c
 BING'S DOGBONE SPACE AND CURTIS' CONJECTURE by
 JOHN EDWARD HUTCHINGS
 M.A., University of British Columbia, 1966

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
in the Department
of

MATHEMATICS

We accept this thesis as conforming to the required standard

$$
\text { Apri1, } 1973
$$

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for finaneial gain shall not be allowed without my written permission.

Department of Mathematics

The University of British Columbia Vancouver 8, Canada

Date \qquad May 251973

ABSTRACT

Bing's dogbone space D is an upper semi continuous decomposition space of E^{3} which fails to be E^{3} although the associated decomposition consists only of points and tame arcs. It has proved difficult to find topological properties of D which distinguish it from E^{3}. In this paper, we prove a conjecture of Morton Curtis in 1961 that certain points of D fail to possess small simply connected neighbourhoods.

I wish to acknowledge my gratitude to my supervisor Dr. Whittaker for his unselfish and often indispensible aid during my graduate studies at UBC, and to Dr. Luft for his support and enthusiasm. I am grateful also for some conversations and a blizzard of letters from R. H. Bing.

TABLE OF CONTENTS

Introduction 1
Chapter I 3
Chapter II Bing's Dogbone Space and Curtis' Conjecture. 24
Chapter III Generalization of a Theorem of Bing: Lemmas 56
Chapter IV Generalization of a Theorem of Bing: Main Proof 78
Bibliography 98
Appendix 99

TABLE OF FIGURES

Figure Page
1 6
2 6
3 7
4 11
5 13
6 14
7 15
8 15
9 16
10 facing page 17
11 " 17
12 " 18
13 21
14 22
15 23
16 a facing page 25
16 b " 26
17 " 26
18 26
19 " 26
20 " 27
21 " 27
22"29

Table of Figures cont'd

> - vi -

Figure Page
23facing page 34
24.............. " 34
25.............. $\quad 41$
26.............. " 41

27 41
28.............. " 42

29 45
30 45
31 ar............. " 45
31b............ " 45
32 46

33 46
34 47
35 " 47
36 49
37 52
38 53
39 53
40 54
41 55
42.............. 57
43.............. " 57
44.............. " 57
Figure Page
45 facing page 58
46 " 59
47 " 59
48 " 60
49 " 62
50 " 65
51 " 65
51 " 71
52 " 73
53 " 78
$54 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ " 84
55 " 88
56 " 91
57 " 92
58 " 92
59 " 92
60 " 92
61 " 93
62 " 94
63 94
$64 \mathrm{a}, \ldots \mathrm{j}$ see Appendix 99

Bing's dogbone space (which is denoted by D in this paper) is a decomposition space of E^{3} which fails to be homeomorphic to E^{3} even though the associated decomposition space is upper semicontinuous and point-1ike, and each element of the decomposition is either a point or a tame arc. The appearance of D in.[12] caused some surprise since it was thought at the time that all usc point-1ike decomposition spaces of E^{3} would turn out to be E^{3}. Although D dates from 1955 and has become rather well-known, it has been found hard to determine those topological properties of the space which distinguish it from E^{3}. Bing's original paper [12] showed that \mathcal{D} is a non-manifold; but \mathcal{D} is a simply connected homology manifold and locally simply connected. This paper contains a proof of a conjecture of Morton Curtis that D fails to possess small simply connected open neighbourhoods about certain points. This property is stronger than local simple connectivity (see our comments in II §1). A proof of Curtis' Conjecture was anounced in 1964 [14]; however the detailed proof has not appeared. Only one other topological property distinguishing D and E^{3} is known: some points of D cannot be enclosed in 2-spheres [11], [13]. The general state of affairs seems to be that some points of D have no closed or open 3-ce11 neighbourhood systems, but do have systems of neighbourhoods bounded by double tori.

Our arguments use elementary methods exclusively (except for an easily circumvented reference to the Hopf property of knot groups) and may well appear old-fashioned. We are less than proud of much of the exposition, which was intended to combine the detail appropriate to a
thesis with the directness of a journal paper and somehow didn't. The reader will probably share our pain at the length of the argument (the whole paper is essentially one theorem). The reader who is unfamiliar with pathological decomposition spaces is advised to read [3], which is brief and exceptionally entertaining, and then skim Ch. II:. We will mention some notational peculiarities: we follow common practise in describing geometric constructions, even complicated ones, by the use of diagrams. "Theorem' in this paper means 'working theorem'; thus 'theorems' appear in the introductory chaptereonly.

0. Introduction.

This first chapter gives preliminary material for the arguments in Ch III and especially Ch IV. The reader who wishes to skim the paper will find that Ch II, which contains the discussion of Curtis' Conjecture, is largely independent of this first chapter. In this paper, our approach to elementary topology is along the lines of the easier chapters of [10], in particular, we always assume a separable metric space. In this chapter, sections 1 and 2 are elementary, $\S 3$ contains working theorems for Ch IV, and $\S 4$ is essentially a comment on Bing's Theorems 6 and 7 of [12]. Section 5 is part of the argument of Ch IV which is self-contained and has been smuggled into the preliminary material, although it could have been left until it appeared naturally in the main argument.

1. Notation.

The arguments in this paper use elementary methods exclusively, so that notation should present moproblems. We use \emptyset for the null set and
 expression 'Bd A' may mean either the manifold boundary of the mainifold-with-boundary A, or the point-set boundary of the set A . A similar comment applies to the expression 'Int A' . This reflects common practise; we will comment whenever the meaning is unclear. As mentioned in the preface, our attitude to the construction of tame sets will be cavalier; we will construct many important tame sets simply by describing the set and perhaps giving a picture of it. We advise against the intuitive approach of imagining our constructions as straight-sided polyhedra whose structural detail is so fine that the polyhedra approximate the figures closely. Several of our arguments will require extensive repair if our geometric constructions are interpreted in this way. If neccessary, methods in [4] could be used to
show that each of our constructions is in fact a curvilinear polyhedron.

2. Elementary Results.

In this section we give some 'obvious' results which we have found hard to justify by simple references. This may be a matter of ignorance, especially in the case of (2.1) and (2.3). We define an annulus to be a topological sphere with two holes. The proofs are omitted.
(2.1). Let a be an arc which intersects two disjoint closed sets S_{1}, S_{2}. Then there is a sub-arc $a *$ of a which connects S_{1} and S_{2} and meets $S_{1} \cup S_{2}$ only at the end points of a^{*}.
(2.2). Any two annuli A_{1}, A_{2} are homeomorphic. Any homeomorphism of one boundary component of A_{1} onto a boundary component of A_{2} may be extended to a homeomorphism of A_{1} onto A_{2}.
(2.3). The union of two locally connected (1c) continua which intersect is a 1 c continuum.
(2.4). Let 0 be a bounded connected open set in the plane whose boundary is lc. Then any two points x and y in $\overline{0}$ may be connected by an arc which lies in 0 except possibly for its end points.
(2.5). Let A be a 2-manifold with boundary, and K a continuum in A. Then any two points of. K may be connected by an arc in Int A (except possibly for end points) which lies within a distance ε of K .
(2.6). Let C_{1}, C_{2} be disjoint simple closed curves in E^{2}. Then
one of the following exclusive alternatives is true:
a) $\quad \mathrm{C}_{1} \subset$ Int C_{2} or equivalently $\overline{\text { Int } \mathrm{C}_{1}} \subset$ Int C_{2}.
b) $\mathrm{C}_{2} \subset$ Int C_{1} or equivalently $\overline{\text { Int } \mathrm{C}_{1}} \subset$ Int C_{2}.
c) Each of ${ }^{\prime} C_{1}, C_{2}$ lies in the others exterior, or equivalently $\overline{\text { Int } C_{1}} \cap \overline{\text { Int } C_{2}}=\varnothing$
(2.7). Let A be an annulus, and C a simple closed curve in Int A which bounds no disk in A. Then C separates A into components B_{1}, B_{2} such that $B_{1} \cup C$ and $B_{2} \cup C$ are annuli.
3. Sliding Curves on Spheres.
(3.1). We will often need to 'move' or 'deform' curves in E^{3}. This will be done by sliding the curves on convenient spheres, disks and annuli in E^{3}. The sort of thing that may be encountered is shown in fig. 1. A double ended lasso has loops p, q and 'middle' z. We may want to push z, over to the position of z^{\prime} in the figure or expand p so that it looks like p^{\prime}. This can be done with a homeomorphism $H: E^{3} \rightarrow E^{3}$ which carries, say, z onto z^{\prime} and can thus be said to move ' z to $z^{\prime \prime}$.

Suppose $p \cup q \cup z$ lies on a disk. $\triangle \subseteq E^{3}$. We ask what properties the homeomorphism H should have in order to reflect the intuitive idea of sliding z to z^{\prime} on Δ while keeping $p \cup q$ fixed. One way to do this would be to construct a new disk $D C \triangle$ (see fig. 2) so that D contains $z \cup z^{\prime}$ and misses p and q except where they hit $z \cup z^{\prime}$. Then we could require that H carry z onto $z^{\prime}, H[D]=D$, and that H be the identity on $\Delta-D$ and on $B d D$, (thus H will fix $p \cup q$). It seems a good idea to specify a number of standard moves, prove that they can always be made and stick to these in the sequel. When, as commonly happens, an arc or loop moves only a short distance and has explicit initial and final locations, then our idea of 'standard moves' is probably too formal. However our standard moves are intended for the case that the initial position of the set is unknown. In this case the existence of the required move is less obvious, especially when, as in §5, Th 6 , a base point must be held fixed during the move. If S is a sphere with n holes in E^{3}, then a collar of S is the image of an embedding h of. $S \times[-1,1]$ into E^{3} so that $h(x, 0)=x$. Evidently a collar of S may not exist (S could be wild). A set upon which a : collar has been constructed is called a collared set. Note that a collar of S is not a neighbourhood of S.

(3.2). $A-B-$ and B^{\prime}-moves.

We give three standard moves in Theorems 1 and 2 .

Theorem 1. Let D be a disk in E^{3}, J a collar of D, and a^{\prime}, two arcs which have common end points and lie in Int D except for these end points, which lie in Bd D . Then there is a . homeomorphism $A\left(a, a^{\prime}, D, J\right)$ of E^{3} onto itself which carries a onto a^{-}, D onto itself, and which fixes $\overline{E^{3}-J}$.

We call $A\left(a, a^{\prime}, D, J\right)$ 'the $A-m o v e ' ~ a n d ~ s a y ~ t h a t ~ A\left(a, a^{\prime}, D, J\right)$ moves a to " a^{\prime}. (Of course the fact that a moves to a^{\prime} is only one of a number of things that have to be kept in mind. We write the move as a function of D and J to emphasize that the trick of using the move depends on the right definition of D and J).

Theorem 2. Let A be an annulus in E^{3}. Let. c, c^{-}, be simple closed curves which lie in the interior of A and bound no disks in A. Let Q be a collar of A. Then there is a homeomorphism $B\left(c, c^{\wedge}, A, Q\right)$, also called a $B-m o v e$, of E^{3} onto itself which carries c onto c^{\prime}, A onto itself, and which fixes $B d Q$ and $\overline{E^{3}-Q}$. If, in addition, c and c^{\prime} have a common base point y, then there is a homeomorphism $B^{\wedge}\left(c, c^{\wedge}, A, Q\right)$ and the following additional property: if h is the embedding associated with Q, so that $Q=h[A \times[-1,1]]$, then the B^{-}-move fixes y and in fact all of $h[y \times[-1,1]]$.

The B'move is a move 'keeping the base point fixed'. One could probably fix the base point by providing that $c \cup c^{\prime}$ eould hit $B d A \subset B d Q$
so that $y \in B d Q$ (the B-move does not permit this), however the B "-move as given above fits the intended applications better and is easier to prove. We will give an example which shows why we want the B^{\prime}-move to fix $h[y \times[-1,1]]$. Fig. 3 shows c, c^{\prime}, A, and an arc $a \cup b$ such that a misses A and b is a straight arc perpendicular to A. We want to move c to ' c ' while leaving $a \operatorname{Ub}$ fixed. We do this with a $B^{\circ}-$ move $B^{\prime}\left(c, c^{-}, y, A, Q\right)$ in which Q is defined so that all points of Q lie near A (i.e. for $x \in A, h[x \times[-1,1]]$ is short) and so that each arc $h[x \times[-1,1]]$ with $: x \in A$ is perpendicular to A...For a sufficiently 'thin' Q, the B^{\prime}-move will fix a because $a \subset \overline{E^{3}-Q}$, and b will be fixed because b lies in $h[y \times[-1,1]]$ wherever it hits Q . Evidently the utility of the B^{\top}-move is limited; However subsequent use of the B^{\prime}-move will be very much along the lines of this example.
4. The Phragmen-Brouwer Properties. The Zoretti Theorem.

The Phragmen-Brouwer Properties are usually given for the n sphere, but hold also on a disk. We quote from Wilder, [I, II 4.1]. Let S be a locally connected metric space. Then the following properties of S are equivalent.
(4.11). If A, B are disjoint, closed subsets of S, and $x, y \in S$ such that neither A nor B separates x and y in S, then $A \cup B$ does not separate x and y in S.. (By ' X separates x and y in S^{\prime} is meant ' x and y are in different components of $S-X^{\prime}$).
(4.12). If $S=A \cup B$, where A, B are closed and connected, then
$\mathrm{A} \cap \mathrm{B}$ is connected.
(4.13). If A, B are disjoint closed subsets of S and $a \in A$, $b \in B$, then there exists a closed connected subset C of $S-(A \cup B)$ which separates a and b.

Theorem II 4.12 of [1] states that these properties are equivalent in a locally connected metric space. From VII, 9.3 of [1] (note also 9.2), a disk D will have properties (4.11), (4.12), (4.13), if its first Betti number is zero; thus (4.11) ... (4.13) hold on D .
(4.2). We get the following important working theorems from (4.11). These theorems resemble Theorems 6 and 7 of [12].

Theorem 3. Let D be a 2-cell in E^{3} and F_{1}, F_{2} closed disjoint subsets of E^{3}. Let -pxq, pyq be arcs in D which share the end points p and q, and such that arc $p \times q$ misses F_{1}, arc pyq misses F_{2}. Then there exists an arc $p z q$. with end points p, q such that arc $\mathrm{pzq} \subset \mathrm{D}-\mathrm{F}_{1}-\mathrm{F}_{2}$.

Theorem 4. Let D, F_{1}, F_{2}, p, q, arcs $p x q$, pyq be defined as in Th 3 except that arc $p x U$ arc $y q$ misses F_{1}, arc py U arc $x q$ misses ${ }^{\wedge} F_{2}$. Then there exists an arc $p z q \quad D$ with end points p, q, such that arc misses either F_{1}, or F_{2}.

Proofs of Th 3, and Th 4. Since D iṣ simply connected, pxq and pyq are homotopic in D by a homotopy which fixes p and q. Using this fact, the proofs of Th 6 and Th 7 of [12] may be used word for word to prove $T h 3$ and $T h 4$ respectively, reading D for M in
(4.4). The Plane Separation Theorem and the Zoretti Theorem.

We quote these results, slightly simplified, from [10, VI §3]:
(4.41). The Plane Separation Theorem. Let A , B be compact sets in E^{2} which intersect in at most one point. Let $a \in A-B, b \in B-A$, and J.et $\varepsilon>0$. Then there is a simple closed curve J which separates a and b in E^{2}, lies within an ε-neighbourhood of A, and misses $A \cup B$ except possibly at the point $A \cap B$.
(4.42). The Zoretti Theorem. If K is a component of a compact set M in the plane, then there is a simple closed curve J whose interior contains K, which misses M, and which lies in an ε-neighbourhood of K .
5. Annulus Dodging Theorems.

Suppose A is an annulus and F is a closed set in A. When can we say that a simple closed curve which looks like c in fig. 4 exists so as to miss F ? The answer is about what would be expected. We say that F bridges A iff the two boundary components of A are in the same component of Bd AUS , or equivalently, iff some component of F meets both boundary components of A .

We will prove the equivalence, Let the boundary components of A be ℓ and m. ' m^{\prime} is obvious. If no component of F meets both ℓ and m, then no component of F meets both $\ell \cap F$ and $m \cap F$, and by $I(9.3)$ of [10] (taking A, B, K to be $\ell \cap F, m \cap F, F$, there is a separation of F into compacta F_{ℓ}, F_{m} such that F_{ℓ} meets only " ℓ, F_{m} meets only m in Bd A. Evidently this denies the existence of a connected subset of

F $\cup \ell \cup \mathrm{m}$ which meets both ℓ and. m.
(5.1). If F fails to bridge A, then there is a simple closed curve c in Int A such that c bounds no disk in A and c misses F.

Proof: We can assume that A is the set $1 \leq \dot{x}^{2}+\mathrm{y}^{2} \leq 2$ in E^{2}. Let D be the set $x^{2}+y^{2} \leq 1$. Let. l, m be the boundary components $x^{2}+y^{2}=1, \quad x^{2}+y^{2}=2$ respectively.

Consider the component K of $\ell \cup m \cup F$ which contains (the connected set) ℓ. The set $\ell U m \cup F$ is clearly compact, and by the Zoretti theorem (4.4.2) there is a simple closed curve c which lies in $E^{2}-F-l-m$, contains K in its interior and lies in an ε-neighbourhood of K. We will show that c has the properties required by (5.1). To see that c Int $A: K$ contains ${ }^{n} \ell$ and misses m, since otherwise F. bridges A. Thüs $K \subset(A \quad D)-m=\operatorname{Int}(A \cup D)$. Since K is compact, K has an ε-neighbourhood in $\operatorname{Int}(A \cup D)$, and we can assume that c lies in this neighbourhood. Thus. $c \in \operatorname{Int}(A \cup D)$. But c encloses $K \supset \ell$ and hence $D(b y(2.6))$; therefore $c \subset \operatorname{Int}(A \cup D)-D$ $=$ Int A. We know that c bounds no disk in A because, from the Schoenflies theorem, c bounds just one disk in E^{2}. This disk is Int $\overline{\text {. }}$ which is not a subset of A since it contains D. Since c misses F (by construction), lies in Int A, and bounds no disk in A, the proof of (5.1) is complete. \square.

Remark: the converse of 5.1 is true and easily proved. We will look at some generalizations, the choice being influenced by later applications.

Theorem 5. Let F_{1}, F_{2} be disjoint closed sets in the annulus A. If each of F_{1}, F_{2} fails to bridge A, then there is a simple closed curve c in $\operatorname{Int} A-F_{1}-F_{2}$ such that c bounds no disk in A. Proof: This result is trivial once we show that if neither of F_{1}, F_{2} bridges A, then $F_{1} \cup F_{2}$ fails to bridge A. Once this is done, the proof of Th. 5 is completed by applying (5.1) taking F to be $F_{1} \cup F_{2}$. To see that $F_{1} \cup F_{2}$ fails to bridge A : since F_{1} does not bridge A, no component of $\ell \cup m U F_{1}$ intersects both ℓ and m, (for otherwise some component of $\ell \cup m \cup F_{1}$ would contain. ℓ and m). By I (9.3) of [10], taking A, B, K in that theorem to be $\ell, m, \ell \cup m \cup F_{1}$, there is a separation of $\ell \cup m \cup F_{1}$ into disjoint compact sets U_{1},

U_{2} so that $\ell \subset U_{1}, m \subset U_{2}$. Similarly there is a separation of $\ell \cup m \cup F_{2}$ into disjoint compact sets V_{1}, V_{2}, with $\ell \subset V_{1}$, $m \subset V_{2}$. It is easily checked that $U_{1} \cup V_{1}$. misses $U_{2} \cup V_{2}$. Evidently $\ell \cup m \cup F_{1} \cup F_{2}$ may be separated into the disjoint closed sets $U_{1} \cup V_{1}$ and $U_{2} \cup V_{2}$ with $\ell \subset U_{1} \cup V_{1}, m \subset U_{2} \cup V_{2}$. Therefore ℓ and m are not in the same component of $\ell \cup m \cup F_{1} \cup F_{2}$ and $F_{1} \cup F_{2}$ fails to bridge A D.

We remark that ' $\mathrm{F}_{1} \cup \mathrm{~F}_{2}$ ' may be replaced by a finite union of disjoint closed sets with a few trivial changes in the proof. Theorem 5 is false for a non-compact union of sets F_{1}, F_{2}, Fig. 5 shows A and a collection F_{1}, F_{2}, \ldots such that A is the set $1 \leq r \leq 2$ in polar coordinates and for $1=1,2,3, \ldots, F_{i}$ is a subset of the ray $\theta=1 / i$. Although each F_{i} does not bridge A (nor does the union $\bigcup_{i=1}^{\infty} F_{i}$), the curve c in Th. 5 cannot be constructed.

We next look at the case where the curve c is constructed as In Th. 5 but with the further property that c contains a given base point x. In this case c cannot in general miss either of F_{1}, F_{2}, as Fig. 6 shows.

We will give a characterization of those placements of x, F_{1}, F_{2}, so that c can be made to miss one of F_{1}, F_{2}. We say that a simple closed curve c with base point x has Property \sim (read 'property not - P^{\prime}) with respect to closed sets F_{1}, F_{2} iff one of the following is true:

$$
\begin{aligned}
\sim & P(a): \\
\approx P(b): & \text { misses on of } F_{1}, F_{2} \cdot \\
& \text { and a decomposition of } c \text { into } \\
& \text { arcs } c_{1}, c_{2}, \text { with } c_{1} \cup c_{2}=c \\
& \text { and } c_{1} \cap c_{2}=\{x, y\} \text {, such that } \\
& F_{1} \text { misses } c_{1}, F_{2} \text { misses } c_{2} \text { (see } \\
& \text { fig. } 7 \text {). }
\end{aligned}
$$

This is an ugly and awkward definition. An equivalent and prettier statement is ' c has Property $\curvearrowleft P$ iff any point in $c-x$ may be joined to x by an arc which misses one of $\mathrm{F}_{1}, \mathrm{~F}_{2}$ '; however we will not prove this, and we will use the earlier statement exclusively. The odd name of this

fig 7.
property is intended to recall Being's Property P in [12]. This property is defined on double ended lassos (see fig. 8). Later we will define Property $\sim \mathrm{P}$ on double ended lassos and it will turn out that the loops of such lassos, with the obvious base points, have Property $\sim P$ in the present sense. The next theorem says that if c with base point x has Property $\sim \mathrm{P}$, then there is a loop c^{\prime} which behaves like c and misses one of $F_{1}, \quad F_{2}$.

Theorem 6. Let A, F_{1}, F_{2}, be defined as in Th. 5, including the condition that neither F_{1} nor F_{2} bridges A . Let x E Int A . Let c be a simple closed curve which lies in Int A. and bounds no disk in A and contains x. If c has Property $\sim P$ with respect to x, F_{1}, F_{2}, then there exists a simple closed curve c^{\prime} which lies in Int A, bounds no disk in A, has base point x, and misses one of F_{1}, F_{2}.

This result cannot be improved so as to allow us to specify which of F_{1}, F_{2} is to be missed by c^{\prime}. Fig. 9 shows a case where c^{\prime} in Th. 6 cannot be made to miss F_{2} although $F_{1} \cup F_{2}$ fails to bridge A, and c exists with Property $\approx P$. (There are simpler counter examples in which only F_{2} hits c. One of these may be derived by removing F_{1}

from fig. 9. However fig 9 shows that matters do not improve if we insist that both F_{1} and F_{2} hit c. .)

Proof of Th $\overline{6}$. We can assume that A is the set $1 \leq x^{2}+y^{2} \leq 2$ in $E^{2}:$ The inner and outer boundary components of A will be called ℓ and m respectively. Since neither of F_{1}, F_{2}, bridges A, it follows from Th 5 that there is a simple closed curve e C Int A which bounds no disk in A and misses $F_{1} \cup F_{2}$. If $x \in e$, then the proof is completed by letting e be c^{\prime}; thus we assume that $x \notin e$. We make the further assumption that $\mathrm{x} \in$ Int e ; it turns out that this restriction is easy to remove. Assuming that $x \in \operatorname{Int} e$, we construct c^{\prime} by first defining a lasso Y as shown in fig 10. The loop of Y is either e or a curve which behaves like e and is constructed similarly, while the 'handle' of Y joins the loop to x. The whole of Y misses one of F_{1}, F_{2}. The curve c^{\prime} lies near Y and meets x as shown in fig 11. Construction of Y. The lasso Y consists of the union of a simple closed curve r and an arc s, and is constructed so as to have the following properties:

```
Y C Int A,
Y , misses one of : F F , F F
the circle r bounds no disk in A,
the end points of s are }x\mathrm{ and a point }z\inr
and s - z misses r .
```

The construction of Y is divided into two cases.

Case one: e meets $c-x$. We assume that c satisfies Property $\mathfrak{\sim}$. $P(b)$, since if c satisfies Property $\sim P(a)$, we immediately 1et

$c^{\prime}=c$. This we take c to be the union of arcs c_{1}, c_{2} which meet only at their end points, and for $i=1,2, c_{i}$ misses F_{i}. If. e meets, say, c_{1} (it will do no harm if e meets both c_{i}), then use (2.5) to construct an arc s which joins x and $e \cap c_{1}$, and lies so near c_{1} that s misses F_{1}. (or take the obvious sub-arc of c_{1}). Let $\mathrm{r}=\mathrm{e}, \mathrm{Y}=\mathrm{r} u \mathrm{~s}$. To check that Y. has the required properties: Y misses one of F_{1}, F_{2} because s misses one of F_{1}, F_{2} and r misses both; $r=e$ bounds no disk in A by construction; and $Y \subset$ Int A because e $u c \subset$ Int A. Finally, from (2.1), we can assume that s meets r only at a single point. z.

Case two: e misses c . As before, we assume that c has Property $\sim \mathrm{P}(\mathrm{b})$. Outline of proof: a) As usual we take c to be the union of arcs $c_{1}, c_{2} ;$ let K_{1} be c_{1} plus those components of F_{2} which hit c_{1} and let K_{2} be c_{2} plus those components of F_{1} which hit c_{2}. $K_{1} \cup K_{2}$ is a component of $c \cup F_{1} \cup F_{2}$. b) A 'Zoretti curve' r is constructed so that r misses $c \cup F_{1} \cup F_{2}$, lies in Int A, enc1oses $K_{1} \cup K_{2}$, and bounds no disk in A. c) Some care needs to be taken to attach the tail s to r so that s misses one of the F_{i}. Construct a disk $d \subset$ Int A with centre on r, (see fig 12) so that d is big enough to hit $K_{1} \cup K_{2}$ but small enough to miss one F_{i}. This is managed by a careful choice of the ε associated with the Zoretti curve. d). There is an arc s near $K_{1} \cup K_{2} \cup d$ which has the required properties.

Details of proof.
a) Let $K_{1}=c_{1}$ plus those components of F_{2} which hit c_{1}. Let $K_{2}=c_{2}$ plus those components of F_{1} which hit c_{2}. We will show that $K_{1} \cup K_{2}$ is a component of $c \cup F_{1} \cup F_{2}$. Let K be the component of $c \cup F_{1} \cup F_{2}$ which contains the connected set $K_{1} \cup K_{2}$, and suppose
that some point p exists in $K-\left(K_{1} \cup K_{2}\right)$. Then p lies in one of F_{1}, F_{2}, say F_{1}. Since $p \notin K_{1} \cup K_{2}$, no component of F_{1} meets both p and $c \cap F_{1}$. By $I(9.3)$ of [10], there is a separation of F_{1} into compacta U_{1}, U_{2} containing. $c \cap F_{1}$ and p respectively. Evidently U_{2} misses not only U_{1} but F_{2} and the whole of c; thus $U_{1} \cup F_{2} \cup c$ is a compactum disjoint from U_{2}, and there is therefore a separation of $c \cup F_{1} \cup F_{2}=U_{1} \cup U_{2} \cup c \cup F_{2}$ into compacta containing c and p severally. This denies the assumption that p lies with c in a connected subset of $c \cup F_{1} \cup F_{2}$.
b) Since $x \in \operatorname{Int} e$ and e misses $c \cup F_{1} \cup F_{2}$, all of $K_{1} \cup K_{2}$ lies in. Int e by the usual argument. Since $K_{1} \cup K_{2}$ is a component of $c \cup F_{1} \cup F_{2}$ we can construct a Zoretti curve r which misses $c \cup F_{1} \cup F_{2}$, encloses. $K_{1} \cup K_{2}$, and lies withing a distance ε of $K_{1} \cup K_{2}$. The following argument shows that r bounds no disk in A : since c bounds no disk in $A, \overline{\text { Int } c, ~ w h i c h ~ i s ~ a ~ d i s k, ~ m u s t ~ m e e t ~ p o i n t s ~ o f ~} E^{2}$ - A. Since r encloses $K_{1} \cup K_{2} \supset c$, by (2.6) r. encloses Int \bar{c}. Hence the unique disk bounded by r meets points not in A. To see that $r \subset$ Int A : we saw that c encloses points of $E^{2}-A$. These points cannot be in Ext m by (2.6), since m encloses Int $A \supset c$. Hence Int c meets Int ℓ, and by a connectedness argument, since c misses $\overline{\text { Int } \ell}$, Int $c \supset \overline{\text { Int } \ell}$: Since r encloses Int c, r misses $\overline{\text { Int } \ell}$: Since r lies close to the: compactum $K_{1} \cup K_{2} \subset$ Int m, r can be assumed to lie in Int m. Therefore $r \subset$ Int $m-\overline{\operatorname{Int} \ell}=$ Int A.
c) We construct a (closed) disk of radius 2ε with centre anywhere on r. Clearly d will hit $K_{1} \cup K_{2}$. We show that $d \subset$ Int A by showing
that $d \subset$ Int m and d misses $\overline{\text { Int } \ell}$. The distance ε could have been chosen so that 4ε (i.e.. the diameter of d) is less than the distance separating c and Int ℓ, and the distance separating $K_{1} \cup K_{2}$ and m; and we assume that this was done (the last distance is positive because $K_{1} \cup K_{2}$ is compact and lies in Int m). Since d hits $K_{1} \cup K_{2}, d \subset$ Int m by the choice of ε. If d hits $\overline{\text { Int } \ell, ~ t h e n ~} d$ must also hit c, since points of $d \cap r$ lie in the exterior of c which encloses. $\overline{\text { Int } \ell}$ as we saw. By the choice of ε, d cannot meet both c and $\overline{\text { Int } \ell}$; thus d misses $\overline{\text { Int } \ell}$.

We also assume that ε was chosen so that for $i=1,2, \quad 4 \varepsilon$ is less than the distance separating K_{i} from F_{i}. The disk d must hit one of K_{1}, K_{2}, say K_{1} (it does no harm if d. hits both K_{i}). Since d hits K_{1}, d misses F_{1} since otherwise F_{1} would be closer to K_{1} than the diameter of d.
d) The continuum $K_{1} \cup d$ meets x and r and misses F_{1}. Using (2.5), let s be an arc in Int A which joins x and r and lies so near $K_{1} U d$ that s misses F_{1}. (note that although K_{1} may not miss $B d A$, (2.5) provides that s misses $B d A$). To see that $Y=r u s$ has the required properties: $r u s \subset$ Int A by construction; Y misses one of F_{1}, F_{2} because s misses one F_{i} and r misses both. The circle r bounds no disk in A as we saw in b); and finally we can assume that s has end points x and $z \in r$ with $r \cap s-z=\emptyset$ by (2.1).

[^0]

Construction of c^{\prime}. We maintain the assumption that $x \in \operatorname{Int} e$ during this construction. We will first construct a continuum a $\subset \mathrm{A}$ which joins $\overline{\text { Int } \ell}$ to x so that a meets Y only at x. As suggested by fig 13, the plane separation theorem can then be used to separate $Y-x$ and Int $\ell=a-x$. Construction of $a:$ since r encloses $c, x \in \operatorname{Int} r$. Let Q be the open set Int $r-s . Q$ is connected because $s-r$ does not disconnect Int $r([10, V I(3.4)])$. Evidently $\mathrm{Bd} Q=\mathrm{Y}$, and since each of r, s is a $1 c$ continuum, so is Y. Using (2.4), connect x to a point in $\overline{\text { Int } \ell}$ by an arc a which lies in Q except for x. Since Y misses $\overline{\text { Int } \ell}, Y$ and $\overline{\text { Int } \ell} U a$ are continua in Int m which meet only at the point x . We now use (4.41) to separate $\mathrm{Y}-\mathrm{x}$ and $\overline{(\operatorname{Int} \ell} \cup a)-x$ by a circle c^{\prime} which lies so close to Y that it misses one of F_{1}, F_{2}. Evidently c^{\prime} must pass through x (since otherwise $\overline{(\overline{I n t} \ell} \cup a)-x$ and $Y-x$ are subsets of a connected set in $\left.E^{2}-c^{\prime}\right)$. We know that $c^{\prime} \subset$ Int A because c^{\prime} misses $\overline{\text { Int } \ell}$ by construction and c^{\prime} lies so near $Y \subset$ Int m that $c^{\prime} \subset$ Int m. It remains to show that c^{\prime} bounds no disk in A. To see this; we know that r encloses ℓ. This means that c^{-}cannot enclose r, since this would imply that Int $c^{\prime} \subset r \cup l(f r o m(2.6))$, whereas we know that c^{\prime} separates r and ℓ.

Thus Ext $c^{\prime \prime} \supset r$ and Int $c^{\prime} \supset \ell$. The fact that Int $c^{\prime} \supset \ell$ implies that $c^{\prime \prime}$ bounds no disk in A by the usual argument.

The construction of "c is now complete except that the restriction $x \in$ Int e must be removed. Since the proof is easy if $x \in e$, we only look at the case that $x \in$ Ext e. Since we know that A is homeomorphic to a nice annulus, it is easy to construct a homeomorphism ϕ of A onto itself which exchanges ℓ and m, i.e. $\phi[\ell]=m, \quad \phi[m]=\ell$. Then $\phi[\mathrm{A} \cap$ Ext e$]=\operatorname{Int} \phi[\mathrm{e}] \cap \mathrm{A}$ and $\phi[\mathrm{A} \cap$ Int e$]=\operatorname{Ext} \phi[\mathrm{e}] \cap \mathrm{A}, \quad$ using the fact that $A \cap$ Ext $e, A \cap$ Int e are connected to m, l respectively in A-e. Then if $x \in E x t e$ apply earlier arguments to $\phi[A]$, using the fact that $\phi(x) \in$ Int $\phi[e]$, etc \square.

Theorem 7. Let A, F_{1}, F_{2} be defined as in Th 5 and Th 6 except that F_{1} bridges A while F_{2} does not. Let c be a simple closed curve in Int A which bounds no disk in A and contains the base point x. Then if c has Property $\sim P$. with respect to $x, F_{1} F_{2}$, there exists a simple closed curve c^{\wedge}. which meets x, : lies in Int A, bounds no disk in A, and misses F_{2}.

Th 7 is proved in the same way as Th 6. At first glance one might think that one of $\mathrm{Th} 6, \mathrm{Th} 7$ is stronger than the other; but in fact this is not true. If F_{1}, F_{2} fail to bridge A, one might wish to add pieces to, say, F_{1} so that the enlarged F_{1} would bridge A; this would obtain the conclusion of Th 7 which is stronger than that of Th 6 (since it predicts which F_{i} is hit by c^{\wedge}). However it may not be possible to do this ($F_{1} \cup F_{2}$ might be a number of circles concentric with m in A).

$$
\text { Proof of Th 7. Use (5.1) with } F \text { taken to be } F_{2} \text { to construct }
$$

a simple closed curve e which lies in Int A, misses F_{2}, and bounds no disk in A. If e meets x, then e is the required c^{\prime}. If $x \notin e$, assume that $x \in$ Int e as before. Since e bounds no disk in A, e separates ℓ and m by (2.7); in particular e meets some component k of F_{1} which hits both ℓ and m (there must be at least one since F_{1}. bridges A). For similar reasons, c meets the same component k . Let $y^{\prime \prime} \in k \cap e$. Because c has Property $\sim P$, there is an arc $b \subset c$ such that b misses one of F_{1}, F_{2} and connects a point of k to x. Since $k \subset F_{1}$, evidently $b \cup k$ misses F_{2}. Since $b \cup k$ is a continuum which connects $y^{\prime} \in e$ to x and misses F_{2} (as does e), we can construct the lasso Y as in the proof of $T h 6$, reading $b U k$ for $c \cup d$ and e for r. In the proof of $T h 6$, the curve r misses $F_{1} \cup F_{2}$, whereas here e misses just F_{2}; however following the procedure of the proof of Th 6 will yield a lasso Y which misses F_{2}. The lasso Y is used to construct c^{\prime} precisely as in the proof of $\operatorname{Th} 6$, keeping in mind the fact that Y misses F_{2}, so that the resulting c^{\prime} also misses F_{2}. The assumption that $x \in$ Int c is removed just as in the proof of Th $6 \square$.

1. An upper semicontinuous decomposition G of E^{3} into compact sets (or simply a decomposition of E^{3}) is a collection of disjoint compact sets Λ of E^{3} such-that the union of the elements of the decomposition is E^{3}, and each element $\Lambda \in G$ possesses a-system of open neighbourhoods which are unions of elements of G. The decomposition space G associated with G is a topological space in which each point is as element $\Lambda \in G$, and the open sets are just those subsets of G the union of whose eiements is open when considered as subset of E^{3}. Thus each point Λ of G has a system of neighbourhoods each of which is open 'both in G and in $E^{3 ;}$. One can use this intuitive idea to get a certain geometric grasp of the topology of G simply by remembering that 'some points are sets' and keeping an eye on the neighbourhoods; for example one often does geometry on a torus or Klein bottle by looking at the equivalent decomposition space of a rectangle 'with certain sides identified'. If an element, $\Lambda \in G$ contains more than one point of E^{3}, then Λ is called a big element of G. If Λ is a singleton, then Λ is a small element of G. In G, the corresponding points are called big and small points. The decompositions G in which we will be interested are all pointlike, which is to say that the complement of each $\Lambda \in G$ is topologically equivalent to that of a point; in particular, each Λ is connected. We definitely assume some acquaintance with these ideas and do not regard the present text as an adequate introduction. The classical approach to decompositions and decomposition spaces may be found in Ch VII of [10]. Our approach will be more along the lines of [3,86]. We will use two main classical results: i) an upper semicontinuous decomposition space (i.e. the decomposition space associated with an upper semicontinuous decomposition) of E^{3} is a separable metric space. ii) there is an

obvious way of expressing G as a quotient space. In this case the quotient topology turns out to be the decomposition space topology, and the canonical mapping ϕ of the quotient space carries each $\Lambda \in G$ onto the corresponding point $\phi[\Lambda]$ in G. We will often write A^{*} for $\phi[A]$ if A is a subset of E^{3}. In the sequel, 'decomposition space' will mean 'pointlike upper semi continuous decomposition space of E^{3}.'

An important question is: if G is a decomposition space, is G homeomorphic to E^{3} ? That G is homeomorphic to E^{3} is Wardwell's conjecture (in [8]) and is known to be false. R. H. Bing showed this in 1957 with a celebrated example ([12]) which reinforced everyone's worst prejudices against the analytic topology of E^{3}. In Bing's example, the dogbone space of our title, most of the elements of the decomposition are sma1l. Each big element is a tame arc (so that the example refutes a very strong form of Wardwell's conjecture), and the big points in the decomposition space form a totally disconnected set.

Detailed construction of the dogbone decomposition.
We will describe an infinite sequence of compact sets whose elements intersect to form the set of big elements of the dogbone decomposition G . Our construction differs slightly from Bing's, but we assume an acquaintance with the original construction in [12] and will not prove, for example, that the various embeddings to be described can be assumed to be polyhedral.

Dogbone space takes its name from the distinctive shape of the double handlecube A depicted in fig 16a. We imagine A imbedded in E^{3}. A path $\ell \subset$ Int A, which makes one circuit of the circle marked ℓ

Facing page 26 (I)

$F_{18} 18$.

Facing page 26 (II)
in fig 16a is called the upper eye of A. A path $m \subset$ Int A which makes one circuit of the curve marked m in the figure is called the lower eye of A (we imagine the dogbone placed vertically in E^{3} so that it makes sense to talk about 'upper' and 'lower' here). One could imagine A to be a closed r-neighbourhood of a planar double ended lasso consisting of the eyes ℓ and m laid out as nice circles plus a straight connecting arc a (with r of course, taken sufficiently small, say less than onethird of the common diameter of the nice circles ℓ and m). We call $\ell \cup m \cup a$ the centre of A. The centre of a dogbone will not be important in this chapter (but will be needed in Chapters III, IV). The idea of A as an r-neighbourhood of its centre k is introduced mainly to pin down the embedding of k in A; we usually draw k and A as in fig 16b. Fig 17 shows four short solid scylinders $B^{1}, B^{2}, B_{1}, B_{2}$, which are subsets of A and cut into the eyes of A as the figure suggests. The removal of one of B^{I}, B^{2} and one of B_{1}, B_{2} from A leaves a set whose closure is a cube. A dogbone can be imagined in the topologically equivalent form of a thick double ended lasso as shown in fig 18. In a sense, we are pictorially confusing the dogbone with its centre. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be four dogbones embedded as shown in fig 19 by embeddings $h_{j}: A \rightarrow A, j=1,2,3,4$ so that the $:$ $A_{j}=h_{j}[A]$ are mutually disjoint and lie in Int A. In fig 19, two double twisted bands β^{1} and β_{1} are placed so that $\beta^{1}\left(\beta_{1}\right)$ lies in the interior of the upper (lower) component of $A-B_{1}-B_{2}-B^{1}-B^{2}$. In the obvious way, the centre of A_{j} is called $k_{j}, j=1,2,3,4$, with upper loop ℓ_{j} and lower loop m_{j}. The ℓ_{j} are placed so as to lie as parallels on β_{1}. The connecting arcs a_{j} are laid out in a peculiar

Toroidal Coordinates (φ, r, θ).
(r, θ) defines a point on the disk δ. As φ increases in $0 \leq \varphi \leq 2 \pi, \delta$ sweeps a toroid which is a figure of revolution about the planar circle C.

F1820.

way which is characteristic of the dogbone construction. Using toroidal coordinates (which we recall in fig 20), we could define β^{1} and β_{1} to be appropriate translations of the set $r \leq 1, \theta=\phi$ and thus construct a band with an even double twist. However the bands in the drawing are translations of the set

$$
\begin{array}{ll}
\mathrm{r} \leq 1, & \theta=0: \quad \pi / 3 \leq \phi \leq 2 \pi \\
\mathrm{r} \leq 1, & \theta=6 \phi: \quad 0 \leq \phi \leq \pi / 3
\end{array}
$$

This gives a 'flatter' band and a better picture. Another concession to art appreciation is the placing of β^{1} and β_{1} so that their 'flat' parts lie on the plane of k. This necessitates a right angled bend in the a_{j} near β^{1} and again near β_{1}. The additional conditions are imposed on a_{j} that a_{j} misses $\beta^{1} \cup \beta_{1}$ except at $a_{j} \cap \ell_{j}$ and $a_{j} \cap m_{j}$, and that the part of a_{j} lying within a distance ε of $\beta^{1}\left(\beta_{1}\right)$ consists of a single straight arc perpendicular to $\beta^{1}\left(\beta_{1}\right)$. Note that the order of ℓ_{j} 's on β^{1} is $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ while the order of m_{j} 's on β_{1}, due to the unusual embedding of the A_{j}, is $m_{1}, m_{3}, m_{2}, m_{4}$: The B_{i} and B^{i} locate the A_{j} in the following way (see fig. 21):

$$
\begin{aligned}
& A_{1} \text { lies in } \operatorname{Int}\left(A-B^{2}-B_{2}\right) \\
& A_{2} \text { lies in } \operatorname{Int}\left(A-B^{2}-B_{1}\right) \\
& A_{3} \text { lies in } \operatorname{Int}\left(A-B^{1}-B_{2}\right) \\
& A_{4} \text { lies in Int }\left(A-B^{1}-B_{1}\right)
\end{aligned}
$$

The closure of the component of $A-B^{1}-B^{2}-B_{1}-B_{2}$ which contains $\beta^{1}\left(\beta_{1}\right)$ is called $K_{1}\left(K_{2}\right)$. Finally we let $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=a_{1}$.

Now since each dogbone A_{j} is homeomorphic to A, we can embed four dogbones $A_{j 1}, A_{j 2}, A_{j 3}, A_{j 4}$ in each. A_{i} just as the A_{j} are embedded in A. We could write $A_{j k}=h_{j} h_{k}[A]$. The union of the $16 \mathrm{~A}_{j k}, j, k$, chosen from $1,2,3,4$, is called \mathbb{Q}_{2}. The construction proceeds as in [12] with the definition of $64 A_{j k \ell}=h_{j} h_{k} h_{\ell}[A]$ where $h_{j} h_{k} h_{l}$ embeds A in $A_{j k}$ just as A_{l} is embedded in A. The union of the $64 \mathrm{~A} k \ell$ is called a_{3} : The construction proceeds in this way, defining at each m-th stage 4^{m} dogbones whose union is a_{m}. Let the intersection $A \cap \mathbb{Q}_{1} \cap \mathbb{Q}_{2} \cap \mathbb{Q}_{3} \cap \ldots=A_{0}$. The components of A_{0} are compact and are defined to be the big elements of G while the remaining points of E^{3} are the small elements. The dogbone space D is the associated decomposition space of G.

Remark 1. In $k_{1} \cup \ldots \cup k_{4}$, each upper (lower) eye fails to shrink to a point in the complement of any otheruuper (lower) eye. This is easily checked using, say, Ch XV of [6].

Remark 2. We are sure that the construction of. D here is the same as that given by Bing in [12]. In the Appendix we show a deformation of the upper part of $k_{1} \cup \ldots \cup k_{4}$ to look like the upper part of Bing's construction. We think that the reader will see the plausibility, but we give no strict proof that our embedding of $A_{1} \cup \ldots \cup A_{4}$ is the same as the corresponding embedding in [12], and our attitude in this paper will be that Dogbone space has been redefined.

Remark 3. We know little about the h_{j} except that they embed A in certain ways. We cannot, for example be sure of the location of the $64 h_{j} h_{k} h^{[k]_{\ell}}$. However the various subsets of $A_{j k \ell}$ are images of sub-

Facing page 29

Fig 22.

sets of. $A_{j k \ell}$ are images of subsets of A. and continue to be related to each other in all the ways which are preserved by a homeomorphism of A; and we will usually apply results obtained for A to any $A_{j k}$...r without further justification. Note that k_{j} has a property which is not preserved by homeomorphism: a_{j} is perpendicular to β^{1} or β_{1} wherever it lies near these sets. This property is lost after the first stage of the dogbone construction. This does not prevent the construction of D, but further comment will be required when we use the property in Chapters III and IV.

Remark 4. Partly out of adherence to the traditional representation in [3] and partly because the use of β^{1} and β_{1} will not become apparent until Ch III (apart from the fact that they cause the eyes to link together) we will often use the picture in fig 22 to describe the embedding of $k_{1} \cup \ldots \cup k_{4}$ in A. We will use pictures like fig 22 in which the crossovers of the links are ignored, whenever the exact manner of linking is unimportant. In this chapter, the only thing which needs to be kept in mind concerning the linking of the ℓ_{j} and m_{j} is that no $\ell_{j}\left(m_{j}\right)$ will shrink to a point in the complement of any other ℓ_{j}, m_{j},) . Another pictorial abbreviation shown in fig 22 is the omission of much of the boundary of A, even though the figure purports to describe the embedding of the four centres in A. As in fig 22, we will often show only the holes of A which will be represented by the symbol \oplus.

Intuitively it often helps to see a decomposition space as E^{3} with certain sets identified. Onie typically finds the small elements distributed so that it is easy to define a neighbourhood system for the
big elements. Thus a lot can be learned about the topology of the decomposition space by looking at elements of the associated decomposition. However if we try to approach D in this way, we find that the components of A_{0}, which constitute the big elements of G, are hard to see. To find a big element, note that each big element of G is the limit of a sequence of dogbones $A, A_{j}, A_{j k}, \ldots$. Evidently each big element may be specified by an infinite sequence j, k, ... of integers chosen from $1,2,3,4$ and the $A, A_{j}, A_{j k}, \ldots$ constitute a neighbourhood system of this big element. Because A is compact, we know that if Λ is a big element of G, then if Λ lies in an open set V, some member $\mathrm{A}_{\mathrm{j} . \mathrm{k} . . . \mathrm{r}}$ of the neighbourhood system lies in V. (see I, 7.2 of [10]). It is known that each big element of G is a tame arc (see [12, §2]). The canonical mapping ϕ is a local homeomorphism near small elements of G (because A_{0} is compact) but not of course in general. The fact that ϕ is monotone means that ϕ^{-1} preserves connectedness (VIII (2.2) of [10]). Simple connectivity properties are more complicated. As will appear later, any open set $V * \subset \mathcal{D}$ which lies in A^{*} and contains a big point of D cannot be simply connected. We must expect a proof of this property to be delicate since it is known that D is locally simply connected. ([5]). (Roughly, what happens is that any mapping of s^{1} into small neighbourhood V^{*} of a big point of D will shrink to a point in the second smallest dogbone which contains V^{*}. Thus one can satisfy the definition of 'locally simply connected' by taking a smaller neighbourhood V^{*} although V^{*} itself will never be simply connected.)

For the rest of this section we will prove a result which relates simple connectivity in D to the same property in E^{3}. A mapping
f of S^{1} into a space X shrinks to a point in X iff f is homotopic in X to a constant mapping or represents the identity in $\pi_{1}(X)$ for an appropriate base point. A third equivalent statement is: consider S^{1} to be the boundary of a disk $\Delta:$ then $f: S^{1} \rightarrow X$. shrinks to a point iff f can be extended to a mapping $\overline{\mathrm{f}}$ of Δ into X .
(1.1). Let V^{*} be an openset in D. If $f: S^{1} \rightarrow V^{*}$ so that rng f consists of small points, then $\phi^{-1} f$ will shrink to a point in V, where ϕ is the canonical mapping of E^{3} onto \mathcal{D}.

Corollary: if V^{*} is simply connected then so is V .
1-. We can use this*resuithtoexamine setes v* which we suspect not to be simplyconnected, by looking at the associated $V \subset E^{3}$. The result (1.1) and its coroilary are not new and are particular cases of Lemma 1 of [2]. The proof the (1.1) introduces methods which will recur frequently in the sequel, and we will complicate the (pretty easy) proof slightly by introducing more generality in the method than is needed for the present argument.

Outline of proof. a) Assume that f maps the boundary of a disk Δ into V^{*}. Since f shrinks to a point, there is a mapping $\overline{\mathrm{f}}: \Delta \rightarrow \mathrm{V}^{*}$ such that $\overline{\mathrm{f}}_{\mid B d \Delta}=\mathrm{f}$. Recall that A_{0}^{*} is the union of the big points of D. The set $f^{-1}\left[A_{0}^{*}\right]$ is compact. Let Q be a disk with holes such that $Q \subset \Delta$, the outer boundary of Q is $B d \Delta$, and the (open) holes of Q contain $f^{-1}\left[\begin{array}{l}\mathbb{A} \\ 0\end{array}\right]$ b) The mapping \bar{f} maps Q into small points of. D; thus ' $\phi^{-1} \overline{\mathbf{f}}=\bar{f}$ ' on Q. Let the (open) holes of Q be $u_{1}, \ldots u_{n}$. For each u_{r} extend $\phi^{-1 \bar{f}} \mid B d u_{r}$ to a mapping γ_{r} into V by shrinking $\phi^{-1 \bar{f}} \mid B d u_{r}$ to a point in a certain cube in V.
c) Glue the $\gamma_{r}, r=1, \ldots n$, to $\phi^{-1} \overline{\mathbf{f}}_{\mid Q}$ to form a mapping of Δ into V.
 A_{0} is compact; so is A_{o}^{*} and $\bar{f}^{-1}\left[A_{0}^{*}\right]$. Note that $\bar{f}^{-1}\left[A_{0}^{*}\right]$ misses $B d \Delta$ because $\bar{f}[B d \Delta]$ consists of small points, from the hypothesis. To obtain the disk with holes $\cdot Q$, " we use the following result which will be needed several times in the sequel.
(1.2) Let Δ be a disk in E^{2} and S a compact set in Δ. Then there exist n disks $W_{1}, \ldots W_{n}$ such that $W_{r} \quad \Delta$ and
i) $W_{r} \cap W_{s}=\emptyset, \quad r \neq s$.
ii) $S \subset W_{1} \cup \ldots \cup W_{n}$.
iii) Each point of $B d W_{r}$ lies withing a positive distance ε of S.
iv) If s misses $B d \Delta$, then $s \subset$ Int $W_{1} \cup$ Int $W_{2} \cup \ldots \cup$ Int W_{n}, and Δ - Int $W_{1}-\ldots$ - Int W_{n} is a disk with holes. If S hits $B d \Delta$, then S misses $B d W_{r}-B d \Delta$ for each $\mathrm{r}=1, \ldots \mathrm{n}$.

Proof of (1.2). We can assume that $S \neq \emptyset$ and that Δ has the form of an equilateral triangle. Triangulate Δ into a finite number of 2 simplexes (i.e. closed triangular disks) whose diameter is less than $\varepsilon / 2$, and whose edges are parallel to the three sides of the big triangle Δ. Note that the three vertices of Δ each belong to one 2-simplex only so that the three vertices of Δ cannot be cut points of any union of 2 - simplexes. The only properties of the 2 - simplexes which will be used are that each 2 - simplex has an edge of length less than $\varepsilon / 2$, and if two 2 - simplexes meet, they meet either along the whole of one edge or only at a vertex. Let:' \hat{S} be the finite union of those 2 - simplexes
which meet S. Evidently \hat{S} is 1c and each component of \hat{S} is a lc continuum. For later reference, note that S cannot meet $B d \hat{S}$ at a point interior to Δ; for assume that S meets $B d \hat{S}$ at a vertex $\mathrm{v} \boldsymbol{\epsilon}$ Int Δ. Then by construction of \hat{S}, the entire star of v lies in \hat{S} and $\mathrm{v} \notin \mathrm{Bd} \hat{\mathrm{S}} . \mathrm{S}$ cannot meet $\mathrm{Bd} \hat{\mathrm{S}}$ at the interior of an edge in Int Δ by a similar argument. We alter \hat{S} to a set $\hat{\hat{S}}$ which has no cut poin nts in this: way: a cut point of \hat{S} cannot lie in the interior of a 2 -simplex in \hat{S}, nor in the interior of an edge belonging to one 2 -simplex, nor in the interior of an edge belonging to two 2-simplexes. Thus the cut points of \hat{S} are a (finite) subset of the vertexes. Let the cut points be $t_{1}, \ldots t_{k}$, and cover each t_{s} with a set $b_{s} ; \mathbf{s}=1, \ldots k$, which is a disk of radius $\varepsilon / 6$ and centre t_{s} if $t_{s} \subset$ Int Δ; and is a semi-disk of the same centre and radius if t_{s} lies on $B d \Delta$ and is not a vertex of the big triangle Δ (thus b_{s} is a 'disk relative to Δ^{\prime}). We do not define b_{s} for the three remaining points of Δ since these points are never cut points of \hat{S}. Note that the ${ }^{\circ} b_{s}$ are disjoint. Define $\hat{\hat{S}}$ to be $\hat{S} \cup b_{1} \cup \ldots \cup b_{k}$. It will turn out that the $B d W_{r}$ are some of the components of $\mathrm{Bd} \hat{\mathrm{S}}^{\wedge}$. We know the following facts about $\hat{\hat{\mathrm{S}}}$: the components of $\hat{\hat{S}}$ are $1 c$ continua and are consequently bounded apart. Every point of $\hat{\hat{S}}$ (in particular every point of Bd $\hat{\hat{S}}$) lies within a distance ε of S; the boundary of $\hat{\hat{S}}$ consists of the union of a finite number of straight arcs (which are either edges of 2-simplexes or edges minus the interior of one or two b_{s}) and a finite number of segments of circles (i.e. proper subsets of various $B d b_{s}$). Such a subset is precisely $B d b_{s}-B d \Delta$ intersected with a connected subset of $S t t_{s}$; a suitable upper bound for the number of segments is the number of b_{s}

Fig 23.

The angle a may be $r \pi / 3 ; r=1,2,3 ; 4,5$.
F. 24.

times the number of subsets of 2 - simplexes). Two straight arcs in Bd S meet as in fig 23; a straight arc meets a segment as in fig 24. Segments never meet because the b_{s} are disjoint. Evidently $\hat{\mathrm{S}}$ has no cut point on its boundary and hence no cut point at all. Let the components of $\hat{\hat{S}}$ be $W_{1}^{\prime}, \ldots W_{m}^{-}$. These will be reordered so that the first n components will lie in the disks required in (1.2). Since each W_{a}^{\prime}, $a=i=\ldots$ mis a 1 m continuum with no cut point, by IV (9.3) and VI (2.5) of [10], the unbounded complementary domain of W_{a}^{\prime} is bounded by a simple closed curve which will be called c_{a}. Evidently $c_{a} \subset W_{a}^{\prime}$. Reorder the W_{a}^{\prime} and corresponding c_{a} so that $c_{1}, \ldots c_{n}$ are contained in the interior of no other circle c_{a}, while each of $c_{n+1}, \cdots c_{m}$, if they exist, is contained in the interior of a c_{a}. Let $W_{a}=\overline{\text { Int } c_{a}}, a=1, \ldots m$. We will show that $W_{1}, \ldots W_{n}$ satisfy i), ii), iii), iv) of the statement of (1.2).

Proof of i). If $r \neq s$ then neither of c_{r}, c_{s} is contained in the interior of the other. Then $\overline{\operatorname{Int} c_{r}} \cap \overline{\text { Int } c_{s}}=W_{r} \cap W_{s}=\varnothing$ by I(1.6) .

Proof of ii). $S \subset \hat{\hat{S}}=W_{1}^{\prime} U \ldots U W_{m}^{-}$. Each $W_{a}^{-} c \overline{\text { Int } c_{a}}$, $a=1, \ldots m$, since Ext c_{a} is the unbounded complementary domain of $\mathrm{W}_{\mathrm{a}}^{-}$. Hence $\mathrm{S} \subset \mathrm{W}_{1} \cup \ldots v \mathrm{~W}_{\mathrm{m}}$. And in fact $\mathrm{SC} \mathrm{W}_{1} \cup \ldots \cup \mathrm{~W}_{\mathrm{n}}$ because for $n+1 \leq a \leq m, c_{a}$ lies in some Int $c_{r}, r=1, \ldots n$, and by $\mathrm{I}(1.6)$, Int $\mathrm{c}_{\mathrm{a}}=\mathrm{W}_{\mathrm{a}} \mathrm{C} \mathrm{W}_{\mathrm{r}}$.

Proof of iii). Each $B d W_{r}$ is a $c_{r} \subset B d \hat{\hat{S}}$, and we saw earlier that all of (the closed set) $\hat{\hat{S}}$ lies near S.

Proof of iv). Take ε less than the distance from (compact) S to $B d \Delta$ if S misses $B d \Delta$. The rest follows from the definition of a disk with holes, from i), and from the fact that a point of $\mathrm{Bd} \hat{\mathrm{S}}$ and hence a point of $B d \hat{\hat{S}}$ misses. S wherever it lies in Int $\Delta \square$.

We now return to a) in the proof of (1.1). Since $f^{-1}\left[A_{0}^{*}\right]$. is compact, from (1.2) there are disks $W_{1}, \ldots W_{n}$ which lie in Δ and such that $f^{-1}\left[A_{0}^{*}\right] \subset W_{1} \cup \ldots \cup W_{n}$ and each $B d W_{r}$ lies within a distance ε of $f^{-1}\left[A_{0}^{*}\right]$. Since $f^{-1}\left[A_{0}^{*}\right]$ misses BdA, by (1.2)iv, the set $\Delta-\operatorname{Int} W_{1}-\ldots$ - Int $W_{n}=Q$ is a disk with holes. Let u_{r} be the 'holes' of $Q, r=1, \ldots n$, i.e. $u_{r}=$ Int W_{r}.
b) Since $\bar{f}^{-1}\left[A_{0}^{*}\right]$ lies in the holes u_{r} of $Q, \bar{f}_{[Q]}$ consists only of small points. Thus ϕ^{-1} is a well defined mapping when restricted to $\overline{\mathrm{f}}[Q]$ and $\phi^{-1} \overline{\mathrm{f}} \mid Q$ maps Q into $V \subset E^{3}$. We now find cubes in which to shrink $\phi^{-1} \bar{f}_{\| B d u_{r}}, r=1, \ldots n$. Since $\overline{\mathrm{f}}[\Delta] \cap \mathrm{A}_{0}^{*}$ is compact and the dogbones (considered as sets in \mathcal{D}) evidently form a neighbourhood system of A_{0}^{*}, there is a covering of $f[\Delta] \cap A_{0}^{*}$ by a finite number of dogbones $J_{1}^{*}, \ldots{\underset{q}{*}}_{J}^{*}$ each of which lies in V^{*}. Look at the corresponding $J_{1}, \ldots J_{q}$ in E^{3}. If J_{s}, $s=1, \ldots \mathrm{q}$, belongs to the mth stage of the dogbone construction, define $J_{s 1}, J_{s 2}, J_{s 3}, \because J_{s 4}$ to be the four dogbones of the $m+1 s t$ stage lying in J_{s}. Note that since $J_{s} \subset V$, each $J_{s j}$ lies in a cube $M_{s j}$ which is a subset of J_{S} and hence of V (if J_{s} were the dogbone $A \subset V$ then $J_{s 1} \subset M_{s 1}=\overline{A-B^{2}-B_{2}}, J_{s 2}$ lies in $M_{s 2}=\overline{A-B^{2}-B_{1}}$ etc.) Now in a) above, we could have chosen ε so small that each $\bar{f}\left[B A W_{r}^{\prime \cdot}\right]=\bar{f}\left[B d u_{r}\right]$ lies in some $J_{s j}^{*}$. (for D is a separabile metric
space, and there is a minimum distance in the dogbone metric separating the compact set $\bar{f}[\Delta] \cap A_{0}^{*}$ from the complement of the union of the $\mathrm{J}_{\mathrm{sj}}^{\mathrm{k}}$). Clearly $\phi^{-1} \overline{\mathrm{f}}\left[\mathrm{Bd} u_{\mathrm{r}}\right]$ is defined and lies in the union of the J_{sj}. We can assume the $J_{s j}$ are disjoint because we could have removed from the covering $J_{1}, \ldots J_{q}$ any J_{s} which was contained in any other member of the covering. Since $\phi^{-1} \overline{\mathrm{I}}\left[\mathrm{Bd} \mathrm{u}_{\mathrm{r}}\right]$ is connected and the closed sets $J_{s j}$ are separated, $\phi^{-1} \bar{f}\left[B d u_{r}\right]$ lies entirely in some one $J_{s j}$ and $\phi^{-1} \bar{f}_{\mid B d u_{r}}$ shrinks to a point in $M_{s j} \subset V$. Thus there is an extension . γ_{r} of $\phi^{-1} \bar{f}_{\mid B d} u_{r}$ to all of \bar{u}_{r}, i.e. $\gamma_{r}: \bar{u}_{r}+M_{S, j} \subset V$ and $\gamma_{r \mid B d u_{r}}=\phi^{-1 \bar{f}} \mid \mathrm{Bd} u_{r}$.
c) In view of the set-theoretic definition of function we can express the idea of 'mappings glued together' by unions of mappings. Consider the union $\phi^{-1} \mathrm{f} \mid Q \vee \gamma_{1} \cup \ldots \cup \gamma_{\mathrm{n}}$. This is a well-defined mapping of $Q \cup$ dom $\gamma_{1} \cup \ldots v$ dom $\gamma_{n}=Q \cup u_{1} \cup \ldots \cup u_{n}$ into V because each mapping in the union has its image in V and because where the domains intersect the intersection is closed and the mappings agree on the intersection; in fact every point of domain intersection occurs on a Bd u_{r} where we know that γ_{r} agrees with $\phi^{-1} \bar{f} \mid B d u_{r}$ by construction of γ_{r}. Finally we note that the new mapping $\phi^{-1} \bar{f} \mid Q \quad \gamma_{1} \cup \ldots v \gamma_{n}$ agrees with $\phi^{-1 \bar{f}}$ on $B d \Delta \subset Q$ and is thus a homotopy which shrinks $\phi^{-1} f$ to a constant mapping into V. This completes the proof of (1.1) ロ. We will record the argument in this paragraph as a separate result.
(1.3). Let $\Delta, W_{1}, \ldots W_{n}$ be defined as in (1.2) including the fact that Δ - Int W_{1}. ... - Int W_{n} is not neccessarily a disk with holes.

Let. $g: \Delta-\operatorname{Int} W_{1}-\ldots-$ Int $W_{n} \rightarrow E^{3}$. Then each $g_{\mid B d} W_{r}$ is defined; and if $g \mid B d W_{r}$ shrinks to a constant mapping in a space $P_{r}, r=1, \ldots n$, then there is a mapping of Δ into rng $g \cup P_{1} \cup \ldots \cup P_{n}$. In particular, $\left.{ }^{g}\right|_{\text {bd } \Delta}$ will shrink to a point in $\begin{aligned} \\ \text { ng } g \cup P_{1} \cup \ldots U P_{n} .\end{aligned}$

Proof: The argument of c) in the proof of (1.1) is sused and is valid even if Δ - Int $W_{1}-\ldots$ - Int W_{n} is not a disk with holes. It is easy to see that $B d \Delta \subset \Delta-\operatorname{Int} W_{1}-\ldots$ - Int W_{n} since $W_{r} \subset \Delta$; then g is defined on $B d \Delta$. Since $B d W_{r} \subset \Delta,{ }^{g} \mid B d W_{r}$ is always defined \square. Proof of the Corollary to (1.1). Let $\psi: S^{1} \rightarrow V$. If V^{*} is simply connected, we can use (1.1) to show that ψ shrinks to a point in V only if rng ψ misses A_{0}. Evidently in order to apply (1.1), it is sufficient to show that ψ is homotopic in V to a mapping $\psi^{\prime}: S^{1} \rightarrow V-A_{0}$. We use ' \simeq ' to mean 'is homotopic in V to'. To construct ψ^{\prime} : using an argument like that of b) in the proof of (1.1), cover $\psi\left[S^{1}\right] \cap A_{0}$ with dogbones $J_{1}, \ldots J_{q}$ which are disjoint and lie in V. Dogbones $J_{s j}, j=1,2,3,4$, are defined just as in b) of (1.1) so that $\bigcup_{r j} J_{r j}$ covers $\psi\left[S^{\perp}\right] \cap A_{0}$ and each $J_{s j}$ lies in a cube $M_{r j} \subset V$ (the construction of the $J_{s j}$ here is not identical to that of the $J_{s j}$ in b) of (1.1), but the construction here is easier since we need not consider sets in D). We assume that some point z exists in $\psi\left[S^{\wedge}\right] \cap\left(E^{3}-\bigcup_{j}\right.$ Int $\left.J_{S j}\right)$, for otherwise, since S^{1} is connected and the Int $J_{s j}$ are separated, rng ψ lies in one $J_{s j} . M_{s j}$, and the proof is concluded by shrinking ψ to a point in $M_{s j} V$. Now choose $\delta>0$ so that if \bar{x} and y are closer together on S^{1} than the distance δ, then $\psi(x)$ and $\psi(y)$ are closer together than the
distance from $\Psi\left[S^{\wedge}\right] \cap A_{0}$ to $E^{3}-\bigcup_{S j} J_{S j}$ (remember that $\bigcup_{S j} J_{S j}$ is a neighbourhood of $\psi\left[S^{\prime}\right] \cap A_{0}$ so that this distance is positive). If every point of S^{1} lies closer than δ to $\psi^{-1}\left[E^{3}-\bigcup_{S j} J_{S j}\right]$, then by the definition of δ no point of S^{1} maps under ψ into A_{0}, and we can let $\psi^{-}=\psi$. If some point of S^{1} fails to lie withing δ of $\psi^{-1}\left[E^{3}-\bigcup_{s j} J_{s j}\right]$, then there is an open interval; é ${ }_{1}$ in $\psi^{-1}\left[\bigcup_{S j}\right.$ Int $\left.J_{S j}\right]$ such that the length of e_{1}^{-}is greater than δ. Let e_{1} be the largest open interval such that $e_{1}^{\prime} \subset e_{1} \subset \psi^{-1}\left[\bigcup_{s j}\right.$ Int $\left.J_{s j}\right]$. Then \bar{e}_{1} is a closed interval of length greater than δ whose end points p_{1} and q_{1} map into $B d \bigcup_{s j} J_{s j}$ by the usual continuity argument. (Since S^{1} is a circle, we must make an easy allowance for the possibility that $\left.\psi\left(p_{1}\right)=\psi\left(q_{1}\right)=z.\right)$. Because the $J_{s j}$ are separated and $\psi\left[\bar{e}_{1}\right]$ is connected, $\psi\left[e_{1}\right]$, lies in the interior of just one $J_{s j}$ which we will call R_{1}, while $\psi\left(p_{1}\right)$ and $\psi\left(q_{1}\right)$ lie in $B d R_{1}$. Define the mapping $\psi_{1}: S^{1} \rightarrow E^{3}$ so that $\psi=\psi_{1}$ on $S^{1}-e_{1}$ while $\psi_{1} \mid \bar{e}_{1}$ is a path in (connected) Bd R_{1} with end points $\psi\left(p_{1}\right)$ and $\psi\left(q_{1}\right)$ (this is well defined because p_{1} and q_{1} map into $B d R_{1}$ under ψ). Both ψ and ψ_{1} are paths in V and $\psi_{\bar{e}} \simeq \psi_{1} \mid \bar{e}_{1}$ because they share end points and both map into the same cube $M_{s j} \supset R_{1}$ with $M_{s j} \subset V$. Evidently $\psi \simeq \psi_{1}$. Since rng $\psi_{1} \mid \bar{e}_{1} \subset B d R_{1} \subset E^{3}-A_{0}$, the homotopy has moved images of points in e_{1} away from A_{0}. We now look for an open interval e_{2} in $S^{1}-\bar{e}_{1}$ where e_{2}^{\prime} is of length greater than δ and such that e_{2} maps into $\bigcup_{s j}$ Int $J_{s j}$ under ψ_{1} (and in fact under ψ, since $\psi \approx \psi_{1}$ on $S^{1}-e_{1}$. . If e_{2}^{n} does not exist, let $\psi_{1}=\psi^{\prime}$. If e_{2}^{\prime} exists, then there is an open interval e_{2} of maximal length such that $e_{2}^{\prime} c e_{2} \subset s_{1}^{1}-\bar{e}_{1}$ and $\psi_{1}\left[e_{2}\right] \subset \bigcup_{s j}$ Int $J_{s j}$. The end points p_{2}, q_{2} of e_{2} map under ψ_{1} into $E^{3}-\bigcup_{s j} \operatorname{Int} J_{s j}$, either because of the maximality of e_{2} if the
end point is in $S^{1}-\bar{e}_{1}$, or, if the end point is in $B d\left(S^{1}-\bar{e}_{1}\right)=\operatorname{Bd} e_{1}$,
 the interior of some one $J_{s j}$ called R_{2} and $\psi_{1}\left(p_{2}\right)$ and $\psi_{1}\left(q_{2}\right)$ lie in $B d R_{2}$. Define $\psi_{2}: S^{1} \rightarrow E^{3}$ so that ψ_{2} agrees with ψ_{1} on $S^{1}-e_{2}$ (note that this means that ψ_{2} agrees with ψ on $S^{1}-e_{1}-e_{2}$), and so that $\psi_{2} \mid e_{2}$ is a path in $B d R_{2}$ with end points $\psi_{1}\left(p_{2}\right)$ and $\psi_{1}\left(q_{2}\right)$. By a previous argument, $\psi_{2} \simeq \psi_{1} \simeq \psi$. Note that the fact that $\psi_{2}=\psi$ on $S^{1}-e_{1}-e_{2}$ means that $\psi_{2}=\psi$ on the end points of both e_{1} and e_{2}.

In general, suppose that mappings $\psi_{1} \simeq \ldots \approx \dot{\psi}_{r-1}$ of s^{1} into V, intervals $e_{1}, \ldots e_{r-1}$ and components $\cdots R_{1}, \ldots R_{r-1}$ of $U_{s j} J_{s j}$ have been defined so that each $e_{s} \subset s^{1}-\bar{e}_{1}-\ldots . \bar{e}_{s-1}, s=1, \ldots r-1$, and for each $\psi_{s}, \psi_{s}=\psi_{s-1}$ on $\left.s^{1}-e_{s}, \psi_{s}^{\left[\bar{e}_{s}\right.}\right] \subset B d \operatorname{Re} \subset E^{3}-A_{0}$. Now look for an open interval $e_{r}^{\prime} \bar{c} S^{1}-\bar{e}_{1}-\bar{e}_{2}-\ldots-\bar{e}_{r-1}$ such that the length of e_{r}^{\prime} is greater than δ and $\psi_{r-1}\left[e_{r}^{\prime}\right] \subset \bigcup_{S j}$ Int $J_{S j}$, or equivalently $\psi_{r-1}\left[e_{r}\right] \subset$ Int R_{r}, where R_{r} is a single $J_{S j}$ (and hence lies in a cube $M_{s j} \subset V$). If there is no such interval, let ψ_{r-1} be ψ^{\prime}. If e_{r}^{\prime} exists, then let e_{r} be the largest open interval in $S^{1}-\bar{e}_{1}-\ldots-\bar{e}_{r-1}$ such that $\psi_{r-1}\left[e_{r}\right] \subset$ Int R_{r}. We know that ψ_{r-1} carries the end points p_{r}, q_{r} of e_{r} into $E^{3}-\operatorname{Int} R_{r}$ by the maximality of e_{r} if the end point is in $S^{1}-\bar{e}_{1}-\ldots-\bar{e}_{r-1}$, or, if the end point is in $\operatorname{Bd}\left(S^{1}-\bar{e}_{1}-\ldots-\bar{e}_{r-1}\right) \subset \bar{e}_{1} \cup \ldots \cup \bar{e}_{r-1}$, because ψ_{r-1} carries $\bar{e}_{1} \cup \ldots \cup \bar{e}_{r-1}$ into $\bigcup_{s j} B d J_{s j}$. (To see that $\psi_{r-1}\left[\vec{e}_{s}\right]$. Iies in some $B d J_{s j}:$ for $s=1, \ldots r-1, \psi_{s}\left[\bar{e}_{s}\right] \subset B d R_{s}$ by construction. ψ_{s+1} agrees with ψ_{s} on $\because s^{1}-e_{s+1} \supset \bar{e}_{s}$ since
e_{s+1} lies in $s^{1}-\bar{e}_{1}-\ldots-\bar{e}_{s} ; \psi_{s+2}$ agrees with ψ_{s+1} on $s^{1}-e_{s+2} \supset \bar{e}_{s}$ since $e_{s+2} c s^{1}-\bar{e}_{1}-\ldots-\bar{e}_{s}-\bar{e}_{s+1} ; \psi_{s+3}$ agrees with ψ_{s+2} on \bar{e}_{s}, etc. until ψ_{r-1} agrees. with ψ_{r-2} on \bar{e}_{s}. Since $\psi_{s}=\psi_{s+1}=\ldots=\psi_{r-1}$ on $\left.\bar{e}_{s}, \psi_{r-1}\left[\bar{e}_{s}\right]=\psi_{s}\left[\bar{e}_{s}\right] \subset B d R_{s}\right)$. Since we know that the end points of e_{r} are mapped by $\psi_{\dot{r}-1}$ outside of Int R_{r}, and
 Let $\psi_{r}=\psi_{r-1}$ on $s^{1}-e_{r}$ and $\psi_{r} \mid \bar{e}_{r}$ be a path in $B d R_{r}$ with end points $\psi_{r-1}\left(\bar{p}_{r}\right)$ and $\psi_{r-1}\left(q_{r}\right)$ Evidently $\psi_{r}\left|e_{r} \simeq \psi_{r-1}\right| e_{r}$ and $\psi_{r} \approx_{r-1}$.

Since each e_{r} is of length greater than δ and $r \delta$ must be less than the circumference of S^{1}, (it is easily checked that the e_{r} are disjoint) the sequence $\psi_{1}, \ldots \psi_{r}, \ldots$ ends at ψ_{k}. Let ψ^{-}be ψ_{k}. We know that $\psi_{k}: S^{1} \rightarrow V$ because each ψ_{r} does this; and $\psi \simeq \psi_{1} \simeq \ldots \simeq \psi_{k}=\psi^{\prime}$ in V. Before we can show that rung ψ^{\prime} misses A_{0}, we must show that $\psi=\psi^{\prime}=\psi_{k}$ on $s^{1}-e_{1}-\ldots-e_{k}$. To see this:

$$
\begin{gathered}
\psi_{1}=\psi \text { on } \mathrm{s}^{1}-\mathrm{e}_{1}, \\
\psi_{2}=\psi_{1} \text { on } \mathrm{s}^{1}-\mathrm{e}_{2} \text { and } \psi_{2}=\psi-\mathrm{on}^{1}-\mathrm{s}_{1}-e_{2}, \\
\cdots \\
\psi_{\mathrm{k}}=\psi_{\mathrm{k}-1} \text { on } \mathrm{s}^{1}-\mathrm{e}_{\mathrm{k}} \text { and } \psi_{\mathrm{k}}=\psi \text { on } \mathrm{s}^{1}-\mathrm{e}_{1}-\ldots-e_{\mathrm{k}} .
\end{gathered}
$$

It is now easy to show that reg $\psi^{\wedge}=r n g \psi_{k}$ misses A_{0}, for ψ_{k} carries every \bar{e}_{s} into $B d R_{S} \subset E^{3}-A_{0}$ by a previous result; and if $x \in s^{1}-\bar{e}_{1}-\ldots-\bar{e}_{k}$, then x lies within a distance δ of a point y such that $\psi_{k}(y) \in E^{3}-\bigcup_{s j}$ Int $J_{s j}$. We can assume that $y \in S^{1}-e_{1}-e_{2}-\ldots-e_{k}$ because otherwise $y \in e_{1} \cup \ldots \cup e_{k}$ and

some point y^{\prime} of $\operatorname{Bd}\left(e_{1} \cup \ldots \cup e_{k}\right) \quad S^{1}-e_{1}-\ldots-e_{k}$ lies closer to x than y does. Since ψ_{k} carries $y^{-} \in \operatorname{Bd}\left(e_{1} \cup \ldots \cup e_{k}\right)$ $\subset \bar{e}_{1} \cup \ldots \cup \bar{e}_{k}$ into $\bigcup_{s j}, B d J_{s j} \subset E^{3}-\bigcup_{s j} \operatorname{Int} J_{s j}$, we could have originally chosen y^{\prime} instead of y. But if both x and y^{\prime} lie in $s^{1}-e_{1}-\ldots-e_{k}$, then since $\psi=\psi_{k}$ on $s^{1}-e_{1}-\ldots-e_{k}$ and $\psi_{k}\left(y^{\prime}\right) \subset E^{3}-\bigcup_{s j}$ Int $J_{s j}, \psi(x)=\psi_{k}(x)$ lies so near to $\psi\left(y^{\prime}\right)=\psi_{k}\left(y^{\prime}\right)$ that $\psi(x)$ misses A_{0} by our definition of $\delta \square_{0}$ 2. In his paper [12], Bing was concerned with an interesting property of G which we will make use of here and in Ch IV. The formidable aspect of G lies in what might be called its 'topological idiom', as shown in fig 25: four double ended lassos strung in a special way inside a 2-holed torus. Bing's intent in using this idiom to construct G was to utilize this property: let D_{1}, D_{2}, be the planar disks shown in fig 25. Then, no matter how the four lassos are deformed (provided that they remain linked and stay in the interior of the 2-holed torus), some one lasso will hit both D_{1} and D_{2}. Figs 26, 27 show unsuccesful attempts by the lassos to avoid this necessity, and there is a proof of a very similar idea in $\S 7$ of [12]. Bing hoped to show that this property was induced through the construction of G in the following sense: assume that fig 25 shows D_{1}, D_{2} in relation to the first stage of the construction of G, then, no matter how A_{1}, A_{2}, A_{3}, A_{4} were deformed, one of these, say A_{1}, would hit both of D_{1}, D_{2}. Additionally, however, it might turn out that for any deformation of A_{2} inside A, one of the $16 . A_{j k}$ would hit both D_{1} and D_{2}, and so on for the $64 \mathrm{~A}_{\mathrm{jkl}}$ etc. Bing found that there was no easy

Facing page 42

proof of this (see $\S 7$ of [12]); however he was able to define a property which he called Q on the dogbones of the decomposition and show that A had this property. If a dogbone had property Q, this implied trivially that it intersected both of $. D_{1}, D_{2}$; at the same time it could be shown that if a dogbone B had property Q; then one of the four dogbones of the next stage of the dogbone construction lying in B would have property Q. Evidently there would be a descending intersection chain of dogbones each with property Q and the limit of the chain would be a big element of G which touched both D_{1} and D_{2}. We can express this idea in a slightly different way:
(2.1) (Bing). Let D_{1}, D_{2} be topological disks whose boundaries ε_{i}, C_{2} lie in. A and link the upper and lower eyes respectively of A as shown in fig 28. Then either D_{1} metts D_{2} in A, or some big element of G meets both D_{1} and D_{2}.

We will refer frequently to fig 28 , which shows the relationship of c_{1}, c_{2} to A. Strictly speaking, we take $c_{i}, i=1,2$, to be an embedding of S^{1} in E^{3}; however we frequently will confuse the embedding with the circle which is its range (atathe sametime reserving the right to write $r n g c_{i}$ when we wish to make the distinction clear).

Bing showed that (2.1) was inconsistant with the existence of a homeomorphism between D and E^{3} (Th 12 of [12]). In this paper we will be interested in this conjecture:
(2.2). Let Δ be a 2 - simplex. For $i=1,2$, let $f_{i}: \Delta \rightarrow E^{3}$ so that $f_{i \mid B d \Delta}=C_{i}$ and $f_{2 \mid B d \Delta}=C_{2}$ are paths whose ranges lie in E^{3} - A and which will not shrink to a point in the complements of the
upper and lower eyes respectively of A. Then either $f_{1}[\Delta]$ and $f_{2}[\Delta]$ intersect in A, or some big element of G meets both $f_{1}[\Delta]$ and $f_{2}[\Delta]$.

In (2.2), we replace the disks D_{i} of (2.1) with singular disks $f_{i}[\Delta]$. The conjecture is plausible and lacks earthshaking surprise. It is interesting because it leads directly to the following topological property of D :
(2.3). If (2.2) is true, then D fails to possess arbitrarily small simply connected open neighbourhoods about any big point.

The conclusion of (2.3) is called Curtis' conjecture (see 3 , §6), and (2.3) reduces it to the somewhat more plausible conjecture (2.2). The remainder of this chapter consists of a proof of (2.3). The pleasures of (2.2) will be deferred to Chapters III and IV.

Proof of (2.3). Supppose that Λ is a big element of G and that in $\mathcal{D}, \Lambda^{*}=\phi[g]$ lies in a simply connected open neighbourhood V^{*} such that $\Lambda^{*} \subset V^{*} \subset A^{*}$. Clearly $\Lambda \subset V \subset A$, and V is open in E^{3}. We could write $\Lambda=A \cap A_{j} \cap A_{j k} \cap \ldots$ for some sequence of dogbones $A, A_{j}, A_{j k}, \ldots$. By the Corollary to (1.1) (of lemma 1 of [2]), V . is simply. connected if V * is. Thus our assumption implies that V is simply connected. We will demonstrate that this is false by showing that $\Lambda \subset V \subset A$ with V simply connected, implies that the upper eye ℓ and the lower eye m of A shrink to a point in A. We define an upper (lower) principal path of A_{j} to be a mapping of S^{1} into Int A_{j} which is homotopic in A_{j} to the upper eye ℓ_{j} (the lower eye m_{j}) of A_{j}. Upper and lower principal paths of other dogbones, including

A, are defined analogously; this a mapping of s^{1} into Int'A ${ }_{j k}$ which is homotopic in $A_{j k}$ to $h_{j k}[\ell]$ is an upper principal path of $A_{j k}$. As usual, we will often confuse the mapping with its range. We know that $A, A_{j}, A_{j k}, \ldots$ is a neighbourhood system of Λ and, by a previous remark, that some member $A_{j k} \ldots$ rs of the system lies in V. However this fact plus the following lemma leads to a contradiction.

Lemma for (2.3). If one of $A_{j}, j=1,2,3,4$ contains an upper principal path e_{1} and a lower principal path e_{2} which intersect and lie in V, then A contains upper and lower principal paths which intersect and lie in V. In general, if $A_{j} \ldots$... rs contains intersecting upper and lower principal paths which lie in V, then so does $A_{j} \ldots r \cdot$

To apply the lemma we look at the neighbourhood $A_{j} \ldots$ rs. which we know to be a neighbourhood of Λ in V. Obviously $V \cap A_{j} \ldots$ rs contains intersecting upper and lower principal paths of $A_{j} \ldots$ rs since any intersecting principal paths will qualify. The lemma implies that the dogbone $A_{i j} \ldots r$ contains intersecting principal paths in V. Repeated application of the lemma leads to the conclusion that A contains an upper principal path which lies in V. Since $V \subset A, V$ is simply connected, and the upper principal paths of A are all homotopic to ℓ in A, therefore ℓ must shrink to a point in A. This is clearly false from fig 16a. Thus the proof of (2.3) will be complete when we have proved the lemma.

Proof of the lemma for (2.3): Simplified version. Suppose that e_{1} and e_{2} lie in A_{1}. The following outline reflects our original intuition of the proof. Although the 'proof' we give now is

simple minded and needs much patching, we give the crude version because we think that it clarifies basic ideas which tend to be submerged in the final version of the proof. Suppose that by good fortune the paths e_{1}, e_{2} take the form of the double ended lasso J in fig 29. J consists of circles C_{1}, C_{2} and connecting arc a as shown. The circle C_{1} will not shrink to a point in the complement of the upper eye of A_{3}. Similarly C_{2} will not shrink to a point in the complement of the lower eye of A_{3}. We also pretend that J lies in V and that disjoint planar disks d_{1}, d_{2} bounded by C_{1}, C_{2} also lie in $V . B y(2.1)$ some big element g in A_{3} meets both d_{1} and d_{2}; and g lies in $\mathrm{V} \supset \mathrm{d}_{\mathrm{i}}$ since V contains every element of G that it intersects (remember that V is the pre-image of an open set in D). We can now construct the upper principal path p_{1}. shown in fig 30 from parts of $\dot{\mathrm{V}}$ lying in $a, \mathrm{~d}_{1}, \mathrm{~d}_{2}, \mathrm{~g}$. A similar procedure using A_{2} instead of A_{3} will yield the lower principal path p_{2}. The paths p_{1}, p_{2} intersect in A so that $p_{1} \cup p_{2}$ is the set required by the conclusion of the lemma.

The above 'proof' is far to easy and will fail if we allow d_{1}, d_{2} to be non-planar, for then p_{1} may not be a principal path as figs $31 \mathrm{a}, \mathrm{b}$ show. We ensure that P_{1} makes one circuit about the upper hole of A by trapping $p_{1} \cap a$ in the cube $\overline{A-B^{2}-B^{2}}$ (which is easy) and $p_{1} \cap\left(d_{1} \cup g \cup d_{2}\right)=q$ in the cube $\overline{A-B^{1}-B_{2}}$ (see fig 32). This last step is hard since one would fear that the connectivity would be spoilt by parts of $d_{1} \cup d_{2}$ projecting from the cube. The trick of controlling the homotopy class of p_{1} by constructing certain arcs in

Facing page 46

cubes only works if the C_{i} lie in $\overline{A-B^{1}-B_{2}}$. But if we use the obvious candidate for J, viz. $C_{i}=e_{i}$ with arc a degenerate, then fig 33 shows that this may not happen, and in fact J cannot usually be $e_{1} \cup e_{2}$. However we show that, provided that intersecting principal paths exist in $A_{1} \cap \mathrm{~V}$, there is a double ended lasso (perhaps with singularities) in $A \cap V$ which has just the properties which we assigned to J . We will now give the final version of the proof of the lemma for (2.3). This proof uses the ideas of the earlier crude version, but incorporates the various improvements suggested in this paragraph.

Outline of final version of proof. We first give the proof assuming that $e_{1} \subset e_{2} \subset A_{1}$, then indicate alterations in the case that $e_{1} \cup e_{2}$ lies in A_{2}, A_{3} or A_{4}, a) Let e_{1}, e_{2} be upper and lower principal paths of A_{1} which lie in V and intersect at least at p . We follow the sketch of the 'proof' already given, but as previously explained, we cannot use $e_{1} \cup e_{2}$ for J in fig 32. We construct $J=C_{1} \cup C_{2} \cup a$ so as to satisfy five properties $\left.i\right), \ldots v$) . Sometimes we will regard C_{i} as a mapping (not necessarily an embedding) of S^{1} and sometimes as the range of this mapping. The set J must satisfy the following properties: for $i=1,2$,
i) $C_{i}[B d \Delta] \subset V \cap \operatorname{Int} \overline{\left(A-B^{1}-B_{2}\right.}$
ii) rng C_{i} misses A_{3}.
iii) $C_{1}\left(C_{2}\right)$ fails to shrink to a point in $E^{3}-\ell_{3}\left(E^{3}-m_{3}\right)$.
iv) There is a point $y_{1} \in \operatorname{rng} C_{1} \cap r_{n g} e_{1} \cap K_{1}$ and a point y_{2} in $r n g C_{2} \cap$ rng $e_{2} \cap \overline{A-B-B_{2}-K_{1}}$ (recall that K_{1} is the topological cube which is the closure of the upper component of $A-B^{1}-B^{2}$, see fig 34).

v) the arc $a \subset V \cap A_{1}$ and the points y_{1}, y_{2} of iv) are the end points of a .

The idea of ii) and iii) is that we want the C_{i} to act like the circles c_{1}, c_{2} in fig 28 with respect to A_{3}. Property iv) provides the endpoints of a 'above and below B^{1}, . This plus v) and the fact that the C_{i} are trapped in $\overline{A-B^{I}-B_{2}}$ alows us eventually to construct an upper principal path of A which winds one around the upper hole of. A.. This happens because we will join y_{1} and y_{2} by a path like $q \overline{C A-B^{1}-B_{2}}$ in fig 35. b) For $i=1,2$, let $f_{i}: \Delta \rightarrow V$ so that $f_{i \mid B d \Delta}=C_{i}$. Using (1.2) and (1.3), obtain a new mapping \bar{f}_{i} which agrees with ${ }^{\prime} f_{i}$ on Δ - Int $W_{1}-\ldots-$ Int W_{n}, where Int $W_{r}, r=1, \ldots n$, are holes in Δ; in particular $\bar{f}_{i}=f_{i}$ in $B d \Delta$. The $\bar{f}_{i}\left[W_{r}\right]$ may leave V (!) but this does not harm the proof. c) $\operatorname{By}(2.2), \bar{f}_{i}[\Delta]$ and $\bar{f}_{2}[\Delta]$ either intersect in A_{3} or hit the same big element g in A_{3}. There is a path q from $a \cap C_{1}$ to $a \cap C_{2}$ which resembles q in fig 35 and lies in V and in Int $\left(\overline{A-B^{I}-B_{2}}\right)$. The path q travels to A_{3} in $\bar{f}_{1}[\Delta]$, passes from $\bar{f}_{1}[\Delta]$ to $\bar{f}_{2}[\Delta]$ in A_{3} either at the intersection of $\bar{f}_{1}[\Delta]$ and $\bar{f}_{2}[\Delta]$ or using the element g, and then proceeds to a $\cap C_{2}$ by means of $\bar{f}_{2}[\Delta]$. d) The path which begins at $a \cap C_{1}$, travels to $a \cap C_{2}$ on q and returns to aa C_{1} on a, is an upper principal path of. A which lies in V. e) The lower principal path of A in V may be constructed as in a), b), c), d) above, using A_{2} and $\overline{A-B_{1}-B^{2}}$ instead of A_{3} and $\overline{A-B^{1}-B_{2}}$. f) If $k=2,3,4$ the lemma remains true.

Details of Proof. Suppose that e_{1}, e_{2} are upper and lower
principal paths respectively of A_{1} which lie in V and intersect at p. For $i=1,2$, since e_{i} shrinks to a point in V, there are mappings $\bar{e}_{i}: \Delta \rightarrow V$ such that $\bar{e}_{i \mid B d \Delta}=e_{i}$. We do not claim that rng \bar{e}_{i} lies in A_{1} or even A. We use (1.2), taking f, S, to be $e_{1}, \quad e_{1}^{-1}\left[\overline{\left.A-B^{1}-B_{2}\right]}\right.$. Thus there are disjoint disks $W_{1}, \ldots W_{m}$ in Δ such that $\left.e_{1}^{-1} \overline{\left[A-B^{1}-B_{2}\right.}\right] \subset W_{1} \cup W_{2} \cup \ldots \cup W_{m}$, each point \bar{x} of $B d W_{r}$ lies near $e_{1}^{-1}\left[\overline{A-B^{1}-B_{2}}\right]$, and $x \in B d W_{r}$ misses $e_{1}^{-1}\left[\overline{\left[A-B^{1}-B_{2}\right]}\right.$ if $x \notin B d \Delta$. Those W_{r} which hit $B d \Delta$. are called $W_{1}, \ldots W_{n}$; those W_{r} which miss $B d \Delta$ are $W_{n+1}, \ldots W_{m}$ (with obvious adjustments of one or the other class does not exist). We now apply (1.3) with g taken to be the restriction of \bar{e}_{1} to Δ - Int $W_{1}-\ldots$ Int W_{m}. For $\mathrm{r}=\mathrm{n}+1, \ldots \mathrm{~m}, \quad \overline{\mathrm{e}}_{1 \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}}=\mathrm{g}_{\mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}}$ maps into $\operatorname{Ext}\left(\mathrm{A}-\mathrm{B}^{1}-\mathrm{B}_{2}\right)$ because $B d W_{r}$ misses $B d \Delta$ for $r>n$ and hence misses $\overline{e_{1}}\left[\overline{A-B^{1}-B_{2}}\right]$. Thus for $r=n+1, \ldots m, \bar{e}_{1 \mid B d W_{r}}$ shrinks to a point in $\operatorname{Ext}\left(\bar{A}-B^{1}-B_{2}\right)$ which is the exterior of a cube in E^{3}; and we can let $\operatorname{Ext}\left(A-B^{1}-B_{2}\right)$ be $P_{n+1}=\ldots=P_{m}$ in the hypothesis of (1.3). There is no chance that $\bar{e}_{1 \mid B d W_{r}}$ is C_{1} for $r>n$, since ℓ_{3} misses $\operatorname{Ext}\left(A-B^{1}-B_{2}\right)=P_{r}$. We suspect that C_{1} is an $\bar{e}_{1 \mid B d W_{r}}$ for $r \leq n$. Assume that every $\bar{e}_{1 \mid B d W_{r}}=g_{\mid B d W_{r}}$ will shrink to a point in $E^{3}-\ell_{3}$. Use (1.3) again, letting $P_{1}=P_{2}=\ldots=P_{n}$ be $E^{3}-\ell_{3}$. Then with $\operatorname{Ext}\left(A-B^{1}-B_{2}\right)$ taken to be $P_{n+1}=\ldots=P_{m}, g_{\mid B d \Delta}=e_{1}$ will shrink to a point in rng $g \cup P_{1} \cup \ldots \cup P_{n} \cup P_{n+1} \cup \ldots \cup P_{m} \ldots$ Each.P_{r} misses l_{3} either by definition or because P_{r} "misses $\overline{A-B^{1}-B_{2}}$. And rng g misses
ℓ_{3} as well; for $g=\bar{e}_{1} \mid \check{\Delta}$ - Int $W_{1}-\ldots-\operatorname{Int} W_{m}$ and from (1.2) ii, iv, the only points of $\Delta-$ Int $W_{1}-\ldots-$ Int W_{m} which can map. into $\overline{A-B^{1}-B_{2}}$ are those in $B d \Delta$. Such points are in dom e_{1} and map into A_{1}. Hence rng $g \subset A_{1} \cup \operatorname{Ext}\left(A-B^{1}-B_{2}\right) \subset E^{3}-\ell_{3}$. Therefore $g_{\mid B C D}=e_{1}$ shrinks to a point in rng $g u P_{1} \cup \ldots v P_{m} \subset E^{3}-\ell_{3}$, which contradicts the fact the e_{1} is an upper principal path. Thus it is false that every $\bar{e}_{I \mid B d} W_{r}, r \leq n$, shrinks to ápoint in $E^{3}-\ell_{3}$. Let C_{1} be one of the $\bar{e}_{1} \mid B d W_{r}$ which fails to shrink to a point in $E^{3}-l_{3}$. As regards C_{1} : the above argument plus the fact that rng $C_{i} \subset$ rng $\bar{e}_{i} \subset V$ shows that iii) is true; iif is true because from (1.2) iv, every point x in $B d W_{r}$ is either in Int Δ, in which case $C_{1}(x) \in E^{3}-\overline{\left(A-B^{1}-B_{2}\right)}$ $\subset E^{3}-A_{3}$, or $x \in B d \Delta$, when $C_{1}(x)=e_{1}(x) \in A_{1} \subset E^{3}-A_{3}$. In general, i) is not true because some candidates for $C_{1}(x)$ lie outside of $\overline{A-B^{1}-B_{2}}$ as we have just seen. However we can assume that $C_{1}\left[B d W_{r}\right]$ lies in Int $\left(\overline{A-B^{1}-B_{2}}\right.$) by the following argument: $B y$ (1.2), we assume that dom C_{1} (which is one of the $B d W_{r}$) lies so near $\bar{e}_{1}^{-1}\left[\overline{A-B^{1}-B_{2}}\right]$ that rng C_{1} lies within ε of $\overline{A-B^{1}-B_{2}}$ (remember that $C_{1}=g=\bar{e}_{1}$ on $\operatorname{dom} C_{1}$). In this paragraph a) so far, we could have replaced $\overline{A-B^{1}-B_{2}}$ by a cube $K \supset A_{3}$ such that an ε-neighbourhood of K lies in Int $\left(\overline{A-B^{1}-B_{2}}\right)$. Such a cube is shown in fig 36. If this had been done, we would have \quad rng C_{1} in the ε-neighbourhood of K, i.e. rng $C_{1} \subset$ Int $\left(\overline{A-B^{1}-B_{2}}\right)$. We assume that this was done and that rng $C_{1} \subset$ Int $\overline{\left(A-B^{1}-B_{2}\right)}$. Proof of iv): In (1.2) iv, each $B d W_{r}$ misses S (in (1.2)) except where $B d W_{r}$ hits $B d \Delta$. In the
present context, with $e_{1}^{-1}[K]$ for S (i.e. continuing to use K for $\overline{A-B^{1}-B_{2}}$), the domain of C_{1} is a $B d W_{r}$ and $C_{1}\left[B d W_{r}-B d \Delta\right]$ misses K. To show that there is a $y_{1} \in$ rng C_{1} rng $e_{1} K_{1}$ $=C_{1}\left[B d W_{r}\right] \cap e_{1}[B d \Delta] \cap K_{1}=C_{1}\left[B d W_{r} \cap B d \Delta\right] \cap K_{1}$, assume that $C_{1}\left[B d \Delta \cap B d \dot{W}_{r}\right] \cap K_{1}=\emptyset$. In fig 36 , note the two cubes K_{1}, K_{2} which are placed so that $\ell_{3} \subset K_{1} \subset K \cap K_{1}$ and $m_{3} \subset K_{2} \subset K \cap K_{2}$. Then $C_{1}\left[B d W_{r} \cap B d \Delta\right] \cap K_{1}=\emptyset$ because $K_{1} \supset K_{1} ;$ and $C_{1}\left[B d W_{r}-B d \Delta\right] \cap K_{1}=\emptyset$ because $C_{1}\left[B d W_{r}-B d \Delta\right]$ misses K as we just saw. This means that all of rng $C_{1} \subset E^{3}-K_{1}$ and C_{1} shrinks to a point in $E^{3}-K_{1} C E^{3}-\ell_{3}$, which contradicts the choice of C_{1}.

We repeat the entire procedure of this paragraph a) taking $e_{2}, \bar{e}_{2}, m_{1}, m_{3}, K_{2}, \overline{A-B^{1}-B_{2}-K_{1}}$, for $e_{1}, \bar{e}_{1}, \ell_{1}, \ell_{3}, K_{1}, K_{1}$. This is just the preceding argument 'upside down' and constructs the path $C_{2} \ni \mathrm{y}_{2}$ as required. The only unexpected thing is the use of the cube $\overline{A-B^{1}-B_{2}-K_{1}}$ for the original cube K_{1}; this reflects the fact that y_{1} should be found in K_{1} and y_{2} not necessarily in K_{2} but merely 'in A_{1} and below B^{1} '. We now have y_{1} and y_{2} as required by iv). To construct a, join y_{1} to p by a path a_{1} lying in rng $e_{1} \subset A_{1} \cap \mathrm{~V}$; and y_{2} to p by a path a_{2} in rng $e_{2} \subset A_{1} \cap V$. Let $\quad a_{1}=a_{1} \mathrm{U}_{2}$.
b) We can assume that $\operatorname{dom} C_{i}=B d \Delta, i=1,2$. Since rng $C_{i} \subset V, C_{i}$ shrinks to a point in V and there is a mapping $f_{i}: \Delta \rightarrow V$ such that $f_{i} \mid B d \Delta=C_{i}$. It happens to be true that (2.2) gives us a big element, g in $V \cap A_{3}$ which hits both $f_{1}[\Delta]$ and $f_{2}[\Delta]$
(unless they intersect), but we are not sure that there is a connected set in $f_{i}[\Delta]$ that will join g and y_{i} and stay in $\overline{A-B^{1}-B_{2}}$, so that it is not yet possible to build $q \subset V \cap\left(A-B C B_{2}\right)=$ as in fig 35. By (1.2), taking S to be $\operatorname{Ext}\left(A-B^{1}-B_{2}\right)$ there are disks $W_{1}^{i}, \ldots W_{n}^{i}$ in Δ such that $\left.f_{i}^{-1}\left[\overline{\operatorname{Ext}\left(A-B^{1}-B_{2}\right.}\right)\right] \subset W_{1}^{i}, \cup \ldots \cup W_{n}^{i}$. Since $B d \Delta$ misses $f_{i}^{-1}\left[\overline{\left.\operatorname{Ext}\left(A-B^{1}-B_{2}\right)\right] .(b e c a u s e ~} f_{i}[\operatorname{Bd} \Delta] \subset \operatorname{Int}\left(A-B^{1}-B_{2}\right)\right.$), $\Delta-\operatorname{Int} W_{1}^{i}-\ldots-\operatorname{Int} W_{n}^{i}$ is a disk with holes. We assume that each $B d W_{r}^{i}$ lies so near $f_{i}^{-1}\left[\operatorname{Ext}\left(A-B^{1}-B_{2}\right)\right]$ that $f_{i}\left[B d W_{r}^{i}\right]$ lies close to $\overline{\operatorname{Ext}\left(A-B^{1}-B_{2}\right)}$. Since we know exactly what $\overline{A-B^{1}-B_{2}}$ looks like, we can construct an ε-neighbourhood N of $\operatorname{Ext}\left(\overline{A-B^{1}-B_{2}}\right.$) so that N is simply connected. We can assume that each $f_{i}\left[B d W_{r}^{i}\right] \subset N$; then $f_{i}\left[B d W_{r}^{i}\right]$ shrinks to a point in N; and by (1.3), taking $N=P_{1}=P_{2}=\ldots=P_{n}$, and $g=f_{i} \mid \Delta-\operatorname{Int} W_{I}^{i}-\ldots$ - Int W_{n}^{i}, there is a mapping $\bar{f}_{i}: \Delta \rightarrow \operatorname{rng} g \cup P_{1} \cup \ldots \cup P_{n}=f_{i}\left[\Delta-\operatorname{Int} W_{1}^{i}-\ldots-\operatorname{Int} W_{n}^{i}\right] \cup N$ such that $\bar{f}_{i}=f_{i}$ on Δ - Int $W_{1}^{i}-\ldots-\operatorname{Int} W_{n}^{i}$. In particular $\bar{f}_{i}=f_{i}$ on $B d \Delta$. It is important that $\bar{f}_{i}\left[\Delta-\operatorname{Int} W_{1}^{i}-\ldots\right.$ Int $\left.W_{n}^{i}\right]$ $=f_{i}\left[\Delta-\operatorname{In} t W_{1}^{i}-\ldots-\operatorname{In} t W_{n}^{i}\right] \subset V$.
c) Since $\because r n g C_{i}=f_{i}[B d \Delta]=\bar{f}_{i}[B d \Delta]$ misses A_{3} and fails to shrink to a point in the absence of the appropriate eyes of A_{3}, by (2.2), $\bar{f}_{1}[\Delta]$ and $\bar{f}_{2}[\Delta]$ either intersect in A_{3} or hit the same big element λ in A_{3}. We can combine these ideas by saying ' $f_{1}[\Delta]$ and $f_{2}[\Delta]$ meet the same element λ in A_{3}^{\prime} and allowing λ to be either a big element or a small element. Since for a small ε, N misses A_{3},
 and $f_{i}^{-1}[\lambda] \subset \Delta-\operatorname{Int} W_{1}^{i}-\ldots-\operatorname{Int} W_{n}^{i}$, which we saw was a disk with

holes and which contains $C_{i}^{-1}\left(y_{i}\right) \subset \operatorname{dom} C_{i}=\operatorname{Bd} \Delta$. Since, $\lambda \cap f_{i}[\Delta]$ and y_{i} lie in the image under \bar{f}_{i} of a disk with holes which maps into V, there is a path \ddot{v}_{i} which joins y_{i} and λ in V. Futhermore ${\underset{i}{i}}^{V_{A}-B^{1}-B_{2}}$, because v_{i}^{\prime} may be constructed in $\bar{f}_{i}\left[\Delta-\operatorname{Int} W_{1}-\ldots-\operatorname{Int} W_{n}\right]=f_{i}\left[\Delta-\operatorname{Int} W_{1}-\ldots-\operatorname{Int} W_{n}\right]$ which misses $\operatorname{Ext}\left(\bar{A}-\mathrm{B}^{1}-\mathrm{B}_{2}\right)$ by the construction of the W_{r}. Hence $v_{i} \subset V \cap\left(\overline{A-B^{1}-B_{2}}\right)$. Let q be a path joing y_{1} and y_{2} in $\nu_{1} \cup \lambda \cup \nu_{2}$. Clearly $q \subset V \cap\left(\overline{A-B^{1}-B_{2}}\right)$.
d) We will show that the path ξ_{1} which travels from y_{1} to y_{2} in q and returns to y_{1} in a is an upper principal path of A in V by showing that $\xi_{1} \subset A \cap V$ and that $\dot{\xi}_{1}$ is homotopic to ℓ in A. Let ℓ be decomposed into two paths ℓ^{\prime}, and $\ell^{\prime \prime}$ such that $\ell^{\prime \prime} \subset B^{1}$ and $\ell \subset \overline{C E^{3}-B^{1}}$. We assume that ℓ pierces $B d B^{1}$ in just two points z_{1}, z_{2} as shown in fig 37 . We can do this because $B d B^{I}$ is horizontal near ℓ and because ℓ can be a nice circle. Construct arcs $z_{1} y_{1}$ and $z_{2} y_{2}$ in the cubes K_{1} and $\overline{A-B} B_{2}^{1}-B^{2}-K_{1}$ respectively. (The idea here is that both $z_{i} y_{i}$ will lie in $\overline{A-B^{1}-B_{2}}$, the cube which locates $A_{3} \supset q$, and in $\overline{A-B^{2}-B_{2}}$, the cube which locates $\left.A_{1} \supset a\right)$. The path which begins at z_{1} and travels to z_{2} through $z_{1} y_{1}$, a, and $z_{2} y_{2}$ is homotopic in the cube $\overline{A-B^{2}-B_{2}}$ to $\ell^{\prime \prime}$. The path which begins at z_{2} and travels to z_{1} via $z_{2} y_{2}, q$, and $z_{1} y_{2}$ is homotopic in the cube $\overline{A-B^{1}-B_{2}}$ to $\ell^{-} \because$ Combining homotopies, the path ${ }_{1}{ }_{1}$ which begins at z_{1}, travels to z_{2} in $z_{1} y_{1} \cup q \cup z_{2} y_{2}$ and returns to z_{1} in $z_{2} y_{2} \cup$ a $\cup z_{1} y_{1}$, is

homotopic in A to ℓ. The path ξ_{1}^{\prime} is evidently homotopic to. ξ_{1}. Note that ξ_{1} passes through the point $p \in a$. Eventually p will be the 'official' intersection point of the principal paths ξ_{1} and ξ_{2} of A.
e) There is no difficulty in altering the argument to construct a lower principal path ξ_{2} if one keeps in mind the fact that 'the pictures are different' and that everything in the construction of ξ_{1} must be repeated. We cannot, for example, use the C_{i} from a) because they were defined with respect to $\overline{A-B^{1}-B_{2}}$ and we must replace $\overline{A-B^{I}-B_{2}}$ (the cube which located A_{3} and 'shaped' the right side of ξ_{1}) with $\overline{A-B^{2}-B_{1}}$ which locates A_{2}. The idea is to start with e_{1} and e_{2} as before, but to use A_{2} rather than A_{3} as suggested in fig 38 which, in a sense, is a replacement for fig 35. The new ξ_{2} turns out to contain $p \in e_{1} \cap e_{2}$ just as ξ_{1} does; this establishes that $\xi_{1} \cap \xi_{2} \neq \emptyset$. We begin by finding a new lasso $J^{\prime}=C_{1}^{\prime} \cup C_{2}^{\prime} \cup a^{\prime}$ so that $C_{1}^{\prime} \cup C_{2}^{\prime} \subset V \cap \operatorname{Int}\left(\overline{A-B^{2}-B_{1}}\right), C_{i}^{\prime} \subset A_{3}$, and C_{i} contains a point y_{i}^{\prime} such that $y_{i}^{\prime} \in \operatorname{rng} C_{i}^{\prime} \cap$ rng $e_{1} \cap \overline{\left(A-B^{2}-B_{1}-K_{2}\right)}$ and $y_{2}^{\prime} \in \operatorname{rng} C_{2}^{\sim} \cap \operatorname{rng} e_{2} \cap K_{2}$. The arc a^{\prime} lies in $V \cap A_{1}$ and has end points $y_{1}^{\prime}, y_{2}^{\prime}$. One finds $C_{1}^{\prime} \cup C_{2}^{\sim} U a^{-}$by adapting the procedure in a) ; there is very little more involved than reading $m, m_{j}, B_{1}, B^{2}, K_{2}$, $\overline{A-B^{2}-B_{1}-K_{2}}$ for $\ell, \quad \ell_{j}, \quad B^{1}, B_{2}, \overline{A-B^{1}-B_{2}-K_{1}}, \quad K_{2}$, and priming every new construction. It will be found that the arc a^{-}contains p just as the original a does. For the construction of K^{\prime}, K_{1}, K_{2}^{\prime}, replace fig 36 by fig 39 . It is quite easy to adapt b) and

c) by keeping in mind that the important cube is $\overline{A-B^{2}-B_{1}}$ which $\overline{\text { replaces }} \overline{A-B^{1}-B_{2}}$ in the construction of ξ_{1}. (The point is that in b), c), one must use a cube whose boundary encloses the 'important' dogbone A_{2}, see fig 38). Finally we construct a path qu which joins $y_{1}^{\prime}, y_{2}^{\prime}$ in $\overline{A-B^{2}-B_{1}}$. This plus $a-C \overline{A-B^{2}-B_{2}}$ can be combined into the path ξ_{2} which can be shown to be homotopic to m by adapting d) above, decomposing m into paths $m^{\prime \prime} \subset B_{1}$ and $m^{-} C \overline{E^{3}-\overline{B_{1}}}$ etc. The path ξ_{2} lies in V by an argument which should appear naturally from the adaptation of a), b), c) to construct ξ_{2}; and ξ_{2} is clearly in A. Since the point p lies in both a and a^{\prime} and hence in both ξ_{1} and $\xi_{2} ;$ therefore $\xi_{1} \cap \xi_{2} \neq \emptyset$.
f) The proof is now complete if $e_{1} \cup e_{2}$ lies in A_{1}, i.e. if $\mathbf{j}=1$. The is no difficulty in constructing a proof for the lemma when $j=4$ in view of the symmetry of the construction of the A_{j}. We will give only an outline of the proof for ${ }_{j}=2$. (and by symmetry for $j=3$) for these reasons: 1) the details can be filled in along the lines of a) ... e) above, and, 2) the argument in a), ... e) is sufficient to prove the 'meat' of (2.2), viz. that there are uncountably many big points of D which fail to possess arbitrarily small simply connected open neighbourhoods, these being images of elements of the form $A \cap A_{i} \quad A_{i j} \quad A_{i j k} \quad \ldots$ where i, j, k, \ldots are chosen from 1 or 4. To construct the principal path ${ }_{1}{ }_{1}$ when $j=2$, use the paths e_{1}, e_{2}, which we now assume to lie in $A_{2} \cap V$, and the cube $\overline{A-B^{1}-B_{1}}$ (see fig 40) which acts toward A_{2} just as $\overline{A-B^{1}-B_{2}}$ acts toward A_{1} in a) (i.e. $\overline{A-B^{1}-B_{1}}$ separates A_{2} just under the

upper eye while $\overline{A-B^{1}-B_{2}}$ does the same for A_{1}). Using the argument of a), construct a lasso $J=C_{1} \cup a \cup C_{2}$ which is related to V, $e_{1} \cup e_{2}, A_{4}$, and $\overline{A-B^{1}-B_{1}}$ just as J in a) was related to V, $e_{1} \cup e_{2}, A_{3}, \overline{A-B_{1}^{1}-B_{2}}$. Fig 40 shows the new J. When C_{1} and c_{2} shrink to a point in V they hit the same element λ of A_{4} (λ may be a big element or a point). The path q joining the end points of a in $V \cap\left(A-B^{1}-B_{1}\right)$ may be constructed by adapting the argument of b), c), and $\xi_{1}=a \cup q$ may be shown to be an upper principal path of A by an argument like that of d). Just as in the case $j=1$, the arc a contains a point $p \in e_{1} \cap e_{2}$. Thus $p \in \xi_{1}$. To construct the lower principal path ξ_{2} when $j=2$, we start as before with $e_{1} \cup e_{2} \subset A_{2}$, but we use the cube $\overline{A-B^{2}-B_{2}} \supset A_{1}$ and construct $J^{\prime}=C_{1}^{\prime} \cup a^{-} U_{C}^{\prime} C_{2}^{\prime}$ so that J^{\prime} is related to $V, e_{1} \cup e_{2}, A_{1}$,
$\overline{A-B^{2}-B_{2}}$, just as J, fin e) is related to $V, e_{1} \cup e_{2}, A_{2}$,
$A-B^{2}-B_{1}$, see fig, 41 . Fig, 41 also shows q which is used with a^{\prime} to form ${ }^{\prime} \xi_{2}$. The arc a^{\prime} and hence the path ξ_{2} turns out to contain p ; hence $\xi_{1} \cap \xi_{2} \neq \emptyset$ as before. \square.

CHAPTER THREE: GENERALIZATION OF A THEOREM OF BING: LEMMAS.

1. In this chapter, we give two lemmas for the proof of II (2.2), the generalization of Bing's theorem II (2.1). In proving II (2.1), Bing defined a property Q such that A had Property Q, and if a dogbone $A_{j k} \ldots r$ had Property Q, then one of $A_{j k} \ldots r 1, A_{j k} \ldots r{ }^{\prime}$, $A_{j k} \ldots 3^{\prime} A_{j k} \ldots$... r4 had Property Q. This meant that there was a chain $A \supset A_{j} \supset A_{j k} \supset \ldots$ of dogbones with Property Q. Since the possession of Property Q implied intersection with both disks. \mathbb{B}_{i} in II (2.1), the limit of the chain was a big element Λ which hit both D_{1} and D_{2} (see the discussion in II§2). We follow Bing's proof closely (in spite of the fact that we alter Property Q to a property which has to be applied to a whole a_{m} to be of any use) and in fact depend on the reader's familiarity with [12] for the motivation in this chapter and the next. In the remainder of this paper, $i=1,2$ and $j=1,2$, 3, 4.

In the proof of $I I$ (2.1) in [12], it is evident that the crucial part of the argument is the proof of [12, Th 10], where it is shown that if the four centres of $A_{1}, A_{2}, A_{3}, A_{4}$ fail to have Property P, then some set homotopic to the centre of A also fails to have Property P, (The precise definition of Property P is unimportant until Ch IV). In Ch IV we will prove just this result with the disks D_{i}. in [12§7] replaced by the singular disks $f_{i}[\Delta]$ in II (2.2). Our proof will differ from the proof of [12, Th 10] in that whereas in [12 Th 10] the disks D_{i} remain unchanged during the proof, in our proof of the analogous result the $f_{i}[\Delta]$ are replaced by new singular disks $f_{i}^{\prime}[\Delta]$ which retain the desirable properties of the $f_{i}[\Delta]$. Although

Facing page $57(\mathrm{I})$

Facing page 57 (II)

this is a considerable change, it turns out that our Ch IV resembles the argument of [12§7] very closely. In the present chapter, we prove an important lemma which shows that if each k_{j} (in fig 19)"misses one of $f_{1}[\Delta], \quad f_{2}[\Delta]$, then the new $f_{i}[\Delta]$, may be constructed so that not only does each k_{j} miss one $f_{i}^{\prime}[\Delta]$, but both $f_{i}[\Delta]$ miss each of the arcs ζ_{1} and ζ_{2} shown in fig 42. The ζ_{i} lie in β^{1} and β_{1} and tie the upper and lower loops of the k_{j} together as shown in the figure. If we can obtain such singular disks $f_{i}^{-}[\Delta]$, the reward is considerable, for then parts of the k_{j} can be erased as shown in fig 43, leaving the set ${ }^{\prime} b_{1} \cup b_{2} \cup b_{3} \cup b_{4} \cup \zeta_{1} \cup \zeta_{2}$ shown in this figure. Since each $b_{j} \subset k_{j}$, each b_{j} misses one $f_{i}^{\prime}[\Delta]$ while $\zeta_{1} \cup \zeta_{2}$ misses both. One can now apply Part II of the proof of Th 10 of [12] to $b_{1} \cup \ldots b_{4} \cup \zeta_{1} \cup \zeta_{2}$ instead of to $\bigcup_{\mathrm{pq}_{j} \mathrm{r}_{\mathrm{j}} \mathrm{s}}$ in [12, fig 2]. This can be done with very little change in the argument of [12] and results in the construction of a centre of A which fails to have Property P. We say that mappings $g_{i}: \Delta \rightarrow E^{3}$ are Z-disjoint iff $Z \subset E^{3}$ and $\operatorname{rng} g_{1} \cap \operatorname{rng} g_{2} \cap Z=\emptyset$, i.e. iff the ranges are disjoint at least in Z.

Lemma One. Consider $A, A_{j}, \beta^{1}, k_{j}$ as defined in Ch II (see fig 19). Let $Z \supset A$ and let $c_{1}: B d \Delta \rightarrow E^{3}-Z$. Let $g_{i}: \Delta \rightarrow E^{3}$ be Z-disjoint mappings such that $g_{i \mid B d \Delta}{ }^{:=} c_{i}$. Let S be the sphere shown in fig 44 consisting of the cylindrical annulus Ω with disks d_{1}, d_{2} for end caps. Each ℓ_{j} pierces each d_{i} exactly once and β^{1} misses Ω. Let $S \subset$ Int A and let N be an n - neighbourhood of S such that $N \subset$ Int A. The arc ζ_{I} shown in fig 42 lies in Int $A-N$. Then there exist $Z-$ disjoint mappings $\overline{\mathrm{g}}_{\mathrm{i}}: \Delta \rightarrow \mathrm{E}^{3}$ such that

i) $\bar{g}_{i}=c_{i}$ on $\operatorname{Bd} \Delta$,
ii) $\overline{\mathrm{g}}_{i}: \Delta \rightarrow\left(\right.$ rng $\mathrm{g}_{i}-$ Int S$) \cup \mathrm{N}$,
iii). If $\ell_{j} \cup \Omega$ misses rng g_{i}, then ℓ_{j} misses rng \bar{g}_{i}.

Corollary. Let K_{1}. be the cube defined in Ch II (see fig 21). Then ii) and iii) in Lemma One may be replaced by

$$
\text { ii) }, \bar{g}_{i}: \Delta \rightarrow \operatorname{rng} g_{i} \cup K_{1}
$$

iii) ' If $k_{j} \cup \Omega$ misses rng g_{i}, then k_{j} misses rng \bar{g}_{i}.

The proof of Lemma One is delayed to $\$ 2$, which may be read after Ch IV if desired.

We give a second lemma which is intended to repair a gap which would otherwise appear in the proof in Ch IV. This lemma is quite specialized, but appears here because its proof is just a variation of the proof of Lemma One. As before, the proof is delayed to $\$_{2}$ and may be omitted on a first reading.

Lemma Two. Consider $A, Z, \zeta_{i}, k_{j}, a_{j}, \beta^{1}$, as defined in fig 42. Let Σ be the sphere shown in fig 45. The sphere Σ together with an η - neighbourhood N of Σ lies in Int $A ; \beta^{1} \subset$ Int $\Sigma-n$, and each of a_{1}, a_{2}, a_{3} pierces Σ as shown. Let mappings $g_{i}: \Delta \rightarrow E^{3}$ be Z-disjoint with $g_{i \mid B d \Delta}=c_{i}$, where c_{i} is defined as in Lemma One. Both rng g_{i} miss the set $\xi_{1} \cup k_{1} \cup k_{2} \cup k_{3}$. Let u_{12}, u_{13} be arcs in β^{1} which join $a_{1} \cap \beta^{1}$ and $a_{2} \cap \beta^{1}, a_{1} \cap \beta^{1}$ and $a_{3} \cap \beta^{1}$ respectively and miss rng g_{1}. Let v_{12}, v_{13} be arcs in β^{1} which join $a_{1} \cap \beta^{1}$ and $a_{2} \cap \beta^{1}, a_{2} \cap \beta^{1}$ and $a_{3} \cap \beta^{1}$ respectively and miss rng g_{2}. The arcs $u_{12}, u_{13}, v_{12}, v_{13}$. are not. necessarily

disjoint. Then there exist Z-disjoint mappings $g_{i}^{i}: \Delta \rightarrow\left(r n g g_{i}-\operatorname{Int\Sigma }\right) \cup N$ such that $g_{i}^{\prime}=c_{i}$ on $B d \Delta$, and one of rng g_{1}^{\prime}, rng g_{2}^{\prime} misses $k_{1} \cup k_{2} \cup k_{3}$.

Corollary. One of rng g_{1}^{\prime}, rng g_{2}^{\prime} misses $\zeta_{1} \cup b_{1} \cup b_{2} \cup b_{3} \cup \zeta_{2}$, and $g_{i}^{\prime}: \Delta \rightarrow$ rng $g_{i} \cup K_{1}$.

Although u_{12} lies in an annulus and is joined to Σ by the orderly arcs $a_{1} \cap \overline{\operatorname{Int} \Sigma}, a_{2} \cap \overline{\operatorname{Int} \Sigma}$, the arc $\left(a_{1} \cup u_{12} \cup a_{2}\right) \cap \overline{\operatorname{Int\Sigma }}$ may be knotted in $\overline{\operatorname{Int} \Sigma}$, as a few moments experiment will show (an arc $a b$ in a cube K with $a b \subset B d D=a \cup b$ is knotted if there is no disk D C K with $a b \subset B d \overline{D C B d K K} \cup a b)$. To be knotted the arc must make more than one circuit on the twisted annulus. A similar comment applies to $u_{13}, \quad v_{12}, \quad v_{13}$.
2. Proof of Lemma One.
(2.1). As a preliminary, we describe an untwisting function $y: E^{3} \rightarrow E^{3}$ which is onto and one-to-one and which unwinds the twist in β^{1}, i.e. $y\left(\beta^{I}\right)$ is the planar annulus shown in fig 46. For well known reasons y cannot be a mapping, but we ensure that y will be discontinuous only on the curved cylindrical surface z shown in fig 47. In fig 47, the end caps of z are called M_{1}, M_{2}, and the cube $\overline{\operatorname{Int}\left(z \cup M_{1} \cup M_{2}\right)}$ is called K. Eventually y will be composed with a mapping whose range misses z. Thus the eesult of the composition will be a mapping. The function y is defined to be the identity on $E^{3}-K$ and on both M_{i}. To define y in Int K : Imagine K to be cut free of the space by means of a cut on z and on M_{2}, remaining attached only on M_{1}.

Faing page 60

K may be thought of as a stack of circular disks of infinitesmal thickness. These disks span the cylinder z and each meets β^{1} in a straight arc. Fig 48 shows M_{1}, which is called the initial disk; M_{2}, which is called the final disk; and a 'typical disk' in the stack between M_{1} and M_{2}. Now apply a twist (which may be thought of as. an isotopy of K) to M_{2} so that M_{2} rotates once (i.e. through an angle of (2π) in place. When this happens, the disk M_{1}, which is attached to the space, necessarily remains fixed and does not rotate. Each disk intermediate between M_{1} and M_{2} rotates through an angle which is close to zero for disks close to M_{1} and approaches 2π for disks whose location approaches that of M_{2}. The rotations of the various disks in the stack can be contrived so that $\beta^{1} \cap K$ is carried onto the plane which contains $\beta^{1}-K$, and so that the final result is homeomorphic to K. In fig 48, the 'typical disk', which is located half-way between M_{1} and M_{2} will rotate through an angle of π. This carries its intersection with β^{1} on to the desired plane. Since M_{2} has returned to its original position, we can restore the cut at M_{2}. Evidently y is one-to-one and continuous in Int K, Ext K, and on $M_{1} \cup M_{2}$. The fact that we cannot sew up the cut on z appears in the definition of y as a discontinuity on z. Clearly y carries β^{1} into the plane containing $\beta^{1}-K$.
(2.2). We will prove a simpler version of Lemma One to show the general approach.
(2.21). Let S be a sphere in E^{3} having a simply connected neighbourhood N. Let $g: \Delta \rightarrow E^{3}$ so that $g[B d \Delta] \subset$ Ext S. Then there
exists a mapping $\bar{g}: \Delta \rightarrow($ rng $g-\operatorname{Int} S) \cup N$ which agrees with g on $B d \Delta$.

When simplified in this way, (2.21) is insignificant, for there are easier proofs of stronger results, as the reader doubtless sees. However our proof is intended to show how $I I(1.2)$ is used in the proof of Lemma One.

Proof. Apply II(1.2) to obtain disks $W_{1}, \ldots W_{n}$ in Δ such that $g^{-1}[\overline{\text { Int }}] \subset W_{1} \cup \ldots \cup W_{n}$. Since $g^{-1}[\overline{\text { Int } S}]$ misses $B d \Delta$, $\Delta-\operatorname{Int} W_{1}-\ldots$ - Int W_{n} is a disk with holes and $g^{-1}[\overline{\text { Int } S}] \subset$ Int $W_{1} \quad .$. Int W_{n}. If ε in II(1.2) is sufficiently sma11, then g carries each $B d W_{r}$ into N, for $g\left[B d W_{r}\right]$ lies close to, but not in $\overline{\text { Int } S}$ and hence close to S. In II (1.3), take (simply connected) N to be $P_{1}=P_{2}=\ldots=P_{n}$ to obtain the mapping $\bar{g}=g_{\mid \Delta}-\operatorname{Int} W_{1}-\ldots$ - Int W_{n} $\cup \gamma_{1} \cup \gamma_{2} \cup \ldots \cup \gamma_{n}: \Delta \rightarrow$ rng $g \cup N$. Since each point x in Δ lies either in $\Delta-\operatorname{Int} W_{1}-\ldots-\operatorname{Int} W_{n}$ in which case $\bar{g}(x) \in E^{3}-\overline{\text { Int } S}$, or in some W_{r}, in which case $\bar{g}(x) \in N$, rng \bar{g} misses Int $S-N$. Thus rng $\overline{\mathrm{g}}$ lies in (rng g - Int S) $\cup \mathrm{N}$. Finally $\overline{\mathrm{g}}=\mathrm{g}$ on $\mathrm{Bd} \triangle$ because the two mappings differ only in $W_{1} \cup W_{2} \cup \ldots \cup W_{n}$, which misses $B d \Delta$.
(2.3). We will now give a formal proof of Lemma One.

Case one: neither $g_{i}[\Delta]$ meets S. Let $\bar{g}_{i}=g_{i}$. Since $\vec{g}_{i}[\Delta]$ meets Ext S, a connectivity argument shows that $\bar{g}_{i}[\Delta]$ misses Int S . The rest of the requirements of Lemma One are clear.

In the next two cases we insist that one of the rng g_{i}
touch Ω while the other does not.

Facing page 62

Case two: exactly one rng g_{i} meets S. The rng g_{i} which meets. S also meets Ω. Assume that rng g_{1} meets $\Omega \subset S \ldots$ Let $\bar{g}_{2}=g_{2}$. Evidently i), ii), iii) of Lemma One are true of \bar{g}_{2}. Apply the argument of 2.2 , taking g in 2.2 to be g_{1}, and construct a mapping $\bar{g}_{1}: \Delta \rightarrow\left(\right.$ rng $_{1}-$ Int $\left.S\right) \cup N$ which agrees with c_{1} on $B d \Delta$. With regard to \bar{g}_{1}, i) and ii) are satisfied, and iii) is vacuously satisfied since $g_{1}[\Delta]$ hits Ω_{s}. The \bar{g}_{i} are Z-disjoint because we could have taken N small enough to miss $r n g g_{2}$. . Thus $\emptyset=\mathrm{Z} \cap \mathrm{rng} \mathrm{g}_{1} \cap \operatorname{rng} \mathrm{~g}_{2}=\mathrm{Z} \cap\left(\mathrm{rng} \mathrm{g}_{1} \cup \mathrm{~N}\right) \cap \operatorname{rng} \mathrm{g}_{2} \supset \mathrm{Z} \cap \mathrm{rng} \overline{\mathrm{g}}_{1} \cap \mathrm{rng} \overline{\mathrm{g}}_{2}$.

Case three: both rng g_{i} meet S. One rng g_{i}, say rng g_{1}, meets Ω; the other $\left(\operatorname{rng} \mathrm{g}_{2}\right)$ does not. The aim of the proof will be to construct an intermediate pair of mappings $\dot{g}_{\dot{i}}^{k}$ such that rng g_{2}^{k} misses S although rng g_{1}^{k} may not. The argument then reduces to an easy variation of either case one or case two.

Outline of proof. a) Choose a component z_{1} of rng $g_{2} \cap \mathrm{~S}$. It is important that, since $r n g g_{2}$ misses Ω, rng $g_{2} \cap S \subset$ Int $d_{1} \cup$ Int d_{2}. Using this fact, we construct a circle $c_{1} \subset$ Int $d_{1} \cup$ Int $d_{2}-r n g g_{1}-r n g g_{2}$ which encloses (on one zof the: d_{i}) points of exactly one of $\operatorname{rng}_{1} \cap S$, rng $g_{2} \cap \mathrm{~S}$. Although we choose $\mathrm{z}_{1} \subset \mathrm{rng} \mathrm{g}_{2} \cap \mathrm{~S}, \mathrm{c}_{1}$ may turn out to enclose points of $r n g g_{1} \cap S$.
b) Assume that $\overline{\text { Int } c_{1}} \subset$ Int d_{1}. Construct
a sphere $\omega \cup \delta_{1} \cup \delta_{2}$ in the shape of a pill-box as shown in fig 49 so that c_{1} is the equator of $\omega u \delta_{1} \cup \delta_{2}$.
c) An argument like that of case two but
using $\omega \cup \delta_{1} \cup \delta_{2}$ instead of S yields a pair of Z-disjoint mappings
$g_{i}^{1}: \Delta \rightarrow \operatorname{rng} g_{i} \cup N$ such that $g_{i}^{1}=c_{i}$ on Bd Δ, Int c_{1} misses rng $g_{1}^{1} \cup$ rng g_{2}^{1}; and if rng g_{i} misses $\Omega \cup \ell_{j}$, then so does \because rng g_{i}^{1}. The argument of case two is used virtually as is if c_{1} encloses points of rng $g_{1} \cap S$. If c_{1} encloses points of $r n g g_{2} \cap S$ the argument must be modified somewhat, since the method of case two would not ordinarily ensure that rng g_{2}^{1} would miss all the ℓ_{j} that rng g_{2} misses.
d) It turns out that rng g_{2}^{1} misses Ω. If some component $z_{2} \subset$ rng $g_{2}^{1} \cap S$ exists in, say, Int d_{1}, then we repeat steps a), b) c) to define mappings $g_{i}^{2}: \Delta \rightarrow$ rng $g_{i}^{1} \cup N$ with properties analogous to those of the g_{i}^{1}. We continue to construct mappings $g_{i}^{3}, g_{i}^{4}, \ldots$, first finding a component $z_{r+1} \subset$ rng $g_{2}^{r} \cap$ (Int $d_{1} \cup$ Int d_{2}) and then constructing the pair $g_{i}^{r+1}: \Delta \rightarrow \operatorname{rng}_{i}^{r} \cup N$ such that $g_{i}^{r+1}=c_{i}$ on $B d \Delta$ and if rng g_{i} misses $\Omega \cup \ell_{j}$, then so do rng g_{i}, rng g_{i}^{2}, \ldots rng g_{i}^{r}, rng g_{i}^{r+1}. We show that rng $g_{i}^{r} \cap S \supset r n g g_{i}^{r+1} \cap S$ and that the sequence of mappings ends at a pair g_{i}^{k} for which rng $g_{2}^{k} \cap S=\emptyset$. although rng g_{1}^{k} may hit S.
e) The situation now reduces to case one or case two. An additional argument shows that iii) of Lemma One is satisfied.

Details of proof. a) If we assume that rng g_{2} misses Ω but hits S, then there is a component z_{1} of rng $g_{2} \cap S$ lying in Int d_{1} or Int d_{2}, say Int d_{1}. By the Zoretti Theorem, there is a circle X_{1} in Int d_{1} which misses rng g_{2}, encloses z_{1}, and lies so near to z_{1}. that it misses rng g_{1} (by 'encloses' we mean 'encloses relative to d_{1}^{\prime}). If X_{1} encloses points of just one of rng $g_{1} \cap \mathrm{~s}$, rng $g_{2} \cap \mathrm{~S}$,
then let x_{1} be c_{1}. We must expect that x_{1} will enclose points of both rng $g_{1} \cap S$ and rng $g_{2} \cap S \quad\left(z_{1}\right.$ could be itself a circle enclosing points of $r n g g_{1} \cap S$). In this case use the Plane Separation Theorem in Int $x_{1} \subset$ Int d_{1} to construct a circle $x_{2} \subset$ Int X_{1} which misses $\left(g_{1}[\Delta] \cup g_{2}[\Delta]\right) \cap \mathrm{S}$ and separates the component z_{1} of $g_{2}[\Delta] \cap \mathrm{S}$ from a component z^{\prime} of $g_{1}[\Delta] \cap S$ in Int X_{1}. Since z_{1} may be in Int $x_{1}-\overline{\text { Int } x_{2}}$, we cannot predict that Int x_{2} contains points of rng $g_{2} \cap \mathrm{~S}$; but by the Plane Separation Theorem we know that X_{2} encloses points of $\left(\operatorname{rng} g_{1} \cup\right.$ rng $\left.g_{2}\right) \cap S$. If. χ_{2} encloses points of both rng $g_{1} \cap \mathrm{~S}$ and $\mathrm{rng} \mathrm{g}_{2} \cap \mathrm{~S}$, then separate. Int $x_{2} \cap\left(\mathrm{nng} \mathrm{g}_{1} \cup\right.$ rng $\left.g_{2}\right)$ still further by means of another application of the Plane Separation Theorem. We repeat this procedure, defining circles $x_{3}, x_{4}, \ldots ; x_{r}$ being constructed in Int X_{r-1} whenever Int X_{r-1} contains points of both rng $g_{i}^{r-1} \cap S$. The following argument shows that the sequence $x_{1}, \quad x_{2}, \ldots$ must be finite: each annulus $\overline{\text { Int } x_{r}}$ - Int x_{r+1} contains points of $\left(r n g g_{1} \cup r n g g_{2}\right) \cap S$. Without loss of generality in the construction of the X_{r}, we could have replaced the sets rng $g_{i} \cap S$ with 'thickened' sets obtained by covering the rng $g_{i} \cap S$ by small disks of area σ (from compactness, the thickened $r n g g_{1} \cap S$ can be assumed to remain disjoint from the thickened rrng $g_{2} \cap S$). But since each of the disjoint open annuli must therefore have area at least σ, the number of. X_{r} must be finite. and the sequence ends at some X_{t}. Since: X_{t+1} could be defined if X_{t} encloses points of both rng $g_{1} \cap S$ and $r n g g_{2} \cap S, X_{t}$ must enclose points of only one of $r n g g_{1} \cap S$, rng $g_{2} \cap S$. Let X_{t} be c_{1}. We repeat that we do not know which of rng $g_{1} \cap S$, rng $g_{2} \cap S$ is intersected by Int $X_{t}=\operatorname{Int} c_{1}$.

b) Now assuming d_{1} to be horizontal, we build a small sphere in the shape of a pill box consisting of vertical cylinder ω and end caps $\delta_{1}, \delta_{2}^{2}$, which are parallel to d_{1} (see fig 49). The cylinder ω intersects d_{1} only at c_{1} and extends equal distances above and below d_{1}. Thus Int c_{1} (considered as a subset of $\left.d_{1}\right)$ Iies in $\operatorname{Int}\left(\omega \cup \delta_{1} \cup \delta_{2}\right)$. Since c_{1} misses rng $g_{1} \cup$ rng g_{2} we build ω. so near. c_{1} that ω misses rng $g_{1} \cup$ rng g_{2}. Fig 50 shows $\dot{\omega} \cup \delta_{1} \cup \delta_{2}$ and part of d_{1}. We assume that c_{1} has been moved slightly if necessary so as to miss ($\left.\ell_{1} \cup \ell_{2} \cup \&_{3} v \ell_{4}\right) \cap d_{1}$. We also assume that ω misses every l_{j} although this may necessitate making ω smaller or even curving ω slightly to follow the curve of ℓ_{j}. The sphere $\omega \cup \delta_{1} \cup \delta_{2}$ is constructed as in fig 50 so that if some ℓ_{j} meets d_{1} then ℓ_{j} (misses ω and) pierces each Int δ_{i} just once. Let v_{i} be the simply connected neighbourhood of δ_{i} shown in fig 51. We construct v_{i} so that $\delta_{i}-l_{1}-l_{2}-l_{3}-l_{4}$ is a deformation retract of $v_{i}-\ell_{1}-\ell_{2}-\ell_{3}-\ell_{4}$, and so that ν_{i} misses $\mathrm{S} \supset$ Int c_{1} and any ℓ_{j} which misses Int c_{1}, i.e. any ℓ_{j} which misses $\omega \cup \delta_{1} \cup \delta_{2}$. We assume that $\omega \cup \delta_{1} \cup \delta_{2} \nu \nu_{1} \cup \nu_{2}$ has been constructed so that $\omega \cup \delta_{1} \cup \delta_{2} \cup \nu_{1} \cup v_{2}$ lies in N, and (since $\left.c_{1} \subset \operatorname{Int} d_{2}\right)$ so that $\overline{\operatorname{Int}\left(\omega \cup \delta_{1} \cup \delta_{2}\right)} \cup v_{1} \cup v_{2}$ misses $\Omega \cup d_{2}$.
c) Assume for the moment that Int c_{1}
contains points of $\mathrm{rng} \mathrm{g}_{1} \cap \mathrm{~S}$. Because rng g_{1} hits Ω, we can ignore iiii) in Lemma One as far as \bar{g}_{1} is concerned, i.e. the g_{1}^{k} which we are about to construct need not miss any ℓ_{j}. We assume that $\omega v \delta_{1} \cup \delta_{2} \cup v_{1} \cup \nu_{2}$ lies so near Int c_{1} that $\omega u \delta_{1} v \delta_{2} \cup v_{1} v v_{2}$.misses rng g_{2}. Since
ω also misses $\operatorname{rng} g_{1}$, rng g_{1} meets $\omega \cup \delta_{1} \cup \delta_{2}$ only in δ_{1} or δ_{2}. Apply an argument like that of 2.2 to wn $\delta_{1} v \delta_{2}$, i.e. use II (1.2), taking S in $\operatorname{II}(1.2)$ to be $\omega u \delta_{1} \cup \delta_{2}$ and N to be $v_{1} \cup v_{2}$, to obtain disks $W_{1}, \ldots W_{n}$ in Δ such that $g_{1}^{-1}\left[\overline{\left.\operatorname{lnt}\left(\omega \cup \delta_{1} \cup \delta_{2}\right)\right]}\right.$ lies in Int $W_{1} U \ldots U$ Int W_{n}. Since $E g_{1}\left[B d W_{r}\right]$ Iies near rng $g_{1} \cap\left(\omega \cup \delta_{1} \cup \delta_{2}\right)$ as we saw in 2.2, and since ω misses rng g_{i}, therefore $g_{1}\left[B d W_{r}\right]$ lies near $\delta_{1} U \delta_{2}$, i.e. in $\nu_{1} U \nu_{2}$. Evidently each $g_{1}\left[B d W_{r}\right]$ lies in one v_{i}. Since each $g_{1}\left[B W_{r}\right]$ 1ies in a simply connected subset of $\nu_{1} \cup \nu_{2}$, we can construct the mappings γ_{r} in $\operatorname{II}(1.3)$ and, following the argument of 2.2 , define a mapping $g_{1}^{1}: \Delta \rightarrow\left[\operatorname{rng} g_{1}-\operatorname{Int}\left(\omega v \delta_{1} \cup \delta_{2}\right)\right] \cup v_{1} \cup v_{2}$ such that $g_{1}^{1}=c_{1}$ on $B d \Delta$. Let $g_{2}=g_{2}^{1}$. Then it is true of both g_{i}^{1} that $g_{i}^{1}: \Delta \rightarrow \operatorname{rng} g_{i} u N$, $g_{i}^{1}=c_{1}$ on $B d \Delta$, and if rng g_{i} misses $\Omega \cup \ell_{j}$ then so does rng g_{i}^{1} (this last property is only true because rng g_{1} hits Ω and because g_{2}, which can miss some $\Omega \cup \ell_{j}$, is identical to g_{2}^{1}). Additionally Int c_{1} on d_{1} misses rng g_{2} because $g_{2}=g_{2}^{1}$ and misses rng g_{1} because Int c_{1} misses $\nu_{1} \cup \nu_{2}$. The g_{i}^{1} are Z-disjoint because rng $g_{2}^{1}=\operatorname{rng} g_{2}$, and $r n g g_{1}^{1}$ exceeds rng g_{1} only in $v_{1} U v_{2}$ which misses rng g_{2}^{1}. (By 'rng g_{1}^{1} exceeds rng g_{1} only in N ', we mean that rng $\left.g_{1} \cup N \supset \operatorname{rng} g_{1}^{1}.\right)$

Suppose that instead of $\operatorname{rng} g_{1} \cap S$, Int c_{1} encloses points of: $\operatorname{rng} g_{2} \cap \mathrm{~S}$. Let $\mathrm{g}_{1}=\cdot \mathrm{g}_{1}^{1}$, and construct $\omega v \delta_{1}{ }^{\prime} \delta_{2} \cup v_{1} u v_{2}$ as in b), this time so that $\omega v \delta_{1} \cup \delta_{2} \cup v_{1} \cup v_{2} \ldots$ misses rng g_{1} and ω misses rng g_{2}. Constructing g_{2}^{1} is harder than constructing g_{1}^{1} as we did in the last paragraph for we must ensure that rng g_{2}^{1} misses any set $\Omega \cup \ell_{j}$ that rng g_{2} misses. We must take careful account of the various ℓ_{j}. Some ℓ_{j} are not missed by $r n g g_{2}$ and can be ignored.

Some ℓ_{j} are missed by rng g_{2} but do not meet $\overline{\text { Int } c_{1}}$; we note that $\omega \cup \delta_{1} \cup \delta_{2} \cup v_{1} \cup v_{2}$ has been constructed so that any l_{j} which misses $\overline{\text { Int } c_{1}}$ also misses $\omega \cup \delta_{1} \cup \delta_{2} \cup v_{1} \cup v_{2}$. With this precaution, it is safe to ignore those ℓ_{j} which miss rng g_{2} and also miss $\overline{\text { Int } c_{1}}$. In the remainder of this paragraph we will assume that ℓ_{1} and ℓ_{2} are those ℓ_{j} which miss rng g_{2} and hit $\overline{\text { Int } c_{1}}$. We think that the procedure in the general case that some subset $\ell_{\mathbf{j}_{1}}$, $\ell_{j_{2}}, \ldots \ell_{j_{s}}$ of $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ misses rng g_{2} and hits $\overline{\text { Int } c_{1}}$ will be evident. We proceed to define g_{2}^{1} using $\operatorname{II}(1.2)$ and $\operatorname{II}(1.3)$ as before. The only difficulty occurs when we wish to shrink $g_{2 \mid B d} W_{r}$ to a point so as to define γ_{r}. It was easy to shrink, $\mathrm{g}_{1} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ to a point in one component, say ν_{1}, of $\nu_{1} v v_{2}$ in the course of defining g_{1}^{1}. But in this case we must shrink $\mathrm{g}_{2} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ to a point in $v_{1}-\ell_{1}-\ell_{2}$; otherwise rng γ_{r} and hence rng g_{2}^{1} will hit $\ell_{1} \cup \ell_{2}$. The reason that $g_{2} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ will shrink to a point on $v_{1}-\ell_{1}-\ell_{2}$ is that. $\mathrm{g}_{2}\left[\mathrm{~W}_{\mathrm{r}}\right]$ misses $\ell_{1} \cup \ell_{2}$ (because $r n g g_{2}$ does) and can be assumed to miss z in fig 47 without loss of generality. There is a retract R (though not a deformation retract) of $E^{3}-z-\ell_{1}-\ell_{2}$ onto $\delta_{1}-\ell_{1}-\ell_{2}$. Additionally it turns out that R restricted to $\nu_{1}-\ell_{1}-\ell_{2}$ is a deformation retract of $v_{1}-l_{1}-l_{2}$ onto $\delta_{1}-l_{1}-l_{2}$. This means that $\mathrm{Rg}_{2} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ is homotopic to $\mathrm{g}_{2} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ in $\nu_{1}-\ell_{1}-\ell_{2}$; and since $\operatorname{Rg}_{2 \mid B d} W_{r}$ shrinks to a point in $\operatorname{Rg}_{2}\left[W_{r}\right] \subset v_{1}-\ell_{1}-l_{2}$; therefore $\mathrm{g}_{2} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ shrinks to a point in $\nu_{1}-\ell_{1}-\ell_{2}$ as required. We delay the description of the retract R and the proof that. $g_{2}\left[B d W_{r}\right]$ can miss z until the end of this proof. Except for the use of R to make $g_{2 \mid B d} W_{r}$ shrink to a point, the construction of g_{2}^{1} is like that of g_{1}^{1},
and we have $g_{2}^{1}: \Delta \rightarrow\left[\operatorname{rng} g_{2}-\operatorname{Int}\left(\omega v \delta_{1} v \delta_{2}\right)\right] \cup\left(v_{1} v v_{2}-\ell_{1}-\ell_{2}\right)$. The g_{i}^{l} are Z-disjoint by an argument like that in the previous paragraph, and $g_{i}^{1}: \Delta \rightarrow \operatorname{rng} g_{i} \cup N, \quad g_{i}^{1}=c_{i}$ on $B d \Delta$ as before. We know that rng g_{2}^{1} misses Ω because rng g_{2}^{1} exceeds rng g_{2} only in $\nu_{1} \cup v_{2}$ which is remote from Ω. If ℓ_{j} misses rng g_{2}, then either ℓ_{j} meets Int c_{1}, in which case ℓ_{j} misses rng g_{2}^{1} because ℓ_{j} is one of ℓ_{1}, ℓ_{2} above; or else ℓ_{j} misses Int c_{1}, in which case ℓ_{j} misses rng g_{2}^{1} because ℓ_{j} is remote from $\nu_{1} v \nu_{2}$.

Note that the g_{i}^{1} satisfy the hypothesis of Lemma One. The important difference between g_{i} and g_{i}^{1} is that Int $c_{1} \cap$ rng $g_{i}^{1}=\emptyset$ whereas Int c_{1} hits one of rng g_{1}, rng g_{2}. Since rng $g_{i}^{1} \subset$ rng $g_{i} \cup v_{1} \cup v_{2}, \quad r n g g_{i}^{1} \cap S \subset \operatorname{rng} g_{i} \cap S \quad$ (because $v_{1} \cup v_{2}$ misses S). Evidently we can write $\left(r n g g_{1}^{1} \cup r n g g_{2}^{1}\right) \cap \mathrm{S} \subset\left(r n g g_{1} \cup\right.$ rng $\left.g_{2}\right) \cap \mathrm{S}$ where the inclusion is proper.
d) Since the g_{i}^{1} satisfy the hypothesis
of Lemma One, we look for a component z_{2} of \quad rng $g_{2}^{1} \cap S$ in Int $d_{1} \cup$ Int d_{2} and repeat $\left.a\right), b$, c) to obtain a circle $c_{2} \subset$ Int $d_{1} \cup$ Int d_{2} and Z-disjoint mappings $g_{i}^{2}: \Delta \rightarrow \operatorname{rng} g_{i}^{1} \cup N$ with $g_{i}^{2}=c_{i}$ on $B d \Delta$, and if rng g_{i} misses $\Omega \cup \ell_{j}$, then $r n g g_{i}^{1}$ and rng g_{i}^{2} also miss $\Omega \cup \ell_{j}$. Furthermore $\left(r n g g_{1}^{2} \cup \operatorname{rng} g_{2}^{2}\right) \cap \mathrm{S} \subset\left(\mathrm{rng} \mathrm{g}_{1}^{1} \cup \mathrm{rng} \mathrm{g}_{2}^{1}\right) \cap \mathrm{SC}\left(\mathrm{rng} \mathrm{g}_{1} \cup\right.$ rng $\left.g_{2}\right) \cap \mathrm{S}$ both inclusions being proper. We can continue in this way, defining mappings $g_{i}^{3}, g_{i}^{4}, \ldots$ and components $z_{3} \subset$ rng $g_{2}^{2} \cap\left(\right.$ Int $d_{1} \cup$ Int $\left.d_{2}\right)$, $z_{4} \subset \operatorname{rng} g_{2}^{3} \cap\left(\operatorname{Int} d_{1} \cup\right.$ Int $\left.d_{2}\right), \ldots$ so that $g_{i}^{r}: \Delta \rightarrow \operatorname{rng} g_{i}^{r-1} \cup N$, $g_{i}^{r}=c_{i}$ on $B d \Delta$, and if rng g_{i} misses $\Omega \cup \ell_{j}$, then so does rng g_{i}^{r}.

Furthermore $\left(r n g g_{1}^{r} \cup r n g g_{2}^{r}\right) \cap \mathrm{s} \subset\left(\mathrm{rng} \mathrm{g}_{1}^{\mathrm{r}-1} \cup \mathrm{rng} \mathrm{g}_{2}^{\mathrm{r}-1}\right) \cap \mathrm{S}$ where the inclusion is proper. An argument from compactness like that used in a) to show that the number of X_{r} was finite can be used to show that there must be a final pair of z-disjoint mappings g_{i}^{k}. Since g_{i}^{k+1} could be defined if z_{k+1}. existed in rng $g_{2}^{k} \cap s$, therefore rng g_{2}^{k} must miss S .

Since rng $\mathrm{g}_{\mathrm{i}}^{\mathrm{r}} \subset \mathrm{rng} \mathrm{g}_{\mathrm{i}}^{\mathrm{r}-1} \cup \mathrm{~N}$, evidently
$g_{i}^{k}: \Delta \rightarrow \operatorname{rng} g_{i}^{k-1} \cup N \subset \operatorname{rng} g_{i}^{k-2} \cup N \subset \ldots \subset \operatorname{rng} g_{i} \cup N ;$ and $g_{i}^{k}=c_{i}$ on $B d \Delta$, while if $\Omega \cup \ell_{j}$ misses some rng g_{i}, then $\Omega \cup \ell_{j}$ misses rng g_{i}^{k}. Since $r n g g_{2}^{k}$ misses S, the argument reduces to either Case one or Case two. In the course of the argument of Case one or two, $\mathrm{g}_{2}^{\mathrm{k}}$, whose range already misses S , will be set equal to \bar{g}_{2}. This means that $\overline{\mathrm{g}}_{2}$ has the properties of $\mathrm{g}_{2}^{\mathrm{k}}$; thus i), ii), iii) of Lemma One are true for $\overline{\mathrm{g}}_{2}$. The argument of either Case one or of Case two will now construct a new $\bar{g}_{1}: \Delta \rightarrow \operatorname{rng} \mathrm{g}_{1}^{\mathrm{k}} \cup \mathrm{N} \subset$ rng $\mathrm{g}_{1} \cup \mathrm{~N}$ with $\overline{\mathrm{g}}_{1}=c_{1}$ on $\operatorname{Bd} \Delta$, so that $\overline{\mathrm{g}}_{1}, \overline{\mathrm{~g}}_{2}$ are Z -disjoint. This proves i), ii) of Lemma One for \bar{g}_{1}, while iii) is vacuously true by the Case three assumption.

Case four: Exactly one rng g_{i} meets S but misses Ω. The reader will find that the method of case three works here almost word or word if it is assumed that the rng g_{i} which hits S is rng g_{2}. When we arrive at the point in Case three where g_{i}^{k} is defined, we can let: g_{i}^{k} be \bar{g}_{i} immediately (or go to Case one). Actually the retract R works on S in Case two just as well as on $\omega \cup \delta_{1} \cup \delta_{2}$ in Case three. Thus a quick proof is possible by adapting Case two.

Case five: Both rng g_{i} hit S; both rng g_{i} miss Ω.

Proceed as in Case three to the point where the $\mathrm{g}_{\mathbf{i}}^{\mathrm{k}}$ are defined, allowing for the fact that iii) in Lemma One applies to both \bar{g}_{i} rather than only to $\overline{\mathrm{g}}_{2}$ as in Case three (thus one may have to use the retract R to construct both g_{i}^{r}, whereas in Case three, R was used only to construct g_{2}^{r}). When the g_{i}^{k} are defined, the argument reduces to Case four or Case one.

Case six: Both rng g_{i} hit S; both rng g_{i} hit Ω. This case is not used in the applications of Lemma One, which always require every set $\Omega \cup \ell_{j}$ to miss one rng g_{i}. It is not hard to prove Case six using the ideas of the other cases.
(2.4). The retract R.

This retract was used in 2.3 Case three c). We will show how to define R: $E^{3}-z-\ell_{1}-\ell_{2} \rightarrow \delta_{1}-\ell_{1}-\ell_{2}$; the definition of R when δ_{1} is replaced by δ_{2} is similar. Strictly speaking, the proof of Lemma One requires a retraction onto $d_{1}-\ell_{j_{1}}-\ldots-\ell_{j_{s}}$, where $\ell_{j_{1}}, \ldots, \ell_{j_{s}}$ are some subset of $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$; however we continue the assumption in 2.3 Case three c) that rng g_{2} misses $\ell_{1} \cup \ell_{2}$. Assume that the unique boundary component of β^{1} which is a planar circle lies on the Y - Z plane and that the centre of this circle is the origin. The idea is that if we untwist β^{1} by means of y, all the circles $y\left[\ell_{j}^{-}\right]$will be nice circles on the $Y-Z$ plane with centre the origin. We assume further that δ_{1} lies on the left-hand $X-Y$ half-plane. We describe R in terms of several mappings which are applied in sequence to $E^{3}-z-\ell_{1}-\ell_{2}$. Each mapping will leave

Facing page 71

$\delta_{1}-\ell_{1}-\ell_{2}^{\prime}$ fixed, and the last will be onto $\delta_{1}-\ell_{1}-\ell_{2}$.
First: untwist β^{1} by applying the mapping y|E ${ }^{3}-z-\ell_{1}-\ell_{2}$ (y becomes a mapping by restricting it so that the domain misses the 'bad' set z). Each $y\left[\ell_{j}\right]$ is a plane circle with centre the origin. Second: using the symmetry of $E^{3}-y\left(\ell_{1} \cup \ell_{2}\right)$ across the $x-z$ plane, reflect the right-hand half-space minus $y\left(\ell_{1} \cup \ell_{2}\right)$, onto the left-hand half-space minus $y\left(\ell_{1} \cup \ell_{2}\right)$. This reflection carries $E^{3}-z-y\left(\ell_{1} \cup \ell_{2}\right)$ into those points in E^{3} with non-positive coordinates which do not lie on $\ell_{1} \cup \ell_{2}$. Third: retract the left-hand half-space minus $y\left(\ell_{1} \cup \ell_{2}\right)$ (which is the same as the left-hand half-space minus $\ell_{1} \cup \ell_{2}$) onto the left-hand $X-Y$ half-plane minus $\ell_{1} \cup \ell_{2}$. This is easy because the remaining parts of $\ell_{1}, . \ell_{2}$ are nice semicircles with centre the origin; one could imagine the $X-Z$ plane hinged along the X axis. Using this hinge, topple the upper half of the $X-Z$ plane onto the left-hand X - Y plane; simultaneously bring the lower half of the X - Z plane up to meet the left-hand $X-Y$ plane. These movements define a (deformation) retract which crushes the left-hand half space minus $\ell_{1} \cup \ell_{2}$ onto the left-hand $X-Y$ half-plane minus $\ell_{1} \cup \ell_{2}$. Finally retract the left-hand. $X-Y$ half-plane minus $\ell_{1} \cup \ell_{2}$ onto $\delta_{1}-\ell_{1}-\ell_{2}$. The four successive mappings define R. Note that R acts on ν_{1} as a deformation retract (this was used in $\$ 2.3$ Case three c)) •

Finally we will show that $g_{2}\left[W_{r}\right]$ in 2.3 Case three c) can be assumed to miss the curved cylinder z. Since $\bar{g}_{2}[\Delta]$ misses Ω, By the case three assumption, we can construct a mapping, $\hat{\mathrm{g}}_{2}: \Delta \rightarrow \mathrm{E}^{3}$ whose range misses the curved cylinder \bar{z} in fig 5la and which agrees
with g_{2} on every point of Δ which maps under g_{2} outside of a small neighbourhood of \bar{z}. In fig 51a, \bar{z} is constructed so, as to contain $\Omega \in z$ and to miss $\ell_{1} \cup \ell_{2}$. Thus rng \hat{g}_{2} can be assumed to miss $\ell_{1} \cup \ell_{2}$. The sets v_{1}, ν_{2} (see 2.3 Case Three b)) miss Ω and could have been constructed so as to miss all of \bar{z} : Hence we assume that $\hat{g}_{2}=g_{2}$ on $B d W_{r}$ since $g_{2}\left[B d W_{r}\right] \subset v_{]}$ by the definition of W_{r}. We do not intend that \hat{g}_{2} should replace g_{2} since g_{1}, \hat{g}_{2} may not be Z-disjoint; but if $g_{2}\left[W_{r}\right]$ hits z, we can apply the retract R not to $g_{2} \mid W_{r}$ but to $\hat{g}_{2} \mid W_{r}$ and use the fact that $\mathrm{g}_{2} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ shrinks to a point in $\nu_{1}-\ell_{1}-\ell_{2}$ iff $\hat{\mathrm{g}}_{2} \mid \mathrm{Bd} \mathrm{W}_{\mathrm{r}}$ does. Essentially the same argument applies to the construction of the other mappings in the sequence $g_{2}, g_{2}^{(1)}, g_{2}^{(2)}, \ldots$ D.
3. Proof of Lemma Two.

We will modify the argument of $\S 2$ so as to serve as a proof of Lemma Two. We assume familiarity with $\S 2$ in what follows. Modifying the argument of $\$ 2$ to fit fig 45 presents a small and a large difficulty. The small problem is that we cannot build pillboxes according to the nice picture in fig 49 , where c_{1} is planar and the δ_{1} can be considered to be horizontal while ω is vertical. It will be appreciated that the problem is more apparent than real; we have room to construct $\Sigma \subset$ Int A with some obvious smoothness conditions so that if c is any circle on Σ and Int c is defined, then a sphere $\omega \cup \delta_{1} \cup \delta_{2}$ can be constructed together with neighbourhoods $\nu_{1}, \quad \nu_{2}$ so that $\omega \cup \delta_{1} \cup \delta_{2} \cup v_{1} \cup v_{2}$ behaves like the corresponding set in $\$ 2$, i.e. $\omega \cap \Sigma=c, \delta_{1}, \delta_{2}$ are disks in $E^{3}-\Sigma$ which meet ω only at its

two boundary components, while the ν_{i} are simply connected neighbourhoods of the δ_{i} which miss Σ. Furthermore, if a_{j} hits $\overline{\text { Int } c, ~}$ then a_{j}. pierces each Int δ_{i} just once and misses w; while if a_{j} misses $\overline{\text { Int } c}$, then a_{j} misses $\overline{\operatorname{Int}\left(\omega \cup \delta_{1} v \delta_{2}\right)} \cup v_{1} \cup v_{2}$. We require that when $\operatorname{Int} c$ and hence δ_{i} hits just one a_{j}, then $\nu_{i}-a_{j}$ is homeomorphic to the structure shown in fig 52. This requirement is easy to manage; for Σ can be made to meet the a_{j} near β^{1}, where (according to the definition on Ch II) the a_{j} are straight and paralle1 and perpendicular to β^{1} (in fact it is easy to make $a_{j} \cap N$ a straight arc perpendicular to Σ).

The hard problem is that in Lemma Two we cannot use the retract R, which was crucial to the proof of iii) of Lemma One. The reason is that we permit the arcs $\left(a_{1} \cup u_{12} \cup a_{2}\right) \cap \overline{\text { Int } \Sigma}$, etc. to be knotted, and in general deviate from the specialized geometry in fig 19. Recall that R was used to show that certain mappings $g_{i} \mid B d W_{r}$ will shrink to a point in $v_{i}-\ell_{1}-\ell_{2}-\ell_{3}-\ell_{4}$. Instead of R, we use the following easy but very weak result.
(3.1). Let v_{i} be the usual neighbourhood of δ_{i}. Let v_{i} intersect only a_{1} as shown in fig 52. Let $f: B d \Delta \rightarrow v_{i}-a_{1}$. Let $F: \Delta \rightarrow E^{3}$ so that $f=F$ on $B d \Delta$ and $r n g$ misses a simple closed curve L such that $L \supset a_{1}$. The curve L may be knotted. Then f shrinks to a point in $\nu_{i}-a_{1}$. A similar result is true if a_{2} or a_{3} replaces a_{1}.

Proof. Let μ be the small circle shown in fig 52. Then μ can be considered to represent the sole generator y of $\nu_{i}-a_{1}$,
and also (by consulting, say, the definition in [6. Ch VI]) a generator of the Wirtinger presentation of $E^{3}-L$ (we specify the particular presentation only to be sure that μ does not represent a trivial generator). If $i: \pi_{1}\left(\nu_{1}-a_{1}\right) \rightarrow \pi_{1}\left(E^{3}-L\right)$ is the inclusion homomorphism, then, with a change of basepoint, $f \in y^{m}$ for some integer m, and $i(y)$ is an element of $\pi_{1}\left(E^{3}-L\right)$. Then $f \in i\left(y^{m}\right)=(i(y))^{m}$, which is the identity of $\pi_{1}\left(E^{3}-L\right)$ because f shrinks to a point in E^{3} - L . Since $i(y)$ is a non-trivial element (in fact a Wirtinger generator) of $\pi_{1}\left(E^{3}-L\right)$, either $m=0$ or $i(y)$ is an element of finite order. It is known ([7, (31.9)]) that the fundamental group of the complement of a knot has no element of finite order; therefore $m-0$, and f represents the identity y^{0} in $\pi_{1}\left(\nu_{i}-a_{1}\right)$ 。

To prove Lemma Two, we will apply arguments like those of $\S 2$
to a disk D rather than the sphere. S. We will first define some simple closed curves to play the part of L in (3.1): Let u_{12}, u_{13} be the unique simple closed curves which are subsets of $\zeta_{2} \cup a_{1} \cup u_{12} \cup a_{2}$, $\zeta_{2} \cup a_{1} \cup u_{13} \cup a_{3}$, respectively. Let \dot{v}_{12}, v_{13} be identical to u_{12}, u_{13} respectively except that u_{12} is replaced by ${ }^{v}{ }_{12}$ and u_{13} by ${ }_{13}$. From the hypothesis of Lemma Two, it is clear that u_{12} and u_{13} miss rng g_{1} while U_{12}, U_{13} miss rng g_{2}. Now if D is a disk which is a subset of \sum and $B d D$ misses rng $g_{1} \cup$ rng $g_{2} \cup a_{1} \cup a_{2} \cup a_{3}$, then if rng $g_{1} \cup$ rng g_{2} meets $冫$, we can define acircle c_{1} just as in $\S 2$ so that $c_{1} \subset$ Int D and c_{1} encloses points of just one of rngı $g_{1} \cap \Sigma$, rng $g_{2} \cap \Sigma$. Then a pillbox $\omega \cup \delta_{1} \cup \delta_{2}$ can be constructed as usual, and finally a pair of mappings $g_{i}^{1}: \Delta \rightarrow r n g g_{i} \cup \nu_{1} \cup \nu_{2}$, where the v_{i} are the usual neighbourhoods of the δ_{i}, and the g_{i}^{1} have properties like the g_{i}^{1} in §2, Case three. If Int c_{1} and hence $\omega v \delta_{1} \cup \delta_{2}$ meets just one of a_{1}, a_{2},
$a_{\hat{3}}$ say a_{1}, then we use (3.3) instead of the retract, R to shrink the various mappings $g_{i} \mid B d W_{r}$ to a point in $v_{1} \cup v_{2}$ as was done in 52 , Case three. Thus if rng g_{i} hits Int c_{1}, rng g_{i}^{1} misses a_{1} because $\operatorname{Int} c_{1}$ meets only one of a_{1}, a_{2}, a_{3}; while if rng g_{i} misses Int c_{1}, rng g_{i}^{1} misses a_{1} because $g_{i}^{1}=g_{i}$. And by the usual arguments, a_{2} and a_{3}, which are remote from $\omega \cup \delta_{1} \cup \delta_{2}$, continue to miss both rng g_{i}^{1}. In applying (3.1), we 1et L be u_{12} or v_{12} (assuming that Int c_{1} hits a_{1}) depending as rng g_{1} or $\mathrm{rng} \mathrm{g}_{2}$ hits Int c_{1}. If Int c_{1} hits a_{2} only, let L be u_{12} or v_{12} again; if Int c_{1} hits a_{3} only, let L be u_{13} or v_{13}. Unfortunately, as the reader doubtless sees, if c_{1} encloses more than one of $a_{1} \cap \Sigma, a_{2} \cap \Sigma, a_{3} \cap \Sigma$, then the present argument fails (because the argument with (3.1) is weaker than the original argument in $\S 2$ which used the retract R), and g_{i}^{1} cannot be constructed so that rng g_{i}^{1} misses all of $: a_{1}, a_{2}, a_{3}$. The trick of proving Lemma Two is to apply the argument of $\S 2$ so that none of Int c_{1}, Int c_{2}, \ldots ever hits more than one of a_{1}, a_{2}, a_{3}. By extending the above ideas to further pairs $g_{i}^{2}, g_{i}^{3}, \ldots$ and using methods from §2, we can prove
(3.2). In the context of Lemma Two, let D be a disk such that $D \subset \Sigma$, and let. $B d D$ miss rng $g_{1} \cup$ rng $g_{2} v a_{1} \cup a_{2} v a_{3}$: Then there exist circles $c_{1}, \quad c_{2}, \cdots, c_{m}$ in Int D and Z-disjoint mappings $g_{i}^{1}, g_{i}^{2}, \cdots g_{i}^{m}$ such that $g_{i}^{r} ; \Delta \rightarrow r n g g_{i}^{r-1} \cup(n-\Sigma), g_{i}^{1}=g_{i}^{2}=\ldots=g_{i}^{m}=c_{i}$ on BdA, c_{r} encloses (relative to D) points of just one of $r n g g_{i}^{r-1} \cap \Sigma$, rng $g_{2}^{r-1} \cap \Sigma$, and \quad rng g_{i}^{m} misses D. If, additionally, each c_{r} can be constructed so that c_{r} encloses just one of $a_{1} \cap \Sigma, a_{2} \cap \Sigma$,
$a_{3} \cap \Sigma$, then $r n g g_{i}^{m}$ can be constructed so as to miss $a_{1} \cup a_{2} \cup a_{3}$.

Proof. (3.2) is proved in the same way as Lemma One. We can ignore Cases two and three in the proof of Lemma 0rie because the fact that $B d D$ misses $r n g g_{1} \cup$ rng g_{2} evidently takes the place of the condition in Lemma One that Ω misses rng $g_{1} \cup$ rng g_{2}. Clearly we cannot have rng g_{i}^{m} miss Int Σ in this version of the argument because D is a proper subset of Σ. The only part of the proof which does not have an exact counterpart in $\S 2$ is the statement that rng $\mathrm{g}_{\mathrm{i}}^{\mathrm{r}} \subset \mathrm{rng} \mathrm{g}_{\mathrm{i}}^{\mathrm{r}-1} \cup(n-\Sigma)$. The reason that $\mathrm{rng} \mathrm{g}^{\mathrm{r}}$ exceeds rng $\mathrm{g}_{\mathrm{i}}^{\mathrm{r}-1}$ only in $n-\Sigma$ is, as usual, that $\nu_{1} \cup \nu_{2}$ is remote from Σ. (3.3). Corollary. If, additionally to the hypothesis of (3.2), D misses rng g_{1}, then rng g_{1}^{m} misses $a_{1} \cup a_{2} \cup a_{3}$ regardless of the number of a_{1}, a_{2}, a_{3} which are hit by the Int c_{r}. Similarly, if rng g_{2} misses D, then $r n g g_{2}^{m}$ misses $a_{1} \cup a_{2} \cup a_{3}$.

Proof. According to the argument of $\S 2$, if rng g_{i} misses D, then we let $g_{i}=g_{i}^{m}$ immediately.

We will now give the proof of Lemma Two. The following question does not look like a simplification at first glance: Do there exist Z-disjoint mappings $f_{i}: \Delta \rightarrow\left(\operatorname{rng} g_{i} \cup n\right)-a_{1}-a_{2}-a_{3}$ with $f_{i}=c_{i}$ on BdS, and a decomposition of Σ into disks D_{1}, D_{2} so that $D_{1} \cup D_{2}=\Sigma$ and $D_{1} \cap D_{2}=B d D_{1}=B d D_{2}$, and so that Int D_{2} misses one rng f_{i}, say rng f_{1}, and hits a_{2} and a_{3}; while Int D_{1} hits a_{1} ?

Case one: the mappings f_{i} exist as described above. Look at the decomposition $\Sigma=\mathrm{D}_{1} \cup \mathrm{D}_{2}$. Apply (3.2) to D_{1} to convert the f_{i} to Z-disjoint mappings $\bar{f}_{i}: \Delta \rightarrow \operatorname{rng} f_{i} \cup(n-\Sigma)$ with $\bar{f}_{i}=c_{i}$ on Bd \triangle and such that rng \bar{f}_{i} misses a_{1} and D_{1}. In (3.2), the condition that Int c_{r} hit at most one of a_{1}, a_{2}, a_{3} is satisfied because a_{2}, a_{3}, miss $D_{1} \supsetneq$ Int c_{r}. Furthermore rng \bar{f}_{i} misses a_{2} and a_{3} by the usual argument. Now apply (3.3) to D_{2}, to replace the \bar{f}_{i} with Z-dis.joint mappings $g_{i}^{\prime}: \Delta \rightarrow \operatorname{rng} \bar{f}_{i} \cup(n-\Sigma)$ with $g_{i}^{\prime} \mid \operatorname{Bd} \Delta=c_{i}$. We know that rng \bar{f}_{1} misses D_{2} since rng f_{1} does, and \bar{f}_{i} evidently satisfies the hypothesis of (3.2) and (3.3). By (3.3), rng gín misses $a_{1} \cup a_{2} \cup a_{3}$, although rng g_{2}^{\prime} probably does not. Since rng g_{i}^{\prime} now misses all of Σ, rng g_{i}^{\prime} misses Int Σ except perhaps in n.

Case two: no mappings f_{i} exist as described. Let $d \subset \Sigma$ be a disk pierced by a_{1} which is small enough to miss both rng g_{i} and $a_{2} \cup a_{3}$. Let $D=\overline{\Sigma-d}$. Using (3.2), construct a sequence of circles and mappings $c_{1}, g_{i}^{1}, c_{2}, g_{i}^{2}, c_{3}, g_{i}^{3}, \ldots$ as described in (3.2), ending in the construction of Z-disjoint mappings $g_{i}^{m}=g_{i}^{\prime}: \Delta \rightarrow \operatorname{rng} g_{i} \cup(n-\Sigma)$ with $g_{i}^{\prime}=c_{i}$ on Bd Δ and f_{i} such that rng g_{i}^{\prime} misses D and $a_{2} \cup a_{3}$. We know that every c_{r} encloses at most one of $a_{1} \cap \Sigma, \quad a_{2} \cap \Sigma, \quad a_{3} \cap \Sigma$, as required by (3.2): for otherwise $\mathrm{g}_{\mathrm{i}}^{\mathrm{r}-1}$, $\overline{\text { Int } \mathrm{c}_{\mathrm{r}}}, \quad \Sigma$ - Int c_{r} satisfy the definition of $\mathrm{f}_{\mathrm{i}}, \quad \mathrm{D}_{1}, \quad \mathrm{D}_{2}$ given above, which means that (since $\mathrm{g}^{\mathrm{r}-1}$ exists) c_{r} contradicts the Case two assumption. Evidently rng g_{i}^{e} misses not only $D \cup a_{2} u a_{3}$, but also $d \cup a_{1}$, so that rng g_{i}^{\prime} misses $a_{1} \cup a_{2} \cup a_{3}$ and all of Σ, etc. \square.

CHAPTER FOUR. GENERALIZATION OF A THEOREM OF BING:
MAIN PROOF.

1. We will use Lemma One, Lemma Two and I§5 to prove II(2.2). The organization of the proof is much like that of [12 §7] and we depend on the reader's familiarity with [12] for orientation (although a detailed reading is required only of the section called 'Part II of Proof' in [12 §7]). As in [12 §7], we first give a (somewhat altered) definition of Property Q, then induce Property Q through the steps of the dogbone construction. This argument occupies most of the length of this chapter. As in [12 §7], it follows immediately (and for more or less the same reasons) that some big element of the decomposition hits both singular disks $f_{i}[\Delta]$ in II (2.2).

Still following [12], we will not present a formal induction, but will show that if. A has Property Q, then so does $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}=a_{1}$ (Bing proves that one A_{j} has Property Q; our version of Property Q is only useful when applied to $a_{1}, a_{2}, a_{3}, \ldots$, of Ex 2 in $\S 2$). The proof of this is divided into Part I and Part II as in [12 §7]. In Part I, we look at the set $\zeta_{1} \cup b_{1} \cup b_{2} \cup b_{3} \cup b_{4} \cup \zeta_{2}$ (see fig 43) which serves a purpose like that of the set $\bigcup_{j} p q_{j} r_{j} s$ in [12, fig 2]. We show that the f_{i} in II (2.2) can be replaced by mappings g_{i} such that each rng g_{i}^{\prime} misses one b_{j} and both " ζ_{i}. We call the set $\zeta_{1} \cup b_{1} \cup b_{2} \cup b_{3} \cup b_{4} \cup \zeta_{2}$ the cradle of A, and later represent it as in fig 53, which preserves the embedding of $\zeta_{1} \cup b_{1} \cup b_{2} \cup b_{3} \cup b_{4} \cup \zeta_{2}$ in A. In [12], $\bigcup_{j} \mathrm{pq}_{j} \mathrm{r}_{j} \mathrm{~s}$ behaves like the cradle of A in that each $\mathrm{Pq}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} \mathrm{s}$ misses one of the disks D_{i} in II(2.1). In Part II of our proof we follow [12] very closely and require a detailed reading
of the corresponding part of [12, Th 10].. There are a few alterations; these are required by the fact that some homotopies are replaced by isotopies.
2. Properties P and Q .

We will define a Property P on double ended lassos $\ell \cup \cup m$ with respect to closed sets Y_{1}, Y_{2}. The lasso $\ell \cup a \cup m$ consists of circles l and m connected by an arc a. In Ch II we often specified constructions only up to homotopy (e.g. the intersecting principal paths of Ch II). The consequence was that we ignored singularities in these constructions. In this chapter, this practice is emphatically not allowed; in particular, in the lasso $\ell \cup$ a $\cup \mathrm{m}$, the circles ℓ and m are disjoint simple closed curves and a meets $\ell v m$ only at its end points. One of the things that make the present chapter harder than Ch II is that geometric constructions have to be moved isotopically, whereas in Ch II homotopy was good enough.

Properties P and Q are defined in terms of their negatives, which we write Property $\because P$ and Property $\because Q$. A double ended lasso $\ell \cup$ a $\cup m$ has Property $\sim P$ with respect to closed sets Y_{1}, Y_{2}. iff one of the following two conditions obtains.

$$
\begin{aligned}
\sim P(a): & \ell \cup a \cup m \text { misses } Y_{1} \text { or } Y_{2} \text { (or both), } \\
\sim P(b) ; & \ell \cup a \cup m \text { meets both } Y_{1} \text { and } Y_{2} . \text { The set } \\
& a \cup m \text { misses } Y_{1} \cup Y_{2} ; \ell \text { contains a point } \\
& y \notin \ell \cap a \text { such that of the two distinct arcs } \\
& \text { in } \ell \text { with end points } y \text { and } \ell \cap a, \text { one. } \\
& \text { misses } Y_{1} \text { while the other misses } Y_{2} .
\end{aligned}
$$

We intend that Property $\sim P(b)$ should be symmetric, i.e. a $\cup \ell$ may miss $Y_{1} \cup Y_{2}$ and the point y may be in m - a Regardless of whether $\ell \cup a \cup m$ has Property $\sim P(a)$ or Property $\sim P(b)$, each of ℓ and m has Property $\sim P$ as defined in $I \$ 5$ for circles with base point (the base points here are taken to be $\ell \cap a, m \cap a)$. This statement, which is important, is easily checked. Evidently $\ell \cup a \cup m$ may have both Property $\sim P(a)$ and Property $\sim P(b)$.

Property $\sim P$ is the negative of Bing's Property P in [12]. It is easy to see that our Property $\sim P$ implies the negative of Bing's property, i.e. our Property $\sim P$ implies that if $x_{1} \in \ell$ and $x_{2} \in m$ and $\ell \cup a \cup m$ has Property $\sim P$ (by our definition), then there is an arc in ℓU a $\cup m$ with end points x_{1}, x_{2} which misses one of Y_{1}, Y_{2}. We will neither use nor prove the complete equivalence of the two definitions here, although a proof will be found to be straightforward.

Property Q_{Z}, c_{1}, c_{2} is defined on dogbones. If a dogbone X has Property ${ }^{n} Q_{\mathrm{Z}}, c_{1}, c_{2}$, this means roughly that the centre of X has Property $\sim P$ with respect to the ranges of certain mappings f_{1}, f_{2}. To be precise, let $Z \supset X$ and for $i=1,2, c_{i}: B d \Delta \rightarrow E^{3}-Z$. Then X has Property $\sim \mathrm{Q}_{\mathrm{Z}}, \mathrm{c}_{1}, \mathrm{c}_{2}$ iff there exist Z -disjoint mappings $\mathrm{g}_{1}, \mathrm{~g}_{2}$ such that $g_{i}: \Delta \rightarrow E^{3}, g_{i}=c_{i}$ on Bd Δ, and the centre of X has Property $\sim P$ with respect to $r n g g_{1}$, $r n g g_{2}$. We also say ' X has Property ${ }^{\sim} Q_{Z}, c_{1}, c_{2}$ with respect to g_{1}, g_{2}, with the obvious meaning. We define X to have Property Q_{Z}, c_{1}, c_{2} iff X fails to have Property ${ }^{\sim} Q_{Z,} c_{1}, c_{2}$ (i.e. with respect to every qualified pair of mappings g_{i}) . Note that a statement like ${ }^{\prime} X$. has Property Q_{Z}, c_{1}, c_{2}
with respect to $g_{1}, g_{2}{ }^{\prime}:$ means very little.

Example 1). Suppose $Z=X=A$ and C_{1}, C_{2} are the two eircles shown in fig 28. Then A has Property Q_{Z}, c_{1}, c_{2}. For if $c_{1}\left(c_{2}\right)$ shrinks to a point, it must hit the upper (lower) eye ℓ (m) of A Thus if f_{i} is an extension of c_{i} to all of Δ, then rng f_{1} hits ℓ and rng f_{2} hits m. This 'kills' Property $\sim p$ for $k=\ell u$ a $u m$ with respect to $r n g f_{1}$, rng f_{2}, since Property $\sim P$ would require either that one $f_{i}[\Delta]$ miss both ℓ and m or that one of l or m miss both $f_{i}[\Delta]$.

Example 2). Let $Z=A_{1} ; c_{1}, c_{2}$ as in Ex. 1). Then A_{1} has Property $\because_{Z} Q_{Z}, c_{2}$; for the c_{i} can shrink to a point so as to miss. Z and A_{1}. We emphasize that ' X has Property $Q_{Z}, c_{1}, c_{2}{ }^{\prime}$ does not imply that $c_{1}, \quad c_{2}$ link the eyes of X.

Evidently if X has Property $\mathrm{Q}_{\mathrm{Z}}, \mathrm{c}_{1}, \mathrm{c}_{2}$ and $\mathrm{f}_{1}, \mathrm{f}_{2}$ are any Z-disjoint mappings of Δ into E^{3} with $f_{i}=c_{i}$ on $B d \Delta$, then the centre of X fails to have Property $\sim P(a)$ with respect to $f_{1}[\Delta], \quad f_{2}[\Delta]$, and consequently both $f_{1}[\Delta]$ and $f_{2}[\Delta]$ meet (the centre of). X . This suggests that the obvious way to attack the proof of $\operatorname{II}(2.2)$ is to let $Z=A$ and let c_{1}, c_{2} be the c_{i} in $\operatorname{II}(2.2)$, and we will eventually do this. But it turns out that in this case there is no sequence $A \supset A_{j} \supset A_{j k} \supset \ldots$ such that each of A, A_{j}, $A_{j k}, \ldots$ has Property Q_{A}, c_{1}, c_{2}, with the c_{i} defined as in II (2.2); in fact every dogbone $X \neq A$ has Property $\sim Q_{A, C_{1}}, c_{2}$. We overcome this difficulty with the next definition.

A set $\left\{X_{1}, \ldots X_{m}\right\}$ of doghones has Property \sim_{Q}, c_{1}, c_{2} iff each $X_{r}, \quad r=1,2, \ldots m$ has Property ${ }^{\sim} Q_{Z}, c_{1}, c_{2}$ with respect to the same pair of mappings f_{1}, f_{2}, and the same triple Z, c_{1}, c_{2}. If $\left\{X_{1}, \ldots X_{m}\right\}$ fails to have Property $\mathcal{Q}_{Z}, c_{1}, c_{2}$, then we will say that $\left\{X_{1}, \ldots X_{m}\right\}$ has Property Q_{Z}, c_{1}, c_{2}. If the set of components of some a_{s} has Property $Q_{Z, c_{1}}, c_{2}$ and if $g_{i}: \Delta \rightarrow E^{3}$ is an extension of $c_{i}, i=1,2$, and the g_{i} are Z-disjoint; then some component X of a_{s} fails to have Property $\sim Q_{Z, c_{1}} ; c_{2}$ with respect to the g_{i}. As we saw earlier, this means that both $\mathrm{g}_{\mathrm{i}}[\Delta]$ meet X . We will say that a_{s} has Property $Q_{Z, c_{1}}, c_{2}$ iff the set of components of a_{s} has Property $Q_{Z, c_{1}}, c_{2}$. Eventually we will show that each of $a_{1}, a_{2}, a_{3}, \ldots$ has Property $\mathrm{Q}_{\mathrm{Z}, \mathrm{c}_{1}}, c_{2}$.
3. We now give our version of [12, Th 10].
(3.1). Let $Z \supset A$ and c_{1}, c_{2} by any circles whatever in $E^{3}-Z$. In particular, the c_{i} do not necessarily link the eyes of A. Then if $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ has Property $\sim Q_{Z}, C_{1}, c_{2}$, so has A.

We remark that in [12], the proof of Th 10 does not use the fact that $B d D_{1}$, Bd. D_{2} (in fig 1 of [12]) link the eyes of A, even though a short proof of [12, Th 10] can be constructed along the lines of the second paragraph of [12 \%7]. The reason is that in later applications of the argument of the proof of [12, Th 10] (which is a disguised induction step) to, say, A_{1} and $A_{11}, A_{12}, A_{13}, A_{14}$, the $B d D_{i}$ do not in fact link the eyes of A_{1}. For a similar reason we state (3.1) for very general circles c_{i} rather than the c_{i} in fig 28. We assume that
Z, c_{1}, c_{2} have been chosen once and for all before the proof of (3.1) begins, and will now write Property $\sim Q$ for Property \sim_{Z}, c_{1}, c_{2}. We will not refer to Bing's Property Q again in this paper. We will continue the convention in Ch III that $i=1,2$, and $\mathrm{j}=1,2,3,4$.

Proof of (3.1): Part I

In this part of the proof we assume that $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ has Property $\sim Q$ with respect to mappings g_{1}, g_{2} and show that the g_{i} can be replaced by Z-disjoint mappings $g_{i}^{\prime}: \Delta \rightarrow E^{3}$ with $g_{i}^{\prime}=c_{i}$ on $B d \Delta$ and with the property that in the cradle $\zeta_{1} \cup b_{1} \cup b_{3} \cup b_{4} \cup \zeta_{2}$ (see fig 43), each b_{j} misses one rng g_{i}^{\prime} while $\zeta_{1} \cup \zeta_{2}$ misses both. By the definition of Property $\sim Q$, each k_{j} has Property $\sim P$ with respect to the $\operatorname{rng} g_{i}$. Look at $\beta^{1} \cup \beta_{1}$, and recall the definition of bridging in $I \S 5$. The construction of the g_{i}^{\prime} divides into three cases depending on the way that the sets $\operatorname{rng} g_{i} \cap\left(\beta^{1} \cup \beta_{1}\right)$ bridge β_{1} and β^{1}. If rng $g_{1} \cap \beta^{1}$ or rng $g_{2} \cap \beta^{1}$ bridges β^{1}, but not both, then we say that β^{1} is bridged once by $\operatorname{rng} g_{1}$ or rng g_{2} respectively. If both sets rng $g_{1} \cap \beta^{1}$, rng $g_{2} \cap \beta^{1}$, bridge β^{1}, then β^{1} is said to be bridged twice. The bridging of β_{1} is defined anologously. The three cases (not exclusive) are

Case one. Each k_{j} has Property $\sim P(a)$; neither of β^{1}, β_{1} is bridged twice.

Case two. Some k_{j} have Property $\sim P(b)$; neither of β^{1}, β_{1} is bridged twice.

Case three. One of β^{1}, β_{1} is bridged twice.
$F_{20} 54 b$

1854 c.

These cases are clearly exhaustive (taking 'one' in case three to mean 'at least one'; however the reader has probably noticed that if one of β^{1}, β_{1} is bridged twice, the other cannot be bridged even once).

Case one. Since each k_{j} misses one rng g_{i}, this case suggests an immediate application of Lemma One. It is easily seen that the hypothesis of Lemma One is satisfied except for the fact that the rng g_{i} may hit Ω. If this happens, we alter the g_{i} by means of the following argument: assume that k_{1} misses rng_{1}. and k_{4} misses rng g_{2} (if another pair of k_{j} miss the rng g_{i} or if all four miss the same rng g_{i}, the method is similar or easier). Since ℓ_{1} misses rng g_{1}, there is a circle $\ell \subset E^{3}-\beta^{1}$ which lies near ℓ_{1} and approximates it so that ℓ misses rng g_{1}. We imagine ℓ sliding on the surface of the twisted band $\dot{\beta}^{1}$ and eventually coming to rest directly over ℓ_{4}. Although we use the term 'slide', we intend that ℓ stays. close to but does not touch β^{1}. By sliding ℓ on the side of $\beta^{1!}$. which is free of the arcs a_{j}, we are assured that l can move without touching the a_{j}. This shows that there is a homeomorphism M of. E^{3} onto itself such that M is fixed on $E^{3}-K_{1}$ and on $\beta^{1} \cup a_{1} \cup a_{2} v a_{3} \cup a_{4}$; and carries ℓ to a position directly over $M\left[\ell_{4}\right]=\ell_{4}$. Clearly $M[\ell]$ misses rng Mg_{1}, ℓ_{4} misses $r n g \mathrm{Mg}_{2}$. Construct a small annulus α so that its boundary components are. $M[\ell]$ and ℓ_{4}. This can be done so that α misses k_{1}, k_{2}, k_{3} and $k_{4}-\ell_{4}$. By Th 5 (in Ch I), Int α contains a simple closed curve \hat{l} which bounds no disk in α and which misses both rng Mg ${\underset{i}{ }}^{\text {. Figs }} 54 \mathrm{a}$, d show how \hat{l} may be moved to the location of an equator of S without hitting $\beta^{1} \cup k_{1} \cup k_{2} \cup k_{3} \cup k_{4} \cdot$

This shows that there is a homeomorphism M^{-}of E^{3} onto itself which fixes β^{1}, every $k_{j}, E^{3}-K_{1}$, and carries \hat{l} onto the location $M^{-}[\ell]$ shown in fig 54d. Evidently $M_{i}^{-}[\hat{\ell}]$ misses both $M^{-} M_{i}[\Delta]$; and in fact we can assume that all of Ω misses both $M^{M} \mathrm{Mg}_{\mathrm{i}}[\Delta]$, since otherwise an obvious homeomorphism can be used to push the $M^{\wedge} \mathrm{Mg}_{i}$ away from Ω. Note that the $M^{4} M_{i}$ continue to be Z-disjoint and $M^{-} M_{i}=c_{i}$. on $B d \Delta$, while each k_{j} has Property $\sim P(a)$ with respect to the $M \sim g_{i}[\Delta]$ because both M^{-}and M are fixed on each k_{j}. We can now apply Lemma One to construct z-disjoint mappings \bar{g}_{i} with $\bar{g}_{i}=c_{i}$ on $\operatorname{Bd} \Delta$, such that rng $\bar{g}_{i} \subset$ rng $M^{\wedge} M_{i} \cup K_{1}$ and (since Ω misses both rng $M{ }^{\mu} \mathrm{Mg}_{i}$) rng \bar{g}_{i} misses every k_{j} that rng g_{i} misses. Since $\zeta_{1} \subset$ Int $S-N$, both rng \bar{g}_{i} miss ζ_{1}. Since M and M^{\prime} are fixed outside of K_{1}, rng $\bar{g}_{i} \subset \mathrm{rng} \mathrm{g}_{\mathrm{i}} \cup \mathrm{K}_{1}$. Now apply a result like Lemma One to 'the β_{1} end' of $\bigcup_{j} k_{j}$ to construct Z-disjoint mappings. g_{i}^{\prime} such that $g_{i}=c_{i}$ on Bd \triangle, rng $g_{i}^{\prime} \subset \operatorname{rng} \bar{g}_{i} \cup K_{2}$, and rng g_{i}^{\prime} misses ζ_{2} as well as any k_{j} that rng \bar{g}_{i} misses. It may be necessary to alter the \bar{g}_{i} with homeomorphisms which act like M, M^{-}above, in order to make rng g_{i} miss those k_{j} which rng \bar{g}_{i} misses. Evidently rng g_{i} misses both ζ_{i} and every k_{j} that rng g_{i} misses. Since each k_{j} misses one rng g_{i}, the cradle of A has the required property.

Case two. In this case we allow some of the ${\underset{j}{j}}$ to have Property $\sim P(b)$ with respect to the $r n g g_{i}$. We reduce this case to Case one by converting the k_{j} with Property $\sim \mathrm{P}(\mathrm{b})$ to Property $\sim \mathrm{P}(\mathrm{a})$ or, more accurately, we will define mappings $G_{i 0}=g_{i}, G_{i 1}, G_{i 2}, G_{i 3}$, $G_{i 4}$ with the usual properties such that $\|_{j}$ has Property $\sim P(a)$ with respect to rng $G_{1 j}$, rng $G_{2 j}$, and in fact each k_{j} misses one rng $G_{i 4}$.

The argument then reduces to Case one.

We will show how $G_{i l}$ is constructed and indicate the construction of the other $G_{i j}$. If k_{1} has Property $\sim P(a)$. with respect to the rng g_{i}, then let $g_{i}=G_{i 0}=G_{i 1}$. If k_{1} has Property $\sim P(b)$ with respect to rng G_{10}, rng_{20}, we assume that $a_{1} \cup m_{1}$ misses rng $G_{10} \cup$ rng $G 20$ and that ℓ_{1} has Property $\sim P(b)$ (as defined in $I \S 5$ for a circles with basepoint $\ell_{1} \cap a_{1}$), since otherwise we simply 'turn the picture upsidedown'. Now by Th 6 or Th 7 (in I §5), since at most one of $\operatorname{rng} G_{10} \cap \beta^{1}$, rng $G_{20} \cap \beta^{1}$, bridges β^{1}, there is a circle $\ell^{\wedge} \in$ Int β^{1} which bounds no disk in β^{1}, contains the base point $\ell_{j} \cap a_{j}$ and misses one of the rng G_{io}, say, rng G_{10}. We now have a centre (or at least a double ended lasso) with Property $\sim P(a)$ since $\ell^{-} \cup a_{1} \cup m_{1}$ misses rng G_{10}; but ℓ^{-}is likely to be a ver disorderly circle and among other delinquencies, probably hits $k_{2} \cup k_{3} \cup k_{4}$ (which means that $\ell^{-} \cup a_{1} \cup m_{1}$ can't be used in Lemma One (the construction of R in Lemma One absolutely requires disjoint ℓ_{j}). We get disjoint loops and a picture like fig 44 by the following procedure which recalls the manipulation of ℓ in Case one. Let λ be a simple closed curve which lies near and approximates ℓ^{-}but misses β^{1}. A short straight arc a connects $\ell_{1} \cap a_{1}$ to a base point on λ so that a meets λ at only one point. We can assume that $\lambda \cup$ a misses rng G_{10}, and we now regard $\lambda \cup a \cup a_{1} \cup m_{1}$ as a double ended lasso which misses rng $G_{10}=r n g g_{1}$. Now slide λ over β^{1}, keeping the base poịnt fixed, so that the final position of λ is directly over ℓ_{1}. As before, we choose the 'right' side of β^{1} to slide λ on so that λ will miss $a_{1} \cup a_{2} \cup a_{3} \cup a_{4} \cdot$

We now have a double ended lasso which looks like k_{I} except that the upper loop rides near but not on ' β^{1}, and it remains only to telescope a $u \lambda$ so that a collapses and, λ moves to the location of ℓ_{1}. We conclude that there is a homeomorphism $M^{\prime \prime}$ of E^{3} onto itself which fixes $E^{3}-K_{1}, k_{2}, k_{3}, k_{4}$, and carries $\lambda \cup a \cup a_{1} \cup m_{1}$ onto k_{1}. Evidently. $M^{\prime \prime} G_{i 0}$ has the required properties of $G_{i 1}$. Clearly k_{1} misses G_{11}, and since $r n g G_{i 1} \cap k_{2}=r n g G_{i 0} \cap k_{2},=k_{2}$ continues to have Property $\sim P$ with respect to the $r_{n g} G_{i 1}$, and a similar argument applies to k_{3}, k_{4}. Since M is not fixed on β^{1}, we must ask how the rng ${ }_{i I}$ bridge β^{1}. It is clear that β^{1} is bridged at most once by the $\operatorname{rng}_{\mathrm{il}}$, since ℓ_{1}, which misses $\mathrm{rng} G_{11}$, separates the boundary components of β^{1}; and of course β_{1} is bridged by the rng $G_{i 1}$ just as it was bridged by the rng $G_{i 0}$. Thus neither of β^{1}, β_{1} is bridged twice by the $r n g G_{i 1}$. If k_{2} misses one of rng G_{11}, rng G_{21}, then let $G_{i 1}=G_{i 2}$, . Otherwise k_{3} has Property $\sim P(b)$ with respect to the rng $G_{i 1}$, and we construct $G_{i 2}$ so that $\operatorname{rng} G_{i 2} \cap\left(k_{1} \cup k_{3} \cup k_{4}\right)=r n g G_{i 1} \cap\left(k_{1} \cup k_{3} \cup k_{4}\right)$, and,$k_{2}$, misses one of the $r n g G_{i 2}$ (note that we may have to work at the lower end of the figure; the fact that neither band β^{1} or β_{1} is bridged twice by the rng $G_{i l}$ is used in the second application of $\operatorname{Th} 6$ or Th 7). Evidently k_{1} misses one of the rng $G_{i 2}$: Proceeding in the same way, we define $G_{i 3}$ so that k_{3} misses one rng $G_{i 3}$, and since $G_{i 3}$ can be constructed so that rng $G_{i 3} \cap\left(k_{1} \cup k_{2}\right)=r n g G_{i 2} \cap\left(k_{1} \cup k_{2}\right)$ each of k_{1}, k_{2} misses one rng $G_{i 3}$. Finally define $G_{i 4}$ so that each k_{j} misses one rng $G_{i 4}$. Evidently the G_{14} can be used in the argument of Case one to construct the g_{i}^{\prime}. When altering the g_{i} to $G_{i 1}$, $G_{i 1}$ to $G_{i 2}$,

etc., we preserve 'Z-disjointness!' because we adjust only points in Z. Similarly each $G_{i j}=c_{i}$ on $B d \Delta$.

Case three. In this case we know only that one of β^{1}, β_{1}, say β^{1} is bridged twice. It is easy to see that if β^{1} is bridged twice, then no k_{j} can have Property $\sim P(a)$. For this would mean that some $\ell_{\mathbf{j}_{\mathrm{o}}}$ misses, say, rng g_{1}; then by $\mathrm{I}(1.7)$, rng $\mathrm{g}_{1} \cap \beta^{1}$ cannot bridge β^{1}, so that the number of bridges is at most one. But if each k_{j} has Property $\sim P(b)$, then in every case, m_{j} must miss rng $g_{1} \cup$ rng g_{2} and l_{j} must have Property $\sim P(b)$. For evidently if any $\ell_{j} \subset \mathrm{E}^{3}-$ rng $g_{1}-r n g g_{2}$, then there can be no bridges at all. We are thus led to the conclusion that when case three holds, there is just one possible configuration (assuming that β^{1} is bridged twice): β^{1} is bridged twice, β_{1} is bridged not even once, and each k_{j} has Property $\sim P(b)$ with respect to $r n g g_{1}$, rng g_{2}, with $m_{j} \cup a_{j} \subset E^{3}-r n g g_{1}-r n g g_{2}$. Except for the fact that ζ_{2} may not miss rng $g_{1} \cup$ rng g_{2}, the picture begins to resemble fig 45, (though we still must construct the arcs u_{13}, etc.). We first alter the g_{i} so that ζ_{2} misses rng $g_{1} \cup$ rng g_{2}. This is done just as in Case one. Fig 55 shows the k_{j} and a sphere \tilde{S} placed in the usual way with respect to ζ_{2} and the m_{j}. In fig 55, the k_{j} do not have Property $\sim P(a)$, so that we use Lemma One itself and not the corollary. Using the method of Case one, construct Z-disjoint mappings $\bar{g}_{i}: \Delta \rightarrow\left(\right.$ ng $\left.g_{i} \cup K_{2}\right)-\zeta_{2}$ such that rng \bar{g}_{i} misses every m_{j} that rng g_{i} misses. This simply means that rng $\bar{g}_{1} \cup$ rng \bar{g}_{2} misses each m_{j}. An examination of the method of Case one shows that if rng \bar{g}_{i} misses a_{j}, so does rng \bar{g}_{i};
thus rng \bar{g}_{1} rng \bar{g}_{2} misses all four $m_{j} U{ }_{j}$. We also know that each point of ℓ_{j} which misses rng g_{i} also misses rng $\bar{g}_{i} ;$ this means that ℓ_{j} has Property $i p(b)$ with respect to rng \bar{g}_{i}, rng \bar{g}_{2}. Therefore the four k_{j} have Property $\sim p$ with respect to the ring \bar{g}_{i}. On the other hand, the fact that the inclusion rng $\bar{g}_{1} \sigma\left(r n g g_{i} \cup K_{2}\right)<\zeta_{2}$ may be proper means that the number of bridges on β^{1} with respect to rng $\bar{g}_{1} \cap \beta^{1}$, rng $\bar{g}_{2} \cap \beta^{1}$ may not be two, but may be one or zero. If this happens, then, since the number of bridges on β_{1} with respect to rng $\overline{\mathrm{g}}_{1} \cap \beta_{1}$, rng $\overrightarrow{\mathrm{g}}_{2} \cap \beta_{1}$ is zero (because of the presence of, say, $m_{1} \subset E^{3}-$ rng \bar{g}_{1} - rng \bar{g}_{2}, using a previous argument) we have reduced the situation to either Case one or case two, $i_{\text {. }}$. we have each k_{j} with Property $\sim P$ with respect to the rng \bar{g}_{i} and neither β^{1} nor β_{1} is bridged twice. However in the 'worst case', β^{1} continues to be bridged twice.

If β^{1} is bridged twice by the rng $\bar{g}_{i} \cap \beta^{1}$, then we use Lemma Two. The hypothesis of Lemma Two is satisfied except that we must construct $u_{12}, u_{13}, v_{12}, * v_{13}$. Since $\operatorname{rng} \bar{g}_{2} \cap \beta^{1}$ bridges β^{1}, there is a component Q of rng $\bar{g}_{2} \cap \beta^{1}$ which connects the boundary components of $\beta^{1} . Q$ is cómpact and misses rng \bar{g}_{1}. By the definition of Property $\sim P(b), Q$ meets a continuum $e_{1} \subset \ell_{1}$ and a continuum e_{2} in l_{2} suck that e_{i} contains $a_{i} \cap l_{i}$ and misses one of rng \bar{g}_{1}, rng \bar{g}_{2}. Since e_{i} hits $Q \subset$ rng \bar{g}_{2}, e_{i} must miss rng \bar{g}_{1}. Since the whole continuum $e_{1} \cup Q \cup e_{2}$ misses rng \bar{g}_{2}, we use I(2.5) to construct an arc u_{12} which joins $\ell_{1} \cap a_{1}$ and $\ell_{2} \cap a_{2}$ in β^{1} and misses rng \bar{g}_{1}. The constructions of u_{13}, v_{12}, v_{13} are similar.

Now by Lemma Two there are Z-disjoint mappings $\mathrm{g}_{\mathbf{i}}: \Delta \rightarrow\left(\right.$ rng $\left.\overline{\mathrm{g}}_{\mathbf{i}}-\operatorname{Int} \Sigma\right) \cup n$ (where Σ, n are the sets described in Lemma Two) with $g_{i}^{\prime}=\bar{g}_{i}=c_{i}$ on BdA, and such that one rng g_{i}^{\prime}, say rng g_{1}^{\prime}, misses $b_{1} \cup b_{2} \cup b_{3}$ while both rng g_{i}^{\prime} miss $\zeta_{1} \cup \zeta_{2}$. Evidently rng $g_{i} \subset$ rng $g_{i} \cup K_{1}$.

In the argument of Case three we did not suceed in constructing the g_{i}^{\prime} so that $\zeta_{1} \cup \zeta_{2}$ misses rng $g_{1}^{\prime} \cup$ rng g_{2}^{\prime} and each b_{j} misses one rng g_{i}^{-}; instead $\zeta_{1} \cup \zeta_{2}$ misses both rng g_{i}^{\prime} and three b_{j} miss the same rng g_{i}^{\prime}. In Part II of the proof of (3.1), it turns out that it is sufficient to define the g_{i}^{\prime} so that three ${ }^{b}{ }_{j}$ miss the same rng g_{i}^{\prime} (the same thing happens in the proof of [12, Th 10]). With some additional complication, it is possible to improve the argument of Lemma Two so as to yield the usual result, i.e. to construct, g_{i} so that each b_{j} misses one rng g_{i}^{\prime}; however we omit this argument.

We have now completed the three cases of the proof of Part I of (3.1). Note that in each Case, we constructed g_{i}^{-}so that rng $g_{i}^{\prime} \subset \operatorname{rng} g_{i} \cup K_{1} \cup K_{2}$. Thus we can write rng $g_{i}^{\prime} \subset r n g g_{i} \cup A$. This will be important when we apply the argument of (3.1) to the components of a_{2}, a_{3}, etc. To summarize the situation: if $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ has Property $\sim Q$ with respect to g_{1}, g_{2}, then there exist Z-disjoint mappings $g_{i}^{\prime}: \Delta \rightarrow E^{3}$ such that

$$
\begin{aligned}
& g_{i}^{\prime}=c_{i} \text { on } B d \Delta, \\
& \text { rng } g_{i} \subset \operatorname{rng} g_{i} \cup A,
\end{aligned}
$$

$$
\text { if } \zeta_{1} \cup \zeta_{2} \cup b_{1} \cup b_{2} \cup b_{3} \cup b_{4} \text { is the cradle of } A \text {, then both }
$$ rng g_{i}^{f} miss $\zeta_{1} \cup \zeta_{2}$ and either each b_{j} misses one rng g_{i} or three G_{j} miss the same rng g_{i}.

Part II of the proof of (3.1).

We remind the reader that we are proving a result much like Bing?s Th 10 of [12], which is also divided into a Part I and Part II. Our Part II is very similar to Part II in Bing's proof and we absolutely require familiarity in detail with Bing's Part II (this is only a matter of half a page). We think it likely that the reader sees from the proof in [12], how to complete Part II here, and instead of a formal proof, we will give what amounts to a gloss on Bing's method, plus a few comments required by the fact that our Property Q is not quite identical to Bing's.

We begin by replacing $\zeta_{1} \cup b_{1} \cup \ldots v b_{4} \cup \zeta_{2}$ by the figure $\bigcup_{j} \mathrm{pq}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} \mathrm{s}$ shown in fig 56. This can be done so that either each arc $\mathrm{pq}_{j} \mathrm{r}_{j} \mathrm{~s}$ misses one rng $\mathrm{g}_{\dot{i}}^{\prime}$ or three $\mathrm{pq}_{j} \mathrm{r}_{\mathrm{j}} \mathrm{s}$ miss the same rng $\mathrm{g}_{\dot{i}}$. Our terminology is now like that of [12] except that rng g_{i}^{\prime} replaces D_{i} in [12]. We follow the division into cases found in [12]. We will not prove that the three cases given in [12] exhaust the possibilities, but remark for plausibility that the case division ... 1) Three $\mathrm{pq}_{j} \mathrm{r}_{\mathrm{j}} \mathrm{s}$ miss one rng $\left.g_{i}^{\prime}, ~ 2\right) ~ \mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}$ plus $\mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}$ misses rng $\mathrm{g}_{1}^{\prime}, \mathrm{Pq}_{3} \mathrm{r}_{3} \mathrm{~s}$ plus $\mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}$ misses $\mathrm{rng} \mathrm{g}_{2}^{\prime}$, 3) $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}$ plus $\mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}$ misses rng g_{1}^{\prime}; $\mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}$ plus $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}$ misses rng $\mathrm{g}_{2}^{\prime} \ldots$ seems at first glance to ignore the possibility: $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}$ plus $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}$ misses rng $\mathrm{g}_{1}^{\prime}, \mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}$ plus $\mathrm{Pq}_{4} \mathrm{r}_{4} \mathrm{~s}$ mísses rng g ${ }_{2}^{\prime}$. However this last variation is just Case Two with the diagram inverted. We will now describe how Bing's Part II can be altered to show that there exist Z-disjoint mappings $F_{i}: \Delta \rightarrow E^{3}$ such that $F_{i}=C_{i}$ on $B d \Delta$ and the centre of A has Property $\sim P$ with respect to \quad rng F_{1}, rng F_{2}.

Facing page 92 .

Case One: any three of $\mathrm{pq}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} \mathrm{s}(\mathrm{j}=1,2,3,4)$ miss the same rng $g_{i_{0}}$. If $\mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}$ is an arc which fails to miss rng $g_{i_{0}}$, then the structure shown in fig 57 lies near $\mathrm{pq}_{1}{ }^{\mathrm{r}} 1_{1} \mathrm{~s} U \mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}-\mathrm{U}_{\mathrm{pq}}^{4} \mathrm{r}_{4} \mathrm{~s}$ and nịissés rng g_{i}^{n}. The structure in fig 57 cân be moved tótheoposition of the centre k of A by a homeomorphism M_{5} which fixes $E^{3}-A$. Evidently $\mathrm{M}_{5} \mathrm{~g}_{1}^{\prime}, \mathrm{M}_{5} \mathrm{~g}_{2}^{\prime}$ are the required $\mathrm{F}_{1}, \mathrm{~F}_{2}$. If $\mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}$ is aine arc which fails to miss rng $\mathrm{g}_{\mathbf{i}_{0}}^{\prime}$, then one uses the structure in fig 58 which lies near $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s} \cup \mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s} \cup \mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}$ and misses rng $\mathrm{g}_{\mathrm{i}}^{6}$. If $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}$ or $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}$ fail to miss $\mathrm{rng} \mathrm{g}_{\mathrm{i}_{0}}$, the method is like one of those already

Case Two. $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}$ plus $\mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}$ misses $\mathrm{rng} \mathrm{g}_{1}^{\prime}, \mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}$ plus $\mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}$ misses rng g_{2}^{\prime}. We replace $\bigcup_{j} \mathrm{pq}_{j} \mathrm{r}_{\mathrm{j}} \mathrm{s}$ with the more complicated construction in fig 59. In fig 59, s has been replaced by $s_{1}, s_{2}, s_{3}, s_{4}$ which lie near s so that the s_{j} and arcs $s_{1} s_{3}$, $\mathrm{s}_{1} \mathrm{~s}_{4}, \mathrm{~s}_{2} \mathrm{~s}_{4}$ misserng $g_{1}^{\prime} U$ rng g_{2}^{\prime}. Abusing the notation slightly, we have arcs $\mathrm{Pq}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} \mathrm{s}_{\mathrm{j}}$ with $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}_{1} \cup \mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}_{2} \subset \mathrm{E}^{3}$ - $\mathrm{rng} \mathrm{g}_{1}$, $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}_{3} \cup \mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}_{4} \subset \mathrm{E}^{3}-\mathrm{rng} \mathrm{g}_{2}^{\prime}$. We build two new arcs: $\mathrm{p}^{\prime} \mathrm{q}_{3}^{\prime} \mathrm{r}_{3}^{\prime} \mathrm{s}_{3}$, which lies near $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}_{3}$ and misses rng g_{2}^{\prime}, and $\mathrm{p}^{\prime} \mathrm{q}_{4}^{\prime} \mathrm{r}_{4}^{\prime} \mathrm{s}_{2}$, which lies near $\mathrm{Pq}_{4} \mathrm{r}_{4}^{\mathrm{S}}{ }_{4}$ and also misses rng g_{2}^{\prime}. Apply a move M_{6} which carries $\mathrm{s}_{3} \mathrm{r}_{3}^{\prime} \mathrm{q}_{3}^{\prime} \mathrm{P}^{\prime} \mathrm{q}_{4} \mathrm{r}_{4} \mathrm{~s}_{4}$. to the location shown in fig 60 and fixes $\mathrm{pq}_{j} \mathrm{r}_{j} \mathrm{~s}_{j}, \quad \mathrm{~s}_{1} \mathrm{~s}_{3}, \quad \mathrm{~s}_{2} \mathrm{~s}_{4}$, and $\mathrm{s}_{1} \mathrm{~s}_{4}$. Look at a disk in A bounded by the circle $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}_{1} \mathrm{~s}_{3} \mathrm{M}_{6}\left(\mathrm{r}_{3}^{\prime}\right) \mathrm{M}_{6}\left(\mathrm{q}_{3}^{\prime}\right) \mathrm{M}_{6}\left(\mathrm{p}^{\wedge}\right) \mathrm{M}_{6}\left(\mathrm{q}_{4}^{\prime}\right) \mathrm{M}_{6}\left(\mathrm{r}_{4}^{\prime}\right) \mathrm{s}_{2} \mathrm{r}_{2} \mathrm{q}_{2} \mathrm{p}$. We will call this disk T and assume that it is just the obvious disk suggested by the figure. Thus T misses all but the end points of $\mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}_{4} \mathrm{~s}_{2}$. Later we will need the fact that T can be constructed so as also to miss all but the end points of $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}_{3}$ (in Case 3). There is an arc
$F_{20} 61$.

$\lambda \subset T$ with end points s_{2} and s_{3} which misses both rng $M_{6} g_{i}^{\prime}$ because arc $s_{3} M_{6}\left(r_{3}^{\prime}\right) M_{6}\left(q_{3}^{\prime}\right) M_{6}\left(p^{\prime}\right) M_{6}\left(q_{4}^{\prime}\right) M_{6}\left(r_{4}^{\prime}\right) s_{2}$ misses rng $M_{6} g_{2}^{\prime}$ and arc $\mathrm{s}_{3} \mathrm{~s}_{1} \mathrm{r}_{1} \mathrm{q}_{1} \mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}_{2}$. misses rng $\mathrm{M}_{6} \mathrm{~g}_{1}$. (We will now begin to abbreviate our arc nomenclature). Define a move M_{7} which moves, λ to the position of arc $s_{3} M_{6}\left(p^{\prime}\right) s_{2}$ and fixes each $p q_{j} r_{j} s_{j}$ and $s_{3} s_{1} s_{4} s_{2}$. Although we do not know the location of λ in T, this can be done by means of the A - move defined in I §3. Evidently rng $M_{7} M_{6} g_{1}^{\prime}$ misses $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}_{1}$, rng $M_{7} M_{6} \mathrm{~g}_{2}^{\prime}$ misses $\mathrm{pq}_{4}{ }^{r} 4_{4}{ }_{4}$, and both rng $M_{7} M_{6} g_{i}^{\prime}$ miss the circle $s_{1} s_{3} M_{6}\left(p^{\prime}\right) s_{2} s_{4} s_{1}$. Fig 61 shows $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}_{1} \cup \mathrm{Pq}_{4} \mathrm{r}_{4} \mathrm{~s}_{4} \cup \mathrm{~s}_{1} \mathrm{~s}_{3} \mathrm{M}_{6}\left(\mathrm{p}^{\wedge}\right) \mathrm{s}_{2} \mathrm{~s}_{4} \mathrm{~s}_{1}$ replaced by a set $\ell^{\wedge} \cup \mathrm{a}^{\wedge} U \mathrm{~m}^{-}$ which lies very near the first set so that $m^{\prime} v a^{\wedge}$ misses both rng $M_{7} M_{6} g_{i}^{\prime}$, and ℓ^{-}has Property $\sim P(b)$ with respect to the rng $M_{7} M_{6} g_{i}^{\prime}$ (it is easy to give ℓ^{-}this property since much of ℓ^{-}. can coincide with $s_{1} \mathrm{r}_{1} \mathrm{q}_{1} \mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}_{4}$). Evidently $\ell^{-} U \mathrm{a}^{\prime} U \mathrm{~m}^{-}$can be moved to the position of the centre $\ell \cup$ a $\cup \mathrm{m}$ of A . If this is accomplished by a move M_{8}, then the centre of A has Property $\sim P(b)$ with respect to the rng $M_{8} M_{7} M_{6} g_{i}^{\prime}$, which we define to be the required F_{i}.

Case three. $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}$ plus $\mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}$ misses rng $\mathrm{g}_{1}^{\prime}, \quad \mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}$ plus $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}$ misses rng g_{2}^{\prime}. The mechanism of this case resembles that of Case two. We repeat the construction in fig 59 and define M_{6} precisely as in Case two, so that we arrive once more at fig 60 . However, since the rng g_{i} are related differently to the various parts of the figure, we have this time: $s_{3} s_{1} s_{4} s_{2} \subset E^{3}-$ rng $M_{6} g_{1}-$ rng $M_{6} g_{2}$ as usual, but $\mathrm{pq}_{1} \mathrm{r}_{1} \mathrm{~s}_{1} \cup \mathrm{pq}_{4} \mathrm{r}_{4} \mathrm{~s}_{4} \cup \mathrm{M}_{6}\left(\mathrm{p}^{\wedge}\right) \mathrm{M}_{6}\left(\mathrm{r}_{4}^{\prime}\right) \mathrm{s}_{2} \subset \mathrm{E}^{3}-\mathrm{rng} \mathrm{M}_{6} \mathrm{~g}_{1}$, $\mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}_{2} \cup \mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}_{3} \cup \mathrm{M}_{6}\left(\mathrm{p}^{\prime}\right) \mathrm{M}_{6}\left(\mathrm{r}_{3}^{\prime}\right) \mathrm{s}_{3} \subset \mathrm{E}^{3}-\mathrm{rng} \mathrm{M}_{6} \mathrm{~g}_{2}$. In this case we

Facing page 94

Fig 62.

$F_{18} 63$.
must use a fact that we stated but did not completely use in Case 2, viz. that M_{6} fixes all four $\mathrm{pq}_{j} \mathrm{r}_{\mathrm{j}} \mathrm{s}$. We assume tht the disk T is placed so as to miss $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}_{3}$. We use Th 4 from I : 54 at this point; at the analogous place in [12], Th 7 of [12] is used. By Th 4, since $s_{3} M_{6}\left(q_{3}^{\prime}\right) M_{6}\left(p^{\prime}\right)$ and $p q_{2} r_{2} s_{2}$ miss arng $M_{6} g_{2}$ and $M_{6}\left(p^{\prime}\right) M_{6}\left(q_{4}^{\prime}\right) s_{2}$ and $s_{3} s_{1} r_{1} q_{1} p$ miss rng $M_{6} g_{1}$, there is an arc $\bar{\lambda} \subset T$ with end points s_{3}, s_{2}, such that $\bar{\lambda}$ misses either rng $M_{6} g_{1}$ or rng $M_{6} g_{2}$. Apply a move M_{7}, similar to M_{7}, to move $\bar{\lambda}$ to $s_{3} M_{6}\left(p^{\prime}\right) s_{2}$. This can be done by an. A - move as before; but some care should be taken so that M_{7}^{-}fixes every $\mathrm{Pq}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} \mathrm{s}_{\mathrm{j}}$ (as well as, of course. $\mathrm{s}_{3} \mathrm{~s}_{1} \mathrm{~s}_{4} \mathrm{~s}_{2}$); the reader might first prefer to move $\mathrm{pq}_{3} \mathrm{r}_{3} \mathrm{~s}_{3}$ to a new location where it cannot interfere with the collar of T used in the A - move. The proof is now completed along the lines of the previous cases, using the fact that if $s_{3} M_{6}\left(p^{\prime}\right) s_{2}$ misses rng $M_{7}^{-} M_{6} g_{1}$, then the set shown in fig 62 lying near $s_{1} s_{3} M\left(p^{\prime}\right) s_{2} s_{4} s_{1} \cup s_{1} r_{1} q_{1} p_{4} r_{4} s_{4}$ misses rng $M_{7} M_{6} g_{1}$; while if $s_{3} M_{6}\left(p^{\prime}\right) s_{2}$ misses rng $M_{7} M_{6} g_{2}$, then the set in fig 63 lying near $s_{1} s_{3} M_{6}\left(p^{\prime}\right) s_{2} s_{4} s_{1} \cup s_{3} r_{3} q_{3} \mathrm{pq}_{2} \mathrm{r}_{2} \mathrm{~s}_{2}$ misses rng $\mathrm{M}_{7} \mathrm{M}_{6} \mathrm{~g}_{2}$. This completes part II of the proof of III(2.1)日。

Corollary to III (2.1). If $\left\{A_{1}, \ldots A_{4}\right\}$ has Property $\sim Q$ with respect to mappings g_{1}, g_{2}, then A has Property $\sim Q$ with respect to mappings F_{1}, F_{2} such that rng $F_{i} \subset r n g g_{i} \cup A$.

Proof. We know that rng $g_{i}^{\prime} \subset$ rng $g_{i} \cup A$. And all the moves given in Part II of the proof of III (2.1) can be defined so as to fix $E^{3}-A D$.
4. Proof of II (2.2).

We have now shown that if $\left\{A_{1}, \ldots A_{4}\right\}$ has Property $\sim Q$ then A has Property $\sim Q$. Our argument now diverges somewhat from Bing's in [12]. Suppose that $f_{i}: \Delta \rightarrow E^{3}$ such that $f_{i \mid B d \Delta}=C_{i}$ and the f_{i} are Z-disjoint (we continue to take Z, c_{1}, c_{2} to be assigned arbitrarily according to the remark at the beginning of §3). We will show that if A has Property Q, then each of $a_{1}, a_{2}, a_{3}, \ldots$ has Property Q; the proof of II(2.2) follows directly from this fact. If A has Property Q, then by (3.1), $\left\{A_{1}, \ldots A_{4}\right\}$ has Property Q. i.e. a_{1} has Property Q . (3.1) does not imply that some A_{j} has Property Q for the luminous reason that each A_{j} has Property $\sim Q$, as the argument in $\S 1$ Ex 2 shows. However we can show that a_{2} has Property Q by adapting the argument of the proof of (3.1) to show that for each A_{j}, if $\left\{A_{j 1}, \ldots A_{j 4}\right\}$ has Property $\sim Q$ then so does A_{j}. This is easy to do since the proof is simply restated in terms of images under the embedding h_{j} of various subsets of A. Occasionally in the proof of III (2.1) we constructed arcs which were perpendicular to certain surfaces. While h_{j} does not preserve this property, the reader will appreciate that we used such constructions for topological purposes, e.g. to make one arc lie along another, or to miss certain subsets, and these properties are preserved by h_{j}. We do not re-define. Z, c_{1}, c_{2} of course, since we intend to show that the same Property Q_{Z}, c_{1}, c_{2} is possessed by each of $a_{1}, a_{2}, a_{3}, \ldots$. We originally defined z to contain A so that we have $Z \supset A_{j}$ as required. We intend of course to let $Z=A$ eventually. To show that a_{2} has Property Q, assume that
the set of components of a_{2} has Property $\sim Q$ with respect to qualified mappings g_{1}, g_{2}. Apply a result like the corollary of (3.1) to $\left\{A_{11}, \ldots A_{14}\right\}$ to obtain Z-disjoint mapping $F_{i 1}: \Delta \rightarrow \operatorname{rng} g_{i} \cup A_{1}$ such that $F_{i 1}=C_{i}$ on $B d \Delta$, and A_{1} has Property $\sim Q$ with respect to the $F_{i 1}$. We can see that since $r n g F_{i}$ does not exceed ring f_{i} in $E^{3}-A_{1}$, the dogbones $A_{21}, \ldots A_{24}, A_{31}, \ldots A_{34}, A_{41}, \ldots A_{44}$ continue to have Property $\sim Q$ with respect to the $F_{i 1}$, for as we saw earlier, possession of Property $\sim P$ depends on the fact that rng g_{i} misses certain continua in various dogbones, and this property is inherited by rng F_{i} : at least for dogbones in $E^{3}-A_{1}$. Construct Z-disjoint mappings: $\dot{F}_{i 2}: \Delta \rightarrow$ rng $F_{i 1} \cup A_{2}$ such that $F_{i 2}=c_{i}$ on. $B d \Delta$ and A_{2} has Property \mathcal{Q} with respec 1 to the $F_{i 2}$. Once again, dogbones in $E^{3}-A_{2}$ iflifch have Property vQ with respect to the Fi_{I} continue to haveProperty $\sim Q_{\mathrm{Q}}$ with respect to the $\mathrm{F}_{\mathrm{i} 2}$. This means that not only ${ }^{\prime} A_{2}$, but $A_{1}, A_{31}, \ldots A_{34}, A_{41}, \ldots A_{44}$ have Property $\sim Q$ with respect to the $\mathrm{F}_{\mathrm{i} 2}$. Evidently we can continue in this way and finally derive Z -disjoint mappings $\mathrm{F}_{14}: \Delta \rightarrow \mathrm{E}^{3}$ which agree with c_{i} on $B d \Delta$ and with respect to which, all of $A_{1}, \ldots A_{4}$ have Property ~Q. Assume that the set of components of a_{3} have Property $\sim Q$. Then an argument: like that of (3.1) Corollary can be applied to each $A_{j k}$ in (perhaps lexicographic) order to show eventually that a_{2} has Property थQ. If A has Property Q, then by induction, a_{1}, a_{2} have Property Q and a_{3} must also have Property Q. We think that it is now evident how to proceed in the case that $: m=4,5, \ldots$.

We will show how the induction argument above implies II(2.2). If the f_{i} in the hypothesis have ranges that intersect in A, then $\operatorname{II}(2.2)$ is true; thus we consider only the case that rng $f_{1} \cap \operatorname{rng} f_{2} \cap A=\emptyset$,
i.e. the case that the f_{i} are A-disjoint. In the preceding argument we showed that for a fixed choice of Z, c_{1}, c_{2}, if A has Property $Q_{Z, c_{1}} ; c_{2}$, then so does each a_{m}. If $Z=A$ and c_{1}, c_{2} are the c_{i} in $\operatorname{II}(2.2)$ then $A \subset Z \subset E^{3}-r n g c_{1}-r n g c_{2}$ as required, and A has Property Q by an argument like that of §1 Ex 1. By the induction argument, every a_{m} has Property $Q_{Z, c_{1}}, c_{2}$. As we saw earlier, this means that both rng f_{i} hit some component of a_{m} for m however large.

Finally we will show that both rng f_{i} must hit a big element Λ of the dogbone decomposition G. Let \hat{G} be the set of all elements of the dogbone construction (i.e. all components of $a_{1}, a_{2}, a_{3}, \ldots$) which meet both rng_{1} and rng f_{2}. Evidently \hat{G} is infinite, for by the arguments of thispchapter, each a_{m} must contain an element of \hat{G}. Clearly one of $A_{1}, \ldots A_{4}$ must contain an infinite subset of \hat{G}, for the four A_{j} contain all of \hat{G}. If A_{j} contains an infinite subset of \hat{G}, then one of $A_{j 1}, \ldots A_{j 4}$, say $A_{j k}$, contains an infinite subset of \hat{G}. There is a sequence $A \supset A_{j} \supset A_{j k} \supset A_{j k l} .$. each of which contains infinitely many dogbones which meet both rng f_{i}. Obviously each member of the sequence meets both rng f_{i}, and the intersection $A \cap A_{j} \cap A_{j k} \cap A_{j k \ell} \cap \ldots$ meets both rng f_{i}. One can also use the dogbone metric to show that if the images of the rng f_{i} are disjoint in D, then there is a neighbourhood system of the points of D consisting of small 3-cells around the small points and images of dogbones about the big points such that no neighbourhood of diameter smaller than ε (in the dogbone metric) meets both images of the rng f_{i}. This implies that some a_{m} has Property $\sim Q$, cf. proof of Th 12 of [12] \square.

BIBLIOGRAPHY
[1] R. L. Wilder, Topology of Manifolds, A.M.S. Colloquium Publications 32(1949).
[2] T. M. Price, Upper semi-continuous decompositions of E^{3}, Thesís, University of Wisconsin (1964).
[3] R. H. Bing, Decompositions of E^{3}, Topology of 3-manifolds and Related Topics, Prentice-Hall(1962), 5 - 21.
[4] R. H. Bing, Locally tame sets are tame, Ann. Math., 59 (1954), 145 - 158.
[5] M. L. Curtis and R. L. Wilder, The existence of certain types of manifolds, Trans. Amer. Math. Soc. 91 (1959), 152-160.
[6] R. H. Crowe11 and R. H. Fox, An Introduction to Knot Theory, Boston: Ginn and Co., (1962).
[7] C. D. Papakyriakopoulos, Dehn's lemma and the asphericity of knots, Ann. Math. 66 (1957), 1-26.
[8] J. F. Wardwell, Continuous transformations preserving all topological properties, Amer. Jour. Math., 58 (1936), 709-726.
[9] S. T. Hu, Homotopy Theory, Academic Press (1959).
[10] C. T. Whyburn, Analytic Topology, A.M. S. Colloquium Publications 28 (19.42).
[11] L. O. Cannon, Another property that distinguises Bing's dogbone space from E^{3}, Notices Amer. Math. Soc. 12 (1965) p. 363.
[12] R. H. Bing, A decomposition of E^{3} into points and tame arcs such that the decomposition space is topologically different from E^{3}, Ann. of Math. 65 (1957), 484 - 500.
[13] H. M. Lambert, A topological property of Bing"s decomposition of E^{3} into points and tame arcs, Duke Math. J., 34 (1967), 501-510.
[14] S. Armentrout, A property of a decomposition space described by Bing, Notices Amer. Math. Soc. 11 (1964), p. 369.

$$
A P D e n d 1 x
$$

Figs 64 a,... j show how to deform the upper part of fig 19 so that it Looks like the upper part of fig 1 of [12].

Push l_{1} off β^{2}. Move a_{1} so that a_{1} passes through β^{2} and now approaches β^{2} from the upper side, while a_{2}, a_{3}, a_{y} continue to arpprcaen from the lower side.

[^0]: This completes the construction of Y. assuming that $x \in I n t e$.

