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Abstract 
In this thesis, I develop accurate and efficient pseudospectral methods to 
solve Fisher's, the Fitzhugh-Nagumo and the Beeler-Renter equations. Based 
on these methods, I present a study of spiral waves and their interaction with 
a boundary. 

The solutions of Fisher's equation are characterized by propagating fronts 
with a shock-like wave behavior when large values of the reaction rate co­
efficient is taken. The pseudospectral method employed for its solution is 
based on Chebyshev-Gauss-Lobatto quadrature points. I compare results 
for a single domain as well as for a subdivision of the main domain into 
subintervals. Instabilities that occur in the numerical solution for a single 
domain, analogous to those found by others, are attributed to round-off er­
rors arising from numerical features of the discrete second derivative matrix 
operator. However, accurate stable solutions of Fisher's equation are ob­
tained with a multidomain pseudospectral method. A detailed comparison 
of the present approach with the use of the sine interpolation is also carried 
out. 

Also, I present a study of the convergence of different numerical schemes in 
the solution of the Fitzhugh-Nagumo equations. These equations, have spa­
tial and temporal dynamics in two different scales and the solutions exhibit 
shock-like waves. The numerical schemes employed are Chebyshev multido­
main, Fourier pseudospectral, finite difference methods and in particular a 
method developed by Barkley. I consider two different models of the local 
dynamics. I present results for plane wave propagation in one dimension and 
spiral waves for two dimensions. I use an operator splitting method with 
the Chebyshev multidomain approach in order to reduce the computational 
time. 

I conclude this thesis by presenting a study of the interaction of a meandering 
spiral wave with a boundary, where the Beeler-Reuter model is considered. 
The phenomenon of annihilation or reflection of a spiral at the boundaries 
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Abstract 

of the domain is studied, when the trajectory of the tip of a spiral wave is 
essentially linear. This phenomenon is analyzed in terms of the variable j, 
which controls the reactivation of the sodium channel in the Beeler-Reuter 
model. 
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Chapter 1 

Introduction 
The electrical activity of the heart and its role in the activation of cardiac 
contraction, is an important field of study. A periodic electrical wave of ex­
citation, called an action potential wave, is initiated at the sinoatrial (SA) 
node, the natural pacemaker of the heart. This wave propagates through­
out the atria and arrives at the atrioventricular (AV) node, where after some 
time delay it propagates to the ventricles via the Purkinje fibers [118]. In 
normal conditions, this process is repeated approximately 70 to 100 times 
each minute and is commonly referred as the heartbeat. A n arrhythmia 
is an abnormal heart rhythm due to atypical generation or propagation of 
excitation waves, during the process described above. Each year, more than 
20,000 Canadians die as a consequence of developing fatal ventricular ar­
rhythmias [96, 122]. 

One of the proposed mechanisms involved in the development of arrhyth­
mias are spiral waves, a particular form of functional reentry [34, 106]. Spiral 
waves are self sustained waves of excitation that rotate freely or around an 
obstacle, reactivating the same area of tissue at a higher frequency than 
the normal SA node would do, increasing the normal heartbeat rate. In the 
worst scenario, a spiral wave might break up into smaller spiral waves giving 
uncoordinated contractions of the heart 1. When this phenomenon occurs in 
the ventricles, the heart quivers and loses its ability to pump blood to the 
body leading to immediate cardiac arrest [34, 118]. 

Therefore, the development of techniques that help in the understanding 
of the control and annihilation of spiral waves is an important endeavor. 
In order to understand spiral wave dynamics, it is necessary to consider 
excitability of cardiac tissue, which also occurs in nerve cells [57] and to 
some extent in chemical reactions such as the Belouzov-Zhabotinsky reac­
tion [102]. Computer simulations of models in excitable media have been 
of great utility to understand and support results obtained experimentally 

x This condition is referred as fibrillation [34] 
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Chapter 1. Introduction. 

[24, 76], as well as for proposing new ideas about different regimes in cardiac 
wave propagation [31, 83, 99, 117]. Computer simulations of excitable media 
usually involve solving partial differential reaction diffusion (RD) equations, 
where the reaction term models physiological ion kinetics [16, 67, 68]. A 
very important task is to find fast and reliable numerical methods to solve 
these R D equations [25]. 

Therefore, this thesis has two objectives. The first objective is the de­
velopment of fast and accurate numerical methods to simulate models for 
excitable media, with an emphasis on cardiac wave propagation and spiral 
waves. The numerical schemes considered in this thesis are based on spec­
tral methods, which are known to provide exponential convergence of the 
solution with respect to the number of collocation points used in the spatial 
discretization [19, 87]. The second objective corresponds to the understand­
ing of the process of annihilation and reflection of a spiral wave when it 
interacts with a non excitable boundary; a physical region that blocks the 
propagation of waves of excitation. As discussed in the previous paragraphs, 
annihilation of a spiral wave in the context of cardiac wave propagation wil l 
terminate the reentry behaviour and inhibit the development of atrial or 
ventricular fibrillation [34]. 

In order to get a better understanding of the work in this thesis, we devote 
the rest of this introductory section to give an overview of the concepts 
and terminology relevant to spiral waves in excitable media. Therefore, 
some general concepts about nonlinear dynamics for ordinary differential 
equations are discussed in Section 1.1. In Section 1.2, we provide a general 
description of excitability in nerve cells, where also, we present in detail the 
Hodgkin-Huxley model for the propagation of an action potential in nerve 
cells. The Hodgkin-Huxley model is the basis for physiological ionic models 
used for modelling cardiac wave propagation, in particular the one given 
by Beeler and Reuter [16], that we wil l consider in Chapter 4. In Section 
1.3, we describe the propagation of an action potential along a nerve axon, 
where also, the property of multiple temporal and spatial scales associated 
with this phenomenon is discussed. In Section 1.4, we provide a general 
description of Chevyshev pseudospectral methods which will serve as a basis 
for developing further methods to solve equations in excitable media. We 
conclude this introductory chapter by giving an overview of the proposed 
thesis to be discussed in the following chapters (Section 1.5). 

2 



Chapter 1. Introduction. 

1.1 Preliminaries 
The well known harmonic oscillator is one of the simplest oscillators. A n 
example of harmonic motion is a mass attached to a perfect spring. In this 
case there is no dissipation, giving as a result periodic motion. However, 
friction or other external perturbations play an important role in the dy­
namics of such physical system. Therefore, in the presence of damping, the 
periodic motion is lost and the mass tends to equilibrium. 
The equation for an oscillator with damping is 

d2x dx .„ „. 
m—jr + c— + kx = 0 (1.1) 

dtz at 

where for the perfect spring problem, x is the position, m, c and k are the 
mass, damping coefficient and spring constant respectively. Eq . (1.1) is 
an example of a linear differential equation. The general form of a linear 
differential equation is given by 

f = A» (1.2, 

where x is a vector and A is a matrix. Its solution is well known and is 
given in [62]. However, most physical processes are described by nonlinear 
PDEs . Simple examples include the carrying capacity for the dynamics of 
a population or the modelling of an autocatalytic reaction [62]. For these 
examples, it is not possible to find an equation of the form (1.2) able to 
simulate such processes. Therefore, an extension of Eq. (1.2) is considered 
and is given by 

— =Ax + f{2,t) (1.3) 

where f(x,t) is a nonlinear function, e.g. a polynomial of degree greater 
than one, a trigonometric function, etc. Eq . (1.3), is termed a nonlinear 
differential equation. For this thesis, we will consider nonlinear partial dif­
ferential equations. 

A second example of periodic behaviour is the Lotka-Volterra (LV) model 
[62]. Lotka [32], developed a theoretical model for chemical oscillations 
which was also considered by Volterra [32] to model the interaction between 
two species, a predator and a prey. The L V equations are given by 

ft = ax-bxy 
| = -cy + dxy [ • > 

3 



Chapter 1. Introduction. 

where x and y represent prey and predator populations, respectively. So­
lutions to Eqs. (1.4) are given by the pair of time dependent functions 
(x(t),y(t)) satisfying (1.4) and particular initial conditions x(0) — XQ, y(0) = 
y0. In Fig . 1.1A, solutions (x(t),y(t)) of Eq . (1.4) for different initial con­
ditions are shown in the so called phase plane. The blue lines, called tra­
jectories, represent two different solutions for different initial values. The 
arrows, which are given by the derivative of the solution with respect to 
time, are tangent to a solution curve passing through a point (x*,y*) in 
the plane and point in the direction of positive time. In F ig 1.1 A , it is ob­
served that the amount of individuals in each population not only oscillates 
in time but also do so in a periodic way. In general, the family of solutions 
of Eq . (1.4) are closed orbits that never intersect each other (Fig 1.1A). 
Each closed orbit has assigned a period and a waveform. However, if the 
solution is perturbed, the new solution will remain periodic but the period 
and waveform will change. 

A small variation of Eq. (1.4) can be considered by adding carrying capacity 
effects for the prey population. We obtain 

d = ^ A _ h x y = a x _ ^ _ h x y 

J = ~cy + dxy 

If K » 1, Eq.(1.5) is a perturbed system of Eq. (1.4). A trajectory solu­
tion for Eq . (1.5) in the phase plane is shown in F ig 1.1B, where the solution 
oscillates but it converges to a steady state. Therefore, a small perturbation 
in Eq . (1.4) breaks the periodic behaviour. 

In real situations, most physical, chemical or biological systems are always 
subject to perturbations. Therefore, it is desirable to preserve the waveform 
and period of an oscillatory solution under small perturbations in such sys­
tems. This is obtained when a stable limit cycle occurs. A stable limit cycle 
is a periodic solution such that for any sufficiently small perturbation, the 
original period and waveform are recovered. In F ig 1.1C the concept of a 
stable limit cycle is shown. The blue solid curve is the stable limit cycle and 
the red long dashed trajectories are attracted to the blue one. Stable limit 
cycles is a property shared by any nonlinear O D E attempting to simulate 
periodic behaviour. 

Although the concept of stable limit cycles is very useful in modelling pe­
riodic behaviour, there are usually other features in oscillatory phenomena 

4 
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that are important to consider. The amplitude, period and time scale of a 
process provide important information when trying to describe or predict 
some phenomenon. A n interesting problem is given when a process occurs 
on two different time scales. This is the case for some electronic circuits 
[75, 104], autocatalytic chemical reactions [86, 102] or biological processes 
[57, 65]. 

A different class of problems than those having oscillatory behaviour, is given 
by a phenomenon called excitability. The phenomenon of excitability, which 
is one of the main themes in this thesis, arises in different systems such as 
cardiac and nerve cells [57, 103] as well as in some autocatalytic reactions 
[86], and was introduced in 1952 by A . Hodgkin and A . Huxley [57]. In a 
series of five papers [57], Hodgkin and Huxley explained the mechanisms by 
which the membrane potential U in a nerve cell changes when the cell is 
under activity. Therefore, we present an overview of the model proposed by 
Hodgkin and Huxley, and discuss the concept of excitability. 

1.2 Excitability and the Hodgkin Huxley 
Equations. 

The concept of excitability is described by the transmembrane potential U 
of a neuron axon, when the cell is under activity [57]. At rest, U has the 
value of about — 60mV. If a short time pulse of current is applied in such a 
way that the new potential is —56mV, it will be observed that the value of 
U wil l return to its resting initial value U = — 60mV immediately (dashed 
curve in Fig . 1.2A). However, if the potential is raised until U = — 50mV, 
the transmembrane potential will go to a large excursion raising its value 
approximately to 4.0mV and then returning back to the value of —60mV 
(solid curve in Fig . 1.2A). This phenomenon is called an action potential 
(AP) and cells with this property are called excitable cells. The value of U 
above which-an A P is elicited is called the threshold value Uth (blue straight 
line in Fig . 1.2A). 

The change of the potential in the cell membrane is due mainly to the pas­
sage of ions (Na+,K+) via ion channels through the cell membrane. The ion 
channels are membrane proteins which allow the passage of specific type of 
ions. A n essential part of the work by Hodgkin and Huxley was to establish 
that the Na and K channels can be opened or closed, and that state depends 
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on the membrane potential at a given time. The time and voltage dependent 
conductance of the channels are discussed in more detail later in this section. 

The main purpose of the Hodgkin-Huxley (HH) equations is to describe the 
change of membrane voltage U during an A P . To better understand the dy­
namics of U during an A P , it is useful to consider the equivalent electrical 
circuit. Because the membrane area covered with ion channels, which allow 
the passage of ions, is 100 times smaller than the membrane area that acts 
as an insulator, the cell membrane can be considered as a leaking capacitor. 
Due to this property, it is possible to formulate a parallel R C circuit where 
the insulator membrane can be considered as a capacitor and each type of 
ionic channel as a variable resistor. The circuit is presented in Fig 1.3. 

In the circuit, the resistance satisfies Ohm's Law 

Is = -gs(U - Es) (1.6) 

where S refers to either K, Na or CI ion; Is represents the current of the 
ion S through the membrane, gg represents the conductance of the mem­
brane for the ion S, U is the membrane potential and Es, referred to as the 
reversible potential and is given by the Nernst potential. 

W i t h Kirchoff's law for the circuit in Fig 1.3, one gets the following equation 

dU lion 
dt Cr, 

(1.7) 

where U is the membrane potential, Cm is the membrane capacitance and 
lion = 9Na(U - UNa) + gK(U - UK) + 9L(U - UL) with IL = gL(U - UL) 
representing a leakage current carried mostly by sodium and chloride ions. 
However, Hodgkin and Huxley found that the gjya and gx conductances, 
were voltage as well as time dependent. The use of the so called voltage 
clamp technique [57], combined with the use of channel blockers, provide 
an empirical fitting of the dependence of the Na+ and K+ conductances on 
voltage and time. Therefore, g^ and g^a

 a r e given by 

9K = g~KnA gNa = g~Nam3fl . (I- 8) 

where gK, gNa represent the maximum conductance and the variables m, n, h 
are voltage and time dependent functions that take values between 0 and 1. 
The variable n satisfies the equation 

d?7j 
— = a n ( l - n) - f3nn (1.9) 
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where an and f3n are functions of voltage. The variables TO and h satisfy 
equations similar to Eq. (1.9), with parameters am,a^,,f3m,Ph- The vari­
ables m,n, h are known as gating variables; n 4 and m3h can be interpreted 
as the fraction of gates that are open at a time t. Finally, the variables 
TO, n, h and their respective a's and /3's were calculated empirically in order 
to fit the data obtained with the voltage clamp technique [57]. 

To get a better idea of the role of the gating variables, we focus on the 
conductances and describe the process of an A P . Initially the Na and K 
voltage dependent ion channels are closed. At rest, U « — 60mV as seen 
in F ig . 1.2A. If U is raised to — 50mV by adding positive ions to the cyto­
plasm, the Na channels will open in a fast time scale, generating a flux of 
Na ions to the interior of the cell, so that U increases to almost AOmV (See 
Fig . 1.2A). During this fast transition in U, two other mechanisms initiate 
on a slower time scale: the K channels start to open allowing the passage of 
K+ outside of the cell, and the Na channels start to close. For this reason, 
the membrane potential U returns to its original state U = — 60mV. When 
the Na channels close, they enter into a stage called refractoriness. In a 
sense, they remain closed as they do not allow the passage of ions, but in 
refractory state they are prevented from opening again until after a certain 
period of time, called the refractory period. This refractoriness prevents the 
cell from being excited before returning to its initial stage. 

Wi th the information provided above, the use of the variables m,n and h 
is clear. The variable n is associated with the opening of K channels, when 
U changes from —60 to 40mV. In the case of Na channels, they open very 
fast but then close when there is a change of U from —60 to 40mV\ That 
is why there are two variables m and h associated with the conductance of 
Na+. The variable TO controls the opening of the channels and h controls 
the closing of them. The final system of equations provided by Hodgkin and 
Huxley is given by 

Cmf = -9KnHU-UK)-gNam3h(U-UNa)-gL(U-UL)+Iapp 

% = an{l-n)-!3nn=^n 

§ = ah(l - h) - phh = a°°=± 
(1.10) 

where Iapp is the applied stimulus current, p^ = a°+p and r p = a\p^ 
for p = m,h and n. The notation of the gating variables has been changed 
in order to understand the concept of the multiple time scales. The fast 
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opening of Na channels, and the slow opening and closing of K and Na 
channels, respectively, are quantified by the variables r m , r „ and Th in Eq . 
(1.10), with the relations rm « Th and r m << Tn, giving a multiple time 
scales problem. If the process of opening the Na and K channels is on the 
same time scale, it is not possible to generate an A P . 

The H H equations have been used as a basis of different models for prop­
agation of potentials, mostly in heart cells [16, 23, 67]. Some examples of 
such models are the Beeler-Reuter (1977) and the Luo-Rudy (1991,1994) 
equations for ventricular cells [16, 67, 68], the Noble model (1984) for the 
SA node [78] and the Courtemanche et al (1998) and Nygren et al (1998) 
models for atrial cells [23, 79]. 

The multiple time scale problem for an A P is shown in Figs. 1.2A and 
1.2B, for typical A P for a nerve cell and myocardial cell, respectively. In the 
myocardial A P , a plateau at U « 0 is observed and is due to the balance 
between the influx and efflux of Ca and K ions, respectively, to the cardiac 
cell. The Ca ions are involved in the contraction mechanisms of cardiac cells. 

1.3 Propagation of an action potential. 
In the previous section, we described the behaviour of U for the spatially 
homogeneous case. However, an A P travels spatially along the neural or the 
heart cells. The propagation of an A P can be explained from Fig. 1.4. In 
the Figure, the cylindrical structure at the lower part represents an axon 
in a nerve cell. For simplicity we assume propagation of the A P in the one 
dimensional longitudinal direction x, where propagation goes from left to 
right as shown by the arrow. We focus on the point in space along the 
cell where an excitation occurs as shown in Fig . 1.4. As discussed in the 
previous section, an A P is elicited when the membrane potential reaches 
a value above the threshold of excitation. At the beginning of an excita­
tion, sodium ions get into the cell very fast giving the abrupt change in 
the A P in a phase called depolarization. The sodium ions that enter the 
cell during the depolarization, move in the interior of the cell following its 
concentration gradient to parts where the cell is ready to accept an A P . In 
these neighboring parts the movement of sodium ions cause the transmem­
brane potential to increase until it reaches the threshold of excitation, giving 
rise to a new A P . This process is repeated and an A P propagates along a cell. 

8 



Chapter 1. Introduction. 

The process of a propagating A P can be associated with the circuit shown 
in Fig . 1.5. In this case, local R C circuits such as the one shown in Fig . 
1.3 are interconnected in parallel, each one representing a patch in the cell 
membrane. The flow of positive ions from left to right in F ig . 1.5 define 
the axial current which has two components, an intracellular, It, and an 
extracellular, Ie. These currents are proportional to the changes in voltage 
with respect to x, and this relationship is given by Ohm's law as Ii = 7 ^ 7 ^ 
and Ie = 7^7^?, where r-j and re are the intra and extracellular resistances 
per unit of length of the medium. The changes of the intra and extracellular 
currents at a point x along the cell are due to the transmembrane current per 
unit of length It, which means that It = Qj^ = =§£L. By taking U = Ui — Ue, 
the transmembrane potential and, IT = I% + Ie to be the total axial current, 
we obtain that 

dx \ri + r e dx 
where IT was considered constant. Because It is given as the sum of the 
ionic and capacitive currents, we get 

where p is the perimeter of the axon, and Cm and Iion are the capacitance 
and ionic current per unit of area of membrane, as given in Eq . (1.7), 
respectively. B y taking and re independent of space, we observe that 
the membrane potential U satisfies the one dimensional reaction diffusion 
equation 

*L-D#!!L_±I; f l l 3 ) 

dt -vdx* c j t m { 1 A 6 ) 

where D = „ / ,—r is the diffusion coefficient. The typical value for D 
for a myocardial cell is about 0.1mm 2 /cm 2 [34]. Equation (1.13) is the sim­
plest P D E considered for modelling the propagation of an A P in nerve tissue. 

The profile of a propagating A P in space is similar to the profiles shown 
in Fig . 1.2 where U is plotted versus time. Therefore, U also changes in 
two different spatial scales, where this phenomenon is emphasized in Fig . 
1.2B for the A P in a myocardial cell. To solve numerically equations of the 
reaction diffusion type for nerve or cardiac wave propagation (Eq. 1.13), is 
a very difficult task due to the different spatiotemporal scales as discussed 
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by Cherry et al [25]. 

The main problem arises because of the fast transitions in U versus time as 
shown in Fig . 1.2B. In order to solve accurately the dynamics of U during 
this transition, it is necessary to consider a very small time step which might 
not be needed for other regions of the A P , as shown in Fig . 1.2B for the 
time interval t e [50, 300]. In the same way, the propagating pulses of exci­
tation, which have a fast changing transition at the front, require refinement 
in the mesh in order to obtain an accurate solution. In most of the cases, 
simulations of cardiac tissue need to be run for a total time two or three 
orders of magnitude larger than the time at which the fast transitions in 
time occur. Solving accurately the fast time process implies a small time 
step, increasing the computation time of the overall process in an unneces­
sary way. This issue, together with the stiffness of Eqs. (1.10), presents a 
very difficult computational problem to solve. 

1.4 Pseudospectral Methods. 
In order to simulate the dynamics given by Eq. (1.13), we develop numer­
ical schemes based on spectral methods. In this section, we present one of 
the most important spectral methods in the literature, the Chebyshev pseu­
dospectral method. This method is based on the expansion of a solution in 
Chebyshev polynomials. 

Consider the Chebyshev-Gauss polynomials, Tk(x), which are orthogonal 
with respect the weight function w(x) = (1 — x2)~ll2 on the interval [—1,1], 
gives, 

- f w{x)Tk(x)Ti{x)dx = \*6ktl (1.14) 

where ck = 1 for all k except for cn = 2. The Lobatto quadrature points and 
weights associated with the Chebyshev-Gauss polynomials [19] are given by 
Xi = — cos (^ ) and the weights are Wi = jj for all i except WQ = WN = 577 
[18, 19, 87]. These points and weights provide the approximate quadrature, 

1 N 

/ w(x)f(x)dx~Y^wif(xJ (L15) 

where N is the number of points. Since any piecewise continuous function, 
/ G L^fO, 1] can be expanded in a Chebyshev polynomial series that is 
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convergent in the mean of the norm, we have 

N 

/ ( z ) « / A K x ) = ^ a f c T f c ( x ) (1.16) 

k=0 

where 
2 

a* = 
CfcTT 

Jlw{x)f{x)Tk{x)dx (1.17) 

W i t h Eqs. (1.15) to (1.17) we obtain the interpolation algorithm 

JV 

where the interpolating polynomials, Ij(x), are given by 

2 N 

Ij(x) = ̂ -^2VkTk(Xj)Tk(x) (1.19) 
k=0 

where = v?j = 1/2 and ^ = 1 if k ^ 0, N. The nt/i derivative of f(x) at 
the quadrature points is then given approximately by 

f P i x ^ ^ l f X x , ) ! ^ ) (1.20) 
j=0 

If we denote by f, the vector of the function evaluated at the Chebyshev-
Lobatto points, Eq. (1.20) can be rewritten as 

f(n) = D (n ) . f ( L 2 1 ) 

and thus, the second derivative matrix is then identified with 

B j ? - (1.22) 

This is the basis for the Chebyshev pseudospectral method. The application 
of the formalism discussed in this section to the solution of E q (1.13) in one 
dimension reduces the problem to the solution of a set of N + 1 coupled 
nonlinear system of ODEs, given by 

d ^ = AT>mW-J-Iln (1.23) 
OX O m 
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where, Ul and I\on are U and Iion given in Eq. (1.13), respectively, eval­
uated at the collocation point Xi. In this case, A = —4® includes the 
diffusion coefficient D from Eq . (1.13), and a constant that arises from the 
transformation of [X^^XR] to [—1,1], where [XL^XR] defines the range of the 
position inside the cell in one dimension. 

1.5 Thesis objectives. 
The objectives discussed at the beginning of this chapter, are explained in 
this section in greater detail, where also more concrete questions are ad­
dressed. We start by discussing the first objective, which consists in the 
development of numerical schemes for P D E s of the form of Eq. (1.13), based 
on spectral methods (Sections 1.5.1 and 1.5.2). In Section 1.5.3, a numerical 
study of the annihilation and reflection of a spiral wave at a boundary in 
excitable media is discussed. 

In Section 1.3, we show that the solutions of Eq . (1.13) are propagating 
pulses that change over multiple spatial scales, simulating the process of a 
propagating shock. In order to solve Eq. (1.13) numerically, we consider a 
spectral method approach to be discussed in Chapters 2 and 3. 

Spectral methods have long been known to provide very accurate and rapidly 
convergent solutions of partial differential equations with smooth solutions 
[18, 19, 87]. These methods generally provide an exponential convergence of 
the solution versus the number of collocation points. In recent years, spec­
tral methods have also been used for the solution of differential equations 
with solutions that resemble shock waves or fronts typical of hyperbolic par­
tial differential equations [41]. There is an ongoing interest to further adapt 
spectral methods to differential equations like Eq . (1.13), which have rapidly 
varying and propagating solutions. Therefore, in this thesis we test the per­
formance of spectral methods in two specific examples, named the Fisher's 
equation and the Fitzhug-Nagumo equations, which we describe now, and 
discuss at length in Chapters 2 and 3, respectively. 

1.5.1 A pseudospectral solution of the Fisher's Equation. 

Fisher's equation (FE), which was originally proposed by Fisher [35] as a 
model for the spatial and temporal propagation of a virile gene in an infi-

12 



Chapter 1. Introduction. 

nite medium, represents one of the easiest models of an equation of the R D 
type, and is given by Eq. (2.1). The solutions for this equation over an 
infinite domain with initial and boundary conditions given by Eq . (2.2) are 
propagating fronts as shown in Fig. 2.1. A closely related problem of Eq . 
(2.1) is the modified F E given in Eq. (2.5). In this case, the propagating 
fronts are very steep having a shock-like wave behaviour as shown in Fig . 2.6. 

Although F E is not related to the phenomenon of excitable media, it is an 
excellent example to test the performance of pseudospectral methods for 
problems that present propagation of fronts in two different spatial scales. 
This same feature is exhibited by the solutions of equations for an excitable 
cell (Eq. 1.13) as discussed in the previous section. This common feature 
makes F E a good starting point in the effort of developing a numerical 
scheme for problems with propagating shock-like wave solutions, like those 
arising in excitable media. 

Different numerical schemes have been considered to study F E . One of the 
first numerical solutions of Fisher's equation was presented by Gazdag and 
Canosa [38] with a pseudo-spectral approach. Implicit and explicit finite dif­
ference algorithms have been reported by different authors such as Parekh 
and Puri [84] and Twizell et al [100]. The works of Mickens [71, 72] con­
sidered time stepping aspects for finite difference algorithms. The work 
by Hagstrom and Keller [48], where the main goal was to develop asymp­
totic boundary conditions, considered a centered finite difference algorithm. 
Rizwan-Uddin [89], compared a nodal method with non standard finite dif­
ferences scheme. A Galerkin finite element method was used by Tang and 
Weber [97] whereas Carey and Shen [20] employed a least-squares finite 
element method. A collocation approach based on Whittaker's sine inter­
polation function [18, 94] was also considered by Al-Khaled [1], and Zhao 
and Wei [120]. The work by Gourley [44] considered a nonlocal form of F E . 
The study by Zou [123] was concerned with another modified form of F E 
including time delay and the work by Roessler and Hussner [90], considered 
finite elements for a two dimensional F E . 

More recent studies have considered comparisons of the numerical and exact 
solutions of Eq. (2.5), where the exact solution given by Eq . (2.6). Solutions 
of Eq. (2.5) with large p have been referred to by Zhao and Wei [120] as 
super speed wave (SSW) types. W i t h an increase in p, the propagating front 
steepens and this presents a challenging numerical problem to both resolve 
and track the front. This rescaled version of F E was considered by L i et 
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al [66] in their study of moving mesh strategies in finite difference methods 
of solution of partial differential equations. They commented that moving 
mesh methods are not recommended for such reaction diffusion problems 
for which the diffusion term is much smaller than the reactive term. Sub­
sequently, Qiu and Sloan [88] carried out a detailed comparison of different 
moving mesh strategies [49, 50] and concluded that these methods are not 
easily adapted for equations analogous to F E with steep fronts. The au­
thors have also applied these methods to Burger's equation [14, 15, 74] with 
similar shock like solutions. In the course of these studies on F E , numer­
ous workers have also reported a sensitivity of the numerical solutions to 
perturbations owing to numerical noise in the solutions or round-off errors 
resulting in instabilities. 

Therefore, one of the objectives of this thesis to be discussed in length in 
Chapter 2, is to apply spectral methods to the solution of F E . A second 
objective is to establish a relationship between the problems given by Eq . 
(2.1) and Eq. (2.5), which we demonstrate lead to equivalent numerical 
problems. In the first instance, we consider a single fixed domain suitably 
truncated to the interval [XL,XR] and apply a spectral method based on 
Chebyshev-Lobatto points. This approach gives good results but only for 
relatively small values of p. The difficulty encountered for larger values of 
p is traced to round off errors in the application of the second derivative 
spectral matrix operator to the solution. The occurrence of round-off errors 
for these matrix derivative operators have been well documented [5, 6, 7]. 
We examine in detail the origin of these round-off errors in the application 
of spectral methods to F E . A multidomain approach developed by Shizgal 
and coworkers [69, 115, 116] for the solution of Burgers equation and the 
Navier Stokes equation was then employed for the present thesis. We obtain 
accurate stable solutions of F E for relatively large values of p, with the ap­
propriate division of the domain [XL,XR] into subdomains. Also in Chapter 
2, we present a comparison of the multidomain approach with the one based 
on Whittaker's sine interpolation [18, 21, 109] employed by Zhao and Wei 
[120] and by Wei [108] that they refer to as the discrete singular convolution 
(DSC). 
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1.5.2 A pseudospectral solution for the Fitzhugh Nagumo 
Equations. 

A second example that we consider for developing fast and accurate algo­
rithms for solving R D equations with excitable dynamics is given by the 
Fitzhugh-Nagumo (FHN) equations (Eq. 3.2). The F H N equations, which 
were developed by Fitzhugh [36] and Nagumo et al [75], are a reduction of 
the set of four ordinary differential equations given by the H H equations 
(Eq. 1.10) to a two dimensional system of ODEs. The variables u and v in 
Eq. (3.2), represent the fast (U, m) and slow (n, h) changing variables in Eq. 
(1.10). However, the F H N equations have been applied to numerous other 
problems for over four decades [8, 11, 54, 56, 57, 81, 102]. For example, the 
F H N equations are employed to describe the C O oxidation on Pt(110) [8], 
the oscillation of calcium concentration in cells [57] and the study of reentry 
in heart tissue [34, 61]. 

The algorithm developed for the F H N equations, to be discussed at length 
in Chapter 3, can be applied to study the propagation of waves in excitable 
media including spiral waves [10, 54, 55, 59, 83, 111]; to analyze spiral tip 
trajectories and their transition to complex patterns [10, 54, 111]; the same 
algorithm can be used to study spiral breakup [46, 82], drift of a spiral tip 
due to the interaction between spiral waves or via wave trains [43, 113], and 
competition between spirals and periodic circular pacemakers [63]. 

In this thesis we consider two examples of the F H N equations (Eq. 3.2) with 
different kinetics, given by Eqs. (3.3) and (3.4), which we refer as kinetic 
model I and II, respectively. Kinetic model I was proposed by Barkley [11] 
whereas kinetic model II is the classic cubic F H N local dynamics [57]. In 
both models, the variable u(t) has fast transitions as shown in Fig . 3.1. 
These fast transitions are observed to occur also in space with the solutions 
of the R D equation (Eq. 3.2) with the reactive term given by kinetic models 
I and II, giving for each kinetic model, a two temporal and spatial scales 
problem. For kinetic model I, Barkley [11] developed a numerical scheme 
based on a finite difference method, which made use of the particular fea­
ture that u(t), the local behaviour of u, is very small during the segment d-e 
shown in Fig . 3.IB. In his numerical scheme, Barkley sets u(x,t) to zero if 
it is less than some particular small value and thus, avoids the computation 
of u(x, t) during this time interval. As a result the computational time is 
reduced considerably. 
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In order to solve the spatial dynamics of F H N equations in two dimensions, 
different methods have been considered. Karma [54] and Mitkov et al [73] 
used a Fourier pseudospectral method; Xie [113] and Amdjadi [2] used an 
explicit finite difference scheme; Gottwald [43] and Diks [28] used a method 
based on finite differences reported by Barkley [11]; Jones and O'Brien [53] 
solved the Gray-Scott equations with a Fourier pseudospectral method. The 
F H N and the Gray-Scott equations belong to the family of excitable systems 
[86] and exhibit the problem of multiple time and spatial scales. 

However, despite all the numerical experiments realized with the F H N equa­
tions to date, it remains important to develop accurate numerical methods 
for the solution of Eq. (3.2), which occurs in two different spatial and tem­
poral scales. In order to obtain an accurate numerical solution for the F H N 
equations (Eq. 3.2), it is necessary to increase the number of sample points 
in the spatial grid in regions where fast transitions take place. Therefore, 
the problem of obtaining a reliable solution when solving systems such as 
the F H N equations involving different time and space scales represents a 
challenging endeavor. 

Therefore, the study of the F H N equations has two main objectives. The 
first is to continue the ongoing effort to develop pseudospectral methods for 
an accurate and efficient solution of reaction diffusion equations. This study 
follows on the work dealing with Fisher's equation in Chapter 2, for which 
the solutions develop propagating fronts with short spatial variation. The 
second objective is to compare the solutions obtained with pseudospectral 
methods with those obtained by Barkley [11] for Eq . (3.2) with (3.3), and 
the finite difference method, in accuracy and computational time. There 
have been many studies of reaction diffusion systems that are based on ki­
netic model I proposed by Barkley [3, 8, 43, 64, 70, 73, 121]. 

Pseudospectral methods are generally considered useful for solving smooth 
problems and to provide exponential convergence of the solution with re­
spect to the number of collocation points used [19, 87]. However, it has 
been demonstrated recently that pseudospectral methods can provide a sig­
nificant improvement over finite difference methods for non smooth problems 
that develop shocks and steep fronts [42, 80], features shared by the solu­
tions of the F H N equations. Pseudospectral methods provide solutions to 
partial differential equations defined on a grid of collocation points which are 
the quadrature points for a given polynomial basis set [18, 19, 37, 40, 87]. 
The main advantage of pseudospectral (and spectral) methods is the "ex-
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ponential" convergence of the solutions versus the number of collocation 
points. There have been only a few studies of the applicability of pseu­
dospectral methods to the numerical solution of reaction diffusion equations 
[9, 30, 53, 55]. Another aspect of reactive diffusion equations of which the 
F H N equations are a subset, is that the time scale for the u variable is short 
compared to the time scale for the v variable. The discretized equations that 
result from a pseudospectral method are stiff and generally a very small time 
step is required for their integration. 

In Chapter 3, we provide the details of the various numerical methods for the 
solution of the F H N equations that are compared. The first method is the 
Chebyshev-multidomain, based on Chebyshev polynomials, which is used 
also for the the study of fronts in one dimension for Fisher's equation. Also, 
the Fourier pseudospectral (Fourier) method is considered. Then, we com­
pare the solutions for kinetic model I obtained with pseudospectral methods 
with those with finite difference techniques and the method presented by 
Barkley [11]. We validate their efficiency in the solution of the F H N equa­
tions and the description of spiral waves. We also generalize the Fourier 
method to the non periodic case which has not been considered previously. 
Analogous results for kinetic model II are also presented. The use of an 
operator splitting method for the time integration to decrease the compu­
tational time for the Chebyshev-multidomain is discussed. 

1.5.3 Annihilation and reflection of spiral waves at a 
boundary for the Beeler-Reuter model. 

The numerical methods developed in Chapters 2 and 3 for the F E and F H N 
equations are considered to solve the Beeler-Reuter (BR) model, to study 
the phenomenon of reflection and annihilation of spiral waves at a boundary. 
The B R model, developed by G. W . Beeler and H . Reuter in 1977, was the 
first model based on the Hodgkin-Huxley formalism (Section 1.2) to study 
excitability in ventricular cells [16, 57]. The equations of the B R model are 
provided in the Appendix of Chapter 4. 

At the beginning of this chapter, we discuss the importance of spiral waves in 
cardiology. Spiral waves are thought to be responsible for the development 
of certain arrhythmias [34, 60], which may lead to sudden cardiac death 
[34]. Therefore, an understanding of their control and annihilation is a very 
important task [34, 52]. 
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A very important feature of spiral waves is the behaviour of their tip, as 
discussed by Fenton et al [34] and Comtois et al [22]. For a particular set 
of parameters characterizing the medium, the spiral tip executes different 
trajectories which can be circular or more complicated patterns [12, 54, 111]. 
This phenomena is referred to as spiral meandering and has been studied 
with different kinetic models [13, 31, 34, 111]. A second feature of the spiral 
tip, called spiral wave drift, is the response of the spiral wave to an external 
perturbation. Some examples of external perturbations include interaction 
between two spirals [114], interaction of spirals with a boundary [39, 117] 
and the drift induced by light as in the Belousov-Zhabotinsky reaction [47]. 

In Chapter 4, we study numerically a spiral wave in the meandering regime, 
and the drift effects of the boundary of the domain on the tip trajectory 
of the spiral. In the simulations, we observe two different phenomena due 
to the interaction of the spiral wave with a boundary, which are reflection 
and annihilation of the spiral wave. Experiments in isolated cardiac tissue 
[27, 51, 52, 85] have been carried out to study the interaction of spiral waves 
with obstacles and the boundaries of the tissue. Davidenko et. al. [27], 
Pertsov et. al. [85], and Ikeda et. al. [51] showed annihilation of spiral 
waves at the boundary. Also, Ikeda et. al. [52] observed attachment o f 
meandering spirals to an obstacle of some minimum size. Therefore, the 
phenomena of annihilation and reflection observed in the computer simu­
lations in Chapter 4 suggest that the interaction of spiral-boundary and 
spiral-obstacle do not necessarily end in annihilation at the boundary or 
attachment to the obstacle as observed experimentally. This is a very im­
portant issue in cardiology, and a proper understanding of the conditions 
that lead to the annihilation of the spiral at some inexcitable obstacle can 
help in the development of techniques on how to eliminate arrhythmias gen­
erated by the spiral behaviour [31, 51]. 

Spiral drift due to boundary effects has been considered previously. It has 
been found experimentally [39] and studied numerically with no-flux bound­
ary conditions [117]. Gomez-Gesteira et al. [39] considered the Belousov-
Zhabotinsky reaction and found that the boundary affected the trajectory 
of the spiral tip. The trajectory moved along the boundary, whereas in 
other cases the spiral was annihilated at the boundary [39]. Yermakova and 
Pertsov [117] analyzed the effects of the boundary on the trajectory of the 
spiral tip that followed a circular path. B y considering no flux boundary 
conditions, they showed that the period of the spiral increases when the core 
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of the spiral is close to the boundary. Also, they showed that the center of 
the circular trajectory, drifted at constant speed along the boundary giving 
as a result a trajectory resembling the shape of a trochoid. However, the 
case when the trajectory of the spiral tip meanders and traces a more com­
plex pattern other than a circle, has not been considered. 

The phenomena of meandering, also referred to as compound rotation, was 
first noted by Winfree [110]. Figure 4.1 illustrates the two types of trajecto­
ries of the tip of a spiral wave constructed by considering the motion of the 
tip of the arrow attached to the small circle of radius h that rotates either 
on the inside or outside of the large circle of radius R. When meandering 
occurs, the trajectory of the tip executes a flower like pattern [12, 111], 
where the petals lie on a circle of radius R. When the petals lie outside the 
circle, the trajectory resembles a curve called a hypotrochoid (Fig. 4.1A), 
whereas in the case the petals lie inside the circle, the trajectory resembles 
an epitrochoid (Fig. 4.IB). B y considering different parameter values in a 
particular model with excitable kinetics [12, 31], it is possible to take the 
limit R —> oo. In this case, which we refer to as the limiting Roc case with 
R > > 1, the flower has almost an infinite radius and the petals lie essentially 
on a straight line. 

When the spiral meanders and is close to the boundary (with no flux bound­
ary conditions), it is observed that the trajectory is annihilated or reflected 
by the boundary. In the case where the trajectory is reflected, the angle of 
reflection is not necessarily equal to the angle of incidence. Also, the reflec­
tion angle is very sensitive to the position along the spiral tip trajectory, at 
which the trajectory hits the boundary. Therefore, the main question we 
address in Chapter 4 is to find under which conditions the spiral is anni­
hilated at the boundary. In order to analyze the effects of the boundary 
on a meandering spiral, we focus the attention on the degenerate limiting 
i?oo case. The infinite radius regime is just a transition from the outward 
petal to the inward petal flower tip trajectory and therefore is not a generic 
behaviour [12]. The analysis of the R^, case is considered due to its sim­
plicity compared to the case of finite R. Near the boundary, the behaviour 
of the tip of a spiral can be approximated by the Roo case, and therefore, 
the results obtained for this limit may also provide an understanding for the 
case when R is finite. 

Therefore, in Chapter 4 we provide the equations of the model used for the 
simulations followed by a description of the numerical methods employed 
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in their solution. We then present the results of numerical simulations for 
different values of R, including the limiting case. Then, we concentrate 
on the i?oo case where we analyze some of the properties of annihilation. 
A n argument based on the reactivation variable j for the sodium channels, 
is discussed to explain the phenomenon of annihilation and reflection of a 
spiral at a boundary. It is important to mention that for the present thesis, 
we only provide a qualitative description of the phenomenon of annihilation 
and reflection at a boundary. The interaction of the trajectories in the R^ 
case with a boundary has not been considered before. 

In Chapter 5, we summarize the results obtained in the thesis and provide 
some potential applications of the research findings as well as the future 
directions of the research area. 
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Figure 1.1: Phase portrait and solutions of (A) Lotka-Volterra equations 
(Eq. 1.4) and (B) Perturbed Lotka-Volterra (Eq. 1.5). The arrows are 
tangent to the solution curves. Note that in (B) the periodic behaviour is 
broken and the solution converge to a stable steady state.(C) Stable limit 
cycle (solid blue). Close solutions to the limit cycle (long dashed red), are 
attracted to the stable limit cycle. 

21 



Chapter 1. Introduction. 

400 

Figure 1.2: Two examples of action potential. Membrane potential U versus 
time (A) In a nerve axon. A n A P (solid curve) is elicited when U is above. 
threshold Uth (blue straight line). No A P is elicited if U is below Uth (dashed 
curve). (B) In a myocardial cell. Note the fast and slow changes in U in 
time. 
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Figure 1.3: Electrical circuit considered to model the membrane of an ex­
citable cell. The capacitor represents the cell membrane and the resistors 
the ion channels. gNa,9K a n d 9L represent the conductance, where g = ^, 
i.e. the inverse of the resistance. 
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Direction of propagation 

Figure 1.4: Propagation of an A P along a nerve axon. The propagation is 
considered in one dimension. Uth is the threshold of excitation. 
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Figure 1.5: Corresponding circuit of the membrane of a nerve cell. The 
R C circuits are given by the local circuit in Fig . (1.3). Current in the x 
direction (axial current) propagates in a medium with intra and extracellular 
resistance per unit of length r-j and re. It is the transmembrane current. 
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Chapter 2 

A Pseudospectral Method of 
Solution of Fisher's 
Equation. 

2.1 Introduction 

Spectral methods have long been known to provide very accurate and rapidly 
convergent solutions of partial differential equations with smooth solutions 
[132, 135, 164]. These methods generally provide an exponential convergence 
of the solution versus the number of collocation points. In recent years, 
spectral methods have also been used for the solution of differential equations 
with solutions that resemble shock waves or fronts typical of hyperbolic 
partial differential equations [146]. There is an ongoing interest to further 
adapt spectral methods to differential equations with rapidly varying and 
propagating solutions. 
The purpose of the present chapter2 is to apply a spectral method to the 
solution of Fisher's equation (FE), which was originally proposed by Fisher 
[143] as a model for the spatial and temporal propagation of a virile gene 
in an infinite medium. It is a one-dimensional reaction diffusion model for 
the evolution of the infected population, U(x',t'), with a quadratic reactive 
term corresponding to logistic growth. The equation is defined by 

where t' is the time and x' € ( — 0 0 , 00) is the position. The diffusion and 
reactive processes are parameterized by a diffusion coefficient, D, and a 
reactive rate coefficient, k, respectively. We consider solutions to Eq.(2.1) 
subject to the following initial and boundary conditions, 

lira U{x\t') = 0 (2.2) 
x'—*oo 

2 A version of this chapter has been published. D. Olmos, B. Shizgal, A Pseudospectral 
Method of Solution of Fisher's Equation, J. Comp. Appl. Math. 193 (2006) 219-242. 
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l im U(x',t') = 1 
x'—*—OO 

U(x',0) = U0(x') 

It has been shown that with the appropriate boundary conditions F E wil l 
support travelling waves of the form U(x' — c't') moving in the positive 
a;-direction, provided that the speed c! is greater than the critical value 
c'min = 2\/kD. Equation (2.1) is the simplest reaction diffusion equation 
employed to model many problems in mathematical biology [160]. W i t h the 
change of variables, 

/ k \ 1 / 2 

t = kt' x = x ' ( ^ r ) (2.3) 

Eq. (2.1) becomes 

and travelling wave solutions exist for dimensionless speeds c > 2, [152]. 

The mathematical properties of F E have been studied extensively and there 
have been numerous discussions in the literature. Excellent summaries have 
been provided in [133, 153, 160]. One of the first numerical solutions was 
presented by Gazdag and Canosa [145] with a pseudo-spectral approach. 
Implicit and explicit finite differences algorithms have been reported by dif­
ferent authors such as Parekh and Puri [163] and Twizell et al [173]. The 
works of Mickens [157, 158] considered time stepping aspects for finite dif­
ference algorithms. The work by Hagstrom and Keller [149], where the main 
goal was to develop asymptotic boundary conditions, considered a centered 
finite difference algorithm. Rizwan-Uddin [167], compared a nodal method 
with a non standard finite difference scheme. A Galerkin finite element 
method was used by Tang and Weber [172] whereas Carey and Shen [136] 
employed a least-squares finite element method. A collocation approach 
based on Whittaker's sine interpolation function [132, 171] was also consid­
ered by Al-Khaled [125], and Zhao and Wei [182]. The work by Gourley [147] 
considered a nonlocal form of F E . The study by Zou [183] was concerned 
with another modified form of F E including time delay and the work by 
Roessler and Hiissner [168], considered finite elements for a two dimensional 
F E . 

Solutions of F E exhibiting propagating fronts thus possess features similar 
to those of shock waves that arise with hyperbolic equations. There are also 
special interesting features of the solution in terms of the relation between 
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the speed of the wavefront and the behavior of the solution at infinity [148, 
153]. Larson [153] and Hagan [148], proved that for any initial condition of 
Eq. (2.4) such that 

U0(x) Ae~Px 

then, U(x, t) evolves as a wave front with speed given by 

0 < / 3 < 1 
2 P>1 

There is also an interest concerning the instability of the solution to small 
perturbations in the solution particularly when U(x,t) w 0 as discussed 
by different authors [137, 145, 148, 165]. Canosa [137] proved stability 
of the solution to perturbations of compact support, whereas instability 
occurred when the perturbation vanished at infinity. This property plays a 
fundamental role when Eq. (2.4) is solved numerically [145]. 
A closely related problem is to consider a modified form of F E introduced 
by L i et al [154], for which the nonlinear reactive term is made arbitrarily 
larger than the diffusion term for the purpose of testing algorithms. This 
modified F E is given by, 

with initial and boundary conditions similar to Eq . (2.2), and the reaction 
rate coefficient is generally chosen so that p >> 1. A particular solution of 
Eq. (2.5) considered by L i et al [154], was found by Ablowitz and Zepetella 
[124]. It has the form of a travelling wave front, and is given by 

U(x,t) = - 1

 2 (2.6) 
( l + e x p ^ - ^ t ) ) 

which travels with constant speed c = 5 ^ / | . The initial condition of Eq. 
(2.5) is clearly given by U0(x) = U(x,0). Solutions of Eq. (2.5) with 
large p have been referred to by Zhao and Wei [182] as super speed wave 
(SSW) types. W i t h an increase in p, the propagating front steepens and 
this presents a challenging numerical problem to both resolve and track the 
front. This rescaled version of F E was considered by L i et al [154] in their 
study of moving mesh strategies in finite difference methods of solution of 
partial differential equations. They commented that moving mesh meth­
ods are not recommended for such reaction diffusion problems for which 
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the diffusion term is much smaller than the reactive term. Subsequently, 
Qiu and Sloan [165] carried out a detailed comparison of different moving 
mesh strategies [150, 151] and concluded that these methods are not easily 
adapted for equations analogous to F E with steep fronts. The authors have 
also applied these methods to Burger's equation [130, 131, 159] with similar 
shock like solutions. In the course of these studies on F E , numerous workers 
have also reported a sensitivity of the numerical solutions to perturbations 
owing to numerical noise in the solutions or round-off errors resulting in 
instabilities. 
One of the objectives of the present chapter is to apply spectral methods to 
the solution of F E . A second objective is to establish a relationship between 
the problems given by Eq. (2.4) and Eq. (2.5), which we demonstrate lead 
to equivalent numerical problems. In the first instance, we consider a single 
fixed domain suitably truncated to the interval [xi,Xft] and apply a spec­
tral method based on Chebyshev-Lobatto points. This approach gives good 
results but only for relatively small values of p. The difficulty encountered 
for larger values of p is traced to round off errors.in the application of the 
second derivative spectral matrix operator to the solution. The occurrence 
of round-off errors for these matrix derivative operators have been well doc­
umented [126, 127, 128]. We examine in detail the origin of these round-off 
errors in the application of spectral methods to F E . A multidomain ap­
proach developed by Shizgal and coworkers [155, 180, 181] for the solution 
of Burgers equation and the Navier Stokes equation was then employed for 
the present work. We obtain accurate stable solutions of F E for relatively 
large values of p, with the appropriate division of the domain [XL,XR] into 
subdomains. In Section 2.2, we outline the spectral method applied to F E 
in one domain and analyze the problem of round-off errors. The multido­
main approach is presented in Section 2.3. In Section 2.4, we present a 
comparison of the present approach with the one based on Whittaker's sine 
interpolation [132, 140, 179] employed by Zhao and Wei [182] and by Wei 
[174] that they refer to as the discrete singular convolution (DSC). 

2.2 Chebyshev-Lobatto Spectral Approach to 
Fisher's Equation 

2.2.1 The modified FE; scaling the p dependence. 

Several groups (Li et al [154], Qiu and Sloan [165] and Zhao and Wei [182]), 
have employed the modified form of F E (Eq. 2.5) for the SSW situation. 
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The exact solution of the modified F E exhibits a shock-like front for large p 
and speed c = 5^/p/6. For the infinite spatial domain, the rapidly varying 
shock front is considered to be stiff with the stiffness depending on p . In the 
next section, we propose a numerical solution of Eq. (2.5) which involves the 
expansion of the solution in Chebyshev polynomials orthogonal on [—1,1]. 
This requires that the boundary conditions be applied on a truncated domain 
[XI,XR\. AS a consequence of the use of a finite domain in the numerical 
solution, there is an important dependence of the solution on p and the 
width of the interval considered. On this truncated interval, we consider the 
differential equation for V(x,t), 

VT = VXX + PV(1 - V) (2.7) 

with the initial condition given by 

V(x,0) = V0(x) x £ [ x L , x R ] (2.8) 

and boundary conditions at the ends of the truncated interval, that is 

V{xL,t) = 1 . . 
V{xR,t) = 0, i € [ 0 , T ] ^ ' y j 

where VQ{X) is given by U(x,0) in Eq . (2.6) but over [XL,XR]. From Eq . 
(2.6), the dependence on the parameter p can be removed with a scaling of 
the space and time variables, i.e. 

z = ^/px T = p t (2.10) 

and Eq. (2.7) can be written with the dependence of p occurring only at 
the end points of the computational domain, that is 

VT = VZZ + V(l-V) (2.11) 

with 
V(z,0) = V0(z) z £ \ y j p ~ X L , yfpxR] 

V(^pxL,r) = 1 (2.12) 
V{JpxR,T) = 0, r € [ 0 , p T ] 

Due to the boundary condition V ( ^ / p x R , T ) = 0, and in order to preserve 
a good approximation of the solution. T is taken as a time before the 
wavefront hits the right boundary at x R . 
B y virtue of the transformations Eq . (2.10), the solution of Eq . (2.7) for p = 
p i on [ x i , x R ] is equivalent to Eq. (2.11) on [y/pixi, ^ / p i X R \ . Similarly, the 
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solution for p = p2 on [x'L, x'R] is equivalent to Eq. (2.11) on [^/p2x'L, s/p2x'R]. 
The solutions for different p are equivalent to each other provided that 

are satisfied. If we consider the problem given by Eq . (2.7) with p = p2 on 
[x'L, x'R], and a numerically equivalent problem given by pi on [xi, XR] (i.e. 
satisfying (2.13)), then, if pi is modified to p,, the problem with p = p2 on 
[rEjr^y and the modified problem with p = ~pl on [XL, XR], are no longer 
equivalent unless XL and XR are modified in order to satisfy condition (2.13). 
In other words, relation (2.13) establishes a property between p and the 
length of the interval L = XR — XL, where modifying p or L and fixing the 
other one, represents the same problem as long as relation (2.13) is satisfied. 
It follows that increasing the value of p leads to a steeper front only if we 
consider a fixed numerical domain. This aspect of F E appears not to have 
been mentioned previously in the literature. 
The case of SSW studied in [154, 165, 182] has been considered previously by 
different authors with p = 1 and different interval lengths. As an example, 
Qiu and Sloan [165] and Zhao and Wei [182] considered the computational 
domain with end points given by XL = —0.2 and XR = 0.8 with p = 10 4 

whereas Gazdag and Canosa [145] considered p — 1, XL = 0, XR = 140. 
According to (2.10), the problem considered by Gazdag and Canosa [145], is 
equivalent to p = (140)2 = 19,600, XL = 0 and XR = 1. Another example is 
the problem studied by Parekh and Puri [163] where they chose p = 1, XL = 
0 and XR = 300 which is equivalent to p = (300)2 = 90,000 with XL = 0 and 
XR = 1. However, these previous works did not consider the case of solving 
Eq . (2.7), with the initial and boundary conditions given by Eqs. (2.8) and 
(2.9). Instead, properties such as the numerical stability of algorithms, or 
features of reaction diffusion processes, were considered. As an example of 
previous numerical studies, we mention the works in [125, 136, 167, 172] that 
analyzed the phenomena of reaction and diffusion on F E for different initial 
conditions. Gazdag and Canosa [145] based on Canosa's previous work 
[137], considered initial conditions of Eq . (2.4) with an asymptotic behavior 
at infinity such that the speed is faster than the minimum, c = 2. However, 
due to their proposed numerical scheme, they obtained oscillations in their 
numerical solution near the right boundary and at the onset of the front, 
giving an unstable solution. The instability problem was solved considering 
V(x,t) = 0 whenever |V(x , t)| < e, where e is some small quantity. However, 
this assumption leads to the loss of the initial theoretical speed, and to the 
convergence to the minimum speed front c = 2. 

(2.13) 
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The variable p in the numerical problem (2.11) with (2.12), does not play the 
role of a reaction rate coefficient but a scaling over the numerical domain as 
considered in [125, 136, 145, 163, 167, 172]. However, as the work presented 
in this chapter follows from the work by L i et al [154], Qiu and Sloan [165] 
and Zhao and Wei [182], we will consider the numerical problem given by 
(2.7) with (2.8). ' 

2.2.2 Pseudospectral solution of the modified FE. 

Expanding U(x,t) or V(x,t) in the Chebyshev Gauss polynomials, Tk(x), 
which are orthogonal with respect the weight function w(x) = (1 — i 2 ) - 1 / 2 

on the interval [—1,1], gives, 

cfc 7_i 
w^TkixW^dx = ±w5kil (2.14) 

where ck = 1 for all k except for CQ = 2. The Lobatto quadrature points 
and weights associated with the Chebyshev polynomials are given by Xi = 
— cos (^) and the weights are Wi = fr for all i except WQ = WN = ̂  [132, 
135, 164]. These points and weights provide the approximate quadrature, 

1 N 
/ w(x)f(x)dx~Ylw*f(xi) (2-15) 

i=0 
where N+l is the number of points. Since any piecewise continuous function, 
/ € L 2 [0 ,1] can be expanded in a Chebyshev polynomial series that is 
convergent in the norm, we have 

JV 

f(x)^fN(x) = J2akTk(x) (2.16) 

fc=0 

where 

ak = — [ w(x)f(x)Tk(x)dx (2.17) 
CfcTT 7_i 

W i t h Eqs. (2.15) to (2.17) we obtain the interpolation algorithm 

fN(x)^^Ij^)f(^) (2-18) 
j=0 

where the interpolating polynomials, Ij(x), are given by 

2 N 

)̂ = E ^Tk{xj)Tk(x) (2.19) 
fc=0 
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where VQ = — 1/2 and vk = 1 ii k ^ 0, N. The nth derivative of f(x) at 
the quadrature points is then given approximately by 

f%\xk)^lf(xk)f(x3) (2.20) 
3=0 

If we denote by f, the vector of the function evaluated at the Chebyshev-
Lobatto points, Eq . (2.20) can be rewritten as 

f(") = D ( n ) • f (2.21) 

and thus, the second derivative matrix is then identified with 

This is the basis for the Chebyshev pseudospectral method. 

It is now straightforward to apply the pseudospectral method to the modified 
F E , by approximating the second derivative operator as in Eq . (2.22). From 
Eq. (2.7) and the linear transformation from [XL,XR] to [-1,1], the following 
system of ordinary differential equations is obtained. 

^=Aj2D^Vj+PVl(l-Vl) • (2.23) 

where A = 4/ (XR — XL)2, Vi = V(xi,t) and the time dependence is consid­
ered implicitly in Vj. The spectral derivative matrices were calculated with 
the M A T L A B suite of programs developed by Weideman and Reddy [177]. 
The set of ordinary differential equations was integrated with a Runge-Kutta 
integrator in M A T L A B subject to the boundary conditions, V(XL) = 1 and 
V(xR) = 0 for all t. 

2.2.3 Numerical results. 
The formalism in Sections 2.2.1 and 2.2.2 was applied to a study of the 
behavior of the numerical solution of F E versus p. The behavior for a fixed 
interval for different values of p is considered. In the present study, Uo(x) 
will refer to the initial condition depending on p, that is Eq. (2.6) with 
t — 0, unless it is otherwise indicated. We choose XL = —0.2, XR — 0.8 as 
done by Qiu and Sloan [165] and by Zhao and Wei [182] and vary p. In Fig. 
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2.1, we compare the analytic solution U(x,t) (Solid curves) evaluated at 
the Chebyshev collocation points with the numerical solution Vi (symbols), 
at different t. The values of p are (A) 2,000, (B) 5,000 and (C,D) 10,000, 
with the observation that p = 10,000 was considered in the previous works 
[154, 165, 182]. The steepening of the front on increasing p for a fixed 
interval is clearly seen by comparing Figs. 2.1C and 2.ID with Figs. 2.1A 
and 2.IB. In Fig. 2.1A, the good agreement between the numerical results 
and the analytic solution with p — 2,000 and 40 Chebyshev points is shown. 
As the initial profile (Eq. (2.6), t = 0) behaves asymptotically as given by 
Eq. (2.29), the wave speed is constant at c = 5-y//o/6. The wave speeds 
calculated from the numerical solutions agree with the theoretical speed 
to 4-6 significant figures depending on the value of p. In order to get a 
stable and accurate solution for p = 5,000 shown in Fig. 2.IB, the number 
of points had to be increased from N = 40 to N = 64. Fig . 2.1C for 
p = 10 4 and iV = 64, shows an instability (negative part) that appears at 
x ~ 0.7 for t = 0.002. When N is increased to 150, a stable solution is 
obtained as shown in Fig . 2.ID. To further validate the numerical method 
used, we have considered the solution of the diffusion equation (p = 0) but 
with an exponentially decaying initial profile (UQ{X),P = 10 4). We find that 
instabilities at small times are quickly damped by diffusion. However, for 
F E with p — 1.5 x 10 4, a stable solution could not be obtained even with N 
as large as 250. 
It is of considerable interest to understand the origin of this instability, which 
we attribute to round-off error associated with the application of the second 
derivative operator on the solution at some time step. This is a problem 
common to many applications of spectral methods as recently discussed 
[126, 127, 128]. We therefore study the error in the numerical computation 
of the second derivative of the initial condition Un(x). In Fig . 2.2, we show 
the relative error defined by 

versus xk, for p equal to 10 4 and 1.5 x 10 4 and N = 64, 128 and 200. These 
results clearly demonstrate that the error is larger at the right boundary 
than at the left boundary. Furthermore, for x > 0.1 where U(x) « 0, the 
error increases exponentially with respect to x, reaching its largest value at 
the right boundary. 
In Fig . 2.3, the relative errors at the right and left boundaries versus N are 
compared. As in Fig. 2.2, the error is bigger at XR than at xi. It decreases 

RE{xk) = l o g 1 0 

d2U0(x) 
dx2 

(2.24) 
d2U0(x) I 

dx2 I x=xk 
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with N until about N = 200 for p = 10 4 (iV = 230 for p = 1.5 x 104) 
and then increases slowly with a further increase in iV. Thus, it is clear 
that an increase in ./V decreases the error and as a consequence a stable 
solution can be obtained, Fig . (2.ID), iV = 150 whereas an instability 
occurs with a smaller N = 64 for Fig. (2.1C). For p = 10 4, the improvement 
of the accuracy can be done up to iV = 200, where for larger values of 
N round-off error begins to become significant in the calculations. When 
p = 1.5 x 10 4, N = 250 is not large enough to obtain a stable solution. 
From Fig. 2.3B, it is noticed that values of N greater than 250 do not 
provide an improvement of the accuracy due to the effects of round off error 
that have become significant. It is important to mention that round off 
errors are present even for relatively small values of p. However, since the 
amplitude of the error is small throughout the time integration considered, 
the accumulated error does not play a crucial role, and a stable solution is 
obtained. 
The main contribution of the round off error, is due to (i) the alternation 
in sign and the magnitude of the elements of the second derivative operator 
D(2), and (ii) the small values of d2Uo(xR)/dx2 relative to Uo(xi). Uo(x) 
varies approximately exponentially with x for x « xR and UQ(X) w 0 in the 
region near the right boundary. Consequently, d2Uo(x) / dx2 is very small. 
The behavior of D2UQ(X) / dx2 versus p at the boundary points is shown in 
Fig . 2.4A. Whereas the value of the second derivative at x^ remains almost 
constant, the value of d2Uo(xR)/dx2 is small and decreases rapidly with an 
increase in p. The numerical approximation of the second derivative at the 
right boundary, d2Uo(xR)/dx2 involves the summation of the form, 

N 
SN = Y1DNIUV(XI<) (2-25) 

k=0 
where the subindex A'" refers to the Nth row and DK

N't are the elements in the 
Nth row of the second derivative matrix operator (2.22). It is well-known 
that (i) the size of the largest element of increases as A^ 4 , whereas 
the smallest increases as N2 and (ii) the elements alternate in sign 
[164]. These features of the elements of D(2) are confirmed in F ig . (2.4B) 
for N = 250. 
As a result, the sum (2.25) consists of adding alternately positive and neg­
ative terms, due to the alternation of the signs of the elements in D^2 .̂ For 
p = 15,000 and N = 250, d2U0(xR)/dx2 is of the order of 10~ 3 1 (Fig. 2.4A), 
whereas the terms in (2.25) take values from 10~ 2 7 to 10 4 i.e., the terms in 
(2.25) become relatively large compared to d2Uo(xR)/dx2. 
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The key point is observed in the last two elements of the sum, Eq . (2.25). 
It is the difference between two numbers of the order of 10 4, that should 
approximate a quantity of the order of 1CT 3 1 . This subtraction leads to a 
poor approximation of the second derivative. In the same way, the approx­
imated second derivative over the rest of the points near XR, presents the 
same problem. It has to be mentioned that this problem is less severe for 
d2U0(xL)/dx2, as \ogw(d2U0{xL)/dx2) « 0. 
From the previous analysis, the smallness of d2Uo(xR)/dx2, is the main 
source of round off error at XR. As a larger domain is considered, an increase 
in XR and/or decrease in xi, d2Uo(xR)/dx2 decreases, giving a larger error 
at XR. Then, it is clear that the effects of round off error are greater for a 
larger domain XR — XL- In order to reduce the effects of round off error a 
smaller domain has to be considered. As we will see in the next section, we 
partition the main domain into smaller domains, contributing to a reduction 
in the round off error. 
From relation (2.13), it follows that increasing the length of the interval 
and fixing p, is equivalent to an increase of p and fixing the length of the 
interval. Then,,the problem of round off error wil l be present with the same 
magnitude whether p or the length of the interval are varied, according to 
relation (2.13). 
The main consequence due to the round off error problem is the development 
of unwanted oscillations at some particular time step in the integration of 
Eq . (2.23). This type of oscillation is similar to the one reported by Zhao 
and Wei [182], for the Fourier pseudo-spectral method. The difference be­
tween the oscillations reported by Zhao and Wei [182] and the instabilities 
in this chapter with the Chebyshev-Lobatto collocation, is the location of 
the oscillations. Whereas in [182] the higher amplitude oscillations are at 
the foot of the wave front, in this chapter they are located in a neighborhood 
of XR as discussed previously. 

2.3 Chebyshev-Lobatto Multidomain Spectral 
Method 

In order to overcome the numerical round-off errors discussed in the previous 
section, we employ a multidomain approach used previously [141, 142, 155, 
162, 180, 181]. This involves splitting the domain [XL,XR], into K sub-
domains denoted by 
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where each subinterval has length L and is discretized with M+l Chebyshev 
points as shown in Fig. 2.5. The first two quadrature points of the interval 
Ifi+i coincide with the last two points of the interval 1^. The overlap of these 
points of neighboring domains is possible provided that each subinterval is 
of the same length 

L : 
K + (l-jV,)(l-cos(|.)) 

2 

and the same number of Chebyshev collocation points is used in each inter­
val. Thus, the new grid of points over the whole interval can be represented 
by, 

{xk} = {x0> •••) x\d-l = x0i XM = x\i XM-2>X>M-1 = x0 + > •••XM) (2.26) 

The overlap of the subdomains as described is very important for the correct 
construction of the derivative operators. In each sub-domain 1^, we proceed 
as before and have an equation similar to Eq. (2.1), given by 

lir = ~ d x r + p U " { 1 ~ U n ^ [ a & a & L te[0,tf] (2.27) 

where is the solution over the fith interval, and XQ and x^M are the left 
and right boundaries of the u.th interval, respectively. The discretized form 
of Eq . (2.27) for each subinterval 7M is given by 

m 4 jrD(fu? + pU?(l-Un (2.28) 
dt 

(XM xo) j=0 

where t/f = U>x(x^,t) and are the Chebyshev-Lobatto points over the 
interval 1^. The column vector U^(i), consists of joining the column vectors 
L/f according to Eq . (2.26). 
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The first derivative matrix operator is then defined by, 

n 1 n 1 n 1 

-^1,0 • • • ul,M-l ^l,M 

' - ^ M - 1 , 0 • • • - ^ M - l . M - l ^ M - l . M 

D = 

n 2 D 2 D 2 n 2 

1,M 

- ^ M - 1 , 0 - ^ M - 1 , 1 • • • ^ M - l . M - l ^M-1,M 

DNi DNi 

ntii DNt 

\ DNi DNi 

and the remaining components are zero. The size of the derivative operator 
is (JV + 1) x (N + 1), with N = M+(M - 1)(K - 1). 
The multidomain approach is expected to provide more stable and accurate 
results. The round-off errors that occur in the application of D^ 2) to the 
solution vector U ( i ) are smaller as the main interval has been subdivided. 
We demonstrate the success of the multidomain approach in F ig . 2.6 where 
the successive profiles are shown for p = 10 6. In this calculation, 140 sub-
domains with 20 collocation points in each subdomain were used. The time 
step was A t = 8 x 1 0 - 8 with an integration up to T = 3.3 x 1 0 - 4 such that 
Loo = 3.12 x 1 0 - 1 2 . The agreement between the numerical and analytic 
solutions is excellent. The value of p used here is significantly larger than 
the value used by numerous other researchers whose works have been cited. 
To further benchmark this method, we choose p = 10 4 for which we obtained 
accurate solutions with the single domain and N = 150. W i t h the multido­
main method we study the effect of varying the number of domains and the 
number of points in each domain. The results are summarized in Table 2.1. 
It is clear from these results that there is a considerable improvement with 
the multidomain method. The best results for the case in Table 2.1 is with 
15 subdomains and 10 points per domain. The error is an order of mag­
nitude smaller than the one domain approach with the same total number 
of points. In Table 2.2, a similar analysis is carried out for p = 10 5 with 
N = 400. The single domain calculation leads to an instability in this case. 
The multidomain approach provides an excellent result with 20 domains and 
20 points in each domain. 
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As discussed in the previous section, UQ(X) given by Eq . (2.6) with t = 0, 
behaves as a negative exponential where UQ(X) « 0. More specifically, 

U0(x) ~ e~2V$x for U0(x) w 0 (2.29) 

Moreover, for values of x where UQ(X) « 0, the second derivative d2Uo(x) / dx2 

behaves like UQ(X), up to a factor depending on p, i.e., 

^ g ^ f t M x ) for C / 0 ( x ) « 0 (2.30) 

On the other hand, we know that the largest value of the sum in Eq . (2.25) 
that is used also in the multidomain approach for each subdomain, is of the 
order of 

R = L 0 G L ° {(XM-XO)2)
 + l o g l o ( 7 V 2 ) " 1 l°Zio(U0(xo))\ (2.31) 

where from Eq. (2.30), the smallest value to be approximated is d2Uo(xM)/dx2 

^C/O(IM) , which is of the order of 

E = log 1 0 (jfj - | log10(U0(xM))\ (2.32) 

In order to get a good approximation for E, the difference R — E given by 

should be reduced. For a fixed value of p and N, the first term of Eq . (2.33) 
is a decreasing function of the length of the interval whereas the second is an 
increasing function. Then, for a fixed p and iV there is an optimal interval 
length to consider in the multidomain approach. 
For this last analysis, the region considered is where UQ(X) « 0. The main 
reason is due to the importance of having a good approximation for UQ[X) W 
0, as the solution U(x) = 0 for F E , is unstable. 

2.4 Discrete Singular Convolution; Whittaker's 
Sine Interpolation. 

In this section, we compare the results in Sections 2.2 and 2.3 with the results 
obtained with the discrete singular convolution (DSC) method employed by 
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Zhao and Wei [182], to solve F E . We also provide a detailed analysis of 
the numerical aspects of their method. This method is based on the generic 
Cardinal function due to Whittaker [179] and discussed previously by others 
[132, 140, 156, 169, 170], and defined in terms of the sine function, 

C k { X ) ~ l(x-xk) ( 2 ' 3 4 ) 

A uniform grid of JV +1 points xk — xi + hk, is defined for the finite interval 
[XL,XR\ where the grid spacing is h = l y < . This Cardinal function sat­
isfies the interpolation requirement Ck(xj) = Sjk, and the second derivative 
of f(x) is approximated by 

N 

f%\x)^Y,Ck\x)f{xk). (2.35) 

The use of Eq. (2.35) on a finite interval instead of the infinite interval 
results in truncation errors unless the function of interest is well localized in 
the selected interval [132, 156, 169, 170]. From the explicit differentiation 
of Eq. (2.34), the representation of the second derivative operator in this 
scheme is, 

D<$ = I (2.36) 

We distinguish the sine second derivative matrix operator with a tilde over-
bar. This scheme is similar to the one used by Wei [174] and by other 
researchers [132, 140, 156, 169, 170]. These methods employ a uniform grid 
based on the sine cardinal function as the interpolation function, although 
they are presented from different perspectives. The time dependent solu­
tion is then determined with Eq . (2.23), where A = 1 and the derivative 
matrix operator given by Eq . (2.36). Although Wei [175, 176] presents his 
methodology in the language of wavelets and signal analysis, it is useful to 
recognize that it is simply an alternate interpolation scheme analogous to 
other interpolations schemes such as Lagrange [129, 156, 166] as well as the 
interpolation defined in terms of orthogonal polynomials in Section 2.2.2. 
We present an analysis of the numerical aspects of the D S C method with 
concern to the round off errors associated with the application of the second 
derivative matrix operator, D( 2 ) , to UQ(X) and to F E analogous to the anal­
ysis for D^ 2) in Section 2.3. Zhao and Wei [182] report excellent results for 
the solution of F E . It is useful to consider a detailed analysis of the second 
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derivative matrix operator that they used analogous to the study in Section 
2.2.3 of the Chebyshev-Lobatto spectral method. 
As the sine function decays slowly as 1/x, Zhao and Wei [182] multiplied 
the sine function in Eq. (2.34) with a Gaussian window function of the form 

Ra(x) = exp —̂j such that 

Thus, the second derivative matrix operator matrix E)(2) is thus changed to 
D f f ' 2 ' with elements, 

(,38) 
~3 + 2 ^ ) 3 ~ k 

where j = As Ra(x) is a Gaussian and Ra(0) = 1, only the off-diagonal 
elements of D^ 2) are modified. Zhao and Wei [182] chose the optimum 
value a = 3.5h. Chen and Shizgal [138, 139] employed a similar weighted 
interpolation scheme for the solution of Sturm-Liouville problems and the 
Poisson equation. This was originally proposed by Weideman [178]. 

~ (2) (2) 

We show the matrix elements of the fcth row of log10(Djk ) and log 1 0 ( i?^ j f c ) 
in Figs. (2.7A) and (2.7B), respectively, versus j for fixed k =1, 16, 32,'48 
and 64, and N = 64. From the results in Fig . (2.7A), it can be seen that the 
matrix elements of E)(2) are of the order 10 4 along the diagonal and decay 
quickly away from the diagonal. This should be compared with the matrix 
elements of Da^ whose elements range from 10 4 on the diagonal to as small 
as about 10~ 6 5 for the extreme off-diagonal elements. The addition of the 
Gaussian window function has resulted in a rapid decrease of the derivative 
matrix operator away from the diagonal as expected, and thus the derivative 
matrix is banded about the diagonal. 
We consider an additional modification of the differentiation algorithm, Eq. 
(2.35), such that 

f%\x3-)* E D%kf(*k) (2.39) 

where 

0 j <W _ j W + j j < N- W 
-W j>W m a x ~ \ N j>N-W 

(2.40) 
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and W is the number of elements on either side of the diagonal that are 
retained with 2W + 1 < N. The elements of decay exponentially as 
we move away from the diagonal due to the introduction of the Gaussian 
window function in Eq. (2.37). From Fig. (2.7B) we see that the terms 
neglected vary from about 10~ 1 6 to 10~ 6 7 . This should not influence the 
final results as these elements of D</2) are small. This procedure reduces the 
bandwidth (RB) from N to 2W + 1 and the derivative algorithm is now more 
local than global. In the next subsection, we report an analysis of the two 
second derivative matrix operators, E)(2), D f f' 2' given by (2.36) and (2.38), 
respectively, with and without R B . While the polynomial interpolation, Eq. 
(2.20), and the associated differentiation algorithm, Eq . (2.22), can give 
excellent results on a finite interval, the interpolation based on the Sine 
functions, Eq. (2.35), and the differentiation algorithm, Eq . (2.39), involve 
truncation errors especially at the boundaries of the finite interval [XL,XR]. 
W i t h this in mind, we consider an alternative interpretation of Eq . (2.39) 
whereby the differentiation algorithm is always centred on the point xk with 
W points to the left and W points to the right of the point of interest. Thus 

(2) 
we define a second derivative matrix operator D f f which is of dimension 
(JV + 2W +1) x (JV +1) and operates on solution vectors of F E of dimension 
(JV + 2fV" + l ) of the form 

(1,1, 1, U(x0) = U(xL) = 1, U(Xl),U(xN) = U(xR) = 0,0 0,0) 

with the first W components set equal to unity and the last W components 
set equal to zero consistent with the boundary conditions. The (JV + 1) 
components U(xi) are computed from the solution of F E within the compu­
tational domain [XL,XR\. 

2A.l Analysis of the round-off error for D ^ , DCT̂

2^ and . 

We consider a solution of F E with the same values used in Section (2.2.3), 
that is, xL = -0 .2 , xR = 0.8, p = 10 4 and JV = 64. In Fig . (2.8), we 
show the computed profile after the first time step for E)(2) without R B in 
Fig . (2.8A) and with R B in Fig. (2.8B). In both cases, small amplitude 
oscillations develop at the foot of the wave front. These oscillations are 
responsible for the unstable numerical solutions that are obtained. On the 
other hand, when the window function Ra is considered, i.e. the second 
derivative operator matrix is given by D,^2), there are no oscillations. As a 
result, a stable solution is obtained. 
To understand the origin of the oscillations when the operator I)( 2) with 
and without R B is considered, we study the details in the sum involved in 
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the calculation of the second derivative of UQ(X), given by 

JV 

Sj = Y,£jkU0{xk) (2.41) 
fc=0 

where the matrix operator C can be £)( 2) or with or without R B . For 
the present analysis, two test points x = 0.3 and x = 0.8, which correspond 
to j = N/2 and j = N respectively, were considered to approximate the 
second derivative. The elements in the sum in Eq. (2.41), alternate in sign 
along a row, as shown in Eqs. (2.36) and (2.38). The calculation of the 
second derivative for j = N/2 and j = iV, is subject to round-off errors 
analogous to the discussion in Section 2.3. The values d2Uo(xpj/2)/dx2 — 
2.93 x l O " 7 and d2U0(xN)/dx2 = 2.85 x 1 0 " 2 5 (N = 64, N/2 = 32) are 
approximated by a difference of two numbers whose order wil l depend on 
the second derivative operator matrix L. 
A summary of the order of magnitude of the elements, whose difference will 
approximate d2Uo(x32) / dx2 and d2Uo(xQ4)/dx2 for different second deriva­
tive operators C, is presented in Table 2.3. For the case of LV2) without 
R B , both d2U0(x32)/dx2 = 2.93 x 10~ 7 and d2U0(x64)/dx2 = 2.85 x 10~ 2 5 

are approximated by the difference of two numbers of the order of 10 1. This 
round-off error problem is similar to the problems encountered with Cheby­
shev Lobatto collocation discussed previously. The result of such round-off 
error is shown in Fig . (2.8A). 
Similar instabilities are obtained when E)(2) with R B is considered. However, 
as seen in Fig. (2.8B), there is a notable improvement after the first time 
step integration for x = x^4- This improvement is a consequence of the 
approximation of d2Uo(x$4)/dx2, that is calculated as a difference of two 
numbers of the order of 10~ 9 (Table 2.3). 

(2) 
On the other hand, when ; given by (2.38) with and without R B is 
considered, the solution is free of oscillations and as a consequence, a stable 
solution is obtained. The results in Table 2.3 show the improvement of the 
approximation of the second derivative at x = x32 and x = XQ4. 

It is important to mention that the approximation of d2Uo(xQi)/dx2 — 
2.85 x 10~ 2 5 , with D^, is numerically inaccurate even though the elements 
of the sum Eq. (2.41) range from 1 0 - 2 6 to 1 0 - 2 1 . The inaccurate approxi­
mation is due in part to the use of the window function Ra, that modifies 
the structure of the elements of jLV2). Since the error in the calculation of 
d2Uo(x64)/dx2 is at most of the order of 10~ 2 1 , the error generated is small 
for the time integration considered. This leads to an excellent solution for 
F E with large values of p. 
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In F ig . (2.9A) we show the solution to F E with D^2\ We find a small 
growing instability near x = XL after several time steps and which after 
some time ceases to grow. We find that the amplitude of this instability 
increases with N. 
The origin of the instability near x = XL in Fig . (2.9A), can be understood 
in terms of the second derivative operator D„'2' applied to UQ(X). From 
Eq. (2.39), S0 « O(10 4) is the approximation of d2U0(x0)/dx2 = 0 (10° ) . 
This poor approximation is due to the truncation of the physical domain to 
[XL,XR]. The effect of the truncation on the approximation of d2Uo(xk)/dx2 

depends directly on the combination of the values of Uo(xk) and D^k in 

Eq . (2.39). For x = xr,, the largest value of both Un(xk) and D^\k is for 
k = 0, and thus the main contribution of the sum, Eq . (2.39), is from the 
first element with magnitude 10 4. Therefore, if the vector Un denotes the 
numerical solution at the nth time step, we find that Un(x2) —> rj ^ 1 as 
n —> oo, as shown in Fig. (2.9A). In this case, n satisfies the relation 

lim D^Un\x=X2 = pq(l - n) (2.42) 
n—*oo 

From Eq. (2.42) , it is shown that for any time t = tn the poor approximation 
of d2Uo(xo)/dx2 at x = x\ is always present and So « O(10 4) for t = tn. 
However, when x = XR, the truncation of the domain does not have the 
same effect as the one shown in Fig . (2.9) for x = XL- The quantity to be 
approximated is of the order of 10~ 2 5 whereas the largest element of Eq . 
(2.39) for x = XR is also of the order of 1 0 - 2 5 . 
However, the instability that occurs near x = XL, does not destabilize the 
rest of the solution. This is due to the distribution of the elements of D f f' 2' 
as shown in Fig. (2.7B), and the magnitude of elements of UQ(X). In order 
to approximate d2Uo(x)/dx2 near x — XR, the values of Un[x) near x = XL 
do not play any role in the calculation, even if R B is not considered. This 
is an important difference between Chebyshev-Lobatto collocation and the 
weighted D S C (Eq. 2.38) differentiation matrices, applied to F E . Whereas in 
Chebyshev-Lobatto collocation, the second derivative at some point x = xk 

has a strong dependence on all the Chebyshev-Lobatto points, that is, is 
global, the DSC with the window function becomes a more local method 
as only a small number of points play a major role in the calculations. It 
is important to mention that for a fixed value of p, XL and XR, it is not 
possible to eliminate the instability at x = XL in Fig . (2.9A). One possible 
alternative to get a good solution on XL and XR, is to increase the physical 
domain, keeping only the interval in x where the solution has a good preci­
sion. However, this alternative will break the structure given by p, XL and 
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xn in relation (2.13), giving as a result a different numerical problem. 

However, when the solution vector is "padded" with W points to the left of 
XL and W points to the right of XR such that 

r r / X f 1 if ~W<k<-\ ,n 

and of dimension (N + 2W + 1) x (N + 1) is used, we obtain the 
result shown in Fig. (2.9B) without the instability at x = XL shown in Fig . 
(2.9A). In this calculation with p = 10 4 and x G [-0.2,0.8], we verified that 
both d2Uo(x) / dx2\x=Xl and its numerical approximation So given by Eq . 
(2.41) are of order one 0(1). Again the approximation of d2U~o(x)/dx2\x=xi 

is numerically inaccurate, due to the use of the window function Ra and 
because U(x) lies outside the space of bandlimited functions as described in 
[170]. However, the numerical solution that is obtained is accurate as now 
n = 1 in Eq. (2.42). Therefore, we obtain 

l im DMlJn\x=Xl = pn(l - 77) = 0 (2.44) 
n—>oo 

giving as a result what is shown in Fig . (2.9B). Table 2.4 shows a comparison 
between the results with the sine method with Da and the multidomain 
method presented in Section 3. The multidomain approach provides a more 
accurate result for the largest value of p. 

2.5 Summary 

The objective of the present chapter was to develop an accurate and efficient 
pseudospectral solution of the F E , a prototypical reaction diffusion equa­
tion. The collocation method used the Chebyshev-Gauss-Lobatto quadra­
ture points. The solutions of F E are characterized by propagating fronts 
that can be steep depending on the value of the reaction rate coefficient, p. 
We compared results for a single domain as well as for a subdivision of the 
main domain into subintervals. On a single domain the integration of the 
F E lead to instabilities at some time step. These instabilities were a conse­
quence of the numerical round-off errors arising from the numerical form of 
the discrete second order derivative matrix operator. We have demonstrated 
the importance of constructing the differential matrix operator accurately. 
From a detailed numerical analysis, we have also identified the nature of the 
round-off errors that occur in the use of the differential matrix operator in 
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the numerical solution of F E . This complements the work by Baltensperger 
and Trummer [128]. The exponentially small values of the solution, U(x,t), 
combined with the size of the elements in D^2) which oscillate in sign along 
a row, was the main source of round off error, when a single domain was 
used. 
In order to reduce the effects of round off error for the Chebyshev colloca­
tion, the main domain was subdivided into smaller subintervals as proposed 
by Shizgal and coworkers [155, 180, 181]. The multidomain method pro­
vided stable and accurate solutions of F E for values of p as large as 10 6. We 
also compared the present numerical treatment with the D S C approach of 
Zhao and Wei [182] who employed an interpolation based on the sine func­
tion. They added a window function Ra to the sine interpolation function 
and also limited the number of terms in the differentiation algorithm to a 
small number about the diagonal elements of the derivative matrix operator. 
We refer to this procedure as reduced bandwidth R B . We also studied the 
occurrence of numerical round-off with their method. We found that for 
fixed values of p, xi and XR, the results with the multidomain method did 
not present any problem at the left boundary at x = XL as did the D S C 
method. The instability at the left boundary shown in Fig . (2.9A) obtained 
with D S C , is attributed to the truncation of the spatial domain as discussed 
in Section 2.4.1. 
Another important result of this chapter is the demonstration of the equiv­
alence of the numerical problems denned by Eqs. (2.7-2.9) and Eqs. (2.11, 
2.12). However, for Eqs. (2.7-2.9), the parameter p plays an important role 
and for large p we have the SSW situation, whereas for Eqs. (2.11,2.12) 
the main parameter is the length of the numerical domain. The results in 
the present chapter for Fisher's equation, a prototypical reaction diffusion 
equation, will play an important role in the application of pseudospectral 
methods to more complex physical systems such as the Fitzhugh-Nagumo 
equation [134, 144, 161]. 
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Table 2.1: Analysis of the multidomain method for p = 10 4, At = 10~ 8 , 
total time of integration T — 0.003; M is the number of subintervals and N 
is the number of Chebyshev points per subinterval. 

Scheme M(sub) N points Loo error 
Chebyshev 1 150 0.332(-2) 

Multidomain 2 75 0.305(-2) 
6 25 0.456(-3) 
10 15 0.407(-3) 
15 10 0.357(-3) 
25 6 0.724(-2) 

Table 2.2: Analysis of the multidomain method for p = 10 5, At = 10" 8 , T = 
0.001; M is the number of subintervals and A'' is the number of Chebyshev 
points per subinterval. 

Scheme M(sub) A'' points Loo error 
Chebyshev 1 400 N A N 

Multidomain 10 40 0.132(-3) 
16 25 0.134(-4) 
20 20 0.511(-5) 
25 16 0.773(-4) 
40 10 0.471(-2) 
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Table 2.3: Maximum value of the elements in the sum, E q . (2.41), with C 
equal to E>(2) and D£^. When reduced bandwidth (RB) is considered, the 
index in the sum, Eq. (2.41), runs from — W to W, W = 32. 

Operator d'2U0(x32) 
ax* 

= 2.93 x 1CT7 8'2Uo(x64) 
c)xz = 2.85 x 10"25 

C M a x f e M a x f c 

T)W (No RB) 101 101 

(RB) 101 i o - 9 

D^2) (No RB) 10-4 i o - 2 1 

D^2) (RB) IO" 4 1 0 - 2 1 

Table 2.4: Comparison between multidomain method and the Sine approach 
with (W=32) for different values of p. T is the total time of integration, 
M is the number of subintervals and N is the number of Chebyshev points 
per subinterval. 

Scheme P M(sub) N points At T Loo error 
Sine 104 1 75 1 X io-' 0.0032 4.976(-4) 

105 1 400 1 X IO" 8 0.001 1.395(-10) 
106 1 2800 1 X IO" 8 0.00033 4.966(-8) 

Multidomain 104 3 25 1 X IO" 7 0.0032 4.839(-3) 
105 20 20 1 X IO" 8 0.001 5.115(-6) 
106 140 20 8 X IO" 8 0.00033 3.125(-12) 
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Figure 2.1: Time dependent profiles versus x for p and N equal to (A) 
2 x 10 3, 40; (B) 5 x 10 3, 64; (C) 10 4, 64 and (D)10 4 , 150. The successive 
profiles in each graph are for times (A) t = 0.002,0.003,0.004,0.005,0.006; 
(B) t = 0.0005,0.0015,0.0025,0.0035,0.0045; (C) t = 0.0004,0.0008, 
0.0012,0.0016,0.002; (D) t = 0.001,0.0015,0.002,0.0025,0.003. The solid 
line represents the analytic solution, U(x,t), and the symbols, Vi, the nu­
merical solution evaluated at the Chebyshev points. 
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Figure 2.2: The relative error versus x in the application of the second 
derivative matrix operator to the solution at t = 0 for different values of N 
with (A) p = 10,000 and (B) p = 15,000 

Figure 2.3: The relative error RE versus N in the application of the second 
derivative matrix operator to the solution at t = 0 at the boundaries, x = XR 
(upper curve) x — XL (lower curve) with p equal to (A) 10000 and (B) 15000. 
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0 50 100 150 200 250 
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Figure 2.4: (A) Variation of the logarithm of the second derivative versus 
p, at XR and xi for the analytic solution at t = 0. (B) l o g 1 0 ( D 2

V j ) versus 
j. The elements alternate in sign. Negative terms (o), Positive terms (•) 
N = 250. 

Subdomain 1̂  

X 0 X M - 1 X M X 2M-1 

Figure 2.5: Partition of the interval [ X ^ J X R ] into Ni subdomains. 

59 



Chapter 2. A Pseudospectral Method of Solution of Fisher's Equation. 

1.2 

1 

0.8 

0.6 
xT 

0.4 

0.2 

0 

-0.2 

-0.2 0 0.2 0.4 0.6 0.8 
x 

Figure 2.6: Time dependent profiles U(x,t) versus x for p = 10 6 with 140 
subdomains and 20 points per domain; The profiles are for times t = 8 x 
I O - 9 , 8 x IO - 5 , 1 . 6 x 10 - 4 , 2 .4 x 10~ 4,3.2 x 1 0 - 4 ; the total integration time 
is T = 3.3 x IO" 4 . 
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Figure 2.8: Oscillations of U(x,t) after the first time step. D^2) is given 
by (2.36). (A) Without reduced bandwidth (RB), (B) W i t h R B . p = 10 4, 
TV = 64. 

61 



Chapter 2. A Pseudospectral Method of Solution of Fisher's Equation. 

-0.2 0 0.2 0.4 0.6 0.8 -0.2 0 0.2 0.4 0.6 0.8 
X X 

Figure 2.9: (A) Instability of U(x,t) at x = xL, p = 10 4, At = 1 x I O - 7 . 
The (N + l) x (N + l) second derivative operator considered is given by 
the algorithm, Eqs. (38) and (39); N = 64; total integration time T = 0.004. 
(B) Time dependent profiles versus x for p = 10 4 and times t = 0.001, 0.0015, 
0.002, 0.0025 and 0.003 with the (N + 2W + 1) x (N + 1) second derivative 

operator D£°; N = 64, W = 32. 
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Chapter 3 

Pseudospectral method of 
solution of the 
Fitzhugh-Nagumo equations. 
Reaction diffusion systems have been a very active area of research for many 
decades. They arise in areas such as population dynamics and epidemi­
ology [194], physiology [215] and biology [224]. Classic examples are the 
modelling of animal coat patterns [224], the Belousov-Zhabotinsky reaction 
[202, 218, 224, 239], the Hodgkin-Huxley model of the propagation of the 
action potential along nerve cells [215], and models of the propagation of 
a disease in an ecosystem [194]. The general form of a reaction diffusion 
system is given by 

^ = D - V 2 V + F ( V ) (3.1) 

where V = (Vi , V2,Vjv) with Vi = V ; ( x , f ) , (i — 1,JV) can represent the 
concentrations of N chemical species in a chemical reaction [202], or the 
number of susceptible, infected and recovered individuals at position x and 
time t for a model in epidemiology [194]. The function F is called the reac­
tion term and models the local dynamics due to the interactions of the V£. 
The spatial variation of V j ( x , t) is modelled with the diffusion term D • V 2 V , 
where the matrix D is the diffusion coefficient matrix. 

The present chapter3 is devoted to reaction diffusion equations which model 
the propagation of action potentials in cardiac muscle cells, analogous to 
the Hodgkin-Huxley model [215]. Fitzhugh [205] and Nagumo et. al. [225] 
simplified the local dynamics of the Hodgkin-Huxley model. The set of 
four ordinary differential equations to describe the change in the potential 
across the membrane of a nerve cell in the giant axon of the squid of the 
Hodgkin-Huxley model is reduced to a two dimensional system of ODEs 
called the Fitzhugh-Nagumo (FHN) equations. The F N H equations have 

3 A version of this chapter has. been submitted for publication. D. Olmos, B . Shizgal, 
Pseudospectral method of solution of the Fitzhugh-Nagumo equations. J. Comp. Phys. 
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been applied to numerous other problems for over four decades [187, 190, 
212, 214, 215, 227, 239]. For example, the F H N equations are employed to 
describe the C O oxidation on Pt(110) [187], the study of C a + 2 waves on 
Xenopus oocytes [215] and Medaka eggs [224], and the study of reentry in 
heart tissue [203, 217]. 

The F H N equations preserve the most important feature exhibited by the 
Hodgkin-Huxley equations, that is excitability. The F H N equations [191, 
214, 240] with diffusion can be written as 

du = DxV2u + \f(u,v) 
f = D2S72v + g(u,v) ( 3 ' 2 ) 

where from Eq. (3.1), V = (u,v)T, F = (\f(u,v),g(u,v))T and D is the 
diagonal matrix with elements D\,D2, known as the diffusion coefficients 
for u and v, respectively. The symbol T denotes the transpose of a vector 
or a matrix. 

In the present chapter, two different examples of F H N equations in the form 
of Eq . (3.2) are considered. The first kinetic model (I) was proposed by 
Barkley [190] for which 

fi{u,v) = u(l - u) (u - uth) / 3 3 N 
gi(u, v) = u — v 

where uth = 2 ^ and a and b are dimensionless parameters. From E q . (3.3), 
it is clear that the nullclines for the spatially homogeneous case, fi(u, v) = 0, 
and g\(u,v) = 0 are u = 0, u = 1, u = uth(v) and u = v. A qualitative 
description of the local dynamics was provided by Barkley [189, 190]. The 
second kinetic model studied (II) is the classic cubic F H N local dynamics 
[215], 

f2{u,v) = Au(l - u)(u - a) - v , 3 4 -
g2(u, v) = u — bv 

where A, a and b are dimensionless constants. The nullclines f2(u,v) = 0 
and g2(u,v) = 0 are v = Au(\ — u)(u — a) and u = bv (see Fig . 4.15 in [215]). 

The phase portraits for these two kinetic models are shown for particular 
parameter values in Figs. 3.1A and 3.1C. The explicit time variations of 
u(t) and v(t), where ^ = ^f(u,v) and | ^ = g(u,v), are shown in Figs. 
3.IB and 3.ID, respectively. The segments a-b and c-d in all figures occur 
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on a fast time scale determined by e whereas the segments b-c and d-e occur 
on a slow time scale. It is useful to notice that u for kinetic model II goes 
negative whereas for kinetic model I, it is flat and close to zero. Also, the 
segments b-c are different. The point (0,0) on the phase portraits is a stable 
excitable fixed point. For the particular initial condition, v — 0 and u > uth, 
u has a large excursion (a-e) as shown in Figs. 3.1A and 3.1C. The quantity 
uth is referred as the excitation threshold value. When u and v are located 
at the point d in Fig. 3.1, it is not possible to generate a large excursion 
when u is taken above any uth < 1, the upper bound of u. In this case, u is 
said to be in refractory state. The variable u is generally referred to as the 
excitation (activator) variable and v is the recovery (inhibitory) variable. 
The fast and slow changes in the F H N equations are characterized by the 
parameter e [205]. 

The present chapter has two main objectives. The first is to continue the on­
going effort to develop pseudospectral methods for an accurate and efficient 
solution of reaction diffusion equations. This chapter follows on the previous 
work dealing with Fisher's equation in Chapter 2, for which the solutions 
develop propagating fronts with short spatial variation. The second objec­
tive is to compare the solutions obtained with pseudospectral methods with 
those obtained by Barkley [190] for Eq. (3.2) with (3.3). There have been 
many studies of reaction diffusion systems that are based on kinetic model 
I proposed by Barkley [185, 187, 209, 220, 222, 223, 242]. Pseudospectral 
methods are generally considered useful for solving smooth problems and to 
provide exponential convergence of the solution with respect to the number 
of collocation points used [195, 231]. However, it has been demonstrated re­
cently that pseudospectral methods can provide a significant improvement 
over finite difference methods for non smooth problems that develop shocks 
and steep fronts [207, 226], features shared by the solutions of the F H N 
equations. Pseudospectral methods provide solutions to partial differential 
equations defined on a grid of collocation points which are the quadrature 
points for a given polynomial basis set [193, 195, 204, 208, 231]. The main 
advantage of pseudospectral (and spectral) methods is the "exponential" 
convergence of the solutions versus the number of collocation points. There 
have been only a few studies of the applicability of pseudospectral methods 
to the numerical solution of reaction diffusion equations [188, 201, 211, 213]. 
Another aspect of reactive diffusion equations of which the F H N equations 
are a subset, is that the time scale for the u variable is short compared to 
the time scale for the v variable. The discretized equations that result from 
a pseudospectral method (Section 3.1) are stiff and generally a very small 
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time step is required for their integration. Barkley [190] developed a finite 
difference method for the solution of kinetic model I, which made use of 
the particular feature that u{t) is very small during the segment d-e. He 
developed a computer code that sets u(x, t) to zero if it is less than some 
particular small value and thus, avoids the computation of u(x, t) .during 
this time interval. 

For the spatially inhomogeneous F H N equations with nonzero diffusion co­
efficients, the solutions w(x, t) and v(x,t), subject to no flux, periodic or 
Dirichlet boundary conditions, are dependent on both position and time. In 
order to solve the spatial dynamics of F H N equations in two dimensions, 
different methods have been considered. Karma [212] and Mitkov et al [223] 
used a Fourier pseudospectral method; Xie [241] and Amdjadi [184] used 
an explicit finite difference scheme; Gottwald [209] and Diks [200] used a 
method based on finite differences reported by Barkley [190]; Jones and 
O'Brien [211] solved the Gray-Scott equations with a Fourier pseudospec­
tral method. The F H N and the Gray-Scott equations belong to the family of 
excitable systems [230] and exhibit the problem of multiple time and spatial 
scales. However, the reaction term in Eq. (3.1) for the Gray-Scott equations 
leads to a different class of physical problems and will not be considered in 
this work. As a result of adding diffusion, pulses of excitation propagate 
through the medium giving rise to different kinds of spatiotemporal behav­
iors, such as plane waves, target patterns, spiral waves and scroll waves 
[215, 238]. 

The algorithm tested in the present chapter wil l have applications to the 
study of the propagation of waves in excitable media including the study of 
spiral waves, [189, 212, 213, 216, 229, 240], the analysis of spiral tip trajec­
tories and their transition to complex patterns [189, 212, 240]. Also, spiral 
breakup [210, 228], drift of a spiral tip due to the interaction between spiral 
waves or via wave trains [209, 241], and competition between spirals and 
periodic circular pacemakers [219], has been studied with F H N type equa­
tions. Studies in one dimension [186, 199, 206] and extension to spirals in 
three dimensions, called scroll waves [198, 222, 238], have been considered. 
Additional studies have been performed with variants of Eq . (3.2), such as 
the generation of spiral waves due to obstacles [229] and spirals in a medium 
with random obstacles [237]. In particular, kinetic model I, has been used 
to simulate the drift of spirals under periodic stimulation [209], to model 
chemical reactions such as the isothermal C O oxidation on Pt(110) by Bar 
et al[187], and the study of the effect of noise on spiral dynamics [220, 242]. 
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Kinetic model II (the classic cubic F H N model) has been used to understand 
the effects of curvature on the speed of a two dimensional propagating front 
[214], as well as for the comprehension of cardiac arrhythmias [206]. 

However, despite all the numerical experiments realized with the F H N equa­
tions to date, it remains important to develop accurate numerical methods 
for the solution of Eq. (3.2). It is well known [190, 196] that an accurate 
numerical solution of the dynamics of excitation, which occur on a fast time 
scale, requires a small time step. Moreover, when considering the reaction 
diffusion equation associated with the F H N dynamics, Eq . (3.2), the prob­
lem becomes more complex as the fast transitions observed locally in time 
are observed to occur in the spatial variables as well. Therefore, for an ac­
curate numerical solution, it is necessary to increase the number of sample 
points in the spatial grid in regions where fast transitions take place, giving 
as a result a multiple spatial scales problem as well. Therefore, the prob­
lem of obtaining a reliable solution when solving systems such as the F H N 
equations involving different time and space scales represents a challenging 
endeavor. 

This chapter is organized as follows. In Section 3.1, we provide the details of 
the various numerical methods for the solution of the F H N equations that are 
compared. The first method is the Chebyshev-multidomain ( C M D ) , based 
on Chebyshev polynomials, which was shown to be useful in the study of 
fronts in one dimension [226]. Also, the Fourier pseudospectral (Fourier) 
method is considered. In Section 3, we compare the solutions for kinetic 
model I obtained with pseudospectral methods with those with finite differ­
ence techniques and the method presented by Barkley [190]. We validate 
their efficiency in the solution of the F H N equations and the description of 
spiral waves. We also generalize the Fourier method to the non periodic case 
which has not been considered previously. In Section 4, we present analo­
gous results for kinetic model II. The use of an operator splitting method 
for the time integration to decrease the computational time is discussed in 
Section 5. A summary of the results is presented in Section 6. 

3.1 Numerical methods. 
To solve E q . (3.2) numerically, we consider a two dimensional truncated 
domain given by Q, — [XL,XR] X [VL^VR]- For the present chapter, D2 = 0 
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as considered by Krinsky and Pumir [217], Starobin and Starmer [235] and 
Xie et. al. [241] as our purpose is the modelling of propagation of action 
potentials through excitable tissue for which v represents the non-diffusive 
gating variable. We consider the system of differential equations for u and 
v given by 

ft = D^u + \f{u,v) 
I = 9(u,v) (3-5) 

The initial condition is given by 

f u(x,y,0) = u0(x,y) . . 
\ v(x,y,0) = v0(x,y) \xiy) ^ W 

and no flux boundary conditions or Dirichlet type conditions are employed 
as discussed in Section 3.1.4. 

3.1.1 Chebyshev Pseudospectral Multidomain Method. 

We present in this section the basis for the pseudospectral method of solution 
of the FHN equation based on Chebyshev polynomials. The Chebyshev 
polynomials Tk(z) are orthogonal with respect the weight function w(z) = 
(1 — z 2 ) - 1 / 2 on the interval [—1,1], that is, 

- f1 w(z)Tk(z)Ti(z)dz = \ix5kjl (3.7) 
ck 7 - i 2 

where ck = 1 for all k except for CQ = 2. The Lobatto quadrature points 
and weights associated with the Chebyshev-Gauss polynomials are given 
by Xi = — cos (^) and the weights are Wi = jj for all i except = 
wpf = igfl [193, 195, 231]. These points and weights provide the approximate 
quadrature, 

1 N 
/ w(z)f(z)dz~Yt

wif(zi) (3-8) 
J-1 i=0 

where N is the number of points. Since any piecewise continuous function, 
/ € Z^O, 1] can be expanded in a Chebyshev polynomial series that is 
convergent in the mean of the norm, we have that 

JV 

f(z)*fN{z) = YJ*kTk{z) (3.9) 
fc=o 
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where 
2 f1 

ak = / w(z)f(z)Tk{z)dz (3.10) 

W i t h Eqs. (3.8) to (3.10) we obtain the interpolation algorithm 

N 
/ A K Z ) - ^ / ^ ) / ^ ) (3.11) 

where the interpolating polynomials, Ij(z), are given by 

2 N 

fc=0 

where vn = = 1/2 with vk = 1 if k ̂  0, N and where Ij(zi) = 5ij is the 
cardinal condition such that / /v( -Zj) = f(zi) [193]. The second derivative of 
f(z) at the quadrature points is then given approximately by 

N 
/ # ^ * ) * £ / f (3.13) 

If we denote by f, the ./V dimensional vector of the function evaluated at the 
Chebyshev-Lobatto points, Eq . (3.13) can be rewritten as 

f( 2)=D( 2)-f (3.14) 

where the second derivative matrix is given explicitly by 

^ ? = ' j 2 , ( ^ ^ l ~ f c (3-15) 

This is the basis for the Chebyshev pseudospectral method, whereby Eq . 
(3.5) can be reduced to a set of ODE's with the representation of the second 
derivative operator with T)(2\ 

Thus, with the application of the pseudospectral method based on Eq . (3.15) 
to Eq. (3.5) in 2D we obtain, 

duij = A £fl0 D$ukj + B Eto *ikD$ + \f(ui3,vl: dt ~~ "™ L~ik=0^ik "*J 1 " £^k=0 "iK^jk 1
 eJ\™t]'"VJ (3 16) 

where ui3{t) = u(xuyj,t). In Eq. (3.16), A = and B = 
and they appear as a consequence of the linear transformations [XL, XR] and 
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[VLJVR] to [—1,1] and include the respective diffusion coefficients. No-flux 
boundary conditions are implemented by solving the system 

EL><^ = 0 ( 3 - 1 7 ) 

for UQJ and upfj, j = 1,N — 1 and similar conditions for Uio and Uin, i = 
1,N- 1. 
In order to apply the Chebyshev pseudospectral method, we employ a mul­
tidomain approach used previously [226]. It consists of dividing the inter­
vals [XL,XR\ and \yi,yp\ into Ns overlapping subintervals, 1^ = [XQ,X^} 

and Iv = [yoiyjw]; respectively, with M = Ncrl — 1 and u and v = 1,NS, 
and in each dimension all the subintervals have the same length. For each 
subinterval, we apply the procedure described in Eqs. (3.9) to (3.13) with 
the resulting system of coupled ODEs given by Eq. (3.16) with A = £Dl ^ 

X M  x0 

and B = y^l

y^ a n d the indexes in Eqs. (3.16) and (3.17) going from 0 to 

(Nch - 2 ) x J V , + l . The first and second derivative matrices D ^ , D^ 2 ) in 
Eqs. (3.17) and (3.16), respectively, for the Chebyshev multidomain (CMD) 
method, become a block diagonal matrix as shown on Section 2.3. 

The application of Chebyshev multidomain in the solution of Eq . (3.5), re­
quires a choice of two parameters, the number of subdomains A^s and the 
number of Chebyshev points per subdomain Nch- In order to attain conver­
gence, the number of collocation points has to be increased. For Chebyshev 
multidomain it is possible to increase both Ncri and Ns or fixing one while 
increasing the other. In this work, we focus on increasing Ns and fixing 

to a relatively small value. The reason for this is discussed in Section 
3.2.1. Increasing the value of Nch, requires a decrease in the time step size 
to preserve stability, thus increasing the computation time. 

3.1.2 The Fourier method. 

The Fourier method is a standard technique used in fluid dynamics [195], 
heat conduction [208] and more recently used in reaction diffusion systems 
[188, 211, 212]. The Fourier method has been used by Karma [212] to solve 
the F H N equations and to study the transition to meandering in a spiral, 
whereas Jones and O'Brien [211] used a Fourier method to solve the Gray 
Scott equations. 
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To apply the Fourier method to solve Eq. (3.5) in two dimensions we apply 
the formalism followed in Canuto et al. [195] (Page 78). We require that Eq. 
(3.5) is satisfied at the collocation points Xj = y r = j, r = 0, TV — 1, 

du 

at 
dv 
dt = g{u,v)\ 

d 2U 

W (3.18) 

where D = D\ (^) , appears from the linear transformation of [—L, L] to 
[0, 2TT] in each dimension. Eq. (3.18) can be rewritten as 

dt 
dv" 

dt 

,JV\ 
(3.19) 

where Ujr(t) j,yr,t). The differentiation matrix D^2) is given by U N (x 
A~lCA. The matrix A is the transformation from physical to frequency 
domain, C is the diagonal matrix with elements —k2, representing the sec­
ond derivative in the frequency domain, and A~l is the operator matrix 
that returns the solution to the physical domain. The transformation from 
physical to frequency domain was computed using the FFT. For a complete 
discussion of the matrices A and C, refer to page 126 in Canuto et al [195]. 

3.1.3 Barkley 's method. 

The method proposed by Barkley [190, 198] to solve Eq. (3.5), is a modified 
version of the usual finite difference (FD) scheme and was designed for the 
family of kinetic models with a form analogous to Eq. (3.3). This method, 
which has been widely used by several researchers [185, 187, 209, 220, 222, 
223, 242], takes advantage of the special form of the nonlinearity given by 
/ in Eq. (3.3). Figure 3.IB shows that u(t) exhibits fast transitions along 
the segments a-b and c-d, followed by the slow time variation along d-e for 
which u(t) « 0. It is thus possible to define a quantity <5 << 1 such that 
for times tk in d-e if u ( x , y , t k ) < 5 then it is redefined as u ( x , y , t k ) = 0. 
In [190], Barkley considered 5 = 0.0001 as a reliable value for his compu­
tations. With this technique, Barkley avoids unnecessary computations of 
the values u [ x , y , t k ) , during the time segment d-e. This technique is not 
directly applicable to kinetic model II, since u(t) is not small in the segment 
d-e as shown in Fig. ID. 
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3 . 1 . 4 I n i t i a l a n d b o u n d a r y c o n d i t i o n s . 

The numerical schemes presented in the previous section are employed to 
study propagating wave solutions of Eq. (3.5), specifically the propagation 
of one dimensional (ID) plane waves and two dimensional (2D) spiral waves. 
The solutions are studied over the interval 0, = [-L, L] in I D and over the 
square domain Q, = [—L,L] x [—L,L] in 2D. 

The initial conditions considered have the general form 

u0{x,y) = ( l + e x p ( 4 ( | a ; | - c 1 ) ) ) - 2 - ( l + e x p ( 4 ( | 2 ; | - c 2 ) ) ) - 2 Vy 
vo(x,y) = c 3 Vx,\/y 

(3.20) 
The functions uo(x,y) and vo(x,y), which are also considered to define ini­
tial conditions in ID, are redefined over some regions in order to obtain 
a propagating pulse in ID and a spiral wave in 2D. The methods consid­
ered in this section for solving Eq . (3.5), are C M D , F D the Fourier and 
Barkley methods. For the first three methods, a second order Runge K u t t a 
algorithm is used to advance the time as it provides much more accurate 
solutions than would a simple Euler integration. 

In the present chapter, no flux boundary conditions are considered for F D , 
the Barkley method and C M D as in [190, 228, 237, 241]. Comparisons be­
tween the Fourier method and F D are considered with different boundary 
conditions. The Fourier method is a special case due to its applicability to 
periodic problems and requires periodic boundary conditions as reported by 
Karma [212]. In order to extend the dynamics to the non periodic case, it 
is necessary to remove periodicity in the solution obtained with the Fourier 
method by implementing a different type of boundary condition. The bound­
ary conditions implemented are a variation of the Dirichlet type and has been 
considered previously for kinetic model I [234]. It consists of fixing the value 
of the numerical solutions of Eq . (3.5), u(x, y, t) and v(x, y, t) at the bound­
ary, such that u(x,y,t) is in its refractory state as shown by the position 
'd ' in Figs. 3.1A and 3.1C. This constraint will eliminate the passage of a 
propagating front through the boundary. 

The effects of the choice of boundary conditions in two dimensions for the 
Fourier method, is shown in Fig. 3.2, where the dynamics take place on 
the squared domain [—30,30] x [—30,30]. Figure 3.2A is the result of the 
integration of Eq . (3.19) which includes diffusion and Dirichlet boundary 
conditions and shows the contours of the solution u(x,y,t) for some time t. 
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The spiral shown in Fig . 3.2A will continue to rotate and propagate radi­
ally outwards and eventually annihilate when it hits the boundaries of the 
domain, simulating the effects of considering no flux boundary conditions. 
By contrast, the behavior in Fig. 3.2B is obtained for periodic boundary 
conditions. Therefore, comparisons using Dirichlet boundary conditions for 
the Fourier method are presented for F D only. It is important to notice that 
with the procedure explained above, it is possible to use the Fourier method 
to solve any F H N type equation for the non periodic case. 

3.2 Numerical studies with kinetic model I. 

3.2.1 Plane ID waves. 

In order to test the accuracy of the numerical methods, we first solved Eq . 
(3.5) with (3.3) for the ID case. The domain considered is x £ [—30,30]. 
No flux boundary conditions are applied in conjunction with F D , C M D and 
the Barkley method, whereas Dirichlet boundary conditions are used for the 
Fourier method and F D . Figure 3.3 shows successive profiles of the pulse 
u(x,t), which depends only on x and t, at times t* = 0,1.66,3.33 and 5, 
for different numerical methods. The parameters considered are e = 0.005, 
a = 0.3, b = 0.01, D\ = 1 and total integration time t = 5. The profile at 
t = 0 is the initial condition for u and is given by 

» M = { O ° W i l l «-•<»-{ 

with ci = 25 and c 2 = 21 in Eq . (3.20). 

Figure 3.3A shows a comparison of the numerical solutions obtained with 
the Fourier method (•) and F D (x) with N = 512 points and Dirichlet 
boundary conditions. Figure 3.3B, compares C M D (•) with Ns = 40 sub-
domains and Nch = 13 points per subdomain with a total of N = 442 
points, and F D (x) with N = 512. We show in Fig . 3.3C, a comparison 
between C M D (•) with N = 442 and the Barkley method (0) with N = 512. 

In Fig . 3.3, it is qualitatively observed that the speed of the pulse obtained 
with the Fourier method is larger than the one obtained with F D (Fig. 
3.3A), whereas the speed of the pulse obtained with C M D is larger than 
the speed obtained with either F D or the Barkley method (Figs. 3.3B-C). 

x < - 2 5 
x > - 2 5 

(3.21) 
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A measure of the global error is given by the rate of convergence of the 
wave speed. The speed of the pulse is calculated by finding x* such that 
u{x*,t) = 0.5 at the wavefront. A quantitative analysis of the convergence 
of the wave speed is presented in Tables 3.1-3.5 for the different numerical 
schemes. 

We compare the rate of convergence of all methods and use c = 9.059835 
as the converged value of the wave speed as given by C M D and the Fourier 
methods. In Tables 3.1 to 3.3, the accuracy of the speed c is independent 
of the value of At, which varies from I O - 4 to 1 0 - 6 . Large values of N im­
plies a reduction of A t for stability purposes. Table 3.1 shows that with the 
Fourier method, N = 512, four figure accuracy is obtained. The converged 
wave speed is obtained with N = 1024. Table 3.2, shows the convergence 
of the wave speed for C M D with Ns = 40 and different values of Nch- Sim­
ilarly, Table 3.3 shows the convergence of the wave speed for C M D with 
Nch = 13 and different values of Ns. The total number of grid points is 
N = (Nch — 2)Ns+2. Four significant figures are obtained with N = 772 in 
both Tables 3.2 and 3.3. Convergence to c is obtained with N = 1922 and 
N — 1982 in Tables 3.2 and 3.3, respectively. The convergence in Tables 3.2 
and 3.3 versus the total number of points, N, appears to be very similar. 
Reduction of Nch increases the sparsity of the second derivative operator 
D^2), reducing the number of operations involved in evaluating the second 
derivative. Therefore, our computations will consider relatively small values 
of 

For F D , the convergence to the speed c, which shows a dependence on A t , 
is much slower than either C M D or the Fourier method as shown in Table 
3.4. Four figure accuracy is barely achieved with N = 8192 and A t = I O - 7 . 
Similar results were obtained with Dirichlet boundary conditions and not 
reported. The poor convergence of the wave speed with the Barkley method 
is shown in Table 3.5. The value of the wave speed closest to c is 9.0386 
with N = 4096, A t = IO" 4 and <5 = IO" 5 . From Table 3.5, it is shown that 
for a fixed number of points, the accuracy of the speed deteriorates as A t 
is decreased. When the parameter 5 is reduced from S = 1 0 - 4 to 5 — 10~ 5 

the accuracy of the wave speed improves. 

A convergence analysis of the numerical solution is presented in F ig . 3.4 for 
t* = 5, where the local error given by 

EN(Xi) = log10(|uract(^.**) - i ^ t e . O I ) (3-22) 
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is calculated with the different methods. In Eq. (3.22), u^xact(t*) is the 
converged numerical solution of Eq. (3.5) with (3.3) given with the Fourier 
method with TV = 8192 for Dirichlet boundary conditions and considered as 
the "exact" solution. For no flux boundary conditions, this exact solution is 
obtained with C M D , with TV = 9902 points. At t* = 5, the pulse is located 
in the interval x £ [14,30] as shown by the last profile on the extreme right 
of Fig . 3.3. In Fig . 3.4, Ejy(x) is shown for x £ [14,30] as the major source 
of error comes from this region. 

In F ig . 3.4A the Fourier method gives for TV = 512, E^(x) « 10~ 2 (dashed 
curve), and for TV = 4096 (solid bold curve), EN(x) w 10" 1 5 . In Fig . 3.4B, 
the C M D calculations give EN(X) ta 10~ 2 with TV = 442 (dashed curve) 
and EN{X) « 10 - 7 - with TV = 1982 (solid curve). Figure 3.4C shows the 
convergence of the F D scheme with no-flux boundary conditions. To obtain 
EN{X) « 1 0 - 2 , TV = 8192 points are required (dashed bold curve). Finally, 
the convergence analysis for the Barkley method is shown in Fig . 3.4D with 
no-flux boundary conditions. We find that E^(x) « 10°, for values of 7V 
up to 8192 (solid bold curve). Also, the solution loses accuracy when TV is 
increased from 2048 (solid thin curve) to 4096 (dashed bold curve). 

We thus conclude that the pseudospectral methods C M D and Fourier, out­
perform those based on finite differences, F D and the Barkley method. In 
order to corroborate that C M D gives the correct solution, we find that the 
asymptotic speed of a planar wave is given by [224] 

In Fig . 3.5, we show that the converged value of c with C M D does indeed 
tend to ca as e —> 0. 

3.2.2 Spiral waves. 

We solve the 2D Fitzhugh Nagumo equations, Eq. (3.5), so as to give spiral 
wave solutions. Thus, Eq . (3.5) with (3.3) was solved with e = 0.005, 
a = 0.3, b = 0.01, Di = 1 as done in [190], over the square domain fl = 

(3.23) 

80 



Chapter 3. Pseudospectral method of solution 

[—30,30] x [—30,30]. The initial condition considered is 

u(x,y,0) = | 

v{x,y,0) = | 
(3.24) 

with c i = 5 and-C2 = 1 in Eq. (3.20), where (J and P|, refer to the union and 
intersection of sets, respectively. W i t h this initial condition, spiral waves 
are generated. Although a spiral wave develops at t = 1 for the initial con­
ditions given by Eq. (3.24), we study the spiral at t* = 8 which develops 
over the whole domain and has completed two rotations. 

Comparisons of the three methods, C M D , F D and the Barkley method, with 
no flux boundary conditions are presented in this section, and the results 
are summarized in Figs. 3.6 to 3.8. The Fourier method gives quite similar 
results as C M D and will not be considered for the convergence analysis. 

In Fig. 3.6, we show some contour plots of the numerical solution u(x, y, t*). 
In Fig . 3.6A, a comparison between F D with Dirichlet boundary conditions 
and TV = 512 points (x) , and the Fourier method with TV = 1024 (•) is 
shown. The solutions obtained with the Fourier method with TV = 512 
and TV = 1024 points, are undistinguishable from each other at this level of 
comparison. Therefore, for TV = 512, the Fourier method gives a converged 
solution whereas F D has not converged yet. 

Figure 3.6B shows that for C M D , the solution with TV = 442 (•) is indis­
tinguishable from the one with TV = 1432 (o). In Figs. 3.6C and 3.6D, the 
solution obtained with C M D with TV = 1432 (o) is compared with F D (x) 
and the Barkley method (0), both with TV = 512. The solutions given by 
F D and the Barkley method, converge more slowly than the results with 

A n alternate comparison of the different numerical methods is given by the 
ID profiles obtained from a slice of a spiral at y = —15 (horizontal dashed 
line in Fig. 3.6B) for a particular t. The slices shown in Figs. 3.7A, 3.7C 
and 3.7E, correspond to the spiral solutions shown in Figs. 3.6B, 3.6C and 
3.6D, respectively. Figure 3.7A confirms that the solution with C M D con­
verges rapidly as the profiles with TV = 442 (•) coincide with the profiles 
with TV = 1432 (o). The results in Figs. 3.7C and 3.7E show that the nu­
merical solutions with F D and the Barkley method have not converged with 

C M D . 
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N = 512. The departures from the converged solution are significant. 

The errors E^{xi) given by Eq . (3.22), for the ID solutions shown in Figs. 
3.7A, 3.7B and 3.7E with different numbers of points and the different nu­
merical schemes, are presented in Figs. 3.7B, 3.7D and 3.7F. In this case, 
u | x a c t ( t*) in Eq. (3.22) is the numerical solution obtained with C M D and 
N = 1432. 

In Fig . 3.7B, E^r(xi) is shown for C M D . The errors were calculated for 
N = 332 (dashed), 442 (solid), and 1102 (dashed bold). For F D and the 
Barkley method in Figs. 3.7D and 3.7F, respectively, the number of points 
considered were AT = 512 (dashed), 1024 (solid) and 1500 (dashed bold). 
From Fig. 3.7B, the error obtained with C M D with N = 1102 (dashed 
bold) is EN(X) « 10~ 2. The same accuracy cannot be obtained with F D 
nor the Barkley method with AT up to 1500 (Figs. 3.7D and 3.7F), where 
EN(X) > 1 0 _ 1 . The errors obtained with the Barkley method and F D with 
N = 1024 (solid lines in Figs. 3.7D and 3.7F), are comparable to the error 
obtained with C M D N = 442 (solid line in F ig 3.7B). In order to illustrate 
the evolution with time of the accuracy of the solution, we show in Fig . 3.8 
spirals for an integration time up to t* = 100. It is clear from Fig . 3.8 that 
the solutions for C M D with AT = 442 (•) and N = 882 (o) coincide. Thus, 
the solutions for C M D remain converged for this solution at long times. B y 
contrast, the solutions for F D (x) and the Barkley method (0), both with 
N = 512 points, differ significantly and also in comparison with the solution 
obtained with C M D with N = 882. 

A n important feature of a spiral wave is given by the trajectory of its tip as 
discussed in [191, 240]. From the results shown in Fig . 3.8, it is observed 
that the tip of the spirals obtained with F D and the Barkley method, do 
not coincide with the spiral tip given by the C M D method. This implies 
that the trajectories of the tip might not agree with each other. Based on 
the numerical comparisons presented, we conclude that the results obtained 
with the C M D method are the most reliable. 

The computational time (CPU) for the different numerical schemes was de­
termined versus N and At. The C P U was found to vary in accordance 
with C P U = + B. For kinetic model I, the values of the coefficients 
in this relationship are A = 4.69, and B = -1.97 for C M D , and A = 3.48, 
and B = 1.61 for F D , respectively. Thus, C M D with N = 442 is approx­
imately 5 times faster than F D and twice as fast as the Barkley method 
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with TV = 1024, with all three schemes providing the same accuracy. The 
variation of the C P U time versus ^ for the Barkley method lies below the 
line giving C P U versus ^ for the F D method. The C P U time decreases for 
the Barkley method with increasing S as expected. 

Angular speed. 

For particular choices of the parameters a, b and e, for kinetic model I, we 
obtain different trajectories of the spiral of the tip. The position of the tip is 
defined as in [189] by Barkley, that is, the intersection of the contours w = 5 
and f(u = 2, v) = 0. The trajectory of the tip depends on the local kinetics, 
as shown by Barkley [189, 191]. It goes from simple patterns, such as a 
circle, to more complicated flower like patterns [189, 191]. The trajectory 
of the spiral tip is referred to as spiral meandering [191] and is considered 
as an important aspect of cardiac arrhythmias. A n accurate description of 
this phenomenon is thus important. 

To calculate the angular speed, we have to restrict the parameters a, b and 
e, such that the tip of the spiral is a circle for which Barkley [191] used 
a = 0.52, b = 0.05 and e = 0.02. However, in this chapter we considered a 
square domain, different from the circular domain in [191], and our simula­
tions employed e = 0.0208, so as to give a good approximation to a circular 
trajectory. 

Equation (3.5) with (3.3) was solved over the rectangular domain [—7.5,7.5] x 
[—7.5, 7.5] up to a time t* = 40. The initial condition is given by 

with ci = 3 and c 2 = 1 in Eq. (3.20). 

We measure the position of the tip for the interval t G [20,40], with one 
unit of time between measurements. The data obtained was fitted to a 
circle. The results obtained for the rotational speed versus N and At for 
the different methods appear to converge faster than the wave speed in 
the ID situation, although to much fewer significant figures. In each case, 
we obtained for each method very similar results for pairs of values of iV 

otherwise 

otherwise 

(3.25) 
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and A t . For example, for C M D at t* = 30 we get for N and A t equal to 
(482,2.5 x 10~ 5), (642, IO" 5 ) and (884, IO" 5 ) , rotational speeds of 0.7608, 
0.7578 and 0.7614, respectively. For t* = 40, the rotational speeds are 
0.7460, 0.7474 and 0.7467. For F D and the Barkley method, are used N 
and A t equal to (512, I O - 4 ) and (1024,5 x I O - 5 ) . The rotational speeds for 
F D were 0.7527 and 0.7582 at t* = 30 and 0.7538 and 0.7449 at t* = 40, 
respectively. For the Barkley method, the rotational speeds were 0.7818 and 
0.7840 for t* = 30 and 0.7625 and 0.7677 for t* = 40 respectively. Although 
this comparison is useful, our results do not permit a definitive statement 
regarding the convergence of the different numerical methods. This could 
be due to the fact that the trajectory of the tip is not exactly circular. 

3.3 Numerical studies for kinetic model II. 

In this Section, we present a numerical study of the classical cubic F H N 
model, Eq. (3.4), with diffusion, which has been used by several authors 
[206, 212, 214, 227]. The parameters considered are e = 0.001, a = 0.1, 
b = 0.5 and A = 1. The numerical methods considered in the present 
section are F D and C M D . For kinetic model II, the Barkley method [190], 
cannot be applied for this model as stated in [198] because for kinetic model 
II the refractory period of u(t) (segment d-e in Fig . 3.IB) has an overshoot 
and setting u(t) = 0 if u(t) < S with 5 « 1 does not apply. 

3.3.1 Plane waves. 
Analogous to the study of ID waves for kinetic model I, we analyze the 
propagation of a ID pulse obtained with the initial condition, 

with ci = 17 and c 2 = 13 in Eq . (3.20). In Fig . 3.9, we show the profiles 
from left to right obtained for t* = 0,0.6,1.2 and 1.8 respectively. 

In Figure 3.9A, the agreement of the results with C M D for N = 552(») and 
N = 8802(o), is a demonstration of the convergence of the solution. We take 
C M D with N = 8802 as the "exact" converged solution. In Fig . 3.9B, the 
results with F D with = 512 (x) are compared with those attained with 

x > 0 
otherwise 

x < - 1 7 
otherwise 

(3.26) 
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C M D with N = 8802(o). It is clear that F D gives a very poor solution, as 
the pulse travels at much lower speed than the one obtained with the C M D 
method. W i t h N increased to 1024, the accuracy of the solution obtained 
with F D ((x) in Fig. 3.9C), improves noticeably, but the solution differs 
from the solution with C M D and TV = 552. 

A quantitative analysis of the speed of the pulse is shown in Tables 3.6 and 
3.7, for C M D and F D , respectively. For both methods, the convergence of 
the speed c is independent of the value of A i , provided a stable solution 
is obtained. The results in Table 3.6, confirm the rapid convergence of the 
results with C M D . We get the wavefront speed c to five significant figures 
with C M D for N = 1322, and to eight significant figures for N = 2752. By 
contrast, in Table 3.7 we show only four significant figures for the speed with 
F D for N = 8192. 

A study of the error given by Eq. (3.22) is shown in Fig . 3.10. The last 
profile in Fig. 3.9, obtained with C M D and N = 8802 is considered as 
u | T O C t ( i* ) (t* = 1.8). The variation of the error, EN(X), is shown versus TV 
for C M D and F D in Figs. 3.10A and 3.10B, respectively. The convergence 
with C M D with N = 552 (dashed), TV = 1322 (solid) and N = 3852 (solid 
bold) is clearly much faster than the convergence with F D with N = 512 
(dashed), N = 1024 (solid) and N = 8192 (solid bold). W i t h these choices 
for the number of grid points the error with C M D can be made as small 
as 10~ 8 over the whole interval whereas with F D it is only 10~ 2 within the 
interval of interest. 

To validate the numerical values of c in Table 3.6, we show the variation of 
c a / c versus e in Fig . 3.11 where the asymptotic speed ca is determined as 
done in [224] and given by 

3.3.2 Spiral waves. 
We also consider the simulation of spiral waves in 2D with the different 
numerical methods for kinetic model II. A spiral wave was initiated by con-

(3.27) 
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sidering the initial conditions 

u(x,y,0) = 

v(x,y,0) = 

0 {x < 0} \J{y > 5} 
u0 

0.15 
0 

otherwise (3.28) 
{a ;< l }n{y<-10} 
otherwise 

with c i = 5 and c 2 = 1 in Eq. (3.20). The parameters considered are e = 
0.001, a = 0.1, b = 0.5 and A = l over the domain f i = [-20, 20] x [-20, 20]. 

In Fig. 3.12, we present an analysis of the numerical accuracy of a spiral 
solution obtained with C M D and F D at time t* = 5, analogous to Figs 3.6 
and 3.7 for kinetic model I. A comparison of contour plots (u(x, y, t*) = 0.5) 
with the two different numerical methods is shown in Fig . 3.12A. The con­
tour solutions in Fig . 3.12A, were obtained with C M D with N — 1102 (o), 
N = 662 (•) and F D with N = 1024 (dashed). It follows that the C M D 
solution is converged with N = 662, whereas the solution with F D and 
N = 1024 is not converged. For the same solutions, a cut of the spiral at 
y = —10 and x £ [—20,20] (dashed straight line in Fig . 3.12A) is shown in 
Fig. 3.12B. In Fig . 3.12B, it is confirmed that the solutions obtained with 
C M D agree, whereas the solution obtained with F D with N — 1024 does 
not coincide with the C M D solution with N = 1102. 

In Figs. 3.12 C and D, the error E^{x) versus x, for C M D and F D , respec­
tively, at t* = 5 and y = —15 is shown for different values of N. In this case, 
u1xact(t*) is the numerical solution given by C M D with N = 1102. In Fig . 
3.12C, the error with C M D and N = 662 (solid) is of the same order as the 
error given by F D with N — 1500 (dashed bold) shown in Fig . 3.12D. 

In the same way as done for kinetic model I, the C P U time satisfies the 
relationship, C P U = + P>, with A = 7.49, and B = -6.01 for C M D 
and A = 5.18 and B = 1.154 for F D , respectively. In this case, C M D with 
Af = 662 is two times faster than F D with A^ = 1500. A more accurate 
solution has been achieved with C M D than F D with half the number of 
points and faster by a factor of 2. 

Angular speed for kinetic model II. 
We conclude the studies of convergence, by measuring the angular speed 
of the wave given by Eq. (3.5) with kinetic model II (Eq. 3.4) as done in 
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Section 3.2.2. We considered parameters in Eq. (3.4), such that the spiral 
tip trajectory is as close as a circle as possible. In this case the spiral tip 
was defined by taking the intersection of the two level curves, u = 0.5 and 
v = vmax/2, where vmax is the local maximum of f2(u,v) = 0 (Eq. 3.4), i.e. 
v = Au(l — u)(u — a). The initial condition is 

with ci = 5 and c2 = 1 in Eq. (3.20). The parameters considered in E q . 
(3.4) are e = 0.097, a = 0.098,6 = 0.55, A = 4 and the simulations were 
carried over the square domain = [—5,5] x [—5,5]. The simulations were 
carried out for a time t = 30. 

In this case, the results obtained with C M D give a faster rate of convergence 
than F D . However, similar to the studies for kinetic model I, the converged 
values have fewer significant figures than the values obtained for the speed 
of the ID pulse. As an example, for C M D at t* = 24 we get for the pairs 
(TV, At ) equal to (162,10~ 4), (322, 10~ 5), (482,10" 5) and (642, 5 x 10" 6 ) , ro­
tational speeds equal to 1.4824,1.4813,1.4822 and 1.4826, respectively. For 
t* = 30, the rotational speeds are 1.4910,1.4917,1.4923 and 1.4912. For 
F D at t* = 24 and pairs of (TV, At) equal to (256,10~ 4), (512,5 x 10~ 5) 
and (1024,10 - 5 ) we obtain rotational speeds equal to 1.4555,1.4780 and 
1.4826, respectively. For t* = 30, the rotational speeds are, 1.4503,1.4666 
and 1.4920. 

3.4 Operator splitting method for CMD. 

In this section, we apply the operator splitting method (OS) [232] to solve 
Eq . (3.5) for kinetic model I and II. Particularly, we restrict the use of the 
OS technique to C M D . The OS method has been proposed as an efficient 
algorithm to integrate reaction diffusion equations [233], and particularly 
excitable systems [232, 236]. It consist of solving the diffusion and the re­
action part in Eq. (3.16) as two uncoupled processes as described in [232], 
where a general description of this method is given. 

The values of A t = 10~ 4 and 10~ 5 for kinetic models I and II, used in the 
C M D method, were chosen for stability purposes. These values of A t are 

otherwise 

otherwise 

(3.29) 
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chosen by considering the range of the eigenvalue spectrum in the C M D 
second derivative operator matrix D^2). W i t h N = 442, the eigenvalues 
vary from 1 to 10 3 and this range increases as we increase the number of 
Chebyshev points per subinterval Nch with N„ fixed. The eigenvalue spec­
trum of D^2) appears to be independent of Ns. Therefore, the choice of A t 
for solving Eq. (3.5) numerically is restricted by the fast modes in D^2). 

In order to solve Eq . (3.5) for a time step A t with the OS method, we apply 
the Euler method to the diffusion term for k time steps with each step equal 
to whereas the reaction part was solved in time with forward Euler and 
size step A t . The boundary conditions were applied after advancing one 
time step ^ in the diffusion part. 

The spiral solution for kinetic model I at t* = 8 is shown in Fig . 3.13A, 
where the accuracy and efficiency of the OS method is evaluated. In Fig . 
3.13A, we show the solutions for C M D without OS (N = 442; solid) and 
with OS (N = 442 (•) and N = 386 (x)) . If we choose N = 442, A t = 0.002 
and k = 6, the solution with OS is ten times faster than without OS, but 
the accuracy is compromised. Comparable accuracy is obtained for OS with 
N = 442, and OS with N = 386, A t = 0.004 and k = 8. From a comparison 
of Fig . 3.13A and Fig. 3.6D, the solution obtained with the OS method with 
N = 386 gives a solution with the same accuracy as the Barkley method 
and N = 512, but the OS method is twice as fast. 

To get an idea of the computational time for kinetic model I, we consider 
the OS method with N — 386. The computational time to simulate one 
complete rotation of the spiral was 45 s, corresponding to 2.4 time units in 
the model. 

The results for kinetic model II are shown in Fig. 3.13B, where we compare 
the numerical solutions for C M D without (N = 662; solid), and with OS 
(AT = 662; (•) and N = 602 (x)) . The numerical solution with OS and 
N = 662, A t = 2 x I O - 4 and k = 4, gives a very good approximation to the 
converged C M D solution without OS with only a quarter of the computa­
tional time. A solution with the same accuracy as the one obtained with OS 
and N = 662 is given by OS with N = 602, A t = 0.0008 and k = 2. From 
Figs. 3.13B and 3.12A, the solution obtained with the OS method is some­
what less accurate than F D with N = 1024 (dashed in Fig . 3.12A). However, 
the computational time obtained with the OS method with N = 602 is up 
to 30 times faster than F D .with N = 1024. 
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Similarly, an estimate of the computational time for kinetic model II is 
considered for the OS method with N = 602. The computational time to 
simulate a complete rotation of the spiral was 130 s, corresponding to an 
approximate of 0.55 units of time. 

3.5 Summary. 
The objective of the present chapter was to develop accurate and fast algo­
rithms to solve partial differential equations of the F H N type. Such equa­
tions present propagation of shock like waves as in [226]. The Chebyshev 
multidomain algorithm proposed was based on a pseudospectral approach 
with Chebyshev-Gauss-Lobatto points considered previously by Olmos and 
Shizgal [226] and Don et al [197]. We corroborate that the Chebyshev mul­
tidomain approach is an efficient algorithm for solving equations involving 
shock like waves as done previously with Fisher's equation [226]. 

It appears that there has not been a comparable study of the convergence 
of different numerical methods for reaction diffusion equations of the F H N 
type. We compared Chebyshev multidomain with finite difference and the 
method proposed by Barkley [190]. Simulations were carried out for two 
F H N equations with different local dynamics. The first equation, named ki­
netic model I, was proposed by Barkley [190], whereas the second equation, 
kinetic model II, is the classic cubic F H N model discussed by Keener [215]. 

We have demonstrated the superiority of the Chebyshev multidomain ap­
proach with regard to accuracy and computational time in comparison with 
finite difference and the Barkley method as discussed in Sections 3.2 and 
3.3. The method developed by Barkley applies to a particular type of local 
dynamics, Eq . (3.3), and can be very fast but the results are compromised 
due to the decreased accuracy. The Chebyshev multidomain approach can 
be used to solve equations of the F H N type with more general local dynam­
ics as shown in Section 3.3. 

In Section 3.4, we implemented an operator splitting method for the Cheby­
shev multidomain approach for kinetic model I and II. W i t h the operator 
splitting scheme, the computational time for the solution of the F H N equa­
tions is considerably shorter than both the finite difference and the Barkley 
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method. For kinetic model I, for solutions with similar accuracy, C M D be­
comes two times faster than the Barkley method and 36 times faster than 
F D . Similarly for kinetic model II, C M D is 30 times faster than F D . Work 
is in progress on F H N equations with more complex ion kinetics as defined 
by the Beeler-Reuter equations [192] are considered in Chapter 4. 
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Table 3.1: Convergence of the wavefront speed versus N, for kinetic model 
I with the Fourier method and Dirichlet boundary conditions, e = 0.005, 

,b = 0.01, XL 30, xR = 30. 

N 128 256 512 1024 2048 4096 
c 8.9 9.0 9.0598 9.059835 9.059835 9.059835 

Table 3.2: Convergence of the wavefront speed versus N, for kinetic model 
I with C M D and no flux boundary conditions, e = 0.005, a = 0.3, b = 0.01, 
XL — —30, xR = 30. N = (Nch — 2)NS + 2 is the total number of grid points, 
with Ns = 40 subdomains and Nch is the number of collocation points per 
subdomain. 

Nch 13 20 30 50 
N 442 722 1122 1922 
c 9.05 9.059 9.05983 9.059835 

Table 3.3: Convergence of the wavefront speed versus N, for kinetic model 
I with C M D and no flux boundary conditions, e = 0.005, a = 0.3, b = 0.01, 
XL = - 30 , xR = 30. N = (Nch - 2)NS + 2 is the total number of grid points, 
with Ns subdomains and Nch = 13 collocation points per subdomain. 

Ns 
40 70 130 180 250 350 

N 442 772 1432 1982 2752 3852 
c 9.05 9.0598 9.05983 9.059835 9.0598358 9.0598358 
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Table 3.4: Convergence of the wavefront speed for kinetic model I with F D 
and no flux boundary conditions, e = 0.005, a = 0.3, b = 0.01, XL = —30, 
xR = 30. 

At \ N 128 256 512 1024 2048 4096 8192 
IO" 4 8 8 S\9 9T67) 9.033 9.04012 -
IO" 5 8 8 8.9 9.02 9.049 9.0559 9.05754 
IO" 6 - - 8.9 9.02 9.051 9.0575 9.05913 
IO" 7 - - 8.9 9.02 9.051 9.0577 9.05929 

Table 3.5: Convergence of the wavefront speed for kinetic model I with 
the Barkley method and no flux boundary conditions, e = 0.005, a = 0.3, 
b = 0.01, xL = -^30,0^ = 30. 

A t \ N 128 256 512 1024 2048 4096 8192 
10" -3 S = 10" 4 7 8 8.74 8.84 - - -

6 = IO" 5 7 8.430 8.7 8.85 - - -

io--4 5 = 10~ 4 7 8 8.797 8.944 8.9983 9.0213 -

5 = 10~ 5 7 8 8.900 9.003 9.0310 9.0386 -

10" •5 S = 10" 4 - 6 7.67 8.28 8.628 8.8252 8.93663 
S = 10~ 5 7.489 8.3 8.81 8.96 9.0138 9.0369 9.04782 

10" -6 5 = 10" 4 - - - - 4.85 6.718 7.7692 
5 = i o - 5 - 6 7.67 8.29 8.629 8.826 8.93819 
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Table 3.6: Convergence of the wavefront speed versus TY, for kinetic model 
II with C M D and no flux boundary conditions, e = 0.001, a = 0.1, b = 0.5, 
A = 1, xL = -20 , xR = 20. TV" = (Nch ~ 2)TVS + 2 is the total number 
of grid points, with Ns subdomains and Nch = 13 collocation points per 
subdomain. 

TVS 40 50 120 150 250 350 
TV 442 552 1322 1652 2752 3852 
c 17.5 17.59 17.625 17.6251 17.625152 17.625152 

Table 3.7: Convergence of the wavefront speed versus TV, for kinetic model 
II with F D and no flux boundary conditions, e = 0.001, a = 0.1, A — 1, 
b = 0.5, xL = -20 , xR = 20. 

TV 256 512 1024 2048 4096 8192 
c 15 16.8 17.42 17.574 17.612 17.621 
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Figure 3.1: Local dynamics of the spatially homogeneous case of Eq . (3.2) 
for kinetic models I and II. In A and C the phase portraits for kinetic model 
I (a = 0.3,6 = 0.01, e = 0.0001) and II (a = 0.1,6 = 0.5, e = 0.0001), 
respectively are shown. The origin is stable but excitable. For a proper 
initial condition (position a) the solution undergoes a long excursion before 
returning to the origin. In B and D, u{t) and v(t) for kinetic model I and 
II, respectively, are plotted versus time. 

94 



Chapter 3. Pseudospectral method of solution 

Figure 3.2: Numerical solution for kinetic model I, at a specific time, in a 
square domain of length 60 x 60 with (A) Dirichlet boundary conditions; 
(B) Periodic boundary conditions. The same initial condition, Eq . (3.20), 
was considered for both cases. 
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Figure 3.3: Time dependent profiles u(x, t*) versus x for t* = 0,1.66, 3.33, 5, 
for the propagation of a I D pulse with different numerical schemes for kinetic 
model I (Eq. (3.5) with (3.3)) and a = 0.3, b = 0.001, e = 0.005. (A) Fourier 
( • ) , F D (x) N = 512; (B) C M D with N = 442 points (•) (Ns = 40 and 
Nch = 13) and F D with N = 512 points (x) ; (C) C M D with N = 442 (•) 
and the Barkley method with N = 512 (0). For (A), Dirichlet boundary 
conditions u(—30, t) = u(30,t) = 0 and v(—30,t) = v(30,t) = 0.7 were 
applied. For (B,C), no flux boundary conditions. 
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Figure 3.4: Error, EN{X), (Eq. 3.22) versus x for the ID solution of Eq . 
(3.5) for kinetic model I and a = 0.3, b = 0.001, e = 0.005 at t* = 5. (A) 
Fourier method with N equal to 512 (dashed), 1024 (solid), 2048 (dashed 
bold), 4096 (solid bold); (B) C M D with NCH = 13 and N3 and N equal to 
(40, 442; dashed), (180,1982; solid) and (5.00,5502; solid bold); (C) F D with 
N equal to 512 (dashed), 2048 (solid) 8192 (dashed bold) and 16384 (solid 
bold); (D) Barkley method with N equal to 512 (dashed), 2048 (solid thin), 
4096 (dashed bold) and 8192 (solid bold). For the Fourier method, . exact it*), 
is the last profile in Fig. 3.3A obtained with Fourier and Af = 8192 points. 
For the rest of the cases, ufxact(t*), is taken to be the last profile in Fig . 
3.3C given by C M D with N = 9902 (A^ = 900, NCH = 13). 
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Figure 3.5: Convergence of the numerical wavefront speed obtained with 
C M D to the asymptotic speed ca as e —> 0, with a = 0.3, b = 0.01, D\ = 1. 
The asymptotic speed ca is given by Eq . (3.23). 
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(C) (D) 

Figure 3.6: Contour plots of the solution u(x,y,t*) of Eq . (3.5) for kinetic 
model I and a = 0.3, b = 0.001, e = 0.005, u = 0.5 at t* = 8. (A) F D , 
N = 512 (x) and Fourier TV = 1024 (•) ; (B) C M D with N = 442 (N„.= 40, 
Nch = 13) (•) and C M D with N = 1432 (JVS = 130, Nch = 13) (o); (C) 
F D with TY = 512 (x) and C M D with N = 1432 (o); (D) Barkley method 
with iV = 512 (0) and C M D with N = 1432 (o). (A) Dirichlet boundary 
conditions; (B-D) No flux boundary conditions. 
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Figure 3.7: Graphs on the left: ID profiles from cuts of the spirals at y = —15 
and x 6 [—30,30], as given by the different numerical schemes at time t* = 8 
for kinetic model I. For C M D NCH = 13. (A) C M D with N and NS equal 
to (442,40; (•)) and (1432,130; (o)); (C) F D with N = 512 (x) and C M D 
with N = 1432 (o); (E) Barkley method with N = 512 (0) and C M D with 
N = 1432 (o). Graphs on the right: Analysis of EN(X) error 
versus x for the profiles shown on the left. (B) C M D with N and 100 
NS equal to (332, 30; dashed), (442, 40; solid) and (1102,100; da­
shed bold); (D) F D with N equal to (512, dashed), (1024, solid) and (1500, 
dashed bold); (F) Barkley method with N equal to (512, dashed), (1024, 
solid) and (1500, dashed bold). The errors were calculated with respect to 
the numerical solution given by C M D with N = 1432. 
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Figure 3.8: Comparison of contour plots (u(x,y,t*) = 0.5) of the numerical 
solution of kinetic model I (Eq. (3.5) with (3.3)) for different numerical 
schemes at t* = 100. C M D with TV = 442 (Ns = 40, Nch = 13) (•) and 
TV = 882 (Ns = 80, Nch = 13) (o), F D (x) and Barkley method (0) with 
N = 512. 
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Figure 3.9: Time dependent profiles versus x at t* = 0,0.6,1.2,1.8, 
for the propagation of a ID pulse with different numerical schemes for kinetic 
model II and a = 0.1, b = 0.5, e = 0.001, A = 1. (A) C M D with Nch = 13 
and AT and Ns equal to (552,50; (•)) and (8802,800; (o)) ; (B) C M D with 
AT = 8802 (o) and F D N = 512 (x) ; (C) C M D with N = 8802 (o) and F D , 
AT = 1024 (x) . 
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Figure 3.10: Error, E^(x), (Eq. 3.22) versus x for the ID solution of Eq . 
(3.5) for kinetic model II and a = 0.1, b = 0.5, e = 0.001, A = 1 at t* - 1.8. 
(A) C M D with Nch = 13 and values of N and Ns equal to (552,50; dashed), 
(iV = 1322,120; solid), (N = 3852,350; solid bold); (B) F D with N equal 
to (512, dashed), (1024, solid), (4096, dashed bold) and (8192, solid bold). 
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Figure 3.11: Convergence of the numerical wavefront speed obtained with 
C M D to the asymptotic speed ca as e —* 0 with a = 0.1, b = 0.5, D\ = 1 
and A = I. The asymptotic speed ca is given by Eq. (3.27). 

104 



Chapter 3. Pseudospectral method of solution 
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Figure 3.12: Convergence analysis for the 2D solution u(x, y, t*) of Eq . (3.5) 
with (3.4) (kinetic model II) with e = 0.001, a = 0.1, A = 1 and b = 0.5 
and t* = 5. (A) Comparison of contour plots (u(x,y,t*) = 0.5) between F D 
N = 1024 (dashed) and C M D N = 662 (Ns = 60, Nch = 13) (•) and the 
converged solution obtained with C M D , N = 1102 (Na = 100, Nch = 13) (o); 
(B) ID profiles of u(x,-10,t*) versus x for F D N = 1024 (dashed), C M D 
TV = 662 (•) and the converged solution obtained with C M D , N = 1102 (o); 
(C) .Ejv(x) versus x for the profile shown in (B) for C M D with Nch = 13 
and values of N and Ns equal to (552,50 ; dashed), (662,60; solid), and 
(N = 882,80; dashed bold); (D) EN(x) versus x for F D N equal to (512, 
dashed), (1024, solid) and (1500, dashed bold). 
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Figure 3.13: Comparison of contour plots (u = 0.5) of the numerical solution 
of (A) kinetic model I for different numerical schemes at t* = 8. C M D with 
N = 442 (Ns = 40, Nch = 13) (solid), OS with N = 442 (•) and OS with 
N = 386 (Ns = 128, Nch = 5) (x) ; (B) kinetic model II for t* = 5. C M D 
with N = 662 (Ns = 60, Nch = 13) (solid), OS with N = 662 (•) and OS 
with N = 602 (Na — 200, Nch = 5) (x) . 106 
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Chapter 4 

Annihilation and reflection of 
spiral waves at a boundary 
for the Beeler-Reuter model. 
A n understanding of the propagation of waves in excitable media is a very 
important research area [252, 257, 270, 274]4. Particular attention has been 
given to the study of spiral waves [251, 252, 272, 273, 274]. A spiral wave 
is a self sustained wave that rotates freely or around some obstacle. In 
cardiology, it is thought that spiral waves, which have been observed ex­
perimentally in isolated cardiac tissue [249, 267], play an important role in 
the development of certain arrhythmias as well as in the onset of fibrillation 
[252, 263]. 

A very important feature of spiral waves is the behaviour of its tip, as dis­
cussed by Fenton et al [252] and Comtois et al [248]. For a particular set of 
parameters characterizing the medium, the spiral tip executes different tra­
jectories which can be circular or more complicated patterns [243, 261, 273]. 
This phenomena is referred to as spiral meandering and has been studied 
with different kinetic models [244, 251, 252, 273]. A second feature of the 
spiral tip, called spiral wave drift, is the response of the spiral wave to an 
external perturbation. Some examples of external perturbations, include 
interaction between two spirals [275], interaction of spirals with a boundary 
[256, 276] and the drift induced by light as in the Belousov-Zhabotinsky 
reaction [258]. 

In the present chapter, we study numerically a spiral wave in the meandering 
regime, and the drift effects of the boundary of the domain on the tip trajec­
tory of the spiral. In the simulations, we observe two different phenomena 

4 A version of this chapter has been submitted for publ ication. Daniel Olmos and Bernie 
Shizgal, Ann ih i la t ion and reflection of spiral waves at a boundary for the Beeler-Reuter 
model, Phys ical Review E. 
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due to the interaction of the spiral wave with a boundary, which are reflec­
tion, and annihilation of the spiral wave. Experiments in isolated cardiac 
tissue [249, 259, 260, 267], have been carried out to study the interaction of 
spiral waves with obstacles and the boundaries of the tissue. Davidenko et. 
al. [249], Pertsov et. al. [267], and Ikeda et. al. [259] showed annihilation of 
spiral waves at the boundary. Also, Ikeda et. al. [260], observed attachment 
of meandering spirals to an obstacle of some minimum size. Therefore, the 
phenomena of annihilation and reflection observed in the computer simu­
lations in this chapter, suggest that the interaction of spiral-boundary and 
spiral-obstacle not necessarily end in annihilation at the boundary or attach­
ment to the obstacle as observed experimentally. This is a very important 
issue in cardiology, and a proper understanding of the conditions that lead 
to the annihilation of the spiral at some inexcitable obstacle, can help in 
the development of techniques on how to eliminate arrhythmias generated 
by the spiral behaviour [251, 259]. 

Spiral drift due to boundary effects has been considered previously. It 
has been found experimentally [256] and studied numerically with no-flux 
boundary conditions [276]. Gomez-Gesteira et al. [256] considered the 
Belousov-Zhabotinsky reaction and found that the boundary affected the 
trajectory of the spiral tip. The trajectory moved along the boundary, 
whereas in other cases the spiral was annihilated at the boundary [256]. 
Yermakova and Pertsov [276], analyzed the effects of the boundary on the 
trajectory of the spiral tip that followed a circular path. B y considering 
no flux boundary conditions, they showed that the period of the spiral in­
creases when the core of the spiral is close to the boundary. Also, they 
showed that the center of the circular trajectory drifted at constant speed 
along the boundary giving as a result a trajectory resembling the shape of a 
trochoid. However, the case when the trajectory of the spiral tip meanders 
and traces a more complex pattern other than a circle has not been consid­
ered. 

The phenomena of meandering, also referred as compound rotation, was 
first noted by Winfree [271]. Figure 4.1 illustrates the two types of trajecto­
ries of the tip of a spiral wave constructed by considering the motion of the 
tip of the arrow attached to the small circle of radius h that rotates either 
on the inside or outside of the large circle of radius R. When meandering 
occurs, the trajectory of the tip executes a flower like pattern [243, 273], 
where the petals lie on a circle of radius R. When the petals lie outside the 
circle, the trajectory resembles a curve called a hypotrochoid (Fig. 4.1A), 
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whereas in the case the petals lie inside the circle, the trajectory resembles 
an epitrochoid (Fig. 4.IB). B y considering different parameter values in a 
particular model with excitable kinetics [243, 251], it is possible to take the 
limit R —> oo. In this case, which we refer to as the limiting Roc case with 
R » 1, the flower has almost an infinite radius and the petals lie essentially 
on a straight line. 

In the present chapter, we consider the case when a spiral meanders and 
interaction with the boundary takes place. The meandering effects observed 
are different and more complex compared to the case when the spiral tip 
follows a circular motion. 

When the spiral meanders and is close to the boundary (with no flux bound­
ary conditions), it is observed that the trajectory is annihilated or reflected 
by the boundary. In the case where the trajectory is reflected, the angle of 
reflection is not necessarily equal to the angle of incidence. Also, the reflec­
tion angle is very sensitive to the position along the spiral tip trajectory, at 
which the trajectory hits the boundary. Therefore, the main question we ad­
dress here is to find the conditions for which the spiral is annihilated at the 
boundary. In order to analyze the effects of the boundary on a meandering 
spiral, we focus attention on the degenerate i?oo limiting case. The infinite 
radius regime is just a transition from the outward petal to the inward petal 
flower tip trajectory and therefore is not a generic behaviour [243]. The 
analysis of the ROQ case, is considered due to its simplicity compared to the 
case of finite R. Near the boundary, the behaviour of the tip of a spiral 
can be approximated by the R^ case, and therefore, the results obtained 
for this limit may also provide an understanding for the case when R is finite. 

In Section 4.1, we present the model equations used in the numerical exper­
iments and we also provide a description of the numerical method employed 
in their solution. In Section 4.2, we present the results of numerical simula­
tions for different values of R, including the Roo case. Some of the boundary 
effects observed in compound rotation are shown for the i?oo c a s e m Sec­
tion 4.3. In Section 4.4, we present the phenomenon of annihilation at a 
boundary as a function of the incident angle of the trajectory obtained with 
the Roo case. In Section 4.5, an argument based on the reactivation vari­
able j for the sodium channels is discussed to explain the phenomenon of 
annihilation and reflection of a spiral at a boundary. Due to the complexity 
of the problem, we present a qualitative rationalization to explain why the 
probability of annihilation varies with respect to the incident angle of the 
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trajectory for the i?oo case (Section 4.6). Finally, we present some conclu­
sions in Section 4.7. 

4.1 Membrane models and numerical methods. 
Spiral wave dynamics in excitable media and particularly trajectories of the 
spiral tip, have been extensively studied with reaction diffusion partial dif­
ferential equations [251, 252, 273] as well as reduced O D E models [243, 246]. 
The simplest model used is based on the Fitzhugh-Nagumo equations which 
have been discussed by'different authors [250, 254, 262, 273]. 

In this chapter we considered the kinetic model given by Beeler and Reuter 
[245], which has more realistic dynamics than the Fitzhugh Nagumo equa­
tions. The Beeler-Reuter (BR) model, which is based on the Hodgkin-
Huxley formalism, consists of a set of eight coupled nonlinear ordinary 
differential equations described in [245]. The transmembrane potential V 
satisfies the equation 

dV 1 
= ~~~Q~ (lion ~ lapp) (4-1) 

where Cm is the membrane capacitance, Iapp is a stimulus current, and Iion 

corresponds to the sum of four ionic currents Ikl, IX1, INO. and Ica where 
their form is given by Eqs. (A.1-A.4) in Appendix A . J/v a is the fast inward 
current and is carried by sodium ions, whereas Ica, is the slow inward current 
and is carried by calcium ions. I^a and Ica are voltage and time dependent 
currents. Ikl, IX1 are the time independent and time dependent outward 
currents, respectively, carried mostly by potassium ions. IX1, I^a and Ica 

are controlled by gate variables. Each of the six gate variables satisfies the 
relationship given by Eq. (A.6) in Appendix A . The B R model also contains 
the equation that controls the intracellular calcium concentration of the cell 
and is given by Eq . (A.5). The B R model is extended to spatiotemporal 
dynamics by adding a diffusion term in the membrane potential equation 
(Eq. 4.1) giving 

^ = D V 2 V - ^ - (Iim - Iapp) (4.2) 

where D = a/SvCm is the diffusion coefficient for the isotropic case where 
a refers to the conductivity of the medium and Sv is the ratio of cell surface 
area per unit of volume [253, 262]. For this Chapter the values of D and 
Cm are 0.1 m m 2 m s _ 1 and 1/nFcm - 2 respectively [251, 252]. 
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The numerical method used in this chapter is a variation of the method con­
sidered by Olmos and Shizgal [266]. The present calculations were carried 
out over a square domain Q, = [—L,L] x [—L,L]. Due to the multiple spa­
tial and temporal scales in the B R equations (Eq. 4.2), we considered the 
operator splitting method [268, 269] to separate the diffusion and reaction 
processes. For spatial discretization, which is considered in the diffusion 
process, we used a non uniform grid as defined with a multidomain method 
based on Chebyshev collocation points [265, 266]. In order to solve the B R 
equations, we considered a procedure similar to the operator splitting al­
gorithm presented by Qu and Garfinkel [268] with some minor differences. 
The calculations for the reaction part were speeded up by dividing the do­
main Q into smaller squares II of size 30 points in each dimension. In each 
square II, we calculated the values \d2V/dx2\ and \d2V/dy2\ and as soon 
as either of these values were larger than 5 at some point (x*,y*) € II, we 
defined the whole square as a place where the front might be located. In 
the same way, all the eight squared neighbors of II were considered in the 
same way as the region II to assure correct propagation of the wavefront. 
We finally obtain two main regions, one where the fast changes in time and 
space occur and one with no fast changes. In the region where V changes 
very slowly (second derivatives less than 5), we solve the dynamics as in 
[268]. Because V changes slowly, we consider V as constant for a time step 
and solve Eq. (A.6) for V respect to time analytically, by taking Yi and T j 
constants for that interval of time. In order to calculate the a's and /3's in 
Eqs. (A.7) and (A.8), we proceed as in [251] where tabulated values given 
by step function approximations of ct(V) and P(V) as a function of V are 
considered. In LT, the region where fast changes of V occur, we solve Eq . 
(A.6) numerically with an explicit second order Runge-Kutta scheme with 
a time step A t = 0.01, four times smaller than in the region with no fast 
changes. For the multidomain approach used in this chapter [265, 266], we 
choose Ni = 150 and Ni = 180 subintervals with Nch = 5 points per subin­
terval, giving a total of N — 452 and N = 542 points in each dimension, 
respectively. The size of the domain is 2L x 2L with L = 40 mm. Conver­
gence to the solution for the one dimensional problem was obtained with 
N = 752 points. However, the results obtained with TV = 452 and N = 542 
points provided a very good approximation to the converged solution. 
In this chapter, we present studies of the evolution of the spiral wave tip 
in time. There are different ways to define the tip of the spiral and a good 
summary can be found in [252]. In this chapter, the tip of the spiral was 
calculated by taking a level curve of the V variable (V = —25 mV) , and then 
finding the point with largest curvature along this curve. The evolution in 
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time of the position of the tip defines a curve called the spiral tip trajectory. 

The computational time for the simulations considered in this Chapter is cal­
culated for the time that a spiral traces a complete rotation. When N = 452, 
a complete rotation takes about two hours to compute and represents about 
110 ms of simulation time. For ./V = 542, the same calculation takes almost 
four hours to compute. 

4.2 Numerical Results. 
Figure 4.2 shows the different spiral tip behaviours by taking the calcium 
conductance gs = 0.03 m S c m - 2 as done in [251], and varying Ej^a and g^a 

over a range of values. A circular trajectory, also known as simple rotation, 
is shown in Fig . 4.2A. The reminder of the figures portray the phenomenon 
referred as compound rotation. The trajectories shown in Figs. 4.2(G-J) 
have a shape very similar to a family of curves called hypotrochoids and are 
referred to have outward petal flower patterns as in Fig. 4.1 A [243]. On 
the other hand, the trajectory shown in Fig . 4.2E has an inward flower like 
motion as in Fig . 4.IB, very similar to an epitrochoid. Figures 4.2B and 
4.2F represent the transition from an inward to an outward flower like tip 
trajectory and they correspond to the case when the radius R in either 
case the hypotrochoid or the epitrochoid, goes to infinity. Figures 4.2(G-I) 
show that the trajectories undergo transitions from a 5 to 4 to 3 outward 
petal flower. The transition from Fig. 4.2G to 4.2H and the one from 4.2H 
to 4.21 occurs gradually and intermediate trajectories are similar to those 
shown in 4.2C and 4.2D. 

I focus attention to the parameter values gs = 0.03 mScm~ 2 , g^a = 2.38 
m S c m - 2 and N = 452 collocation points in each dimension, which give the 
Rev case. Wi th these parameters, the tip of the spiral wave meanders as 
shown in Fig . 4.2B, that is, it follows a straight line. Even though there 
appears to be pattern following a straight line, it is not possible to be certain 
that the R^ has been achieved. For practical purposes when R » 1 wil l 
be considered as the R^ case. In Fig . 4.3A, five trajectories are shown for 
different initial conditions for an integration time of t* « 1.75 s. The initial 
conditions were constructed following the procedure given in Appendix B 
with tg = 50 ms, c\ = 30, C2 = 25, a = 0 and varying the parameter yo 
from —10 mm to —14 mm with increments of 1 mm. As a result, the dif-
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ferent initial conditions are a copy of each other translated horizontally by 
a distance of approximately 0.8 mm. In Fig. 4.3A, all the trajectories hit 
the boundary and get reflected with the same angle for the first reflection 
but not the second. This response is due to the fact that each trajectory 
is an horizontal translation of the other. Therefore, the distance from the 
initial position of the tip trajectory to the boundary is exactly the same 
for all five trajectories. The time required for all the trajectories to hit the 
boundary for the first time is t — 0.596 s. However, when the trajectories 
hit the boundary a second time (Fig. 4.3A), the angles of reflection of each 
trajectory is different. Each trajectory has to travel a different distance from 
each other before hitting the boundary the second time. The corresponding 
times when the tip trajectories hit the boundary for the second time are 
t* = 1.0326,1.0376,1.0426,1.0476 and 1.0526 s, respectively. 

The trajectories shown in Fig . 4.3A are shown in Figs 4.3(B-F) for longer 
integration times up to 5 seconds. The initial position of the trajectory is 
marked with an asterisk. It is clear that the solutions follow completely 
different paths after the second reflection from the boundary. Moreover, in 
Figs. 4.3(B-D) it is shown that the spiral tip instead of being reflected at 
the boundary, annihilates as shown by the arrows at times t « 3.62,1.82 and 
3.22 s, respectively, ending the spiral motion. B y contrast, the trajectories 
shown in Figs. 4.3E and 4.3F, which are shown for times up to t ss 4.3 
and 3.62 s, respectively, remain inside the domain even for times as large 
as 5 s. The spiral tip in Figs. 4.3E and 4.3F was followed until the points 
indicated by solid circles. Notice also that in Figs. 4.3(B-D), the spiral tip 
hits the boundary 5, 3 and 5 times, respectively, before they annihilate at 
the boundary. The spiral tip in Figs. 4.3E and 4.3F gets reflected at the 
boundary 6 and 5 times respectively and they still remain in the domain. 

It is important to mention that spiral tips never actually touch the boundary 
when the spiral tip is reflected. The tip of a spiral touches the boundary 
only when the spiral gets annihilated. However, we refer to these two events 
in general as hitting the boundary. In the next Section, we discuss this con­
cept in a more precise way. 

The phenomenon of reflection and annihilation at the boundary also occurs 
for finite ii! , as shown in Fig . 4.4. In Figs. 4.4A and 4.4B, an outward 
petal flower pattern with R « 30 mm is shown, whereas in Figs. 4.4C and 
4.4D an inward petal flower with R ss 16 mm occurs. The radius R in these 
trajectories was estimated from the semicircles in bold in Figs. 4.4A and 
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4.4C, for R « 30 mm and R « 16 mm, respectively. In order to obtain the 
outward petal flower, the parameters in Eq . (4.2) are the same as in the 
i?oo case but with gjvo = 2.41 m S c m - 2 . We used analogous to the R^ case, 
two different initial conditions with yo = 10 mm and tg equal 50.5 and 51.5 
ms, such that each trajectory is a short vertical translation from the other. 
The corresponding trajectories are plotted in Figs. 4.4A and 4.4B for an 
integration time t* = 5 s. The initial positions of the spiral tip trajectories 
are marked with an asterisk, and the final position either by a solid circle or 
an arrow as in Fig . 4.3. From Figs. 4.4A and 4.4B, it is clear that after the 
first interaction with the right boundary, the response is exactly the same. 
However, at the second reflection, the angles of reflection at the bottom 
boundary are different. When the third reflection takes place at the left 
boundary, the trajectories in Figs. 4.4A and 4.4B get reflected a third time. 
Annihilation of the spiral wave occurs in Fig. 4.4B when the spiral tip hits 
the boundary for the fourth time (arrow), whereas for 4.4A, the trajectory 
still remains inside the domain (solid circle). 

In Figs. 4.4C and 4.4D the same phenomenon is shown for an inward petal 
flower pattern. To obtain this flower pattern, we considered the same pa­
rameters as in the i?oo c a s e a n d set g^a = 2.34 m S c m - 2 . In Figs. 4.4C 
and 4.4D, we show two spiral tip trajectories, where the initial conditions 
were calculated with the same procedure as in Figs. 4.4A and 4.4B and the 
integration time is t* = 5 s. The parameters were taken as yo = — 10 mm 
and tg equal to 85 and 83 ms, respectively. The trajectories for these two 
initial conditions are a small vertical translation from each other, until the 
tips of the spiral hit the boundary for the second time, where the response 
is completely different as shown in Figs. 4.4C and 4.4D (bottom boundary). 
In Fig. 4.4C the spiral tip is reflected the second time from the lower bound­
ary and then follows the bold semicircle and is reflected a third time also 
from the lower boundary. The trajectory in Fig . 4.4C involves six reflections 
with the spiral tip disappearing at the boundary ending with the rotating 
motion. B y contrast, the spiral tip trajectory in Fig. 4.4D, after the first 
reflection experiences reflections from the bottom and left boundaries and 
then subsequently appears to move laterally the right and upper boundaries 
without being annihilated (solid circle). The radius R for the movement of 
the spiral tip laterally along the boundary is difficult to calculate. 
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4.3 Boundary effects on the rotation period in 
compound rotation. 

The study of compound rotation is much more complex than in the case 
of simple rotation. In simple rotation, when the system has no external 
perturbations, a trajectory far from the boundary remains circular. How­
ever, when such a trajectory is close enough to the boundary, drift occurs 
[276] and the trajectory changes from a circle to a curve called a trochoid. 
Another phenomenon observed in [276] is that the rotation period decreases 
when the distance of the center of the circular trajectory to the boundary is 
decreased. Annihilation of the spiral wave when its tip trajectory is circular 
occurs when the tip trajectory is too close to the boundary as described in 
[264]. 

In compound rotation we focus on the R^ case to study the annihilation-
reflection phenomenon. By considering the Roc case we remove the variable 
R as a parameter, avoiding the possible complicated behaviours shown in 
Fig. 4.4D. Also, the trajectories obtained with the Roc case can be seen as 
a local linear approximation of a trajectory with finite R when the spiral tip 
is about to interact with the boundary. Therefore, studies with the Roo case 
will provide information about the annihilation-reflection properties for R 
finite. Then, for the following analysis we solve the standard B R equations 
[251] with gNa = 2.37 m S c m - 2 and gs — 0.03 m S c m - 2 with a fine grid in 
each spatial dimension and iV = 542 collocation points. W i t h these parame­
ters we obtain a trajectory of the tip with R » 1 which for practical effects 
is considered to be in the Roo case. 

Figure 4.5 shows two different reflections of a linear spiral tip trajectory 
from a boundary of the domain. In Fig . 4.5A we show a reflection of such 
a spiral tip and define the angle of incidence 6i, and the angle of reflection 
0r with the dashed lines which are tangent to the petals of the trajectory. 
For the Roo case, we consider that the trajectory tip has reflected from the 
boundary when there is a change in the direction of the line on which the 
petals lie and this direction is maintained for two or more spiral rotations. 
The tip is considered to hit the boundary at the first point along the tra­
jectory that reaches a minimum distance with the boundary (filled circle in 
Fig. 4.5A). A different type of reflection is shown in Fig . 4.5B, where there 
are two positions along the tip trajectory at which the minimum is reached 
(asterisk and filled circle). In this case, we consider the second point (filled 
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circle) as the place where the tip hits the boundary. 

Figure 4.6A, drawn for one rotation of the spiral wave, shows the trajec­
tory starting from the solid circle to the arrow. This curve defines a unit 
of trajectory and consists of a petal and an arc. The period of rotation 
for the chosen parameters is To = 120 ms and the arc length of the unit of 
trajectory is Lo = 24.8 mm. The trajectories are thus taken to be made up 
of consecutive unit trajectories. 

However, close to the boundary, the shape, length and period of rotation of a 
unit of trajectory are not the same as for those units far from the boundary 
as shown in Figs. 4.6(B-D). In Fig . 4.6B the unit of trajectory is conserved 
for the first two rotations of the spiral (starting from the asterisk) and for 
the third unit of trajectory (bold) the shape is changed, owing to the re­
flection from the boundary. The unit of trajectory after reflection (dashed) 
appears to be once again coincident with the first rotation before interaction 
with the boundary. A similar behaviour is observed in Fig . 4.6C. In Fig. 
4.6D the same behaviour as in Fig . 4.6(B-C) is observed, but in this case 
the trajectory disappears at the boundary. 

In Table 4.1 we compare the period of rotation TO and the arc length Lo for 
the first two units of trajectory (starting from the asterisk) which are far 
from the boundary, the unit of trajectory in bold, and the unit of trajectory 
in dashed, given in Figs. 4.6(B-D). In Table 4.1, the period of rotation and 
arc length the two trajectories (bold and dashed) in Fig . 4.6B have a re­
duced period of rotation and arc length respect to the first two units, which 
are far from the boundary. The opposite effect is observed in F ig . 4.6C, 
i.e. the period of rotation and the arc length of the unit trajectories in bold 
and dashed lines have increased relative to the first two units far from the 
boundary. The last case, given in Fig . 4.6D, shows that the unit trajectory 
in bold has shorter period and length than a normal unit (Table 4.1). In 
this case, the tip trajectory disappears at the boundary and no dashed unit 
exists. 
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4.4 Annihilation and reflection as a function of 
the incident angle. 

The results in Fig . 4.3 show that annihilation and reflection of a spiral wave 
can occur for the same #j. In order to understand the factors that determine 
absorption and reflection of spiral waves, we consider a fixed angle Oi with 
different initial conditions. A spiral tip trajectory with a specific incident 
angle 8i can be constructed as described in Appendix B . For the results that 
follow, we take g^a = 2.37 m S c m - 2 and gs = 6.03 m S c m - 2 with N = 542 
points, which we take as the Roo case. In order to obtain a trajectory with 
incident angle 9i = 120°, we choose initial conditions such that yo = 0, 
c i = 75 and c2 = 72 and a = 1.53. W i t h this procedure, the spiral tip 
trajectories shown in Fig . 4.7A, with tg = 105 ms and tg = 150 ms are 
prepared with the same 9i. In both cases the spiral tip disappears at the 
boundary. 

The trajectory at the right in Fig. 4.7A is an horizontal translation of the 
one at the left but with an extra petal. The extra petal is due to the different 
values of tg for each of the two trajectories. Wi th tg = 150 ms, the initial 
position (asterisk) of the tip trajectory is farther from the lower boundary 
by a distance A„ = 8.78 mm, than the initial position (asterisk) of the tip 
trajectory, with tg = 105 ms. The quantity A„ gives the distance travelled 
by the tip in the vertical direction during a complete rotation of the spiral 
wave. As a consequence an extra petal is observed for the trajectory on 
the right. Since A„ = A sin the wavelength A is the distance between two 
petals that are far from the boundary. If a third tip trajectory is generated 
with the same 9i but with the initial position of the tip 2A„ mm farther 
from the lower boundary than the initial position of the tip trajectory with 
tg = 105 ms, this new trajectory will have two extra petals compared to the 
trajectory obtained with tg = 105 ms. This third trajectory is found with 
tg = 195 ms. 

Two trajectories with initial positions separated by a vertical distance Xv 

such as in Fig . 4.7A, exhibit the same behaviour when the corresponding 
spirals hit the boundary, analogous to the situation in F ig . 4.3A for the 
first reflection. In Fig. 4.3A, the initial position of the tip trajectory is at 
the same distance from the boundary for all the trajectories and the same 
behaviour is observed. Therefore, the outcome of a spiral wave hitting the 
boundary is periodic as a function of the distance of the initial position of 
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its tip trajectory with respect to the boundary, and the period is In 
order to obtain trajectories such that the initial position of their tip trajec­
tory lie within the period Xv, we take values of tg € [105,150]. Different 
values of tg inside this interval, will give trajectories whose initial distance 
from the boundary is different from each other. The distance of the initial 
positions of the trajectories with tg = 105 and tg = 150 from the boundary, 
wil l differ exactly by A„ = 8.8 mm. Therefore, all the possible cases by 
which a spiral wave can hit the boundary for 9i = 120°, can be obtained by 
taking tg £ [105,150]. Taking a smaller interval for tg, wil l leave out cases 
by which the spiral wave can interact with the boundary, and a larger inter­
val wil l repeat cases by which the spiral wave can interact with the boundary. 

The trajectories with the spiral tips calculated with tg = 122,129 and 136 
ms are shown in Figs. 4.7(B-D), respectively. In Figs. 4.7(B-D), the initial 
positions (asterisks) of the trajectories with tg = 122,129 and 136 ms, are 
farther from the boundary by 3.3, 4.6 and 6 mm, respectively, than is the 
initial position (asterisk) of the tip trajectory with tg = 105 ms. 

W i t h tg = 105 ms, the tip trajectory changes its direction abruptly and 
then disappears at the boundary (Fig. 4.7A). When tg is increased to 122 
ms (Fig. 4.7B), the trajectory does not disappear at the boundary immedi­
ately but a new petal, shown in bold, is formed first. W i t h a further increase 
in tg, this new petal gets closer to where the trajectory hits the boundary. 
From Fig. 4.7C, the new petal moves until it appears before the tip hits the 
boundary. In frame D, a new spiral unit (bold) has been formed. The new 
spiral unit is completely formed when tg — 150 ms (Fig. 4.7A), as expected, 
by the definition of A^. The phenomenon of the creation of a new petal 
repeats as we increase further the value of tg above 150 ms. A new petal 
wil l be completely formed when tg = 195 ms, which gives a trajectory that 
starts A„ = 8.8 mm farther from the boundary than the trajectory obtained 
with tg = 150 ms. 

In Fig . 4.8, the trajectories were generated with the procedure in Appendix 
B, with y0 = - 2 0 mm, cx = 35, c 2 = 33, a = 0.123 such that 6t = 70°. 
Following the same procedure as for di = 120°, we consider two tip trajecto­
ries given by the values tg = 44 and tg = 71 (Fig. 4.8A). Analogous to the 
case with 9i = 120°, the trajectory at the right in Fig . 4.8A is an horizontal 
translation of the one at the left but with an extra petal. In this case, the 
initial position (asterisk) of the tip trajectory with tg = 71 ms is Xv — 8.9 
mm farther from the bottom boundary than is the initial position (asterisk) 
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of the trajectory with tg = 44 ms. Following the same reasoning as in the 
previous example (0; = 120°), we take representative values of tg G [44,71]. 
In Figs. 4.8B to 4.8D, we show three trajectories with intermediate values of 
tg equal to 52,60 and 67 ms, respectively. These three trajectories have the 
initial position (asterisk) of their trajectories, 2.7, 5.4 and 7.8 mm farther 
from the boundary compared to the initial position of the trajectory given 
by tg = 44. 

In Fig. 4.8A, where tg = 44 ms, the tip hits the boundary and the tip 
trajectory disappears. However, when tg is increased to 52 ms (Fig. 4.8B), 
the spiral wave gets reflected at the boundary. Therefore, annihilation and 
reflection of the spiral wave is observed with the same angle Bi. In Figs. 
4.8(B-D), we show the evolution of the change of the shape of the trajectory 
unit that interacts with the boundary. For tg = 71 ms (Fig. 4.8A), the dis­
tance from the initial position of the trajectory to the boundary, is farther 
A„ = 8.9 mm than the same distance for the trajectory with tg = 44 ms. 
Therefore, the response of the trajectories with tg = 44 and tg = 71 ms is 
the same. Increasing the value of tg beyond 71 ms wil l repeat the observed 
behaviour in Figs. 4.8(B-D), which illustrates the periodicity with period Xv. 

Annihilation of the spiral wave with Bi = 120° and annihilation and reflec­
tion of the spiral with Bi = 70° shown in Figs. 4.7 and 4.8, respectively, for 
different values of tg, suggests to question for which angles Bi annihilation 
is observed. Moreover, are there particular values of 0i that make more 
favorable the phenomenon of annihilation than others? Are there values Bi 
where annihilation does not occur? These questions are addressed in Fig . 
4.9, where we show the fraction F^Bi) of the spirals that are annihilated 
at the boundary as a function of the incident angle In this graph, we 
considered the range of angles from 20° to 160° with steps of 10°. For each 
angle 9i, we found a pair of parallel tip trajectories with a pair of values tg 
and tg, such that the initial position of the tip trajectory with tg is a dis­
tance A„ = Asin#i mm, farther from the boundary than the initial position 
of the tip trajectory with tg. As discussed for 9i = 120°, all the possible 
cases by which a spiral wave hit the boundary can be obtained by taking 
tg £ [tj,*2,] only. For this interval, the spiral has completed exactly one 
rotation. Therefore, we sample 20 to 30 tip trajectories for each angle Bi 
with equidistant values of tg between tg € [ig,^2,]. The equidistant values 
of tg E [*g,*g], correspond to different trajectories which their initial posi­
tion is farther from the boundary than the initial position of the trajectory 
obtained with tg and the distance by which they differ are multiples of \ v / 
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(number of sample trajectories). Notice that if we take a smaller interval 
than [tg,tp] for our sampling, we will leave out many cases by which the 
spiral tip can interact with the boundary as for this case, the spiral wil l 
have not yet completed a rotation. If we sample with equidistant values of 
tg over an interval larger than [tj ,^], then because of the periodicity given 
by A„, will imply that our sampling is not uniform anymore over the interval 
[£i,£ 2], biasing the results in Fig . 4.9. 

In Fig . 4.9, we show that for 9t 6 [20,50] and 8t G [150,160], every spi­
ral wave is reflected at the boundary. There is thus a range of values 
6i G (50,150), for which at least one spiral wave is absorbed at the bound­
ary. For 9i = 120, we find that all the trajectories considered are absorbed 
by the boundary. 

In order to understand the mechanisms that influence the annihilation and 
reflection of the spirals, it is necessary to understand the physical mech­
anisms occurring near the tip of the spiral during the trace of a unit of 
trajectory. In the next section, we present a study of the propagation of 
a wavebreak to understand the shape of a spiral tip trajectory; the same 
study wil l be helpful to understand what why we obtain annihilation and 
reflection of a spiral at a boundary. A rationalization of the results presented 
in F ig . 4.9, is considered in Section 4.6 after discussing the physical mech­
anisms involved in annihilation and reflections of spiral waves at a boundary. 

4.5 The role of excitability in controlling 
reflection and annihilation at the boundary. 

The reflection and annihilation of spiral waves at a boundary can be ex­
plained by considering the gate variable j G [0,1] in the B R equations 
(Appendix A ) . The variable j in the B R model controls the reactivation 
of the sodium channels, responsible for the initiation of an action potential 
(AP) [245]. The term m 3hj controls the opening and closing of the sodium 
gate, where at rest m « 0, h « 1 and j « 1. At the beginning of the 
A P , m approaches 1 on a very fast time scale while h and j remain near 
1, such that m 3 / i j « 1. At this stage the g N a = gNam zhj conductance is 
maximized, giving a large influx of sodium ions, responsible for the depo­
larization of the cell. However, after a few milliseconds, the inactivation 
variables h and j approach zero, so that w?hj « 0, and then the sodium 
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conductance ~gNa « 0, terminating the depolarizing current. Another exci­
tation is prevented until the parameters h and j get close enough to 1. The 
reactivation parameter j sets the time when the medium is ready to accept 
another A P . This suggests that when the tip of a spiral hits the boundary, 
the spiral wave will be annihilated if the gate variable has not sufficiently 
recovered at regions near to the tip of the spiral wave, so as to accept an A P . 

In order to clarify this assertion, we present an analysis of the propagation 
of an A P in one dimension and the response to an external stimulus. In Fig . 
4.10A, we show the propagation of an A P , from left to right, where V (solid 
line) and j (dashed line) are plotted versus x. In this case, the propagating 
pulse is generated by applying a stimulus current Iapp, as given in Eq . (B . l ) , 
with c\ = 100, C2 = 95 and a = 0, for the first millisecond. 

Following the study of Glass and Josephson [255] for the propagation of a 
pulse on a ring, we apply a second stimulus at x = —47.5 (filled circle) after 
the first propagating pulse has passed the location x = —47.5. The results 
of applying the stimulus at t* = 280 ms and t* = 240 ms are summarized 
in Figs. 4.10B,C and 4.10D,E, respectively. The stimulus has the form of 
Eq . (B. l ) with ci = 50, c 2 = 45 and a = 0. In Figs. 4.10B and 4.10D, 
we show the plot of V and j after the stimulus has been applied, at times 
t* = 280 ms and t = 240 ms, respectively. In both cases (Figs. 4.10B and 
4.10D), the variables V and j at the location where the stimulus was applied 
show a peak, product of the stimulation, where V raises up to 0 m V and 
j approaches to zero. For the case t* = 280 (Fig. 4.10B), the stimulation 
occurred when j is more than 98% recovered as shown by the value of j 
inside the small box (Fig. 4.10B) next to the stimulus. Due to the high 
recovery level of the j gate next to the point where the stimulus is applied, 
two new A P s are generated at the stimulus location (Fig. 4.10C), one that 
propagates in the direction of the original A P and a second one going in 
the opposite direction, as indicated by the bold arrows in Fig . 4.10C. A 
different result is obtained when the stimulus is applied at t = 240 ms (Figs. 
4.10D,E). From Fig. 4.10D, the stimulation occurred when the j variable is 
recovered within the range [75%, 95%], as shown by the values of j inside 
the small box (Fig. 4.10D) next to the stimulus location. In this case, one 
A P in the opposite direction to the original pulse is generated, as indicated 
by the bold arrow in Fig . 4.10E. However, an A P could not be generated in 
the same direction as the original pulse (Fig. 4.10E). The reason is that at 
the region on the left of the location stimulus, j is recovered above 95% and 
an A P propagates, whereas on the right of the location stimulus, the gate j 
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is less than 75% recovered, blocking the propagation of an A P . 

The principle that an A P cannot be generated if j is not completely recov­
ered is applied to study spiral waves and their interaction with a boundary. 
Prior to the analysis of the effects of the tip trajectory near the boundary, a 
discussion of the evolution of a wavebreak, as a function of the excitability 
of the medium, similar as the one in [251], is presented. A n analogy of the 
propagation of a wavebreak and the front near the tip is considered after­
wards. 

In Fig . 4.11, a wavebreak [251], which consists of a plane wave with a free 
end, is shown. The initial profile of the wavebreak is shown at the left side 
on Fig . 4.11 (Panel A ) . The direction of propagation of the front is from left 
to right as shown by the arrows. The shaded area behind the propagating 
plane front indicates the region that is in excited state. The point 'c' indi­
cates the position where the wavebreak is located. 

Each point in the propagating front far from point 'c', influences the excita­
tion of places that are completely recovered, located to the right of the front, 
within a distance of p/2 as shown in Fig . 4.11 (Panel A ) , by the semicircle 
with center at the point 'a'. In the same way, a point 'b' to be excited by 
the front, is affected by the points located at the propagating front that are 
a distance less than p/2 of point 'b'. Then, each point at the front far from 
the broken end (point c) propagates at the same speed, giving a uniform 
advance of the front. At the broken end (Point 'c' in Fig . 4.11, Panel A ) , 
the points near 'c' (within a distance of p/2 at the front) have to excite a 
larger area (shaded region), than points at the front far from 'c'. 

Each of the panels B , C and D in Fig. 4.11, shows the evolution in time of the 
propagating wavebreak in Panel A at two different times, t\ and t2, for val­
ues of g^a equal to 1.9 m S c m - 2 , 2.0 m S c m - 2 and 2.1 m S c m - 2 , respectively. 
As discussed in [251], the excitability of the medium, which is the inverse of 
the threshold of excitation, increases as the value of g^a increases. The case 
in panel B , where g^a = 1-9 m S c m - 2 , represents the low excitability regime. 
In this case, the depolarizing current generated at a neighborhood of point 
'c' is not large enough to excite the poin t 'd ' , and by logic, any other part 
that lies at the bottom part of the three quarters of circle. Therefore the 
propagating front shrinks (Panel B) until it disappear at the boundary. In 
the critical case, g^a = 2.0 m S c m - 2 , the depolarizing current at a neighbor­
hood of 'c' in panel A , can excite point 'd ' , but not any other point below 
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'd ' , giving as a result the propagation of a wavebreak that neither shrinks 
nor grows as shown in panel C, with the two consecutive fronts. Finally, in 
Fig. 4.11 (panel D), the case of high excitability (g^a = 2.1 m S c m - 2 ) is 
considered. In this case, the depolarizing current at a neighborhood of 'c' is 
able to excite po in t 'd ' plus, part of the shaded area below poin t 'd ' , giving 
as a result a developing of a spiral wave (panel D). 

The analysis of Fig. 4.11 for the propagation of a wave in a medium, where 
the conductance provides a measure of excitability, can be thought of as 
the propagation of a wave in regions where the activation variable j in the 
B R model is in different stages of recovery. In regions where the sodium 
channels are in the process of reactivation (0 < j < 0.7), can be seen as 
regions of low excitability, whereas in regions where the sodium channels 
are activated (j > 0.96) can be seen as regions of high excitability. 

In Figs. 4.12 and 4.13, the contour plots of the recovery variable j are shown. 
The area in white is the part where the j gate is at least 85% recovered and 
can accept propagation of an action potential. The colored areas denote 
different stages of j in the process of recovery, where the widest colored area 
denotes a recovery of at most 20%, which means that the gate j is closed. 
The narrower bands are intermediate stages of between 20% and 85% and 
their range is 20% to 40%, 40% to 70% and 70% to 85%. The black dot 
filled in white denotes the location of the tip of the spiral at a given time. 
In Figs. 4.12 and 4.13, 9i = 80 and the value of tg is equal to 68 ms and 56 
ms, respectively. 

In Fig . 4.12A, the tip of the spiral is located at a petal. In this case, the 
front propagates over a region that is almost completely recovered facili­
tating the propagation and therefore, the tip follows a pattern with large 
curvature. This is analogous to the case of high excitability in the medium 
for the wavebreak propagation (Fig. 4.11). The tip of the spiral can be seen 
as the point 'c' in Fig . 4.11 (Panel A ) , propagating over a highly excitable 
region. 

In Fig . 4.12B, the tip now is located at an arc. In this case, notice that the 
front propagates through a medium that is not completely recovered. As a 
consequence, the large curvature of the tip trajectory cannot be executed 
by the spiral. This is analogous to the case where the wavebreak propagates 
on a medium low or moderate excitable. 
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In Fig. 4.12C, the tip of the spiral gets really close to the boundary of 
the medium and the tip trajectory gets deformed from its original periodic 
shape. Again, we consider the case where the wavefront near the tip behaves 
like the wavebreak near the point 'c' in Fig. 4.11 (Panel A ) . Very close to 
the boundary, the region given by the shaded area in Fig . 4.11 (Panel A) 
gets shortened as part of the three quarters of the circle lies outside the com­
putational domain. Therefore, for this smaller region, the amount of current 
used for activation is the same as if the three quartered circled region were 
still complete. Therefore the chance of activating a region near the bound­
ary increases. This explains the deformation of the spiral tip trajectory in 
Fig. 4.12C. Moreover, the front next to the tip of the spiral continues to 
propagate as the region ahead of it is now recovered and then reflection at 
the boundary is observed as shown in Fig. 4.12D. 

In Fig . 4.12C, when the region near the tip, that in the absence of the 
boundary cannot be excited, gets excited, the unusual front propagating in 
this region encounters the waveback of the previous excitation of the spiral. 
Then, the propagation of the new front near the tip takes place on a region 
that has low excitability, just like being in an axe of the unit of a trajectory 
(Fig. 4.12D). Under this conditions, the angle of the line at which the petals 
lie, is changed (Fig. 4.12D). 

The phenomenon of annihilation is summarized in Fig . 4.13. In Fig . 4.13A, 
we show again that when there is a region almost or completely recovered 
ahead of the front, the tip of the spiral wave traces a long curvature curve 
generating a petal. In Fig . 4.13B, the tip of the spiral has almost arrived 
at the boundary of the domain and is propagating over a region that is not 
recovered. Although there is more current available to stimulate the region 
near the boundary (part of the shaded three quarters of circle in Fig . 4.11 
falls outside the domain), it is not sufficient to excite what has not been able 
to recover. Therefore the tip of the spiral wave leaves the domain as shown 
in Fig . 4.13C. Finally, in Fig . 4.13D the spiral is not sustained anymore 
as the tip has disappeared at the boundary giving an end to the the spiral 
wave motion. 

This analysis is consistent with the result presented by Yermakova and 
Pertsov [276] for the interaction of a circular spiral tip trajectory with a 
boundary. They observed that the curvature of the trajectory (a circle) in­
creased near the boundary. This is consistent with the idea whereby the 
spiral tip trajectory near the boundary behaves as a wavebreak as shown in 
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Fig. 4.11 (Panel A ) , where part of the shaded region lies now outside the 
integration domain. The immediate consequence as discussed throughout 
this section is an increase in the curvature in the tip trajectory. 

4.6 A rationalization of the fraction of 
trajectories annihilated, F A ( ^ ) , Fig. 4.9. 

Figure 4.9, shows the variation of the fraction of trajectories annihilated 
versus the incident angle di. It was shown in the previous section that anni­
hilation was due to the incomplete recovery of the j variable in regions where 
the front has to propagate in order to stay inside the domain as shown in 
Fig . 4.13. From this observation, we suggest that when annihilation occurs, 
the intersection of the tip trajectory with the boundary takes place at an arc 
of a unit of a spiral. This is anticipated, as the propagating region near the 
tip is in its less recovered regime when the tip is located at an arc, making 
more difficult for the front to propagate into such a region. Figure 4.14A, 
shows a series of trajectories for different angles for which annihilation is ob­
served. Notice that in all cases, the trajectory hits the boundary with an arc. 

From Fig. 4.14A, the trajectory with 9i = 140° has a supplementary inci­
dent angle of 8S = 40°. When 0i is larger than 150°, the trajectory, hits 
the boundary with the arc portion of the spiral unit and the supplementary 
incident angle between is small (6S < 30°). From the discussion at the end 
of the previous section, we know that the tip trajectory gains curvature near 
the boundary. Therefore, in this case the boundary effects does not allow 
the trajectory to leave the domain. 

When 6i = 140°, reflection and annihilation are observed (Figs. 4.14A and 
4.14B). From Fig. 4.14A, the tip hits the boundary when it is located at a 
very early stage of an arc (bold curve), giving annihilation. For the same 
angle, the tip hits the boundary when it is located at a later stage in the arc 
(bold), giving reflection of the tip (Fig. 4.14B). From the previous section, 
we know that at an arc the excitability of the medium is low whereas at a 
petal it is high. However, Efimov et. al. [251] show that the threshold of 
excitation takes its largest value at the beginning of an arc and gradually 
decreases until it reaches a minimum value at a petal, increasing the chance 
of excitation. From the same paper [251], we know that an increase of the 
threshold of excitation is equivalent to a decrease of excitability. Therefore, 

130 



Chapter 4. Annihilation and refection of spiral waves 

boundary effects at later stages of the axe in a unit of trajectory are more 
effective bending the tip trajectory than at the beginning of the arc, where 
excitability has its lowest value. Figure 4.14B, where different examples of 
trajectories when reflection occurs, shows that the intersection of the tip 
trajectory and the boundary, occurs at a later stage of the arc or at a petal. 
The same phenomenon occurs for € [90°, 150°]. 

In the case 9i = 120° (Fig. 4.7), annihilation of the spiral wave occurs re­
gardless of the stage of the arc at the moment of hitting the boundary. In 
Fig. 4.7A, annihilation of the spiral occurs because the two trajectories hit 
the boundary at early stages of an arc, so that bending due to boundary 
effects is not strong enough to change the direction of the trajectory. In Fig . 
4.7B, for tg = 122 ms, the trajectory turns to the left almost parallel to the 
boundary due to boundary effects. At this stage, the medium where the 
wave propagates is now ready to be activated and a petal is formed. At the 
end of the petal (end of bold line in Fig . 4.7B), the region where the front 
needs to propagate to remain inside the domain, is now at its maximum 
level of refractoriness (lowest excitability) as a new petal has just formed, 
leading to the annihilation of the spiral. The same phenomenon is observed 
in Figs. 4.7C and 4.7D, for tg = 129 and 136 ms, respectively. 

When 8i < 50°, no annihilation of the spiral tip is observed. A representa­
tive example is given by the trajectory with 6\ = 40° in F ig . 4.14B. When 
9 < 50°, the spiral tip generally touches the boundary when it is located at 
a petal portion or at a very late stage of the arc portion of the spiral unit 
of trajectory. When the tip moves along an arc portion, because neither 
the incidence angle nor the length of the arc are too large, the trajectory 
does not have the time to reach the boundary (in the arc portion), when a 
petal is suddenly formed (0; = 40° in Fig. 4.14B). When the tip, located at 
the petal portion of a spiral unit, hits the boundary, reflection of the tip is 
observed as discussed in Section 4.5 for Fig . 4.12. 

Finally for 9i e [50°, 90°], the probability of the spiral being annihilated at 
the boundary increases as Ot increases (Fig. 4.9). When 0; is close to 50° and 
annihilation is observed, the tip hits the boundary with the later stage of an 
arc due to the presence of the petals which in this case face the boundary 
(Fig. 4.14A). Near 9{ = 90°, the tip can hit the boundary at an early and 
a later arc portion of a spiral unit. Then, there is a higher probability for 
the tip to hit the boundary, when the tip is located at an arc, for 9{ close to 
90° compared to 9i close to 50°. Because the probability of annihilation in-
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creases when the tip is located at an arc, it gives the increasing dependence 
of FA(0i) on Oi for 6>; e [50°, 90°] in Fig . 4.9. 

Therefore, we can summarize in a general way when annihilation is observed. 
For incident angles smaller than 80° a trajectory has larger probability of 
hitting the boundary with a petal or with the later stage of the arc, than 
for angles larger than 100°. W i t h only this argument, the probability of 
annihilation is lower for Bi < 80° than for Bi > 100°. However, this is not 
the case for angles larger than Bi = 150° (Fig. 4.9). In this case, the tra­
jectories always hit the boundary with an arc, but as discussed in previous 
paragraphs, boundary effects are able to keep the tip inside the domain. 

4.7 Summary. 

In this chapter, the phenomenon of annihilation and reflection of a spiral 
wave at a boundary for the Beeler-Reuter model, was considered. The Roo 
case, in which the petals of the tip trajectory lie on a straight line, was 
studied numerically in detail. The case where a spiral tip traces a trochoid 
of finite R (Fig. 4.1), is very complex to study compared to the R^ case, 
as can be clearly seen in Figs. 4.3 and 4.4. However, the tip trajectory near 
the boundary for the case with finite R, where reflection and annihilation 
take place, can be approximated by the tip trajectory given by the R^ case. 
Therefore, the results obtained with the Roo case can be applied to under­
stand annihilation and reflection when R is finite. 

In Section 4.4, by considering trajectories in the Roo case, it was shown 
that annihilation of the spiral depends strongly on the angle of incidence Bi 
with respect to the boundary. For angles above Bi = 150° and below 50°, 
no annihilation was observed. For Bi £ [50°, 150°], both, annihilation and 
reflection of the tip of the spiral was observed (Fig. 4.9). 

In order to understand the results in Fig . 4.9, an analysis based on the re­
covery gate j in the B R model was considered. This variable is responsible 
for the local reactivation of the Na channels, and a lack of recovery will 
forbid the activation of an A P at such location. Therefore, in Section 4.5 
we present an analysis to understand the role of the j variable in accepting 
an A P . In the same section, it was considered the effects of the impermeable 
boundary on the propagation of A P in two dimensions. This analysis was 
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based in the understanding of propagation of a wavebreak in a medium with 
different degrees of excitability. This section (4.5), ends with a qualitative 
explanation for annihilation and reflection of a spiral at the impermeable 
boundary. 

Based on the arguments presented in Section 4.5, a qualitative explanation 
of Fig . 4.9 was shown in Section 4.6. In this section, we discussed how the 
different angles of incidence of the spiral tip trajectories affect the way the 
tip interacts with a boundary. A quantitative understanding of this phe­
nomenon is a very difficult task. This is mainly due to the effects of the 
impermeable boundary on the spiral tip trajectory. 

The analysis presented in this chapter bridges a couple of observations about 
simple rotation. In the case of simple rotation, when the tip hits the bound­
ary the spiral wave annihilates as shown by Krinsky et al [264]. However, the 
studies presented by Yermakova and Pertsov [276], show that if the circular 
trajectory is close enough to the boundary an increase in the curvature is 
observed. From the studies presented in this chapter, the results in [264] 
and [276] correspond to annihilation and reflection of the wave, respectively, 
with the corresponding arguments as discussed in Section 4.5. 

The studies presented in this chapter play a very important role when a 
spiral wave interacts with an anatomic obstacle [260, 267]. It has been ob­
served experimentally that a spiral wave, in the presence of an obstacle of 
some minimum size, anchors to the obstacle [260, 267]. In the same way, it 
has been observed that annihilation of a spiral wave occurs at a boundary 
of isolated tissue [267]. The results presented in this chapter, extend these 
ideas to the possibility of the avoidance of attachment of the spiral to the 
obstacle and the annihilation of the spiral at the boundary. 
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Table 4.1: Measure of the total length Lo in millimeters, and period of 
rotation TO in milliseconds of a unit of trajectory for three cases shown in 
Figs. 4.6(B-D) Notice that for case D corresponding to Fig . 4.6D, there is 
no information available for the dashed unit of trajectory, as the trajectory 
was annihilated at the boundary. 

B C D 

Lo TO Lo TO Lo TO 
First two 24.8 120 24.8 120 24.8 120 
Bold 16.46 78 25.2 121.7 22.5 108.7 
Dashed 22.38 110.4 26.58 133.14 - -
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Figure 4.1: Compound rotation or flower like trajectories, resemble two 
different curves (A) Hypotrochoid for outward petal flowers (B) Epitrochoid 
for inward petal flowers. A hypotrochoid is the trajectory traced by the 
arrow at the end of a small line segment of length r attached to the center 
of a small circle of radius h, that rotates on the inner side of a circle of 
radius R. A n epitrochoid is obtained in the same way, but the rotation of 
the circle of radius h takes place on the outer side of the circle of radius R. 
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9 N a 

Figure 4.2: Spiral tip trajectories obtained with the B R model with respect 
to two parameters, g^a and E^a- gs was taken as 0.03 m S c m - 2 in all 
cases. Trajectory E is an inward petal flower, C, D, G , H , I are outward 
petal flowers whereas B and F represent the i?oo case. The units for the 
conductance gs and E^a are in m S c m - 2 and in mV, respectively. The 
calculations considered N = 332 points in each dimension. 
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(A) (B) (C) 

(D)" (E)" (F) 

Figure 4.3: Spiral tip trajectories with the B R model with g^a = 2.38 
m S c m - 2 and gs = 0.03 m S c m - 2 . This is the case. (A) Five tip tra­
jectories. Each trajectory is a a small horizontal translation of the others; 
(B-F) The same trajectories as in (A) but for a longer integration time. 
The initial point of each trajectory is marked with (*) and the end of the 
trajectory is shown with (•). The filled arrow indicates the place at which 
the trajectory leaves the domain; x and y are in mm; N = 452 points in 
each dimension. 
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( C f (D) 

Figure 4.4: Spiral tip trajectories with the B R model with gs = 0.03 
m S c m - 2 and (A,B) 9Na = 2.41 m S c m - 2 ; (C,D) gNa = 2.34 m S c m - 2 . For 
the pairs (A,B) and (C,D), each of the trajectories is a small vertical trans­
lation of the other. The initial point of the trajectory is marked with (*), 
the end of the trajectory is shown with (•). The filled arrow indicates the 
place at which the trajectory leaves the domain. For (A,B) yo = 10 mm and 
tg = 50.5 and 51.5 ms and for (C,D) yo = —10 mm and tg = 85 and 83 ms, 
respectively; x and y are in mm; N = 452 points in each dimension. 
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Figure 4.5: Quantities associated with reflections at the boundary. Dashed 
lines indicate the direction of the trajectory of the tip (A) &i and 9r are the 
incident and reflected angle is 95°. The filled circle is the place where the tip, 
hits the boundary; (B) A special case of reflection at the boundary. There 
are two points where a minimum with the boundary is reached (asterisk and 
filled circle). The filled circle point is the one considered to be the point at 
which the tip hits the boundary; g^a = 2.37 m S c m - 2 , gs = 0.03 m S c m - 2 

and the rest of the parameters are as in the standard B R model. 
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^-20 

Figure 4.6: (A) A unit of a spiral tip trajectory far from the boundary for the 
Roo case. It consist of a petal and an arc. The total arc length is Lo = 24.8 
mm; (B-D) Effects of the boundary on the spiral tip units. The first two 
units are unaffected by the boundary, whereas the bold and dashed units 
are the ones affected by the boundary. The filled circle indicates the place 
where the tip hits the boundary; Parameters as in Fig. 4.5. 
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Figure 4.7: Spiral interactions with the boundary for an incident angle of 
Bi = 120°, and different values of tg. (A) Trajectories with tg = 105 (left) 
and tg = 150 (right); (B-D) Tip trajectories with tg = 105 ms (left) and t(J = 
122,129 and 136 ms, respectively. The filled circle in each plot, indicates the 
position along the trajectory at which the tip hits the boundary. Parameters 
as in Fig . 4.5. 
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Figure 4.8: Tip trajectories with = 70°, and different values of tg. (A) 
Tip trajectories with tg = 44 (left) and tg = 71 ms (right), respectively; 
(B-D) T ip trajectories with tg = 44 ms (left) and tg — 52,60 and 67 ms, 
respectively. The filled circle in each plot, indicates the position along the 
trajectory at which the tip hits the boundary. Parameters as in Fig . 4.5. 
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Figure 4.10: (A) Propagating pulse for the B R model in ID . gs = 0.03, 
gNa = 2.37 m S c m - 2 . V (solid) and j (dashed) are plotted versus x at 
a fixed time. A stimulus is applied at x = —47.5 mm (•) at times (B) 
t* = 280 and (D) t* = 240 ms; (B) The gate variable j is above 
98% recovered at the position at which the stimulus is applied; 144 
(C) Response of the stimulus applied at t* = 280. Two new single 
pulses are generated (bold arrows). (D) The gate variable j has recovered 
75 to 85%. (E) Only one A P was generated with the stimulus (bold arrow). 
The propagation of the new A P in the direction of the original pulse was 
blocked as j has not recovered completely. 
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Figure 4.11: (A) A plane front at a fixed time, with a free end (point c) 
that propagates from left to right. The point 'a' is located at the wavefront 
and 'b' and 'd ' ahead of the front. The semicircle of radius p/2 with center 
in 'a' is the region of influence of the point 'a'. The shaded region is the 
region of influence of the point 'c'; (B) Two snapshots of the propagating 
front when the medium has low excitability g^a = 1-9 m S c m - 2 . The front's 
length shortens; (C) g^a — 2.0 m S c m - 2 . Moderate excitability. The length 
of the front neither shrinks nor grows; (D) The medium is highly excitable 
gNa = 2.1 m S c m - 2 , and then a spiral wave is formed from the free end. 
Values of g^a taken from [251]. 
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Figure 4.12: Reflection of a spiral. 0< = 80, tg = 68. The contour plots 
shown for different integration times, represent different stages of recovery 
of the j variable. The black dot filled in white is the location of the tip of 
the spiral for that specific time. 

146 



Chapter 4. Annihilation and reflection of spiral waves . . . 

-40 

-20 

2 0 

4 0 

|\I 

0 -20 0 
A 

-40 

x 0 

(A) 

x 0 

20 40 

Figure 4.13: Annihilation of a spiral. 6i = 80, tg = 56. The contour plots 
shown for different integration times, represent different stages of recovery 
of the j variable. The black dot filled in white is the location of the tip of 
the spiral for that specific time. In this case, the tip of the spiral has left 
the domain on C. 
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Figure 4.14: Particular examples of trajectories of spirals that (A) annihilate 
at the boundary. 8i = 60° at the extreme left and for the others with 
increments in 6i by 10°; (B) Are reflected at the boundary. 
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Chapter 5 

Conclusions 

One of the objectives of the present thesis was to develop accurate and effi­
cient pseudospectral solutions of reaction diffusion equations with excitable 
dynamics (Eq. 1.13). The problem with this type of equation is that the 
solution develops shock-like wave behaviour giving rise to a multiple spatial 
and temporal scales problem [283]. The numerical schemes in this thesis were 
based on a collocation method with Chebyshev-Gauss-Lobatto quadrature 
points. In order to develop accurate numerical methods for these type of 
equations, we considered in Chapter 2 and 3 the Fisher's and the Fitzhugh-
Nagumo (FHN) equations, respectively. 

In Chapter 2, we studied the Fisher's equation, a prototypical reaction diffu­
sion equation. The collocation method used the Chebyshev-Gauss-Lobatto 
quadrature points. The solutions of F E are characterized by propagating 
fronts that can be steep depending on the value of the reaction rate coeffi­
cient, p (Fig. 2.6). In order to obtain an accurate solution, the main domain 
was subdivided into smaller subintervals as proposed by Shizgal and cowork­
ers [293, 302, 303]. The multidomain method provided stable and accurate 
solutions of F E for values of p as large as 10 6 (Fig. 2.6). We compared the 
present numerical treatment with the DSC approach of Zhao and Wei [306] 
who employed an interpolation based on the sine function. For the value 
p = 10 6, the accuracy obtained with the multidomain method was better 
than the one reported by Zhao and Wei (Chapter 2). 

Due to the excellent performance of the Chebyshev multidomain method 
in the solution of the Fisher's equation, we considered this scheme for the 
solution of differential equations of the F H N type (Chapter 3). The solu­
tions of the F H N equations provide the simplest P D E to model excitable 
media (Eq. 3.2), and has been used extensively for studies of spiral waves 
[278, 288, 289, 290, 294, 300]. The solutions of the F H N equations present 
propagation of shock like waves as in Fisher's equation. 

In Chapter 3, we presented a convergence study for reaction diffusion equa-
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tions for the F H N model, where we compared a Chebyshev multidomain 
method with finite difference based methods, especially the method pro­
posed by Barkley [278]. Simulations of plane waves in ID and spiral waves 
in 2D were carried out for two F H N equations with different local dynam­
ics. The first equation, named kinetic model I, was proposed by Barkley 
[278], whereas the second equation, kinetic model II, is the classic cubic 
F H N model discussed by Keener [289]. 

In the same chapter, we demonstrated the superiority of the Chebyshev 
multidomain approach with regard to accuracy and computational time in 
comparison with finite difference and the Barkley method. The method de­
veloped by Barkley applies to a particular type of local dynamics, Eq . (3.3), 
and can be very fast but the results are compromised due to the decreased 
accuracy. The Chebyshev multidomain approach can be used to solve equa­
tions of the F H N type with more general local dynamics than the Barkley 
method. 

For the solution of the F H N equations, we implemented an operator split­
ting method for the Chebyshev multidomain approach for kinetic model I 
and II. W i t h the operator splitting scheme, the computational time for the 
solution of the F H N equations is considerably shorter than both the finite 
difference and the Barkley method. 

Therefore, in Chapters 2 and 3, we developed numerical schemes based on 
pseudospectral methods for reaction-diffusion equations with excitable lo­
cal dynamics. The methods developed with pseudospectral methods were 
superior in accuracy with respect the number of points used, and the com­
putational time over conventional finite difference numerical methods. The 
solution of reaction-diffusion equations with spectral methods has been con­
sidered by a number of people in the field [281, 288, 305]. Bueno et. al. 
[281] considered a spectral method for irregular domains to solve reaction-
diffusion problems, Karma [288] considered the classical Fourier method for 
the solution of the F H N equations and Zhang and Ng [305] considered the 
Chebyshev pseudospectral method to analyze convergence of the solution of 
the Luo-Rudy equations for a very short integration time. The Chebyshev 
multidomain method presented in this thesis represents another forward step 
in the use of spectral methods for solving equations of reaction-diffusion type 
with excitable dynamics. 

A n important concern when solving shock-like waves in equations like the 
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Fisher's and the F H N equations is the phenomenon referred to as Gibbs 
oscillations [280, 282, 302]. This type of oscillation arises in spectral approx­
imations of functions with jump discontinuities at the location of the jump 
[280, 282]. In the numerical solutions for the Fisher's and F H N equations at 
the locations where the propagating fronts are located, Gibbs oscillations did 
not play a significant role in the numerical solutions. As discussed in [302], 
the use of the Chebyshev multidomain approach for functions with rapid 
variations in the spatial variable helps to avoid changes in two scales within 
each sub-domain, providing better convergence results. The numerical re­
sults obtained for the Fisher's and F H N equations extends the use of spectral 
methods to the case of non smooth problems of the reaction diffusion type, 
adding to the use of spectral methods in other areas where propagation of 
shock waves is present, such as in fluid dynamics [282, 284, 302]. 

The excellent results obtained for the solution of the Fisher's and F H N equa­
tions provided confidence for solving the Beeler-Reuter equations, a more 
realistic model of reaction-diffusion with excitable dynamics. The accuracy 
of the numerical method considered in Chapter 4 was tested in a ID trav­
elling pulse. In this case, the solutions with N = 542 collocation points 
provided a very good approximation to the converged solution. 

The second objective of this thesis was the study of the phenomenon of 
annihilation and reflection of a spiral wave in the meandering regime at a 
boundary, for the Beeler-Reuter model. The most practical way to study 
this phenomenon was to consider the limiting i ? o o case, in which the petals 
of the tip trajectory lie on a straight line. The case where a spiral tip traces 
a trochoid of finite R (Fig. 4.1) is very complex to study compared to the 
limiting Roo case (See Figs. 4.3 and 4.4). However, the tip trajectory near 
the boundary for the case with finite R, where reflection and annihilation 
take place, can be approximated by the tip trajectory given by the limiting 
Roo case. Therefore, the results obtained with the limiting Roo case can be 
applied to understand annihilation and reflection when R is finite. 

In Chapter 4, we have shown that annihilation of a spiral wave was due 
to the lack of recovery of the medium to accept propagation of action po­
tentials in regions where the front of the spiral wave near its tip needs to 
propagate in order to remain in the domain. In the Beeler-Reuter model, the 
gate variable j , which is called the sodium reactivation variable, controls the 
time at which the sodium channels are ready to accept another excitation. 
Therefore, the analysis for the annihilation and reflection of spiral waves at 
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a boundary was explained in terms of this gate variable. 

B y considering trajectories in the limiting case, we showed that annihi­
lation of the spiral depends strongly on the angle of incidence di with respect 
to the boundary. For angles above 6i = 150° and below 50°, no annihila­
tion was observed. For di G [50°, 150°], both, annihilation and reflection of 
the tip of the spiral with exception of &i = 120°, was observed (Fig. 4.9). 
A n analysis of annihilation and reflection and its dependence of the incident 
angle 9i, as a function of the reactivation sodium channel gate j, is provided. 

The study presented in Chapter 4 is an extension of the work by Yermakova 
and Pertsov [304], where they analyzed the effects of the boundary on the 
trajectory of a tip in the simple rotation regime. Moreover, the analysis pre­
sented in this chapter bridges a couple of observations about simple rotation. 
In the case of simple rotation, when the tip hits the boundary the spiral wave 
annihilates as shown by Krinsky et al [292]. However, the studies presented 
by Yermakova and Pertsov [304], show that if the circular trajectory is close 
enough to the boundary an increase in the curvature is observed. From the 
studies presented in this chapter, the results in [292] and [304] correspond to 
annihilation and reflection of the wave, respectively, with the corresponding 
arguments as discussed in Chapter 4. 

The situations studied in this chapter play very important roles when a 
spiral wave interacts with an anatomic obstacle [287, 296]. It has been ob­
served experimentally that a spiral wave, in the presence of an obstacle of 
some minimum size, anchors to the obstacle [287, 296]. In the same way, it 
has been observed that annihilation of a spiral wave occurs at a boundary 
of isolated tissue [296]. The results presented in this chapter extend these 
ideas to the possibility of the avoidance of attachment of the spiral to the 
obstacle and the annihilation of the spiral at the boundary. 

5.1 Future directions. 
5.1.1 The role of obstacles and application to cardiac 

arrhythmias. 

In excitable systems such as cardiac tissue, propagation does not occur in an 
homogeneous media. The presence of small vessels inside the myocardium 
provide regions in the cardiac tissue with different degrees of excitability 
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[295]. Also, the presence of natural obstacles such as the inferior vena cava 
or pulmonary veins in the atria, may interfere in the normal propagation 
of A P s [277, 285] or in the meandering of spiral waves [287, 296]. These 
heterogeneities can generate spiral waves [295], can destabilize them [299], 
or if the heterogeneity is given by an obstacle of some minimum size, a me­
andering spiral might attach to the obstacle giving a more controlled and 
predictable behaviour in the spiral dynamics. [287]. 

A n extension of the studies we presented in this thesis about reflection and 
annihilation of spirals at a boundary, lead to different questions such as: 
When a spiral interacts with an obstacle of determined size, what is the role 
played by the shape and size of the obstacle in order to observe attachment? 
What is the role played by the radius R of the meandering trajectory com­
pared to the size of the obstacle, to assure attachment of the spiral? 

5.1.2 Quantitative factors explaining the 
annihilation-reflection phenomenon. 

A different issue arising from Chapter 4 consists of providing a more quanti­
tative analysis of the factors that give annihilation and reflection of a spiral 
wave at the boundary. In Chapter 4, we could only give a qualitative ex­
planation of annihilation-reflection, based on two parameters, the angle of 
incidence 9i and the level of recovery of the region where the tip trajectory 
needs to propagate. However, measured quantities that allow us to know 
with certainty when annihilation or reflection occurs have not been possible 
to obtain at this stage. Further studies in this area wil l be considered. It 
is important to mention that no previous studies in this area have been re­
ported in the literature. 

A third extension of this thesis arises from the results shown in Fig . 4.3. 
Due to the sensitivity of initial conditions we ask: It is possible to determine 
whether or not the trajectory of the spiral tip follows a chaotic pattern? Is 
there some measure of the time that can tell us with some certainty that 
the spiral will be annihilated? Under which conditions? These questions are 
very difficult to answer now, but might be more doable when quantitative 
parameters are found to explain in a more precise way the phenomenon of 
annihilation-reflection of a spiral wave. 
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5.1.3 The Bidomain model. 
As discussed in Chapter 1, one of the simplest ways to study spatial prop­
agation of waves is by considering a R D equation type as in Eq . (1.13). 
However, wave propagation in cardiac tissue has some factors to be consid­
ered. This is the case of anisotropic conductivity in the intracellular and 
extracellular spaces of myocardial cells. The difference between the conduc­
tance properties in each of the two spaces leads to consider a generalization 
of Eq . (1.13) studied in this thesis, that keeps track of the currents in and 
and between the extra and intracellular spaces. W i t h these new considera­
tions, equation (1.13) is generalized as 

where o~i and ae are conductivity tensors, x is the membrane surface to 
volume ratio, Vi and Ve are the intracellular and extracellular potential re­
spectively, and lion depends on the ionic model considered. This set of 
equations is referred to as the bidomain model [286]. 

The bidomain model has gained acceptance among elecrocardiologists and 
bioengineers modelling cardiac electrical activity [291] and has been consid­
ered by different authors [291, 297, 298, 301]. In [297], Roth describes the 
new phenomena found by Winfree, for cardiac wave propagation, by con­
sidering the bidomain equations, whereas in [291, 301], numerical schemes 
to solve such equations were proposed. Therefore, in the ongoing effort of 
developing spectral methods for equations with excitable local dynamics, I 
wil l adapt the Chebyshev multidomain method developed in this thesis to 
solve Eqs. 5.1 and 5.2 in two dimensions. One of the main difficulties, other 
than the multiple scales problem, arises with the conductivity tensors and 
ae, which might be space dependent. 

V • (cxiVVi + <reVVe) = 0 (5.1) 

(5.2) 
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Appendix A 

Beeler-Reuter equations, 

The Iion currents in Eq. (4.2) satisfy, 

exp(0.04(V + 85)) - 1 
Ikl = 1-4 +0.07 

exp(0.08(V + 53)) + exp(0.04(V + 53)) 

exp(0.04(V + 77)) - 1 

V + 23 

IX1 = 0.8xi 

1 - e x p ( - 0 . 0 4 ( V + 23)) 
(A . l ) 

(A.2) 
exp(0.04(V + 35)) 

INU = (9Nam3hj + gNaC){V - ENa) (A.3) 

Ica = gsfd(V + 82.3 + 13.0287 ]n[Ca++]) (A.4) 

where g^a = 4 m S c m - 2 , gNaC = 0.003 m S c m - 2 , E^a = 50 m V and gs = 

0.09 m S c m - 2 . In this case, the ionic calcium concentration [ C a + + ] , in the 
cytosol (Eq. A.4) satisfies 

d[Ca++] 
dt 

= -IO" 7 I C a + 0.07(10- 7 - [Ca++]) (A.5) 

The variables x\,m,n,j,d and / , are called gating variables and they are 
voltage and time dependent. They take values between zero and one. Each 
gating variable satisfies an O D E of the form 

dX 
~~dt 

Xoo — X 

where X = x\, m, n,j, d and / . X^ and TX are given by 

ax 1 
-^oo — TX = 

where 

ax,(3x 

ax + Px ^ azX + Px 

Cxe°x(v+Cx) + CX{V + Cx) 

and the constants Cl

x, i = 1,7, can be found in [251]. 

(A.6) 

(A.7) 

(A.: 

161 



Appendix B 

Initial conditions used to 
generate spiral waves. 

To generate an initial condition, the variables in the B R model took initially 
the values given by the steady state in the standard B R equations with the 
original parameters [251], i.e. x\ = 0.0056, m = 0.011, h = 0.99, j = 0.97, 
d = 0.003, / = 1 and [Ca] = 1 x 10~ 7. A propagating front in the positive 
x direction that evolves into a spiral wave is generated by applying for the 
first millisecond a stimulus current of the form 

7app(x, y) — i 
l x < 0 

(l+exp{2.5(\x+ay\-c1W (l+exp(2.5(|x+aj/|-c2))) i ! 

0 x > 0 
(B. l ) 

with cy = 30 and c2 = 25. W i t h a = 0, there is no y dependence in Eq. 
(B. l ) and there are two roots to Iapp = 0.5, at x\ = —22 and x2 = —30.5 as 
shown by the horizontal parallel lines in Fig . B .1A. After tg = 100 ms and 
for a time Atg = 20 ms, the conductances gfja and gs are taken to be zero 
over the region ax > y — yo, where a = 0 and yo = —20 mm, giving the re­
gion y < —20 which is delimited by the line y = —20. The pulse propagates 
in the positive x direction, but only for y < —20 (shaded region). After 
tg — 100 + Atg = 120 ms, g^a and gs are taken as their original values, 
resulting in the propagation of a front with a free end. The propagating 
front with the free end evolves into a spiral wave. The trajectory of the tip 
of the spiral is shown in Fig. B.1A. 

Spiral tip trajectories with incident angle 6^. 

For the Roo case, I generate a spiral solution with a tip trajectory that has 
an incident angle 9i, as discussed in the previous paragraph with g^a = 2.37 
m S c m - 2 , gs = 0.003 m S c m - 2 and N — 542 points in each dimension. W i t h 
these parameters, the tip hits the boundary with a trajectory having an 
incident angle of &i = 63° as shown in Fig . B.1A. 
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Appendix B. Initial conditions used to generate spiral waves. 

In order to construct spirals such that their trajectories hit the boundary 
with a particular incident angle Oi / 63°, it is necessary to rotate Iapp and 
y > yo in the (x,y) plane, and modify c\,c2,yo and tg, depending on 9i. 

Rotation of Iapp for a particular is obtained by taking a — tan (^I^QO"^ 

in Eq . (B . l ) . Thus for di = 120°, a = 1.53 and Iapp = 0.5 gives the linear 
relationship between x and y shown by the parallel lines at the left lower 
corner of Fig . B.1B. The values of c\, c2, yo and tg are chosen by trial 
and error, in order to get a trajectory to hit the lower boundary. Once the 
values of c\, c2, yo and tg are found for each angle, I move only one of the 
two parameters, tg or yo, in order to generate all the trajectories for that 
specific angle. For 0j = 120°, c\ — 75, c2 = 72, j/o = 0 mm and tg — 150 ms. 
The conductances are taken as zero at the region x > A front with a 
free end (shaded region), evolves into a spiral, that hits the lower boundary 
with a tip trajectory having Oi = 120°. 
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Appendix B. Initial conditions used to generate spiral waves. 
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