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ABSTRACT

Bing's dogbone space 0 1§ an upper semi continuous decompo-
sition space of E3 which fails to be E3 although the associated
decomposition consists only of points and tame arcs. It has proved dif-
ficult to find topological properties of D which distinguish it from
E3 . In this paper, we prove a conjecture of Morton Curtis in 1961

that certain points of U fail to possess small simply connected neigh-

bourhoods.
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INTRODUCTION

Bing's dogbone space (which is denoted by 0¥ in' this paper)
is a decomposition space of 'E3 ‘which fails to be homeomorphic to E3
even though the associated.decomposition space is upper semicontifnuous
and.point—like;'and each element of the decomposition is either a point -
or a tame arc. The appearance of 0 in.[12] caused some surprise since
it was thought at the time that all usc point-~like decomposition spaces
of E3 would turn out to be. E3 ; Although 7 dates from 1955 and has
become rather well-known, it has been found hard to determine those top-
ological properties of the space which distinguish it from E3 ; Bing's
original paper [12].showed that D is a non-manifold; but 0 is a simply
connected homology manifold and locally simply connected. This paper
contains a proof of a conjecture of Morton Curtis that 0 fails to pos-
sess small simply connected open neighbourhoods about certain points. This
property is stronger than local simple connectivity (see our comments in
II §1)., A proof of Curtis' Conjecture was anounced in 1964 [14]; however
the detailed proof has not appeared. Only one other topological property
distinguishing 7 and E3 is known: some points of T cannot be enclosed
in 2-spheres [11], [13]. The general state of affairs seems to be that some
points of 0 have no closed or open 3-cell neighbourhood systems; but do

have systems of neighbourhoods bounded by double tori.

Our arguments use elementary methods exclusively (except for an
easily circumvented reference to the Hopf property of knot groups) and
may well appear old-fashioned. We are less than proud of much of the

exposition, which was intended to combine the detail appropriate to a



thesis with the directness of a journal paper and somehow didn't. The
reader will probably share our pain at the length of the argument . (the
whole paper is essentially one theorem). The readér who is unfamiliar
with pathological decomposition spaces is advised to read [3], which is
brief and e#ceptionally entertaining, and then skim Ch;'IIx; ‘We will
mention some notational peculiarities: we follow common practise in
describing geometric constructions;,even complicated ones:'Byfthe’use of
diagrams. "Theorem' in this paper means 'working theorem'; thus 'theorems'

appear in the introductory:chapterconly.
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CHAPTER. ONE
0.. Introduction.

.This first chapter gives preliminary material for the arguments
in Ch III and especially.Ch IV. The reader who wishesg to skim the paper
will find that Ch II; which contains .the discussion of Curtis' Conjecture,
is largely independent of .this first:chapter; In thiS'paper;.our approach
to elementary topology is aloné the lines of the easier chapters of [10],
in particular, we always assume a.separable metric space. In this chapter,
‘sections 1 and 2 lére»eleméntary;~ §3 ' contains working theorems for
.Ch'IV; and - §4 1is essentially a comment on Bing's Theorems 6 and 7 of
+.[12].. Section: 5 is part of.thé“argument of Ch IV which is self-contained
and has been smuggled intO'the“preliminary\material;.althQUgh_it could have

been left until it appeared naturally in the main argument.

1. fNotation;

. The arguments in this paper use elementary-.methods exclusively,
so.that notation shouIdrpnesentQQOpprbBléms.’EWe use @ .for.the null set and
pthefsymbml.bEﬁnfqgathehendiofcthe;proqﬁnéﬁia:numbered?resultw;*The
expression 'Bd A' may mean either the manifold boundary of the mainifold-
with-boundary A; or the point-set boundary of the set A . A similar
comment applies to. the expression 'Int A’ ; This reflects common practise; .
we. will comment whenever theé meaning is unclear; As mentioned in the preface,
our attitude to the construction of tame sets will be cavalier; we will con-
struct many important tame sets simply by describing the set and perhaps
giving a picture of it. fWe,advisé against'tﬁe'intuitiVe approach of imag-

ininé our constructions as straight-sided polyhedra whose structural detail
is .so fine that the polyhedra appro%imate,the'figureslcloselyu Several of
_ouriaréumenté will.reqﬁire eﬁtenSive:repair if our geometric constructions

are interpreted in this way. If neccessary, methods in [4] could be used to



show that each of our constructions is in fact a curvilinear polyhedronm.

2. Elementary Results.

In this section we give some 'obvious' results which we have
found hard to justify by simple references. This may be a matter of
ignorance, especially in the case of (2.1) and (2.3) . We define an

annulus to be a topological sphere with two holes. The proofs are omitted.

2.1). Let a be an arc which intersects two disjoint closed sets

Sl’ S2 . Then there is a sub-arc a* of a which connects S1 and 82

and meets Sll} S, only at the end points of a¥*..

2
(2.2). Any two annuli Al’ A2 are homeomorphic. Any homeomorphism
of one boundary component of Al onto a boundary component of A2 may
be extended to a homeomorphism of A1 onto A2 .
(2.3). The union of two locally connected (lc) gontinua which intersect
is a 1lc continuum.
(2.4). Let O "be a bounded connected open set in the plane whose boun-

dary is lc. Then any two points x and y in 0 ﬁay‘be connected by

an arc which lies in 0 .except possibly for -its end points.,

(2.5). Let A be a 2-manifold with boundary, and K a continuum in
A . Then any two points of K may be connected by.an arc in Int A (ex—

cept possibly for end points) which lies within a distance €. of K .

C, be disjoint simple closed curves'in':Ezi; ‘Then

(2.6). Let Cl’ 9
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one of the following exclusive alternatives is true:

a) C. ¢ Int C, or equivalently Int C, < Int C,.

1 2 1 2
b) »C2 < Int ¢, or equivalently ifﬁ;?;; < Int C2.
c) .,E?Ch of fCl, C2 lies in‘the others ekterior, or equivalently
Int C; N Int C, = @
2.7). Let A be an annulus, and C atgimple.closed curve in Int A

which bounds no disk in A . Then C &eparates A “into components Bl’

B2 such that Bl_U C .and B2 v C are annuli.



3. Sliding Curves on Spheres.

3.1). We will often need to 'move' or 'deform' curves in E3 . This
will be done by sliding the curves on convenient spheres, disks and
annuli in E3 . The sort of thing that may be encountered is shown in

fig. 1. A double ended lasso has loops p , q and 'middle' z . We

-

may want to push z - over to the position of =z in the figure or expand

.p so that it looks like p“ . This can be done with a homeomorphism

3 3 . - ;
H: E > E which carries, say, 2z onto =z and can thus be said to

1

move 'z to z”'.
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‘Suppose pU q Uz lies on a disk AC E3 . We ask what properties the

homeomorphisﬁ -H should have in order to reflect the intuitive idea of
sliding z to z° on A while keeping pu q fiked. One way to do
thié would be to construct a new disk D C A (see fig. 2) so that D
contains‘ z Uz” and misses p and ¢q except where they hit z U z”7 .
Then we could require that H carry 2z onto z~ ; H[D] = D , and that
H be the identity on A - D and on "Bd D ,.(thus H will fi¥ pVv q).
It seems a good idea to specify a number of standard moves, prove that
they can always be made and stick to these in the sequel. When, as
commonly happens, an arc or loop moves only a short distance and has
explicit initial and final locations, then our idea of 'standard moves'
is probably too formal. However our standard moves are intended for the
-case  that the initial position of the-set is -unknown. In this case the
-existence of the'required move is less obvious, especially_whén, as in
§5, Th 6 , a base point must be held fixed during the move. If S is a

- sphere with n -holes in E3 , then a collar of S 1is the image of

an embedding h of S x [-1,1] dinto E3 so that h(x,0) = x.. Evidently

a collar of S may not exist (S could be wild). A set upon which a 1‘ 

collar has been constructed is called a collared set. Note that a collar

of S 4is not a neighbourhood of §S .




(3;2)f' A- B~ and B” -moves.

We give three standard moves in Theorems- 1 and 2 .-

" ‘Theorem 1. Let D be a disk in E3 , J a collar of /D
and a”,.a two arcs which have common end points and lie in Int D
except for these end points, which lie in Bd D . Then there is a

homeomorphism A(a,a”,D,J) of E3 onto itself which carries -a onto

-a”y, D onto itself, and which fixes E3 - J.

We call A(a,a”,D,J) 'the A-move' and say that A(a,a”,D,J)
moves a to =<a” . (Of course the fact that a moves to a” is only
one of a nﬁmber'of.things that have to be kept in mind. We write the

move as a function of D and J to emphasize that the trick of using

the move depends on the right definition of D and J).

Theorem 2. Let A be an annulus in E3 . Let ¢, ¢, be

simple closed curves which lie in the interior of A and bound ﬁo disks
in A . Let‘ Q be a collar of A . Then there is a homeomorphism
B(c,c”,A,Q) , also called a B-move, of ,EB onto itself Which,carfies

c onto ¢, A onto-itself, and which fixes Bd Q and E3 - Q. If,
in addition, ¢ and ¢~ have a common base point y , then there is

a homeomorphism B”(c,c”,A,Q) and the folloWing additional.propertyi if
h is the embedding associated with Q ,vso that- Q = h[Ax [=1,1]] , then

the B -move fixes y and in fact all of hl[y » [-1,1]] .

The B“move is a move 'keeping the base point fixed'. One could

probably fix the base point by providing that ¢ uU ¢” eould hit Bd A < Bd Q
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so.that y € Bd Q "(the B-move does nﬁtApermit this), however the B -move
as given above fits the intended applications better and is .easier to
prove. We will give an example which shows why we want the B“~move to
fiﬁ h[y;#*[—l;l]] . Fig. 3 shows c; ¢’y A, and an arc auU b such
that a misses A and b 1is a straight arc perpendicular to A . We
want to move ¢ to rc” whilé leaving é Ub fixed. We do this with

a B "-move B’(c,cf,y,A,Q): in which Q is defined so that all points
of Q lie near A (i.e. for x g A, h[k x [-1,1]] is short) and so
that each arc h[x x [-1,1]] with x € A is perpendicuiar to  A .. For
a sufficiently.'thin' Q , the B"-move will fix a because ac E3 -Q ;
and b will be fixed because b 1lies in "h[y x [-1,1]] wherever it
hits. Q. Evidently the utility of the B“-move is limited. -However
subsequent use of the B“-move will be very much along the lines of this

example.

4, The Phragmen-Brouwer Properties. The Zoretti Theorem.

The Phragmen-Brouwer Properties are usually given for the n-
sphere, but hold also on a disk. We quote from Wilder, [I, II 4.,1]. Let
S be a locally connected metric space. Then the following properties

of S are equivalent.

(4.11). If A, B are disjoint, closed subsets of S, and x,y € S
such that neither A nor B separates x and y in S , then
AU B does not separate x and y -in S..  (By 'X separates x and

y in S' dis meant ''Xx and y are in different components of S - X').

(4.12). If S =AU B, where A, B are closed and connected, then
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AN B is connected.

(4.13). If A, B .are disjoint closed subsets of S and ae A,
b € B, then there exists a closed connected subset C of S - (AU B)

which separates a and b .

_Theorem II 4.12 of '[1] states that these properties are equiv-
alent in a locally connected metric space. From VII, 9.3 of [1] (note
also 9.2), a disk D will have properties (4.11), (4.12), (4.13), if

its first Betti number is zero; thus (4.11) ... (4.13) hold on D .

(4.2). We get the following important working theorems from (4.11).

These theorems resemble Theorems 6 and 7 of [12].

Theorem 3. Let D be a 2-cell in E3 and F F closed

1’ 72
disjoint subsets of - E3 . Let -pxq, pyq be arcs in D which share the

end points p and q , and such that até PxXq misses 'Fl s arc pyq

misses F2 . Then there exists an arc pzq. with end points p, q such

that arc pzqc D - Fl - F2 .

Theorem 4. Let D,'Fl, F2, Ps; 4, .arcs pxq, pyq be defined

as in Th 3 except that arc px U arc yq misses F arc py U arc xq

1

misses"‘F2 . Then there exists an arc pzq D with end points p, q,

such that arc misses either Fl,"‘or F2 .

Proofs of Th 3. and Th 4. Since D ig simply connected; pkq
and pyq- are homotopic in D by a homotopy which fixes p and q .
» Using this fact, the proofs of Th 6 and Th 7 of [12] may be used word
for word t0'p;ov§"Th‘3 "and Th &4 respectively;-reading D for M in

[12] 0O,
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(4.4). The Plane Separation Theorem and the Zoretti Theorem.

We quote these results, slightly simplified, from [10,vI §31:

(4.4i). _ The Plane Seﬁaratién Theorem. Let A , B be compact sets in
E2 which intersect in at most 6ne point. Let a €A ~B,be B~-A,
and let € > 0 . Then there is a simple closed curve J which separates
a and b in Ez , lies within an e4neighbourhood of A ; and misses

A UB except possibly at the point AN B .

(4.42). The Zoretti Theorem. If K is a component of a compact set M
in the plane, then there is a simple closed curve J whose interior
contains K , which misses M , and which lies in an e-neighbourhood

-of E .

5. Annulus Dodging Theorems.

Suppose A 1is an annulus and F 1is a closed set in A . When
can we say that a simple closed curve which looks like c¢ in fig. 4
exists so as to miss F ? The answer is about what would be expected. We

say that 'F__bridgés A . iff the two boundary components of A are in the

same component of Bd AU F , or equivalently, iff some component of F

meets both boundary components of A .,

We will prove the equivalence. Let the boundary compoﬁents'of A
be £ and m ; Dt is obvious: If no component of F meets both £
and m; then no céﬁponent of F meets both £/ F and vﬁ AIF, and by 1(9.3)
of [le\(taking A; \ﬁ, K to be £0n F;_ mn F, F), there is a separation
of - F dinto compacta EK?‘ Fm such that FZ meets only = L, Fm meets only

m in Bd A . Evidently this denies the existence of a connected subset of
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Fu £ VYm which meets both £ and m .

(5.1). If F fails.to bridge A,. then there is a simple closed curve

¢ in Int A . such that c . bounds no disk in A and c¢ .misses F .

Proof: We can assume that. A is the set '1 §_x2 + yz S 2 . in o .

Let” D be the set 'x2 +'y2‘§_1 . Let..£, m be the boundary components
2 2 ‘

22 +y =1, x + y2 = Z.respectively;-

Consider the component "K of £y m v F which contains (the
connected set) ‘Z.;.'ThE'Setl'Z(J mvuv¥F is clearly\compact; and by the
Zoretti theorem (4;4.2).there is a simple closed curve c¢ which lies
in E2 -F~42 ~-m, contains K in its interior and lies in an
e-neighbourhood of K . We Wili show that ¢ has the properties required
byx(S.l)l To see that ¢ Int A : K contains "£  and misses m;_ since
otherwise F. bridges A : This K< (A D) ~m= Int(AV D) . Since
K is compact; K has an e=neiéhbburhobd in Int(A v D); and we can
assume- that c¢ lies in this neighbourhood. Thus c ¢ Int(Av D), But
¢ encloses K> £ and hence D (by (2.6)); therefore. c ¢ Int(AvV D) - D

= Int A . We know that c¢ bounds no disk in A because, from the

Schoenflies theorem, c¢ bounds just one disk in E2 « This disk is -Int ¢
which is not a subset of A since it contains D . Since c¢ misses F

(by construction), lies in Int A, and bounds no disk in A,  the proof

of (5.1) is complete. ],

Remark: the converse of 5.1 is true and easily proved.
We will look.at some generalizations, the choice being influenced

by later applications.
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‘Theorem 5. Let _Fl, F2 be disjoint closed sets in the annulus
A . If each of Fl, _F2 fails to bridge A , then there is a simple

closed curve ¢ in Int A - Fl - F2 such that ¢ Dbounds no disk in A .

Proof: This result is trivial once we show that if neither of Fl s

F. bridges A , then Fl ) F2 fails to bridge A . Once this is done,

2

the proof of Th. 5 is completed by applying (5.1) taking F to be FltJ F2 .

To see that Fl U F2 fails to bridge A : since Fl does not bridge A

no component of £ VU m y F1 interseets both £ and m , (for otherwise

]

some component . of £ U m U Fl would contain. £ and m). By I (9.3) of

[10], taking A, B, K in that theorem tobe £, m, Lumvu Fios

there is a separation of £ v m v Fl into disjoint compact sets U1 s
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U, so that Lc U mcU Similarly there is a separation of

2 1’ 2!
£umu F2 into disjoint compact sets V1 s V2 , with [£Zc Vl »
m < V2 . It is easily checked that Ul«J Vl .misses U2 v V2 . Evidently
Lvmv Fl U F2 may be separated into the disjoint closed sets Ul J Vl :
and U, u v, with £ ¢ Ul v Vl , mMC U2 v, . Therefore £ and m
are not in the same component of £ vV m u_Fl v F2 and Fl v F2 fails to

bridge A 3,

We remark that 'Fl v FZ‘ may be replaced by.a finite union of

disjoint closeéd sets with a few trivial changes in the proof. Theorem

5 is false for a non-compact union of sets F FZ’ «e. o Fig. 5 shows

l,

A and a collection F such that A dis the set 1 < r 5_2

1 Fpooeee

in polar coordinates and for 1 =1, 2, 3, ... , Fi is a subset of the

ray 6 = 1/i . Although each 'Fi does not bridge A (mor does the union

Cs

Fi) , the curve ¢ in Th. 5 cannot be constructed. '

e
It

1

We next look at the case whetre the cuxve ¢ is constructed as
in Th. 5 but with the further property that ¢ contains a given:base

F

point x'. In this case c¢ cannot in general miss either of Fl,;_ 9

as Fig, 6  shows.
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We will give a characterization of those placements of x , Fl’

FZ’ so that ¢ can be made to miss one of Fl’ Fz . We say that a

simple closed curve c¢ with base point x has Property “F (read

'property not - P') with respect to closed sets 'Fl’ F2 iff one of the

following is true:

v P(b): There exists a point y & ¢ - x

vP(a): ¢ misses on of F

and a decomposition of ¢ into

arcg 13 Co» with v G =c

and ¢, nc, = {x,y} , such that

1
F

misses cys F2 misses (see

1
fig. 7).

)

This is an ugly and awkward definition. An equivalent and'prettier
statement is 'c has Property % P iff any point in ¢ - x may be joined to
x by an arc which misses one of Fl’ F2' ; however we will not prove this,

and we will use the earlier statement exclusively. The odd name of this

f:g 7,



- 16 -

property is intended to recall Bing's Property P in [12]. This property
is defined on double ended lassos (see fig. 8). Later we will define
Property ~ P on double ended lassos and it will turn out that the loops
of such lassos, with the obvious base points, have Property VP in the
present sense. The.nekt theorem says that if ¢ with base point x has
Property " P , then there is a loop ¢” which behaves like ¢ and misses

F, .

one of Fl, 9

" 'Theorem 6. Let A, Fl’ F2 .be defined as in Th. 5, including

the condition that neither Fl nor F2 bridges A . Let x ¢Int A .

Let ¢ be a simple closed curve which lies in Int A . and bounds no disk
in A and contains x . If ¢ has Property VP with respect to X%,

El’ E then .there exists .a .simple .closed .curve .¢“ which lies in Int A,

2.,

F .

bounds no disk in A , has base point x , and misses one of Fl’ 9

This result cannot be improved so as to allow us to specify which
of Fl’ F2 is to be missed by ¢ . Fig. 9 shows a case where ¢” in
Th. 6 cannot be made to miss F2 although Fl v F2 fails to bridge A

and c¢ exists with Property “ P . (There are simpler counter examples in

$

which only F, hits ¢ . One of these may be derived by removing F

2 1

Fip 9.
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from fig. 9. However fig 9 shows that matters do not improve if we insist

that both 'Fl and F2 hit. c..)

Proof of Th b. We can assume that A 1is the set 1 j_xz + y2 <2
in E2 . The inner and outer boundary components of A will be called

£ and m respectively. Since neither of F F bridges A , it

1 2
follows from Th 5 that there is a simple closed curve e CIIntAA which
bounds no disk in A and misses Fl(J F2 . If x€& e , then the proof

is completed by letting e be ¢’ ; thus we assume that x ¢ e ; We make
the further assumption that x € Int e ; it -turns out that fhis restriction
is easy to remove. Assuming that x & Int e , we construct c¢” by first
defining a2 lasso Y as shown in fig 10. The loop of Y is either e or
a curve which behaves like e and is constructed similarly, while the
'handle' of Y joins the loop to x . The whole of Y misses one of

- .

F2 . The curve ¢ 1lies near Y and meets x as shown in fig 11.

l’

Construction of Y . The lasso Y consists of the union of a
simple closed curve r and an arc s , and is constructed so as to have

the following properties:
Y C Int A,

2,

the circle r bounds no disk in A ,

Y misses one of ZFl, F

the end points of s are x and a point z € r ,

and s - z misses r .

The construction of Y is divided into two cases.

Case one: e meets c¢ - x . We assume that c¢ satisfies Prop-

erty &ﬂP(b), since if ¢ satisfies Property ~ P(a), we immediately let
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-

¢ ='¢ . Thuis we take c to be the union of arcs ¢, which meet only

€10 %

‘at their end points, and for 1 =1, 2,. c; misses Fi . If. e meets, say,

¢y (it will do no harm if e meets both 'ci), then use (2.5) to construct

an arc s which joins x and enN s and lies so near Cl that s .misses

Fl' (or take the obvious sub-arc of <c.). Let r=e, Y=rv s . To check

1
that Y has the required properties; Y misses one of Fl’ F2 because s
misses one of ‘Fl, F2_ and r misses both; r = & bounds no disk in A by
constructiony and Y ¢ Int A because ev ¢ CInt A . Finally, from (2,1),

we ‘can assume that s meets r only at a single point . z .

Case two: e misses c¢ . As before, we assume that c¢ has Pro~

perty n P(b) . Outline of proof: <3a) As usual we take c¢ to be the union

of arcs s c2; let Kl be ¢y plus those components of F2 which hit

¢y and let K2 be ¢y plus those components of Fl which - hit Cy -

KllJ K2 is a component of c U Fl-u F2 . b) A '"Zoretti curve' r is constru~-
cted so that r misses c¢ U Fl ) FZ’ lies in:. Int A, encloses Kltj KZ’ and

bounds no disk in A . ¢) Some care needs to be taken to attach the tail s
to r so that s vmisses one of the Fi" Construct a disk d C Int A with

centre on r, (see fig 12) so that d is big enough to hit Kl(J K2 but small

enough to miss one Fi . This is managed by a careful choice of the € assoc-

iated with the Zoretti curve. d) . There is an arc s near Kl v K2 ' d which

. has the required properties.

Details of proof.

a) Let K1 =cy plus those components of F2 which hit ¢

which hit ¢

l .

Let K, = ¢

2 We will show

2 _plus those components of Fl 9
that Kl(J K2 is a component of ¢ VU Fl v F2 .

of cu Fl v F2 which contains the connected set Kl(J K

Let K be the component

29 and suppose



- 19 -

that some point p exists in K - (chj K2) . Then p 1lies in one of

‘Fy» F,, say F, . Since ;)¢ K, U K,, no component of F, meets both

p and ¢ N F1 . By -I(9.3) of [10], there is a separation of Fl into
compacta Ul’ U2 containing . c ﬂ.Fl and p respectively. Evidently

U2 _misses not only Ul but F2 _and the whole of ¢ ; thus Ul.g F2 Ve

is a compactum disjoint from Ué;' and there is therefore a separation of

c U Fl ) F2 = Ul v U2 U oc U F2 into compacta containing ¢ 'and p severally.

This denies the assumption that p lies with ¢ 1in a connected subset of

chlu Fz.

b) Since x € Int e and e misses c UV FluF,y all of

2’

Kl v K2 lies in - Int e by the usual argument. Since KlLJ K2 is a com~-

ponent of c v Fl v F2 we can construct a Zoretti curve r which misses

c vV F1 U F2, encloses. K1 U,Kz, and lies withing a distance ¢ of Kl v K2 .

The following argument shows that r bounds no disk in A : since ¢ bounds

no disk in A, Int ¢, which is a disk, must meet points of E2 - A ., Since
r encloses K1 v Kz Dc, by (2.6) r. encloses Int ¢ . Hence the unique
disk bounded by r meets points not in A . To see that r C Int A : we

2
saw that ¢ encloses points of E - A ., These points cannot be in Ext m

by (2.6), since m encloses Int A >c . Hence Int ¢ meets Int £, and

by a connectedness argument, since c¢ misses Int £, Int ¢ @Int £ .

Since r encloses Int c¢, r misses Int £ . Since r 1lies close to the ©
compactum Kl v K2 C Int m, r can be assumed to lie in Int m . Therefore

r C Int m - Intf= Int A .

c) We construct a (closed)diék of radius 2e with.centre aﬂywhere

on r . Clearly. 4 will hit 'Kllj’Kz; We show.that - d ¢ Int A by showing



that dc Int m and d misses Int £ . The distance e could have been
chosen. so that 4e¢ (i;é;f the diameter of d) is less than the distance
‘separating. ¢ and Int ﬂ;- and the distance separating Kl(J K2 and m;

and we assume that this was done.(the last distance is positive because

.K1 v K2 is .compact and lies in Iqtfm).~ Since d hits- Kl(J KZ; dCIntm
by the choice of e . If d hits EEE—Z, then d must also hit c,

since points of dAn r 1lie in the‘eiterior of ¢ which encloses. Int Z

as we saw. By the choice of e, d cannot meet both ¢ and Int £; thus

d misses Int £ .

. s kS - e . - . N - .
We.also assume that © was chosen so. that for. i = 1, 2, &4e is less
than the distance separating Ki from Fi .. The disk d must hit one of

Ki» K,, say K . (it does no harm if d _hits both Ki)' Since d hits

Kl’ d misses F1 since otherwise" Fl would be closer to Kl than the

diameter of d .

d) The continuum Kl(J d meets x and r and misses Fl .

Using (2.5), let s be an arc in Int A which joins. x and r and lies

SO near K1 v d that s misses Fl . {(note that although K1

miss Bd A, (2.5) 'providéséthat s misses Bd A). To see that Y =r ¥ s

may not

has the required properties: r U s C Int A by construction; Y misses one .
of Fl, F2 because s misses one Fi and r misses both. The circle
r bounds no disk in A as we saw in b); and finally we can assume that

s has end points x and "z g€ r with rns -z =¢g by (2.1).

ﬁ’ihié-completééffhe construction, of Y ~assuming that x € Int e .
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d

Construction of ¢ . We maintain the assumption that x € Int e

during this construction.. We will first construct a continuum a € A

which joins Int K' to k so that a meets Y only at x . As suggested
by fig 13, the plane separation theorem can then be used to separate Y - x
and Int LU a - x . Construction of a : since r encloses ¢, x ¢ Int r.
Let Q be the open set Int r - s . Q 1is connected because s - r does
not disconnect Int r ([10, VI(3.4)]). Evidently Bd Q = Y, and since

each of r, s -is a 1lc continuum, so is Y . Using (2.4), comnnect x to

a point in Int £ by an arc a which lies in Q except for x . Since

Y misses Int £ , Y and Int £ ¢ a are continua in Int m which meet
only at the point X . MWe now use (4.41) to separate Y - x and

(fHEfZ V a) = x by a circle ¢” which lies so close to Y that it misses
one of Fl, F2 . Evidently ¢“ must pass through x (since otherwise

(Int £V a) —x and Y - x are subsets of a connected set in E2 - c’).

We know that c¢” C Int A because c¢c” misses Int £ by construction and
¢ 1lies so near Y ¢ Int m that c” € Int m. It remains to show that
- ¢ bounds no disk in A . To see this: ~we know that r encloses £ .

This means that c¢” cannot enclose ¥, since this would imply that

Int c"cru i (from (2.6)), whereas we know that c¢~” separates r and £ .
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Thus Ext ¢®*D> r and Int ¢”> £ . The fact that Int ¢”> £ implies

that c¢® bounds no disk in A by . the usual argument.

The construction of 'c¢” is now complete except that.the restriction
x € Int e must be removed. Since the proof is easy if x& e, we only
look at the case that x€¢ .Ext e . Since we know that A is homeomorphic

to a nice annulus, it is easy to construct a homeomorphism ¢ of A onto

il

jtself which exchanges £ and m, df:e. ¢[L] =m, ¢[m] = £ . Then

¢[A 7 Ext e] = Int ¢[el] n A and ¢[A N Int e] = Ext ¢[el' N A, using the
fact that A NExt e, A NInt e are connected to m, £ respectively in
A -e . Then if x € Ext e, apply earlier arguments to ¢[A], using the

fact that ¢(x) € Int'¢[e]; .etc;!j,

Theorem 7. Let A, Fl, F2 be defined as in Th 5 and Th 6

bridges - A while F does not. Let c¢ be a simple

except that F 9

1

closed curve in Int A which bounds no disk in A and contains the base

point x . Then if ¢ has Property v P with respect . to x, Fl F2,

there exists a simple closed curve c¢” which meets x, lies in Int A,

bounds no disk in A, and misses F2 o T

Th 7 is proved in the same way as Th 6. At first glance'Ohe
might think that one of Th 6, Th 7 is stronger than the other; but in fact
this is not true. If" Fl, F2 - fatl to bridge A, one might wish to add

pieces to, say, F, so that the enlarged F

1 would bridge A; this would

1

obtain the conclusion of Th 7 which is stronger than that of Th 6 (since
it predicts which Fi is hit by c¢”). However it may not be possible to do

this (Flu F, might be a number of circles concentric with m in A).

2

Proof of Th 7. Use (5.1) with F taken to be F, to conmstruct
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a simple closed curve e which lies in Int A, misses _F2’ and - bounds

no disk in A ; If e meets x;,,then e is the required c”. If

X #le; assume that k € Int e as before. Since e bounds no disk in

A, e separates £ vapd' m by (2.7); in particular e meets some component
k of 'Fl which hits both £ and m .(there must be at least one since

Fl‘ bridges A). For similar reasons, c¢ meets the same component k .-

Let y/€ kM e . Because c¢ has Propertyn P, there is an arc b C ¢

such that b misses one of Fl’ Fz and connects a point of k to x .
Since k C Fl’ evidently bu k misses F2 . Since b U k is a continuum
which connects. y7& e to x and misses F2 (as does e), we can construct

the lasso Y as in the proof of Th 6, reading bU k for cu d and e

for r . In the proof of Th'6, the curve r misses Flnu F2, whereas

- -

- here e misses»jﬁst Fz;- however following the procedure of the proof of

Th 6 will yield a lasso Y which misses F2 « The lasso Y 1is used
to construct c¢” precisely as in the proof of Th 6, keeping in mind the

fact that Y misses F2, so that the resulting c¢” also misses F2 .

The assumption that x € Int ¢ 1is removed just as in the proof of Th 6 [1.
: :



CHAPTER TWO: BING'S DOGBONE SPACE AND CURTIS' :CONJECTURE.

1. An upper sémicontinuous décomposition G of E3 into combact sets
(or simply a déEompoéition-of ,EB) ié a~coliection-of’disjoint compact
sets - A of E3 ,such-that'the‘uniﬁn of the elements of theﬂdecompésition
is .E3, and‘eéch element A € G possesses a system of open
- neighbourhoods which are unions of elements of G ; "The decomposition
space G associated with G is a topological space in which each point
is as element A € G; and the open sets are just those subsets of G
the union.of whose eiementS'isyopen when considered as subset of E3 ;
Thus each point A of G has a system of neighbourhoods each of which
- is open 'both in G and in 'E3;L. One can use this intuitive idea to
_get a certain geometric grasp of the topology of G simply by remembering
that 'some points are sets' and keeping an eye on the neighbourhoods; |
for example one often does geometry on a torus or Klein boftlevby.looking
at the equivalent decomposition space of a rectangle 'with certain sides
identified". If an element A € G contains more than ; ene point of E3,
- theh_ A is called a big element of G . If A is a singleton; then

A is a small element of G . In G, the corresponding points are called
big and small points. The decompositions G in which we will be interested
are all pointlike, which is to say that the complement of each A & G is
topologically equivalent.to that of a point; in particular, each A 1is
connected. We definitely assume some acquaintance with these ideas and do
not regard the present text as an adequate introduction. The classical
approach to decomposifions and decomposition spaces may be found in Ch VII
of [10]. Our approach will be more along the lines of [3;56]. We will
use two main classical results: 1) an upper semicontinuous decomposition

space (i.e. the decomposition space associated with an upper semicontinuous

. CoR3 . s s
decomposition) of E” is a separable metric space. ii) there is an

24
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obvious way of expressing G 'as a quotient space. In thiS case the’
quotient topology turmns .out to be the decomposition space topology, and
the canonical mapping ¢ of the quotient space carries each A€ G onto
the corresponding point ¢[A] in G . We will often write A* for

ofA] . if A 1is a subset of E3 ; In the sequel, 'decomposition space'

will mean 'pointlike upper semi continuous decomposition space of E3J

An important question is: if G is a decomposition space;
is G homeomorphic to E3?. That G is homeomorphic to E3“i3'wé£dﬁéil;s
conjecture (in [8]) énd is known to be false. R. H. Bing showed this in
1957 with a celebrated example ([12]) which reinforced everyone's worst
prejudices against the analytic topology. of E3 . In Bing's example, the
dogbone space of our title, most of the eleménts of the decomposition are
small. Each big element is a tame arc (so that the example refutes a very
strong form of Wardwell's conjecture), and the big points in the -decompo-

sition space form a totally disconnected set.

Detailed construction of the dogbone decomposition.

We will describe an infinite sequence of compact sets whose
elements intersect to form the set of big elements of the dogbone decom-
position G . Our construction differs slightly from Bing's, but we
assume an acquaintance with the original - construction in [12] and will
not prove, for example, that the various embeddings to be described can

be assumed to be polyhedral.

Dogbone space takes its name from the distinctive shape of the

double handlecube A depicted in fig l6a. We imagine A imbedded in

E3 . A path £ < Int A, which makes one circuit of the circle marked £
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in fig 16a is called the upper eye of A . A path m < Int A which makes
one circuit of the curve marked’ m in the figure is callédithe'lower eye
of A (we imagine the dogbone placed vertically in E3  so that it makes
sense to talk about 'upper' and flower'.here); One could imagine A to
be a closéd r-neighbourhood of a planar double ended lasso consisting of
the eyes £ and m 1laid.out as nice circles plus a straight connecting
arc a (with r -of course, taken sufficiently small; say less than one-
third -of the commoﬁ diameter of the nice circles £ and m). We call

£ umuva the céntre of A . The centre of a dogbone will not be impor-
tant in this chapter (but will be needed in Chapters III, IV). The idea
of A as an r-neighbourhood of its centre k is introduced mainly to
pin down the embedding of k in A; we usually draw k and A as in
fig 16b. Fig 17 shows four short solid «cylinders Bl, Bz;- Bl’ B2,
which are subsets of A and cut into the eyes of A . as the figure sug-

1° B2 from A

gests. The removal of one of Bl, B2 and one of B
leaves a set whose closure is a cube. A dogbone can be imagined in the
topologically equivalent form of a thick double ended lasso és shown in
fig 18. 1In a sense, we are pictorially confusing the dogbone with its

centre. Let A A A ’A4 be four dogbones embedded as shown in

12 S20 732

fig 19 by embeddings hj: A~>A, 3=1, 2, 3, &4 so that the /

Aj = hj[A] are mutually disjoint'and lie in Int A . In fig 19, two
double twisted bands Bl and Bl are placed so that 31(611 lies in the
1 2

interior of the upper (lower) component of A - B1 - B2 -B"~B . In

the obvious‘way, the centre of Aj is called kj, j=1, 2, 3, 4, with

upper loop _Zj and lower loop mj. The'ﬁﬂj are placed so as to lie as

parallels on Bl . The connecting arcs :aj are laid out in a peculiar
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way which is characteristic of the dogbone construction. Using toroidal
coordinates (which we. recall in fig 20), we could define Bl and Bl to
be appropriate translations of the set r <1, 6 = ¢ and thus construct
a band with an even double twist. However the bands in the drawing are

translations of the set

27

L}

r<1, 6=0: 7m/3<%¢

IA

r<l, 66: 0 < ¢ < 1/3

@
1

This gives a "flatter' band and a better picture. Another concession to
art appreciation is the placing of Bl and Bl so that their 'flat'
parts lie on the plane of k . 'This necessftates a right angled bend in

1 The additional conditions are

the aj near Bl and again near B8
imposed on a, that a, misses Bl v By -eicept at a N Zj and
aj n mj, and that the part of aj, lying within a distance & of
Bl(Bl) consists of a single straight arc perpendicular to Bl(Bl) . Note

" that the ordér of Kj's on Bl

is ﬂl’ KZ, £3, ﬂ4 while the order of
T . . . ’
mj s on Bl, due to the unusual embedding of the Aj’ is my, my, my, m,,

The Bi and B~ locate the Aj in the following way (see fig. 21):

. . . 2
A1 lies in Int(A - B - BZ)
s . 2
AZ' lies in Int(A - B - Bl)
A3 lies in Int(A - Bl - Bz)
A, lies in Int (A - B1 - B.)
4 1
The closure of the component of A S B, - B, which contains

1 . . -
B8 ('Bl)' is called Kl(Kz) . Finally we let A1U A2 v A3U A4 _@l .
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Now since each dogbone IAj is homeomorphic.to A, we can

embed four dogbones Ajl’ 'Aj2’ 'Aj3”'Aj4
are embedded in A . - We could write'-'Ajk

16 Ajk’ j, 'k, chosen from 1, 2, 3, 4, is-called'@l2 . The construction

in each.'Ai' just as thefﬂAj

= hjhk[A] . The union of the

proceeds as in [12] with the definition of 64 'Aij = hjhkhﬂlA] where

hjhth embeds A in A K just as Aﬂ is embedded in A . The union

]
-of the 64 Ajkﬁ' is called 623 . The construction proceeds in this way,
defining at each m-th stage 4" -dogbones whose union is CZ; . Let
the intersection A nﬂl n @2 0@3/1 ++» = Ay . The components of AO
are compact and are defined to be the big elements of G while the re-

maining points of E3 are the small elements. The dogbone space D is

the associated decomposition space of G .

Remark 1. In klﬂl ce. U k4,‘ each upper (lower) eye fails to shrink to
a point-in the complement of any otheryupper (lower)_eye. :This is easily

checked using, say, Ch XV of [6].

Remark 2. We are sure that the construction of D here iS the same as
that given by Bing in [12]. In the Appendi% we show a deformation of the
upper part\éf klu cee Y k4 to look like the upper part of Bing's con-
struction. We think that the reader will see the plausiﬁility; but we
- give no strict proof that our embedding of AlL/ ees U A4 is the same

as the corresponding embedding in [12], and our attitude in this paper -

will be that Dogbone space has been redefined.

Remark 3. We know little about the hj except that they embed A in
certain ways. . We cannot, for example be sure of the location of the

.64 hjhkhz[k]A}.f However the various subsets of Ajkﬂ are images of sub-
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sets of.uAij are images of subsets of A  and continue to be related
.to each other in all the'Wayé which are preserved by a homeomorphism of

A; and we will usually apply results obtained for A to any A

jke..r
‘without further justification. Note that :kj has a property which is
not preserved by homeomorphism: a is .perpendicular to Bl or 8B

| "1
wherever it lies near these sets. This property is lost after the first
stage of the dogbone construction. This does not prevent the construction
of D7, but farther comment will be required when we use the property in

Chapters III and IV.

Remark 4. Partly out of adherence to the traditional representation in
[3] and partly because the use of 61 and 51 will not become apparent
until Ch III (apart from the fact that they cause the eyes to link to-
gether) we will often use the picture in fig 22-;9 describe the embedding
of kltl ...lkaa_ in A . We will uée pictures 1like fig 22 in which the
crossovers of the links are ignored, whenever fhe exact manner of linking
is unimportant. In this chapter, the'only thing Which‘needs to be kept
in mind concerning tﬁe ligking of‘tbe Zj and =gj is that no Zj(mj)

will shfink to a point in the complement of any other £ ,(mj,) . Another

3
pictorial abbreviation shown in fig 22 is the omission of much of the
boundary of A, even though the figure purports to describe the embedding

of the four centres in A . As in fig 22, we will often show only the

holes of A which will be represented by the symbol & .

Intuitively it -often helps to see a deéomposition-space as
E3 ‘with certain sets identified. Ofe typically finds the small elements

distributed so that it is easy to.define a neighbourhood system for the
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big elements. Thus a lot can be.learned about the topology of the decom—
position space by looking at elements of the associated decomposition.

However if we try to approach D in this way, we find that the components

of A which constitute the big elements of .Gy are hard to see. To

O’
find a big element, note that each big element of G is the limit of a
sequence of dogbones A, .Aj, Ajk’ e
may be specified by an infinite sequence j, k, ... of integers chosen

. Evidently each big element

from 1, 2, 3, 4; and the A, Aj’ A constitute a neighbourhood

1k’ PN ‘
system of this big element. Because A 1is compact, we know that if A
is a big element of G, then if A lies in an open set .V; some member
Ajk...r of the neighbourhood system lies in V.. (see I; ?.2 of [10]). It
is known that each big element of G is a tame arc (see [12,. §2]). The
canonical mapping ¢ is a local homeomorphism near small elements of

G (because AO is compact) but not of course in general. The fact that
¢ 1is monotone means that ¢_l preserves connectedpess (VIII (2.2) of
[10]). Simple conhectivity properties are more complicated. As will
appear later, any open set V*¥< D which lies in A* and contains a

big point of 0 cannot be simply connected. We must expect a proof of
this property to be delicate since it is known that D is-locally simply
connected. ([5]). (Roughly, what happens is that any mapping of Sl

into small neighbourhood V* of a big point of 0 will shrink to a point
in the sécond smallest dogbone which contains V* ; Thus oﬁe.can satisfy
the definition of"locally simply connected' by taking a smaller neigh-
bourhood' V* although V* itself will never be simply connected;) \

For the rest of this section we will prove a result which re-

lates simple connectivity in D to the same property in E3. A mapping
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f of Sl into a space X shrinks to a point in X iff £ is homo-
topic in X to a constant mapping or represents the idéntity in ﬂl(X)
for an appropriate base point. A third equivalent statement is: consider
S1 to be the boundary of a disk A :  then f:’S1 + X . shrinks to a point

iff f can be extended to a mapping-'E. of A into X .

1.1). Let V* be an open.set in D . If f;Sl,+ V*# so that rng £
consists of small points,  then ¢—1f will shrink to a point in V, where

¢ 1is the canonical mapping of 'E3 onto D .

Corollary: if- V* is simply connected then so is V . o

Lo We céﬁéuéegthi§“re§ﬁlﬁﬁ£§ééxéﬁiﬁéASEfé~tV*!fwﬁiEh;We'éﬁspect not to
be simply;copnécted,‘by lookiﬁg at ;héﬁéééoéiatea“Vé:AE3:. Thémiésﬁlt (1:1)
-and its éoroilary are not new and aré pérticulér cases éﬁzﬁemﬁa 1 bf_IZJ: . The
pfgof.the;(l.;):imtroduqes4meﬁhbéérwhigh;ﬁill,reéuf fréqﬁentlygiﬁ‘éﬁe sequel, and
we will complicate the (pretty.easy) proof slightly by introducing more

generality in the method than is needed for the present argument.

Outline of proof. a) Assume that f maps the boundary of a

disk A into V#*# . Since £ shrinks to a point, there is a mapping

f:A > V* such that ledA = f . Recall that AS is the union of the
big points of 0 . The set f_l[A*]. is compact. Let Q be a disk with

0
holes such that Q< A, the outer boundary of Q 1is BdA, and the

(open) holes of Q contain f‘&ﬁgl.‘ b) The mapping f maps Q dinto
small points of D; thus '¢—IE = EW on Q . Let the (open) holes of

_ L L -1 .
Q be u cee U For each u extend ¢ led u to a mapping Yy

1’

to a point in a certain cube in V .

into V by shrinking ¢—IE|Bd u
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c) Glue the Yp» T =1, «c0on, to ¢_IEI to form a mapping of 4 into

Q
V.

Details of proof. . a)--We know. that ~E:A 4'0*"édﬁihat;/f ='?WBdA. Since
Ao is compact, so is -Ag anduf?_l[Ag]. Note that ?ﬁl[Ag] misses BdA
bgcause' f[BdA] consists of small points, from the hypothesis. To obtain

~ . the disk with holes “Q,  we use the-

following result which will be'heeded
several times in the. sequel.
’ . ~ P . 2 P ‘

(1.2) Let A be a disk in E™ and S a compact set in A . Then

there exist n disks‘4Wi, ;.. Wn\ such that W .‘A; and
. - - - : - T - e

i)-WrﬂWS=¢, r#s.

id ...‘ U .
ii) scwlu Wn
iii) Each point of Bd Wr lies withing a positive
distance € of S .
iv) If S misses BdA, then: S < Int Wl v Int Wziu oo U Int Wn,

and A - Int W, - ... - Int Wn is a disk with holes. If

1
S hits BdA, then S misses Bd Wr_— BdA for each

r=1, ... n .

Proof of (1.2). We can assume that S # @ and that A has the form of
an equilateral triangle, Triangulate A 1into a finite number of 2 -
simplexes (i.e. closed.triangular disks) whose diameter is less than

/2, and whose edges are parallel to the three sides of the big triangle
A . Note that the three vertices of A each belong to one 2 - simplex
only so that the three vertices of A cannot be cut points of any union
of 2 ~ simpleﬁes. The only properties of the 2 - simpleies which will
be used are that each 2 - simplex haé an edge of length less than ¢/2,
and if two 2 - simplexes*meet; they meet either along the whole of one

~
edge or only at a vertex. Let" S be the finite union of those 2 - simplexes
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A

which meet S . Evidently § is. lc ‘and each component of S is a

~

lc continuum. For later reference, note that S cannot meet Bd S

at a point interior to A; for assume that S meets Bd S at a vertex
v € Int A . Theh by construction of S, the entire star of v 1lies in

A ~

S and v ¢ Bd S . S. cannot meet Bd S at the interior of an edge in

Pad
~

Int A by a similar argument. We alter S to a set ;§ which has no éﬁt poi~
nts inﬁthié;way: a cut point of g'Aganno# lie>in fﬁe interiorjpf a 2-simplex
'in"g; nor in_thg inte}ipr of an gdge Eélépging #o-oﬁe“éfsiﬁpiég,<nbr_in'the
interior“of ap_gdge belonging to_tWo~2—simpléxes. Thus‘the_tut,pointé of  é
are av(finite)‘gpbset ofiﬁheré%teges. Let the Qu£prints.Be"tl,:.;pk, and

- cover each t, - with a set bs;'s';'l,:..k; Hwhich is.a_diskzbf;radiﬁsi e/6
and centre ts if tS<: Int A; and is a sémi-disk of the same centre

and radius if tg lies on BdA and is not a vertei of the big triangle

A (thus bs is a 'disk relative to A'); We do not define 'bs for the
three remaining points’of A since these points are never cut points

of S ., Note that the fbs are disjoint. Define - § to be

Sv blij eee 4B, . I;ﬂwill turn .- out_ that the Bd W?‘ are some of the

A

k
components of Bd § . We know the following fapts about § ﬁ the com-
ponents of é are lc continua and are consequently bounded apart.

Every point of é (in particular every poipt»of'}Bd éi) lies within a:
distance e of S; the boundary of '§' consiéts of the union of a finite
number of straight arcs (which are either edges of 2 - Simple#es or

edges minus.fhe.interior of one or two bS ) and a finite number of seg-
ments of circles (di.e. prgper subsets of Various' Bd bs). Such a subset

is precisely Bd bS -~ BdA interSected with a connected subset of St té;

a suitable upper bound for the number of segments is the number of bs
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times the number of subsets of 2 - Simpleies). Two straight arcs in

Bd S meet as in fig 23; a . straight arc meets a segment as in fig 24,
Segments never meet because’th.e"bS are disjoint. Evidently § has

no cut .point on its boundary and hence no cut point at alli Let the
components of §. be W7, ;.. W& ; These will be reordered so that the
first n components will lie in the disks required in (1.2). Since

each W;, a_=d1,‘...‘gg_%is.gv lﬁ continuum Wi£ﬁ>no cut ﬁéinf;iby

IV (9.3) and VI (2.5) of [10], the unbounded complementary domain of

W; is bounded by a simple closed curve which will be called c, Evid~-
ently c, © W; . Reorder the ’W; and corresponding c, 8O that -

Cys> +++ € are contained in the interior of no other circle Ca; while

each of ¢ see Cos if they exist, is contained in the interior of

n+l?

a ¢ .’ Let Wa = Int ¢, as= 1, ... m . We will show that W

1, e s e Wn

satisfy i), ii); iii), iv) of7the statement of (1.2).

Proof of i). If r # s then neither of. c.s Cg is contained

in the interior of the other. Then Int c_ N Intc =W . N W = @ by

I(1.6).

Proof of ii). S€ § =W v ... UW' . Each W ¢ Int c ,
1 m a a

a=1, ... my, since Ext c, is the unbounded complementary domain of

W"'. Hence SC W,V ...vu W . And in fact Sc W.u ...¥ W Dbecause
a 1 m 1 n

for n'+1<ac<m, c, lies in some Int c.» ¥ =1, ... n, and by

I§1.6), Int c, Wac Wr .

Proof of iii). Each Bd W_ is a c C Bd S, and we saw earlier

that all of (the closed set) §' lies near S .



Proof of iv). Take ¢ .less than the distance from (compact)
S to BdA if S misses BdA.. The rest follows from the definition
of a disk with holes, from i), and from the fact that a point of Bd §

A
and hence a point of Bd S misses- S wherever it lies in Int A [J,

We now return to -a) in the proof of (1.1). Since ”fﬁllAg]f
is compact, from (1.2). there are disks 'Wl, ...'Wn which lie in A

and such that f"l[Ag] CW, U ...UW_ and each B4 W_ lies within a

distance e of f_l[Ag] . Since f—llAg] "misses " BdA, by (1.2)iv,

the set A - Int Wl - .. — Int Wn = Q 1is a disk with holes. Let u_

be the 'holes' of Q, r=1, ... n, i.e."ur = Int Wr.
b) . Since %hl[Ag] lies in the holes u, of Q,W'f[Ql
consists only of small points. Thus. ¢‘l is a well defined mapping

3

when restricted to %IQ] and '¢—IE maps Q into VC E° . We now

lQ

find cubes in which ta shrink ¢—IETBd g ¥=1, ... n. Since

?[A]fﬁ Ag is compact and the dogbones (considered as sets in D) evid-

ently form a neighbourhood system of A%, there is a covering of

flaln Ag by‘a finite number of dogbones Jf, ves Jg each of which lies
. _ . 3
;1’ .o Jq 1n' E- . If Js’

s=1, ... q, belongs to the ‘mth stage of thé.dogbpne construction,define

in V% , Look at the corresponding J

J J

Jsl’ s2° .JS4 to be the four dogbones of the m + 1lst stage

s3?
lying in Js . Note that since JSC: V, each JS. lies in a cube MSj
which is a subset of Js,fénd,hehéé of V (if J, were the dogbone

: : - 2. - . a2
AC V then Jsl.c Msl =A - B - B2" Js2 lies in MSZ = A~ B - Bl

. etc.) Now in a) above, we could have .chosen & so small that each

Eﬁﬁa'W;] = fIBd.ur] lies in some"Jgj. (for D 1is a separable metric
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space, and there is a minimum distance in the dogbone metric separating
the compact set ETA]fW-AS . from the complement of the union of .the’ sz).

Clearly ¢_Lf[Bd ur] .is defined and lies in the union of the"JS . We

]
can assume the Jsj' are disjoint because we could have removed from the

covering J., ... J any J. which was contained in any other member
- 1 q .8

of the covering. Since ¢ﬁlf[Bd ur] .is connected and the closed sets

Jsj are separated, ¢—IE[Bd uf] . lies entirely in some one Jsj' and

¢—l§le u shrinks to a point in‘.MSjr: V .- Thus there is an extension '
r _ | S

-~ ‘_- _1_ P ; » -__

Yy of ¢ fIBd u to all of u., d.e. iy ful ¥ MSjCZ V' and

c) In view of‘theiset~theoretic definition of function we can
express the idea of 'mappings glued together' by unions of mappings.
Consider the union ¢_lf|Q v Yl}/ .;. y an. This is a well-defined
mapping of Q v dom Yy v ...‘U dom Yo T Qu uy v e v un‘ into V ‘pecause

each’mapping~in the qniqp_has.itgrimaggfig> V. and becégse whére the
domains intersect the intersection is closed and the ﬁéppings_agree on
the intersection; in fact every point df domain intersection occurs on

a Bd U where we know that Y, agrees with ¢‘l?|Bd a by construction

of Yy oo Finally we note that the new mapping ¢%IE|QiJ Y1 V... v o
agrees with ¢_1?. on .BdA € Q and is thus a homotopy which shrinks
¢-lf to a constant mapping into V . This completes the proof of (1.1) .

We will record the argument in this paragraph as a separate result,

(1.3). Let A, Wl’ . Wn .be'defined as in (1.2) including the fact

that A - Int wl = «eo = Int Wn is not neccessarily a disk with holes.
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A 3 . . 3
Let g:A - Int‘W1 - +v. = Int Wn +~ E7 . Then each ngd Wr is defined;

and if gin W shrinks to a-constant mapping in a space Pr’ r=1, ... n,
r

then there is a mapping of A into rng gV P. v ... ¥ Pn . In part-

1
Py i3 . . u u . .
icular, ngdA will shrink te a point in rng g P1 .o U Pn
Proof: The argument of -¢) in the proof of (l.l1) iszused-and is valid
even if A - Int Wl - .. = Int Wn is not a disk with holes. It is easy

to see that BJAC A - Int'Wl - «eo = Int Wn since Wr C Ay then g is

defined on BdA ... Since Bd Wr C A, is always defined {J],

- BlBd4 W

Proof of the Corollary to (1.1).. Let tp:Sl +V . If V*¥ is simply
connected, we can use (l.1) to show that 1y shrinks to a point in

V only if rng ¢ misses. AO . Evidently in order to apply (1.1), it
is sufficient to show that ¢ d1is homotopic im V- to a mapping

w’:S1 >V - A0 .  We use

To construct ¢”: using an argument like that of b) in the proof of

"2 ' to mean 'is homotopic in V to' .
(1.1), cover w[Sl] N AO with dogbones Jl; vee Jd which are disjoint
and lie in V ., Dogbones 'Jéj,-j =1, 2, 3, 4, -are defined just as in

b) of (1.1) so that gé Jrj covers w[Sl] N A and each Jsj lies in

0
a cube Mrj(: V (the construction of the Jsj here is not identical

to that of the Jsj in b) of (1.1), but the constructioﬁ here is easier
since we need not consider sets in D). We assume that some point =z
exists in w[S’]’7(E%“‘V_gé.;nt lsj),>£dr QtHEfWiSé, since SlAfisjcbhnected

and the Int Jsj are separated, rng Yy lies in ome Jsj M and

sj’
the proof is concluded by shrinking ¢ to a point in MSj -V . Now
choose § » 0 so that if x and y are closer together on S1 than

the distance §, then ¥(x) and Y(y) are closer together than the
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distance from Y[S“] /N A  to E3.—,(4 J ., (remember that L/ J . is.a
0 sj sj sj sj

neighbourhood of Y[S”’]MA A  so that this distance is positive). If every

0 .
. 1. e o o3 U g 1.
point of S8 1lies closer than ¢&. to ¢ "[E™ - 5 Jsj]" then by the def-

inition of § no.point of Sl maps under ¥ into AO’ and we can let
Y~ = ¢ . If some point of Sl fails to lie withing & of w-l[E3 - %ﬁ JS.],
then there is an_open:inﬁefeél; ei' in w—l[%é Int'Jéj] such that the

" length of ei is greater than § . Let e

such that e’ C e.c [Ll Int J J] . Then e, is a closed interval of

be the largest open interval

1 1 1
length greater than ¢ whose end points Py and “q; map into Bd gé Jsj
by the usual continuity argument. (Since S1 is a circle, we must make
an easy allowance for the possibility that w(pll = w(ql) = z.) . Because

the Jsj' are separated and w[E’] ' is connected, ¢[ell lies in the fnterior

of just one Jsj whlch we will call Rl _while - w(pi) .AhJ w(gi)_»lie in
kK 13- | :
Bd Rl Deflne the mapplng wl HS I S E S0 - that ¢ = ¢l on sl = e while

il i is a. path in (connected) Bd Rl with end p01nts: w(pl) and_ w(ql)

(this is well: deflned because pl' and ql map into Bd Rl underr w)A Both

] and w . are paths 1n V and w] wll—- because they share end points

and both map into the same cube M J:D Rl with WM j§; V. Evidently Y o= wl.,
o

Since ‘tng wll g C.Bd RlC: E -‘AO;- ‘the homotopy has moved images of p01nts in .

el> away from A0 . We now look for an open 1nterva1 eé' in- Sl - _l
where eé is of length greater than ¢ and such that ‘eg':maps-into

U . PR : . _ ol
Sj‘Int Jsj under wl (and in ﬁact‘under Y, since ¢ = wl on S e ).

H‘]-
If . e does not exist, .let ¢, = ¢7 ., Tf e exists, then there is an
R ¢ \ .

2 2 :
open interval e, of maximal length such that egz:vézxj-s} r121'fand
. C;L/ » T cobs o a ) ' P
_¢1{e2] ”sj Int J sy * The end polnts.vpz,_ ) of e, map under ¢,
into E Q{ Int J sj’ either because of thé maximality of xez'niﬁ.the'
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end point is in Sl - El‘, or, if the. end point is in Bd (S:L - El) = Bd e

because ¢ [Bd él] C Bd R1 . By a continuity argument, wl[ez].-lies in

1’

the interior of some one Jsj called R2 and wl(pz) and wl(qz)_ lie

in Bd R2 . Define wZ:Sl > E3' so that 'wz agrees with ¢1 on S1 -e,

(note that this means that wz"agreeS'with Y on S1 -e - e2), and so

that is a path in Bd R, with end points wl(pZ). and wl(qz) .

Y2le, 2
By a previous argument, wz = wl =y , Note that the fact that wz =y

on Sl ~ e, —e

1 means that 'wz = ¢ on the end points of both 'el

2

and e, -

. o
In general, suppose that mappings wl ® L, wr—l of S

R, ] U
and»cqmpongntsi Rl’ .ii Rr-l of by Jsj
have been defined so that each énCZ-Sl ;‘le— et el 1;'s =1, «e. t -1,

Sﬁ
-— K 3 C R= - .
A.p\es’. kbs{e_s] .?d Ré<:_E B A, - Now

into V, intervals €15 er L

[l O]

and for each ws’fws = ws—l‘~9?ms_
’ . - - ol = =
look for_an open 1nFerva; er,€ § - el,;.gé e e e .

' . | e U 1ap o
length of e . 1is greater than § and wr_l[erj C'sj Int Jsj’ or equiv

‘such that'the

alently wr_l[er]ci Int Rr’ where Rr is a single Jsj (and hence
lies in a cube MSjCZ V). 1If there is no such interval, let wr—l be
o . If e; exists, then let e, be the largest open interval in

l —— —

ST - ey T e me g sugh that wr_l[er]<: Int Rr . We know that

wr—l carries the end points P> 4 of e, into E3 - Int R_ by

r r
the maximality of e, if the ‘end point is in Sl _'gl ~ e, = E;—l’

: . .. ' 1 - = - -
or, if the end point is in ,Bd(S' ey = ... erél)g;'eI(/ e Ve 1
bec;qse wr?l carries el U ... U e 3 into 5 Bd Jsj . (To see that
wr_l[es]_.lles in some Bd Jsj: for s =1, .. T - l,. ws[eS]C: Bd RS

by’ construction. ¢S+l..agxees with ws on CSl - es+l:D e since
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, . 1 - o= , . .
eS+l lies in S - ey N eS,, ws+2 ,ag;ees wlth 'ws+l’ on
1 , - . 1 = oo _
- . Pant T e PR -— -— .
S es+2:.3 €g SINCE Cgp " S el, e T % T Sg10 11Js-l,--3.

agrees

. . s . wi » . si
w1th »ws+2 qn_ e s etc. until wrfl ‘agregg.W1th wr—Z on eS ince

—

by = Vo =;7f=iwr_l_“on ey wréllgs]ﬂ;:ws[es] € Bd R). Since we know

s
that’the;ehd_poihfé‘of e, -are mapﬁed by fw%_i 'outgidé ofﬂgint Rf,Eand

~rnleulte. Int _R- v eontinuityv.. U <. (p-) add> ' i ]
wr_l[eg] CLIn;rRE, ?bylcOnﬁlnuiEy,L wr_l(pr) and ~wr—l(qr) ;1e in ‘Bd Rr .

Let wi‘é . on 'sb

- eergpdp wrlg; bera;paph in Bd Rr, W;Fh gnq:polnts
-

wr_igpf) and wr_l(qr). Ev}@fntlj_:ere¥ gawr—ller

~ and ¢£'é'wr_l .

Since each e. is of length greater than § and r§ must
be less than the circumference of lsl, (it is easily checked that the
e are disjoint) the sequence wl, ces wr’ ... ends at wk . Let
Y be wk . We know that wkzsl -+ V because each wr does this;

and ¢ = wl 2oL, 0= wk = 3y” in V . Before we can show that rng ¢~

. ' e 1
misses AO’ we must show that ¢ = ¢~ = wk on S ey con ek .
To see this:
.
wl =Y on S ‘el s
= I Sl" ~and = { -on’ S1 e —e
11)2 - Wl on - ez _anlm 11)2 ‘P_._ -2 l 2 ?
V. =9 on Sl - and ¢y, = ¢ o Sl - - -
K~ Yk-1 | K K " 17 T Gt

It is now easy to show that rng ¢y~ = rng wk misses AO’ “for wk

3 - .- .
carries every e into Bd RSC E - A0 by a previous result; and if

x € st _.Ei - e - Z?; then x lies within.a distance & -of a point
y such that wk(y) € o —~%évlnt Jsj" We can assume-that
1

ygEe ST o~ e - ezb— see T e because .otherwise y~é‘e1() s U e and
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1 o , .
k) S —ey ~ .. - ék_ lies éloser
k)

some point y~ of Bd(eliJ .V e
to x than y does. Since” wki'carries vy E Bd(ellj ves U oe
into &J,Bd J . C E3 - L{ Int J ., we could have
5] 8] 5] 8]

c Zlu cee Ve

originally chosen y~ instead of y'. But if both x and y~ 1lie

1 _ _ 1 -
- el - eae = ek, then since ¢ = wk on S el e e

and Wk(Y') C1E3 - %évlnt Jsj’ yix) = wk(x) lies so near to

in S K

v(y?) = wk(y’) that ¢(x) misses A0 by our definition of § [J

e

2. In his paper [12], Bing was concerned with an interesting
property of G which we will make use of here and in Ch IV. The
formidable aspect of G 1lies in what might be called its 'topological
idiom', as'shown in fig 25: four double ended lassos strung in a special
way inside a 2-holed torus. Bing's intent‘in uéing~this idiom to con- |

struct G was to utilize this property: 1let D be the planar

1 Dz’.
disks shown in fig 25. Then, no mattér how the four lassos are deformed
(provided that they remain linked énd stay in ghe interior of the
2-holed torus), some one lasso will hit both D1 and D2 . Figs 26, 27
show unsuccesful attempts by the lassos to avoid this necessity, and
there is a proof of a very similar idea in §7 of [12]. Bing hoped to
show that this property was induced through the construction of G in
1’ _D2_ in relation to

the first stage of the construction of G, then, no matter how A

the following sense: assume that fig 25 shows D

A

1> 722

A A, were deformed, one of these, say A would hit both of D

3 4 1’ 1’
D2 . Additionally, however, itbmight turn out that for any deformation

of A, inside A, one of the 16 AjI; would hit both D, and D,

and so on for the 64 Ajkﬂ etc. Bing found that there was no easy
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proof of this (see §7 of [12]); however he was able to define a pro-
perty which he called Q on the dogbones of the decomposition and show
that A had this property. If a dogbone had property Q, this implied

trivially that it intersécted both of D D2; at the same time it

1°
could be shown that if a dégbone B haa property Q; then one of the
four dogbones qf the ﬁext stage of-the dogbone construction_lying in .

B would have property Q . "Evidently there”ﬁoﬁld be a descending inter-
section chain of dogbones each with property Q and the limit of the

chain would be a big element of G which touched both D1 and D2 .

We can express this idea in a slightly different way:

1° D, be topological disks whpSevboundariesf‘ﬁi,

QZ lie in A and link the upper and lower eyes respectively of A as

(2.1) (Bing). Let D

shown in fig 28. Then either Dl metts ‘DZ in A, or some big element

of G meets both Dl and D2 .

‘We will refer frequently to fig 28, which shows the relation-

ship of ¢ ¢, to A . Strictly speaking, we take ey i=1, 2, to

1’ 2
be an embedding of Sl in ‘E3; however we frequéntly will confuse the

embedding with the circle which is its range (atuthe .same:timeTreserving

the right to write rng'ci when we wish to make the distinction clear).

Bing showed that (2.1) was inconsistant with the existence of
a homeomorphism between D and E3 (Th 12 of [12]). In this paper we

will be interested in this conjecture: .

(2.2). Let A be a 2 - simplex. For i =1, 2, let fi: A~ E3

so that ¢, and f£ ¢ , - are paths whose ranges lie in

filBan =¢1 2|BdA T "2

’ E3 - A and which will not shrink to a point in the complements of the
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upper and lower eyes respectively of A . Then either fl[A] and
fzIA] "intersect in A, or some big element of G meets both fI[A]

and f2 [a] .

In (2.2), we replace the disks Di ‘of (2.1) with singular
disks fi[A] . The conjecture is plausible and lacks earthshaking sur-
prise. It is interesting because it leads directly to the following

topological property of D:

(2.3). CIf (2.2) is true, then DU fails to possess arbitrarily small

simply connected open neighbourhoods about any big point.

The conclusion of (2.3) is called Curtis' conjecture (see

3, §6), and (2.3) reduces it to the somewhat more plausible conjecture
(2.2). The remainder of this chapter consists of a proof of (2.3). " The

pleasures of (2.2) will be deferred to Chapters IIL and IV.

Proof of (2.3). Supppose that ‘A is a big element of G and
that - in . D, A* = ¢[g] "lies in a simply connected open neighbourhood
V* -such that A*c V* c A* . Clearly Ae Ve A, and V 1is open in

3 .

E” . We could write A =AnN Aj 0 Ajk/j ... for some sequence of dog-

bones A, Aj, Ajk’ cee By the Corollary to (1.1) (of lemma 1 of [2]),
'V . is simply.connected if V* dis. Thus our assumption implies that V
is simply conneqted. We will demonstrate that this is false by showing
that Ac VC A with V simply connected, implies that the upper eye

£ and the lower eye m of A sgshrink to a point in A . We deéfine an
uppér.(lower) principal path of Aj to be a mapping of S1 into Int Aj

which is homotopic in Aj ;to.théfupper"eyé‘;ﬁjﬂ ﬁthé lower eye mj)

of Aj . Upper and lower principal paths of other dogbones, including
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A, are defined analogously; this a mapping of \Sl into Int’Ajk

which is homotopic in Ajk to hjk[ﬂ] is an upper principal path of
Ajk . As usual, we will often confuse the mapping with its range. We
know that A, Aj’ Ajk’ «++ 1s-a neighbourhood system of A and,

by a previous remark, that some member A,

ik ... 18 of the system lies

. in V . However this fact plus the following lemma leads to a contradiction.

Lemma for (2.3). If one of Aj, j=1, 2, 3, 4 contains an

and a lower principal path e, which intersect

upper principal path e 2

1
and lie in V, then A contains upper and lower principal paths which

intersect and lie in V . 1In general, if A, re contains intersect-

LI

ing upper ‘and lower principal paths which lie in V , then so does

A, .
J ees T

To apply the lemma we look at the neighbourhood Aj rs

which we know to be a neighbourhood of A in V . Obviously
Vo Aj rs contains intersecting upper and lower principal paths

of Aj s since any intersecting principal paths will qualify.

contains intersecting

The lemma implies that the dogbone Aij r

principal paths in V . Repeated application of the lemma leads to the
conclusion-thap A contains an upper principal path which lies in V ,
Since V<& A, V is simply connected, and the upper principal paths of

A are -all homotopic to £ in A , ; therefore £ must shrink to a point
in A . This is clearly false from fig 16a. Thus the proof of (2.3) |

will be complete when we have proved the lemma.

. Proof of the lemma for (2.3): Simplified version."Suppose

that e -and e, lie in A1 .- The following outline reflects our

original intuition of the proof. Although the 'proof' we give now is
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simple minded and needs much patching, we give the crude:version because
'we think that it clarifies basic ideas which tend to be submerged in the

final version of the proof. Suppose that by good fortune the paths e

ez‘_take the form of the double ended lasso J in fig 29. J consists

of circles Cl’ C and connecting arc a as shown. The circle C

2 1

will not shrink to a point in the complement of the upper gye of A3.

Similarly C, will not shrink to a point in the complement of the lower

2

eye of A We also pretend that J lies in V and that disjoint

3 *
planar disks dl’ d2 bounded by Cl’ 02 also lie in V . By (2.1)

some big element g in A3 meets both d1 and d2;

\ :Ddi since  V contains every element of ' G that it intersects

and g lies in

(remember that V is the pre-image of an oPéﬁ set in 7). We can now
construct the upper principal path pll shown in fig 30 from parts

of V 1lying in a, dl’ dz,‘ g-. A similar procedure using A2 instead
of A3 will yield the lower principal péth P, - The path; pl,‘ P,

intersect in A so that pl\) P, is the set required by the conclusion

of the lemma.

The above 'proof' is far to easy and will fail if we allow dl’

d2 to be non-planar, for then Py may not be a principal path as figs 3la, b

show-. We ensure that Py makes one .circuit about the upper hole of A
by trapping PN a in the cube A - B2 —,Bz (which is easy) and
Py N (dl v gu dz) = q in the cube A - Bl - B, (see fig 32). This

last step is hard since one would fear that the connectivity would be

spoilt by parts of dltJ d2 projecting from the cube. The trick of

controlling the homotopy class of P, by constructing certain arcs in


http://to.be
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cubes only works- if the Ci lie in A - B1 - B2 + But if we use the

obvious candidate for J, viz.. Ci’= e with arc a degenerate,
then fig 33 shows that this may not happen, and in fact J cannot

usually be e, U e, . However we show that, provided that intersecting

1

principal paths exist in A

2
1 N V, there is a double ended lasso (perhaps
with singularities) in A n V which has just the properties which we

assigned to J . We will now give. the final version of the proof of the

lemma for (2.3). This proof uses the ideas of the earlier crude version,

but incorporates the various improvements suggested in this paragraph. -

Outline of final version of proof. We first give the proof

C e, C A " then indicate alterations in the case that

assuming that. ey 9 1’
e U e, lies in A2, A3 or A4 . a) Let e» & be upper and
lower principal paths of A, which lie in V and intersect at least at

1

"p . We follow the sketch of the 'proof' already given, but as previously

explained, we cannot use eqV ey for J in fig 32. We construct

J = CllJ C2 UVa so as tovsatisfy five properties i), ... V) . Sometimes

we will regard Ci as a mapping (not necessarily an embedding) of Sl
and sometimes as the range of this mapping. The set J must satisfy the
following properties: for i =1, 2,

. 1

i) Ci[BdA] c Vo Int(A-B - B2

ii) rng Ci misses A3 .
iii) Cl (Cz) fails to shrink to a point in E3 - £3(E3 - m3) .
iv) There is a point vy € rng Clun~rng;el.n Kl and a point
¥, in 1ng C, N tng e, A A-B-3B,-K (recall that
K1 is the topological cube which is the closure of the upper

component of A - B1 - Bz, see fig 34) .
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. V). .thearc ac VAN A1 and.thé'points"yl, y, of iv) are

. the end points of a .

The idea of ii) and iii) is that we want the Ci to act like the circles

' ¢y Gy in fig 28 with respect to A3 . Property iV¥) provides the end-

points of a ‘'above.and below Bl ' . This plus v) and the fact that the

1

Ci are trapped in A ~ B” - BZ. alows us eventually to construct an

upper principal path of A which winds one around the upper hole of A ..

This- happens because we will join Y1 and Y, by a path like: q € A - Bl_— B

fil@dA =C; -

Using (1.2) and (1.3), obtain a new mapping fi which agrees with ffi

in fig 35. b) For i =1, 2, Ilet fi:A + V so that

on A~-IntW, - ... - IntW , whereIntW , r=1, ... n, are holes
1 r

n
in A; in particular fi = fi in BdA . The ?;[Wr] may leave V (!)
but this does not harm the proof. <¢) By (2.2), E;[A] and. ?;[A]

either. intersect in A3 or hit the same big element g in A3 N

is'a path q from an C1 to an 02 which resembles q in fig 35

and lies in V and in Int.(A - Bl - BZ)' The path q travels to A

There

3

in .El[A], passes from ?i[A] to EE[A] in A3 either at the inter-

section of Ei[A] and Eé[A] or using the element g, and then proceeds

to an C2 by. means of EE[A] ; d) The path which begins at an Cl’
travels to a n C, on q -and returns to aa C, qn"'é,_ is an.upper princ-
ipal path of. A which lies in V ., e) The lower principal path of. A

in V may be constructed as in a), b), c), d) above, using A2 and
A - Bl - B2 instead of A3 and A —'B1 - B2 . £) If k=2, 3, 4 the
" lemma remains true.

Details of Proof. Suppose that e ez',are upper and lower

o1

2
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principal paths respectively of A1 which 1lie in. V and intersect at

p. For i=1; 2, since 'ei'.shtinks to a point 'in V, there are

‘mappings ei:A -+ V. such that ‘ei[BdA =

mg e, lies in Al or even A'. We use (1.2), taking £, S, to be’

e - We ‘'do not claim that

[A - B - B2].. Thus' there are disjoint disks ‘Wl, cen Wm . in
—1[A - Bl.— B,J<W,u W,u ] W‘“ each point x of .
1 S T27 1 2 et m’ - L

A  such that e

1[A'-,Bl—B

1 21

«eo W 3 those
n

Bd Wr lies near eIl[A - Bl - Bz], and x& Bd Wr misses e,

if x¢BdA . Those W_ which hit BdA are called W,

Wr» which miss BdA are W cee Wm (with obvious adjustments of one

n+l’

or the other class does not exist). We now apply (l.3) with g taken

to be the restriction of Zi to A - Int Wl - ..s = Int Wm..i For

_ _ _ . ) 1
r = n+;, R elle wr ngd wr maps into Ext(A "B.f.ﬂBZ)f because

Bd W_ misses BdA for r > n  .and hence misses" Ezl[A - B - B2] .
e shrinks to a point in Ext(A-v---»Bv1 -.B

Thus for r = ntl, ... m, el,Bd Wr ________ ' 2)

which is the exterior of a cube in E3; and we can let’ Ext(A'— B - Bz)‘

be Pn+l = ... = Pm. in the hypothesis of (1.3). There is no chance that

ellefwé is C, for r > n, since .23 . misses Ext(A —'Bl - B

1 =P .

2) r
We suspect that Cl is an el|Bd Wr for r < n . Assume that every

- . . . . 3 ' .
elle W = ngd W will shrink to a point in E~ - 23 . Use (1.3) again,

. - - _ 3 _ fo _al
letting P, =P, = ... =P be E 23 . Then with Ext(A - B B,)

taken to be Pn+1 = el = Pm,_ g]BdA = e will shrink to a point in

rng g v Pl V... UP Y En+1}J ces U.Pm“" Each P_ . misses £3 . either

....... r

Byidéfiﬁitibn‘obeecéuée;'Prlvmiéées"A H‘Bl - B2 . And rng g misses
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£3 as well; for g = e

the only points of A - Int W

1|8 - Int W, - ... - Int W
1 m

- «.. = Int Wm which can map into

and from (1.2) ii, iv,

1

A - Bl -_B2 are those in BdA . Such points are in dom ey
v Ext(A - B1 - B2) c E3 - 23 .- Therefore

and map into

A, . Hence rng gcC A

1 1

e, shrinks to a point in rng g v P

8lBan T &1

contradicts the fact the e

3 .
1Y ...quc:E !,3, which

is an upper principal path. Thus it is
3

1

— 3
false that every %le we T<m shrinks to a-point-in E~ - 23 . Let
Y

C be one of the

- , s , . . 3 _ .
1 %le Wr which fails to shrink to a point in E 23 .

As regards Cl: .the above argument plus the fact that rng Ci<: g Z;<: v

shows that iii) is true; ii) is true because from (1.2) iv, every point

3 1

x din Bd Wr is either in Int A, in which case Cl(x) € E - (A-3B - B2)
3 3
c - = - -
E A3, or x & BdA, when .Cl(x) el(x) G A1 CE A3 . ;n

general,i) is not true because some candidates for Cl(x) lie outside of

A - Bl - B2 as we have just seen. However we can assume that Cl[Bd Wr]
.lies in Int (A - B1 - BZ) by the following argument: By (1.2), we

assume that dom C1 (which is one of the Bd Wr) lies so near

—1 1 . 4. 1

ey [A -B - B2] that. rng Cl lies within § of A - B~ - B2 (remember
that C1 =g = Ei on dom Cl) . In this paragraph a) so far, ﬁe could

have replaced . A - B1 - B2 by a cube K> A3 such that an e-neighbourhood

1

of K 1lies in Int (A - B - B,) . Such a cube is shown in fig 36. If

2
this had been done, we would have rng Cl in the e-neighbourhood of
K, i.e. rng C. < Int (A - Bl - B2) . We assume that this was done and

1

that rng C, < Int (A - B1 - B2) . Proof of iv): In (1.2) iv, each

1
Bd Wr misses S (in (1.2)) except where Bd Wr hits BdA .- In the
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_presént.context, with 'eI;[K] for S (di.e. continuing.to.use K for

1 ‘ . . v "
A-B =~ BZ)’ the domain of C1 is a Bd Wr and C1[Bd Wr BdA]

misses K . To show that there is a yl.é rng Cl ;ffng‘ql-, Kl e

= ' [ . = n . i
Cl[Bd Wr]/7 el[BdA]/W K Cl[Bd Wr BdA]l N K assume that

1 1’

1A g . ; , e .
Cl[BdA N Bd Wr] _Kl @ In fig 36, note the two cubes .Kl’ K2
which are placed so. that £3 - K1C. Kn K and m3C._-".K2C KN K

Then _Cl[Bd wr N BdAl N Kl = () because K

2 .
133 Kl; and Cl[Bd Wr —‘BdA] A Kl =
~ because Cl[Bd Wr - BdA] misses K as we just saw. This means that all

3,

of . rng Cl‘i E> - K, and C, shrinks to a point in- E> - KIC: E 3

1 1
which contradicts the choice of Cl .
We repeat the entire procedure of this paragraph a) taking

— 1
€y €y My, m3,<K2, A-B -B

1 Kl '

This is just the preceding argument 'upside down' and constructs the

, = Ko for e;s €5 Kl, 33,, K

path C2 E) y, as required. The only unexpected thing is the use of the

cube A‘— Bl - B2 - K1 for the original cube Kl; this reflects the

fact that vy should be found in K1 and y, mnot necessarily in: K2

but merely 'in .Al and below Bl '. We now have Y1 and Yo as required
by iv). To construct a, join vy to p by a path .al lying in

rng elc: A111 V; and v, to p by a path a, in 1rng e2<:_AlIT V.

Let ,-‘a=a1uax'2 .

b) We can assume that dom Ci = BdA, i =1, 2 . Since
rmg C C V, Ci- shrinks to a point in V and there is a mapping
i ]
fi:A'+ V .such that fiTBdAT=‘

us a big element g” in VA A

Ci . It happens to be true that (2.2) gives

3 . which hits both fl[A] and_”fz[A]
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(unless they intersect), but we are not sure that there is a connected

1

set in fi[A] that will join ~gf _and, Yy and stay'in. A - B - - BZ',’
so that it is not yet,pbééiblejtd build qgavn (A —fﬁ};;Aﬁz) ; asiin

_fig 35. By {1.2), taking S to be Ext(A - Bl -'B,) , there.

are disks W 'W" in A such that f;l[Ext(A - Bl

- PR
- c e
1 " Tm U T BZ)] WpsU

Since BdA misses f;l[Ext(A - B1 - Bé)] . (because fi[BdA] C Int(A - B1

A - Int Wi - ee. - Int‘WE,‘is,a.disk‘with holes.  We assume that each
Bd W 1lies so near f;l[Ext(A - B1 - Bz)] that fi[Bd Wi] lies close
oL 1 . N 1

to Ext(A - B - B2)<. Since we know exactly what A - B™ - B2 looks

like, we can construct -an - e-neighbourhoéd N - of Ext(A - B - B2) so

that N 1is simply connected. We can assume that each fi[Bd Wi]C: N;
then fi[Bd Wi] shrinks to a poinf in N; and by (1.3), taking

N=P =P =...= Pn’ and g = f .there.

ila - Int Wr - ... - Int W
1 n-

i

vu.
n

- BZ))',

. .= . . ' ' ‘ _ _ _ . i i
is a mapping fi.A ~+ rng g Vv Pl UV o ees U.Pn = fi[A Int wl ces Int WnJlJN
such that Ei = fi -on A - Int'Wi - «.. = Int W; . In particular
f, = £, on BdA . It is important that ?:[A - Int Wi - +es = Int W;]
i i , i 1 n

i

i.-
= - see T c .
fi[A Int W, - Int wn] \

- ¢) Since rrng Ci = fi [BdA] = ?;[BdA] misses A3 and fails

to shrink to a point‘in‘the absence of the appropriate eyes of A by

3,

(2.2), Ei[A] and 'fé[A] either intersect in A, or hit the same big

3

element A in A3 . We can combine these ideas by saying 'flfA] and

f,[A] meet the same element A in A;' and allowing X to be either

a big element or a small element. Since for a small €, N misses A3 R
i—
1

and f;l[AJC?A - Int Wi - «v. = Int W;, which we saw was a disk with -

AN rng ?; must lie in rng E;-— Nc ?;[A‘~ Int W ve. = Int Wi] cv,
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holes and which contains Cgl(yi) € dom C; = BdA . Since AN fi[A]
and v lie- in the image under ?; of a disk with holes which maps -

into V, . there.is a path"ﬂi which joins vy and A in V . Futher-

more ?g}: A -vB1 - B2, because Wi may be constructed in

fi[A -~ Int Wl._ cee = Int Wn] = fi[A - Int Wl - ... = Int Wn] - which

misses Ext(A - B1 - B2) by the construction of the"Wr . Hence

Ua :

VgﬁC-V n (A - Bl - BZ) . Let q be a path joing Y1 and Yy in
. ) —————_—-—1 N

Vi VoA U\Jz .. Clearly q<€ V" (A-3B - B2) .

d) We will show that the path »El which travels from vy
to y, in q and returns to yl in ~a is an upper principal path
of A in V .by showing that Ej.C-A N V and that 5‘1 is homotopic
to £ in A . Let £ be decomposed into two paths £° .and {£" such that

1 and 27 2 - Bl . We assume that 2 pierces Bd st in

K"C B

just two points zy, 2z, as shown in fig 37 . We can do this because

1 . , . .
Bd B~ is horizontal near { and because £ can be a nice circle.

. : 1 2
2 y2 in the cubes Kl and A - B .B2 - B” - K

Construct arcs 2 ¥, and z 1

respectively. (The idea here is that both fzi Y will lie in A - Bl - BZ’

the cube which locates A3 2 q, and in A - 32 - BZ’ the cube which

locates Al:) a). The path which begins at zy and travels to z,

through zy Yy5 @ and - is homotopic in the cube A - B™ - B, to

Zy ¥y 2

£'" . The path which begins at z, . and travels to z, via z,79, 4,

and z; y, is homotopic in the cube A - gl - B, to £” , Combining
homotopies, the path gi which begins at zys travels to - z, in

2z yi v qi}rzz M) and returns to - z, in -z, y,v a v 2y Yp is
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hoﬁotopic in A to £ . The path gi is evidently homotopic to. E]
Note that gl passes through the point p € a . Eventually p will
be the 'official' intersection point of the principal paths- &1 and

62 of A .

e) There is .no difficulty in altefipé,the argument to construct
a lower principal path '52 if one keeps in mind the fact that 'the
pictures are different' and that everything in the construction of £1
must be repeated. We cannot, for gxample,»use the Ci from a) because

they were defined with respect to A =~ B1 - B2 and we must replace

A - Bl - B (the cube which located A

9 3 and 'shaped' the right side

of El) with A - Bz_B1 which locates A2 . The idea is to start with

e. ‘and e

1 as before, but to use A

2 rather than A3 as suggested

in fig 38 which, in a sense, is a replacement for fig 35. The new £q

2

turns out to contain p € e, N e, just as El does; this establishes

1

that €1 N Ez # @ . We begin by finding a new lasso J~ = Ci vV Cé vVa’

so that C7 U C; C V N Int(A - B> - B,), C;C A

1 2

, and C,  contains a
3 i

. 2
1 N rng e N (A B™ - B1

yé € rng Cé"ﬁ mg e, N K2 « The arc a” 1lies in VAN Al and has end

points yi; yé . One finds Ci v Cé V a” by adapting the procedure in

B2, K

point y{ such that yi € rng C - K2) and

a); there is very little more involved than reading m, mj, Bl’ 99

2 1 1
A-B" - B -K, for L, zj, B", B,, A-B -B,-K, Ky,

priming every new construction. It will be found that the arc a” con-

K and

tains p just as the original a does. For the construction of K,

K, Kz - replace fig 36 by fig 39. It is quite easy to adapt b) and
_]:3‘2?. Y
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c) by keeping in mind that the important cube is A - B2 - Bl which

féplaces A - Bl - B, .in the construction of £l . (The point is that

in b), ¢), one must use a cube whose boundary encloses the 'important'

dogbone A,, see fig 38).: Finally we construct a path q7 which
—_— ——

joims y;, y,"dn A -B°-B . This plus a"C A-B - B,

can
2

be combined into the pathr'ﬁé which can be shown to be homotopic to

m by adapting d) above, decomposing m into paths m"C B, and
3 e

m* " C E - Bl etc. The path- ﬁi lies in V by.an argument which

should appear naturally from the adaptation of a), b), c) to comstruct

Eé;_ and ké is clearly in A . Since the point p lies in both a
and a” and hence in both ?;1 and &, ; . therefore g.ln 3 , * 0.

f) The proof is now complete if e. VU e, lies in A

1 1°

i.e. if 'j-=1. .The is no difficulty in constructing a proof for

the lemma when jA= 4 in view of the symmetry of the construction of

the “AjQ' We will give only an outline of the proof fgr* 3 =.2..(and by
symmetry for j = 3) for these reasons: 1) the details can be filled

in along the lines of a) ... e) above, and, 2) the argument in

a), «... e) 1is sufficient to prove the 'meat' of (2.2), viz. that there
are uncountably many big pqints of ‘D~'which~fa%l to possess arbitrarily
small simply connected open neighbourhoods, these being images of elements
of the form AN Ai Aij Aijk ««. where i, j, k, ... are chosen

from 1 or 4,  To construct the principal path g 1 when j = 2, use

the paths e

1° ©9 which we now assume to lie in A2

A-B - Bl (see fig 40) which acts toward A2 just as A - B~ - 32

acts ' toward A1 in a) (i.e. A - B1 - Bl separates A2 just under the
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1

upper eye while A - B™ - BZ' does the same for Al).. Using the argument
of a), construct a lasso J = Clti av 02 which is related to V,
ey v eys A4, and A - B —_Bl just-as J 1in a) was related to V,

1 . ' . }
e v ey A3, A - Bl - B2 . Fig 40 shows the new J . When CI and

02 shrink to a point in V they hit the same element X of A4 (A may
be a big element or a point), The path q joining the end points of'

a in VN (A = B1 - Bl) may be constructed by adapting the argument

of b), ¢), and El = a V q may be shown to be an upper principal path

of A by an argument like that of d). Just as in the case j =1, the

arc a contains a point pe€ e n e, . Thus p € El . . To construct

the lower principal path 52 when j 2, we start as before with

e, Ve, c A,, but we use the cube A B2 - B, :’Al and construct

)= ’U' AU e P . )
J” Cl a C2 so that J is related to V? e V) €ys Ai"

2 . S . . - -
A-B -_B2, just as J° 1n .e) is related te V, el'u €y
— ) | - . 4
A-B - By, see fig, 41 . Fig, 41 also shows q°  which &s used

, Az”
with "a” to form -Eéf. The arc. a” and hence the path.'&2 turns out

to contain p ; hence 6111 52 # ¢ as before 0,
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CHAPTER THREE: GENERALIZATION OF A THEOREM OF BING: LEMMAS.

1. In this chapter, we give two lemmas for the proof of IT (2;2), the
~ generalization of Bing's theorem II (2.1). In proving II (2.1); Bing

defined a property Q such.that ‘A had Property Q; and if a dogbone
A had Property Q, then one of Aj ,

jk ... T
A

k... rl’ Ajk ces r2°
] , A, had Property Q . This meant that there was
JKk +ee 3 ik ... T4 :

a chain A D Aj > Aj D ... of dogbones with Property Q . Since the

k
possession of Property Q implied intersection with both disks. Bi in
IT (2.1), the limit of the chain was a big element A which hit both

Dl and D2 (see the discussion in II§2). We follow Bing's proof closely
(in spite of the fact that we alter Property Q to a property which

has to be applied to a whole 12% to be of any use) and in fact depend

on the reader's familiarity with [12] for the motivation in this chapter

and the next. In the remainder of this paper, i =1, 2, and j =1, 2,

3, 4.

In the proof of II (2.1) in [12], it is evident that the
crucial part of the argument is the proof of [12, Th 10], where it is

shown that if the four centres of A A2, A3, A4 fail to have

1°
Property P, then some set homotopic to the centre of A also fails to
have Property P, (The-precise -definition of Property P is unimportant
until Ch IV). In Ch IV we will prove just this result with the disks

Di_ in [1287] replaced by the singular disks fi[A] in IT (2.2). Our
proof will differ from the proof of [12, Th 10] in that whereas in

[12 Th 10] the disks Di remain unchanged during the proof, in our proof

of the analogous result the fi[A] are replaced by new singular disks

f;[A] which retain the desirable properties of the fi[A] . Although
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this is a considerable change, it turns out that our Ch IV resembles the
argument of [12§7] very closely. In the present chapter, we prove an

important lemma which shows that if each k (in fig 19)'misses one of

3
fl[A], fZ[A], then the new fi[A] -may be constructed so. that not

only does each kj miss one ‘f£[A], but both f{[A] miss each of the

arcs g, and T, lie in Bl and 81 and

1 2

tie the upper and lower loops of the kj together as shown in the figure.

shown in fig 42. The %5
If we can obtain such singular disks f{[A], the reward is considerable,
for then parts of the kj can be erased as shown in fig 43, leaving the
set .b]_u b2 V) b3 U b4 U Cl U §2 shown in this figure. Since each
b.C k., each b, misses one "f;[A] while ¢, v ¢, misses both.

h| h| h| i 1 2
. One can now apply Part II of the proof of Th 10 of [12] to bl(/ ...Ub4 viLuL,
instead of to L/qurjs in [12, fig 2]. This can be done with very
littlé’change in the argument of [12] and results in the construction of
a centre of A which fails to have Property P . We say that mappings

gi:A > E3 are Z-disjoint iff ZC E3 and rng g Nrng g, N Z= @,

i.e. iff the ranges are disjoint at least in Z .

Lemma One. Consider A, Aj’ Bl, kj as defined in Ch II (see fig 19).

Let ZDO A and let ¢, :BdA ~ E3 - Z . Let gi:A - E3 be Z~disjoint

1
mappings such that gileA”= ci . Let S be the sphere shown in fig 44

1° d2 for end

caps. Each Ej plerces each di exactly once and Bl misses . Let

consisting of the cylindrical annulus Q with disks d

SC Int A and let N be an n - neighbourhood of S such that NcCIInt A .

The arc shown in fig 42 lies in Int A - N . Then there exist Z -~

%1

disjoint mappings E;:A - E3 such that
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4) _E; =c, on Bdb,
ii) E;:A > (tng g; -~ Int S) U N,

iidi) . If Kj(J Q misses rng 8y then £, misses rng gi o

3

Corollary. Let K, be the cube defined in Ch II (see fig 21). Then

ii) and iii) in Lemma One may be replaced by

ii)”~ gi:A + rng 8; U Kl s

iii)” If kj V @ misses rng 85 then kj misses . rng E; .

The proof of Lemma One is delayed to §2, which may be read after

Ch IV if desired.

We give a second lemma which is intended to repair-a gap :which
would otherwise appear in the proof in Ch IV. This lemma is quite special-
ized, but appears here because its proof is just a variation of the proof
of Lemma One. As before, the proof is delayed to 52 and may be omitted

on a first reading.

Lemma Two. Consider A, Z, ;i, kj’ a5 Bl, as defined in fig 42.
Let I be the sphere shown in fig 45. The sphére L together with an
n — neighbourhood ‘N of I 1lies in Int Aj; Blci Int Z - n, and each

of ajs 8y, ag pierces I as shown. Let mappings gi:A - E3 be

Z-disjoint with giIBdA = ci, where ci is defined as in Lemma One.

Both rng g miss the set El.u kll) k2 V] k3 . Let u be arecs

12° “13

N Bl and a, n Bl., a; n Bl and a3f) Bl

be arcs in Bl which

in 61 which join al

respectively and miss rng g - Let v v

12° 13
. 1 . 1 1 ‘ 1 .
join a; Nn A8 and a, n 8, azfl»B and a3/1 g respectively and

- miss rng gy - The arcs Ujps Uyzs Vios Via are not.necessarily



Facing page 59

Fzg 74




- 59 -

disjoint. Then there exist Z-disjoint mappings - g{:A <+ (rng 8 - Intz) U N
such that g£'= ci on BdA, and one of rng_gi, rng gé misses

kl v k2 v k3 .

Corollary. One of rng g], rng g; misses ;U byu b,y by ;2;

and gi:A > rng gi U K1 .

Although u lies in an annulus and is joined to I Dby the

12

orderly. arcs N Int I, N Int %, the arc (a1 U Uy, v a2) n Int %
’ &

& )
may be knotted in T;E—E, as a few moments experiment will show (an arc
ab -in a cube K with abcBd:DP=a b is knotted if there is no disk
Dc K with abc BAdLDc BdKKUab). To be knotted the arc must make more
than one ¢ircuit on the twisted annulus. A similar comment applies to

u

v v

13° 12° 13 °

2. Proof of Lemma One.

(2.1). As a preliminary, we describe an untwisting function y:E3v+ E3

which is onto and one~to-one and which unwinds the twist in Bl, i,e,
y(B;) is the planar annulus shown in fig 46. For well known reasons
Yy cannot be a mapping, but we ensure that ¢y will be discontinuous only

on the curved cylindrical surface z shown in fig 47. In fig 47, the

end caps of 2z are called M, MZ’ and the cube Int(z VU M1 v M2) is
called K . Eventually Yy will be composed with a mapping whose range
misses Z . Thus the result of the composition will be a mapping. The
function ¢ 1is defined to be the identity on > - K and on both Mi .
To define y in Int K: Imagine K to be cut free of the space by

means of a cut on zZ and on M remaining attached only on P&.

2’
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K may-.be thought of as a.stack of circular disks of infinitesmal
thickness. These disks span.the cylinder 2z and each meets Bl in

a straight arc. Fig 48 shows M which is called the initial disk;

l’

M2’ which is called the final disk; and a 'typical disk' in the stack

between Ml and M2 . Now apply a twist (which may be thought of as

an isotopy of K) to M, so that M2 rotates once (i.e. through an

2

angle of "2m) in place. When this happens, the disk Ml’ which is

attached to the space, necessarily remains fixed and does not rotate.

_ Each disk intermediate between M and M rotates through an angle

1 2
which is close to zero for disks close to Ml and approaches 2w for
disks whose location approaches that of MZ'. . The rotations.of the

various disks in the stack can be contrived so that Blf\ K is carried
onto the plane which contains Bl - K, and so that the final result is
homeomorphic to K . In fig 48, the 'typical disk', which is located
half-way between Ml and M2 will rotate through an angle of 7 .,

. . . . . 1 . .
This carries its intersection with B8 on to the desired plane. Since

M2 has returned to its original position, we can restore the cut at M

2 .
Evidently Yy 1is one-to-one and continuous in Int K, Ext K, and on
Ml(J M2 . The fact that we cannot sew up the cut on 2z appears in the

1
definition of ¢ as'a discontinuity on z . Clearly ¢y carries B8

into the plane containing 81 - K.

(2.2). © We will prove a simpler version of Lemma One to show the

~ general approach.

(2.21). Let S be a sphere in ’E3 having a simply connected neigh-

~bourhood N . Let ‘g:A ~ E3 so that g[BdA] € Ext S . Then there
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exists a mapping E}A + (rng g - Int S) v N which agrees with g on BdA .

When simplified in this way, (2.21) is insignificant, for there
are easier proofs of stronger results, as the reader doubtless sees.
However our proof is intended to show how II(1.2) is used in the proof

of Lemma One.

Proof. Apply II(1.2) to obtain disks Wl, . Wn in A such

that gﬁl[Int Sl W, v eue U Wn . Since g—l[Int S] misses BdA,

1

A - Int wl - +v. = Int Wn is a disk with holes and g—l[Int S]

Int Wl .o Int Wn . If € in II(1.2) is sufficiently small, then g

carries each Bd Wr into N, for g[Bd Wr] lies close to, but not in

Int S and hence close to S . In II(1.3), take (simply connected) N

to be Pl = P2 = ... = Pn to obtain the mapping g = gIA - Int wl - ... - Int Wﬁ
UYLV Yyu eee Y Yn:A > rng g UV N . Since each point x in A lies
either in A - Int Wl -~ s, — Int Wn in which case EKx)<§E3 - Int S, or

in some wr, in which case Ekx) € N, rng E- misses Int S - N . Thus
rng E- lies in (rng g - Int S)UN . Finally IE = g on BdA because the

two mappings differ only in W. u W_v ...an, which misses BdA .

1 2
(2.3). We will now give a formal proof of Lemma One.
Case one: neither gi[A] meets S . Let E; =8 - Since

E;[A] meets Ext S, a connectivity argument shows that g;[A] misses

Int S . The rest of the requirements of Lemma One are clear.

In the next two cases we insist that one of the rng gi

touch £ while the other does not.
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Case two: exactly one rng 8; meets 'S .- The rng 8; which
meets. 'S also meets Q . Assume that rng 81 meets ' Q < S‘;u.Let'
_Eé =g, - Evidently i), ii), iii) of Lemma One are true of g; .
Apply the.argument.of 2.2, taking g in 2.2 to be g1; and construct

a mapping  §i:A +:(rng g - Int S) U'N which agrees with"cl on BdA .

. With regard to Ei, i) and ii) are satisfied, and iii)fis,vaéuously

satisfied since gl[A] “hits "Q,. The g, £ are Z-disjoint because we
i
could have taken N small enough to miss rng By~ Thus

@ =7Zn rng gy n g g, =20 (rng 8 v N) n rng 8,2 2 N rng g NIng g, .

. Case three: both rng 84 meet S . One rng gi, say Ing g,
meets 3 the other (rng g2) does not. The aim of the proof will be
to construct an intermediate pair of mappings g? such that rng gg
misses S although 1rng g? may not. The argumént then reduces to an

easy variation of either case one or case two.

Outline of proof. a) Choose a component z, of rng gzrw S .

1
It is important that, since rng g misses §, rng g, n S < Int d, v Int d, .
' 2 > 22 1 2

Using this fact, we construct a circle ¢, < Int dltJ Int d2 - Ing g, - rng g,

1

which encloses (on:one:zof the: di) points of exactly one of rng g N S,

rng gy N S . Although we choose z, C rng gy N S, ¢, may turn out to

enclose points of 1rng g1 n S .

b) Assume that Int ¢ < Int dl . Construct

a sphere w v 61 v 62 in the shape of a pill-box as shown in fig 49

so that ¢y is the equator of w v 61 v 62 .

c¢) An argument like that of case two but

using wV Si'u 62 instead of S yields a pair of Z-disjoint mappings
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gi.A,——> rng gi(J N such that gi = ci_ on BdA, Int cy misses

- L 1
g then so does ' rng R

rng gi v rng]g;;v and if  rng 8 misses’ Q v £

. The argument of case two is used virtually as is if c¢,; encloses points

1

~of rng_g111 S . If ¢

1 encloses points -of 1rng gy, N S " the argument
must be modified somewhat, since the method of case two would not ordin-

arily ensure that rngvgi .would miss all the Kj that " rng gé misses.

d) It turns out that rng gé misses Q .

If some component  z, c rng g; n S5 exists in, say, Int dl,- then we

2

repeat steps a), b) c¢) to define mappings gi:A ~+-rng gicj N with proper-

. A -1 . . .
ties '‘analogous to those of the g; - We continue to construct mappings

3 4 . e as T
8 By e s first finding a component Z 41 C g g, n (Int dl(/ Int dz)
. and then constructing the'pair_'g;+l:A + rng gi v N such\th_at;g;+l = e,

on BdA and if rng 84 misses Q\u.ﬂi, then so do rng gi,'

g gf, ... g g, tng g~ . We show that tmg g} NS Dxng gl S

and . that the sequence of mappings ends at a pair g? for which

rng‘gg n S = ¢ . although rng g?' may hit S .

e) The situation now reduces to case one
or case two. An additional argument shows that iii) of Lemma One is

satisfied.

Details of proof. a) If we assume that rng g misses § but

 hits: S,. then there is a component -z, of rng_géfves lying in Int dl

1

or Int d2, say Int d, . By .the Zoretti Theorem, there is a circle

1

: Xli in Int d1 which misses ' rng By» encloses - Zqs and lies so near to

: zl”.thatuit misses rng 8, (by. 'encloses' we mean 'encloses relative to

dl'). If xi. encloses points of just one of rng g N S, rng g, N S,
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then 1et-,x1 be ey We must expect that Xq will enclose points of
both' rng glf\‘S and  rng gé:ﬂ S (21. could be itself a circle enclosing
points of rng g N 5). In this case use the Plane Separation Theorem

in Int xl'CLInt d, to construct a circle: Xo < Int xi which misses

1

_(gl[A]'u gz[A]) N S and separates the component 2z, of gé[A]'n S

1
from a gquqpent- z” of glfA] n S in Int Xq . Since?zl may be in
Int Xq —-TEE_QE, we cannot predict that Int X contains points of
'rng gy 0 S; but by the Plane Separation Theorem we know that xz_Aen—
closes points of (rng g, v rng g2) n S .. If Xg Aencloses points of
both 1rng gl n S and rng g2 n S, then separate Int Xy N (rng gl(J rng gz)
still further by means of another application of the Plane Separation
Theorem. We repeat this procedure, defining circles X3 x4; ces 3L X,
being constructed in Int Xpo1 whenever Int Xr—l contains points of
both rngvgi_l n S . The following argument shows that the sequence
Xq s Xos oo must be finite: each annulus E;E_;; - Int Xptl - contains
points of (rng 81 v rng gz) o S8 . Without loss of generality in the
construction of the Xp» We could have replaced the sets rng g, 0 S
with 'thickened' sets obtained by covering the 1irng 84 NS byvsmall
disks of area o (from compactness, the thickened rng g 0 S can be
assumed to remain disjoint from the thickened rrng gy 0 S) . But since
each of the disjoint open annuli must therefore have area at least o,
the number of- X, must be finite.and the sequence ends at some Xg o

Since: could be defined if X¢ encloses points of both rng g N S

Xe+1
and rng 8y A S, X¢ must enclose points of only one of rng glt) S,

rng g2/1 S . Let X¢ be ¢ We repeat that we do not know which of

1

rng‘gl Nn S, rng 8y N S is intersected by Int X = Int ¢y -
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b) Now assuming d1 to be horizontal,
we build a small sphere in. the shape of a pill box consisting of vert-

ical cylinder w, and end caps ¢ which are parallel to d

1’ a},

(see fig 49). The cylinder  intersects d

1

only at c, and extends

1

equal distances above and belOWn.dl . Thus Int ¢

1

1 (considered as a

subset of dl) lies in Int(wfu_ﬁl v §,). Since ‘¢, misses

rng gy v rng gé “we build . so near. c that w misses = rng 81 v rng 8y *

1

Fig 50 shows v &1 v 52 and part of dl . We assume that c1 has

been moved slightly if necessary so as to miss (xl v zz‘u &B'U &4) n d1 .

We also assume that  misses every xj although this may necessitate

making w smaller or even curving w slightly to follow the curve of

Zj . The sphere wc/él v 62 is constructed as in fig 50 so that if

some lj meets d1 then xj (misses @ and) pierces each Int &i

just once. Let vy be the simply connected neighbourhood of 61 shown
in fig 51, We construct v, so that Gi - xl - 12 - 23 - 24 is a

deformation retract of \Zi zl - xz - 23 - &4, and so that vi misses

1 1’

1.” 62 . We assume that 'ledl Y] 62 v vl v vz has been

constructed so that w v &1 v 62 v vy v Vo lies in N, and (since

S ® Int ¢, and any zj which misses 1Int c i.e. any zj which

misses @ v §

¢y < Int d2) so that Int(w v 61 U 52) v v misses Q ¢ d

lU\)z 2 °

¢) Assume for the moment that In; 1
contains points of rng g N S . Because 1ng g, hits @, we can ignore

iii) in Lemma One as far as Ei is concerned, i.e. the g? which we are

about to construct need not miSS‘any-.gj . We assume that ¢ 61 v 62 “.“1 v vz‘

lies so near Int cq that w v &l v 62 Vv vy vV, misses 1rng g, . Since
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w also misses rng g, » INng 8 meets w V 61t/ 62 only in 61 or

62. Apply an argument like that of 2.2 to wnv 6111 62 s i.e. use II(1.2),
taking S 1in II(1.2) to be @V 61 v 62 and N to be ViUV, s to
, , . . =1 ANV
obtain disks Wl, ....,Wn in A such that 8, [Int (w V¥ 61 ) 62)]
lies in Int W U ... V Int W . Since.ggl[Bd Wr] - lies near

g g, N (w v 61 v 62) as we saw in 2.2, and since w misses rng 8>

therefore gl[Bd Wr] lies near 61 . 62, i.e. in vl'u v, Evidently =

each gl[Bd Wr] lies in one vy o Since each gl[Bd Wr] lies din a
simply connected subset of 21 Vv,

in II(1.3) and, following the argument of 2.2, define a mapping

we can construct the mappings Ve

1 . : 1 _ ,
, gl.A > [rng gl ~ Int(w v 61 v 62)] v vl U vz such that gl = cl on BdA .

Let g, = g% . Then it is true of both gi that gi:A > rng g; v N,

_ gi = cl on BdA, and if rng 8; misses Q UV Kj then so does rng gi

(this last property is only. true because rng 81 hits © and because

Bos which can miss some U Zj’ is identical to {g;). Additionally

. . 1 .
Int c on d., misses rng g, because g, = 8 and misses rng 8,

1 1 2
because Int ¢y misses vl(J Vy . The gi are Z-disjoint because
rng g% = rng g,, and zrng gi exceeds rng 81 only in 21 v vy which
misses rng g; . (By 'rng gi exceeds rng gy only in N', we mean

that rng gy v N > rng gi )

Suppose that instead of rng g. N S, Int c, encloses points
1 1 P

1
T . =. V] v :
of: rng 8y Nns Let 81 8» and construct w 61 62 v vy v v, as
in b), this time so that w V 61 ] 62 v 21 v Vo misses rng 8, and w

misses rng 8y - Constructing g% 1s harder than constructing gi as
we did in the last paragraph for we must ensure that rng g; misses any

set Q@ V £, that rng g, misses.  We must take careful account of the

]

various £, . Some Ej are not missed by rng g, and can be ignored.

]
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Some £, are missed by rng 8, Jbut do not meet Int c.; we note that

3 1
wwvd vé,u v, vV, has been constructed so that any £, which

]

misses Int , also misses w VvV 611; 62 Vviu v, With this pre-

caution, it is safe to ignore those £, which miss rng 8y and also

]

miss Int cq o In the remainder of this paragraph we will assume that

ﬂl and £2 are those Kj which miss rng g, and hit Int cy -

think that the procedure in the general case that some subset ﬂj R
~1

© We

sz, .. Kgs of Zl, Kz, '£3, £4 misses rng g, and hits Int ¢y

will be evident. We proceed to define g; using II(l.2) and TII(1.3)
as before. The only difficulty occurs when we wish to shrink gled W
' T

to a point so as to define Ve It was easy to shrink glle w o
r

a point in one component, say v,, of v v v, in the course of defining

1

1 . . . . .
g1 - But in this case we must shrink gZIBd wr to a point in v

1

174 -y

otherwise rng Yy and hence rng g% will hit Kltj 22 « The reason

1 K1 - 22

misses Kl v 22 (because rng g, does) and can be assumed to miss

that gled wr will shrink to a point on v is that gz[Wr]

Zz 1in fig 47 without loss of generality. There is a retract R (though
\ 3

not a deformation retract? of E” -z El £2 .onto 61 - Kl - £2 .

Additionally it turns out that R restricted to v, - Kl - Zz is a de-

formation retract of v, - Kl - 22 onto 61 - 21 - Kz . This means

- B2]Ba w_ In vy = by - by
- K1 - £2’

that RgZIBd W is homotopic to and since
S r

therefore

_Rgled Wr shrinks to a point in _Rgz[wr] c v

- B2|Bd W. shrinks to a point in v, - Kl - £2 as required. We delay the
description of the retract R and the proof that gz[Bd Wr] . can miss

-z "until the end of this proof. Except for the use of R to make

1

; : . 1 . .
_ gZIBd W_ shrink to a point, the construction of g, 1is like that of 81>
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and we have g%:A - [rng 8y - Int(w v 61 v 62)] Y] (le/ v, = Kl - 22) .

The gi are Z~disjoint by an argument like that in the previous para-

graph, and gi:A > rng gi v N, gi = ci on BdA as before. We know

that rng g% misses & because 1ng g; exceeds rng g, only in

v v, which is remote from . If £, misses rng By> then either

2 3

£, meets Int c in which case Kj misses rng g; because £, is

3 1’ ]

one of Kl’ 22 above; or else ﬁj misses Int s in which case Zj

lc/

misses rng g% because Zj is remote from Vv v, .

Note that the gi satisfy the hypothesis of Lemma One. The
important difference between 8; and gi is that Int 1 N rng gi =g
whereas Int cy hits one of 1rng gl, g g, . Since rng gi <

1
rng 8 v ViV Vys THg g} N S< rng 8 N S (because ViUV, misses §).
Evidently we can write (rng gi v rng g;) n 8 € (rng 8; V rng gz)ﬂ S

where the -inclusion is proper.

d) Since the gi satisfy the hypothesis
of Lemma One, we look for a component z, of 1rng g% NS in
Int dl v Int d2 and repeat a), b), c) to obtain a circle ¢, c Int dl\j Int d2
and Z-disjoint mappings gi:A -+ rng gilJ N with gi = ci on BdA, and
if rng 8; misses QU Kj, then rng gi and rng gi also miss QU ﬂj .
Furthermore (rng gi Vv rng gz) NS < (rng gi U rng gi)n S C (rng g, v rng gz)() S,

both inclusions being proper. We can continue in this way, defining map-

, 3 4 2
pings 8., 8;s .- and components Zq ¢ rng g, n (Int dltj Int dz),
z, © rng 83 n (Int d, v Int d,) that r-&,+ r-1 N‘

4 2 I 1 n 9l +e. 8O a gi. > g gi v N,

g; = ¢, on BdA, and if rng gi misses Q v £,, then so does rng gi .

1 3
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Furthermore (rng g; U rng g;)(ﬁ S < (rng gi—l U rng gg-l) N S where
the inclusion is proper. An argument from compactness like that used in
a) to show that the number of X, was finite can be used to show that
+1

there must be a final pair of Z-disjoint mappings g? . Since_'g?

could be defined if zk41. existed in 1rng gg N S, -therefore rng gg

must miss S .
. r r-1 .
Since :rng g, < rng g, U N, evidently
k k-1 k-2 K _
.gi.A->rng gi U N crng gi VNC... Crng giu N; and‘gi—ci

on BdA, while if QU Zj misses some rng 8> then QU ﬁj misses
rng g? . Since rng gg misses S, the argument reduces to either Case
one or Case two. In the course of the argument of Casé one or two, gg,
whose range already misses S, will be set equal tq_ﬁgé . This means
that Eé has the properties of gg; thus i), ii), iii) of Lemma One
are true for Eé . The argument of either Case one or of Case two will

now construct a new gi:A - rng g? U N C rng 81 U N with Ei =C on

1
BdA , so that Ei, E& are Z-disjoint. This proves i), ii) of Lemma One

for Ei, while iii) is wvacuously true by the Case three assumption.

Case four: Exactly one rng 8 meets S but misses Q .
The reader will find that the method of case three works here almost word
or word if it is assumed that Fhe' rng g, which hits S is rng gé .
When we arrive at the point in Casé three where g?’ is defined;vwe can

1et_'g§ be 8; immediately (or go to Case one). Actually the retract

R works on S 1in Case two just as well as on w U 6§, v 8. . in Case three.

1 2
Thus a quick proof is possible by adapting Case two.

Case five: Both rng 8; hit *S; both 1rng gi' miss @ .
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Proceed as in Case three to the point where the Tgs are defined, allowing
for the fact that iii) in Lemma One applies to both_'gg rather than only
to gé as in Case three' (thus one may have to use the retract R to

construct both gz, whereas in Case three, R was used only to construct

o

gg). When the gi are defined, the argument reduces to Case four or

Case one.

Case six: Both rng gi hit S; both 1rng gi hit €. This
case is not used in the applications of Lemma One, which always require
every set QU Zj to miss one 1rng gi . It is not hard to prove Case

six using the ideas of the other cases.
(2.4). The retract R .

This retract was used in 2.3 Case three c¢). We will show how

. . @3 _ _ - - P .
to define R: E~ - z Kl 22 > 61 Kl KZ’

when 61 is replaced by 62 is similar. Strictly speaking, the proof

the definition of R

of Lemma One requires a retraction onto dl - Zj - e, - Kj s Where
1 s

2

43 however we continue

L cees Zj are some subset of Kl, L2 3

jl’ s -2’

the assumption in 2.3 Case three c¢) that rng g, misses"ﬂl.vfﬁz .
Assume that the unique boundary component of Bl which 1is a plaﬁar
circle lies on the Y - Z plane and that the centre of this circle is
the origin. The idea is that if we untwist 81 by means of g; all

the circles 'g[Zj] will be nice circles on the 'Y - Z plane with centre
the'origin; We assume further that 61. lies on the left-hand X - Y
half-plane. We describe R in terms of several mappings whiéh,aré app-

lied in sequence to E3 -z - Zl - KZ . Each mapping will leave
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61 - Kl - Ké fixed, and the last will be onto 61 - ﬂl'— £2 .

First: untWiSt"Bl by applying the mapping vy1E3 - ; - 21 - 22
(y becomes a mapping by restricting it so that the domain misses the

'bad' set z). Each ‘y[Zj] .is a plane circle with centre the'origin:
Second: wusing the symmetry of E3 - y(ﬂl U 22), across the X - Z plane,
reflect the right-hand half-spaceé minus g(li(/ 12)‘ onto the left~hand
half-space minus y(ﬂl(/ £,) . This reflection carries o - ycﬂitJ £,)
into those points in E3 with non-positive coordinates which do not

lie on 21() Kz . Third: retract the left-hand half-space minus

y(ﬂl v 22) (which is the same as the 1eft—hand half-space minus Kl V) ZZ)
onto the left-hand X - Y half-plane minus 21 U £2 . This is easy be-
cause the remaining parts of Ki,] 22 are nice semicircles with centre

the origin; one could imagine the X - Z plane hinged along the X

axis. Using this hinge, topple the upper half of the X - Z plane onto

the left-hand X - Y .plaﬁe; simultaneously bring the lower half of the

X - Z plane up to meet the léft~-hand X - Y plane. These movements
define_a (deformation) retract which crushes the left-hand half space

minus Kl v Kz onto the left-hand X - Y half-plane minus Kl(J 22 .

Finally retract the left-hand. X - Y half-plane minus ﬂl(/ 22 onto

61 - Zl - KZ . The four successive mappings define R . Note that R
acts on vl as a deformation retract (this was used in §2.3 Case
three ¢) ) .

Finally we will show that ~g,[W.] -in 2.3 Case three c) can
‘be assumed to miss the curved cylinder z . 'Since 'géIA]"misses”'Q,
by the case three assumption, we can construct a mapping éééA - E3

whose range misses the curved cylinder 'Z in fig 5la and which agrees
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with,,'g2 on every point of A - which maps under g, outside of a small neigh-
bourhood of z:. In fig 5la, z is constructed so as to contain Q¢ Z and to
miss ~£l(J £2. Thus rngrg2 can be assumed to miss .Ele 22. The sets V9

v (see 2.3 Case Three b)) miss Q and could have been consffucted so. as to

2
miss all of. z.. Hence we assume that g, = 8, on Bd Wr since gZIBd Wr] c v]

by the definmition of W_ . We do not intend thaﬁ g8y should replace g,
since 81> éz. may not be Z~disjoint; but if gz[Wr] hits 2z, we can

apply the retract R mnot to g2|W but to §2|w and use the fact that
r r
shrinks to a point in v, - £ - £  iff g
1 "1 2 2|Bd W_

Essentially the same argument applies to the construction .of the other

CRENCR-S

mappings in the sequence 8ys 89

‘gZ(Bd W does.

3. Proof of Lemma Two.

We will modify the argument of 52 .s0 as to serve as a proof of
Lemma Two. We assume familiarity with §2 in what follows. Modifying
the argument of §2 to fit f£ig 45 presents a small and a large diffi-
culty. The small problem is that we cannot build pillboxes’accordiﬁg

is planar and the § can be

to the nice picture in fig 49, where ¢ 1

1

considéred to be horizontal while w is vertical. It will be appreciated
that the problem is more apparent than real; we have room to construct

L < Int A with some obvious smoothness conditions-so that if ¢ 1is

any circle on I and Int ¢ is defined, then a sphere w v 61 v 52 - can

be constructed together with neighbourhoods Vis Vv, 8O that

w v &l v 62 vovivoy, behaves like the corresponding set in §2, i.e.

wn=c, 8§ 8 are disks in E3 - & which meet 'w only. at its:

1> "2
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two boundary components, while the v, are simply connected neighbour-

hoods of the Gi which miss ¥ . Furthermore, if a, hits Int c,

3

misses Int c, then a, misses Int(w v 8; v §,) v vV, . We

require that when Int ¢ and hence. Gi hits just ome aj, then

.vi - aj iIs homeomorphic to the structure shown in fig 52. This require~

. : 1
ment is easy to manage; for I can be made to meet the a, near 8,

]

where (according to the definition on Ch II) the aj are straight and
parallel and perpendicular to Bl (in fact it is easy to make aj n N

a straight arc perpendicular to I).

The hard problem is that in Lemma Two we cannot use the retract
R, which was crucial to the proof of iii) of Lemma One. The reason is
that we permit the arcs (al'U U, U a2) n E;?_E, etc. to be knotted, and
in general deviate from the specialized geometry in fig 19. Recall that

R was used to show that certain mappings will shrink to a

81|Ba w_

point in v, - Zl - 22 - £3 - 24 . Instead of R, we use the following

easy but very weak result.
3.1). Let v, be the usual neighbourhood of Gi . Let vy intersect

only a; as shown in fig 52. Let f:BdA - vi'-_al . Let F:A ~» E3 s0

that £ =F on BdA and rng F misses a simple closed curve L such -

that L > a The curve L may be knotted. Then £ shrinks to a

1°

point in Vi - al « A similar result is true if'.a2 . or a, replaces

a; -
Proof. Let u be the'small circle shown in fig 52. Then

1 .can be considered to represent the sole generator y .of Vi T oags
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and also (by consulting, say, the definition in'[6.CthI])ia generator

of the Wirtinger presentation of E3'; L (we specify the paftiéﬁlar
presentation only to be sure that ‘ﬁ does not represent a trivial
generator), If i:nl(vl - al) > 'nl(E3 - L) is the inclusion homomorphism,
then, with a change of basepoint, f ¢ ym for some integer m; and

i(y) 4is an element of Trl(E3 -L) . Then f ¢ i(ym) = (i(y))m; which
is the identity of ﬂl(E3 - L) because f shrinks to a point in

E3 - L .' Since i(y) is a non~trivial element (in fact a Wirtinger
generator) of 1T1(E3 - L), either m=0 or i(y) 4is an element of
finite order. It is known ([7, (31.9)] ) that the fundamental group of

the complement of a knot has no element of finite order; therefore

m - 0, and f represents the identity yo in. ﬂl(vi - al) a.

To prove Lemma Two, we will apply arguments like those of §2
to a disk D rather than the sphere .S . We will first define some

simple closed curves to play the part of L in (3.1): Let u u

12> 713
be the unique simple closed curves which are subgets of Cziu a; v Ui, U a,,
u i . J . ti .
CZ v oa, v B3V a3, respectively. Let le? v13 be identical to
Ujps Ugg respectively except that U, is replaced by le- and u;4 by
ViB .. From the hypothesis of Lemma Two, it is clear that Ui, and U 4 miss

rng 81 while ~U12’ Vi3 miss rng 8y - Now if ‘D _ié a diskrwﬁiéh is a .

subset of Z% and Bd D misses rng g, U rng.g, v a,v.a, Vv a ;‘ then if
. ~ 1 2 1 2 3

rng 81 v rng g, meets ‘D, we can define afcircle c just as in §2 so that

1

"clc Int D and c

Then a pillbox v 51 v 52 can be constructed-aé'usual, énd:fipally a pair

1 encloses points of just one of ,rng\glf)'z,' rng g, nZ .

of mappings gi:A * rng 8; U Vl v Vz, where the vi‘ are the ﬁéual”neighbour%
hoods of the 51, -and the gi have properties like ‘the gi iﬁ §2, Case

three. If Int ¢y and hence @ U §yuv &, meets just one of aj, ap,
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ag say a; , then we use (3.3) instead of the retract R

to shrink the various mapp;ngs_'gile Wr to a point in v, U v, as
' N . . ) 1
was done in- §2, Case.three. Thus if . rng 8 hits - Int ¢, TNg g '
misses a; because Int ¢y meets only one of as 8y, ag3 -while
. o 1 . 1 _
if rng g; misses Int cis TNg gi misses a,; because g = gi .

And by the usual arguments, a which are remote from

a, :and a

3,

wuvd, v continue to miss both rng gi . In applying (3.1), we

1 2

let L be Ujy OF Vi, ‘(assumlng‘that Int cq hlts. al)

as rng g,  or rng g, hits Int e - If 1Int ¢ hits: a,

L be u12 or v12 again; if Int < hits ag’ only,_letv L Dbe

Uy3 OF v13 . Unfortunately, as the reader doubtless sees, if ¢

. encloses more than one of a; n I, a

depending

only, let

1

2 N I, az N %, then the present

argument fails (because the argument with (3.1) is weaker than the original
argument in §2 which used the retract R), and gi cannot be constructed

so that rng gi misses all of. ajs 3y a5 . The trick of proving

Lemma Two is to apply the argument of §2 so that none of 1Int s
29 1° 9s 8y - By extending

the above ideas-to further pairs gi,‘ gi, .+« and using methods from

Int c ... ever hits more. than one of a a

§2, we can prove

(3.2). .In the context of Lemma Two, let D be.a disk such that DC %,

and let. Bd D miss rng 8 U INg 8, v a; v 3, U a, <  Then there

exist circles Cis Cpy eee Cp in Int D and Z-disjoint mappings
1 2. m T, r-1 o1 2
.gi,.gi,‘ -+ 8 such that 'g;iA>rngg “ V-2, g T8 =... =8

=C,
i

™ B

on . Bd4, . <, -encloses (relative to D) points of just one of rng g;_ltv
mg gz—l Nn I, and rng g? misses D . If, additionally, each <, can

be constructed so that c. encloses just one of a;n I, a, N I,
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a, n L, then 1rng g?.,can‘be.COnstructed so as to miSS"alu,a2 U a3 .

3

Proof. (3.2) is proved in the same way as Lemma One. We
can ignore Cases two and three in the proof of Lemma Orie because the
fact that Bd D misses 'rng 81 v rng gz-‘evidently takes the place of
the condition in Lemma One that  misses rng 5 ¢/ rng gé . Clearly
we cannot have rng g?f miss Int I din this version of the argument
because D 1is a proper subset of I . The only part of the proof
which does not have an exact counterpart in §2 .is the statement that
rng gz C rng gi—l Vv (n = Z). The reason that rng gr eiceeds rng gz—l

only in n - £ dis, as usual, that VIV Y, is remote from I .,

(3.3). Corollary. If, additionally to the hypothesis of (3.2), D

misses rng 81> then 1rng gT misses a. v a, U a, regardless of the

1 2 3

" a, which are hit by the Int c. - Similarly, if

2> 73

rng g2 misses D, then 1rng g? misses al v a2 U a

number of a a

1’
3 L]
Proof. According to the argument of §2, if 1rng gi misses

D, then we let g = g? immediately.

We will-now give the proof of Lemma Two. The following question
does not look like a simplification at first glance: Do there exist -
Z-disjoint mappings fi:A -+ (rng g; v n) -a, - a

- a,  with fi = 0,

1 273 i
.on BdA, and a decomposition of I into disks 'Dl, D2 so' that
Dlu‘D2 = X and Dl N D2 ?~Bd Dl = Bd D2, and so that ' Int D2 ~misses
one rng fi’ say - rng fl, and hits a, and ass while " Int Dl‘ hits

al?
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Case one: the mappings fi. exist as described above. Look

at the decomposition Z =D,vuD, . Apply (3.2) to Dy

fi to Z~disjoint mapp;ngsA:fi:A + rng fi v (n —‘Z) w1thn fi =c¢; on

to convert the '

BdA and such that rng fi misses a; and D, . In (3.2), the condi-~

tion that Int c. hit . at most one of ajs 2y, 2y is satisfied because

ays  ags miss ‘Dl ;>Int c. - Furthermore rng E; misses " a

by the usual argument. Now apply (3.3) to D

9 Land. a,
29 to replace the E; ‘with

Z-disjoint mappings g{:A + rng ?; V (n - 1) with -gngdA = ey - We know

that rng f, misses D, since rng £

1 9 does, and £, evidently satisfies

1 i
the hypothesis of (3.2) and (3.3). By (3.3), rng gi misses aj v 3, U a,,

although rng}gé probably does not. Since. rng g{ now misses all of %,

ng g{ misses Int I except perhaps in n .

Case two: mno mappings fi exist as described. Let dc I
be a disk pierced by a; which is small enough to miss both rng 8

and a, U a

9 3 - Let D=3% -d . Using (3.2), construct a sequence of

, . 1 2 3 .
circles and mappings Cys  Bys Cos gi, Cgs Bis +e+ a8 described

in (3.2), ending in the construction of Z-disjoint mappings

m o s~ - i _ and: such that rn :
8; gi.A > rng g, U (n - %) with gi ¢; on BdA andisuch that g 8

misses D and a, U ag . We know that every c. encloses at most one

of al.d'Z, a, N I, a, N L, as required by (3.2): for otherwise
r-1

By s Int Cr» L - Int c, satisfy the definition of fi, Dl’ Dz’
. . . . - . .
~given above, which means that (since _g 1 exists) c, contradicts:

the Case two assumption.  Evidently rng g£ misses not only D vV a, U ag»

2

but also d v a;, so that rng gi misses 2V a8, v a5

‘and-all of I, etc.O.
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CHAPTER FQUR. GENERALIZATION OF A THEOREM OF BING:

MAIN PROOF.

1. We will use Lemma One, Lemma Two and I§5 to prove II(Z.Z); The
organization of the proof is much like that of [12 §7] and we depeﬁd

on the reader's familiarity with [12] for orientation (although a
detailed reading is required only of the section called 'Part II of
Proof' in-[12 §7]). As in [12 §7], we first give a (somewhat altered)
definition of Property Q, then induce Property Q through:the steps
of the dogbone construction. This argument occupies most of the length
of this chapter. As in [12 §7], it follows immediately (and for more or
less the same reasons) that some big element of the decomposition hits

both singular disks fi[A]» in II(2.2).

Still following [12], we will not present a formal induction,

but will show that if - A has Property Q, then so does A v A UA

1 2 3

(Bing proves that one Aj has Property Q; our version of Property Q

v AJUul, =y

is only useful when applied to al’ az, a3, cee s of.Ex,Z'in §2). The
proof of this is divided into Part I and Part II as in [12 §7].. In Part

I, we look at the set clil b, v b2 U by U b4 v ;2' (see fig 43)fwhich

serves a purpose like that of the set ké»qur s in J12, fig 2].. We’

]
show that the fi in II(2.2) can be replaced by mappings'ﬁgi such that
each 'rng.g{‘ misses one _bj and both"ci‘. We call the set

g

1'U bl.U b2 v b3(/‘b4_u';2.fthe cradle of A, and later represent it

as in fig 53,'WhiCh,preserVes the embedding of - Cltl bl'u Bz'u b3 v b4'U %y
s behaves like the cradle of A in that

3

eaCH,’qurjs misses one of the disks 'Di in IT(2,1) . In Part II

of our proof we follow [12] very closely and require a detailed reading

in A . In [12], Lé Pq4¥
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of the corresponding part of [12, -Th-10]. .- There are a few alterations;
these are required by the fact that some homotopies are replaced by

isotopies.

2. Properties P and Q .

We will define a Property P on double ended lassos £Lv auvm
with respect to closed sets Yl, Yz’f The lasso £ v av m consists
of circles £ and m connected by an arc a . In Ch IT we often
. specified constructions only up to homotopy (e.g. the intersecting prin-
cipal paths of Ch II). The consequence was that we ignored singularities
in ‘these constructions. In this chapter, this practice is emphatically
not allowed; in particqlar, in the lasso £ U.a v m, the circles £
and m are disjoint simple closed curves and a meets £v m only at
its end points. One of the things that. make the present chapter harder
than Ch IT is that geometric constructions have to be moved'isotopically;

whereas in Ch II homotopy was good enough.

Properties P and Q are defined in terms of their negatives,
-which we write Property “P and Pfoperty Q. A double ended lasso

£ U avm has Propertyv%P;with'respect to closed sets 'Y Yé_,iff one

1,’
of the following two conditions obtains.

“P(a): LU au m misses Yy oxr Y2 (or both),

WwP(b): £Y aV m meets both Y. and_ Y

1 Thg set’

2.°.

v v .
.auvYm misses Yl‘ Y2 :

y # £na such that of the two distinct arcs

£ contains a point

in £ with end points y and £ N a, one.

misses Y while the other misses Y

1 2°
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We intend that Property."“P(b) should be gymmetric, i.e."
a v £ may miss Y1¢J Y

less of whether £V av m . has Property.¢P(a) or Property<¢P(b),

2"and the’point y may be in m - a . Regard-
each of £ and m has Property P as defined in T 85 for circles
with base point (the base points here are taken to be £ n a, mn a).
This statement, which is important, is easily checked. Evidently

£ v aum may have both Propertyf%P(a) and Property $P(b) .

Property “P is the negative of Bing's Property P in [12].
It is easy to see that our Propertyf%P implies the negative of Bing's

property, i.e. our Propertyv%P implies that if x) € £ and X, € m

and £V av m has Property VP (by our definition), then there is an

arc in Lv av m with end points Xy X, which misses one of Yl’

Y2 . We will neither use nor prove. the complete equivalence of the two

definitions here, although a proof will be found to be straightforward.

Property Q. is defined on dogbones. If a dogbone X
Z, ¢ys Cy '
has. Property “Q. » this means roughly that the centre of X has
| 2:C1> & | }
Property VP with respect to the ranges of certain mappings 'f £, .

1 2
To be precise, let Z2> X and for i =1, 2, ci: BdA ~ E3'— Z . Then
iff there exist Z-disjoint mappings :g,, g
1° c2 _ . 1 2

- = ¢, on. BdA,  and the centre of X has

X has PropertyfVQz; o
‘ . =37
such that - gi:A +~E,

Property'mP with -respect to rng g1s IRG 8, - We also say 'X ' has

Property‘iQ with respect to 8 . gz'.,with;theAOBvipus~meaning.

Z,cl," ¢,
We define X "to have Property Q,  , ° iff X fails to have |
4 Cp0 &
Propertyﬂsz oo (i.e. with respect to every qualified pair of map=
271 T2 A

pings g.) . Note that a statement like 'X. has Property Q B~ -
- S § Z, cl, c2
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with respect to 815 - gz'ﬁ.meansjvery little.

Example 1). Suppose Z =X = A and c1; ¢, - arethe“two tircles

shown in fig 28. Then A has Property Q, . For if ¢ '(CE)
»

1 %2 L
shrinks to a point, it must hit the upper (lower) eye £ (m) of A .

Thus if fi is an extension of ' e to all of A, then 1rng fl- hits

£ and rng £, hits m . This 'kills' Property:&P»for k=LvU auvum

2

with respect to rng £ rng f2, since Propertyﬂ&P-would require

1’
either that one fi[A] -miss both £ and m or that one of £ or

m miss both fi[A] .

1° % as in Ex. 1). Then A1

Example 2). Let Z = Al; J
has Property. NQ; 3y for the ¢, can shrink to a point so as to ..
R Z’C—lﬁ C.2 i
miss Z and A, . We emphasize that 'X has Property Q, - : !
1 : Z,;cl, 0,2

- dees not imply that ¢ ¢, link the eyes of X .,

1° 2

Evidently if X has Property QZ- o and fl’ £,  are
3 :

1° cz. 21
any Z-disjoint mappings of A into E3 with fi = Qi‘ on BdA, then

the centre of X £fails to have Property N@(§),With respect to
fl[A], fz[A], and -consequently both"flfA] . and féIA]"meetﬂ(the"
centre of). X . This suggests that the obvious way to-attack the proof

of II(2.2) is to let Z =A and let c_, ¢ be~the"'ci in I11(2.2),

1> 72

_and 'we Will-eventually do this. But it turns out that in this case

- there is no sequence A DA, DA,
I3k

such that each of A, .Aj,
with. the ey defined as in IT.(2.2);

A .
» &)

5k «++ has Property QA; ¢,

in fact .every doghone X # A has Property &QV - "+ We overcome
A ALy O

. this difficulty with the next definition.



- 82 ~

A set {X, ... Xﬁ} - of dogbones has ‘' Property %Qz cl; e, iff
each X, r=1, 2, ... m has Property mQ . with respect to
_ T Z, cl, e, ‘_
the same pair of mappings ‘fl, f2’ and the same trlple' Z, cl’ cz .

If ‘{Xl, ces X } fails to have Property %QZ o then we will say

1 %
that {X s sas X } has Property Q,;’ If the set'of components' of
1 Z, 5Cqo c2
some' 4, has Property QZ Cqs and if gy:h E3 . 1s an ‘extension of

1° %2

' Ci’ i=1, 2, and the gi are Z~disjoint; then some component X of

as fails to have Property mQZ,cl, ¢,
saw earlier, this means that both gi[A] meet X . We will say that

with respect to the 8y - As we

a_ has Property Q iff the set of components of & - has
s Z,cl, c2 s
Property_QZ cl’ cé; Eventually we will show that each of al, a2, a3,
has Property Q .
Z, 5C1s Cy
3. We now give our version of [12, Th 10].
(3.1). Let Z>® A and cl, CZ by any circles whatever in E3 -Z.

In particular, the ¢, ‘do not necessarily link the eyes of A ., Then if

{Al, AZ’ A3, A } has Property %QZ oo Cz’ so has A .
We remark that in [12], the proof of Th 10 does not use the fact
that Bd D Bd. D, (in fig 1 of [12]) 1lihk the eyes of A, even though

l,
a short proof of [12, Th 10] can be constructed along the lines of the

second paragraph of [12 ‘§7].. TheJreason‘is that in later applications of
the argument of the proof of [12 Th. 10] (which is a disguised induction
step) to, say, A; and All;’f:lZ’ 137 A14"

- fact link the eyes of A, . For a similar reason we state (3.1) for

the Bd Di do not iIn

very .general circles"'ci rather than the"'ci in fig 28. We assume . that
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Z, ¢ have been chosen once and for all before the proof of (3.1)

1* 2

begins, and will now write Property ~Q for Property “Q .
Z,cl, ¢y

We will not refer to Bing's Property Q again in this paper. We will

continue the convention in Ch IIT that 1 =1, 2, and j =1, 2, 3, 4 .
Proof of (3.1): Part I

In this part of the proof we assume that {Al, A2, A3, A4}
has Property “Q with respect to mappings 8y > g, and show that the

g; can be replaced by Z-disjoint mappings g{:A -+ E3 with g£ =c
z;lu blu' b3u b

(see fig 43), each bj misses one rng gi while clLJ CZ misses both.

on BdA and with the property that in the cradle 4 Y %o

By the definition of Property ~Q, each kj has Property WP with respect

to the rng By - Look at BltJ Bl, and recall the definition of bridging

in I §5. The construction of the g£ divides into three cases depending

on the way that the sets rng gilﬁ (BlLJ 81) bridge Bl and 81 . If

rng gllw 81 or rng g2 N Bl bridges Bl, but not both, then we say that

gl is bridged once by rng g or Ing g, respectively. If both sets

rng gl.n 31, rng g, N sl, bridge sl, then Bl is said to be bridged twice.

The bridging of By is defined anologously. The three cases (not exclusive) are

Case one. Each kj has Property “P(a); neither of Bl, Bl

is bridged twice.

1
Case two. Some kj have Property “P(b); neither of Bg~, B

is bridged twice.

1

Case three. One of Bl, B, 1s bridged twice.

1
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These cases are clearly exhaustive (taking.'one' in case three to mean

'at least one'; however the reader has probably noticed that if one

of 81, B, 1s bridged twice, the other cannot be bridged even once).

Case one. Since each ‘kj misses one rng gi; this case sug-
gests an immediate application of Lemﬁa One. It is easily seen that the
hypothesis of Lemma One is satisfied except for the fact that the
rng g, may hit @ . If this happens, we alter the 8, by means of

the following argument: assume that kl misses rng g and k4 misses

rng g (if another pair of kj miss the rng g, or if all four miss

2
the same  rng 8> the method is similar or easier). Since 21 - misses

3

mg g, there is a circle £ C E = Bl which lies near £1 and’

approximates it so that £ misses rng 8y - We imagine £ sliding on
the surface -of the twisted band Bl and eventually coming to rest directly

over 24 . Although we use .the term 'slide', we intend that £ stays

.
close to but does not touch Bl . By sliding £ on the side of Bl"

which is free of the arcs aj, we are assured that £ can move without'

touching the 'aj . This shows that there is a homeomorphism M of E3

onto itself such that M is fixed on E3 - K1 and on Sl V) altJ a, v a3 v a

and carries £ to a position -directly over M[E4] =, . Clearly M[L]

4’

4

misses rng.Mgl, £4 misses rng Mg2 . Construct a small annulus o so

that its boundary components .are. M[£] . and £4 . This can be done so

5» kg and k, - 24 « By Th 5 (in Ch I), Int o

contains a simple closed curve £ which bounds no disk in o and which

that o misses ki, k

N

misses both: rng‘Mgi . Figs 54a, ..., d show how £ may be moved to the

location of an equator of S without hitting Bl v kv k

10 kU kgv k.
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This shows that there is a homeomorphism' M~ of'.E3 iontozitsélf'whiCh_‘
fiées Bl, every .kj; ’E3 - Kl’ and carriés"ﬁ .ontO'the'logation

M [L] -shown in fig 54d. Evidently Mf{é] misses'both"MfMgi[A];’ and

in fact we can assume that all off Q misses both 'MfMgi[A}; since.gtherg
wise an obvious homeomorphism can be used to push.th,e"M”Mgi away from

2 . Note that the M‘Mgi continue to be Z-disjoint and ‘M’Mgi = ¢, on

-BdA, while each k, has Property~&P(a) with respect to the MfMgi[A]

i

because both M and M are fixed on each kj . We can now apply

Lemma One to construct Z-disjoint mappings gi with E; = Ci on BdA,

such that rng E;<:?rng M’Mgi U K, -and (since  misses both rng MfMgi)

1

. rng E; misses every kj that rng g, misses. Since < Int S - N,

1

both . rng Ei miss . Since M and M~ are fixed outside of K

31 1°

rng E%_C.rng gy U K Now apply a result like Lemma One to 'the B8

1

1 .
7 such that 8; =C

end' of LJ k. to construct Z-disjoint mappings g7 .
4 Ky j pi i 1

on BdA, 1rng g{c: rng E;i) KZ’ and rng g£ misses as well as any

%2
kj that rng E; misses. It may be necessary to alter the ,E; with
homeomorphisms which act like M, M” above,.in order to make rng g{

miss those kj which rng E; misses. Evidently rng g£ misses both

;i and every kj that rng gi misses. Since each k, misses one

]
mg g, the cradle of A has the required property.

Case two. In this case we allow some of the kj.
Property “P(b) - with respect to the rng g; + We reduce this case to

to have

Case one by converting the “kj with Property &P(b) to Property\&P(a)

or, more accurately, we will define mappings G G

10 = 8p2 76110 G520 Fiz

4 ‘has Property “P(a) with

respect to rng G

3

and in fact each 'kj misses one rng Gi4 .

G with the usual properties such that "k

rng G

13’ 23°
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The argument then reduces.to Caseé one.

We will show how Gi1 is constructed and indicate the construc-

tion of the other Gij . If kl has Property %P(a)< with respect to

the rng By then 1et ‘gi = Gio = Gil . If k1 has Property ~P(b) with

» . ' is
respect to rng Glo’. 26 * ¥e assume that al(J m, misses

o and that Zl has Property @P(b) (as defined in T §5

rng G

rng G o vV rng G

1 2

for a circles with basepoint £111 al), since otherwise we simply 'turn

the picture upsidedown'. Now by Th 6 or Th 7 (in I §5), since at most

1 1 : :
one of rng Glo n e, rng_Gzo N B,  bridges Bl _there is a cirele 4£°¢< Int B]

which bounds no disk in 61, contains the base point L. n aj and

3

misses one of the rng Gio’ say, rng G We now have a centre (or

lo °

at least a double ended lasso) with Property &P(a) since £° v ay v my

misses rng Glo;~'bUt £° is likely to be a ver disorderly circle and

among other delinquencies, probably hits k, v k, v k (which means

2 3 4

that £° v al(/ m] can't be used in Lemma One (the construction of R

in Lemma One absolutely requires disjoint £,) . We get disjoint loops

J
and a picture like fig 44 by the following procedure which recalls the

manipulation of £ in Case one. Let A be a simple closed curve which
lies near and approximates £” but misses Bl . A short straight arc

a connects er\ a, to a base point-on A so that -a meets A at only

1

one point. We can assume that A ¥ a misses "rng and we' now regard

G10 > E

AV av a;v m as a double ended lasso which misses rng G10 = rng g; -
1 S .

Now slide A .over 8, keeping the base point fixed, so that the final

position of A iIs directly over. Kl . As before, we choose the 'right'

side of- 8}- to.slide A on so.that )X will miss v a,u agu g, .
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We now have a double ended lasso which looks :1like kll except that the

upper. .loop rides near but .not on '61, and it remains only to'telescope
a v A so that .a collapses and A moves to the location of £i . We
. conclude that there is a homeomorphism M" of E3 onto.itself which

. 3 ' ‘ . . . _
fixes E~ ~ Kl’ kz,_k3,;k4,>vand carries AV a U‘alc{ my onto kl .

Evidently M"Gi has the required properties of Gi

0

misses Gll’ and since rngtci

1v,'AC1early~ kl

1N k2 = rng GiO
to.have Property “P with respect to the 1rng G

n'k23= k2 cont;nues
11° and a similar argu-

ment applies to k3, .k4.. Since M 1is not fixed on Bl, we must ask.
how the rng Gil ~bridge _Bl . It is clear that Bl is bridged at-most

once by the rng Gil’ since Kl, which misses rng Gll’ separates the

boundary components of Bl; and of course B. 1is bridged by the rng Gi

1
Thus neither of Bl, _Bl is

1

just as it was bridged by the rng GiO .

bridged twice by the rng Gil . If k2 misses one of rng G rng G

11
then let Gil = GiZ’ . Otherwise kj, has Property ~P(b)  with respect

212

to the rng G and we construct Gi so that

i1’ 2

rng Gi2 N (klgj k3 U k4) = rng Gil/ﬁ'(kltJ k3(J k4), and k, misses one

2

of the rng G12 ~(note that we may have to work at the lower end of the

figure; the fact that neither band Bl or B is bridged twice by the

1

rng G is used in the second application of Th 6 or Th 7). Evidently

il

kl misses one of thé rng Gi2 . Proceeding in the same way, we define

GiB . so that k3 misses one 1rng Gi and since " can be comnstructed’

3> €3

so that rng~Gi3 /j(kl(/ k2)>= rng GiZ n (kltJ kQ), each of kl, k,
- misses one xng G,y . Finally. define 6., so that each 'k, misses one

3

-xng G, . Evidently~the"Gi4.'can be.used in the"argument of Case one

G,. tao G .

to construct the"g£ . When'-altering the 'gi. to Gil’ 1 12°
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etc., we preserve -'Z~disjointness' because we adjust only.points in Z .

Similarly each G,, = ¢, on BdA .
1ij i

Case three. In this case we know only that one of 'Bl, Bl,
say Bl is bridged twice. It is easy to see that if 81 is bridged

twice, then no k, can have Property “P(a) . For this would mean

3

that some £ misses,’say, ™mg gl; then by I(1.7), zrng gl n Bl

j .

.,o
cannot bridge Bl, so that the number of bridges is at most one. But

h|
rng g, U, Ing g, »and Kj must have Property “P(b) . For evidently if any

if each kj has Property &P(b), then in every case,” m, must miss

EjF: E%» - Ing g, - INg g,, then there can be no bridges at all. We

are thus led to the conclusion that when case three holds, there is just

one possible configuration (assuming that Bl is bridged twice): Bl

is bridged twice, Bl is bridged not even once, and each k, has

3

>

Property ¢P(b) with respect to rng gl, Ing g, with

m, v aj C E3 - Ing g, ~ INg 8, . Except for the fact that "7, may not

3 2
miss rng 8y V INg gy, the picture begins to resemble fig 45, (though

we still must construct the arecs 'u etc.). We first‘.alter'.the'.'g:.L

13°

80 that misses rng g, v rng g, . This is done just as in Case

o »
one. Fig 55 shows the gkj and- a sphere"g :placed'in the usual way with

respect to ' and the mj . In fig 55, the"kj do not have Property

52
~P(a), so that we use Lemma One itself and not the corollary. Using the
method of Case one, construct Z-disjoint mappings vg& :&-+(rng gi\u Ké)" Cé

such that rng §£ misses;everyiamj‘,that ‘rng gi‘ misses. This simply

means that rng g, v g Eé’ misses each 'm, . An examination of the . .

. 3 |
method ¢of Case one shpwsithat'if:;rng-gi ‘misses "a so does ' xng E;;

j’
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thus rng Ei rng Eé' misses all fourA.mjlz‘a

i -'We-als‘oknoWa‘that :
each point of- [’j which misses”  rng. 8y a130"miSse§"' rnggi, .this- '
means that Kj has Property @P(_b)l with.respect to rn.g El, . rng Ez
Therefore the four kj' have Property np- with respect ‘to th"e. rfné El .

On the.other hand, the fact. that the inclusion rng Ei c:(:ng giu Ké)n’ 22' ‘
may be proper means that the number of bridges on 81 with. ’re_siaéct to

- TNng El N Bl, rng —g_z n Bl" may not be two, but may be one or zero. If
this happens, then, since the t}umbe'r' of bridges on Bl with respect . to
rng El N 81, rng gzn Bl is zero (because of the presen‘cé ofi,. saj;.

mlC EB— rng _g_l - rng Ez;: using a previous argument) we have reduced

the situation to either Case one or €ase ;wo;. i:;e-." we have each, 'kj'
with Property ’#P with respect to-the rng _g-i and neither B‘l, nor

g is bridged twice. However in the. 'worst case', B8 continues to-
1 N

be bridged twice.

If Bl is bridged twice by.the rng Ei N Bl,-. then we use
Lemma Two. The hypothesis of Lemma Two is satisfied except that we must
. .. - 1 Y
construct _u12’ Upgs Vigs "Vqg e vSlnce g g, /1 B~ bridges B,
there is a component Q of rng Ez n Bl which comnects: the boundary
components of Bl . Q is compact and misses ' rng El . By the definition

of Property “P(b), Q meets a continuum el'c: 21 and a continuum ezf

in Lz ~such that ey contains 'ai-n «Ci and misses one of  rng —g_l,
rng g, - Since ey hits - QC rng Bos ,ei

must miss - -rng El .- Since
. the whole continuum e, v QU e, " misses ' rng Ez, we use I(2.5) to

.. construct an-arc u .and Kzn a, - iIn @‘1 and

12

misses  xng g, . -The:constructions of u

~which. joins- ‘Zln al“

13? ’V12’ v13 ‘are similar.
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Now by Lemma Two .there are Z-disjoint mappings g{:A %{Eng E& - Int_Z)U n
(where I, n are the sets described in Lemma Two).withg'gi = E; = ci
on BdA, and such that one 'rng‘gi s, say rng gi ,- misses bl\J b2 v b3

while both rng g{ miss"cllu‘cz'. Evidently rng g{ C rng 8; U Ki .

In the argument of Case three we did not suceed in constructing

the g£ so that 7. U gz‘ misses. rng gi'u rng gé and each b, misses

1 |

one rng gi; instead Clvu'czv_misses both 'rng gi and three bj miss
the same rng g£ . In Part ITI of the proof &f (3.1);-it turns out that
it is sufficient ‘to define the g£ s0 that\threg fbj miss the same
rng g£ (the same thing happens in the proof of [12, Th 10]): With
some additional complication, it is possible to improve the argument of

Lemma Two so as to yield the usual result, i.e. to construct g£ so -that

each bj misses one 1rng g{; however we omit this argument.,

We have now completed the three cases of the proof of Part I of
(3.1). Note that in.each Case, we constructed gi’.so that
rng g£ C rng g, U Klu‘K2 . Thus we can write zrng g£¢: rng giLJ A .
This will be important when we apply the argument of (3.1) to the com-
22 %3 2» Aye 8y}

has Property &Q with reépect to gl, gz, then there exist Z-disjoint

ponents of a etc. To summarize the situation: if '{Al, A

mappings g{:A - E3 such that

4=, Bd
) gl .C-l‘ on A,

rng'8£ C rng gilJ A,
it ;1'0:521¥ b11/ bz(/ b3 v b4 is the cradle of A, then both
rng gf miss”'cllf_czizand either each 'bj‘ misses one

' rng'gi or three'ﬁbj“ miss the same rng g{ .
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- Part II of the proof of (3.1).

We remind the reader that we are proving a result much like
Bing'!s Th 10 of [12], which is also divided into a Part I and Part II.
Our Part II is very similar.to Part II in Bing's proof and we absolutely
require familiarity in detail with Bing's Part II (this is only a matter
of half a page). We think it likely that the reader sees from the proof
in [12], how to complete Part II here, and instead of a formal proof,
we will give what amounts to a gloss on Bing's method, plus a few
comments required by the fact that our Property Q dis not quite identical

to Bing's.

We beégin by replacing gl:u bjv ...vb, U C2‘ by the figure
tj/qurjs shown in fig 56. This can be done so that either each arc
qurjs misses one rng g{ or three .qurjs miss the same rng g£ .
Our terminology is now like that of [12] except that rng g{ replaces
Di in [12]. We follow the division into cases found. in [12]. We will
not prove that the three cases given in [12] exhaust the possibilities,

but remark for plausibility that the case division ... 1) Three qurjs

miss one r¥ng gi, 2) Pq TS plus Pd,X,S misses. rng gi, Pq,3T3S

plus pq4r48 misses rng gz,;3) pqlrls plus pq4r4s misses rng g1 5
pqzrzs‘ plus Pq4¥,S misses rng gé ... seems at first glance to ignore

the possibility: Pq,T;S plus Pq5T4S misses rng gi, Pq,T,S plus

Pq,r,S misses  rng gé . However. this last variation is just Case Two

with . the diagram inverted. We will now describe how Bing's Part II can

be altered to show that there exist Z~-disjoint mappings Fi:A > E3

-such.that - F, = ¢, on BdA and the centre of A has Property P

i

with respect to 1rng Fl, rng F2 .
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Case One: any three of qur s (j =1, 2, 3, 4) miss the

3
same rng gi . If Pq,T,S "is . an. arc which fails to miss ' rng gi .

o : N . . o
then the structure shown in fig 57 lies near pqirls v pqérjs-tlqurAS -and

fiigsés rngpg; ; The struéture in fig 57 @an.be moved to65thePposition of the
. )

centre k of A by a homeomorphism M which fixes g - A ..  Evidently

' MSgl’ MSgZ are the required Fl, _F2 . If Pq,r,s 1is am: arc which
fails to miss rng g{ , . then one uses the structure in fig 58 which lies
)
near pq rys U pq,r,s U Pqs¥ss and misses rng gi% . If Pq,rs or
o~
Pq4T4S fail to miss ' rng g{ » the method is like one of those already

given. If all four .PRq.rxs

iT59E miss rng g{ » then 'forget' one of them.

0

Case Two. Pq; TS ‘plus Pq,T,S misses rng gi, PYyT,S plus
pq4r4s misses rng gé . We replace L% qurjs with the more compli-
cated construction in fig 59. 1In fig 59, s has been replaced by

S1s Sy» Sg» S, which lie near s so that the sj and arcs $183»

S18,s S8, migserng 3 U rng g, - Abusing the notation slightly,

. 3 -
we have arcs qurjsj with Pq, T8, v Pq,T,8, C E” - rng 81

pq3r333 U pq4r4s4<: E3 - rng.g; . We build two new arcs: p’q§r§s§ s
which lies near Pq4T484 and misses rng 82s and p q4r4sé..wh1ch-

lies near P4,Y .S, and -also misses rng g£ . Apply a move M_ which

6
carries._ssrgqépfqgr2s4. to the location shown in fig 60 and fixes

qurjgj, sls3, 3234, and sl_s4 . Look at a disk in- A bounded by
the circle qurlslsBM6(r3)M6(HB)M6(P;)M6(Q4)M6(r )szrzqu . We will

call this disk T and assume that it is just the obvious disk suggested

by -the figure. Thus ‘T misses all but the end points of PY,T,8,8, «

Latex we will need .the fact that. T "can be constructed so as also to

" miss ‘'all but the end points of PA4T 48, (in Case 3). There is an arc
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AC T with end pointS"s2 and s3'“which misses both  rng M6g£

because arc s3M6(r3)M6(q3)M6(p_)M6§q4)M6(r4)s2 ‘misses ' rng M6g2

and arc - misses ‘rng M (We will now begin to

3%17191P 92725 681
abbreviate our arc nomenclature). Define a move  M7 - whigth moves A

to the position of arc <s3M6(p‘)sz‘vand fixes each 'qur and

s
3y
83313482 . Although we do not know the location of A din T,. this -

can be done by means of the A - move defined in T §3. Evidently

rng M7M6gl misses qurlsl’ rng M7M6g2 misses Pq,T,8,5 and both
mg M7M6g£ miss the circle sls3M6(p’)szs4sl . TFig 61 shows
qu?lsl_ UV Pqrs,V sls3M6(P )325451 replaced by a set £° v a”uU m

‘which lies very near the first set so that m” v a” misses both

M6g£, and £~ has Property ~P(h) with respect to the rng‘M7M6gf

rng M 1

7
(it is easy to give £~ this property since much of £°  can coincide
with slrlqlpq4r4s4). Evidently £ U a”u m” can be moved to the
position of the centre £V auvm of A ., If this is accomplished’

by a move M then the centre of A has Property &P(b) with- respect

8,
to the rng M8M7M6g£’ which we define to be the required Fi .

Case three. pqlrls plus pq4r4s misses rng\gl, Pq,T,S
plus. Pq4T,S misses rng gé . The mechanism of this case resembles
‘that of Case two. We repeat the construction in fig 59 and define
M6 precisely as in Case two, so that we arrive once more at fig 6Q.

However, since the rng gi are related differently to' the various parts

3515487 ¢ 682

.of the figure, we have this time: sg,s.s,s c;:E3 - rng Mégl - rng M
as usual, but Pq ¥ 8, V pq4r4s414‘Mé(P‘)M6(r£)sz'C.E3g5 rng M

651°
- - . 3 _ .
PdyryS, Y Pq3r3s3¢/'MG(P“)M6(r3)$3CI E rng Mg, . In this case we
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must use a fact that we stated but did not,CQmplétely-usé‘in'Case 2;
viz;*that M6 fikes'all four qurjs . We assume.thg.thevdiék T is
placed so as to miSsr;pq3r3s3 « We use Th 4 from I 84 at.this p01nt,
.at the analogous place in [12];¥Th 7 of [12] is used. By Th 4 since
s3M661§)M6(p‘) and pqzrzsz"miSS“ﬁrng.M6g2 ~-and M6(p’)M6(qg)sz"‘and
SBSlrlqlp miss rng M6gl" there is an arc ,K.CZT with end points -

s Sys ~such that VA misses either rng M6g1 or rng M6g2 Apply

3’

a move M, similar to ’M7, to move ‘X' to s3M6(p’)sz . This can be

7,
done by an A - move as before; but some care should be taken so that
M7 fixes every quszJ (as well as, of course. 53313452); - the
reader might first prefer to move PqyT4S, to a new location where it
cannot interfere with the collar of T wused in the A ~ move. The '
proof is now completed along the lines of the previous cases,. using the
fact. that if s M (- )s misses rng M 681° then the set shown in
fig 62 lying near sls3M(p )s2 481V S rlqlpq4 454 misses” rng M M6gl,
while if s M (p )s misses rng M M6g2, then the set in flg 63 lying
near s153M6(p )s2 4slu S43T3d4Pd,T )5, misses rng M7M6g2 . This -com-

pletes part II of the proof of III(2.1)4.,

Corollary to III(2.1). 1If '{Al, “es Aa} " has Property<&Q '
with respect to mappings By . 8o> then A has Property “Q with respect

to mappings Fl, F2 such that - rng FiC: rng gilJ A .

. Proof. We know that 'rng gN - rng gi(J A . And all the moves

_given in Part II of the proof of LII(Zvl) can be defined so as to fix

EBHA 0.
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C 4, Proof of II1(2.2).

We have now shown that if ‘{Al, cee Aa} has Property Q-
then A has Property ¢Q‘.A Our argument now diverges:somewhat from
Lilman = ¢y @nd

the fi are Z-disjoint (we continue to take 2Z, cl,' ¢, to be assigned

Bing's in [12]. Suppose’that_'fi:A - E3 such that

arbitrarily according to the remark at the beginning of §3). We

has Property Q; the proof of II(2.2) follows directly from this fact.

will show that if A has Property Q, then each of «a

If A has Property Q, then by (3.1), {A., ... A;} has Property Q.

1’

i.e. al has Property Q . (3.1) does not imply that some Aj has

Property Q for the luminous reason that each Aj has Property &Qs

as the argument in §1 Ex 2 shows. However we can show that a, has

Property Q by adapting the argument of the proof of (3;1) to show that
for each Aj’ if '{Ajl’ ces Ajﬁ} has Property &Q then so does Aj .
This is easy to do since the proof is simply restated in terms of images
under the embedding hj of various subsets of A . Occasionally in the
proof of III(2.1) we constructed arcs which were perpendicular to certain
surfaces. While hj does not preserve this property,. the reader will
appreciate that we used such constructions for topological purposes;

e.g. to make one arc lie along another, or to miss certain subsets, and

these properties are preserved by h We do not re-define  Z, c¢., ¢

) i 1> =2
of course, since we intend to show that the same Property Q. =

‘ S . OBy ey
1s possessed. by each of al, vaz,.,a3, eee « We originally defined Z to

- contain A so that we haye Z DA, as required. We intend of course

3

. to.let "Z = A eventually. To. show that a, has Property Q, assume that
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the set of components of a, -has Property\¢Q"With,respect.to qualified
mappings_'gl,_ gy Apply a result like the corollary of (3.1) to

{A .o Ai4} ' to obtain'Z-disjoint mapping F_,:A - rng gic/ A1 such

11° _
that 'Fil =-ci on 'BdA, and A

il
1 has Property‘%Q“'Witharespect'to
the Fil
E3 - A

. We can see that since rng Fy does not exceed rng fi in
1° the'dogbones3 A2i? ....A24?: A31, ‘e A34f' A41, s A44

tinue to have Property “Q ‘with respect to the bFil’ for as we saw

con~

earlier, possession of Property P depends on the fact that rng g8; misses

certain continua in various dogbones, and this property is inherited by rng F..
: : T : i.

3

at least for dogbones in E~ - Al.':Construct Z—diéjoint mappinQSj FiZ:A >

rng Fil v A2 such that FiZ =c;, on BdA and A2 has Property Q with respecit
to the ‘FiQ' -Once agaiﬁ,}dogbonQ§ in’"ﬁ?_— AszWhich;haVe'Préperﬂy_&q with -

o Fip oo
This means that not only ‘A

respect to the eFiitucéntinueato,have:Pfopefty;mQ_with*respect to the .F

9 but Al, A31? e A34’f Aél’ cee A44 have

Property “Q with respect to the Fi Evidently we can continue in this -

2 .
way and finally derive Z-disjoint mappings Fi4:A > E3 which agree with -

¢, on BdA and with respect to which, all of Al’

- have Property.&Q . - Then

oo A4 have Property

Q. Assume that the set of components of _a3

an argument like that of (3.1) Corollary can be applied to each Ajk

(perhaps lexicographic) order to show eventually that Ay . has Property

in

&Q . If A has Property Q, then by induction, ay, a, have Property
Q and Qg -must also have Property @ . We think that it is now evident

how to proceed in the case that".m = 4, 5, ... .

We will show how the induction -argument above implies'II(Z;Z).
If the fi in the hypothesis have ranges that intersect in A., then

IT(2.2) is true; . thus we consider only the case that ' rng f1 A rng f2 nA=4¢,
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i.e. the case that the fi are A -~ disjoint. In the preceding argument
we showed .that for a fixed choice of - Z, cl; ¢,, if A has Property
1 c, are the

- as required, and A

QZ,cl; cz, then so does each am . If Z=A and c¢

' ¢; vin I1(2.2) then Ac Zc B3 - rng ¢, - rng C

1 2

has Property Q by an argument like that of §1 Ex 1. .By the induction

argument, every a_ has Property Q, . As we saw earlier, this
: m Z,cl, c2
means that both rng fi hit some. component of a for m however large.

Finally we will show that both rng fi must hit a big element
A of the dogbone decomposition G . Let G be the set of all elements
of the dogbone construction (i.e. all components of Ays Qys Qgs oee )

~

which meet both rng fl and rng f2 . Evidently G is infinite, for

by the arguments.of thisnchaptef, each am must contain an element of

~

G . Clearly one of A A, must contain an infinite subset of G,

l’ L BN 4
for the four Aj contain all of G . If Aj contains an infinite

subset of G, then one of Ajl’ ces Aj4’ say A contains an infinite

3k
subset of G . There is a sequence A DA, D A, DA, ... each of
d I | S 174

which contains infinitely many dogbones which meet both rng fi .
Obviously each member of the sequence meets both rng fi’ and the inter-
section AN A, nA,_ n A, ,MN... meets both rng £f. . One can also use

i ik jkl i
the dogbone metric to show that if the images of the rng fi are disjoint
in D, then there is a neighbourhood system of the points of T consisting
of small 3-cells around the small points and images of dogbones about the
big points such that no neighbourhood of diameter smaller than € (in the
dogbone metric) meets both: images of the rng fi . This implies that

some dﬁ has Property- ®Q,Cfi'proof of Th 12 of [12] (T,
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