$$
\begin{aligned}
& \angle E 3 B 7 \\
& 1936 A 8 \\
& N 5105 .
\end{aligned}
$$

THE DIVISION TRANSFORMATION FOR MATRIC POLYNOMIALS WITH SPECIAL REPERENCE TO THE QUARTIC CASE
by

Ivan Morton Niven

A Thesis submitted for the Degree of MASTER OF ARTS

in the Department
of
MATHEMATICS

The University of British Columbia

March; 1936

THE DIVISION TRANSFORMATION FOR MATRIC POLYNOMIALS WITH SPEOIAL REPERENCE TO THE QUARTIC CASE

This thesis is based on results which were obtained by Dr. M. M. Flood of Princeton University and reported upon by him in a paper presented to the American Mathematical Society at its New York meeting, February 25th, 1933. (Cf. Abstract No. 39-3-92, The Bulletin of the American Mathematical Societyl. Professor flood treated the problem for the linear, quadratic and cubic cases. The present paper extends the theory to the quartic case. For the sake of clarity it has been found desirable to outline Professor Flood's treatment ${ }^{1}$ for the earlier cases, although in so doing, certain modifications and elaborations are made. For example, the proofs of Theorems (4.13), (5.21) and (6.27), as here given, are original. The entire treatment for the quartic case is original.

1 Permission to do this has been very kindly granted by Professor hlood, who gave the author access to his manuscript.

I. Introduction.

A matrix $a(\lambda)$ whose elements are polynomials in a scalar variable λ, of which at least one element has the highest degree n, will be called a matric polynomial of degree n, and will be expressed in the form

$$
\text { (1.1) } a(\lambda)=\sum_{i=0}^{m} a_{i} \lambda^{i}, \quad a_{n} \neq 0
$$

where the a_{i} are constant matrices. We shall consider these matrices square and of order r. If now

$$
\text { (1.2) } b(\lambda)=\sum_{j=0}^{m} b_{j} \lambda^{j}, \quad\left|b_{m}\right| \neq 0
$$

is a second such matric polynomial; it is well known that there exist unique matric polynomials $q(\lambda), r(\lambda), q,(\lambda)$ and $r,(\lambda)$ of which $q(\lambda)$ and $q,(\lambda)$ are of degree $n-m$ and $r(\lambda)$ and $r,(\lambda)$ are of degree less than m; such that
(1.3) $a(\lambda) \equiv q(\lambda) b(\lambda)+r(\lambda)$
$\equiv b(\lambda) q_{1}(\lambda)+r_{1}(\lambda)$.

The scope of this result has been extended by J. H. $\dot{\mathrm{I}}$. Wedderburn ${ }^{1}$ to include the case in which the leading coefficient, b_{m}, of the divisor is singular but not not zero. It will be shown later, moreover, that in this case the quotient and remainder are not of necessity each unique and

1 Cf. J.H. M. Wedaerburn, "Lectures on Matrices," American Mathematical Society, 1934.
that the degree of the quotient may be greater then $n-m$ (Theorem 3.1). This paper will consider this latter case more fully and will give results concerning the nature and degree of the quotient and remainder obtained under the stated conditions.
II. Definitions and Notation.

Small Roman letters with a subscript denote constant matrices, i.e.; matrices with elements in a given field. The matrix of order r, all of whose elements are zero except the one in the $i^{\text {th }}$ row and the $i^{\text {th }}$ column which is 1, is denoted by e_{i}. It will be called a unit matrix. Similarly v_{i} represents the unit vector whose r components are all zero except the $i^{\text {th }}$, which is 1 . The identity matrix of order r will be denoted by i_{r} 。

If p_{h} are positive integers such that

$$
(2.1) \quad r=\sum_{k=1}^{s} p_{k}
$$

we define E_{i} by means of the relation

$$
\text { (2.2) } \quad E_{i}=\sum_{k=1}^{p_{i}} l p_{1}+p_{2}+\cdots+p_{i-1}+k \quad(i=1,-\cdots, s)
$$

It follows that $i_{n}=\sum_{k=1}^{s} \sum_{k}$.
Analogously, we define \mathbb{N}_{i};
(2.3) $\mathbb{N}_{i}=\sum_{k=1}^{p_{i}} V p_{i}+p_{2}+\cdots+p_{i-1}+k \quad(i=1, \cdots$, s).

Having chosen the p_{k} so that (2.1) is satisfied, we may consider the matrix i_{n} as a matrix I_{s} of order s; whose elements $\Delta_{i j}$ are rectangular matrices with p_{i}
rows andpcolumns such that

$$
\Delta_{i j}=0, \quad i \neq j
$$

and $\Delta_{i i}$ is the identity matrix of order p_{i}. In a similar manner, the constant matrix a_{k} with elements $a_{k i j}$ in r - space may be considered as a constant matrix A_{k} with elements $A_{k i j}$ in s - space. Then $A_{k \alpha \beta}$ is a rectangular matrix with p_{α} rows and p_{β} columns appearing as a block of terms in a_{k}. Thus e_{k} and ${ }_{k}$, the unit matrices and unit vectors in r - space, correspond to \mathbb{N}_{k} and \mathbb{N}_{k}, the unit matrices and unit vectors in s - space. The following relations are easily proved:
(2.4) $\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}$ and $E_{i} E_{j}=0 \quad, \quad i \neq j$.
(2.5) $E_{i} N_{i}=N_{i}$ and $E_{i} W_{j}=0$, $i \neq j$. (2.6) $A_{k} N_{i}=\sum_{\alpha=1}^{S}{ }_{\alpha} A_{k \alpha i}$.
III. Existence of Quotient and Remainder.
(3.1) Theorem:- If $a(\lambda)$ and $b(\lambda)$ are the polynomials defined by (1.1) and (1.2) except that $\left|b_{m}\right|=0$, but $b_{m} \neq 0$; then there exist polynomials $q(\lambda), r(\lambda), q_{1}(\lambda)$ and $r_{1}(\lambda)$ of which $r(\lambda)$ and $r,(\lambda)$ are of degree less than m; such that

$$
\begin{aligned}
a(\lambda) & \equiv q(\lambda) b(\lambda)+r(\lambda) \\
& \equiv b(\lambda) q_{1}(\lambda)+r_{1}(\lambda)
\end{aligned}
$$

Proof:-
Let the rank of b_{m} be $p_{1}<r$. Using the development of paragraph 2 with $s=2$ we have $p_{2}=r-p_{1}$. By elementary matrix theory b_{m} can be expressed in the form
(3.2)

$$
B_{m}=P_{I} Q_{1} Q_{1}
$$

where P_{1} and Q_{1} are non-singular matrices. Writing
(3.3) $\quad h_{1}(\lambda)=\left(D_{2} \lambda+F_{1}\right) P_{1}^{-1}$
we see that $b_{1}(\lambda)$, defined by
(3.4) $\quad b_{1}(\lambda)=h_{1}(\lambda) b(\lambda)$,
is a metric polynomial whose degree is not higher than the degree of $b(\lambda)$ since the coefficient of $\lambda^{m+1}, E_{2} P_{I}^{-1} B_{m}$, vanishes. Now
(3.5) $\left|b_{1}(\lambda)\right|=\left|h_{1}(\lambda)\right| \cdot|b(\lambda)|=\left(\lambda^{p_{2}}\right)\left|p_{1}^{-I}\right| \cdot|b(\lambda)|$ so that the degree of $\left|b_{1}(\lambda)\right|$ exceeds the degree of $|b(\lambda)|$ by p_{2}. If the coefficient of λ^{m} in $b_{1}(\lambda)$ is singular; this process may be repeated giving $b_{2}(\lambda), b_{3}(\lambda), \ldots$, where the degree of each $\left|b_{i}(\lambda)\right|$ exceeds that of $\left|b_{i-1}(\lambda)\right|$. But the degree of each $b_{i}(\lambda)$ is less than
or equal to m and the degree of the determinant of a polymomial of the $m^{\text {th }}$ degree cannot exceed $r m$. Hence the process must terminate; yielding a polynomial $b_{j}(\lambda)$, whose highest term has a non-singular coefficient; and from the law of formation (3.4) we have

$$
b_{j}(\lambda)=h(\lambda) b(\lambda) \text { where } h(\lambda)=h_{1}(\lambda) h_{2}(\lambda) \cdots h_{j}(\lambda) \text {. }
$$

Applying the division transformation (1.3) to $a(\lambda)$ and $b_{j}(\lambda)$ we have

$$
\begin{aligned}
(3.6) a(\lambda) & =s(\lambda) b_{j}(\lambda)+r(\lambda) \\
& =s(\lambda) h(\lambda) b(\lambda)+r(\lambda) \\
& =q(\lambda) b(\lambda)+r(\lambda) .
\end{aligned}
$$

Since P_{1} and G_{1} in (3.2) are not unique, and since $q(\lambda)$ and $r(\lambda)$ depend upon the particular polynomial $h(\lambda)$ which is chosen, these latter polynomials are not unique. The above method of proof is obviously applicable to the dextrolateral case.
IV. Association by a Linear Polynomial.

We shall say that the polynomial $h(\lambda)$ is associated with the polynomial $b(\lambda)$ if the degree of the polynomial $h(\lambda) b(\lambda)$ equals the degree of $b(\lambda)$ and if the coefficient of the leading term of $h(\lambda) b(\lambda)$ is non-singular.

As in section 3, let

$$
\text { (4.1) } b(\lambda)=\sum_{\alpha=0}^{m} b_{\alpha} \lambda^{\alpha}
$$

be a matric polynomial for which b_{m} is singular but not zero; and suppose $h(\lambda)$ in (3.6) is linear and associated with $b(\lambda)$, so that

$$
(4.2) \quad h(\lambda)=h_{1} \lambda+h_{0}
$$

and

$$
(4.3) \quad h_{1} b_{m}=0
$$

Since we require the coefficient of λ^{m} in the product $h(\lambda) b(\lambda)$ to be non-singular, we may set this coefficient equal to i_{r}, without loss of generality; that is,

$$
(4.4) \quad h_{0} b_{m}+h_{I} b_{m-1}=i_{r}
$$

Using (3.2) we get from (4.3)

$$
\begin{aligned}
& H_{1} P_{1} E_{1} Q_{1}=0 \quad \text { or defining } \quad G_{0} \text { and } G_{1} \text { by } \\
& (4.5) \quad G_{0}=Q_{1} H_{0} P_{1}, \quad G_{1}=Q_{1} H_{1} P_{1}
\end{aligned}
$$

we have

$$
(4.6) \quad G_{1} E_{1}=0, \quad G_{1} N_{1}=0
$$

Similarly, if we define

$$
(4,7) B_{k}^{(1)}=P_{1}^{-1} \quad B_{k} Q_{1}^{-1} \quad(k=0,1 ; \cdots ; m-1),
$$

then (3.2) and (4.4) give

$$
H_{0} P_{1} E_{1} Q_{1}+H_{1} P_{1} B_{m-1}^{(I)} \quad Q_{1}=I_{S}
$$

whence

$$
(4.8) G_{0} E_{1}+G_{1} B_{m-1}^{(1)}=I_{s}
$$

Multiplying on the right by \mathbb{N}_{2}, we obtain

$$
(4.9) \quad G_{1} B_{m-1}^{(1)} \mathbb{N}_{2}=G_{1} \mathbb{N}_{2} B_{m-122}^{(1)}=\mathbb{N}_{2}
$$

from which it follows that

$$
(4.10)\left|B_{m-122}^{(1)}\right| \neq 0
$$

If we set

$$
(4.11)\left\{\begin{array}{l}
G_{1} N_{1}=0 ; G_{1} N_{2}=N_{2}\left(B_{m-122}^{(1)}\right)^{-1} ; \\
G_{0} \mathbb{N}_{1}=\mathbb{N}_{1}-N_{2}\left(B_{m-122}^{(1)}\right)^{-1} B_{m-121}^{(1)} ; G_{0} \mathbb{N}_{2}=0
\end{array}\right.
$$

we see that (4.3) and (4.4) are satisfied identically. Although P_{1} and Q_{1} in (3.2) are not of necessity unique, the rank of $\mathrm{B}_{\mathrm{m}-122}^{(1)}$ is independent of the manner in which they are chosen.
(4.12) Theorem:- If $b(\lambda)$ is the matric polynomial defined by (4.1), the necessary and sufficient condition that there exist a linear polynomial associated with it is that the equation (4.10) be satisfied. One such polynomial is defined by equations (4.11).
(4.13) Theorem:- If $b(\lambda)$ is the matric polynomial defined by (4.1), the necessary and sufficient condition that all polynomials associated with $b(\lambda)$ be linear is that
(4.10) be satisfied. That the condition is necessary follows from (4.12).

Assume now that $h(\lambda)$, as in (4.2), and

$$
\ell(\lambda)=\sum_{k=0}^{t} \ell_{k} \lambda^{k}, \ell_{t} \neq 0,(t>1)
$$

are each associated with $b(\lambda)$ and that equation (4.10) is satisfied. Then we have

$$
0=I_{t} B_{m}=I_{t} B_{m-1}+I_{t-1} B_{m}
$$

Setting

$$
R_{k}=Q_{1} I_{k} P_{1} \quad(k=0,1,--t)
$$

we have

$$
0=R_{t} E_{1}=R_{t} B_{m-1}^{(1)}+R_{t-1} E_{1}
$$

whence

$$
R_{t} N_{1}=0 \text { and } R_{t} B_{m-1}^{(1)} E_{2}=R_{t} B_{m-122}^{(1)}=0
$$

Since $B_{m-122}^{(1)}$ is non-singular,

$$
Q_{I} L_{t} P_{I}=R_{t}=0
$$

giving $I_{t}=0$, which contradicts the hypothesis.
V. Association by a Quadratic Polynomial.

As in section 4, let
(5.1) $b(\lambda)=\sum_{\alpha=0}^{m} b_{\alpha} \lambda^{\alpha}$
be a matric polynomial for which b_{m} is singular but not zero, and suppose $h(\lambda)$ is quadratic and associated with $b(\lambda)$; so that

$$
\begin{aligned}
& (5.2) h_{1}(\lambda)=h_{2} \lambda^{2}+h_{1} \lambda+h_{0}, \\
& (5.3) h_{2} b_{m}=0, \\
& (5.4) h_{2} b_{m-1}+h_{1} b_{m}=0, \text { and } \\
& (5.5) h_{2} b_{m-2}+h_{1} b_{m-1}+h_{0} b_{m}=i_{r} .
\end{aligned}
$$

Since heX) is not linear, it follows from Theorem (4.13) that
(5.6) $\left|\mathrm{B}_{\mathrm{m}-122}^{(1)}\right|=0$ 。

In this section, we shall use p_{1} in the same sense in which earlier we used p_{1}, and suppose that the rank of $\mathrm{B}_{\mathrm{m}-122}^{(1)}$ is $\mathrm{p}_{2}^{(2)}$. Hence we have
$r=p_{1}^{(2)}+p_{2}^{(2)}+p_{3}^{(2)}$ where $p_{1}=p_{1}^{(2)}$ and $p_{2}=p_{2}^{(2)}+p_{3}^{(2)}$
In .this new notation we may choose P_{2} and Q_{2} so that (5.7) $\quad B_{m}=P_{2} E_{1} Q_{2}$
and such that if

$$
(5.8) \quad B_{k}=P_{2} B_{k}^{(2)} Q_{2} \quad(k=0,1 ;-\cdots, m-1)
$$

then the following relations are satisfied:-

$$
(5.9)\left\{\begin{array}{l}
B_{m-112}^{(2)}+B_{m-121}^{(2)}=0 \\
B_{m-122}^{(2)}=\Delta_{22} \\
B_{m-132}^{(2)}=B_{m-133}^{(2)}=B_{m-123}^{(2)}=0
\end{array}\right.
$$

This follows, since, as in (3.2), we can find P_{1} and Q_{1} such that $B_{m}=P_{1} E_{1} Q_{1}$.
If, also,

$$
P_{1}^{-1} B_{m-1} Q_{1}^{-1}=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)
$$

then, since $\left(\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right)$ is of rank $\underline{p}_{2}^{(2)}$, we can find non-singular matrices X_{1} and Y_{1} each of order $p_{2}^{(2)}+p_{3}^{(2)}$ such that

$$
X_{1}\left(\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right) Y_{1}=\left(\begin{array}{cc}
\Delta_{22} & 0 \\
0 & 0
\end{array}\right)
$$

Now, let

$$
X_{Z}=\left(\begin{array}{cc}
\Delta_{11} & 0 \\
0 & X_{1}
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{ll}
\Delta_{11} & 0 \\
0 & Y_{1}
\end{array}\right)
$$

then $X_{1}^{-1} B_{m-1} Q_{1}^{-1} Y$ has the form $\left(\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ c_{21} & \Delta_{22} & 0 \\ c_{31} & 0 & 0\end{array}\right)$.
If

$$
c_{1}=\left(\begin{array}{ccc}
\Delta_{11} & -c_{12} & 0 \\
0 & \Delta_{22} & 0 \\
0 & 0 & \Delta_{33}
\end{array}\right) \text { and } \quad c_{2}=\left(\begin{array}{ccc}
\Delta_{11} & 0 & 0 \\
-c_{21} & \Delta_{22} & 0 \\
0 & 0 & \Delta_{33}
\end{array}\right)
$$

then

$$
O_{1} X P_{1}^{-1} \quad B_{m-1} Q_{1}^{-1} Y C_{2}=\left(\begin{array}{ccc}
c_{11}-c_{12} c_{21} & 0 & c_{13} \\
0 & \Delta_{22} & 0 \\
c_{31} & 0 & 0
\end{array}\right)
$$

Note that X, Y, C_{1} and C_{2} are each non-singular, and that
since $X E_{1}=E_{1} Y=C_{1} E_{1}=E_{1} C_{2}=E_{1}$, then
$X^{-1} E_{1}=E_{1} Y^{-1}=C_{1}^{-1} E_{1}=E_{1} C_{2}^{-1}=E_{1}$.
Place

$$
P_{2}^{-1}=C_{1} X P_{1}^{-1} \quad \text { and } \quad G_{2}^{-1}=Q_{1}^{-1} Y C_{2},
$$

then

$$
P_{2} E_{1} Q_{2}=P_{1} X^{-1} Q_{1}^{-1} E_{1} G_{2}^{-1} Y^{-1} Q_{1}=P_{1} E_{1} Q_{1}=B_{m}
$$

and

$$
P_{2} B_{m-1}^{(2)} Q_{2}=B_{m-1}
$$

as desired in (5.7) and (5.8) where $B_{m-1}^{(2)}$ has a form such that conditions (5.9) are satisfied.
Using (5.7), we get from (5.3)

$$
\begin{aligned}
& H_{2} P_{2} E_{1} Q_{2}=0 \text { or defining } G_{0}, G_{1}, G_{2} \text { by } \\
& (5.10) \quad G_{k}=Q_{2} H_{k} P_{2} \quad(k=0,1,2)
\end{aligned}
$$

we have

$$
\text { (5.11) } \quad G_{2} E_{1}=0, \quad G_{2} N_{1}=0 .
$$

Using (5.8) and (5.10), we get from (5.4)

$$
\text { (5.12) } G_{2} B_{m-1}^{(2)}+G_{1} E_{1}=0
$$

Multiplication on the right by N_{2} gives

$$
G_{2} B_{m-1}^{(2)} N_{2}=0
$$

which yields on application of (2.6) and (5.9)

$$
(5.13) \quad G_{2} N_{2}=0
$$

Multiplication of (5.12) on the right by \mathbb{N}_{1} gives.

$$
G_{2} B_{m-1}^{(2)} N_{1}+G_{1} N_{1}=0
$$

which gives, as a consequence of (2.6), (5.9) and (5.11),

$$
\text { (5.14) } \quad G_{1} N_{1}=-G_{2} \mathbb{N}_{3} B_{m-131}^{(2)}
$$

Using (5.7), (5.8) and (5.10), we get from (5.5)

$$
G_{2} B_{m-2}^{(2)}+G_{1} B_{m-1}^{(2)}+G_{0} E_{1}=I_{s}
$$

Multiplication on the right by N_{5} gives

$$
G_{2} B_{m-2}^{(2)} N_{3}+G_{1} B_{m-1}^{(2)} N_{3}=N_{3}
$$

Applying (2.6), (5.9), (5.11), (5.13) and (5.14), we get

$$
\text { (5.15) } \quad G_{2} \mathbb{N}_{3}\left[B_{m-233}^{(2)}-B_{m-131}^{(2)} \cdot B_{m-113}^{(2)}\right]=\mathbb{N}_{3}
$$

Setting

$$
\text { (5.16) } V_{33}=B_{m-233}^{(2)}-B_{m-131}^{(2)} B_{m-113}^{(2)}
$$

we have

$$
(5.17) \quad G_{2} N_{3} V_{33}=N_{3}
$$

It necessarily follows that

$$
(5.18)\left|V_{33}\right|=\left|B_{m-233}^{(2)}-B_{m-131}^{(2)} B_{m-113}^{(2)}\right| \neq 0
$$

If we set arbitrarily
(5.19) $\left\{\begin{array}{l}G_{2} N_{1}=G_{2} N_{2}=0 ; G_{2} N_{3}=N_{3} V_{33}^{-1} \\ G_{1} N_{1}=-N_{3} V_{33}^{-1} B_{m-131}^{(2)} ; G_{1} N_{2}=N_{2}-N_{3} V_{33}^{-1} B_{m-232}^{(2)} \\ G_{1} N_{3}=G_{0} N_{2}=G_{0} N_{3}=0 \\ G_{0} N_{1}=N_{1}-N_{3} V_{33}^{-1}\left[B_{m-231}^{(2)} B_{m-131}^{(2)} B_{m-111}^{(2)}\right]\end{array}\right.$
we see that $(5.3),(5.4)$ and (5.5) are satisfied identically. Again, although P_{2} and Q_{2} are not of necessity unique, the rank of V_{33} is independent of the manner in which they are chosen.
(5.20) Theorem:- If $b(\lambda)$ is the matric polynomial defined by (5.1), the necessary and sufficient condition that there exist a quadratic polynomial associated with it is that (5.18) be satisfied. One such polynomial is defined by equations (5.19).
(5.21) Theorem:- If $b(\lambda)$ is the metric polynomial defined by (5.1), the necessary and sufficient conditions that all polynomials associated with it be quadratic is that (5.18) be satisfied.

That this condition is necessary follows from (5.20). Assume now that $h(\lambda)$, as in (5.2); and

$$
l(\lambda)=\sum_{k=0}^{t} l_{k} \lambda^{k}, \quad l_{t} \neq 0, \quad(t>2)
$$

are each associated with $b(\lambda)$. Then we have

$$
0=I_{t} B_{m}=I_{t} B_{m-1}+I_{t-1} B_{m}=I_{t} B_{m-2}+I_{t-1} B_{m-1}+I_{t-2} B_{m}
$$

Setting

$$
R_{k}=Q_{2} I_{k} P_{2} \quad(K=0,1, \cdots t)
$$

we have

$$
\begin{aligned}
& 0=R_{t} E_{1}=R_{t} B_{m-1}^{(2)}+R_{t-1} E_{1}=R_{t} B_{m-2}^{(2)}+R_{t-1} B_{m-1}^{(2)}+R_{t-2} E_{1} \\
& R_{t} N_{I}=0
\end{aligned}
$$

$$
\begin{gathered}
R_{t} N_{2}=0 \quad R_{t-1} N_{1}=-R_{t} \mathbb{N}_{3} B_{m-131}^{(2)} \\
R_{t} \mathbb{N}_{3}\left[\begin{array}{lll}
B_{m-233}^{(2)}-B_{m-131}^{(2)} & B_{m-113}^{(2)}
\end{array}\right]=0 \quad \text { whence } R_{t} \mathbb{N}_{3}=0 .
\end{gathered}
$$

It follows that

$$
\theta_{2} \mathrm{I}_{t} P_{2} \equiv R_{t}=0
$$

Hence

$$
I_{t}=0,
$$

which contradicts the hypothesis.
VI. Association by a Cubic Polynomial.

As previously; let

$$
(6.1) \quad b(\lambda)=\sum_{\alpha=0}^{m} b_{\alpha} \lambda^{\alpha}
$$

be a metric polynomial for which b_{m} is singular but not zero, and suppose $h(\lambda)$ is cubic and associated with $b(\lambda)$, so that

$$
\begin{aligned}
& \text { (6.2) } h(\lambda)=h_{3} \lambda^{3}+h_{2} \lambda^{2}+h_{1} \lambda+h_{0} \\
& \text { (6.3) } h_{5} b_{m}=0 \\
& \text { (6.4) } h_{13} b_{m-1}+h_{2} b_{m}=0 \\
& (6.5) \quad h_{3} b_{m-2}+h_{2} b_{m-1}+h_{1} b_{m}=0 \\
& \text { (6.6) } h_{3} b_{m-3}+h_{2} b_{m-2}+h_{1} b_{m-1}+h_{0} b_{m}=i_{r}
\end{aligned}
$$

Since $h(\lambda)$ is neither linear nor quadratic; we see by Theorems (4.13) and (5.21) that neither (4.10) nor (5.18) can be satisfied. .

In this section, we shall use $p_{1}^{(3)}$ and $p_{2}^{(3)}$ in the same sense as, in section 5 , we used $p_{1}^{(2)}$ and $p_{2}^{(2)^{2}}$ respectively, and suppose that the rank of v_{33} is $p_{3}^{(3)}$. Hence we have $r=p_{1}^{(3)}+p_{2}^{(3)}+p_{3}^{(3)}+p_{4}^{(3)}$ where $p_{1}^{(3)}=p_{1}^{(2)}$ and $p_{2}^{(3)}=p_{2}^{(2)}$ and $p_{3}^{(3)}+p_{4}^{(3)}=p_{3}^{(2)}$.

In this new notation we may choose P_{3} and Q_{3} so that $(6.7) \quad B_{m}=P_{3} S_{1} Q_{3}$
and such that if

$$
\text { (6.8) } B_{k}=P_{3} B_{k}^{(3)} Q_{3} \quad(k=0,1,-\cdots, m-1) .
$$

then the following relations are satisfied:-

$$
\begin{aligned}
& (6.9)\left\{\begin{array}{l}
B_{m-112}^{B}={ }_{m}^{(3)}{ }_{m}^{(3)}=B_{m-123}^{(3)}=B_{m-124}^{(3)}=0 \\
B_{m-13 k}^{(3)}=B_{m-14 k}^{(3)}=0 \quad(k=2,3,4) \\
B_{m-122}^{(3)}=\Delta_{22}
\end{array}\right. \\
& (6.10)\left\{\begin{array}{l}
B_{m-233}^{(3)}-B_{m-131}^{(3)} B_{m-113}^{(3)}=\Delta_{33} \\
B_{m-234}^{(3)}-B_{m-131}^{(3)} B_{m-114}^{(3)}=0 \\
B_{m-243}^{(3)}-B_{m-141}^{(3)} B_{m-113}^{(3)}=0 \\
B_{m-244}^{(3)}-B_{m-141}^{(3)} B_{m-114}^{(3)}=0
\end{array}\right.
\end{aligned}
$$

Conditions (6.9) correspond to conditions (5.9) and are derived by methods which are identical with those following (5.9). In order to derive (6.10), consider

$$
v_{33}=B_{m-233}^{(2)}-B_{m-131}^{(2)} B_{m-113}^{(2)},
$$

which is of rank $p_{3}^{(3)}$ and of order $p_{3}^{(2)}=p_{3}^{(3)}+p_{4}^{(3)}$. When we pass to the notation of this section, V_{33} becomes $\left(\begin{array}{cc}B_{m-233}^{(3)} & B_{m-234}^{(3)} \\ B_{m-243}^{(3)} & B_{m-244}^{(3)}\end{array}\right)-\left(\begin{array}{cc}B_{m-131}^{(3)} & 0 \\ B_{m-141}^{(3)} & 0\end{array}\right)\left(\begin{array}{cc}B_{m-113}^{(3)} & B_{m-114}^{(3)} \\ 0 & 0\end{array}\right)$
or $\quad\left(\begin{array}{lllll}B_{m-233}^{(3)} & -B_{m-131}^{(3)} & B_{m-113}^{(3)} & B_{m-234}^{(3)} & -B_{m-131}^{(3)} \\ B_{m-114}^{(3)} \\ B_{m-243}^{(3)} & B_{m-141}^{(3)} & B_{m-113}^{(3)} & B_{m-244}^{(3)} & B_{m-141}^{(3)} \\ B_{m-114}^{(3)}\end{array}\right)$

We can find non-singular matrices H_{1} and K_{1} of order

$$
\begin{array}{ll}
p_{3}^{(3)}+\underline{p}_{4}^{(3)} & \text { such that } \\
& H_{1} \\
& V_{33}
\end{array} K_{1}=\left(\begin{array}{cc}
\Delta 33 & 0 \\
0 & 0
\end{array}\right)
$$

whence conditions (6.10) arise. If now, we write

$$
H=\left(\begin{array}{ccc}
\Delta_{11} & 0 & 0 \\
0 & \Delta_{22} & 0 \\
0 & 0 & H_{I}
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{ccc}
\Delta_{11} & 0 & 0 \\
0 & \Delta_{22} & 0 \\
0 & 0 & K_{1}
\end{array}\right)
$$

it will be noted that the H and K can be absorbed by the P_{3} and Q_{3}, as were the X, Y, C_{1} and C_{2} in the last section, thus leaving the forms of $B_{m-1}^{(3)}$ and $B_{m}^{(3)}=A_{1}$ unaltered. Using (6.7), we get from (6.3)
$H_{3} P_{3} \mathbb{E}_{1} Q_{3}=0$ or defining $G_{0}, G_{1}, G_{2} ; G_{3}$ by

$$
\text { (6.11) } G_{k}=Q_{3} H_{k} P_{3} \quad(k=0,1,2,3)
$$

we have

$$
(6.12) \quad G_{3} E_{1}=0, \quad G_{3} N_{1}=0
$$

Using (6.7), (6.8) and (6.11), the relation (6.4) gives

$$
(6.13) G_{3} B_{m-1}^{(3)}+G_{2} E_{1}=0
$$

Multiplication on the right by N_{2} gives

$$
G_{3} B_{m-1}^{(3)} \quad N_{2}=0
$$

which gives, on application of (2.6) and (6.9),

$$
(6.14) \quad G_{3} \mathbb{N}_{2}=0
$$

Multiplication of (6.13) on the right by N_{1} yields

$$
G_{3} B_{m-1}^{(3)} N_{1}+G_{2} N_{1}=0
$$

whence

$$
(6.15) \quad G_{2} N_{1}=-\left[G_{3} N_{3} B_{m-131}^{(3)}+G_{3} N_{4} B_{m-141}^{(3)}\right]
$$

Using (6.7), (6.8) and (6.11), we get from (6.5)

$$
\text { (6.16) } G_{3} B_{m-2}^{(3)}+G_{2} B_{m-1}^{(3)}+G_{1} E_{1}=0 .
$$

Multiplication on the right by \mathbb{N}_{3} yields

$$
G_{3} B_{m-2}^{(3)} N_{3}+G_{2} B_{m-1}^{(3)} N_{3}=0
$$

which; on application of (2.6), (6.9), (6.15) and (6.10),
gives

$$
(6.17) \quad G_{3} N_{3}=0
$$

Multiplication of (6.16) on the right by \mathbb{N}_{2} yields

$$
G_{3} B_{m-2} N_{2}+G_{2} B_{m-1} N_{2}=0
$$

which, on application of (2.6); (6.9), (6.15), (6.17), (6.12), (6.14) and (6.10), gives

$$
\begin{equation*}
G_{2} \mathbb{N}_{2}=-G_{3} \mathbb{N}_{4} B_{m-242}^{(3)} \tag{6.18}
\end{equation*}
$$

Multiplication of (6.16) on the right by N_{l} gives; in a similar manner

$$
\begin{aligned}
&(6.19) \quad G_{1} N_{1}= G_{3} N_{4}\left[B_{m-141}^{(3)}\right. \\
&\left.B_{m-111}^{(3)}-B_{m-241}^{(3)}\right] \\
&-G_{2} N_{3} B_{m-131}^{(3)}-G_{2} \mathbb{N}_{4} B_{m-141}^{(3)}
\end{aligned}
$$

Using (6.7), (6.8) and (6.11), we get from (6.6)

$$
\text { (6.20) } G_{3} B_{m-3}^{(3)}+G_{2} B_{m-2}^{(3)}+G_{1} B_{m-1}^{(3)}+G_{0} E_{1}=I_{s}
$$

Multiplication on the right by \mathbb{N}_{4} gives, upon simplification $(6.21) \quad G_{3}: N_{4}\left[B_{m-344}^{(3)}-B_{m-141}^{(3)} B_{m-214}^{(3)}\right.$

$$
\begin{aligned}
& -B_{m-242} B_{m-224}+B_{m-141} B_{m-111} B_{m-114} \\
& \left.-B_{m-241} B_{m-114}\right]=H_{4}
\end{aligned}
$$

Setting

$$
\text { (6.22) } \begin{aligned}
\mathrm{V}_{44} & =B_{m-344}^{(3)}-B_{m-141}^{(3)} B_{m-214}^{(3)}-B_{m-242}^{(3)} B_{m-224}^{(3)} \\
& +B_{m-141}^{(3)}-B_{m-111}^{(3)} B_{m-114}^{(3)}-B_{m-241}^{(3)} B_{m-114}^{(3)}
\end{aligned}
$$

we have

$$
(6.23) \quad G_{3} N_{4} V_{44}=\mathbb{N}_{4}
$$

It necessarily follows that

$$
(6.24) \quad\left|V_{44}\right| \neq 0
$$

If we set arbitrarily

$$
\begin{gathered}
\text { (6.25) } G_{3} N_{1}=G_{2} N_{2}=G_{3} N_{3}=0 \quad G_{3} \mathbb{N}_{4}=N_{4} V_{44}^{-1} \\
G_{2} N_{1}=-N_{4} V_{44}^{-1} B_{m-141}^{(3)} \quad G_{2} N_{2}=-N_{4} V_{44}^{-1} B_{m-242}^{(3)} \\
G_{2} N_{3}=N_{3}+N_{4} V_{44}^{-1} V_{43} \quad \therefore \quad G_{2} N_{4}=0 \\
G_{1} N_{1}=N_{4} V_{44}^{-1}\left[B_{m-141}^{(3)} B_{m-111}^{(3)}-B_{m-241}^{(3)}\right] \\
-\left[\mathbb{N}_{3}+\mathbb{N}_{4} V_{44}^{-1} V_{43}^{\prime}\right] \quad B_{m-131}^{(3)}
\end{gathered}
$$

$$
G_{1} \mathbb{N}_{2}=N_{2}-N_{3} B_{m-232}^{(3)}-\mathbb{N}_{4} V_{44}^{-1} \quad\left[B_{m-342}^{(3)}\right.
$$

$$
\left.-B_{m-141}^{(3)} B_{m-212}^{(3)}-B_{m-242}^{(3)} B_{m-222}^{(3)}+V_{43} B_{m-232}^{(3)}\right]
$$

$$
G_{1} \mathbb{N}_{3}=G_{1} \mathbb{N}_{4}=0
$$

$$
G_{O} N_{1}=N_{1}+N_{3}\left[{ }_{m-131}^{(3)} B_{m-111}^{(3)}-B_{m-231}^{(3)}\right]
$$

$$
+\mathbb{N}_{4} V_{44}^{-1}\left[{ }_{m-141}^{B(3)} \underset{m-211}{B(3)}+\underset{m-242}{B_{m-221}^{(3)}}{\underset{m}{(3)}}_{(3)}^{(3)}\right.
$$

$$
-B_{m-341}^{(3)}+V_{43} B_{m-131}^{(3)} B_{m-111}^{(3)}-V_{43} B_{m-231}^{(3)}
$$

$$
\left.-\underset{m-141}{B_{m-111}^{(3)}} \underset{m-111}{B}+\underset{m-241}{(3)} \underset{m-111}{(3)}\right]
$$

$$
G_{0} \mathbb{N}_{2}=G_{0} \mathbb{N}_{3}=G_{0} N_{4}=0, \text { where }
$$

$$
V_{43}=B_{m-141}^{(3)} B_{m-213}^{(3)}+B_{m-242}^{(3)} B_{m-223}^{(3)}-B_{m-343}^{(3)}
$$

$$
+B_{m-241}^{(3)} B_{m-113}^{(3)}-B_{m-141}^{(3)} B_{m-111}^{(3)} B_{m-113}^{(3)}
$$

we see that $(6.3),(6.4),(6.5)$ and (6.6) are satisfied identically, Again, although P_{3} and Q_{5} are not of necessity unique, the rank of \mathbb{V}_{44} is independent of the manner in which they are chosen.
(6.26) Theorem:- If $b(\lambda)$ is the matric polynomial defined by (6.1), the necessary and sufficient condition that there exist a cubic polynomial associated with it is that equation (6.24) be satisfied. one such polynomial is defined by equations (6.25).
(6.27) Theorem:- If $b(\lambda)$ is the matric polynomial defined by (6.1), the necessary and sufficient condition that all polynomials associated with it be cubic is that the equation (6.24) be satisfied. The proof of this is analogous to the proofs of Theorems (5.21) and (4.13), and so will not be given.
VII. Association by a Quartic Polynomial.

As previously, let

$$
(7.1) b(\lambda)=\sum_{\alpha=0}^{m} b_{\alpha} \lambda^{\alpha}
$$

be a metric polynomial for which b_{m} is singular but not zero, and suppose $h(\lambda)$ is quartic and associated with $b(\lambda)$, so that
(7.2) $h(\lambda)=h_{4} \lambda^{4}+h_{3} \lambda^{3}+h_{2} \lambda^{2}+h_{1} \lambda+h_{0}$,
(7.3) $h_{4} b_{m}=0$;
(7.4) $h_{4} b_{m-1}+h_{3} b_{m}=0$,
(7.5) $h_{4} b_{m-2}+h_{3} b_{m-1}+h_{2} b_{m}=0$,
(7.6) $h_{4:} b_{m-3}+h_{33} b_{m-2}+h_{2} b_{m-1}+h_{1} b_{m}=0$,
(7.7) $h_{4} b_{m-4}+h_{3} b_{m-3}+h_{2} b_{m-2}+h_{1} b_{m-1}+h_{0} b_{m}=i_{r}$.

Since $h(\lambda)$ is not linear, quadratic or cubic we see by Theorems (4.13), (5.21) and (6.27) that none of (4.10), (5.18) and (6.24) can be satisfied.

In this section, we shall use $p_{1}^{(4)}, p_{2}^{(4)}$ and $p_{3}^{(4)}$ in the same sense as, in section 6 , we used $p_{1}^{(3)}, p_{2}^{(3)}$ and $p_{3}^{(3)}$, respectively, and suppose that the rank of V_{44} is $p_{4}^{(4)}$. Hence we have
$r=p_{1}^{(4)}+p_{2}^{(4)}+p_{3}^{(4)}+p_{4}^{(4)}+p_{5}^{(4)}$ where $p_{1}^{(4)}, p_{2}^{(4)}, p_{3}^{(4)}$
$=p_{1}^{(3)}, p_{2}^{(3)}, p_{3}^{(3)}$, respectively, and $p_{4}^{(4)}+p_{5}^{(4)}=p_{4}^{(3)}$.
In this new notation, we may choose P_{4} and Q_{4} so that
(7.8) $\cdot B_{m}=P_{4} E_{1} Q_{4}$
and such that if
(7.9) $B_{k}=P_{4} B_{k} \quad Q_{4} \quad(k=0,1, \cdots, m-1)$
then the following relations are satisfied:-

$$
\begin{aligned}
& \text { (7.10) }\left\{\begin{array}{l}
B_{m-112}^{(4)}=B_{m-121}^{(4)}=B_{m-123}^{(4)}=B_{m-124}^{(4)}=B_{m-125}^{(4)}=0 \\
B_{m-13 k}^{(4)}=B_{m-14 k}^{(4)}=B_{m-15 k}^{(4)}=0 \quad(k=2,3,4,5) \\
B_{m-122}^{(4)}=\Delta_{22}
\end{array}\right. \\
& \text { (7.11) }\left\{\begin{array}{l}
B_{m-2 j k}^{(4)}-B_{m-1 j 1}^{(4)} \quad B_{m-11 k}^{(4)}=0 \quad(j, k=3,4,5) \\
\text { except when } j=k=3, \text { in which case } \\
B_{m-233}^{(4)}-B_{m-131}^{(4)} \quad B_{m-113}^{(4)}=\Delta 33
\end{array}\right. \\
& +B_{m-1 j 1}^{(4)} \underset{m-111}{B_{m}^{(4)}} B_{m-11 k}^{(4)}-B_{m-2 j 1}^{(4)} B_{m-11 k}^{(4)}=0 \\
& (j, k=4,5) \\
& \text { except when } j=k=4 \text {, in which case the } \\
& \text { above expression equals } \Delta_{44} \text {. }
\end{aligned}
$$

Conditions (7.10) and (7.11) correspond to conditions
(6.9) and (6.10) and are derived by methods which are identical with those used in the last section. In order to obtain (7.12), consider v_{44}, which is of rank $p_{4}^{(4)}$ and of order
$p_{4}^{(5)}=p_{4}^{(4)}+p_{5}^{(4)}$; in the same manner as V_{33} was considered in the previous section, remembering, however; that V_{44} reduces to

$$
\left(\begin{array}{cc}
\Delta_{44} & 0 \\
0 & 0
\end{array}\right)
$$

upon multiplication right and left by suitable non-singular matrices.

Due to the complexity of the above and following velations, it is expedient to introduce further notation. Henceforth, the matrix $B_{m-i j k}^{(4)}$ will be designated by (ijk). Thus the relations (7.10), (7.11) and (7.12) are written (7.13)

$$
\left\{\begin{array}{l}
(112)=(121)=(123)=(124)=(125)=0 . \\
(13 k)=(14 k)=(15 k)=0 \quad(k=2,3,4,5) . \\
(2 j k)-(1 j 1)(11 k)=0 \quad(j, k=3,4,5) \\
\text { except when } j=k=3, \text { in which case }(233)-(131)(113) \\
=\Delta \text {. } 123
\end{array}\right.
$$

Using (7.8) we get, from (7.3),
$H_{4} P_{4} E_{1} Q_{4}=0$, or defining $G_{0}, G_{1}, G_{2}, G_{3}, G_{4}$, by
(7.14) $G_{K}=Q_{4} H_{K} P_{4} \quad(k=0,1,2,3,4)$,
we have
(7.15) $\quad G_{4} E_{1}=0, \quad G_{4} N_{1}=0$.

Similarly, (7.4) gives
(7.16) $\quad G_{4} B_{m-1}^{(4)}+G_{3} E_{1}=0$.

Multiplication on the right by N_{2} yields

$$
G_{4} B_{m-1}^{(4)} \quad N_{2}=0
$$

which gives, on application of (2.6) and (7.13), (7.17) $\quad G_{4} N_{2}=0$.

Multiplication of (7.16) on the right by \mathbb{R}_{1} yields
(7.18) $G_{5} N_{1}=-\left[G_{4} N_{5}(131)+G_{4} N_{4}(141)+G_{4} N_{5}(151)\right]$.

Again, (7.5) gives
(7.19) $G_{4} B_{m-2}^{(4)}+G_{3} B_{m-1}^{(4)}+G_{2} F_{1}=0$.

Multiplication on the right by \mathbb{N}_{3}, together with an applecation of $(7.13),(7.15),(7.17)$ and (7.18) gives.
$(7.20) G_{4} N_{3}=0$
Multiplication of (7.19) on the right by \mathbb{N}_{2} yields (7.2I) $G_{3} N_{2}=-\left[G_{4} \cdot N_{4}(242)+G_{4} \mathbb{N}_{5}(252)\right]$.

Multiplication of (7.19) on the right by N_{1} produces

$$
\begin{aligned}
(7.22) G_{2} N_{1}= & -G_{3} N_{3}(131)-G_{3} N_{4}(141)-G_{3} N_{5}(151) \\
& -G_{4} N_{4}[(241)-(141)(111)]
\end{aligned}
$$

$$
-G_{4} \mathbb{N}_{5}[(251)-(151)(111)] .
$$

Again (7.6) transforms into
(7.23) $G_{4} B_{m-3}^{(4)}+G_{3} B_{m-2}^{(4)}+G_{2} B_{m-1}^{(4)}+G_{1} E_{1}=0$.

Multiplication on the right by N_{4} simplifies this into (7.24) $G_{4} N_{4}=0$.

Multiplication of (7.23) on the right by \mathbb{N}_{2} yields (7.25) $\quad G_{2} N_{2}=G_{4} I_{5}[(151)(212)+(252)(222)-(352)]$

$$
-G_{3} N_{3}(232)-G_{3} N_{4}(242)-G_{3} N_{5}(252)
$$

Multiplication of (7.23) on the right by ${ }^{1 /}$ I gives $(7.26) \quad G_{1} N_{1}=G_{4} N_{5}[(251)(111)+(252)(221)+(151)(211)$ $-(151)(111)(111)-(351)]$
$+G_{3} N_{3}[(131)(111)-(231)]-G_{2} N_{3}(131)$
$+G_{3} N_{4}[(141)(111)-(241)]-G_{2} N_{4}(141)$
$+G_{3} N_{5}[(151)(11 I)-(25 I)]-G_{2} N_{5}(151)$.
Multiplication of (7.23) on the right by \mathbb{N}_{3} yields

$$
\begin{aligned}
(7.27) G_{3} N_{3}=G_{4} N_{5}[(353)+(252)(223) & +(151)(213)+(251)(113) \\
& -(151)(111)(113)]
\end{aligned}
$$

Designating the coefficient of $G_{4} \mathbb{F}_{5}$ above by \mathbb{V}_{54} we have

$$
G_{3} N_{3}=G_{4} N_{5} V_{54}
$$

Finally, (7.7) gives
(7.28) $G_{4} B_{m-4}^{(4)}+G_{3} B_{m-3}^{(4)}+G_{2} B_{m-2}^{(4)}+G_{1} B_{m-1}^{(4)}+G_{0} E_{1}=I_{s}$.

Multiplication on the right by \mathbb{N}_{5} yields

$$
G_{4} \mathbb{N}_{5}\left[V_{52}\right]+G_{3} N_{3}\left[V_{53}\right]=N_{5}
$$

in which

$$
\begin{aligned}
v_{52}= & (455)-(151)(315)-(252)(325)-(251)(215) \\
& -(151)(111)(215)+(151)(212)(225)+(252)(222)(225) \\
& -(352)(225)+(251)(111)(115)+(252)(221)(115) \\
& +(151)(211)(115)-(151)(111)(111)(115)-(351)(115)
\end{aligned}
$$

and

$$
V_{53}=(335)-(131)(215)-(232)(225)+(131)(111)(115)-(231)(115) .
$$

Substituting for $G_{3} N_{3}$ from (7.27), we obtain
(7.29) $\quad G_{4} N_{5} V_{5.5}=N_{5}$
in which

```
V
    = (455)-(252)(325)-(151) (315)-(352) (225)
        +(252)(222)(225)+(151)(212)(225)+(151)(111)(215)
            -(151)(111)(111)(115)+(251)(111)(115)+(252)(221)(115)
            +(151)(211)(115)-(351)(115) +(151)(213)(335)
            -(151)(213)(232)(225)-(151)(213)(131)(215) -
                                    (151)(213)(231)(115)
            +(151)(213)(131)(111)(115)-(151)(111)(113)(335)
            +(151)(111)(113)(232)(225)+(151)(111)(113)(131)(215)
        +(151)(111)(113)(231)(115)-(151)(111) (113) (131)(111)(115)
    +(252)(223)(335)-(252) (223) (232) (225)-(252)(223) (131)(215)
    -(252)(223)(231)(115)+(252)(223)(131)(111)(115)
+(251)(113)(335)-(251)(113)(232)(225)-(251)(113)(131)(215)
    -(251) (113)(231)(115)+(251) (113) (131) (111) (115)-(353) (335)
    +(353)(232)(225)+(355)(131)(215)+(353)(231)(115)
    -(353)(131)(111)(115) .
```

It necessarily follaws from (7.29) that

$$
(7.30)\left|\mathrm{v}_{55}\right| \neq 0 .
$$

If we set arbitrarily
(7.31) $\quad G_{4} N_{1}=G_{4} N_{2}=G_{4} N_{3}=G_{4} N_{4}=0$

$$
G_{0} N_{1}=N_{1}-N_{5} V_{55}^{-1}(451)+N_{5} V_{55}^{-1} \quad(151)(311)
$$

$$
+N_{5} V_{55}^{-1}(252)(32 I)-N_{5} V_{55}^{-1} V_{54}(331)
$$

$$
-\mathbb{N}_{5} V^{-1}[(151)(212)+(252)(222)-(352)] \quad \text { (241) }
$$

$$
\begin{equation*}
+\mathrm{V}_{5} V^{-1}\left[V_{54}(131)+(251)-(151)(111)\right] \tag{211}
\end{equation*}
$$

$$
-\mathbb{N}_{5} V_{55}^{-1} V_{51}(111)-\left[\mathbb{N}_{2}-\mathbb{N}_{5} V_{55}^{-1} V_{50}\right] \quad \text { (121) }
$$

$$
\begin{aligned}
& G_{4} \mathbb{N}_{5}=\mathbb{N}_{5} V^{-1} . \\
& G_{3} N_{1}=-\mathbb{N}_{5} V_{55}^{-1} \text { (151) } \quad G_{3} N_{2}=-N_{5} V_{55}^{-1} \text { (252) } \\
& G_{3} N_{3}=N_{5} V_{55}^{-1} V_{54} \quad G_{3} N_{4}=G_{3} N_{5}=0 . \\
& G_{2} \mathbb{N}_{1}=-\mathbb{N}_{5} V_{55}^{-1} V_{54}(131)-N_{5} V_{55}^{-1}[(251)-(151)(111)] . \\
& G_{2}{ }_{2} W_{2}=N_{5} V_{55}^{-1}[(151)(212)+(252)(222)-(352)] \\
& G_{2} N_{3}=G_{2} N_{4}=G_{2} N_{5}=0 . \\
& G_{1} N_{1}=N_{5} V_{55}^{-1} V_{51} \quad G_{1} N_{2}=N_{2}-N_{5} V_{55}^{-1} \quad V_{50} \\
& G_{1} N_{3}=G_{1} N_{4}=G_{1} N_{5}=0
\end{aligned}
$$

$$
G_{0} M_{2}=G_{0} H_{13}=G_{0} N_{4}=G_{0} M_{5}=0
$$

in which

$$
\begin{gathered}
V_{51}=(251)(111)+(252)(221)+(151)(211)-(151)(111)(111)-(351) \\
+V_{54}[(131)(111)-(231)] .
\end{gathered}
$$

and

$$
\begin{align*}
V_{50}= & (452)-(151)(312)-(252)(322)+V_{54}(332) \\
& +V_{54}(131)(212)+[(251)-(151)(111)] \quad(212) \\
& -[(151)(212)+(252)(222)-(352)] \tag{222}
\end{align*}
$$

we see that $(7.3),(7.4) ;(7.5),(7.6)$ and (7.7) are satisfied identically. Again, although P_{4} and Q_{4} are not of necessity unique, the rank of ${ }^{\pi} 55$ is independent of the manner in which they are chosen.
(7.32) Theorem:- If $b(\lambda)$ is the matric polynomial defined by (7.1), the necessary and sufficient condition that there exist a quartic polynomial associated with it is that equation (7.30) be satisfied. One such polymomial is defined by equations (7.31).
(7.33) Theorem:- If $b(\lambda)$ is the matric polynomial defined by (7.1); the necessary and sufficient condition that all polynomials associated with it be quartic is that equation (7.30) be satisfied. The proof of this is analogous to the proofs of theorems (5.21) and (4.13) and so will not be given.

