AC™, G " 4 < N,
K(:) € AC, JT |k (r) ? ar < N7,
h2(-) € AC, JT 1R2(r) g < Nr/s,
3! € AC™*", JT | &t * dr < N2,

(21(8), 2(2), B (£), 1 (t), h3(t), &) € T(¢, z(¢), P2 (t), &1, ¥s)  aee. [0, T).

Here the multifunction I is defined by
T(t,z,p,®,T) = {(f(t,:z:,u),L(t, z,u), L, (¢, z, u)<I>,\Ilf(t,m,u),p\llf(t,x,u),f,,(t,x,u)@) T u€E U} .

For each fixed choice of its arguments, I'(t,z,p, ®, ¥) is a linear image of the (compact) set assumed
to be convex in (h6). Hence I'(t, z, p, ®, ¥) is compact-convex-valued. Moreover, the obvious choice of
a function G(t, z, p, ®, ¥, u) will realize I'(t,z,p,®, ¥) = {G(¢t,z,p, ®,¥,u) : v e U}. This function
G is continuous in all its arguments (including ¢, by (h4)). Cesari’s (1983} argument proving 8.5.vi(a),
p. 296, shows that T is upper semicontinuous by set inclusion at all points (¢, z,p, ®, ¥), so by his

theorem 8.5.iv, pp. 293-294, the sets T’ have property (Q). This verifies the hypotheses of his closure
theorem 8.6.i, p. 299. The assertion of this theorem is that if a convergent sequence of 16-tuples is

chosen from the set Sy, then the limiting 16-tuple continues to obey the differential inclusion in the
last line of (4.15). The first six lines clearly remain valid in the limit, and the limiting validity of the
remaining six lines of (4.15) is a well-known result in the classical calculus of variations. Therefore

the sets Sy are closed for each N.
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Not only are the sets Sy closed, but one also has
. . k _
Nhlxlw u’:f P{m* € Sy} =1,

where we have written m¥ for the k-th 16-tuple of random vectors described above. This claim
has the same form as the statement immediately preceding Prop. IV.5.4, and its justification is
very similar. The first six lines of (4.15) and the last line of (4.15) are already known to hold with
probability one for each k and N. The essence of the claim deals with the six integral conditions,
which are treated by applying Chebyshev’s inequality to the expected value of each. Upon doing

this, Def. 2.1(b) gives the following analogue of Prop. IV.5.4.

4.4 Proposition. The limiting 15-tuple of Prop. 4.3 obeys the following conditions with probability

one.
z(t) = 20(0) + /ot z'(r) dr + 2%(t) Vt, z%(0) =0,
50 = ¢ [aGr)er + (0 - [ Foa|et w20 =0,
<I>t=I+/0t<i>:dr+<I>f vt, @2=0,
z!, z, p%, h!, h?, ®!, are absolutely continuous,

(*(t), 2(£), 7 (t), B (t), h2(2), ®}) € T(¢, 2(t), B2 (¢), B¢, B;2) ae. [0, 7).

Next we must produce an appropriate control u(t,w). This requires that the probability space
(2, 7, P) on which the limiting 15-tuple of Prop. 4.3 is defined be equipped with a filtration. A

sufficiently large filtration may be defined in terms of the continuous process
¢t = (XO) A) Tty xtl) I?) zhﬁt»—ﬁ?, h:) h?) q)ta q>g11 q>t2) wt) .

We take for 7 the filtration generated by y;. (The constant processes in the first two components of
1) ensure that X, and A are 7j-adapted.) Evidently ), is the limit in distribution (on the space of

continuous functions) of the continuous processes

k_ vk ak _k 1k 2k _k =k =2,k p1k 12k gk gl.k x2.k . k
‘»l’t—(XoaA yZgs Ty s Ty 52, PeaPe s by hy, By, Ry, B ’wt)~

We will use these processes when applying Prop. 4.2 for each k.
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4.5 Proposition. The limiting process w(-) in Prop. 4.3 is an %-Brownian motion in R?. Moreover,

there is an %-adapted process u:[0,T) x @ — U such that
t t
z¢ = zo(0) +/ f(ryzpyu,)dr +/ a(r, z,) dw, vt,
0 0
T .
5, =—¢ [Zz(zr)dh- +/ L.(r,z,,u,)®, dr] ;! Vt,
t
t t
o, = I+/ fe(r zr, ur)®, dr +/ 0z(r, 2 ) ®r dwy vt,
o 0
t
zZ = / L(r,z,, u,) dr vt,
)
t
ht1=/ & 1 f(r, z,,u.) dr vt,
0

t
hf:/ p2O 1 f(r, 2, u,)dr Vi
0

Proof. Being the limit in distribution of Brownian motion processes, w(-) is certainly a Brownian
motion. It is adapted to % by construction. We show that it is actually an #-Brownian motion in
the course of justifying the six integral representaﬁions listed above.

First let us treat the stochastic integrals. Since each triple (w*,z**, 2/} is a continuous
second-order 7 (y*)-martingale on (1%, 7%, P*) and since '/)"-iw/v, Prop. IV.3.1 implies that the
limit process (w, z, ®2) is a continuous second-order %¥-martingale. The quadratic variation of the
limiting martingale is a little awkward to write down, because ® denotes an n X n matrix. Let us

2
temporarily think of ® as a vector in R™ by writing the first column above the second, and so on.
: : : i gd+n+ n? .

Then we are studying continuous martingales v in R% ™ . Along the sequence, the martingale
vF = (wk, z2*, ®%*) is defined by

wk(t t I

ok (t) = | z2k(t) | = / o(r, z¥) dwk,

B2k (t) 0 | Z(r, z¥, ®F)
where the (d + n + n?) X d integrand matrix is built up of a d x d identity matrix, an n X d matrix
o, and an n? X d matrix L containing an appropriate arrangement of the elements of ,®. The

quadratic variation of the martingale v¥ is given by

1 o 3z 1F
('u’c >: = / c oo o¥! dr.
o1 s Y

This means that v* (v*)’ = (v*) is a continuous (d + n + n?) x (d + n + n?)-matrix valued martingale.

k

Since z*-2+z and ®* -2—»<I>, the continuity properties of o, ¥, and of integral functionals imply that
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the processes (v")t converge in distribution to the process, for which we use the suggestive notation
(v)ta given by .

t I U’ 2'
(v)e = / o oo o%¥'| dr

0 lE T ¥
Thus (v") (vk)' - (v")iwv' — (v); since the left side is a uniformly integrable sequence of
.7;(1ﬁk)-martingales, the right side is an 7t¢-ma.rtingale by Prop. IV.3.1. By definition, it follows that

the process we have denoted by (v); really is the quadratic variation of v;, and that it is realized here

as the integral of the following matrix times its transpose:

I
o(r,z,)
Z(r, z,, ®,)
This (d + n + n?) x dmatrix has (row) rank identically equal to d, so by Prop. IV.3.3, the space

(Q, 7, 7, P) itself carries an %-Brownian motion %, with values in R¢ such that

wit t I
2(t) | = o(t) = / o(r,z,) | dw,.
9? (t) o [ Z(r, =z, @)

The first d components of this equation imply that &; = w, for all ¢, except on a negligible set of
. . 2 .
w-values, 8o these processes are indistinguishable. Then, reverting from vectors in R™" to matrices

in R®*" the second two blocks of this identity yield the desired stochastic integral representations:
t
z%(t) = / o(r, z.) dw,,
0
t
o2(t) =/ oz(r, 2, )@, dw,.
0
The second step is to produce a suitable control u(t,w). As in Chap. IV, this can be done
by appealing to the selection lemma given by Bene¥ (1971}. We consider the measure space
M = [0,T] x 2 together with the o-field M with respect to which M-measurability is equivalent to
the-adaptedness. (See text following Lemma IV.4.2.) We take R = R* xR/*1*/ xR x Rx RxR"*",
and define k: M x U — R and y: M — U by
k(t,w, u) = (f(t,:c(t,w),u), L(t, z(t, w), u), La (8, 2(t, w), w) ®(t, w),
B(t,w) " £ (t, z(t, w), u), P2(t,w)B(t, w) "1 £ {2, (¢, w), u), fx(t,z(t,w),u)é(t,w)),
. . 2 4 H :
y(t,w) = (2 (t,0),4(6,0), 5 (tw), B (t,0), B2 (¢,0), 8 (£, ) ).
Then k(t,w,u) is M-measurable in (t,w) for each fixed u € U, and continuous in u for each fixed

t)y—z(t—h
(t,w). Also y is M-measurable (because, for example, z; = lim 2(t) —=(t = h)

Jim n is z;-adapted) and
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obeys y(t,w) € k(t,w,U) = I'(t, z¢, 57, ®¢, @; ). The conclusion of Bene¥ (1971), Lemma 5, p. 460 is
that there is an M-measurable mapping u: [0, T] x 1 — U such that y(t,w) equals
(7t 2(t,0), u(t,0)), Lt 2(t,0), u(t @), La(t, 3(t,w), u(t, ) 2(¢,),
8(t,w) "1 f(t, 2(t,w), u(t,w)), B (8, w) B(t,w) T f(t 2(t, 0), u(t, W), falt 2(t,w), U(t,w))d’(t,w))'
Recalling the definition of y(t,w) and the representations of z> and ®? already given, the integral

representations of this proposition now follow from Prop. 4.4. /1]
Let us summarize our findings and complete the study of convergence.

4.6 Theorem. Let (E, P+, —Po) be a unit vector obtained from a sequence of perpendiculars as
in (4.10). Then solutions z* to P(a*,)*) can be found such that, along a subsequence, z* -2z for
some process z. This limit process is a solution of the dynamic equation (1.1) corresponding to a
probability space (2, 7, %, P), we, and a control u which solves P(0,0). Moreover, there exists a
Lebesgue null set N(u) C [0,T] and a process p, such that for each t ¢ N(u), ‘a.ny #;-measurable and

U-valued random variable v obeys

(416) EH(t) zt)ﬁt)u’tr 6) 2 EH(t: zt:ﬁtsvﬂz)a

(4.17) EA'p, = —B.

Here the pre-Hamiltonian H is defined by p'f — $'L as in (4.9), and the process p, is given explicitly

by
T

(4.18) o =g [Zx(zr)q’r +/ L.(r,z,u,)®, dr:| o1,
t

where ®. is the n X n matrix process defined in (3.13a) and corresponding to (z,u). The vector

obeys ©g > 0, together with the complementary slackness condition
(4.19) 5.20,  (B,A[0,u) =0.

Proof. We have already constucted the limit process z and its corresponding control u, and verified
that B, and @, have the correct representations. To see why u solves P(0,0), recall that A[a¥, u¥]

converges to (—p,V(0,0),O) by assumption for some p > 0 in R/, and that both z"(T)—D—»z(T)
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and z*(T)-Z+z(T). Since Alo*,u*] = E[¢(z%) + z*(T)], a standard uniform integrability argument
implies that E[£(zr) + z(T)] = A[0,u] = (—p,V(0,0),0). This shows that u satisfies all the
constraints of P(0,0) and attains the infimum, as claimed.

Since ($-,Po) is a limit of vectors with nonnegative components, its components must also be

nonnegative. To prove the complementary slackness condition (4.19), note that Prop. 4.2 gives
(B%,A_[a*, ¥+ 2E) =0 VE

We know that $* — &_ and Ak — 0, while A_[a¥,u*] = A_[0, u] has just been shown above. Thus
we get (4.19) in the limit as k — oo. |

Only (4.16) and (4.17) remain to check. The easier of these is (4.17), for which it is convenient
to observe that for any r € (0,7/q), the sequence E ”5" "' is bounded. This follows from the
representation of each p* analogous to (4.18), the k-independence of the constants in (3.16), and the
growth conditions of (h5). (We used it before to prove Thm. 3.2.) It implies that E‘(Ak)’ﬁ’glr is a

bounded sequence, and hence uniform integrability gives
E(Ak)'ﬁ'g — EA'P, ask — oo.

Since the left side here equals —E" and we have E" — E by assumption, (4.17) holds.

To prove (4.16), let us observe that the pre-Hamiltonian integrals
t
RE(t) = / H(r, zf,ﬁf,uf,&k) dr
0
converge in distribution (on the space C) to the limiting Hamiltonian integral

t
h(t):/ H(r,z,,p,,u,, §) dr.
0
Indeed, we have
t
W) = [ 1808, u8) = (B L ot )]
(4] .

t T t
-y [ / (ez(zm; NP dp) (@) sttty i+ [ Lrnat,ot) dr]
0 r o
= ~(8")' [(=(=5) 2% + P**(T)) hH* (1) = K** (1) + 2*(2)] |
The RHS here is a continuous image of ¥f, which is known to converge in distribution. Since

convergence in distribution is preserved by continuous mappings, we conclude that AN
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Now let £ denote the dimension of the process ¢, and consider a measurable Cf-adapted mapping
v: [0, T] x C* — U which is continuous in its second argument for every value of the first. The growth
‘conditions of (h2) and (h5) allow one to use the dominated convergence theorem to show that the

mapping of C™ x C™ x C¢ x R¥*1*7 into R defined by

t
@re) — [ Bz olnd), o) dr

is continuous for each £. Since convergence in distribution is preserved by continuous mappings, it

follows that for each fixed ¢,

t t
/ Hir, 2% 7%, v(r, p*), #) dr 2o / H(r, 20,5, o(r, ), &) dr.
(¢] 0

A standard uniform integrability argument shows that the expectations of the left-hand sides
converge to that of the right-hand side. Now using ¢* in Prop. 4.2 for each k, we find that for any
s € (0,T] and € > 0, one has

8
0< 2 [* [BH(r b B b 8) - BH(n 2k By o(r, 0), 8] ar.
s—¢

Therefore the arguments above allow us to take the limit as k — oo to get

1 r°
0< ;/ [EH(?’, Ir:in“nﬂz) - EH(r) xninv(r! g()),{(')')] dr.
s

—t

Now since the adpated maps v(r,¢) with continuous ¥)-dependence are dense in the measurable
adapted maps v(r,¢) in the sense of almost--sure convergence with respect to dt X dPy, this last
relationship must actually hold for all measurable and ;-adapted processes v. The set of all such
v’s may be called the set of all y-feedback controls, of which we have described a countable subset
V(¥) in the text preceding Thm. 3.2. By Lemma 1.1, there is a null set. N'(u, ¥) such that for any

veE V(¢) and s ¢ N(u, ), one has
1 8
lim - / [H(r’ xr‘)i’-r)uraa) - H(T, zr;ﬁnur:a)] dr = H(s,z,,ﬁ,,ua, {5) - H(S,Z,,ﬁ,, !),,{5).
8—8
By uniform integrability, we find that
EH(S’zO)ﬁsi uﬂia) Z E‘H(s’zaiﬁgva’a) Vs ¢ N(u7¢)’ VU e v(‘/))'

This is precisely the situation in which the proof of Thm. 3.2 shows that the density of V,(¢) in

U, (%) implies the global conclusion (4.16). 111/
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The convergence analysis of this section is the foundation of the applied results to follow. Before
turning to these, however, let us present a somewhat stronger Hamiltonian inequality. Consider the
adapted adjoint process p; = E[ﬁt | .'r't] With respect to this process, (4.16) and (4.17) may be

replaced by

(421) H(t,zhpt,ut,g"o') 2 H(t, Tty Pty Y, (Z) a.8., Vt ¢ N(u,tﬁ), VU € Ut(‘l,b)

~

(4.22) EA'po = -8

Equation (4.22) follows from (4.17) by conditioning; to see why (4.21) holds, note that since H is

linear in p, and both f and L are %-adapted, the inequality in (4.21) is equivalent to
E[H(tr zt)ﬁtl Ut, G) l ?t] Z E[H(t) xt:ita v, (5) I };]

Thus if (4.21) is false, there must be a time t ¢ N(u), a random variable u € U;, and a set F € %

with P(F) > 0 for which the reverse inequality prevails. But in this case the new random variable
v(w) = us(w)I{w ¢ F} + u{w){w € F}

is an element of Uy () for which conditioning on % gives
EH(t, z:,p;,ut, 8) < EH(t,2:,0,,v,8)-

Thus the falsity of (4.21) contradicts the proven statement (4.16). Conclusion (4.21) cannot be false.

4.7 Definition (Multiplier Sets). Let a filtered probability space (1, 7, %, P) satisfying the

usual hypotheses be given. Suppose it supports an %-Brownian motion w, with values in R4 and an

Fi-adapted process u: [0,T] x 2 — U which solves P(0,0). Then a pair (1, p) consisting of a vector

@ € R¥*1+J and an %-adapted continuous process p: [0, T] x @ — R™ is called an indez oo multiplier

corresponding to u if it satisfies the following conditions. There is a null set N {u) C [0, T] such that
H(t,z:,pe,ue, ) > H(t, 22, pe,v,0) as. V& N(u) Vv € Uy,

z],

T
P;. = —¢'E [ez(zT)q>Tq>t_l +/ L, (r: Ty, “t')Q"(I)t—1 dr
t

t

t
(I>¢=I+/ fz(r z,, ur)®, dr+/ oz(r, z,)®, dwy,
0 0
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¥o 2 0: P- 2 01 (¢—1A—[0! u’]) =0.
Here U, denotes the set of all F,-measurable random variables v: 1 — U.
The set of all such pairs (i, p) corresponding to u is denoted M¥°(u). A mapping A from the

space of multipliers into R*+/*7 is defined as follows:

Ap,p) = (—EA'po, so;)-

We denote by Y the set of all possible control processes u solving P(0,0): then M¥°(Y) signifies the
collection of all multiplier pairs corresponding to some solution of P(0,0), and A[M¥°(Y)] is the
image set of all these pairs under the mapping A. ‘
Consider the following two cones.
N={r(¢,-1) : r>0, ¢ A[M(Y)]ndV(0)}

N= = {(5,0) : c€ A[M(¥)] no=V(0)}.
For any unit vector (E, P, —Po) obtained as a limit of perpendiculars as in (4.10), Thm. 4.6
asserts that for some process p the pair (g,p) lies in M¥®o (Y). Indeed, if $o > O then the
positive homogeneity of the conditions defining a multiplier implies that (G/{b’o, p/{b'o) lies in
MY(Y). But Thm. 4.6 also shows that A(é’/é’o,p/ﬁo) = (5/60,6;/(5_0) is a vector for which
(ﬁ/é’o, &+ /o, —1) € Nepiv (0,V(0)) by the proximal normal formula. Upon applying the definition
of 3V (0) in terms of this normal cone, we find that (E, Pz, —Po) € N. On the other hand, if $o =0
then A(B,p) = (B, B=) is a vector for which (B,3%,0) € Nepiv (0,V(0)) by the proximal normal
formula. By definition of 8°V (0), it follows that (E, P%,0) € N®. These arguments lead to the

main result of this chapter.

4.8 Theorem. The generalized gradient of V obeys
3V (0) = %(A[M‘ (V)] nav(0) + A[M°(Y)] N a°°V(o)> .
If the cone A[M°(Y)] is pointed then the closure operation is redundant, and one also has
d®V (0) = co (A [M°(Y)] n a°°V(o)).
Proof. The definitions of 8V (0) and 8V (0) imply that
Nepiv(0,V(0)) 2 NUN®®,
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Indeed, since the normal cone is always closed and convex, one has
Nepiv (0,V(0)) 2 &[N U N>).

But according to the proximal normal formula, the normal cone is contained in the closed convex
cone generated by certain limits of perpendiculars. We have just shown that all such limits of

perpendiculars are actually elements of N U N®: therefore
Nein(O,V(O)) c E[N U N°°] .

This implies that Nepiv (0,V (0)) = €6 [N U N*|, whereupon the assertions of the theorem follow

from Prop. 11.6.2. /1]

‘Section 5. The Stochastic Maximum Principle for Constrained Problems

Among the many significant consequences of Thm. 4.8 is the stochastic maximum principle
(SMP) for problems with soft constraints. The SMP concerns the existence of nontrivial multipliers
as defined in 4.7. Suppose first that M°(Y) = {0}. Since this cone is pointed, Thm. 4.8 asserts
that 32V (0) = {0} and that 9V (0) = co {A[M*(Y)] N3V (0)}. According to Prop. 1.2.5, we may

therefore write
M°(Y) = {0} = 8>V (0) = {0} => 3V (0) # 8§ = M (Y) # 0.
This series of implications can be summarized as follows:
(5.1) MY (Y)u[M°(Y)\{0}] # 9.
Line (5.1) is a concise statement of the Stochastic Maximum Principle.

5.1 Theorem (Stochastic Maximum Principle). Assume (h1)-(h6). If problem P(0,0) has a
feasible control process then it has a solution. Moreover, at least one of the optimal controls in the

set Y has a multiplier pair as defined in 4.7 for which either o9 = 1 or (—EA'po, go:F) # (0,0).

Proof. Immediate from Thm. IV.7.1 and line (5.1). /1]
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We will compare Thm. 5.1 to other forms of this result later. First let us consider some of its
consequences.

The interpretation of the multipliers in the SMP Thm. 5.1 is clearest in the “normal” case:
problém P(0,0) is said to be normal if it has no solution with a nontrivial multiplier (¢, p) for which

@0 = 0—in other words, if M°(Y) = {0}. In this case we get the following result.

5.2 Proposition. Suppose P(0,0) is normal. ThenV is (finite and) Lipschits near 0, and 3V (0) is
a compact convex set obeying

B # ext 8V (0) C A[M(Y)].

Proof. If M°(Y) = {0} then 3V (0) = {0}, so V is Lipschitz near 0 and 8V (0) is a nonempty
compact convex subset of R®+/+7 by Prop. 1.2.5. Such sets have extreme points by the Krein-Milman
theorem. And a well-known converse of the Krein-Milman theorem asserts that if C € Re+H/+J

is compact, then coC is also compact and ext (coC) C C. The result follows upon taking

C = A[ML(Y)] naV(0). /1]

Corollary. Suppose P(0,0) is normal and A[Ml (Y)] is a singleton, say (—EA’py, p5). Then V is

strictly differentiable at 0, with strict derivative D,V (0) = (—~EA'po, p5).
Proof. See Clarke (1983), Prop. 2.2.4, p. 33. (Clarke defines strict differentiability on p. 30.)  ////

Prop. 5.2 also shows that the normality of problem P(0,0) implies the stability of the system
of soft constraints defining the problem’s structure. For the finiteness of V in a neighboﬁrhood of 0
shows that each problem P(a, ) for (o, A) near (0,0) has a feasible control. Note that the sufficient
condition guaranteeing this desirable situation, namely the absence of nontrivial multipliers with
@o = 0, is formulated only in terms of the stochastic dynamics and the soft constraints: the objective
functional is irrelevant when o = 0. The stability of systems of inequalities in the deterministic case

has been studied by S.M. Robinson (1976) and Clarke (1983), Sections 6.3-6.4.
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Scholium. The new approach to the SMP afforded by Thm. 4.8 has much to recommend it.
First, it relies completely on the simple geometrical notion of perpendicularity rather than on the
more theoretical “abstract variational theory of Neustadt” used by Kushner (1972) or the “cone
of variations” approach of Haussmann (1985). Second, the relationship between existence theory
and necessary conditions is clarified—not only in the broad outlines of the proof of Thm. 4.8,

but also in the close parallel between the convergence arguments of Props. 4.3-4.5 and those of
Props. IV.5.2-1V.5.5. Finally, Thm. 4.8 gives much more than jusf. the SMP. It provides a rigorous
defence of the interpretation of the multipliers corresponding to an optimal trajectory as the marginal
costs corresponding to each constraint. These three advantages are unique to our approach, and
confirm thebvalue of proximal normal analysis in this context.

Along with its good points, our approach has several shortcomings. First, it makes implicit
rather that explicit use o‘f existence theory. By assuming the existence of a solution explicitly, the
authors cited above have been able to prove the SMP without assuming that U is compact and
withc;ut any convexity condition analogous to our (h6). Moreover, their explicit existence assumption
allows a strong formulation, in which it is possible to prove that every optimal control process has
a nontrivial multiplier. Now we have shown in Chap. IV that for the purposes of existence theory,
the compactness hypothesis on U can be replaced by a coercivity condition on L. There may be a
modification of our arguments in this chapter which will allow that more general existence result
to be used to eliminate the compactness condition. As for (h6), it is quite possible that further
analysis will show that it can be omitted from the assumptions of Thm. 5.1. Such a result would be
based on conditions under which an optimal control process 4 for a problem violating (h6) retains its
optimality when the problem is “convexified” so that (h6) holds. “Relaxation in Stochastic Optimal
Control” is a topic well worth considering, but one which lies beyond the scope of this work.

Our inability to show that every optimal control has a nontrivial multiplier can also be traced to
the demands of existence theory. For that theory ties us to the weak formulation, in which even the
simplest problem has infinitely many representations. Just which of these is selected by the limiting
procedure cannot be foreseen with certainty. To compound the difficulty, we complete the limiting

procedure by selecting some optimal control which gives a suitable representation to the multipliers:

- 137 -



whether there exist other optimal controls which do not yield such a representation is unknown. In
the determiﬂistic theory, difficulties like this can be overcome by assuming that every solution to
the nominal problem P(0,0) acts like a unique solution. This assumption is made rigorous by a
minor modification of the objective functional which singles out a preassigned solution as the unique
solution to a related problem for which the multipliers are the same as those for the original problem.
(An example of this approach may be found in our paragraph on “Multiple Solutic;ns” following
Prop. 111.4.3.) But to effect such a modification in the stochastic case, we would need some numerical
measure not just of deviations from a preassigned optimal control on its own base. space, but of
changes between the base spaces themselves. And the whole philosophy behind the weak formulation
insists that all probabilistic structures must be regarded as interchangeable precisely because there is
no observable difference between them.

The form of the multipliers in Def. 4.7 raises an interesting question concerning the role of
feedback control laws. As we saw in Chap. IV, the value function V may be defined in terms of
feedback controls or in terms of adapted controls. The feedback controls are widely considered the
more practical choice. It is natural to ask whether the generalized gradient of V is captured by
multipliers corresponding to feedback controls, or whether the larger class of adapted controls is
necessary. Our result is expressed in terms of the adapted controls. To use the feedback controls
instead, we would have to select an F*-adapted control u(t,w) in Thm. 4.6 instead of simply a
zw-ada.pted one. Such an effort would presumably use Wong’s theorem in some way, but the fact
that the limiting matrix processes ®; may fail to be z;-adapted makes it _difﬁcult to see how to make
this approach work. Haussmann (1983) studied convergence in distribution of stochastic extremals

in a rather different setting, but apparently came to the same conclusion.

More General Perturbations. It is not difficult to extend the analysis given above to treat
problems in which the finite-dimensional parameter o affects more than simply the initial conditions.
Suppose, for instance, that we let P(a, A) refer to the problem
xunei{‘l{Ao[a,u] 1dze = f(t, 3¢, @, ue) dt + o8, ¢, @) dwe, 2(0) = zo(c),
Aifoyu] < =, 1=~1-2,...,-1,

Ajla,u] = =2y, 7=12,...,J},
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where Aila,u]:=E [ﬁk(zr, a) + /(;T Ly (t, z¢, @, ue) dt] Vk. The value function V(a, A) = inf P(a, A)
for this problem is the same as for the problem P(a, A) defined by
‘Jg{}{xo[“,“] 1dzy = f(t, e, ye, we) dt + o(t, 2¢, ye) dwe,  2(0) = zo(e),
dy, = 0dt, y(0) = a,
Koy < =X,  i=-1,-2,...,-1,

Alaul==x;, s=1,2,...,0}

where xk[a,u] = E [Zk(z;r,yr) + /(;T Ly (t, ¢, ye, ue) dt] Vk. The transformation of o into an
additional state variable y € R® makes it clear how to interpret the standing hypotheses (h1)-(h6) in
the current setting. Now Pisa problem to which the results above apply. Translating Def. 4.7 into
the context of P gives the corresponding notions appropriate to our new problem P. (Notice the

similarity with the necessary conditions of Thm. 3.4 for an unconstrained problem of similar form.)

5.8 Definition. Suppose a feasible control u for problem P(0,0) is given. A triple (¥, p,q)

consisting of a vector ¢ € R/*'*7 and a %-adapted continuous process (p, g):[0,7] x @ — R™ x R®

is an tndez o multiplier for u if the (pair (u, z) solves P(0,0) and obeys the following conditions.
H(t, z,,ps,us,0) > H(t,z2,pe,v,0) as. Vi g N(u), Vv e l,,

i

T
=~ B |ta(er, UL, 0+ talor, 0+ [ (L)) + Lalr) o

T
P; = —(p’E [ez(zr,o)QTQ{I +/ L:z("a z,.,O,u,,.)q),(bt_l dr
t

.
t t
o, = I+/ f=(r)®, dr+/ oz(r)®, dw,,
ot ! t
Wor) = [ (O + 1) dr+ [ (0 )¥07) + 0alr)) dur,
T T
0020, ©_20, (p_,A_[0,u])=0.
Here the pre-Hamiltonian H (¢, z, p, u, p) = p' f(t, z,0, u) — ' L(¢, z, 0, u}, and similar notation prevails
throughout these conditions. The set of all such triples is denoted by M¥°(u). Define the mapping
A on the space of multipliers as follows:

Alp,p,q) = (—Epp A — ¢b, 03)-

As before, let Y be the set of state trajectories corresponding to solutions to P(0,0).
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For the extended problem P, Theorem 4.8 now remains valid exactly as written above, providing
we interpret the multiplier sets M and mapping A as defined here. The same statements apply to
Prop. 5.2 and its corollary, as well as the discussion of stability following. As for the stochastic

maximum principle, it may be stated as follows in the general setting.

5.4 Theorem (SMP). Assume (h1)-(h6). If problem P(0,0) has a feasible control then it has a
solution. Moreover, one has

MY(Y) U (MO(¥)\ {0}) # 6.

A Simple Application. Although the constraints upon this thesis make a detailed investigation
of the implications of Thm. 4.8—or indeed of the methods used to prove it—impossible, we can
note one of its very elementary consequences. Suppose a deterministic optimal control problem with
constraints in the form of comparison functionals is given. Assume that the problem obeys conditions
(h1)-(h6), appropriately rephrased, and that it has no abnormal multipliers in Pontryagin’s sense.
The general effects of an additional term a dw; in the deterministic dynamics dz; = f(¢, z;, u;) dt, for
some n X d matrix a and Brownian motion w in R%, can be studied as a special case of the problem
above in which o(¢,z, 2} = «, and z¢, f, £, L are independent of . In this case it is easy to see that
the multipliers of Def. 5.3 are those for which p; = E[5¢ l .‘r't], where
—p(t) = Hao(t, 2o, pe,ue, 0),  p(T) = —p'ta(z7),
g(t) =0,

and the other conditions of Pontryagin’s principle hold. For all such multipliers one has
Ap,p,q9) = (0,5). Since M°(Y) = {0} by assumption, Prop. 5.2 implies that the first
n X d-component of every element in 8V (0,0) is zero. In other words, to first order the introduction
of white noise has no effect on the value of a normal deterministic control problem.

The methods of this chapter seem certain to contain more profound results on the issue of
stochastic approximations to deterministic control problems. This is a topic of considerable current
interest—see Kushner (1965), Fleming (1971), and Fleming (1983) for example—to which we hope

the current study will some day (soon) contribute.
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