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ABSTRACT 

The accurate modelling of bulk passive properties of neural tissue is essential to 

the modelling -of macroscopic phenomena in the brain such as spreading 

depression and epilepsy. Properties which characterise the passive and active 

flows of ions or electric current through tissue are referred to as transport 

properties. Such properties associated with passive flows include bulk conductivity, 

bulk diffusion coefficient, and those associated with electrically mediated ionic flux 

which is called 'spatial buffer flux'. While models for such transport properties of 

cortical tissue have been published, each of these models contained different 

assumptions about the structure of the tissue. Recent data on potassium transport 

through neural tissue are important for the construction of a unified model (i.e., 

based on a consistent set of assumptions) because they provide measurements of 

the amount of bulk electric current passing through cell membranes. 

In this thesis the Nernst-Planck equation is used as the governing 

equation for ion transport and electric potential, with specification of the jump 

conditions at the cell membrane. An asymptotic expansion and averaging 

procedure is -described which reduces the computation of bulk properties to a 

calculation for a single cell. The idea of transport numbers (a proportionality 

constant between ion transport and electric field vectors) in electrolytes is 

introduced and it is shown that this idea applies to bulk tissue. Estimates of the 

coefficients in the averaged equations are computed numerically for different 

geometries and a range of microscopic parameter values including cell size, 

membrane conductance, intracellular conduct! vitj-, extracellular space fractional 

volume. An important finding is that theoretical transcellular current, i.e., the 

bulk current flow through disconnected cells, is significant and relatively 
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insensitive to several of these parameters, in particular cell size and membrane 

conductance. 

The role of electrotonic parameters (the parameters involving electrical 

constants) in the tissue model is discussed and a formal analogy between 

transcellular current and electrostatic polarization is introduced as an aid to 

physical understanding of the transport properties of arrays of disconnected 

(physically separated) cells. Asymptotic analyses of the electrotonic parameters are 

performed in order to supplement the numerical solutions with qualitative results, 

and it is shown how to incorporate asymptotic assumptions about these 

parameters into an asymptotic model. 

The properties of steady solutions to the averaged equations are discussed 

and it is shown that some coefficients of the equations cannot be estimated in a 

steady experiment. It is argued that the general model proposed here is simpler 

and more appropriate than cable theory for bulk tissue. For example, it is 

concluded that specialized transfer cells are unnecessary 'to -explain transcellular 

flux and spatial buffering, that disconnected cells cannot be neglected, and that 

cells of differing sizes may contribute .significantly to transcellular flux. Since 

transcellular flux is significant and insensitive to geometry and intracellular 

conductivity in our model, our results imply that spatial buffering occurs very 

generally. 

This model is chosen to include most measurable quantities such as 

extracellular potential and extracellular concentration, and to be 

mathematically simple. Since it is shown that the bulk parameters of the model 

are relative^ insensitive to many of the microscopic parameters of the tissue, 

the resulting governing equations should be applicable to many physiological 
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situations. 
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' When the mind wills to recall something, this volition causes the little [pineal] 

gland, by inclining successively to different sides, to impel the animal spirits 

toward different parts of the brain, until they come upon that part where the 

traces are left of the thing which it wishes to remember; for these traces are 

nothing else than the circumstance that the pores of the brain through which the 

spirits have already taken their course on presentation of the object, have 

thereby acquired a greater facility than the rest to be opened again the same 

way by the spirits which come to them; so that these spirits coming upon the 

pores enter therein more readily than into the others'. 

R. Descartes (1664) 

Passions of the Soul. 

Part I, Article 42 
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' The concept of the bra in cell microenvironment rests on a triadic relationship, 

as yet very incompletely defined, between neuron, gl ia , and the encompassing 

extracellular space. G l i a remain the least categorized element and for this reason 

are sometimes included as constitutents of the microenvironment and sometimes 

not .... A m b i g u i t y of definition is desirable in our present ignorance because too 

much rigor would stifle imaginative conception. The bra in cell microenvironment 

does indeed resemble that of a social environment, such as a c i ty, where both 

structure and space play constantly v a r y i n g roles in the total ambience.' 

: C . Nicholson, (1980) 

Dynamics of the bra in cell microenvironment. 

Neuroscience Research P r o g r a m Bul le t in , V o l . 1 8 , no. 2, p l 8 5 . 
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' The postulate that the transfer cells form a syncyt ium is not strictly 

necessarj' . Independent transfer cells wi th processes that overlap wi th their 

neighbours by distances much greater than their electrical space constants would 

behave in essentially the same w a y . ' 

A . G a r d n e r - M e d w i n (1983 b) 

A n a l y s i s of potassium dynamics in m a m m a l i a n brain tissue. 

Journa l of Physiology, Vo l .335 , p397. 
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I. GENERAL INTRODUCTION 

HO. OBJECTIVES 

Studies of the brain from a var ie ty of points of view, e.g., experimental , 

theoretical, microscopic, macroscopic, vertebrate, invertebrate, functional , s t ructural , 

chemical , electrical, etc. have enormously increased our understanding of m a n y 

different bra in phenomena . ! C u r r e n t research on excitable cells seeks to 

understand the sub-microscopic processes controlling the permeation (passage) of 

ions through the membrane which imbue the membrane w i t h so called active  

properties. The behavior of single ion conducting channels is being studied in 

experimental electrophysiologic molecular biology, and by theoretical means. F r o m 

a more general point of view these studies are valuable for at least the 

following reasons. F i r s t l y , the study of the bra in ul t imately m a y i l luminate the 

nature of thought and behavior, as Descartes realized (see page xi) . Secondly, the 

medical treatment of pathological conditions such as epilepsy requires a basic 

scientific understanding of brain function. 

Since the operation of the bra in depends upon phj 'sical and chemical 

mechanisms, the physics and chemistry of the nervous system are relevant to 

thought and behavior, to medicine, and to the principles of bra in function. The 

present work is intended to advance the understanding of the physics of bra in 

function. 

t F o r a general introduction to neurophysiology, the reader is referred to a 
reference such as K a n d e l & Schwartz , (1983). Whi le it is not possible to provide 
a detailed introduction to neurophysiology here, m a n y terms which m a y not be 
fami l iar to every reader w i l l be defined. Despite Nicholson's remark (see page 
iii) , which referred to nomenclature rather than mathematical definitions, 
definitions are essential to construction of models. Biological terms which are 
s tandard, but which m a y not be fami l iar to mathematicians such as anion, 
membrane, etc. are underlined and defined i n the glossary which appears at the 
end of this introductory Chapter . 
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I. General Introduction / 2 

In this thesis a mathematical model of electrical potential and ionic 

concentrations in m a m m a l i a n nervous tissue is derived, as much as possible, from 

'first principles. The result ing equations are analysed, solved numerical l j ' , and the 

physiological implications of the analysis are discussed. O u r -ultimate a i m is to 

produce a single model for the macroscopic electrical and ionic properties of 

neural tissue, so that results on tissue conductivity, ion transport , cell swell ing 

and electrical potential can be correctly incorporated wi th in the same model. 

Here , we derive and solve (approximately) an equation for the membrane 

potentials of a collection of electrically discontinuous potassium permeable cells of 

differing physical and electrotonic lengths, subjected to an electric field, and 

spatial ly v a r y i n g potassium concentration. 

M a n y of the interesting aspects of bra in function, the most important 

example of which is behavior, occur at a macroscopic scale, involving the joint 

act ivity of m a n y cells. Unders tanding the physical processes under lying membrane 

potential changes in individual cells is generally recognized to be inadequate, in 

itself, to account for learning, memory , and the computing capabilities of the 

bra in (Kandel & Schwartz , 1983, . . p l l . 2 3 ; Lashle j r ,1950) . For this reason .it is 

desirable to study the properties of large numbers of cells in bulk. 

The cells which are thought to be important i n most present theories of 

bra in function are neurons (Kandel & Schwartz , 1983; Hebb, 1955,1958). While 

the active properties of neurons are seen as the p r i m a r y mediators of bra in 

function, m a n y significant manifestations of active properties such as neuronal 

f i r ing rates are sensitive to the rest ing - t ransmembrane potential. The resting 

transmembrane potential is determined to a great extent by the prevai l ing 

electrical potential gradients w i t h i n the tissue and the extracellular concentration 
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of potassium. Thus , an essential pre l iminary to the study of active properties i n 

•bulk tissue is an understanding of the factors affecting the electrical potential 

gradients and extracellular potassium concentration. 

The present work is a theoretical study ,of these factors. The work w i l l 

be directly relevant to several types of experiment; namely those which involve 

electrical b ra in st imulat ion, measure ionic concentrations i n tissue, measure 

effective bulk physical properties of tissue, such as impedance or diffusion 

coefficient, or involve electrically mediated potassium transport (which is discussed 

in detail below). F r o m an understanding of the factors influencing these 

parameters , (indirect) inferences m a y be d r a w n as to the electrical and ionic 

'microenvironment ' or ambient conditions experienced by neurons (Nicholson, 1980) 

in vivo and hence about processes of direct physiological interest. A l o n g wi th the 

modelling of ion homeostasis, the determination of bulk current-voltage relations is 

an essential step i n developing accurate continuum models of gross phenomena in 

the nervous system, such as spreading cortical depression (Tuckwell & M i u r a , 

1978) and epilepsy (Prince, 1978). 

The use of mathematical models in modelling .microscopic properties is wel l 

established (Hodgkin & H u x l e y , 1952 d). In the present chapter the classical 

(microscopic) model of the neuron is described and we indicate how basic physics 

as embodied i n the cable equation (described below) has influenced theory and 

experiment. The relat ively new field of macroscopic neural modelling is briefly 

described, w i t h its connections to neuroanatomy and the bra in cell 

microenvironment. If successful, the theory of tissue properties presented here w i l l 

play a role in macroscopic modell ing analogous to the role of cable theory in 

discussions of the neuron. 
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The general mathematical problem is to determine the bulk average flow 

of an ion which flows according to the Nernst-Planck -equations in an 

inhomogeneous medium containing periodically placed inclusions. Inside these 

inclusions the ionic concentrations and electrical conductivity are different from the 

surrounding medium, and the inclusions are surrounded by barriers (membranes) 

across which jump conditions are satisfied, relating the sizes of the discontinuities 

in electrical potential and ionic concentrations to the flux across the barrier. The 

solution of this mathematical problem will be applicable to the flow through 

tissue of permeating ions. 

Related abstract mathematical problems are discussed in Bensoussan et aL, 

(1978). There, it is shown how to construct formal multiple scale solutions to 

these related problems and the convergence of these expansions is proved under 

various assumptions. The application of such techniques to determining the 

average properties of inhomogeneous media is called homogenization. The 

application of the technique to the Nernst-Planck equations, and to the type of 

inhomogeneous medium described here is new, however. Exposition of the details 

of this reduction, solution, and interpretation of the mathematical problem and its 

application to ionic homeostasis form the substance of this thesis. 

There are some novel physical features in our derivation. The final 

averaged equations for the membrane potential are non-linear. Each biological cell 

generates current through the extracellular space because of variations in the 

ionic Nernst potentials along its length. When the flux lines of these (or other) 

current sources pass through the membranes of adjacent cells, ions must 

enter/leave the extracellular space, thus complicating the description of the ionic 

concentration profiles. 
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2.0. PHYSIOLOGY AND PHYSICS DEVELOP IN PARALLEL 

It will clarify the objectives to state our view of the relationship between 

neuroplrysiological phenomena and mathematical models of them, and to briefly 

review the history of this relationship. 

Rene Descartes (1545-1650) the French philosopher, was one of the first 

writers to formulate a neurophysiological model different from those of the 

Greeks. While his model was not mathematical, the model sketched in the 

introductory quotation (see page xi) is similar to modern neurophysiological models 

because of its dependence on physical mechanisms. 

Later, physiological models became more detailed in order to accommodate 

the measurements of a more mature physics and improved instrumentation 

technology. Once techniques had been invented to measure electrical phenomena, 

theoretical electrical mechanisms replaced the hydraulic physiological mechanisms 

postulated by Descartes, and theories began to be tested. 

In his memoir of 1791, Luigi Galvani described the response of a frog 

nerve-muscle preparation to electrical stimulation from a sparking machine, 

atmospheric electricity, and a bi-metallic arc. The galvanometer was invented by 

Ampere and Babinet (1822); and the 'action current' of muscle and nervet was 

discovered by du Bois-Reymond in the 1840's (e.g., du Bois-Reymond 

(1848,1849)). 

Theoretical developments in physics also influenced the development of 

neurophysiology. Maxwell's Treatise on Electricity and Magnetism appeared in 

1873, and the Nernst-Planck equations for diffusion of charged particles in an 

electric field were formulated about 1890. The availability of these equations was 

t In modern terminology, the 'action potential' or 'nerve impulse'. 
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a factor in the development of several theories of ionically mediated bioelectric 

phenomena by Nerns t (1899), Cremer (1906,1909), and Bernstein (1912) in the 

early part of this century. 

The roles of ions and of electricity in physiology are inseparable. The 

dissociation of electrolytes in water into charged species called ' ions' was 

demonstrated by A r r h e n i u s in 1883. Theories of bioelectric phenomena prevalant 

since the late nineteenth century depend on the potassium ion, ( K + ) , and other 

ions such as sodium, ( N a + ), and chloride, (Cl ) (Biedermann, 1895; Os twald , 

1890; D o n n a n , 1911). The apparently disparate topics of tissue electrical 

properties and ion transport are int imately intertwined from the physiological 

point of v iew. 

In the post-World W a r II period, H o d g k i n and H u x l e y (1952 a-d) used a 

mathemat ica l model to describe the action potential as a regenerative change in 

ionic permeabil i ty of nerve cell membrane and this model is accepted today in 

most essential features. Their theoretical work was confirmed by detailed 

measurements using the (then) new technique of the voltage clamp, and clever 

experimental protocols. 

T h u s , since the eighteenth century, mathematica l theory in physiology has 

advanced i n tandem w i t h physical theory and measurement techniques. 

Recently, the invention of ion-selective micro-electrodes has made possible 

the in vivo recording of variations i n extracellular ionic concentrations wi th in 

nervous tissue (Zeuthen, 1981). To complement this development, a more detailed 

and rigorous mathematical theory of ion transport in inhomogeneous media would 

be valuable . 

Fo l lowing A r i s (1978) a mathematical model m a y be defined as: 'any 
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[mathematically] complete and consistent set of mathematical equations which is 

thought to correspond to some other entity, its prototype. ' B y enforcing 

mathematical consistency among the relations of the model it is possible to 

summarize empirical relations economically, discover sources -of inconsistency, and 

to formulate new testable hypotheses. A mathematical model applicable to 

neurophysiology w i l l serve these purposes for neurophysiologists. Therefore, an 

applicable model must be tractable, and logical completeness does not entirely 

determine its value. However , it is necessary to accommodate relevant physical 

measurements which are .presently possible. 

3.0. NEURONS AND GLIA 

Biological cells consist of cytoplasm and cell organelles surrounded by a 

l ipid membrane . t 

Anatomists of the eighteenth century believed that the bra in was glandular 

and considered nerves to be ducts which conveyed the secretions of the bra in to 

the periphery. The foundations of modern neuroanatomy were laid by Santiago 

R a m o n 3' Cajal and Camil lo Golgi in the nineteenth centur}' (Cajal, 1892; Golgi , 

1906) who (with others) developed the histological techniques such -as ! the silver 

impregnation method (which allowed the visual izat ion of an individual nerve cell 

in a tissue slice containing m a n y cells) and the conceptual foundation which led 

to the modern view of the neuron as the p r i m a r y active element in bra in 

function. 

Neurons are excitable cells, and they are able to t ransmi t information 

t The topics of these sections are technical, but treated in standard modern 
textbooks (e.g., K a n d e l & Schwartz , 1983; Jack et ah , 1975). M a t e r i a l to be 
used here w i l l be given in self-contained form, but w i t h relat ively little 
commentary . 



I. General Introduction / 8 

down the long process of the neuron, called the axon, by means of propagating 

action potentials. 

The central nervous system of humans consists of some 10 ^ neurons of 

which 10 are in the cerebral cortex. Neurons are surrounded by satellite cells, 

g l ia in the bra in , and other morphologically distinct cells in the peripheral  

nervous system. Centra l gl ia are classified by morphology and location into 

astrocytes, oligodendrocytes, microgl ia , and ependymal cells and outnumber central 

neurons by about nine to one. The functions of gl ia have not been completely 

elucidated and have been the subject of increased speculation and experiment 

(Varon & Somjen, 1979; W a l z & H e r t z , 1983). G l i a contribute a third to a hal f 

of the total intracellular volume, and are found in close association with both 

blood vessels and neurons. Because astrocytes typical ly possess m a n y radiat ing 

processes they contribute a substantial fraction of the large membrane surface 

area separating the intracel lular and extracellular spaces in bra in tissue (Hertz, 

1982). t Oligodendrocytes are physiologically important because they form the 

n ^ e l i n which coats the axons of central neurons; however, data on the 

differences between the physical properties of astrocytes and ^oligodendrocytes are 

only recently becoming available (Hertz, 1982; Pevzner, 1982; K e t t e n m a n , et a l . , 

1984 b), and data about other types of gl ia are sparse. The functions of g l ia 

other than astrocytes and oligodendrocytes have not been established. Because of 

this lack of data we w i l l not differentiate between types of gl ia in this thesis. 

Ions do not easily cross a l ipid membrane; however, neural membrane 

contains pores which selectively permit the passage of certain ions such as K + 

and N a + , and C l . A pore which selectively passes potassium ions is called a 

1 , 2 
t g T h e surface volume ratio i n m a m m a l i a n bra in has been estimated at 5n per 
H of tissue (Horstmann & Meves , 1959). 
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potassium channel and a pore which selectively passes sodium ions is called a 

sodium channel. The abundance and properties of different membrane channels 

determine the permeability of the membrane to each ion. The states of these 

channels, and hence, the membrane permeabilities, may depend on the electrical 

potential difference across the membrane, as discussed in Section 5.0. In addition, 

the states of some membrane channels are governed by chemical factors released 

by neurons at synapses during synaptic transmission. 

The passage of cations (positively charged ions) out of the cell, or anions 

(negatively charged ions) into the cell constitutes an outward electric current. For 

neurons and glia the intracellular potassium concentration, [ K + ]., exceeds the 

extracellular potassium concentration, [ K + ] q , (where the subscripts i and o refer 

to intracellular and extracellular concentrations, respectively), and vice versa for 

+ + 
[Na ]. and [Na ] . Because the concentrations of the ions inside and outside the 1 o 

cell are different, they tend to move across the membrane, carrying electrical 

charge with them. The resulting transmembrane electrical potential (inside 

potential minus outside potential) opposes the chemical gradient due to the 

concentration differences. A resting transmembrane electrical potential, V , is 

attained when the net transmembrane current remains zero. 

If a membrane is permeable to only one ion, the transmembrane potential 

Vj associated with zero net transmembrane current is given by the Nernst 

equation: 

(3.1) V. = EL ln( C° / C1. ) 
i z.F i i 

where 
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C° is the extracellular concentration and C 1 . is the intracel lular concentration 
1 1 

of the ion and z. is its ionic valence, t 
I 

W h e n the membrane is permeable -to several ions, the transmembrane 

potential is m o r e difficult to calculate. In .this case, the physics are approximately 

governed by the Nernst -P lanck equations discussed in Chapter II, however, the 

internal parameters of the membrane and the correct physical model for the 

membrane are not certain (Plonsey, 1969; M c G i l l i v r a y & H a r e , 1969). Such 

difficulties cannot be resolved by theoretical analyses alone. F o r this reason, we 

assume (Hodgkin & H u x l e y , 1952 a-d; K a n d e l & Schwartz , 1983) that the 

rest ing transmembrane potential satisfies the Goldman-Hodgkin-Katz equation 

(Goldman, 1943; Hodgkin & K a t z , 1949): 

(3.2) V R = ^ l n ( P i [ N a + ] Q + P 2 [ K + ] q + P , ^ ] . } 

P , [ N a + ]. + P 2 [ K + ] . + P 3[C1 ] Q 

where R is the gas constant (joule K ^mol "S, F is F a r a d a y ' s constant, T is the 

absolute temperature, and the subscripted quantities P . , i = 1,2.3 are the 

permeabilities of the membrane to N a + , K + , and C l , respectively. This 

equation is empir ical ly correct for the squid axon, (Hodgkin & K a t z , 1949) which 

is the classical physiological model for nerve membrane, and m a y be derived 

heurist ical ly f rom the Nernst -Planck equations assuming that the electric field 

wi th in the membrane is constant and separate ionic fluxes are uncoupled. W h e n 

the permeabil i ty to sodium, P 1 ? and to chloride, P 3 , are zero, equation (3.2) 

t Equations are numbered consecutively w i t h i n Sections. Thus , the first equation 
of Section 3 of Chapter I is equation (1.3.1). Subsection numbers do not appear 
in equation numbers and the Chapter prefix is only used to refer to equations 
f rom other Chapters . 
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reduces to the N e r n s t equation (3.1) for potassium.. This assumption about the 

sodium and chloride permeabilities is supported by most reports on glial cells 

(Varon & Somjen, 1979), and (3.1) approximates the rest ing potential for 

neuronal .membrane, presumably because P 2 is relat ively large. 

Al though the net transmembrane current at rest is zero, the membrane 

m a y admit net fluxes of K + , Na~*" , and CI . A steady concentration of these 

ions in the cytoplasm is maintained by the sodium-potassium pump; (Glynn & 

K a r l i s h , 1975), a complicated assembly of protein subunits in the membrane 

which exchanges external K"*" ions for internal Na"*" at the expense of metabolic 

energy. Transport of ions which utilizes metabolic energy is called active  

transport , (Kandel & Schwartz , 1983). The distribution of anions between the 

cytoplasm and extracellular region m a y be determined by the distribution of 

cations. The net charge of the cell interior relative to the extracellular region is 

l imited by the smal l capacitance of the membrane, so that the total electrical 

charges of intracel lular .anions and cations .are equal. In the invertebrate nervous 

system, the distribution of ions in extracellular space is influenced by the 

presence of negative charges on molecules in the intercellular clefts. Because 

diffusion in the m a m m a l i a n bra in is unaffected by the charge of the diffusing 

ion, (Nicholson & Phi l l ips , 1981) and in view of other evidence (Gardner-Medwin, 

1983a) this effect is not considered here. The distribution of specific anions, 

especially CI and H C O g , m a y be modified by an anion transport system 

(Kimelberg & Bourke , 1982) in some cases. We w i l l not model active transport 

of ions in this thesis, however. Unless otherwise stated i t is s imply assumed 

that the active transport f lux is chosen to cancel the net transmembrane fluxes 

of K + and N a + over the entire cell at the resting potential. 
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It is assumed that neural membrane is of two types. F i r s t , gl ial 

membrane, which has a fixed permeabil i ty to K + (Pape & K a t z m a n , 1972; 

Somjen & Trachtenberg, 1979) and exhibits a membrane potential given by (3.1), 

and second, neuronal membrane which ;has voltage- and time-dependent 

permeabilities to K + , N a + , and C l w i t h resting potential given by (3.2). The 

separate transmembrane ionic fluxes I. are assumed to follow the equations: 

(3.3) I i = S i( v ~ VP 

where I. is the -outwardly directed f lux of the i^1 ion, V is the transmembrane 

potential, V. is the N e r n s t potential for the i ^ ion, and g. is the ionic 

conductance of the membrane for the i^1 ion (mS). E a c h of I., g., V , and V . is , 

i n general, a function of space and time. F o r the case of gl ia l membrane i t is 

assumed that the g. are fixed, and equal to zero for al l ions except K + . F o r 

neuronal membrane, the g. w i l l var}' in a manner to be described. 

These assumptions about neural membrane are simplifications of the real 

membrane properties of .central ^neurons which are not completely known (Cri l l & 

Schwindt, 1986). F o r example, dendritic membrane has a significant permeabil i ty 

2 + 

to the calc ium ion C a at some membrane potentials (Kandel & Schwartz , 

1983). This permeabil i ty is not expected to have a large influence on potassium 

concentrations, which are the focus of this work. Techniques which permit voltage 

clamp experiments on isolated microscopic patches of membrane have led to the 

recent discovery of m a n y channels wi th v a r y i n g properties, (e.g. Sonnhof, 1987) 

and the detailed characterisation of those already known (Aldrich et aL , 1983). 

The attempts to understand bra in function have involved m a n y different 
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types of experiment. The under ly ing purpose of such experiments is to 

understand physiological -processes i n vivo . However , for such understanding to 

be made precise in a mathematical model, it is necessary to obtain 

measurements of cell and tissue characteristics under controlled (or known) 

physical conditions, e.g., f rom in vitro experimentation. 

4.0. BULK TISSUE PROPERTIES 

4.1. Electrical Properties 

The f irst systematic study of the effect of electrical bra in st imulation was 

made by F r i t s c h & H i t z i g in 1870, on the motor cortex of the dog. The f irst 

recording of electrical act ivity from the bra in was reported by Richard Caton in 

1875. The recent experimental l i terature on electrical currents in the bra in is too 

vast to summarize here, though ear ly references m a y be found in Braz ier (1961). 

In this section we discuss the models which have been used to predict the 

passive electrical rproperties of cells and tissue. 

The extensive use of electrophysiological methods as an investigative tool is 

an important reason to establish the bulk current-voltage relations of -cerebral 

tissue. F o r example, the bulk current-voltage characteristics of cerebral tissue 

must be k n o w n in order to compute the distribution of current injected dur ing 

st imulation experiments (Ranck, 1975), to compute the distribution of current 

sources in the cerebral cortex (Nicholson, 1973), or to interpret the impedance 

characteristics of neural tissue (Ranck, 1964). 

W h e n neurons are st imulated electrically w i t h sufficiently smal l voltages, 

action potentials are not generated. Under these circumstances, the intracel lular , 

extracel lular , and transmembrane electric potentials are described by the classical 
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M a x w e l l governing equations for electricity in a conducting and/or dielectric 

medium. N e u r a l s ignall ing which depends on such phenomena is called electrotonic 

transmission. Electrotonic transmission in neurons or other cells depends on cell 

geometry, membrane properties, and electrical properties of the extracellular and 

intracel lular media . 

The use of the cable equation (described below) as a model for electrotonic 

transmission in the neuron is well-established (Jack et ah , 1975). Generalizations 

of the cable equation have been discussed for branching structures, (Rai l , 1959, 

1969) bundles (Clark & Plonsey, 1970, a, b), and syncyt ia (Jack et a l , 1975). 

The cable model and its generalizations are useful and are the motivation of 

much experimental work on the microscopic electrical properties of neural tissue 

(Pellionisz & L l i n a s , 1977; Johnston, 1980; Stafstrom et a L , 1984; Turner & 

Schwartzkroin , 1984). 

Because the nervous system is complex both microscopically and 

macroscopically, modelling of bulk tissue properties has not "been attempted often 

(Ranck, 1964; H a v s t a d , 1976). The lack of theory for the bulk electrical 

properties of tissue is part icular ly noticeable. For example, the f i rs t modern 

review of the distribution of s t imulat ing electrical currents is due to J . B . Ranck 

(1975). Genera l results on the bulk electrical properties of neural tissue (apart 

f rom ion transport) are useful in themselves (cf. Nicholson, 1973) because of 

their application to such experiments. 

Cerebral tissue is an inhomogeneous medium of considerable complexity. In 

part icular , conductivity varies w i t h the direction and (more subtly) w i t h the 

length scale on which it is being measured (Ranck & Bement. 1965; Nicholson & 

Phi l l ips , 1981). Th is is because tissue elements which are sufficiently extended 
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relative to the distance between electrodes w i l l alter impedance measurements in 

a complicated manner related to this distance. 

Several treatments of the conductivity of cellular tissue have .previously 

been published, (Ranck,1963; Nicholson, 1973; Nicholson & F r e e m a n , 1975; 

H a v s t a d , 1976; Eisenberg et ah , 1979; G a r d n e r - M e d w i n , 1983; ). These 

treatments have modelled the effects described above in various w a y s . The two 

m a i n assumptions used in electrophysiological models for the electrical potential in 

bulk tissue are the syncyt ia l assumption (Jack et ah , 1975) and the assumption 

of infinite membrane resistance (Nicholson, 1973). It is also possible to discuss 

effective bulk conductivity from an empirical point of v iew, so that no specific 

assumption about current through cells is made (Nicholson & F r e e m a n , 1975). A s 

discussed later in this chapter, however, current through cells is an important 

part of the present work. 

In electrophysiology, the term syncyt ium refers to a collection of distinct 

biological cells whose intracel lular regions are electrically continuous with each 

other, possibly due to gap junctions. The syncyt ia l assumption is known to be 

val id for invertebrate glia (Varon & Somjen, 1979). 

Equations describing the electrical potential in syncyt ia l tissue were 

discussed by Jack et ak, (1975), Eisenberg et a L , (1979), M a t h i a s et ak, (1979), 

and Peskoff (1979). Syncyt ia l tissues have been modelled by three-dimensional 

versions of cable theory assuming the extracellular and intracel lular spaces are 

extensively interdigitated. 

The existence of a glial syncyt ium in m a m m a l i a n cortical tissue is st i l l 

controversial . While intercell junctions have been observed (Varon & Somjen, 

1979) and there is electrophysiological evidence of coupling between some gl ia l 
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cells (Somjen, 1984; Schoffeniels et aL_, 1978), studies of bulk properties do not 

suggest that there is extensive coupling in m a m m a l i a n tissue (Hounsgaard & 

Nicholson, 1983; G a r d n e r - M e d w i n , 1983 a, b). In view of the complex nature of 

cerebral tissue, it is desirable to investigate the statement that isolated cells can 

behave like a syncyt ium and to investigate alternative models for bulk tissue. 

The assumption of infinite membrane resistance implies that extracel lularly 

generated currents cannot pass through neurons and gl ia , which therefore form 

opaque obstacles to current f low. The problem of determining the electrical 

potential in tissue under this assumption is formal ly equivalent to the problem of 

determining the steady concentration profile of a non-permeating ion in neural 

tissue. Both the electrical potential and steady concentration satisfy Laplace 's 

equation in the extracellular space and no f lux conditions at the cell membranes. 

I f the classical equations of electricity govern the extracellular potential 

and membrane resistance is infinite, then according to porous media theory, 

(Gray & Lee, 1977) the bulk electrical potential m a y be described by an 

equation i n which the effective conductivity is a tensor o (Nicholson, 1973) and 

the extracel lular electrical potential <j> satisfies 

(4.1) I ff 114 = i 

P=I P a y 

where a , p = 1,2,3, are the constant components of a, i is a current source 

density, (possibty due to the currents generated by action potentials) and the 

potential 0 is an average, defined in some appropriate w a y . Equation (4.1) is 

shown later to be val id under our more general assumptions when extracellular 
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ionic concentrations are constant, and the averaging procedure is specified 

.precisely. The explicit dependencies of a on geometry, the conductivities of the 

intracel lular and extracellular media , and membrane resistance have not been 

calculated. 

The assumption of infinite membrane resistance has been useful in the 

interpretation of field potentials (Nicholson & F r e e m a n , 1975) because the fraction 

of extracellular current which passes through cells is s m a l l in m a n y experimental 

paradigms. However , evaluation of the anisotropy of conductivity measurements in 

m a m m a l i a n cortex (Gardner-Medwin, 1980) suggests that electric current passes 

through cells in sufficient quantity to appreciably influence the bulk resistance of 

neural tissue. Most important ly , because electrically mediated potassium transport 

occurs chiefly by means of current flow through cells, it would be inappropriate 

to employ the assumption of infinite membrane resistance in the computation of 

ion transport properties. For example, in Gardner -Medwin ' s current passing 

experiment, the smal l fraction of imposed current which passed through cells 

apparently accounted for a significant potassium flux. 

The formulation of more general systematic physical models for tissue 

electrical potential might help to resolve difficulties in the interpretation of 

electrophysiological data in bulk tissue (cf. Somjen & Trachtenberg, 1979). F o r 

example, i t is not k n o w n whether high or low membrane resistance of the cells 

(neurons or glia) might favor electrically mediated ion transport in tissue which 

is not syncyt ia l . 
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4.2. Ion Transport Due to Diffusion and Spatial Buffering 

In this thesis the term " transport" usual ly refers to the f lux of some 

conserved quanti ty , such as net electric charge or an ionic species, in response to 

a gradient of intensity (e.g., potential , concentration) of that quantity (cf. 

Batchelor, 1974). 

Whi le electrophysiology dates f rom the mid-nineteenth century (du 

Bois -Reymond, 1848; Helmhol tz , 1850,a,b) the concomitant measurement of ionic 

effects has become possible only recently. Exper iments wi th squid axon to 

measure transmembrane ionic fluxes us ing radioactive tracers date f rom the 

1950's (Hodgkin & Keynes , 1957), while useful ion selective microelectrodes 

became available only in the 1960's (Zeuthen, 1981; Nicholson, 1980). Thus , 

some of the electrophysiological l iterature does not explicit ly treat ions and it is 

indeed possible to obtain theoretical predictions about electrical properties of tissue 

without including ionic effects. 

Recently, it has become clear that wi th in .the m a m m a l i a n central nervous 

system, physiological states such as spreading depression (Leao, 1944; Grafs te in , 

1956) and seizure activity ( Moody et ah , 1974; F isher et a l , 1976; -Futamachi 

et ah , 1979) can give rise to spatial variat ions in extracellular [ K + ] . These 

spatial variat ions can v a r y in their characteristic spatial wavelengths f rom several 

m m to . 5 m m (approximately hal f the length of a Purkinje cell arborization). 

Thus , these variat ions have spat ia l wavelengths which are long compared to most 

cortical cells. 

Potass ium release occurs during nervous act ivity due to K"*~ efflux f rom 

neurons dur ing the repolarization phase of action potentials. Spat ial gradients in 

depth presumably develop because K~^ release is p r i m a r i l y f rom the cell bodies 
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of neurons, which are concentrated in part icular layers of the cortex (Futamachi 

et a l , 1974; Moody et a l , 1974; Sypert & W a r d , 1974). Spat ia l gradients 

paral le l to the surface of the cortex may occur because of an advancing wave of 

spreading depression, -which is a lways accompanied by drastic changes in 

extracellular ion concentrations. The potassium released under the conditions 

described above is cleared f r o m bulk tissue by several mechanisms, including 

active transport , diffusion, and spatial buffering. 

The diffusion of ions i n neural tissue is different f rom diffusion in a 

medium without cells because ions do not move freely across cell membranes. 

Solution of the diffusion equation for non-permeating ions is complicated by the 

tortuous geometry of the m e d i u m . In the physiological l i terature (Nicholson & 

Phi l l ips , 1981) diffusion of non-permeating ions has been described by the 

equation: 

(4.2) D , V 2 C + •£ = 3C 

A a "St 

'where D is the diffusion coefficient, a is the extracellular space volume fraction, 

Q is a source density and C is an averaged local extracellular concentration. 

The constant X is a dimensionless geometrical factor called the tortuosity factor. 

Equat ion (4.2) is not the most general equation for diffusion in an inhomogeneous 

medium, because it has been assumed that diffusion is isotropic. 

A s s u m i n g that the diffusion equation holds extracel lular ly for a 

non-permeating ion, the theory of porous media (Lehner, 1979; G r a y & Lee, 

1977) shows that equation (4.2) is a correct description of steady diffusion in a 

geometrically complicated m e d i u m , provided that the average is taken in an 
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appropriate w a y . The averaging procedure is precisely specified, and equation 

(4.2) can be derived using .this procedure i f there are no electrical forces and the 

ions are non-permeating. The explicit relation between X and the geometry and 

parameters of the medium has not been determined in a physiological context. 

The constants a and X have been determined empir ica l ly , however, for 

non-permeating ions in bra in tissue (Nicholson & Phi l l ips , 1981). The factor X is 

approximately 1.5, and a about .2, in m a m m a l i a n cerebellum and cerebral cortex. 

Because potassium ions K + cross cell membranes under rest ing conditions, 

equation (4.2) is not appropriate for accurate computation of potassium spatial 

transport. The approach taken i n this work w i l l lead to the derivation of a more 

appropriate governing equation. 

The gradients of [K + ] Q described above give rise to electrical currents 

which cause an electrically mediated transfer of K + f rom regions of high [K + ] 0 

to regions of low [ K + ] q , a transport mechanism called spatial buffering. 

Electr ical ly mediated spatial transport of potassium was f i rs t described by Orkand 

et aL , (1966) and is usual ly attributed to gl ia l cells. In detail , the mechanism 

may be explained as follows. Gl ia l and resting nerve membranes are 

predominantly permeable to K + . Thus , extracellular [K + ] is the p r i m a r y factor 

determining the local transmembrane potential (cf. (3.1)). W h e n the 

transmembrane potential varies along the length of an electrically continuous 

elongated cell , the longitudinal voltage gradient causes current flow through the 

cells and extracellular space. 

A displacement of the membrane potential V toward zero is called a 

depolarization and a displacement of the membrane potential toward more 

negative potentials is called a hyperpolarizat ion. Higher [K~^] corresponds to 
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depolarized transmembrane potentials, and lower ^ + ] 0 ^° hyperpolarized 

transmembrane potentials relative to the rest ing value. W h e n a single cell is 

exposed to a spatial gradient of [K + ] o the local N e r n s t potentials (3.1) become 

different at different points of the cell. Since a return ,path for the current 

exists v i a the intracel lular and extracel lular media, a closed current loop is 

formed which passes inward through the cell membrane at one point, goes 

through the intracel lular space, passes outward through the membrane at another 

point, and f inal ly completes the loop through the extracellular medium (see figure 

I-4.1).t A s a result of this current f low, the true transmembrane potentials differ 

sl ightly from the Nerns t potentials; and these differences w i l l be precisely 

calculated in subsequent chapters. In addition to the currents described, 

extracellular current m a y be imposed on tissue due to the mass f i r ing (production 

of action potentials) of m a n y neurons (Nicholson & F r e e m a n , 1975) or by an 

experimental current generator, and these currents m a y result i n t ransmembrane 

currents which enter cells at one location and leave at other remote locations. 

W h e n electric current flows in a l iquid medium containing ions (electrolyte) 

the •flow of charge is due to the movement of ions through the medium. Charge 

-1 -2 -1 -2 f lux or current is defined by (mol sec cm or amp sec cm ) 

(4.3) 1 = J C - J A 

where the f lux of cations, JQ , and of anions, J ^ , are the s u m , respectively, of 

the signed fluxes of each cation and anion in the solution. The symbol 3 w i l l be 

used to denote a f lux which consists of the weighted sum of several ionic fluxes, 

t The f irst figure of Section 4 of Chapter I is numbered 1-4.1, and so on. 
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Figure 4.1. The spatial relationships between extracellular K concentration, 
depcjilarization/hyperpolarization of biological cell membranes, and the flux of K , 
Na , and Cl ions results in the transport of K from regions of high to low 
concentration. 
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while "j w i l l be emploj'ed to denote a specific ionic f lux. 

I f electric current in an electrolytic medium consisted entirely of the f lux 

of potassium, then by conservation of current, no concentration changes of 

potassium would occur along the current path. However , only about 1.2% of 

extracellular currents consist of potassium flux (Gardner-Medwin, 1983). 

Extrace l lu lar currents consist main ly of sodium and chloride fluxes, while 

transmembrane and intracel lular currents consist main ly of potassium f lux. Hence, 

in the current loop described above, a net efflux of potassium occurs f rom the 

extracellular space at one location and a net influx occurs at others, w i t h the 

result that local + is altered. Other sources of extracellular current such as 

those due to an experimental source maj^ also modify [K +] Q. 

Such spatial transport of potassium (or other ions) by electric current w i l l 

be referred to as electrically mediated spatial transport. Reference to F igure 4.1 

shows that when current loops result f rom spat ia l gradients of [ K + ] o , the effect 

of electrically mediated spatial transport is to reduce ['K̂ ~] where it is high and 

to increase [ K + ] Q where i t is low. Therefore, this 1 phenomenon is called spatial 

buffering. 

To estimate the magnitude of these effects, A . G a r d n e r - M e d w i n (1983 a, 

b; G a r d n e r - M e d w i n & Nicholson, 1983) performed experiments i n which electric 

current was passed through bra in tissue and the consequent movement of K + 

ions was measured. Current was passed perpendicular to the cortical surface 

through f luid contained in a circular cup placed on the cortical surface. The 

potassium contents of the cup was monitored during current passage. It was 

verif ied by means of intracellular recording and application to the cortex of 

tetrodotoxin ( T T X ) , a pharmacological agent which suppresses the generation of 
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action potentials by acting upon sodium channels, that the observed effects were 

independent of any effect on action potentials of current passage. For some 

experiments, the extracellular potassium concentration, [K + ] q , was monitored at 

various depths in the cortex 'beneath the cup. Finally, the results were 

interpreted according to a theoretical model. The results were consistent with the 

conclusion that electrically mediated potassium (spatial buffer) flux is about five 

times the diffusive flux for potassium distributions varying over distances much 

greater than 200 nm in the rat brain. The theoretical model was necessary 

because spatial buffering and diffusion both result from spatial gradients of 

[ K + ] q , so that the results of such an experiment are confounded, and theoretical 

assumptions must be made in order to attribute a definite fraction of the 

potassium flux to either diffusion or electrically mediated flux. 

The theoretical model for the tissue electrical potentials used by 

Gardner-Medwin to interpret data was the cable model. It was assumed that 

intracellular current flowed through a coupled cell population in the cortex, called 

'transfer cells', and that intracellular current consisted of potassium flux. 

However, the cell .population which was supposed to be the substrate of the 

cable equation was not identified. Thus, it was necessary to estimate the 

parameters of this putative population from the data. This procedure, while 

useful, does not indicate the relationship between the observations and independent 

measurements of the microscopic parameters of cell populations. 

5.0. N E U R A L M O D E L L I N G 

In this section we summarize Hodgkin and Huxley's model of the action 

potential. The relation between models for active and for electrotonic properties of 

nerve is illustrated for the case of Hodgkin and Huxley's model. This is expected 
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to be instructive in evaluat ing the present work , though it is wel l -known to the 

biological reader. While the Hodgkin-Huxley equations were original ly developed for 

the squid giant axon, they represent the classical physiological model of the 

action potential , which is assumed (Cri l l ,& Schwindt, 1983, 1986) to -apply to 

the neurons in m a m m a l i a n central nervous system in some possibly generalized 

form. F o r example, dendritic membrane exhibits action potentials based on the 

voltage dependent calcium permeabil i ty (Kandel & Schwartz , 1983). 

B y means of a series of experiments Hodgkin and H u x l e y , (1952a-d)t 

were able to formulate quantitative descriptions of the quantities g. in equation 

(3.2) for the squid axon. It was found that the transmembrane current could be 

satisfactorily described as the sum of the capacitive current, 1^,, the potassium 

current Ij^, the sodium current, I j ^ a , and the current carried by chloride and 

other ions, Ij, called the leakage current. Thus , the total t ransmembrane current 

_2 
I (uraA c m ) is given by: 

(5.1) I = I c + I R + I N a + I r 

The ionic conductances of (3.2) satisfy a set of ordinary differential equations 

w i t h coefficients depending on the membrane potential V . 

A n action potential is a rapid (lasting ca. 1 msec) regenerative 

depolarization of the neuronal membrane as a result of a complicated set of 

changes i n the membrane conductances. It is characterized by a rapidly r is ing 

phase in w h i c h the membrane sodium conductance increases dramat ica l ly , and a 

t F o r an elementary account, see A i d l e y , 1978, or m a n y other standard texts. 
This model contains explicit hypotheses on the non-linear voltage and time 
dependent 'active' properties of neurons. 
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somewhat less rapid return to equilibrium in which the sodium conductance 

decreases and potassium conductance increases. In general, excitable membranes 

contain voltage dependent sodium channels (Aidley,1978). 

From the experimentally determined formulas describing the ionic 

conductances, it was possible to reconstruct the action potential, assuming that 

Vj^, V j ^ a > and Vj are constant. When the membrane potential V is constant in 

space, the associated action potential is called 'space clamped' and does not 

depend on the electrotonic properties of the axon or cell. 

To calculate a propagating action potential, a model for the spatial 

dependence of the potential is needed. For this purpose, Hodgkin and Huxley 

employed the core conductor model of Hermann (1879), also known as the cable 

theory t It is assumed that the axon is an elongated cylinder of uniform cross 

section aligned with the Z axis, and only the axial coordinate is considered. Since 

the axon is a three dimensional object, radial current flow must occur, so that 

these assumptions are artificial in some respects. 

The model equations of cable theory are: 

(5.2) 
m 

(5.3) 1° = - I 1 

t t 

f . The original cable equation of classical physics is due to Kelvin. 



I. General Introduction / 28 

(5.4) M = - r , 1° 
oz t 

(5.5) | / = - r 2 l [ 

where 1° is the axia l current flow in the external medium, I 1 , the axia l 

current flow in the internal medium, i is the transmembrane current per unit 

length, 0° is the potential in the external medium, <j>1 is the potential in the 

internal medium, r^ is the resistance of the external medium per unit length, 

and is the resistance of the internal medium per unit length, A standard 

argument us ing (5.2) - (5.5) yields: 

(5.6) i = H*. 

where V = 6l-d>°. For a fibre of radius a, i = 27ral and r„ = RV7ra^ 
m 2 

where R 1 is the specific resist ivi ty of the cytoplasm (Q cm). The relation between 

r^ and R ° the resist ivity of the external medium is complicated because the 

three-dimensional current flow is not ax ia l . Because R ° is smal l however, Hodgkin 

and H u x l e y assumed R ° = 0, and thus obtained: 

(5.7) I - ™ = a ^ 
27ra 2R1 
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The val idi ty of the assumptions (5.2) - (5.5) has been investigated 

experimental ly by Hodgkin and Rushton (1946), and Lorente de N o (1947),t and 

mathemat ica l ly by Clark and Plonsey (1966). Tt is found that these assumptions 

are approximately correct for isolated preparations . In addition, the use of the 

cable model for the intracellular and transmembrane potentials (but not the 

extracel lular potential) can be mathemat ica l ly justified by a three-dimensional 

analysis of the electrical potential (Clark & Plonsey, 1966). 

A steady propagating action potential must have the form V = V(z-c?t) , 

where 6 is the conduction velocity. The propagating action potential , which 

satisfies an equation obtained by equating (5.1) and (5.7) has a propagation 

speed (or wave speed) t? 0 which is determined from the equations by a 

numerica l iteration procedure. 

The propagation speed and the dependence of the action potential on z - dt 

depend upon the simplification (5.7) and the values of a, the fibre diameter, and 

Cjyj- the membrane capacity. Despite the necessity to estimate these parameters , 

and the various s impl i fy ing assumptions, the predicted propagation speed (18.8m/s) 

of the action potential (Hodgkin & H u x l e y , 1952d) closely matched the observed 

speed (21.2m/s). The use of cable theory was an essential step of this 

calculation, though the cable model for electrotonic properties is s imple. 

The role of cable theory in the model of the action potential shows that 

(microscopic) electrotonic properties of neurons play an essential role in their 

physiology and it m a y be anticipated that bulk passive properties w i l l be 

important in the formulation of an}' macroscopic model. 

t I a m indebted to D r . E . P u i l for pointing out this fundamental ear ly 
reference. 
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5.1. Spreading Depression 

Spreading depression (SD) was discovered by the physiologist Le'ao (1944) 

dur ing studies of experimental epilepsy in the cerebral cortices of rabbits. S D is 

characterised by a marked and prolonged -depression of the spontaneous electrical 

act ivity of the brain . Subsequently, S D has been observed in m a n y brain 

structures and species (Bures et ah , 1974). In addition to the electrical changes, 

later studies revealed large changes in the normal ionic equi l ibr ium of the bra in . 

K r a i g and Nicholson (1978) measured changes in the extracellular concentrations 

of several physiological ions during S D in the cerebellum, namely , an elevation in 

the concentration of potassium from 4 m M to 40-50 m M , a fal l in the 

concentration of sodium from 80 m M to 60 m M , a fal l in the concentration of 

calc ium from 1.2 m M to .12 m M and a fal l in the concentration of chloride 

f rom 85 m M to 50 m M . Spreading depression has been observed in cerebellum, 

olfactory bulb, hippocampus, and in vitro in the slice preparation (Somjen & 

A i k e n , 1984). 

This section is intended to indicate what factors must be included in any 

model of S D which accounts for its observable effects. Nei ther a review of the 

S D literature nor an evaluation of competing hypotheses is intended. A 

satisfactory model must include the factors which interact to produce the p r i m a r y 

observable effect, but it need not include epiphenomena which accompany the 

m a i n phenomenon. The factors producing the m a i n phenomenon w i l l be referred 

to as mediat ing factors. 

L i k e the nerve impulse, the experimental phenomenon exhibits a wavelike 

character but with a (much slower) wave speed of 1-9 m m / m i n . Also it exhibits 

recovery since the electrical act ivity and ionic concentrations of the tissue return 
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to their original levels after several minutes. A detailed comparison of the S D 

wave and the nerve impulse ma}' be found in M i u r a (1981). 

These changes m a y be initiated by a var iety of s t imul i , including electrical 

s t imulat ion, mechanical s t imulat ion, and the local application of K C 1 . The 

pronounced and robust nature of S D affords a unique opportunity to study the 

interaction of electrical and ionic mechanisms w i t h i n neural tissue at a 

macroscopic level. 

Several hypotheses have been advanced as to the mediat ing factors of S D . 

D u r i n g the 1950's it was known that extracellular potassium concentrations 

increased greatly during S D (the magnitude of the increase was later measured 

to be 40 - 50 m M , in some preparations (Nicholson & K r a i g . 1981)). Grafste in 

(1956) hypothesized that spreading depression was due to the spread of 

extracellular potassium, which depolarized neurons and caused further potassium 

release by means of action potentials. A t that t ime, the role of other released 

factors such as glutamate, which is an important intracellular anion, (Puil , 1981) 

was not understood. V a n H a r r e v e l d (1978) postulated that the principal chemical 

can be potassium, or the neurotransmitter L-glutamate , result ing in two distinct 

mechanisms for S D . However , the phenomenon does not depend crit ical ly on the 

generation of (sodium) action potentials. The S D wave is not antagonized by 

treatment of the cortex w i t h tetrodotoxin (TTX) (Sugaya et ah , 1975). 

T u c k w e l l and M i u r a (TM) (1978) formulated a simplified mathematical 

model for S D , t which accounts for the essential features of the phenomenon 

t O u r calculations are not intended exclusively to extend the S D model. A 
detailed evaluation and extension of this model from a physiological point of 
view, would require experimental work , which is beyond the scope of this thesis. 
T u c k w e l l and M i u r a ' s work is cited here as a paradigm for macroscopic modelling 
of neurophysiological phenomena. 
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(depression of spontaneous bra in act ivi ty , wavelike propagation, ionic concentration 

changes, and recovery) by incorporating several physiological mechanisms, 

wel l -known through microscopic studies, into a set of equations. Tuckwel l and 

M i u r a hypothesized that conductance changes in post-synaptic membrane rather 

than action potentials are responsible for the release of potassium by neurons 

dur ing S D . The increase in extracel lular potassium leads to depolarization of 

neuronal membrane according to equations (3.1) and (3.2). This depolarization 

leads to the entry of calcium into pre-synaptic terminals which causes release of 

neurotransmitter (Katz , 1969; Krn jev ic , 1974). The neurotransmitter (likely 

L-glutamate) acts at post-synaptic (and pre-synaptic) receptor sites, changing the 

conductivities of post-sj'-naptic neurons and leading, to further potass ium release. It 

is not necessary to specify the identity of the neurotransmitter wi th in the 

mathematica l model, and it is possible that other neurotransmitters , such as 

acetylcholine might play the same or a s imi lar role. 

According -to this model, propagation of the S D wave depends on the 

spatial transport of potassium from the site of the init ial s t imulus to remote 

regions of the extracellular space. The wave speed predicted by this model is 

about l m m / m i n , which is at the lower end of the observed wave speeds of 

l - 9 m m / m i n in m a m m a l i a n cortex. This discrepancy is smal l , given the s implic i ty 

of the model, but because m a n y of the other parameters of the model were 

obtained by f i t t ing the data for the observed wave , the model wave speed might 

be expected to depend p r i m a r i l y on the diffusion coefficient of potass ium, which is 

accurately known (Horvath , 1985). Hence the discrepancy l ikely results f rom the 

omission of some mediat ing factor, and not from inaccuracy in the numerical 

parameters . 
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Because potassium transport is the basic factor in the propagation of the 

S D wave in the T M model, refinements of this model might na tura l ly begin wi th 

a more complete account of potassium transport in the cortex. 

Whi le a tortuosity factor was used to account for the effect of geometry 

on the effective diffusion coefficient for K + the T M model contains no specific 

assumption (analogous to cable theory) concerning the effect of geometry of the 

extracel lular and intracellular spaces on the transmembrane potential . Therefore, 

the formulat ion of a model for this relationship is a second natura l refinement of 

the S D model. 

Several empirical correlates of S D are not presentty k n o w n to be 

mediat ing or epiphenomenal. The observations of Nicholson .and K r a i g , (1981) 

suggest that S D is accompanied by massive movement of an (unknown) anion 

f rom the intracel lular space. The mechanism for this putative anion movement is 

not k n o w n and it is possible that this ion m a y be one of several organic anions, 

including glutamate. It is found (Van "Harreveld & Khat tab , 1967) that S D is 

accompanied by a dramatic reduction of the extracellular space due (at least 

part ly) to swelling of the dendrites in the affected areas. It is l ikely that this 

swel l ing is osmotic and is caused by a net f lux of salt (anion and cation) into 

the intracel lular space. Since the osmolari ty of intracellular space must be 

preserved, water enters cells, causing an increase in intracel lular volume. A t the 

same t ime, the electrical resistance of the cortex rises dramat ica l ly during S D 

( V a n H a r r e v e l d & Ochs, 1957; Ranck, 1964;). 

The role of these concomitant factors in S D has not yet been clarif ied, 

and some theory would be required to obtain the relation between cell swell ing, 

elevated tissue resistance, t ransmembrane potentials, and spat ia l buffering wi th in 
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the tissue itself. The calculations performed in the present work do not apply to 

the extreme conditions which prevai l during S D , however, thej ' are compatible 

w i t h the observed correlation between cell swell ing and the changes in tissue 

resistance. 

Elevations in the extracellular potassium concentration m a y produce slow 

field potentials by depolarizing the membranes of gl ial cells (Kuff ler , 1967; 

Somjen, 1975). A relation between extracellular potassium, gl ia , and slow field 

potentials is strongly suspected on experimental grounds. Extrace l lu lar potassium 

concentration m a y be involved in certain types of neural signall ing (Lebovitz, 

1970) and a var ie ty of metabolic effects (Krnjevic & M o r r i s , 1981), even though 

it may not be the single most crit ical factor in every case (Somjen, 1984). 

A theory of potassium transport and the relation between extracellular, 

intracel lular , and transmembrane potentials is a basic prerequisite for accurate 

macroscopic modell ing of S D and other phenomena, e.g., epilepsy. (Prince, 1978; 

C r i l l & Schwindt, 1986; Traub et aL, 1985 a,b) in which ion concentrations and 

extracellular potentials in bulk tissue m a y play a mediat ing role. 

6 . 0 . O U T L I N E O F T H E S I S 

In Section II. 1.It we introduce the Nernst -Planck equation, which is the 

governing equation for ion transport and electric potential, and specify the j u m p 

conditions at the cell membrane. In Section II. 2, appropriate scalings for the 

equations are chosen. This section also deals w i t h the structure of the tissue 

model and methods for incorporating the j u m p conditions into formal calculations. 

In Chapter III, an asymptotic expansion and averaging procedure is 

t Chapters are referred to by capital r o m a n numerals and sections by arabic 
numerals separated by a decimal point. Thus Section II. 1.1 refers to subsection 1 
of section 1 of Chapter II. 
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described which reduces the computation of bulk properties to a calculation for a 

single cell. In Section I V . 1, the idea of transport numbers in electrolytic media 

(Horvath , 1985) is introduced and it is shown that this idea applies to bulk 

tissue. Coefficient estimates in the averaged equations are computed numerical ly 

for a range of microscopic parameter values including cell size, membrane 

conductance, intracel lular conductivity, extracellular space and geometry, in 

Sections I V . 3 - I V . 6. A n important f inding is that theoretical transcellular 

current, the bulk current flow through disconnected cells, is significant and 

relatively insensitive to man}' of these parameters , depending p r i m a r i l y on cell 

size and membrane conductance. 

In Chapter V , the role of electrotonic parameters (the parameters involving 

electrical constants) in the tissue model is discussed. Section V . 1 . 2 presents a 

formal analogy between transcellular current and electrostatic polarization as an 

aid to physical understanding of the transport properties of a r r a y s of disconnected 

cells. In Section "V.2, asymptotic analyses in the electrotonic parameters are 

performed in order to supplement the numerical solutions w i t h qualitative results, 

while in Section V . 3 it is shown how to build asj 'mptotic assumptions about 

electrotonic parameters into the model. 

In Chapter V I , we discuss biological implications of the analyses from the 

body of the thesis. The properties of steady solutions to the averaged equations 

are discussed i n Section V I . 2 and it is shown that some coefficients of the 

equations cannot be estimated in a steady experiment. It is argued that the 

general model proposed here is simpler and more appropriate than (syncytial) 

cable theory for bulk tissue. F o r example, Section V I . 3 . 1 concludes that 

specialized transfer cells are unnecessary to explain transcellular f lux and spatial 
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buffering, while Sections VI.3.2 - VI.3.3 conclude that disconnected cells cannot 

be neglected, and that tissue structure may be important. 

Section VI. 4 discusses the significance of current through cells and 

observed phenomena which may be affected by the length scales which are 

imposed by experimental observations. Limitations of our approach are discussed 

in Section VI. 5. Finalfy, Section VI. 6 briefly contrasts the present model with 

previous models. 

The present model is chosen to include measurable quantities such as 

extracellular potential and extracellular K"*" concentration and to be 

mathematically simple. Since it is shown that the bulk parameters of the model 

are relatively insensitive to many of the microscopic parameters of the tissue, 

the resulting governing equations should be applicable to many physiological 

situations. 

G L O S S A R Y 

Action potential , A rapid (lasting ca. 1 msec) regenerative depolarization of the 
neuronal membrane accompanied by a complicated set of changes in the 
membrane conductances. In the classical case, it is characterized by a rapidly 
rising -phase -in which the membrane sodium conductance increases dramatically, 
and a somewhat less rapid return to equilibrium in which sodium conductance 
decreases and potassium conductance increases. 

Active properties In Hodgkin-Huxley theory, properties associated with the 
voltage-sensitive membrane ionic channels. 

Active transport Net movement of molecules or ions, often between intracellular 
and extracellular spaces, which depends on metabolic energy. The use of the 
term "transport" in this phrase differs from the use of the term in the rest of 
the thesis. 

Anion A negatively charged ion. 
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Axon An extended tubular process of the neuron which projects to neighbouring 
neurons, sometimes over a considerable distance (lm or more). 

Capacitance The capability of storing electrical .energy by the separation of 
opposite electrical charges. 

Cation A positively charged ion. 

Central nervous S3',stem The higher portion of the nervous system, including the 
spinal cord, brain stem, cerebellum, basal ganglia, diencephalon and cerebral 
hemispheres. 

Cerebellum A large part • of the brain with motor functions, situated near the 
base of the brain and with a cellular architecture similar to cerebral cortex. 

Cerebral cortex The outer . layer of gray matter of the cerebral hemispheres, 
associated with higher perceptual, cognitive and motor functions and having a 
layered cellular architecture. 

Cytoplasm The jelly-like material surrounding the nucleus of a biological cell. 

Epilepsy A disorder of the nervous system which results when a large collection 
of neurons discharge in synchrony. Along with this discharge, stereotyped 
behaviors may occur, including convulsions. 

Excitable Capable of producing action potentials. 

Extracellular space The region exterior to biological cells within a tissue. 

Gap junctions Intercellular junctions at which cells are connected b)' 
transmembrane pores, permitting the exchange of intracellular molecules and 
electrical charge. 

Glia The passive interstitial cells of the central nervous system. 

Hippocampus A subcortical brain structure with a distinctive shape (the name is 
from the Greek for seahorse) and regular cellular architecture. It is associated 
with memory in man. 

Ion An electrically charged atom or group of atoms. 

Intracellular space The regions interior to biological cells within a tissue, taken 
together. 

In vitro A phrase used to characterize biological experiments made under artificial 
conditions, and not in a living animal. 
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In vivo A phrase used to characterize biological experiments or conditions in a 
living animal; as opposed to in vitro. 

Invertebrate The -biological phylum consisting of animals which lack backbones, 
such as the squid, leech, insects, etc.. 

Membrane A thin flexible sheet composed of lipid -molecules which forms the 
surface of biological cells or organelles, and which separates intracellular and 
extracellular regions. 

Metabolic Pertaining to the chemical processes occurring within a biological cell. 

Motor cortex A region of the cerebral cortex associated with motor function. 

Myelin Layers of lipid and protein substances composing a sheath around nerve 
fibers. 

Neuron The primary cell type of the nervous system, which is capable of 
producing action potentials. It consists of the nerve cell body and its processes, 
the axon, and other processes called dendrites. 

Olfactory bulb A region of the cerebral cortex associated with the sense of smell. 

Osmolarity The sum of the total concentrations of all solutes in a solution, so 
called because of the importance of this quantity for osmotic phenomena. 

Osmotic Pertaining to the process by which two different solutions which are 
mechanically separated (for example, by a membrane) tend to equalize their 
respective total solute concentrations by the flow of solvent from one to the 
other. 

Organelle A membrane-enclosed structure with a specific biochemical function 
within a biological cell. 

Passive A technical term referring to membrane properties which are not voltage 
dependent, as opposed to the active voltage- and time-dependent conductances of 
the Hodgkin-Huxley model. 

Peripheral nervous system The parts of the nervous system outside the central 
nervous system. 

Permeability The relative ease with which an ion passes through membrane 
pores. This may be measured by a mathematical coefficient. 

Preparation Part of an organism which is "prepared" in some way (in vivo or in 
vitro) which facilitates physiological study, e.g., of squid axon, frog muscle, etc.. 
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Processes Continuous anatomical extensions of a biological cell body, which may 
be tubular or sheetlike. 

Resting transmembrane potential The transmembrane potential across excitable 
membrane in the absence of stimulation, when action potentials are not occurring. 

Squid giant axon A physiological preparation of the axon of the squid Loligo , 
used because its large size facilitates experiments. 

Slice preparation A thin section of tissue, often from the cerebral cortex or 
hippocampus which preserves cellular architecture and function in vitro . 

Soma The cell body of a neuron, containing the nucleus of the cell. 

Synapse A specialized contact zone at which two neurons are closely apposed and 
where communication occurs by electrical or (typically) chemical transmission. 

Synaptic transmission The process by which the information of the action 
potential is transmitted from one neuron to another, typically through the release 
of a chemical factor which diffuses across the synapse. 



II. T H E MODEL EQUATIONS 

1.0. INTRODUCTION 

In this chapter, the mathematical problem for determination of electrical 

and ion transport properties from a model of neural tissue containing two types 

of cell (neurons and glial cells) is specified precisely. The objectives of this 

mathematical formulation are to calculate the averaged electrical and ion transport 

properties of the tissue in a systematic way and to exhibit the dependence of 

macroscopic tissue properties on the the microscopic properties of cells. This 

provides a theoretical connection between studies of microscopic cellular properties, 

such as those described by Turner and Schwartzkroin (1984), and studies of 

macroscopic tissue properties such as those by Ranck (1963,1964) and 

Gardner-Medwin (1983 a, b). 

1.1. Transport Equations in Electrolyte Solution 

We now sketch the physical chemistry thought to apply to --ion transport 

in solution (Horvath, 1985; Carnie & Torrie, 1984; Fuoss & Accasina, 1959) and 

justify the transport equations to be used in the remainder of this thesis, t This 

section is intended to justify the use of these equations here, rather than to 

derive them, since these derivations are described in elementary textbooks or in 

the voluminous literature of classical chemistry. The discussion of transport given 

in this section refers to electrolyte solutions such as those of the extracellular 

medium in neural tissue. In these basic electrochemical equations, averages are 

t As stated in Chapter I the term "transport" refers here to the flux of some 
conserved quantity such as net electric charge or an ionic species, in response to 
a gradient of intensity (e.g., potential, concentration) of that conserved quantity 
(cf. Batchelor, 1974). 

40 



"II . The Model Equations / 41 

taken over length scales of 10 - 100 A 0 rather than 10 - 100 Mm as in the 

tissue equations 1.(4.1) - 1.(4.2). It is assumed that no convective transport 

occurs and the discussion is restricted to transport due only to diffusion and 

electrical forces. 

F r o m a theoretical point of v iew, the simplest transport process is 

diffusion. If there are neither electrical forces nor concentration gradients, then 

ionic and solvent molecules undergo brownian motions due to thermal energy, but 

have no average relative motion. In the presence of an ionic concentration 

gradient these random motions result in movement (diffusion) of ions from regions 

of high concentration to regions of low concentration. The result of the individual 

motions of the molecules and average f lux in aqueous solution (Robinson & 

Stokes, 1955) is precisely described by F ick ' s l a w : 

(1.1) " J D = - D . V C . , 

-3 -* 

where C is the ionic concentration (mol cm ), J.-Q is the ionic f lux vector in mol 

sec ^cm 2 , and D . is the diffusion coefficient (cm^ sec )̂ for the ionic species. 

The description of ionic f lux in an electric field requires some assumptions, 

however. F o r reasons discussed below, it w i l l be assumed that the sum of the 

total concentration of cations mult ipl ied by their valence is equal to the sum of 

the total concentration of anions mult ipl ied by their valence in any non-zero 

volume. This assumption is referred to as 'electroneutrality' because it implies 

zero net charge wi th in any non-zero volume. Since variations in the D. ' s are 

unl ikely to be important under p l^s io logica l conditions of moderate variat ion in 

temperature and concentration, the diffusion constants D . w i l l be treated as 
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empir ical constants depending on the identities of solvent and solute, and 

independent of concentration. U s i n g electroneutrality this assumption implies that 

Z z . D . V C j = 0, where z. is the valence of the I^1 ionic species, so that the net 

electric f lux due to diffusion is zero throughout the so lut ion . ! 

W h e n both electrical and concentration gradients exist, we assume that the 

total f lux "jj (mol sec ~ c m 2 ) of the i ^ 1 ion is given by the classical 

Nernst -Planck equation 

(1.2) " j . = - D . { V C . + z .C . L V.<j>}, 
J i il l i i R T 

The first term on the right-hand-side of (1.2) is a f lux proportional to 

concentration gradient and, therefore, w i l l be referred to as the diffusive transport 

term. The second term on the right-hand-side of (1.2) is proportional to an 

electric potential gradient and w i l l be referred to as the electrical t ransport te rm. 

U s i n g :.the above assumptions, summation of (1.2) gives the total diffusive 

mass flux vector: 

•+ 3 

(1.3) J D = -Z DJVCJ, 

-* -1 -2 

where the f lux (mol sec cm ) is a sum of diffusive fluxes. Mult ip l ica t ion of 
t Since F i ck ' s law is va l id for electrolytes, the coefficients D . , i = l , . . n , m u s t be 
consistent w i t h the possibility that (electrical current) z D V C + z D V C = 0 

C C C 3. 3. 9. 
at the boundary for a solution composed of a single cation and anion, where C 
is the concentration of cations and C the concentration of anions, and z ancl 
z are, respectively, the valences of cation and anion. Because of 
electroneutrality, z V C + z V C = 0 throughout the solution. Combining the 
latter two equations implies either D = D , or V C = V C =0, so that the above 
result is true throughout the solution. 
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-1 -2 
(1.2) by the valence z. and summation gives the net current in mol sec cm 

(1.4) 1 = - F ^ V c ^ 

where a : = Zz. DjC. (mol sec cm ) will be referred to as mass conductivity 

where 'mass' refers to the dimensions of this quantity. It is shown below that 

this quantity, a, is proportional to the electrical conductivity of the solution. 

When the electrolyte considered consists only of uni-valent ions, Vo is just the 

total diffusive flux of ions. 

Thus, the form of the Nernst-Planck equations is simplified by assuming 

electroneutrality. Equation (1.4) asserts that under the stated assumptions, a 

spatially dependent conductivity K = K ® , (mS cm ) may be assigned to 

electrolyte solutions of given composition. The electric current ~ i may be written 

in the local form of Ohm's law as; 

(1.5) 1 = -KV<P, 

2 

where K :— F o/RT has the dimensions of conductivity. 

1.2. Limitations of the Nernst-Planck Equations 

While the Nernst-Planck equations (1.2) are taken as the model equations, 

it is important to note that this entails some compromise. The Nernst-Planck 

equations (1.2) give each ionic flux independently of the others. For low 

concentrations or strong electrolytes, this prediction is born out empirical^ and is 

known as Kohlrausch's law of independent migration of ions. Equation (1.5) 
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asserts that an electrolyte solution behaves ohmically and the effective 

conductivity is a l inear function of the concentrations of each ion. The ohmic 

behavior has considerable support while the status of the l inear i ty assumption is 

less certain. There is considerable experimental evidence (Horvath , 1985) that 

electrolyte solutions are ohmic (1 = K V $ ) ; however, at low concentrations ( < < 

. 1 M ) , electrolyte solutions exhibit conductivities given asymptotical ly by ; 

(1.6) K = C ( A 0 - b/C") 

where C is the ionic strength and AQ and b are constants independent of 

concentration. 

In addition to (1.6), there are a large number of other semi-empirical 

non-linear formulas applicable to part icular electrolyte types (Horvath , 1985). It is 

not clear which i f any of these formulas are applicable in the physiological 

context. A t physiological concentrations, the dependence of the conductivity of a 

strong electrolyte on concentration is approximately l inear. 

A s C —>0 in (1.6), K—> CA^, where K was defined in Section 1.1, so 

that AQ is the l imi t ing molar conductivity at infinite di lution. The quantity AQ 

m a y be approximately calculated from thermodynamic arguments. The theoretical 

value appears in the Nerns t -P lanck equations (1.2) and m a y be calculated using 

(1.4), (1.5), and (1.6). F o r example, for a solution of a single uni-univalent 

electrolyte (such as KC1): 

(1-7) A 0 = 2 F^D 
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where D is the diffusion coefficient for the electrolyte, and A 0 is computed using 

the definition of a w i t h two uni-valent ions. 

F o r self-consistency of the model, the assumed diffusion coefficients w i l l be 

the effective coefficients at physiological temperatures and concentrations, and 

solution conductivities w i l l be computed f rom these values. The result ing 

conductivities w i l l be less than the tabulated infinite dilution conductivities 

(Robinson & Stokes, 1955) but this procedure should produce more accurate 

approximations to the solution conductivity than the use of infinite dilution data , 

since it incorporates an empir ical correction for concentration. 

In principle, the individual ionic fluxes should be governed by non-linear 

formulas analogous to (1.6) and, due to non-linearity, each f lux must be a 

function of the local concentration of a l l the solute ions. However , in contrast to 

the experimental data leading to (1.6), these more detailed data are not 

available. In view of this s i tuation, i t is assumed in our model that the local 

ion fluxes are predicted -by the Nernst -P lanck equations. Because the conductivity 

of physiological solutions is determined largely by strong electrolytes, the 

non-linear correction which is neglected should be smal l . 

A theoretical account of the observed deviations of transport properties 

f rom those predicted by (1.2) is complicated. F i r s t , the Nernst -P lanck equations 

(1.2) do not specify the electric potential <j>. Since this equation describes the 

motions of charged particles (ions), a completely satisfactory model would 

determine <j> so that i t included the effect of the ionic charges. The correct 

resolution of this problem, using the principles of statistical mechanics is the 

subject of current research ( N . Patey, personal communication). 

The use of Poisson's equation to compute <f> is inappropriate because i t 
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assumes that a smooth, stationary charge density is a va l id approximation to the 

collective effect of individual charges. Ionic charges of opposite sign rapidly cluster 

around one another, however, in an effect known as charge screening, so that 

the charge density is not smooth or stationary in time. In this thesis, we have 

accepted, w i t h others (Plonsey, 1969; Carnie & Torr ie , 1984), a classical 

treatment of this problem known as the Gouey-Chapman theory (Gouey, 1910; 

C h a p m a n , 1911). Gouey-Chapman theory consists of s tudying the properties of 

the Poisson-Boltzmann equation: 

9 n 3 -z.q 0 /RT 
(1.8) V I = -% L z .C.e 1 e 

% 1 = 1 1 1 

where q g is the charge of an electron, and is a dielectric permit t iv i ty (farads 

c m "*"). The Poisson-Boltzmann equation assumes the chemical solution has a bulk 

dielectric permit t iv i ty , e^, and identifies the -electrostatic potential wi th the 

corresponding thermodynamic potential. The reader is referred to Plonsey (1969) 

for mathematical details, and to Carnie and Torrie (1984) for the relationship of 

G o u e y - C h a p m a n theory to other theories. Phys ica l ly , the theory asserts that 

charge separation cannot occur over a large region because charge separation 

requires energies w h i c h are large compared to the available thermal energy. 

G o u e y - C h a p m a n theory predicts electroneutrality of the solution over any length 

scale larger than the Debye shielding distance. This distance is 9.6 A° units in 

.1 molar uni-univalent electrolyte solution (McGi l l ivray & H a r e , 1969; Plonsey, 

1969). Thus , in this work the concentrations of anion and cation are taken as 

equal in any volume element, and no charge separation occurs in the bulk 
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solution, t 

2.0. T H E N O N - D I M E N S I O N A L M O D E L E Q U A T I O N S 

2.1 . S c a l i n g o f t h e T r a n s p o r t E q u a t i o n s 

In order to prepare the transport equations for asymptotic and numerical 

analyses, it is useful to choose non-dimensional variables w h i c h reflect the 

magnitudes of the physical quantities of interest. These choices are made both 

for reasons of numerical convenience, and in order to identify smal l 

non-dimensional parameters which m a y be used to construct asymptotic 

approximations to the ful l equations. 

We begin wi th a brief description of the electrical and ionic environment 

w i t h i n nervous tissue. In a common experimental preparation (mammal ian bra in 

slice) typica l extracellular concentrations of physiological ions are as shown in 

Table 2.1 (Ll inas & Sugimori , 1980). F o r comparison, typical concentrations of 

physiological ions in human cerebrospinal f luid (CSF) (Davson, 1976) are also 

2 + 2 + shown. M a g n e s i u m , M g , and calc ium, C a , are also present in the bra in , in 

cerebrospinal f luid , and are included in experimental bathing solutions, at about 1 

4 m M concentration, but they w i l l p lay no role in our transport equations 

2 + 

because these ions contribute little to solution conductivity. The C a ion m a y 

play some role i n determining the rest ing membrane potentials of some neurons, 

however, this omission is not expected to quali tat ively affect the conclusions of 

the present work w i t h respect to potassium and electrical potential . 

Intracellular concentrations of ions are less certain but m a y be estimated 

t This assumption is not satisfied for ionic fluxes across biological membranes, 
and the treatment of f lux across membranes involves model equations different 
f rom those given here (Shultz, 1980; Plonsey, 1969). 
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Table 2.1. Extrace l lu lar -Ionic Concentrations. 

Ion Slice C S F 

N a + 150 m M 147 m M 

K + 6.2 m M 2.86 m M 

C f 131 m M 113 m M 

H C 0 3 ~ 26 m M 23.3 m M 

( m M = mill i -molar) 

as N a + (30 m M ) , K + (130 m M ) , C f (10 m M ) , and organic anions (150 m M ) 

(Llinas et ah, 1980), which consist mainry of glutamate and aspartate (Puil , 

1981). Hence the intracel lular concentration of potassium, [ K + ] . , exceeds the 

extracellular concentration, [ K + ] o , by a factor of 20-40, and the extracellular 

concentration of sodium, [Na + ] o , exceeds the intracel lular concentration [Na + ]. by 

a factor of 5. Differences also occur for the other physiological ions. The 

•concentration n K + ] Q m a y v a r y considerably during abnormal physiological states, 

reaching 12 m M during epileptic act ivity (Prince, 1978) and 40-50 m M during 

spreading depression (Nicholson -& K r a i g , 1981). Spreading depression is also 

+ - 2 + accompanied by large changes in the concentrations of N a , C l , and C a 

Tabulated conductivity data for electrolyte solutions give an estimate for 

the conductivity of the extracellular f luid of 20 m S c m ^ at 3 7 C ° which is in 

agreement w i t h the observed conductivity of cerebrospinal f luid (Nicholson, 1980). 

Correct values of the intracel lular conductivity are considerably less certain owing 

to the complicated morphology of neurons and the fact that axoplasm is not a 

simple electrolyte solution. Typica l measured values are between 1 to 4 times the 

res is t ivi ty predicted by the composition of the intracel lular medium (Barrett & 
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C r i l l , 1974; Carpenter et a l . , 1971, 1973; Schanne & R u i z P . -Ceret t i , 1978). 

U s i n g the concentrations cited above, this leads to an estimate for the internal 

resist ivi ty , r . , between 67-268 J2cm, while the resist ivity of somatic cytoplasm is 

even more variable (Schanne & R u i z P . -Ceret t i , 1978). Extrace l lular electrical 

potential gradients are usual ly between |V0| = 1 m V to 250 m V c m " 1 (Somjen, 

1979). T y p i c a l length scales for cells in bra in tissue are L = 10 jum to 100 

( im. F o r example, dendrites m a y be 1 um in diameter, the cell body of a 

Purkinje cell m a y have a radius of 10 (im, astrocyte processes m a y extend 40 

/um to 50 /um, while the complete arborization of a Purkinje cell may extend for 

500 Mm (Hounsgaard & Nicholson, 1983). 

A t physiological temperatures and concentrations, diffusion coefficients for 

-5 -5 2 -1 KC1 and N a C l are approximately 1.7 x 10 and 1.3 x 10 c m sec , 

respectively, and at the physiological temperature, T = 37C, R T / F is 2 7 m V . 

Non-dimensional variables are chosen so that under typical conditions the 

magnitudes of relevant quantities are close to unity. A -convenient (though 

arbitrary) choice is to take the non-dimensional voltage gradient to be near unit}'. 

The -scaled spatial coordinate is defined as •x. = X j / L and the scaled voltage v!f> 

= F 0 / R T where vRT/F is the typical voltage variat ion over the length L and 

J" is a non-dimensional constant. Denoting a typica l ionic concentration by C , we 

obtain the non-dimensional concentrations; C. = C / C , which w i l l differ between 
I I ' 

intracel lular and extracellular environments. 

F o r the case of potassium, K + , the magnitudes of the terms in the 

Nernst -Planck equations m a j ' be roughly deduced as follows. E a c h nerve impulse 
+ -9 -2 -1 releases K at approximately 2 x 10 m mole cm sec (Orkand, 1980), at 

a frequency between 1 H z and 100 H z . A t 100 H z the f lux associated w i t h this 
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-5 -2 
release rate corresponds to a current density of 2 x 10 amp cm . In 

contrast, an extracellular potential gradient of .1 V c m (Somjen, 1981) at an 

_5 

effective conductivity t of .31mS leads to a current density of 3.1 x 10 amp 

-2 

cm . Hence, the diffusive and electrical terms are of comparable magnitudes. 

Dimensionless variables are selected so that typical concentrations and 

voltage gradients w i l l be of order uni ty . Thus , i t is appropriate in the case of 
+ -5 2 - 1 

the potassium ion, K , to take L = 50 nm, D . = .85 x 10 cm sec , C = 

5 m M , and *>RT/F = . 5 m V (that is . 5 m V 7 50Mm = 1 0 0 m V / l c m ) which implies 

v — .0185. Since v is smal l , the f lux associated w i t h a voltage gradient of 

order uni ty is smal l compared to the f lux associated wi th a concentration 

gradient of order unity. N o special use w i l l be made of this fact, but. it is 

necessary for later calculations that the electrical f lux be at most of the order of 

the diffusive f lux. It is important to note, however, that the magnitudes of the 

characteristic electric potential gradients on long and short length scales m a y 

differ because of fine structure in the tissue conductivity induced by the presence 

of cells. 

A s imi lar choice of scalings is appropriate for equations (1.1) - (1.5). It is 

convenient to scale a by d~ = Z D . C , while the variables x and <t> are scaled 

as before. 

2.2. Asymptotic Assumptions 

In this work , we focus on results which are independent of detailed 

considerations of cell geometry and placement, because such results are more 

l ikely to be applicable to a var iety of different preparations. It is assumed for 

f The approximate effective par t ia l conductivity due to potassium i n the 
extracel lular medium. 
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convenience that the tissue contains a large number of periodically arranged cells. 

The periodic domains correspond to the smallest repeating subunits of the periodic 

structure of the tissue model, which w i l l be called crystallographic unit cells, t 

The assumption <of .periodicity and other assumptions made later about cell shape 

are convenient for computation. While the mathematical model employed could be 

used in two or three dimensions, it is convenient to perform the numerical 

calculations in two dimensions. 

It is expected that the properties of this abstract model, and properties of 

the real tissue, wi l l depend in s imilar w a y s on characteristic dimensionless 

parameters related to the extracellular space fractional volume, electrical properties 

of the intracellular and extracellular media, and cell size, since these model 

parameters can be matched to the real ones. 

It is assumed that there are two fine characteristic length scales; a fine 

length scale, which is characteristic of neuron size and a finest length, L 2 

which is characteristic of glial cell size, (see Figure 2 .1 ) . Since i t . w i l l not be 

assumed that neuronal membrane has properties distinct f rom glia i n this model, 

•the 'neuronal ' cell "population could be any asymptotical ly larger cell population. 

This two-tier structure is chosen to model the structure of real tissue, which 

contains both coarse and fine structures of various kinds. F o r example, dendrites, 

and gl ial cell bodes and processes are expected to have finer spatial dimensions 

than neuronal cell bodies and axons (Peters et ah , 1976). The asymptotic 

expansion i n Chapter III w i l l be constructed using this assumption (referred to as 

a two-tier model). The calculation for a simple periodic a r r a y (one-tier model) 

forms a part of the two-tier calculation and this simpler model is considered i n 

t This term is borrowed from elementary chemistry. 
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Figure 2.1. Periodic arrays of model cells can be arranged in different waj 's to 
match the properties of biological tissue. Possible shapes for the biological cell are 
shown, and assumptions about the spatial length scales L 0 , and are 
i l lustrated. The model tissue used later w i l l be in two dimensions (compare 
Figures IV-3 .1 and IV-6.3) . 
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many of the numerical calculations. 

While our results show that the two-tier model may be useful, further 

experimental data would be required to justify more detailed study of this model. 

Figure 2.1 illustrates the hypothesis that larger cells are aligned anisotropically, 

while finer cells are aligned isotropically. Such an alignment might be expected 

because neurons and glia have complicated branching structures, so that the finer 

structures tend to have less spatial organization. To completely justify this model 

however, it will be necessary to gather detailed quantitative data on the relative 

size, shapes, and positions of cells in neural tissue. 

In order to determine relationships between macroscopic and microscopic 

properties of tissue, we calculate the macroscopic properties of this tissue model 

over a coarse length scale, L = L 0 . The notation L 0 , L 1 ; and L 2 will denote 

asymptotic length scales which may correspond to various physical quantities. It 
2 

will always be assumed that L J / L Q = e and L 2 / L 0 = 0(e ) where 0 (») is 

the usual order notation. The extracellular and intracellular media are assumed to 

include onry the uni-valent ions, Na~*", K"*~, and CI . Neuronal and glial 

membrane are assumed to be permeable only to K + ions. This is correct for 

glial membrane and is approximately correct for resting neuronal membrane 

(Kandel & Schwartz, 1983, p40). The electric potential, 0, and concentration, C., 

are discontinuous across the cell membranes. 

The time-dependent equations for the electrical and ion transport properties 

of tissue are more complicated than those formulated here. Such equations would 

have included capacitive current and the time dependence of the membrane 

conductances. However, appreciable ion transport takes place only over times on 

the order of a second or longer. Thus, the time scale of interest (several 
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seconds) is long compared to the time constant (a few milliseconds) for charging 

of the membrane capacity, or the time constant(s) for relaxation of the 

membrane conductances toward their steady state values. It m a y be shown by 

an elementary calculation that the charge or ion transport associated wi th 

charging of membrane capacity and relaxation of conductances is smaller (by a 

factor of about 1000) than the net charge and ion transport which can occur 

over several seconds. A characteristic t ime, t , of this order w i l l be chosen and 
c 

w i l l appear in the definitions of the non-dimensional variables. Thus , in computing 

the electrical and ion transport properties of neural tissue i t w i l l be assumed 

that the membrane charge and conductances have attained their steady state 

values. The extracellular ion concentrations w i l l be (slowly) t ime dependent, and 

the equations specifying this t ime dependence w i l l be given. Thus , a quasi-steady 

non-linear averaged equation for the evolution of the extracel lular potassium 

concentration is derived. The present analysis is different f rom previous analyses 

(see Chapter I) because it does not assume that the tissue is syncyt ia l , includes 

more than one type of cell , and explicit ly treats electrodiffusion of ions in the 

extracellular medium according to equation (1.2). 

2.3. Model Equations 

Table 2.2 shows the dimensional parameters and Table 2.3, the 

dimensionless parameters to be used in the model equations. 

Table 2.4 gives the definitions of dimensionless variables used in the 

model equations. The tilde ~ denotes dimensionless variables in Tables 2.2 - 2.4, 

and w i l l be dropped in the text. Displayed equations are a lways given using the 

dimensionless variables of Table 2.4. 
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Table 2.2. Characteristic Dimensional Parameters. 

Parameter Description 

L length 

L 0 measurement length 

L , fine tissue structure length 

L 2 finest tissue structure length 

C concentration 

(7 = ED.C mass conductivity 

t time c 

— — 2 
S = a F / RT conductivity / cm 

Table 2.3. Dimensionless Parameters. 

Parameter Description 

v voltage gradient parameter 

2— — 

T = L C I to time constant parameter 

8.— D . / Z D ^ ionic diffusion parameters 

Table 2.4. Dimensionless Variables 

Description 

space coordinate 

time 

concentration 

Parameter 

x. = x . /L 
J J 

T = t/t 
c 

c. = c . / c 
1 1 
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4> 

0 

* i 

= F0 / * » R T 

= a / tr 

T 2 / -

electric potential 

conductivity 

concentration source density 

- Z L ^ q . / a 
I 

ionic source density 

Q 2 = L L ^ z . q . / a i n i charge source density 

V 

V 
r 

= F V / v R T 

= F V /i>RT r 

t ransmembrane potential 

rest ing transmembrane potential 

? i = L g i / S membrane conductance 

Pi = L p . / F a 
M 

active transport ionic f lux 

P i = Z P i active transport ionic f lux 

P 2 = E z . p . i i active transport charge f lux 

If "jj is the flux of the I" ionic species given by the Nernst -Planck 

equation and each ionic species is conserved, it is shown (by a derivation 

identical to that for the diffusion equation (Carrier & Pearson, 1976) wi th ~\-

substituted for the diffusive flux) that: 

(2.1) - V •"].= 3C. + q. 
X J l TjT 1 M l 

where V x is the gradient operator w i t h respect to x and q. is a source density 

-3 

(mol/sec cm ). The ionic source q. is zero in the intracellular and extracellular 

media unless ions are introduced experimental ly . Equat ion (2.1) and al l following 

equations hold in the interiors of the extracellular and intracel lular regions. The 
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quantities "j-, C., q̂ , are functions of the spatial coordinates x. 

Using the Nernst-Planck equations (1.2), the dimensionless form of (2.1) 

becomes: 

(2.2) 

where the variables and parameters are defined in Tables 2.2 - 2.4. Note that 

since 6. - D./ZD,, the sum Z0.C. is a. i l k i i 

Summing (2.2) over i gives: 

(2.3) V*o = TZ 9C. + Q, 
x i=l ' 5 t 1 

2 — 
where L Ẑ qV a. Multiplying (2.2) by z., the ionic valence, and summing 

over i gives: 

(2.4) '"V '(aV-0) = Q 2 

2 — 

where the new quantity Q 2 is defined (Table 2.4) as Q 2 := Z. L z.q./ a. The 

time derivatives on the right-hand-side of (2.2) sum to zero by electroneutrality. 

2.4. Jump Conditions and Boundary Conditions 

Sign conventions are illustrated in Table 2.5. The abbreviations ECS and 

ICS denote the extracellular and intracellular spaces, respectively. The normal n 

to the cell membrane is outward pointing. The signs of the ion fluxes, "j-, imply 
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Table 2.5. Corresponding Sign Conventions at Membrane. 

Name ECS ICS Symbol 

Direction 

Normal Vector < n 

Membrane Potential + - V : ^ 1 - ^ 0 < 0 

Current > I»n <0 

Potential Gradient < V0 - n >0 

Cation Flux > "l . -n <0 

that cations flow in the same direction as electric current. Thus, the electric 

potential, <j>, is defined so that cation flux is in the direction of decreasing 

potential and diffusive flux (the first term of (1.2)) is in the direction of 

decreasing concentration. As a result of these conventions, the values of V and 

aV0*n have opposite sign. 

Using equation 1.(3.3) for the transmembrane current, and the definition of 

jj, the jump conditions for <j> and C. at cell membranes are: 

(2.5) -0.V C.-n - j>z.0.CV0«n = i»z.g.(V - V.) + p. 
I X I i i i ^ i & i r l l 

where p. is an active transport or 'pump' term and the transmembrane potential 

V is defined by V:= 01 - <j>° where and <j>° are the intracellular and 

extracellular potential, respectively, at adjacent points across the cell membrane. 

The electrical potential <j>, concentrations C., and their spatial derivatives, are 

discontinuous at the cell membranes. The quantity V r is the membrane resting 
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potential given by the Goldmann-Hodgkin-Katz formula (equation (1.2) of Chapter 

I) and the surface integral is evaluated over the membrane of a single cell. The 

dimensionless Nernst potentials, V., are given by: 

(2.6) vV. = J_ ln( C° / C1. ) 
1 z. 1 1 

l 

where C? denotes extracellular and C1. intracellular ionic concentrations, l l 

The jump conditions (2.5) hold intracellularly and extracellularly, and so 

(2.5) specifies two equations. Conditions of the same form hold at the cell 

membranes of both the smaller and the larger cell populations. In addition, 

boundary conditions are prescribed on the boundary of a region which is large 

compared to both cell lengths (order one in the L 0 scale). 

The pump term p. is chosen so that no net ionic flux occurs between 

intracellular and extracellular space. This is plrysiologically correct under normal 

conditions over many seconds. "It is assumed that: 

(2.7) / {vzgAY - V) + P}dS = 0 
M 1 1 

Summation of (2.5) produces, using electroneutrality: 

(2.8) - V a .n = Z *»z.g.(V - V.) + P, 

x 1 & 1 r 1 

and (2.8) - (2.9) hold at the cell membranes. Multiplication of (2.5) by z. and 

summation results in: 
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(2.9) x 
3 
X 
i=l 

* g . ( V V.) + P 2 • 

W h e n g. = 0 = p. for i such that sgn(z.) = const, the membrane is 

permeable to only cations or only anions and a useful s implif icat ion ensues. F o r 
3 

example i f the membrane is permeable only to cations; L {vg.(V - V . ) + z.p.} 
3 1 = 1 

= I {i>z.g.(V - V.) + p.} so that f rom (2.8) - (2.9). 

(2.10) V a-n = voV <*«n, 
x x 

at the membrane. This condition w i l l be applied at the membrane of model gl ial 

cells since they are permeable only to potassium, K + . t 

Because the quantities gj, P^, and q.^ contain the dimension of length, 

independent assumptions must be made about the asymptotic orders of the 

corresponding dimensionless quantities, just as assumptions must be made about 

the asymptotic orders of cell lengths. Different assumptions correspond to tissue 

models wi th different physical properties. It should be noted that the definitions 

of g . and p. imply that the dimensionless quantities m a y become large as L 

— > » . 

f The model equations remain ful ly coupled because of the time derivative 
occurring in (2.3). 



II. The Model Equations / 62 

2.5. Continuity and Smoothness Conventions 

The dependent variables are differentiable everywhere, except possiblj ' at 

the cell membrane, where jumps may occur. It is assumed that the dependent 

variables <j>, and C . , containing transmembrane jumps take some bounded values 

inside the membrane, but only the transmembrane jumps w i l l enter the 

calculation. The ionic and charge fluxes are continuous, and given by (2.2) and 

(2.4) respectively, a w a y from the membrane. W h e n the electric potential and ion 

concentrations j u m p across the membrane, the derivatives of these quantities do 

not exist at the membrane. Thus , the intracel lular and extracellular solutions are 

coupled through the j u m p conditions (2.5) at the membrane. 

Whi le the above conditions completely specify the solutions, it is sti l l 

necessary to evaluate averages of the spat ia l derivatives of the electrical potential 

and ionic concentrations over the complete unit cell , including the membrane, 

dur ing the formal calculation of bulk properties. One s tra ightforward approach to 

this computation would be to replace the membrane by a thin region of low 

conductivity and to take l imits as the thickness of the region and its conductivity 

jointly tend to zero. To avoid such lengthy analytic arguments i n the course of 

the asymptotic calculation, however, it is useful to extend the interpretation of 

the spatial derivatives and to use an extension of the divergence theorem, 

discussed in this section. While s imi lar results could be obtained i n three 

dimensions, we only need the two-dimensional result in later chapters. 

The divergence theorem m a y be extended to functions wi th j u m p 

discontinuities along a piecewise smooth curve in two dimensions as follows. L e t 

F* be a vector field to which the divergence theorem applies on two disjoint open 

regions, and Rg, wi th boundaries, dR^ and 9R2, where R^ and are 
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separated by a curve, M, which lies in BR^ and 9Rg. A jump discontinuity in 

F* occurs on M, and the divergence operator V* is interpreted so that (cf. 

Royden, 1968): 

(2.11) lim / V-FdA= / {F^-F^-n^ds, 
6->0 M g M i V i 

where F ,̂, r=l,2, are the values of ? in R r adjacent to M, n ^ is a unit 

normal to M pointing into R^ and M is traversed once. The right-hand-side may 

be computed as the limit as 6—>0 of a sequence of functions F*g where each 

F*g changes smoothly from to in the neighbourhood of M, Mg. Then: 

/ V-FdA = f V-FdA + J V-F* dA + lim / V-FdA 
RUM intR, intR2 5->0 M, . 

(2.12) = j ? -n ds + • / ? , n . , • ds + / F - n ds 
9R,-M M i V i 9R 2 -M 

- ] l 2 . i t -ds + J {F2 - F , } . n M ds 
M M M M 

/ ? -n ds 
9R-M 

where n is an outward pointing unit normal on 9R, U 9R2 - M, boundary 

arcs are traversed counterclockwise, and R = Rj U R^. This is the same 

formal result as the divergence theorem except that F* is discontinuous. 

To illustrate the extended divergence theorem, let S(x) be defined by: 
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S 1 (x) for x i n E C S 

(2.13) S(x) = S ° ( x ) for x i n M 

S*(x) for x in I C S 

where S , r = 0,1,2, are continuous i n their respective domains, E C S denotes the 

extracellular space, I C S the intracel lular space, and M the separating membrane. 

For example, the function S(x) could be the conductivity function, o. L e t (J be 

continuous except for a jump across the membrane. The function 6 corresponds 

to a dependent variable <j> or C . . 

U s i n g the extended divergence theorem (2.12) on R = ( ICS)U(ECS)U(M) , 

we obtain 

(2.14) TV-SC* dA = J s5-n dS 
R 9 R - M 

which is zero when there are periodic boundary conditions on R - M . A similar 

calculation for the integral : 

(2.15) / S V - G " d A = / S V - G * d A + / S(5 2-S 1)-n dS 
R R - M M 

yields two terms. 

W h e n (a is the gradient of concentration or electric potential , the first 

integral of the right-hand-side of (2.15) represents the average f lux of the 
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associated quantity and the second integral is proportional to the net 

transmembrane f lux. Thus , i f the associated quanti ty is conserved wi th in the cell, 

the second integral is zero. 

These results are used later to s impli fy expressions of the form of the 

left hand sides of (2.14) - (2.15), by removing the need to integrate over the 

membrane. 

2.6. The Mathematical Approach 

The equations, non-dimensionalizations, and assumptions presented in this 

Chapter complete the specification of the mathematical model for bulk tissue 

properties. This model corresponds mathematical ly to a non-linear 

init ial-boundary-value problem w i t h coefficients rapidly v a r y i n g in space. In 

Chapter III i t w i l l be shown that computation of the macroscopic properties of 

this model can be reduced, us ing the method of multiple scales, to a sequence of 

numerical boundarj^-value problems on periodic domains (Keller, 1977; Bensoussan 

et a L , 1978). These problems are called 'cel l ' problems in Bensoussan et ah , and 

are called 'canonical ' problems here to avoid confusion. Whereas the solution of 

the original problem when e is smal l is an ill-conditioned and complicated 

computational problem (Traub et a L , 1985 a,b; B a b u s k a , 1976), the numerical 

solution of the canonical problem is s traightforward. The application of the 

method of mult iple scales to the computation of averaged properties of 

inhomogeneous media is called 'homogenization' (Babuska, 1976; Bensoussan et aL , 

1978; Sanchez-Palencia, 1980). 



III. ASYMPTOTIC EXPANSION 

1.0. INTRODUCTION 

The dependent variables </>, o, and G are functions of time and the 

spatial coordinates, x. In order to apply the method of multiple scales, additional 

scaled spatial coordinates are defined by, u := x / L 0 , v := x / L 1 ; w := x 

/ L 2 . 

The conductances, gj, appearing in the j u m p conditions 11.(2.5) are each 

defined by scaling wi th respect to an arb i t rary length L in Table II.2.4. Because 

we are interested in the bulk properties of cell a r rays , the scaled conductance is 

equal to the entry in Table II.2.4 with L = L 0 , where L 0 is long compared to 

the cell length. A n additionally scaled value of g. is defined as follows. Since 

experimental data (Turner & Schwartzkro in , 1984) show that neuronal electrotonic 

length scales (length scales formed f rom the electrical parameters) and the cell 

length are of s imilar magnitude, the scaled value of g. w i t h L = L , is 0(1). 

Hence, we define a .new g. using L = L,-] and rewrite the scaled conductance as 

e "*g. where the new g. is 0(1). A s imi lar argument -is used to define rescaled 

pump fluxes. The .pump fluxes must have the same order as g. i n order to 

balance the transmembrane fluxes as described in Chapter II. 

Since the asymptotical ly larger population might not be neurons, other 

rescalings of g. are possible. However , the above assumption is the least-order 

assumption about membrane conductance which allows 0(1) f lux through this 

population. The role of electrotonic parameters in tissue models is discussed in 

more detail in Chapter V . 

In the asymptotical ly finer 'g l ia l ' population, g. is rescaled in the same 

w a y as above, and we rewrite the scaled conductance as e ^g. where the new 

66 
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g. is 0(1) . Thus , electrotonic length scales have been assumed to be the same in 

the two populations, so that the membranes and intracel lular and extracellular 

media of the finer population are assumed to have the same properties as in 

the coarser population. This assumption is made because there is relat ively little 

data about membrane properties of very f i n e tissue structures. Because the 

leading-order equations up to 0(1) w i l l contain no time derivatives, the time 

dependence is suppressed. 

1.1. Expansion 

W i t h the above definition of the scaled spatial coordinates, we have the 

formal correspondence: 

V > e " 2 V + e'1? + V 
X W V u 

0 r v , -+ 

(1.1) : = Z e m D 
m = -2 

It is assumed that -<j>, a, and C. m a y be expanded in the form: <j> = 
00 00 oo 
Z e <j> , o =• Z e a , and C.= Z e C . Detai ls of the expansion of 
n = 0 n n = 0 n 1 n = 0 m 

operators and boundary conditions are given i n Appendix I I I .A . 

Collecting the equations f rom (A.4) - (A.6) for <j>0, a0, and C j we have: 

V »(a0V 0O) = 0, 
w u w ° 

(1.2) v f a 0 = 0, 



III. Asymptot ic Expans ion / : 6 8 

V -(c?.V C. ) + vz.V '(B.C. V <t>0) = 0. 
W 1 W 10 1 W 1 10 w " 

The j u m p conditions in w are applied at glial membrane. Since the membrane is 

permeable onty to K + , we use the simplif ication (II.2.10) to obtain explicit ly; 

P o V w 0 o * n = 0, 

(1.3) V a 0 - n = 0, w u 

6».V C. - n = 0. 1 w 10 

These conditions together w i t h periodicity in w specify <t>0, a0, and CJQ, 

intracel lular ly and extracel lularly, though not the transmembrane jump. Because 

the equations (1.2) are potential equations and the j u m p conditions (1.3) are 

homogeneous N e u m a n n conditions, o 0 is a function of u and v alone. Thus (p0 

is a function of u and v alone. U s i n g these observations it is concluded that 

C . q is a function of u and v alone. The j u m p across the membrane w i l l be 

determined later us ing (A.8) - (A. 10). 

Gather ing equations for <j>,, a 1 ; and C. ̂ , in the expansions (A.4) - (A.6) 

produces: 
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(1.4) A _ 3 c 0 + V ^ o , = 0, 

? . A „ C . + V «(0 .V C ) + i>z.{d.A\(t>0 + V '(B.C. V 0,)} = 0, 
I -3 io w I w n i i -3 ° w I io w 

where A f = V - ( f 0 V ) + V « ( f 0 V ) + V - ( f , V ) , and f rom (A.8) - (A.10): -3 v ° w w u v w 1 w 

3 
" ^ o i V ^ r n + V v 0 o - n } = I _ ^ g i o ( ^ V 0 - f V . ) + P 2 , 

3 
(1.5) - V a , - n - V o0-n = Z z.g. ( y V 0 - v V . ) + P , , 

w 1 v u i = i 1 

- 0 . { V C. - n + V C. -n} = z . ( l - 0 .C. / a 0 ) g - ( i » V 0 - i » V . ) + p. . 
l l W 11 V 10 J 1 1 10 o / & 1 0 ° 1 1 

The integral of the transmembrane fluxes (1.5) over the cell membrane 

m u s t be zero, where the integral over 'g l ia l ' membrane is performed in the w 

•coordinate. Since the 0(1) solution of (1.2) - (1.3) implies that the r ight hand 

sides are functions of u and v alone, this implies that the r ight hand sides of 

(1.5) are identically zero. 

The definition of A ^ Q and the form of <j>0, a 0 , and C . i n w imply that 
-o 10 

f 
A g annihilates each of the operands in (1.4). The equations (1.4) for a 1 ; 

and C in the intracel lular and extracellular media are thus identical to those 
I i 

for . 0 O , a 0 , and C. . 

Equations (1.4) reduce to potential equations because of the form of 

0 O,O O, and C - o in w . However , the j u m p conditions depend on 0 O , a 0 , and 
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C. which are arb i t rary functions of v. F o r example, because <j>0 is an arb i t rary 

function of v , each derivative V y 0 o i s an arb i t rary function in the solution for 

<t>i. It m a y be verified by direct substitution into (1.4) and (1.5) that if <j> ^, 

a 1 } and C. ^, respectively, have the form; <j>]=- J ' ^ o + $ i> ° i = V'^v°o 

+ 6 1 , and, C- = / c . * V C + C . , where $ , , a 1 ; and C . are arb i t rary 
1 ' ' 1 1 1 v io n ' Y 1 ' 1 ' 1 1 J 

functions of u , and x> 7? and K satisfy the vector equations: 

(1.6) V - V 77 = 0, 

V -(c?.V K . ) = 0, 
W 1 W 1 

w i t h jump conditions at 'g l ia l ' membrane: 

V x * n = ~ n . 
w 

(1.7) V ^?-n = - n \ w ' 

V7 "* ~* -
V K.' n = - n , w 1 

then a solution is obtained. 

Because (1.4) reduce to potential equations, no other non-tr ivia l w 

dependence is possible, by applying the same argument that was used at order 
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one to the difference of two solutions. 

It is only necessary to know the general form of <f>2, o2, and C in 

the computation of the u-dependence of 0 O, o 0 , and -C. . The computation which 

specifies (f>2, o2, and -C. is .given in Appendix III .B. It is shown that the 

intracel lular and extracellular equations for these quantities are potential equations 

and the solutions assume a simple form analogous to that of <j> ̂ , a ̂ , and C . ^. 

2.0. AVERAGING 

2.1. Introduction 

The sj^mbol M (•) denotes the average over the w unit cell; w 

(2.1) M W ( F ) = 1 , / F d A 
wv ; TW| J

w - M 

where W denotes the w unit cell, dA — d w , d w 9 , and 

( 2 . 2 ) |W| = f F dA . 
W - M 

The interpretation of averaging for our asymptotic solutions is now given, 

and the asymptotic size of the averaging region is specified precisely. This 

clarifies the relationship between the periodic average given by (2.1) - (2.2) and 

the average over a 'sufficiently large ' region in the unsealed spatial variable , 

often referred to in the physical l i terature (Garland & Tanner , 1978) without 

mathematica l definition. 

Suppose that a formal f lux vector, is given by the multiple scales 
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procedure where x = ( x - ^ ^ ) are the space coordinates, 5̂  = (X-^Xg) : = 

(x-j/e^/e ) , and J* is doubly periodic in ( X p X g ) and a smooth function of x. 

Then the spatial f lux vector is defined by "j (x ,e) := -3 (x,x/e) . 

It w i l l be shown that a smooth flux vector can be defined at each 

point XQ := (X-^Q, X2Q) by averaging "j(x,e) over a square region, R ^ , of side u 

centered at x^ , assuming that p. = for some p, 0 < p < 1 as e -> 0, 

and recalling that the cells have length 0(e). The result J^(^Q ) is independent 

of the choice of p, 0 < p < 1 . A property which holds locally w i l l hold -within 

an asj'mptotic region of this size. A l s o , it wi l l be shown that averages over R ^ 

are functions only of the f irst set of arguments of 3 (coarse variables), and m a y 

be evaluated b}' integrating over a single period of the second set of arguments 

(fine variables). 

The above statements follow from computing the average of "j over R ^ , a 

square area element of side p=e^, centered at x^ : 

(2.3) " j R ( e ' V = IfKl J *{*0' V e ) d A ' 
pi R 

where | R £ p | = e^. Then the average flux vector w i l l be the l imi t of (2.3) as 

e^>0, i.e., J A = l i m e e > Q 1R(e,xQ). 

To evaluate the l imi t it is useful to make the change of variables in the 

integrand: x~^ = e 1 (x-^ - X-^Q) and — E ^ (X2 - ^g), o r m vector form 

x=e \ x - XQ). It then follows that d A = dx-^dx2 = dx*^ dx ̂ —dA~ and 

the regions of integration transform R^p > R f p - l where 
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(2.4) 

R p = { ( x 1 ; x 2 ) : x 1 0 - e P / 2 < x-,̂  < x 1 0 + e P / 2 ; x 2 Q - e P / 2 < x 2 < x 2 0 + e P / 2 } 

R p - i = { ( x l l X 9 ) : - e 9 ' 1 ^ < x- n < e p _ 1 / 2 ; - e ' 3 " 1 ^ < x 0 < eH!2}. 
e , p - l — \\x-i>x-2'' i ' 2 

The vector m a y now be expressed as an integral over the fine variables 

( X j , X 2 ) since as e ->0 : 

= * ™ A V e ' V = H™„ 7^P J ^ ( x (f e *' V e " ^ ) d A 
e ^ O " u e ^ O e ^ R e P 

(2.5) ' = lim 1 J ^ ( x n + 3(e P), x n / e - x ) d A " 

Hm 1 / J " j (x,X) d X 2 d X 2 

T S 
_ / j 

T , S — > » 4 S T - T - S 

where the last equality is obtained f rom the multi-periodicity of J (x , •) , setting 

S = T = e P ^/2, = _ x ^ j + x l ( / e ' a n d ^ 2 = ~*~2 x 2 ( / e " ^ o r ^ l x e a ^ (x10' 

X 2 Q ) , the periodicity of J implies that the average in (2.5) m a y be evaluated 

over a single period. Thus , for regions of appropriate asymptotic size, an average 

f lux vector is defined even though 3 m a y not be continuous, and J ^ ( x ) is a 

function of the coarse variables alone. 
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2.2. Averaging Procedure 

In this section the specification of the average governing equation at 

coarse length scales is completed. The v-dependence of (p0, a 0 , ' C . , is deduced 

f rom a necessary condition for the existence of a bounded solution for </> 3 , o 3, 

and O , namely the Fredholm Al ternat ive applied to a constant function at 

_2 

0(e ) in (A.4) - (A.6). This condition is equivalent to the physical observation 

that there can be no steady periodic solution to the potential equation unless 

(charge or concentration) is conserved, so that the periodic source density must 

have zero integral over each period. This leads to the conditions: 

y A - 2 a ° + A - 3 a i } d A W = 0 , 

(2.6) S

w

{A°2(j>0 + A V l } d A W = 0 

y i < A 2 C i o + A - 3 C i i + " W a C 2 * ° + A C 3 * i » d A W = 0 

where A . f = V^^VJ + Vffo^) + V ( f ' V w ) + V ^ 7 ^ + 

+ V w * ( f 2 V w ) , and the integrals are interpreted as described in Section II.2.5. 

Thus , us ing the extended divergence theorem, the integrals of V w applied to 

discontinuous w-periodic quantities are zero. 

To obtain the u-dependence of <pQ , o0 , and , the same necessary 

condition for the existence of bounded <pn > -o H > a n c l C j is applied to the 0(1) 

equations f rom the expansion of Appendix I I I .A . These equations are integrated 

over w and v to give: 
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J V { A 0 o O + A l f f n +A 2 a 2 } d A y d A w = / ^ {Q, + rL 9 ^ 0 } d A v d A w 

(2-7) / r v i A
u ^ > o + A a

l 0 1 + A a
2 0 2 } d A v d A w = f v v Q 2 d A y d A w 

f 0.{A„C. + A . C . + A „ C . } d A „ d A w i l 0 io -1 n -2 i 2 J V W 

+ tfzi°i ^ v { A o * o + A C l ^ + A C 2 ^ 2 } d A v d A w 

J {q. + T-SCjoldA^dA,,,, 
WV

 1 tt* V W 

where WV is the unit cell in v space and A^, = V • (f0 V ) + V • (f i V ) + 
0 u u u u 1 v 

V -(f,V ) + V -(f 2V ) + V «(f 2V ) + V -(f 3V ) + V «(f 3V ) + 
V 1 U U W W W W U V 3 W W 3 V 

V -(f«V ) . 
w w 

This averaging procedure, as applied to the computation of bulk properties 

of inhomogeneous materials is discussed b}' Bensoussan et ah, (1978) but has not 

previously been applied to any non-linear equation with jump conditions in the 

interior of the domain. However, the main objective here is the application of the 

analysis, rather than mathematical novelty. These equations provide an alternative 

to the cable model in computing the bulk properties of brain tissue and this 

treatment differs from those of Ranck (1964) and Havstad (1976) by the use of 

a systematic averaging procedure and the incorporation of ion transport into the 

model. 

The resulting averaged equations have ah extracellular and intracellular 

part. In order to apply the averaged equations it is necessary to determine the 
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extracellular and intracellular parts. Thus we now investigate the specific form of 

the solutions to (2.6) (2.7). This part of the calculation appears to be new. 

It is assumed that a geometry has been chosen in which the averaged 

coefficients reduce to scalars. In this case, the .averaged equations (2.6) become 

eV^Oo = 0, 

(2.8) V y - ( a a o V v 0 o ) = 0, 

V «(0.e.V C. ) = 0, 
V 1 1 V 10 

with periodic boundary conditions on the v unit cell (neuronal scale) and the 

jump conditions at neuronal membrane: 

- e V v a 0 « n = P, + g 2 0 { * ' V 0 - » » V k } 

(2.9) - ^ a a o V y 0 o - n = P 2 +g 2 0 {^V 0 - vVk} 

-e.C. V 0o «n - 0.e.V C. -n = p. + z.g. {vV0-vV,} I io v v o I I v io * i i 6 io 1 ° kJ 

where v^j^-= m ( C 2 0 / C 2 0 ) and the definitions of a, e, and e. are given in 

Appendix III.C with the more general calculation. The right-hand-sides of these 

equations are zero by an argument similar to that given for the right-hand-sides 

of equations (1.5). These equations have continuous intracellular and extracellular 
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solutions <t>0, a0, C - o , where <j>l

0 — <t>°o + Vj^ while OQ and are constants. 

After averaging in w (described in Appendix III.C) the 0(e) equations are: 

e V 2 ^ = 0, v 1 

(2.10) V v - ( a a o V v 0 , ) = 0, 

V -(0.e.V C. ) + vz.V '(d.e.C. V 4>,) = 0, 
V 1 1 V 11 I V 1 1 1 0 V 1 

with jump conditions at 'neuronal' membrane: 

-e{V vai-n + V^Q-n} = g20{vV, + ( C 2 1 - C ° i )}, 

r i p o 
^ 2 0 ^ 2 0 

(2.11) - a a 0 { V v f , - n + V ^ Q - n } = g20{uV, + ( c l i - C 2 i )}, 
p i p O 
^ 2 0 ^ 2 0 

-c?.e.{V C. -n + V C. -n} = z.(l-0.e.C. /aa0)g2o{»'V1 +( C 2 1 - C 2 i )}, 
1 V V 11 U 10 1 1 1 10 U 1 — : 

p i p O 
^ 2 0 ^ 2 0 

and periodic boundary conditions on the unit cell. The periodic boundary conditions 

follow from the periodic structure of the tissue. These equations (2.11) hold 

intracellularly and extracellular^. 

The equations (2.10) - (2.11) are linear and the solutions may be obtained 

by the substitutions 
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1 l p u T U i y u v *C U 10 's U u 1 

(2.12) v<t>, = u( X p - V u 0 o + X v - V u V 0 ) + X c ' V u C i o + X g - V ^ o + 

C = vC ( K - V 0o + « - V V 0 ) + C. ( K «V C + K 'V a0 ) + C , . 

11 10 p V U U 10 C u 10 s u 0 1 

where X J X > X , X , 77, 7? , 77, 77, K , K , K , and K are to be A p j A y > /v c > A g , i p > ( y , i c , ( g j p , y , c > g 

determined. We write a 0 = a o " , #. = ej#. and drop the tildes in what follows. 

Subst i tut ing as described into (2.10) - (2.11), it is found that the variables to be 

determined in (2.12) satisfy the potential equation extracel lularly and 

intracel lular ly , w i t h jump conditions at the cell membrane given by : 

~ - | V v V " = •g20{5^ 1 -^ l +4 n-K° 1}, 

(2.13) - o 0 { V V X p 1 - n + n , } = g 2 0 { X P 1 " 5$ , + ^ ~ }, 

- ^ i o ^ ^ i ^ = ^ o ( 1 " t f i C i o / a < » ) % " 3 S i + RPi"4i>' 

V 7 j y 1 - n = g z o i X ^ - X?M + 4" *vi}> 
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(2.14) - f f o V / v 1 ' « = - O o { V v i ' i + n , } = g 2 0 { " X? M + 4 " 

" ^ i o ^ v ^ i ' 2 = g i o
( 1 " e i C i o / ( 7 o ) { X v 1 - ^ i + < n - < i ^ 

(2.15) - a 0 V v x s 1 - n = g 2 0 { 4 - & + 4 " ,̂)> 

- • 7 V
v ^ i - n - G 2 0 { 4 - « 1 + 4 - « L } 

(2.16) - a 0 V v X c 1 - " = 8 2 0 ( 4 - ^ 1 + 4 ~ 

= g i o
( 1 - 0 i C i o / a o ) ^ - ^ 1

 + 4 - ^ i } 

where the subscript 1 denotes the first components of the quantities x , ??, and 

K. L a t e r i t is shown that the canonical problem for each component is the same 

and thus, that these coefficients reduce to scalars under appropriate geometrical 
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assumptions. 

Since the variables 77 do not appear on the right-hand-side of (2.11), it is 

possible to solve (2.10) - (2.11) by first solving for x p ! Xy, X c > Xg, K p , K y , 

and K g because they are independent of the v solutions. In addition, as 

described in Chapter IV, it is assumed that V u a o
= 0 . Hence the 77 solutions do 

not appear in the expressions for 0,, a,, and Cj 1 and need not be computed. 

The x and K solutions, which are calculated numerically in Chapter IV, will be 

substituted into the averaging conditions (2.7) to obtain the average governing 

equations which are the goal of this chapter. 

Substitution of the x and K solutions into (2.7) gives the equations: 

D , ^ + E , v V 0 + F ,v jc 0 = Q 2 

(2.17) 

D a V ^ o + E 2 v V 0 + F 2 v jc 0 = q + r ^ o 

where CQ is the potassium ionic concentration and the coefficients are defined 

using (2.1) - (2.2) by 

D 1 = a 0 M v { t a ( l + V vx p l)}, 

E 1 = a 0 M v { t a ( t / 3 + V vx v l)}, 

(2.18) 
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D , = a 0Mw{t t ,t (1+ V x -,) + V K A 2 o v LT£ a v A p l v p r ' 

E 2 = a 0 M v { t K t a ( ( t / 3 + V y x v l ) + V V K V 1 ) } , 

F 2 = / 1 { M V { ( e C 0 V v / c c l + 6) + ao^VV^}}, 

where t^ is unity intracellularly and zero otherwise, and t^= OQIO0Q. 

The periodic problems for the n, X, and K variables depend on o 0 , g2o> 

and Cj through (2.13) - (2.16) and thus are, in general, functions of v. Thus 

an infinite number of the canonical periodic problems must be solved in order to 

obtain the (variable) coefficient functions of (2.17). This is because the original 

mathematical problem was non-linear. It is shown in Chapter IV that it is 

appropriate to approximate (2.17) by a system with constant coefficients obtained 

from a single set of canonical problems in which V u a = 0. As it is impractical to 

solve numerically for the variable coefficients this is a useful simplification. The 

coefficients D 1 ; D 2, E 1 ; E 2, F 1 ; and F 2 are tabulated in Chapter TV using 

this assumption. 

The calculations of this chapter show that the coefficients of the average 

governing equation are different depending . on the length scale. This has 

implications in the interpretation of data from experiments on the bulk properties 

of brain tissue, and some specific comparisons of one-tier with two-tier models 

are made later. 
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APPENDIX III.A. OPERATOR EXPANSIONS 

U s i n g the correspondence (1.1) it follows that: 

V 2 > e " 4 V 2 + e' 3(V - V + e"2(V -V + V - V + V2) 
X w v w u w w u v 

(A.l) + e'-'tV - V + V - V ) +V 2 

U V V u u 

:= I e A , 
— A n r m = -4 

where mixed part ials such as V • V and V • V must be distinguished from 
u v v u 

each other in view of the discontinuity at the cell membrane. While the 

boundary-value problem is formulated using j u m p conditions at the membrane, i t 

is s t i l l necessary to interpret expressions such as ^'(aV^^) a n ^ ^w*( a^ u0) * n 

performing averages of derivatives over the unit cell R (intracellular and 

extracellular spaces and membrane). 
oo 

Thus i f f = 1 e n f , 
n = 0 n 

f V > e " 2 f 0 V + e ' V o V + f , V ) 
X w u V 1 w 

(A.2) + Z en(f V + f , -V + f ,„V ) _ n n u n + l v n + 2 w n = 0 

:= Z en$ 
n = -2 
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V -(f V ) >( e" 2V + e ^ V +V )-(Z e"!^ ) x x w v u _ 0 n n = -2 

(A.3) := Z enA1 . 
n = -4 n 

So that the model equation (II.2.3) becomes: 

0 oo oo 3 
(A.4) Z Z e m n A a = Q, + TZ Z e 1 " 9 ^ 

m = -4 n = 0 m n n = 0 i = 1 <" 

and (II.2.4) becomes: 

0 oo 

(A.5) uL Z e m n A a 0 = Q 2 . ™ _ , „ _ n n r n ^ z 

m — 4 n — u 

C f We define the operator t?.A := A , where f = 6-C The differential 
l m m i i 

equations (II.2.2) for C. become: 

0 oo CO 0 0 

Z v m + n „ . „ „ „ m t n „ . L , 
Z e t ? A C . + fz.Z Z e e?.A 6 

m = _ 4 n = 0 1 m i n 4n = -4 n = 0 1 ^ n 

(A .6) 

°° 3 
= Z Z e n 3 C . + q . . 

n = 0 i = 1 

T h e j u m p conditions are now expanded i n the new variables. These 

conditions are to be applied at the asymptotic scales corresponding to the 
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assumptions about cell sizes. The condition for 'g l ia l ' membrane is applied in the 

w variable and the condition for 'neuronal ' membrane is applied in the v 

variable . 
oo -co 

We define g. by expanding: -g.(L e n V )= Z e " g . , so that 
m 1 n = 0 n n = 0 i n 

g i 0 = g i ( V 0 } ' g i l = g ' i ( V 0 ) V l ' g i 2 = T { g " i V l + 2 g ' i V 2 } w h e r e t h e p r i m e ' 
oo 

denotes dg.(V)/dV and define h . by expanding pg.(V~V.)= Z e n h . so that: 
I in 1 1 n = 0 m 

h . = g . J y V . - i l n ( C ° / d . )}, lO 6iO L 0 z. io io •" 
i 

(A. 7) 

h i i = g i i ^ v o - f < 1 4 o » + ^ { v N i - mA - ^L)h 
* i d C° 

10 10 

etc. 

Then the jump conditions (II.2.5) become: 

0 0 0 

Z { e m + n 6 . I ) C. -2 + vz. em + ne:T>C4> -5} 
m = . 2 n = 0 1 m m 1 1 m n 

• Oo 
(A.8) = Z e n " 1 z . h . + e ' V 

_ n 1 i n 1 n = 0 

at the 'g l ia l ' and 'neuronal ' membranes, where the scaling of p. was discussed in 

the introduction to this chapter. The equation (II.2.8) transforms to: 

•0 °° . , °= 
(A.9) - Z Z D ( en mo ) - n = Z e n z . h . + P , _ „ _ „ m n _ „ 1 in ' m = -2 n = 0 n = 0 



and (II.2.9) to: 
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(A.10) -vL Z L ^ ( e n + I % J - n = Z e n h.„ + P 2 
_ o _ r . n n n _ n in m = -2 n = 0 n = 0 

at the glial membrane. 

A P P E N D I X III.B. S E C O N D O R D E R P E R T U R B A T I O N S O F T H E 

D E P E N D E N T V A R I A B L E S 

To 0(e"2) (A.4) - (A.6) imply that </>2, a 2 , and satisfy: 

A a
2 0 o + A°3d>, + V w . ( a o V w 0 2 ) = 0, 

(B.l) A _ 2 a 0 + A 3 a, + V ^ a 2 = 0, 

0 . A o . C . + e?.AQ.C. +V -(t?.V C. ) 
i -2i io l -3i 11 w l w 1 2 

+ vz.{6.AC
o.(j>0 + e . A ^ . 0 ! + V .(e.C. V <t>2)} = 0, r i -2i U I -3i 1 w I io w " 

where A f„ = V -(f 0 V ) + V . ( f 0 V ) + V . ( f , V ) + V . ( f , V ) + 
-2 u " w w ° u w 1 v v 1 w 

V w • (f2 V ) , while the jump conditions at glial membrane become: 

Eh- = - g 2 o { ^ V 1 + ( C 2 i - C 2 1 ) } = ^ ^ ^ . g + V J o - S 
1 1 . w V 

1 c 1 r° 
^ 2 0 L / 2 0 

+ ^a0{Vw<A2 .n + V v 0 ! «n + Vu</>o *"} > 
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(B.2) -Z-zjh h = - g 2 o { ^ V 1 + ( _ ^ £ 2 - ^ 2 l ) } = V w a 2 - n + V v a ! .n + V u a 0 - n , 
i r i r o 

^20 ^20 

-h . 11 -g 2 O ( i -e .c i o /0 O ) { * 'V 1 + c 2 1 -^2 1 )} = 
c 1 , 

e.{v a 
r u io 

•n+V C. v n n+V C 
W 12 

20 '20 

f f 
The definition of A 9 and the form of <f>0, o0, and C imply that A 0 

reduces to V "(fjV ) +' V *(f 0 V ) , when applied to the 0(1) terms in (B.l). 
f 

No similar reduction is possible for A ^ but the equations (B.l) - (B.2) may be 

simplified by substitution of the known forms for <j> ̂ , C. ̂ . By an explicit 

calculation, we obtain the equivalent equations for 0: 

- V ' ( a 0 V 02) = 2V X ' V (V <pQ) + V ff0'V x*V 7 7 ' V <j>0 

w ° W ^ z W V V ^ u v ° w w ' V ° 

(B.3) + V o-o-VJ7-V 60 + Oo^Jo + V a 0 - V . v0o 

The equations for a are (cancelling ."0.) 

(B.4) - V 2 a 2 = 2V ^ - V (V 0O) + ^ a 0 , 
W W V V v 

while the equations for C. are: 

V 2 C + 2V K « V . ( V C. ) + ^ C . + vz.{V .(C. V 02) 
W 12 W V V 10 V 10 1 W 10 W ' 
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(B.5) + 2 C V X - V (V <j>0) + V C. - V x - V ^ - V -0O 

10 W V V " V 10 W W ' V u 

+ V C. - V K - V C . + C. V ^ o + V C. - V f>0} = 0. 
V 1 0 W V ] 0 10 V u V 1 0 V u 

where x> and K are defined in (1.6) - (1.7). 

B y the solution to (1.4) - (1.5), the f irst term in the definition of h . ^ is 

zero, so that the jump condition for <f> i n equation (B . l ) has been simplif ied to: 

~ g 2 0 { " V l " ( C ' i 1 C o - C ° 1 C ° » = v o i C v ^ i - n + V v 0 o * n ) + f a o ( V w 0 2 - n 

+ V ^ ^ T - n + V^Q-n). A l s o , equations (1.6) - (1.7) imply that the terms 

proportional to a ^ vanish in the latter expression. Hence the expression reduces 

to: 

*>0 o{v w 0 2.n + (x-V v)-V vtf> 0-n + V^^n + V u 0 o*n} 

(B.6) = -g20{vV,+(.^-Q_)} . 
r i p O 

^20 ^20 

S i m i l a r l y : 

vo0{Vwo2>n + ( ^ - V V ) . V v a o - n + V y 0 , . n + V u 0 o -n* } 

= - g 2 0 { » ' V 1 +(_CJ_I-^2_|_)}, 
p i pO 
^20 ^20 

(B.7) 

#.{V C. - n + ( K - V )-V C - n + V C. - n + V C -n} 
1 W 12 V V 10 V 11 U 10 

= - g 2 o ( l - f l i C i o / o - 0 ) { i ' V 1 +( C 2 1 - C ° i )}. 
p i p o 
^20 ^ 2 0 
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Since - 0 O , a 0 , and C. 
10 

do not depend on v, under the specific 

assumptions made here, the functions <j> ̂ , o ̂ , and C. i do not depend on v by 

(2.8) - (2.9). Thus , inspection of (B.3) - (B.7) shows that the intracel lular and 

extracellular equations for 0 2 , a 2 , and C are potential equations and the 

solutions assume simple forms analogous to those for 0 1 ; a 1 ; and C. ^ This 

observation simplifies the computation of the u-dependence of 0 O , a0, and C.Q. 

A P P E N D I X I I I . C . G E N E R A L A V E R A G I N G 

In this appendix, the averaging calculations are carried out in the general 

case. Without special assumptions about the geometry, the computed average 

coefficients do not reduce to scalars, even though the microscopic parameters , 

solution conductivity, and diffusion coefficients are constant. Because the objective 

of this calculation is only the general form of the average coefficients, i t is not 

necessary to separately consider the extracellular and intracel lular parts of the 

solutions. 

Substitution into (2.6) of the previously derived forms for 0 , , a 1 ; and 

C. yields the averaged equations at 'neuronal ' length scales: 
11 

2 3 { e i k
9 ^ o ; 

( C . l ) 
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Z[d{6e 9C,0} + vz 9{e.C i o a Ho}] = 0 

where a j k= M w (6 j k +9 X
k /9W.) , ^ejk= M w ( 6 j k + 3rjk/3W.) , e j k i = 

M, i r(6., + 3 K /9W.) , and 6 is the Kronecker delta, 8., = 1 when j = k and 0 W jk j jk J 

otherwise. 

It is shown in Chapter IV that for the geometries assumed here; 

a j k = a(u), e. k = e(u), e j k i=e.(u). 

The quantities <f>Q , o0, and C. satisfy jump conditions obtained by 

averaging fluxes of order e 1 at 'neuronal' membrane since (1.1) implies that 

aV <t> is associated with a flux of this order. These conditions are: v^ 

- I e 3o.on = g 2 0 {^V 0 - vNA + P, 
j,k J k !9̂ k J k 

(C.2) -L vo0adjLon. = g 2 0 { ^ V 0 - y V , } + P 2 

j,k J k 9vk J k 

- Z 0.e., . 9C: on. = g 2 O ( l -0 .C . /o0){vVQ-vV,} + p. i jki ^ ? k j 6 , ! 0 i io 0 / 1 ° kJ * i 

The v-dependence of <j>, , a , , and C. 1 is deduced from a necessary 

condition for the existence of a bounded solution for <j> 3 , a 3 , and C. , 13 

namel}', the Fredholm Alternative applied at order e ^; yielding 
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J " w ^ A . i a o + A . 2
a i + A - 3 a 2 } d A

w •= 0 

(C.3) / w { A A
L0 o + A A

20 1 + A A
30 2 } d A w = 0 

V i { A - i C i o + A - 2 C i < + ^ = ° 

w h e r e A ^ = V -(f 0 V ) + V -(f 0 V ) + V .(f,V ) + V . ( f , 7 ) + 

-1 U ° V V ° u u 1 w w 1 u 
V . ( f 2 V ) + V . ( f 2 V ) + V -(f 3 V ) . 

V ^ w w w v W J W 
Hence, these averages yield (corresponding to 2.10): 

Z 9 {e., 3a r 
j,k3vj J k ^ k 

(C.4) Z _9 {o 0 a..3li} = 0 
j,k 9VJ J K ^ v k 

Z [9 {0.e., + vz. 9 {B.C. a., 3*i}] = 0 

with jump conditions: 

- E e , { ^ l n + 8 a o n } = g 2 0 { „ V , +( C 2 1 - C 2 , ) } 

j,k J k 3vk J 9u k J j — 
^20 ^20 
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(C.5) -vo0L a .,{30in . + 3>n} = g20{z>V , + ( C 2 i - C ° i )} 
j,k J K J ^ k J

 r i _o 
^ 2 0 ^ 2 0 

^ 2 0 ^ 2 0 

This is a system similar to (1.5) - (1.6) except that the coefficients now 

contain averages and the boundary conditions are applied at 'neuronal' membrane. 

The explicit form of the solutions when the coefficients are scalar is given in 

equations (2.10) - (2.15). 

Finally, to obtain the u-dependence of 0O , o0 , and C . q , the necessary 

condition, equation (2.7), for bounded <pn , On and C is applied to the 

w-averaged equation at 0(1) which yields, using the previously computed v 

dependence of $ 0 , o0, C.Q, 0 1 ; a 1 , and C. ̂ : 

j,k 9 U J J K ouk i 9 t 

(C.6) L 3 {a05., 3*o} = Q 2 

j ,k^uj. J k d u k 

L [ 3 { 0 e k 9 ^ o } + V-L 9{8C. *-k3>}] = r9C, 0 + q 

j,k5uj 1 J k l 3"k 1 ^ U J 1 1 0 J K ttxk W 1 

where fi^, e"^, and ^ jki' a r e defined i " a manner analogous to a.^, e.̂ , and 

e., ., by taking v-averages over v-unit cells of canonical problems with w 
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averaged coefficients, in the same way that (C.l) were obtained by averaging 

over w unit cells. 



IV. CANONICAL PROBLEMS AND T H E COMPUTATION OF BULK 

PROPERTIES 

1.0. INTRODUCTION 

The physical theory of ion transport is based on ideal assumptions which 

are useful for obtaining the qualitative features of such transport (Horvath, 

1985). It is desirable to incorporate these idealizations into our model because 

most relevant experimental work on ion transport i n biology is described w i t h 

reference to this (transport number) theory (Horvath, 1985; G a r d n e r - M e d w i n , 

1983; B a r r y & Hope, 1969 a, b). More generally, the physical applications of 

results f rom homogenization theory have been relat ively neglected, (I. Rubenstein, 

personal communication) and much of the theoretical work has onl j ' reproduced 

results already k n o w n to experimentalists or derivable through other techniques 

(Batchelor 1974; Lehner , 1979). It is expected that the incorporation of physical 

theory w i l l facilitate new physical insights as wel l as applications. 

Thus , in this chapter, we are concerned w i t h the relationship between the 

expansion procedure of Chapter III and the existing physica l theory of ion 

transport . It is shown that this transport number theorj ' applies to bulk tissue, 

and a further simplif ication of the canonical problems of Chapter III is made for 

consistency w i t h the physical theory. F i n a l l y , bulk properties of the tissue model 

are computed for a var ie ty of parameters . 

1.1. Transport Numbers in Electrolyte 

It is observed experimentally that when a steady electric current is passed 

through an electrolyte solution, the current I = 2"JZ."J ^ is approximately divided 

into constant fractions, t., depending only on the composition of the electrolyte 

93 
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(Horvath , 1985). These transport numbers, t., have been justif ied wi th in the 

thermodynamic l i terature and tabulated (Robinson & Stokes, 1955). The theory of 

-transport numbers assumes that (ideally) ionic fluxes are proportional to electric 

current w i t h a single constant of proportionality over space and that the electric 

current is specified by a l inear equation w i t h constant coefficients. If these 

assumptions are true, it is simple to predict the effect of current passing 

experiments on the concentrations of ions. The appropriateness of this idealization 

for a simple electrolyte solution is now discussed. 

While our model equations (II. 1.2) represent a simplif ication of a more 

complete thermodynamic treatment (see Chapter I), they st i l l give rise to 

non-linear governing equations. Thus , in general, the transport number is not 

constant under this model. If we assume that (II. 1.2) is correct and 

electroneutrality holds, then we have in the steady state away f rom sources: 

V 2 o = 0, 

(1.1) V*(ffV<A) = 0, 

- V . j . = V-(0 .VC. ) + i>z.V«(0.C.V0) = 0 
J 1 1 1 0 1 1 1 ^ 

Thus , when a is k n o w n , the computation of the electrical potential (p is 

s tra ightforward. W h e n Cj are constant, this implies that V C j = 0, the diffusive 

term is zero i n (II. 1.2), and a — constant because of its definition (Section II. 1.1). 

In this case the ion transport vector has the simple form: 
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(1-2) "Ji = vz.d.C.V<j> 111 •v t.z.aV0, 1 I 

where t. = 8.C. I a. Under these conditions, L.t. = l . The numbers t. are the i i i 11 I 

theoretical transport numbers measured by passing current through electrolyte 

solutions (Horvath, 1985).t 

Since Q. is not constant in general, this assumption concerning the 

transport properties of electrolyte solution is an idealization which is reasonable 

as long as variations in C. are not large. The diffusive portion of the ionic flux 

is assumed to remain unchanged. 

Because the intracellular regions have transport properties different from 

the extracellular medium, the definition of bulk tissue transport numbers is more 

complicated than the definition of transport numbers in electrolyte. 

1.2. Discontinuous Ionic Flux in Bulk Tissue 

The idealization of constant transport number in electrolyte solution is 

useful and accepted in phĵ sical theory. Fortunately, no further assumptions are 

necessary in order to derive bulk transport properties for tissue which are 

similar to those for electrolyte solution. That is, potassium transport in bulk 

t It is important to note that these are not the only conditions under which "j. 
may be linearly related to electric current. For example, if a — constant and C.Vp 
is small: PV'(0.C.V0) — 0 holds, and the electric potential satisfies, and C. 
nearly satisfies, \lie potential equation. If, on the boundary of some region, the 
potential <j> and the concentration C satisfy boundary conditions of the form 
90/9n= K 9C / 9n, then V C will be proportional to V<£ everywhere in the 
region and so "jj1— #.VC. + i>t!z.aV0 is proportional to I the electric current. A 
physical situation similar to this one, with more complicated boundary conditions, 
occurs in bulk tissue and is reflected in the mathematical form of averaged 
coefficients in Sections 1.3 and 6.6. 
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tissue is a l inear function of the electric current, and the electric current is 

specified by a constant coefficient potential equation. The physical basis for the 

transport number theory in bulk tissue is now described. 

In the extracellular medium, K + ions have a relat ively low tabulated 

transport number of about .012, while N a + has a transport number of about 

0.4, and CI of about 0.6. In contrast, because gl ia l and resting neuronal 

membrane are p r i m a r i l y permeable to K + (Dietzel et a L , 1980) the transport 

number for K + across such membranes is close to uni ty . 

It is difficult to estimate the transport number for K"*~ inside glia or 

neurons because the intracel lular medium is different f rom standard electrolyte 

solutions, containing cell organelles and a var iety of organic molecules. However , 

+ + since [K ]. is considerably higher than [K ] , the intracel lular transport number 

• + + of K must be closer to uni ty and the f lux of K m u s t be a larger fraction 

of the intracel lular electrical current than in the extracellular current. Therefore, 

i t w i l l be assumed that the intracellular transport number for K + is uni ty . This 

assumption about intracel lular transport number is not crucial (though it simplifies 

calculation), but since we w i l l assume simple geometry it seems appropriate to 

make simple assumptions about transport numbers in this section. 

The above idealization permits a conceptually simple description of 

electrically mediated spatial potassium transport . Because of these assumptions, 

the K"*~ f lux vector is near ly unaffected by the electric field i n the extracellular 

m e d i u m , but is proportional to the electric current vector i n the intracel lular 

medium. 

The situation can be visualized by imagining that the electrical streamlines 

(charge paths) passing through the inhomogeneous m e d i u m consisting of 
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intracellular and extracellular compartments are coloured. Some of these 

streamlines will pass through one or more cells. If current streamlines are 

coloured blue extracellularly and red where they pass through cell interiors then 

relatively more electrical potassium transport occurs along the red segments of 

streamlines, and relatively little along the blue segments because of the difference 

in intracellular and extracellular transport numbers.! If there are no initial 

concentration gradients, then the average of the red flux is the average K flux 

at the instant the electric field is turned on. In the steady state, the average 

K + flux is the spatial average of the red intracellular flux and the diffusive 

flux due to extracellular concentration gradients. 

1.3. Local Transport Number in Bulk Tissue 

Formal expressions for the fluxes of electric charge I (current) and 

potassium ^j^ : = ^2 a r e obtained from the multiple scales procedure. To define a 

local average transport number it must first be shown that average electric 

current is determined by a linear equation with constant coefficients over a 

region which includes a large number of cells. This requirement concerning the 

equation for <f> follows from the form of the multiple scales expansion and the 

discussion of averaging in Chapter III. As was described earlier, 'local' means, 

over a length scale a which includes many cells but is small compared to the 

measurement scale, L 0 , for example, p = e ^ for p < 1. We denote such a 

region by 

t In the extracellular medium, K + moves primarily by diffusion (in this 
idealization). Because the extracellular medium contains high concentrations of 
other current carrying ions, Na and CI , there is no inconsistency in the 
specification of <f>. Diffusion does not cancel the electrical transport because, unlike 
the electric flux, it has no preferred direction in free space or in cortical tissue 
(Nicholson & Phillips, 1981). 
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R . M 
A linear relationship between bulk current and potassium flux follows f rom 

an appropriate interpretation of the averaged coefficients occurring in the 

expansion since, physical ly , the averaged coefficients are equivalent to averaged 

fluxes. The linear relationship of averaged current and average ionic f lux implies 

that the local transport number theory carries over to tissue. 

B u l k transport numbers describe any local l inear relation between an 

electrical and ionic f lux. It is simple to define them physica l ly . We denote the 

extracellular and intracel lular transport numbers by and t j^ respectively. There 

are at least two approximate ways to define bulk transport numbers which are 

useful. In general, the relation between " j -^ and I w i l l be a matr ix function 

instead of a simple proportionality. 

The f irst definition assumes that " j -^ is zero in the extracellular space and 

thus the average of "j j^ involves an integral only over the intracel lular space. 

(1.3) MW(1K) := ^ ^ I d A , 

where W denotes the unit cell . Equat ion (1.3) defines a local l inear operator 

applied to I . Since any such linear operator is associated w i t h a matr ix , this 

defines a m a t r i x of 'local transport numbers ' . 

The second definition assumes that a = constant, vV • ( C 2 V<j>) — 0 and no 

average change in concentration occurs over the unit cell . This case is a 

modification of the situation described in the footnote of Section 1.1. The average 

of is given approximately by: 
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(1.4) M (]K) := 1{ / t i l d A + 1 / tJt'ldA + v J aV^ dA}, 
W * iwl I C S K lwl E C S K E C S J 

where \pj satisfies membrane j u m p conditions of the form I • n = v o^7$j' n and 

periodic boundary conditions on the unit cell . The function xj/j corresponds to the 

flux due to concentration gradients set up by the j u m p conditions. Despite the 

periodic boundary conditions, the average of Vi/>j is not zero because of the 

presence of the biological cell. Because \pj depends l inearly on I through the 

j u m p condition, equation (1.4) defines a linear operator applied to "I and this 

defines a matr ix of 'local transport numbers ' . 

Thus , assuming the transport number theory is val id in electrolyte, it m a y 

be deduced that bulk tissue has transport properties which paral le l those of 

electrolyte solution, though the transport numbers are not, in general, scalars. 

2.0. FINAL SIMPLIFICATION OF THE B U L K EQUATION 

Inspection of the governing equations 'for <j>o,o0, and -C. (III.2.8) -(111.2.9) 

shows that these quantities are constant extracellularly and constant intracel lularly 

over for a=e^. Thus , the coefficients of the equations for the dependence of 

4>y,o~y, and C. 1 on the fine variables are constant both extracel lularly and 

intracel lular ly over R ^ . Hence, locally, to leading order, the transport number 

theory is va l id intracel lularly and extracel lularly over R ^ . 

It is now assumed, in addition, that the transport number theory is va l id 

over asymptotical ly larger regions R ^ , u=e®, consistent wi th the transport 

number theory of the physical l i terature. Mathemat ica l ly , this assumption means 

that we assume VOQ^O and that 0 . C . is replaced by t.a0 in the expression for 
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electrical ionic f lux. In the calculations which follow, a geometry has been 

selected in which matr ix coefficients reduce to scalars. 

It has been shown that a bulk transport number theory is va l id locally. 

The assumption that transport numbers are constant throughout the extracellular 

and intracel lular spaces, therefore, implies a bulk transport number theory which 

is va l id throughout the tissue. Whi le this assumption is ad hoc in a 

mathematica l sense, it is important to note that the assumption a — constant is a 

consistent assumption because a does not appear on the right-hand-sides of 

(III. 2.11). Also these assumptions are supported by experimental studies 

(Gardner-Medwin, 1983 a, b; H a v s t a d , 1976) which found no evidence that such 

non-linear effects quali tat ively affected bulk properties. 

The idealization that the (electrolyte) transport numbers in the extracellular 

space and intracel lular space are constant w i l l convert the variable-coefficient 

averaged equation into an equation w i t h constant coefficients. This is useful 

because the coefficients of the averaged equation have to be computed n u m e r i c a l ^ 

and the numerica l computation of the values of variable coefficients is impract ical 

here. A t the same time, the dependence of the membrane potential on K + 

concentration and the presence of intracel lular and extracel lular compartments w i l l 

make the averaged equations different f rom those which hold in electrolyte 

solution. 

Inspection of (III.2.11) shows that it is not consistent to assume that the 

concentration C is constant in computing <f>. However , some comparisons w i l l be 

made w i t h such a model because it is simple, and, as we show by direct 

computation, qualitative!}' correct in some respects. 
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3.0. COMPUTATION OF COEFFICIENT ESTIMATES 

3.1. Introduction 

In order to apply the results from Chapter III and the present chapter to 

ion transport in tissue, it is necessary to solve the canonical microscopic 

boundary-value problems for the variables x > Y > X > X , ><• , K , K , and K , 
r- ~p> / v y , ^ c > /v.g> p> y ' c> g> 

to be determined in (III.2.12). These quantities satisfy Laplace's equation 

intracellularly and extracellularly, periodic boundary conditions on a fundamental 

domain W, and the jump conditions (III.2.13) - (III.2.16) which have the form: 

- f f o { V VX p i - n + n,} = g{xp1~ * p i + Kpi "pM' 

(3.1) 

- 0 C o V v K p = g(l - 0 C o / a o ) ( X 1p 1 - X ^ , + 4i~ Kp,}: 

"ffo {V VX v 1-n+-n 1} = gjx^-XVT + 

(3.2) 

- 0 C o V v / c v 1 -n = g U - G - C o / a o M ^ - ^ + K ^ - K S , } , 

- a 0 V v X c 1 - n = Si * c i X̂ T + *^i}> 

(3.3) 

- 0 C o V -n = -e{C°0Vv%rn- + n,} 

= gU-ec0/a0){3k->$1 + 4 - '$ i} ' 
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where g: = g 2 at the -cell membrane. Solutions must be obtained for a range of 

values of membrane and intracellular conductivity values. 

Since it is impractical, numerically, to obtain many solutions of these 

boundary-value problems in three dimensions, solutions were computed in two 

dimensions. Although bulk conductivity and other properties should depend on 

whether the calculations are carried out in two or in three dimensions, the 

values we obtain are consistent with the experiments. Also, the discussion in 

Chapter V of transcellular conductance (average current flowing through cells per 

unit voltage drop) when membrane resistance is extremely high or low will 

suggest that the qualitative behavior of this conductance does not depend on the 

number of dimensions in which the computations are conducted. Therefore, a 

two-dimensional computation should suffice to estimate the order of magnitude of 

the coefficients in (III.2.17) and to determine the nature of their dependence on 

a number of important physiological parameters such as cell size, membrane 

conductance, intracellular conductivity, the extracellular space fraction, and the 

relative positions of the cells. 

For convenience in computation, cells are assumed to have straight 

boundaries. It is assumed that cells are square, although rectangular, or other 

rectilinear cell shapes would pose no special difficulties. Below, it is shown that 

this assumption reduces x and K to scalars. 
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3.2. G e n e r a l P r o p e r t i e s o f S o l u t i o n s 

The unit cells W emploj'ed in straight and staggered arrays are shown in 

F igure 3.1 surrounded by dashed lines. The jump conditions (3.1) - (3.3) in 

which n ^ appears are equivalent to a set of line sources at the membrane 

surfaces (indicated in F igure 3.1 by ± ) . Because of the source distributions and 

geometry, solutions are odd functions about the lines O and even functions about 

the lines E . 

Typica l solution surfaces for Xp> Xc> Xy> K C , K ^ , and K ^ , which satisfy 

Laplace 's equation, periodic boundary conditions and jump conditions (3.1) - (3.3), 

are shown in Figures 3.2a-f. The horizontal axes are in units of h = (1/72)L 

where L\— -elu^lLy, is the length of the unit cell, h is the numerical space 

step for this solution, and the vert ical axis is dimensionless. The numerica l 

values of the solution surface w i l l depend on the conductivity distribution 

intracel lular ly , extracel lularly, and at the membrane, and the intracel lular and 

extracellular transport numbers, t ^ and t^. It is seen that the solution surfaces 

are discontinuous across the membranes. This j u m p apparently occurs over a 

length (1/72)L in the pictures, because it is convenient to represent the 

membrane as a region of reduced conductivity between mesh points, t There is 

an apparent non-uniqueness in the solution of (III.2.10) - (III.2.11), because the 

proportional boundary conditions in (III.2.11) give rise to an arb i t rary constant in 

the j u m p across the membrane. In addition, when the intracel lular transport 

number , t ^ is uni ty , the K quantities are given by an arb i t rary constant 

intracel lular ly . This non-uniqueness is resolved by the hypothesis in Chapter II 

t In a centred finite difference scheme the difference between the finite difference 
solution at adjacent mesh points represents the true solution derivative (flux) 
ha l f -way between the mesh points. 
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Figure 3.1. Two-dimensional biological cells can be arranged in straight or 
staggered periodic a r rays . The crystal lographic uni t cells in each case (indicated 
by dashed lines) are different. P lus ( + ) and minus (-) signs correspond to the 
signs of the v i r t u a l sources associated w i t h the j u m p conditions 3.1 - 3.2 at the 
membrane. 
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F igure 3.2. Typica l ( L = 7 2 . 1 Mm) solution surfaces for canonical solutions X , X , 
X , K , K , and K are shown in F igure 3.2.a -3.2.f, while solution surfaces for 
v c p V 

staggered a r r a y s are shown in Figures 3.2.g 3.2.1. These solutions satisfy 
Laplace 's equation, periodic boundary conditions, and the j u m p conditions (3.1) -
(3.2). E a c h solution was computed on a 72 x 72 grid w i t h an extracellular 
space fraction of 23%. These solutions represent, respectively, the 0 (e ) 
perturbations indicated in each figure title. A description of the m a i n features of 
these solutions is given in Section 3.2. 
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that the pump fluxes force the net ionic flux and electric current to be zero 

over the cell membrane. 

Most of the unit cell is occupied by the biological cell, which is 

surrounded by a narrow extracellular gap. Solutions are zero along the two 

opposite ends of the unit cell which are axes of odd symmetry and have zero 

normal derivative along the sides of the unit cell which are axes of even 

symmetry. The solutions have two types of appearance; one type of solution is 

nearly a planar segment intracellularly, which is non-zero and tilted because of 

the presence of source terms, and the second type of solution is non-zero because 

of flux conditions at the membrane and exhibits considerably more curvature. 

Solution maxima ranged from approximately .15 to 50, depending on the 

parameters and type of solution. 

4.0. N U M E R I C A L M E T H O D S 

4 .1 . C h o i c e o f N u m e r i c a l M e t h o d 

The canonical microscopic problems specified by -(111.2.10) - (III.2.15), have 

been solved using finite differences. Details of the numerical algorithm are 

discussed later in this section. It is shown here that the features of the 

biological modelling problem make our choice of numerical method more suitable 

than other possible choices. It is not suggested that other methods could not be 

applied, but that finite differences is a simple and appropriate method in view of 

the special features of the modelling problem. 

Two special features of this biological problem are the low membrane 

conductance, and the relatively small extracellular space fraction necessary to 
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simulate the biological problem. F i r s t , i t is easily verif ied that when the 

membrane conductance g->0, the problems (III.2.10) - (III.2.15) have no unique 

solution and the intracel lular and extracellular solutions differ by an arbi t rary 

constant. Thus , it is expected that at g = 0 the coefficient m a t r i x associated w i t h 

any numerica l method w i l l be singular and for smal l g it w i l l be ill-conditioned 

and difficult to invert numerical ly . I f g were zero, an a r b i t r a r y constraint could 

be added to the equations to make the solution unique, but physiological values 

of g are s m a l l , so that some other approach is necessary. Second, i t is desirable 

to be able to determine the dependence of solutions on the extracellular space 

fraction independent of the shape of the extracellular space and to employ 

biologically relevant extracellular space fractions less than 0.2. These features 

make certain classical methods for solving the potential equation, those involving 

integral equations, and those involving separation of variables, difficult to apply. 

One approach to solving the potential equation in a n a r r a y of periodic 

inclusions assumes that a separation of variables solution is available for .the 

potential equation in the intracel lular and extracellular domains, t M c P h e d r a n & 

M c K e n z i e (1978) used this technique to compute the average conductivity of an 

infinite a r r a y of spheres w i t h conductivity k^ imbedded i n a medium of 

conductivity k^. Al though the biological problem here differs f r o m their problem, 

i n that cells are surrounded by membrane, and our equations are coupled, the 

same techniques are applicable. The technique consists of equating the values of 

the periodic separation of variables solutions centred at different cells to obtain 

an infinite system of l inear equations f o r the series coefficients. This infinite 

system is truncated at some large M , where M is the row dimension of the 

t This technique was anticipated by M a x w e l l (1878), exactly 100 years earlier. 
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coefficient matrix, and solved exactly. 

Also, the use of a separation of variables solution depends on the 

availability of such solutions in the form of classical special functions, for 

example, those available on elliptical regions. The use of elliptical regions in two 

dimensions has drawbacks, however, because the largest packing fraction 

(fractional area occupied by cells) which can be attained in an array which is 

not staggered is 7r/4 = 0.785. Since the usual extracellular space fraction is 

about 0.2, it becomes necessary to use unit cells with geometries close to this 

theoretical packing fraction. At the theoretical limit (7T/4) the extracellular space 

has zero width where the cells touch and the width of this gap controls bulk 

conductivitj'. For example, if the conductivhy of the inclusions is zero, bulk 

conductivity is zero when they touch; while if the inclusions are perfect 

conductors, bulk conductivity is infinite when they are in contact. 

Therefore, if cells are elliptical, it is difficult to study the effect of small 

extracellular space fractions. Because this can only -be achieved by rearranging 

the cells, the effects of rearrangement and extracellular space fraction changes 

cannot be separated. Unfortunately, most obvious cell shapes for which separation 

of variable solutions are available have similar drawbacks. 

Other methods for solving the potential equation involve integral equations. 

We denote typical solutions of the canonical problems by Since A\p = 0 

intracellularly and extracellularly, the solution of such a boundary-value problem 

is determined by the normal derivative dip / 3n of the solution at the cell 

membrane, using a Green's function. Solution techniques for the potential equation 

based on Green's functions when the conductivity is piecewise constant have been 

described by Geselowitz (1967). Such an approach is possible for any cell shape 



IV. Canonical Problems and the Computation of Bulk Properties / 122 

including the square cell shape assumed here. However, the near singularity of 

the numerical problem for small values of the membrane conductance, g, is a 

difficult}' for this method since the coefficient matrices which arise do not have 

any useful structure. 

For these reasons it seemed desirable to choose a rectilinear shape for the 

inclusions and to solve the canonical problems using a finite-difference method. 

The choice of a square or rectangular shape creates additional difficulties because 

such domains contain corners at which the spatial derivatives do not exist. Thus, 

numerical methods based on the existence of these derivatives suffer a loss of 

accuracy near the corners. 

For the potential equation in which the solution (but not its derivatives) is 

continuous at the corners, this is not a serious difficulty. Near a two-dimensional 

corner, with angle a radians, the solution \p of the potential equation (where 

9\///3n but not i// is discontinuous at the corner) takes the form: 

(4.1) Re{A(z - z 0 ) 1 + a/27r} + f(z), 

where z is a complex variable, f(z) is analytic, Z Q is the location of the corner 

in the complex plane, and A is a real constant. This formula becomes 

asymptotically correct near the corner so that at mesh points adjacent to the 

corner the solution has the form f(z) + 0(h~" + a ' ' 2 7 r) as h—>0. The 

finite-difference formula produces an approximation to f(z) which is second order 

away from a boundary or jump locus. Finite difference methods are less accurate 

at boundaries (Mitchell, 1969), however. If a method with second-order accuracy 

in space is used, for example, accuracy near a boundary (or jump locus) is first 
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order. That is, the local truncation error of the finite-difference formula near the 

boundary is 0(h) where h is the space step. Hence, the accuracy of the 

finite-difference formula near the corner, which is 0(h^ + a ^ 2 7 r), is as good as 

the usual accuracy at boundary points. The magnitude of the global error may 

be estimated by variation of the mesh size. 

4.2. Numerical Algorithm 

The finite difference approximation to the Laplacian: 

(4.2) 61 51 U.. = U. . , ,+U. • ,+U. , n . + U. . -4U.. 
W 1 W 2 IJ 1J+1 1J-1 1 + l j 1 - l j IJ 

was employed in the interior of each (intracellular and extracellular) domain. 

From a computational point of view it was convenient to model the jump 

conditions as discontinuities in the coefficients of the original potential equation. 

Thus, the region in the Figure 4.1 is assigned a conductivity °~,mYi ~(mS) 

with the property that as h—>0 the approximation to the transmembrane current 

may be written equivalently as 

(4.3) ( ^ ( V - t f V h = a m (^ - / ) 

where o is in mS cm \ In this way the same numerical scheme could be m J 

used throughout intracellular and extracellular domains and across the membrane. 

This is an advantage because this means that the stability properties of an 

iterative numerical scheme are preserved. 

The line sources at the membrane surfaces which are equivalent to the 
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Figure 4.1. In the finite difference approximation, the membrane is represented 
by a region M , of thickness h and conductivit j ' a ^ ( m S ) . Conductivities in the 
extracellular ana intracellular spaces are o° and o , respectively. The unit cell is 
bounded by the dashed lines. 
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jump conditions (3.1) - (3.3) are of magnitude la°_a
rrinl extracellularly and 

|°"!-°"mnl intracellularly. The line sources are discretized, and represented by point 

sources. The intensities of the individual point sources on the source loci depend 

on h. since the sum of the point sources equals the total intensity of the line 

source. The difference equations for the model system adjacent to the membrane 

are 

(4.4) U. . ,+U. . . , + U . , - + X r U. , , .-(3 + X r)U.. + F(X r - l ) + q.. = 0, . r=l,2, 
ij + 1 I-IJ l + l j y TJ 

where q„ is a source density. This difference formula is zero when (ij) are on 

membrane loci of the form pictured in Figure 4.2.A within the same tolerance, 

where F is a source strength, \*: = hg/o°, and X 2 : = hg/a x . Thus, X r is 

proportional to the mesh size h, reflecting the fact that while LL^ + ^ - U.^ goes 

to zero as h—>0 intracellularly and extracellularly, the transmembrane jump 

tends to a non-zero value. 

At inside corners (4.4) -was modified to (Figure 4.2.B) 

(4.5) U. . ,+U. , - . + X 2 (U. . . + U. . , 1)-2(l+X 2)U.. + F ( l - X 2 ) + q.. = 0, 

and at outside corners: 

(4.6) U. . , t +U. • ,+U. , , .+U. , -4U.. + F ( X ° - l ) + q.. = 0. 
y + i i j-i i + i j i-i j y y 

In some cases X was taken as small as .5 x 10 . 
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F igure 4.2. The locations of the points ( i - l j - 1 ) , ( i - l j ) , (iJ-1), ( i j ) , etc., in the 
difference formulas (IV.4.4) - (IV.4.6), is shown near the membrane locus, 
indicated by the solid lines (compare F igure 4.1). 
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While the boundary-value problem being solved is ill-conditioned for small 

g, the corresponding initial-value problem contains no such difficulty. This suggests 

that certain types of iterative methods will not be affected by this type of 

ill-conditioning. For this reason, a commercial iterative solver for the 

two-dimensional potential equation with variable coefficients (NAG library 

D03UAF) was employed. This solver performed a single iteration of the strongly 

implicit procedure described by Ames (1965). 

Making use of the symmetries, the minimum area over which a numerical 

solution had to be obtained was one quadrant of the unit cell, bounded by the 

lines O, E, and the dashed lines in Figure 3.1. Because the staggered unit cell 

array was more complicated, the use of symmetry was less effective in reducing 

the size of the numerical problem for a fixed extracellular space gap. Because of 

the symmetry in the problem solved here, appropriately chosen Dirichlet and 

Neumann conditions were equivalent to periodic boundary conditions. The 

symmetry was necessary in order to apply the present numerical method, since 

Dirichlet, Neumann, or Robin conditions were required as input to the solver. 

The numerical iteration was started with an initial guess for ( Xp , ). 

Coupling of the pairs of dependent variables (x ,K ), (X ,K ), (x ,K ), was 
p p C C V V 

acheived by using each variable to generate a source term in the iterations 

performed on the other. For example, k. iterations of the solver are performed 

toward the solution for + * in 

V 2 ^ 4 " 1 = 0, 

(4.7) 
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- e C 0 V v * c * + 1 . n = g ( l - 0 C o / a o ) { x p r-Xpr + K £ + 1 > L - K * + 1 > 0 } , 

followed by 1. iterations of the solver toward the solution f o r X p ^ ^ i n 

v 2 x p
n + 1 = 0, 

(4.8) 

- a 0 { V v 3 ^ + 1 .3 + n,) = g i X p ^ ^ - X p ^ ^ + K p ^ + ^ - ^ n + M ^ 

where (k.,1.) are a sequence of pairs of integers. 

A cyclic sequence for (k.,1.), i = l , . . . , 6 ; given by 

(20,1),(1,2),(1,2),(2,1),(2,1),(1,20) was found by t r i a l to be effective, and produced 

much faster convergence than (k.,L) = (1,1), i = l , . . . , N . However , iterations in the 

above sequence were terminated at a preset error tolerance and the overall 

solution algori thm terminated when the residuals in the finite difference equations 

-5 -5 
were < 10 , and the solutions had not changed by more than 10 . In 

addition, i t was necessary to use large values of an internal D 0 3 U A F parameter 

A P A R A M , to rel iably avoid failure (blowup) of the iteration procedure. We took 

A P A R A M = 1 0 in the X iteration and A P A R A M =100 in the K solutions. Solutions 

at neighbouring values of X 1 were used to start the iteration for new values, a 

procedure called continuation. The results of v a r y i n g mesh size are described in 

Appendix I V . A , but the results from the finest grid used (72 x 72) w i l l be 

reported. 

W i t h continuation, some 100-300 iterations were required to obtain the 

accuracy described. It was convenient to implement this procedure on the Float ing 
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Point Systems processor model 164 ( F P S - 1 6 4 / M A X ) attached to the general 

purpose A m d a h l computer at the U n i v e r s i t y of B r i t i s h Columbia . , 

To assess the effect of the coupling between the concentration and 

potential equations, some solutions of an 'uncoupled' version of the Xp system, in 

w h i c h the K terms were omitted in the f irst equation of (3.1) are described in 

Appendix I V . B . Solving the uncoupled equations was less time consuming than 

solving the coupled equation w i t h j u m p conditions (3.1) - (3.3). However , there 

was some indication that the uncoupled equations were more difficult to solve, 

since continuation and parameter selection required greater care than the coupled 

case when the N A G routine was used. A finite difference method s imilar to that 

described for the coupled case was used to obtain the uncoupled solutions. 

5.0. BIOLOGICAL P A R A M E T E R SELECTION 

Because the geometry selected for the cellular m a t r i x does not model the 

real geometry and because exact microscopic parameter values are not k n o w n i n 

some cases, i t is necessary to choose length scales and membrane conductances 

so that they approximate the characteristic values prevalent in the neural tissue 

and to explore the dependence of the solutions on these parameters in order to 

obtain qualitative results. Results which are not sensitive to the geometry and 

parameters chosen m a y be assumed to hold in vivo . 

A s w i l l be shown in Chapter V , for purposes of analysis , cell size and 

membrane conductance m a y be combined into a single parameter , analogous to 

the electrotonic length of cable theory. This fact was used in the choice of the 

order of the jump conditions in Chapter III. In what follows, it is assumed that 

2 

the cells under discussion have membrane resist ivi t j ' equal to 320 Ocm , which 

is H a v s t a d ' s (1976) estimate of gl ial membrane conductance. Deduced parameters 
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then depend on the characteristic size of the cells and their surface/volume ratio 

(discussion below). For other cells (neurons), membrane resistivity might be 3000 
2 

to 5000 Ocm , based on the resistivity of dendritic membrane. In this case the 

parameters employed in numerical studies correspond to cells which are larger by 

a factor equal to g / g, (or its square root, as we describe below) where g and 

g^ are glial and dendritic membrane conductances, respectively. 

In choosing biologically relevant parameters, we followed Gardner-Medwin 

(1983) in taking into account the surface/volume ratio for cells in the brain. This 

has been estimated at 5 um 1 (Horstmann & Meves, 1959) on the average, or 
2 3 5 /um of membrane per Mm of tissue. The (two-dimensional) cells are square 

and, as discussed in Section 3.3, the choice of straight cell boundaries was made 

to facilitate the study of the effect of realistic extracellular space fraction values, 

as well as for ease in computation. The dimensional length of the unit cell is 

denoted by Z and the biological cell will have length fZ, where f is a fixed 

fraction close to unity. For an extracellular space fraction of a = 23%, the value 

of f is .875. Had these elements been extended normal to the W-plane, the 
2 

resulting square shafts would have had surface volume ratio AU 11 = 4f/Z. The 

parameter X1 can be written as X 1 =hg/ a ° = Zg/ 24 a ° and X 2 =hg/ a* = Zg/ 2 4 a 1 

for a mesh which is 24 x 24. The value of g in two dimensions may be 

deduced from the assumption that these extended shafts have the membrane 

conductance observed experimentally. For each characteristic size Z, it was 

assumed that the effective membrane conductance was increased by a factor 

equal to that necessary to make the surface volume ratio of the unit cell equal 

to 5 Mm \ say Z=Z,. The formulas for X 1 when the surface-volume ratio is 

taken into account and when it is not are: 
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X 1 = 

(5.1) 

X 1 = J _ _ L L g _ i k = 
24 F 4f 

2 The correspondence between Z 0(/zm) and X 1 for g* = 320 flcm is given in 

Table 5.1. If the mesh were 48 x 48, the corresponding X 1 values would be 

half these values; or l0 twice as large for the same values of X 1 when the 

surface / volume correction is not applied. 

Our numerical studies of membrane conductance wi th a 24 x 24 mesh 

were carried out wi th X 1 values selected f rom those listed in Table 5.1 where 

Z 0 and I!, respectively, are the characteristic unit cell sizes associated w i t h 

corresponding assumptions about the surface / volume ratio. It is expected that 

characteristic sizes between 5 u m and 50 u m wil l be appropriate for gl ia while 

characteristic sizes between 50 u m and 500 Aim w i l l be appropriate for neurons 

or syncyt ia l glial elements of s imilar length. 

The intracellular conductivity is usual ly assumed to be 10 m S (Shelton, 

1985; G a r d n e r - M e d w i n , 1983; H a v s t a d , 1976), but here some studies were carried 

out w i t h intracel lular conductivities of 4 m S and 2 m S to establish the 

sensit ivity of the results to the intracel lular conductivity, because this conductivity 

is uncertain. Knowledge of the sensit ivity of results is useful for comparisons 

w i t h the qualitative investigations of Chapter V . 
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Table 5.1. U n i t Ce l l Lengths. 

1 0 3 X 1 l0(nm) 11 (Mm) 

100 153600 328 

50 76800 234 

20 3072 146 

10 1536 103 

5 768 72.1 

2 308 46.0 

1 154 32.5 

0.1 15.4 10.3 

6.0. P A R A M E T E R S T U D I E S 

6.1. C o m p u t a t i o n o f C o e f f i c i e n t s f r o m C a n o n i c a l P r o b l e m s 

Since the unit cells are unchanged by an interchange of the space 

coordinates, the canonical problems are the same for each coordinate direction. 

The computation of the bulk coefficients reduces to the evaluation of integrals of 

the form 

(6.1) f K,(w){K2 + dj_ }dA, 
W 3w. 

J 

where K . , j = l , 2 is proportional to o " ( w v , w 2 ) and \p, a typical canonical solution 

is independent of the spatial direction. T h u s , bulk coefficients reduce to scalars 

(cf. Section III.2.2). In addition, because of the s y m m e t r y discussed i n Section 
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3.2, the off-diagonal elements in the bulk coefficient formulas are zero under 

averaging. The integral (6.1) over the intracellular region may be evaluated 

directly since K , is constant intracellularly. It is convenient to avoid numerical 

integration of the derivative when the integral is taken over the extracellular 

region. For this purpose, the second term of (6.1) is integrated by parts in W. 

and the periodic boundary conditions are used to give 

As 3K, / 3 W , (the case of j = l) is a set of line sources, this reduces the 

calculation to a summation over the source locations. 

In computing coefficients from the finite difference solutions, it is possible 

to assume either that the membrane lies halfway between the adjacent mesh 

points on opposite sides of the membrane, or that the membrane contains the 

extreme extracellular and extreme intracellular mesh points. The first assumption 

necessitates an extrapolation to determine solution values at the membrane. This 

extrapolation cannot improve the asymptotic accuracj' (in h) of the coefficient 

estimates, so nothing is lost if (Figure 3.1 and 3.2) the available values at the 

extreme mesh points are used instead. Thus, the extracellular space fractions 

referred to below use the second assumption. 

(6.2) / i//9K l ClA. 
W "5w-

J 
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6.2. Bulk Conductivity and Flux Proportional to Electric Field 

The coefficients D , and D 2 of the average governing equations (III.2.17) 

contain the averages of the canonical solutions and X p which represent, 

physical ly , 0(e) fluxes proportional to the extracellular potential gradient, V0O-

The fluxes proportional to ^wXp> where x p is the perturbation in <f>, and V^K^, 

where K p is the the perturbation in C , are discussed i n this section. U s i n g 

(III.2.17), the bulk conductivity m a y be identified w i t h the coefficient D , because 

DYV<l>0 is the bulk electrical current which is proportional to V 0 o - t The effective 

transcellular conductance is defined as the coefficient D 2 = a ^ M^r { t ^ t p ( l + V w X p - | _ ) 

+ V K -.} and in the uncoupled model the transcellular conductance is defined w p i ' r 

by 0"^M^ r {t j^t^(l+ V w X p -^)} ' - The effective transcellular conductance is a weighted 

average of intracel lular and extracellular f lux w h i c h is predominantly intracel lular 

because t ^ < < t ^ and physical ly represents the ionic f lux proportional to <p0. 

The coefficient D 2 is compared to the transcel lular conductance of the uncoupled 

model in Appendix IV.B.. These quantities have s imilar numerical values because 

the intracel lular transport number — 1 and t ^ = 0. The flux associated w i t h 

"V K occurs in the definition of D 2 but not in the transcellular conductance, w p " 

This f lux m a y be interpreted physical ly as the diffusive ionic transport due to 

local concentration gradients caused by ionic f lux through cells. The average of 

V w / c p makes a positive contribution to D 2 of 9% at =32.5 n m and 5% at 

1^=146 | im, compared to the total effective transcel lular conductance. Since X p j 

in the coupled and uncoupled models are distinct, however, V K does not 
w p 

determine the relative magnitudes of the conductances in the coupled and 

t A s noted in Chapter III, we do not dist inguish between the one- and two-tier 
models except in Section I V . 6 . 3 , so we write here: D 1 : = a ^ M ^ { t (1 + 
dx/dW))} where t ^ = a 0 / a ^ . 
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uncoupled models. 

Computed bulk conductivity versus cell sizes are shown in F igure 6 .1 .A, 

and corresponding effective bulk transcellular conductance estimates in Figure 

6.1.B for straight arrays of square cells (72 x 72 point solutions w i t h an 

extracel lular space of 23%). These calculations assumed an extracellular 

conductivity of 20 m S and an intracel lular conductivity of 10 m S , which has 

been taken as typica l . The. bulk conductivity estimates range f rom 2.8 to 3.9 m S 

in the parameter range of biological interest (Z1 = 32.5 (im to ly = 146 ixm), 

and are an increasing function of the cell size (membrane conductance). F o r 

comparison, conductance estimates f rom an uncoupled calculation are presented i n 

the figures. W h e n Z 1 = 3 2 . 5 / i m , the coupled and uncoupled models agree to three 

significant figures, while at I, = 146 /xm, they differ in this coefficient by about 

20%. These values are consistent w i t h observed conductivities (— 5 mS) for bulk 

cortex and cerebellum (Nicholson, 1980). A n extensive review of experimental data 

on electrical properties of biological tissue m a y be found in Schanne and R u i z 

P . -Ceret t i , (1978). A t low membrane conductances, L = 10.3 u m , bulk 

conductivity is 2.62 m S and transcellular conductance is approximately 2% of 

this . 

The bulk transcellular conductance ranges f rom 7% of bulk conductivity at 

^ = 3 2 . 5 j i m , to 30% at Z 1 = 1 4 6 u m . This agrees closely w i t h the uncoupled 

model at 32.5 jum, but is some 13% less than the uncoupled model at 

11=103 um. G a r d n e r - M e d w i n (1983) found that transcellular current, as 

measured by K + transport over a large (5 mm) region was about 6% of the 

total current. Hence, the present theory suggests that transcellular current is at 

least as large as was observed in that experiment, and supports the 
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F igure 6.1. B u l k conductivity (A) and transcellular conductance (B) versus cell 
size (Z-|) are plotted for coupled and uncoupled models for a — 20 m S , and 
10 m S . A logarithmic vertical scale is used in B . 
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Table 6.1. , P . , , and D 2 by_ Cel l Length . 

D 2 ( 1 0 mS) E 1 

.024 .019 

.040 .032 

.069 .059 

.096 .084 

.122 .111 

experimental demonstration that such currents are significant. 

It is useful to be able to deduce the values of coefficients other than D ^ 

and D 2 f rom fluxes proportional to V0 because these fluxes are easy to 

measure experimental ly (Gardner-Medwin, 1983a). The coefficient, E ^ 

= a 0 M ^ { t p ( t ^ + VwXv^)}> is formal ly distinct f rom the effective transcellular 

conductance, but it w i l l be shown by direct calculation that the effective 

transcellular conductance D 2 is a useful approximation to E i (and E 2 ) . The 

coefficients E ^ and E 2 p lay an important role in determining the magnitude of 

the spatial buffering effect. E x a m i n a t i o n of Table 6.1, ' shows that this 

approximation w i l l be in error by at most 4 to 18%. 

T y p i c a l values of P 1 ? D 2 , and are tabulated i n Table 6.1. The 

values of T>y correspond to F igure 6 .1 .A , and m a y be compared to uncoupled 

values displayed there, while P 2 and E , do not have analogues in the 

uncoupled model. 

It is seen that while D , does not v a r y greatly over the biological range 

of cell size/conductivity, (— 30%) the coefficients P 2 and E , v a r y by a factor of 

*1 

(Mm) 

32.5 

46 

72.1 

103 

146 

D. , (10 mS) 

.280 

.296 

.327 

.355 

.386 
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= 5. 

6.3. E f f e c t o f I n t r a c e l l u l a r C o n d u c t i v i t y o n B u l k C o n d u c t i v i t y 

F igures 6 .2 .A and 6.2.B show the -bulk conductivity and effective 

transcel lular conductance when intracellular conductivity is 10 m S (Section 6.2), 4 

m S , and 2 m S . While the influence of intracellular conductivity a 1 was relat ively 

slight f rom ly = 32.5 ;um up to Z , = 1 0 3 Mm, bulk transcel lular conductance 

was sensitive to the membrane conductance. Between Z, =32.5 Mm and 

Z ^ I O S Mm, the transcellular conductance changes by a m i n i m u m of 220% over 

each of the three choices of a" while the change in transcellular conductance for 

any X 1 f rom 10 m S to 2 m S is at most 27%. A t Z t = 146 Mm, a five-fold 

reduction in o 1 reduces transcellular current by 45%. 

These results demonstrate directly that for the parameter values discussed 

in Sections 6.2 - 6.3, the intracellular and extracellular electric potential are 

described qualitat ively by the asymptotic analysis (of Chapter V) for electrical 

space constants which are long compared to cell length. These asymptotic 

•solutions and hence, the numerical conclusions, do not depend strongly on 

geometry. In addition, it is biologically significant that these model cells which 

exhibit bulk transcellular currents f rom 7 to 30% of total current had electrical 

space constants which were long compared to the cell dimension, and thus were 

electrotonically unlike an electrical syncyt ium. 

In the one-tier model, coefficients other than D y and D 2 are also 

insensitive to the intracellular conductivity. The values of E y, F y, and F 2 for 

a" =10 , 4 and 2 m S for various membrane conductances are tabulated in Tables 

6.2. The values of E 2 were close to those of E , . A s suggested above, E 2 is 



I V . Canonical Problems and the Computat ion of B u l k Properties / 142 

F igure 6.2. B u l k conductivity (A) and transcel lular conductance (B) versus cell 
size (I,) are plotted for a = 10, 4, and 2 m S . A logarithmic vertical scale is 
used in B . 
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closely approximated by the transcellular conductance for these cases and thus 

depends on the intracellular conductivity in a s imilar way. 

6.4. Tissue Structure 

The derivation in Chapter III assumes that the tissue has a two-tier 

structure as discussed in Section II.2.2. Thus , i t is assumed that a periodic 

a r r a y of asymptotical ly larger cells is imbedded in a periodic a r r a y of 

asymptotical ly smaller cells. A one-tier model would assume that cells are 

surrounded by an extracellular medium consisting only of electrolyte w i t h 

conductivity = 20 m S , while a two-tier model assumes an extracellular medium 

containing another cell type, surrounded by extracellular electrolyte. The 

assumptions of such a model are i l lustrated schematically i n F igure 6.3. The 

cells have been assumed to be two-dimensional and square, as before, and the 

cells are not shown to scale. 

N u m e r i c a l solutions were obtained under the assumptions of the two-tier 

model. It is assumed that the areas N, in the unit cell V , and G , in the 

subcell W, have the same relative ICS .fraction, x, and that the total E C S 

fraction is a = 0.2. To obtain this E C S fraction, over the two-tier unit cell, the 

relative intracel lular space fraction, x, of each unit cell; V or the subcell W 

must satisfy x + x ( l - x) =0.8 since the total I C S in V is the space occupied 

by N plus the space occupied in its (relative) extracellular space by the areas G . 

Therefore the intracellular space fraction is x = 56%. F o r this reason, the 

solutions were obtained for a = 0.44, and assuming that the membrane 

conductance is zero at 0 (e ^), as already assumed in Chapter III. The bulk 

parameters for the extracellular space were then used in a further set of studies 
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Table 6 .2 .A. E 1 Coefficient Versus Intracellular Conduct ivi ty 

It 10 m S 4 m S 2 m S 

(Mm) 

32.5 .019 .018 .017 

46 .032 .031 .028 

72.1 .059 .054 .046 

103 .084 .074 .061 

146 .111 .090 .075 

Table 6.2.B. Fj_ Coefficient V e r s u s Intracellular Conduct ivi ty 

Z, 10 m S 4 m S 2 m S 

(Mm) 

32.5 1.83 1.77 1.68 

46 3.11 2.94 2.69 

72.1 5.47 4.72 4:06 

103 6.76 5.32 4.37 

146 6.25 3.97 3.10 

Table 6.2.C. F 2 Coefficient Versus Intracellular Conduct ivi ty 

Z, 10 m S 4 m S 2 m S 

(Mm) 

32.5 4.55 4.49 4.40 

46 5.93 5.76 5.51 
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72.1 

103 

146 

8.42 

9.99 

9.93 

7.79 

8.76 

7.99 

7.15 

7.82 

7.16 

F igure 6.3. A two-dimensional two-tier model is schematically i l lustrated. The 
asymptotical ly larger population (N) is surrounded by an asymptotical ly smaller 
population (G). U n i t cells are bounded by dashed lines. The spatial coordinate i n 
the larger unit cell is V and in the smaller unit cell, W . The diagram is not to 
scale, since the ratio of the sizes of smaller to larger unit cells tends to zero in 
the mathematical model. 
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at a = 0.44. Thus , we took a o = 5 . 3 9 m S , in place of o"o=20 m S . A s described 

above, the total extracellular space remains the same. If bulk parameters depend 

sensitively on tier structure, these studies could produce very different results 

from the one-tier studies w i t h a = 0.2. The results for the uncoupled model, 

discussed in Appendix B , indicate that bulk conductivity is altered by a factor of 

2 to 3 by differing tier structures (Figure B . 3 . A ) , but bulk transcellular 

conductance is not sensitive to tier structure. 

Conductivity estimates obtained for the coupled two-tier model are shown 

in F igure 6.4. These results indicate a strong coupling effect at a l l membrane 

conductance values, since they differ significantly f rom the uncoupled results. The 

computed values of bulk and transcellular conductance are also significantly 

different than those seen in the one-tier coupled model. Computed bulk 

conductivities are about half the one-tier results, ranging f r o m 1.56 m S to 1.82 

m S . In addition, the transcellular conductance was consistently lower than the 

one-tier r e s u l t - b y a factor of 3 to 5. The transcellular conductance as a fraction 

of bulk conductivity varies f rom 7.5% at Z, =32.5 u m to 16% at Z 1 = 1 4 6 / i m 

(vs. 25% in the one-tier study). Thus , while the bulk .and transcellular 

conductances were not sensitive to the intracellular conductivity (Section 6.3), the 

extracellular conductivity has a significant effect on these quantities i n a coupled 

model. This effect is to decrease bulk and transcellular conductance, and to 

decrease transcel lular conductance as a fraction of bulk conductivity. The reasons 

'for differences between one- and two-tier models are now discussed. 

The local, coupled, canonical problem for Xp has not been simplified by 

our use of the transport number theory. Thus , it is expected that for some 

parameter values, interactions between electrical potential and concentration w i l l 
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F igure 6.4. Bulk conductivities (A) and transcellular conductance (B) versus cell 
size (Z!) are plotted for one-tier and two-tier models. The one-tier model is 
indicated by filled squares and the two-tier model by open triangles. A 
logarithmic vert ical scale is used in B . 
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be significant. The average ionic fluxes associated wi th x p and K p are tabulated 

in Table -6.3. It is found that there is a large fractional change in ionic f lux 

associated w i t h the C perturbation (column 3), K^, over different membrane 

conductance values, and that this f lux m a j ' become negative at 7 1 = 146 jtxm. 

Thus , the coupling effect on transcellular conductance seen in the two-tier 

results m a y be interpreted physical ly as follows. Transcel lular conductance in an 

uncoupled model increases wi th the membrane conductance, because more electrical 

current proportional to V v $ 0 takes an intracel lular route. In a coupled model, 

inward transmembrane current results in a depletion of [K" 1"] near the outside of 

the membrane, and outward transmembrane current results in accumulation of 

[ K + ] near the outside of the membrane. This causes hyperpolarization of the 

membrane near the region of i n w a r d current and depolarization near the region 

of outward current (refer to F i g u r e 1-4.1 of Chapter I). The result ing intracellular 

current flows in the direction opposite to V v 0 o and tends to cancel it. This 

effect is accentuated as the extracellular conductivity becomes smaller relative to 

membrane conductance, because increased electrical K + transport through the 

membrane and decreased electrical K + transport in the extracellular medium 

causes more depletion (accumulation). 

The values of D , , D 2 , and E ^ for the two-tier model are tabulated in 

Table 6.4. It is seen that D 2 remains a reasonable approximation to E ^ Other 

coefficients are discussed in the next few sections. 

Studies wi th staggered a r r a y s were performed for o~°= 20.0 m S , a 1 = 

10.0 m S , w i t h a — .2 for one- and two-tier models. There was little difference 

between the results for staggered arrays and straight arrays . The coefficients D , 

and D 2 are tabulated in Table 6 . 5 . A - C , for straight and staggered a r r a y s for 
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Table 6.3. F luxes due to 0 and C Perturbations. 

* i M — f t ^ t (1 + V X J } M W { V K J 1 W l T C a w A p l J W L w p l J 

(Mm) 

32.5 .0098 .0019 

46.0 .0144 .0023 

72.1 .0184 .0019 

103.0 .0237 .0002 

146.0 .0324 -.0038 

Table 6.4. Coefficients in (III.2.17) for Two-Tier Model . 

Z, 0 , ( 1 0 mS) D 2 ( 1 0 mS) E , 

(Mm) 

32.5 .156 .0117 .0079 

46.0 .161 .0167 .0127 

72.1 .166 .0203 .0164 

103 .172 .0239 .0212 

146 .182 .0286 .0289 

the one-tier and two-tier model. The other coefficients followed the same pattern. 

This is i n contrast to the results for the uncoupled model (Appendix I V . B ) , in 

which the differences between staggered and straight arrays grew more 

pronounced as membrane conductance increased. Thus , the coupling between 

concentration and electrical potential , which is expected to become more significant 

w i t h higher membrane conductance, apparently reduced the effects of geometry. 
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Table 6 . 5 . A . D , and A r r a y Geometry: One-Tier Model . 

Z, Straight (mS) Staggered (mS) 

(Mm) 

10.1 2.62 2.50 

32.5 2.80 2.69 

46.0 2.96 2.84 

72.1 3.27 3.15 

103.0 3.55 3.44 

146.0 3.86 3.75 

Table 6 .5 .B. D 2 and A r r a y Geometry: One-Tier Model . 

Z, S tra ight (mS) Staggered (mS) 

(Mm) 

10.1 .056 .055 

32.5 .242 .239 

46.0 .397 .389 

72.1 .693 .691 

103.0 .955 .958 

146.0 1.222 1.222 

Table 6 .5 .C. Dj_ and A r r a y Geometry: Two-Tier Model 

Z, Straight (mS) Staggered (mS) 

(Mm) 
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32.5 

46.0 

72.1 

103.0 

146.0 

1.56 

1.61 

1.66 

1.72 

1.82 

1.43 

1.48 

1.53 

1.60 

1.70 

Table 6 .5 .D. D 2 and A r r a y Geometry : Two-Tier Model 

/ , Straight (mS) Staggered (mS) 

(Mm) 

32.5 .117 .121 

46.0 .167 .172 

72.1 .202 .207 

103.0 .239 .242 

146.0 ..286 .290 

The existence of tier-structure is an important theoretical possibility, 

because coupling between concentration and electrical potential becomes important 

in the two-tier model. A l s o , as discussed in Chapter V I , spatial buffering occurs 

by a different mechanism in this model. H o w e v e r , while the .two-tier model 

seems plausible, there is currently no experimental evidence to support this 

relat ively complicated assumption. Thus , the chief conclusion of this section is 

that the predictions of the one- and two-tier models are broadly s imi lar and the 

differences between straight and staggered arrays are not large. 
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6.5. Ionic Flux Terms Proportional to Concentration Gradient 

The coefficients specified by the and xc canonical problem are 

associated wi th the potassium concentration gradient. If the membrane conductance 

were zero, this canonical problem would s imply be the governing equation for 

diffusive f lux. Since the membrane is permeable to potass ium, however, its 

concentration at the membrane affects the N e r n s t potential to a l l orders. Thus , 

these coefficients do not depend exclusively on the diffusive properties of the 

tissue, but also reflect the interaction of the local Nernst potential w i t h 'unstirred 

layers ' (Schultz, 1980) at the membrane. These effects have not been included 

previously in a model of this kind and the coefficients ¥^=0^ ' ' " M ^ t V w x c j } 

and F , = ̂ {M^MOC. V K - + $) + O o W t V x .}} do not correspond to 
£ 1 W L io w c l K a w c l " ^ 

any commonly employed physical quant i ty , such as conductivity or diffusion 

coefficient. F o r this reason, we do not discuss uncoupled estimates, or the 

behavior of the component averages of F , and F 2 . A s discussed in Appendix 

IV.A, the solutions for X £ and K £ converge slowly as mesh size tends to zero at 

larger values of the membrane conductance and our estimates of F , , and F 2 

are l ikely less accurate than the estimates of D , and D 2 . 

A t smal l values of the membrane conductance, F 2 is proportional to the 

bulk diffusion coefficient, reduced by the extracellular space fraction and 

microscopic geometry of the medium. A t Z , = 10.3 n m , which corresponds to a 

high membrane resist ivi ty, bulk conductivity is 2.6 m S which is 2.6/20= .13 as 

a fraction of extracellular conductivity. O n this basis, it m a y be calculated (for 

2 

comparison) that F 2 , the coefficient of V C 0 i n (III.2.17) would be 2.64 wi th 

g=0. If g = 0, then F T = 0 in the model. 

In the one-tier models the effect of non-zero g is to increase F 2 by 
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factors between 1.7 and 3.8, above the value expected w i t h pure diffusion. In 

the one-tier model the coefficient F 2 is positive and comparable to F, i n 

magnitude. In the two-tier model, F , is nearly zero at I , = 103 u m and negative 

at Z i = 1 4 6 £im. In both models the ionic f lux associated w i t h the C perturbation, 

« c , is more stable to changes in membrane conductance, while the ionic f lux 

associated w i t h the <j> perturbation, xc> is more sensitive to such changes. The 

K - f lux varies from 2.9 to 4.55 in the one-tier model and f rom 7.22 to 8.81 in c 

the two-tier model, while the X -flux varies f rom 1.6 to 5.36 in the one-tier 
c 

model and from -.177 to 10.2 in the two-tier model. 

It is interesting that in the two-tier model, the variat ions in F , and F 2 

are chiefly due to • x > the perturbation in the electrical potential <p. In our 
2 

models, F , and F 2 are the coefficients of V C in the bulk equation (III.2.17). 
2 

In the original physical equations for electrolyte solution, the coefficient of V C is 

s imply a diffusion coefficient. 

The values of F , and F 2 are shown in F igures 6 .5A and 6.5B, 

respectively, for various values of o\ the intracel lular conductivity, and a, the 

extracellular space fraction, in a one-tier model. In the one-tier model, F , and 

F 2 are increasing functions of membrane conductance up to Z 1 = 103 u m . 

However , both coefficients are relatively insensitive to the parameters over these 

ranges (i.e., v a r y by factors of about 2 to 3 when the independent parameters 

v a r y by factors of 5 to 20). A m a x i m u m in the values of F , and F 2 

consistently occurs at 1 1 = 103 u m , though it is not pronounced. Electr ical ly 

mediated transcel lular ionic f lux associated with x is due to local 
c 

accumulation/depletion of potassium. Thus , the m a x i m u m m a y be due to the 

accumulation/depletion effect described in the last section. 
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F igure 6.5. Coefficients of V C (in III.2.17) versus cell size (1^) are plotted for 
different intracel lular conductivities (a =10 , 4, 2mS) and extracellular space 
fractions ( a = 0.16, 0.23, 0.37). For comparison, the value of F 2 corresponding to 
pure diffusion is indicated in B by a fil led square. 
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Figure 6.6. Coefficients of V C (in III.2.17) versus cell size (I ̂ ) are plotted for 
one- and two-tier models. Note that the coefficient F ^ is negative in A at 
ly = 1 4 6 Mm. 
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The coefficients F1 and F 2 for the two-tier model at various cell sizes 

are shown i n F igure 6.6. It is seen that F , and F 2 are not monotone functions 

of the membrane conductance in the two-tier model, w i t h F , is decreasing above 

If =46 /nm, becoming negative near ^ = 1 0 3 a m . This reversal of sign does not 

qual i tat ively affect the solutions to the bulk equation (III.2.17) since the effect of 

negative F , is balanced by other coefficients (see Chapter V I ) . 

The coefficient F 2 has a m i n i m u m near lf=10Z am. This cannot be 

s imply explained as an accumulation/depletion effect. Presumably , this m i n i m u m 

occurs because the solution surface for xc changes its shape at larger values of 

the membrane conductance (Z ,=146 a m ) . In other studies (not presented here), 

in which was lowered to .0074, this m i n i m u m did not occur. 

6.6. Ionic Flux Terms Proportional to Nernst Potential Gradient 

The coefficients specified by the « v and X y canonical problems are 

associated w i t h the N e r n s t potential gradient. These coefficients are averages -of 

ionic and electric fluxes due to the ambient gradient in the N e r n s t potential 

determined by ln( C 2 o ' ' C 2 o > - These fluxes are different f rom the fluxes averaged 

in F , and F 2 because the F coefficients only reflect accumulation and depletion 

of K + near the cell . It is shown i n Chapter V I that the fluxes associated wi th 

the N e r n s t potential represent the most important contributions to spatial 

buffering at most cell sizes in the one-tier model. 

The values of E 2 are shown in F igure 6.7A for various values of a\ the 

intracel lular conductivity, and a, the extracellular space fraction. Values of E y 

are not shown because they are near ly identical to E 2 . The coefficients are 

relat ively insensitive to the parameters over these ranges (i.e., v a r y by factors of 
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Figure 6.7. In A , the coefficient of V V (in III.2.17) versus cell size (Z,) is 
plotted for different intracellular conductivities (a =10, 4, 2 mS) and extracellular 
space fractions (a = 0.16, 0.23, 0.37). The same coefficient is plotted against cell 
size for one- and two-tier models in B . Both figures use logarithmic vert ical 
scales. 
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about 5 when the independent parameters v a r y by factors of 5 to 20) and are 

an increasing function of cell size. 

The coefficient E 2 for the one-tier and two-tier models at various cell 

sizes is shown in Figure 6.7B. It is seen that this coefficient is considerably 

reduced in the two-tier model. The lower values of E 2 imply that spatial 

transport of potassium by means of f lux terms proportional to V 0 is significantly 

reduced in this model. The relationship between transcellular conductance and E 2 

was maintained in both models, (with ratio = 1.1). M o r e precisely, the ratio of 

transcellular conductance to E 2 varies from approximately 1.2 (Z 1=32.5 Mm) to 

1.0 ( ^ = 1 4 6 Mm), for both (one- and two-tier) cases. This is important because 

transcellular conductance can be measured more easily than E 2 , or E , . 

Relationships like the one between D 2 , E ^, and E 2 ( D 2 = E 1 = * E 2 ) are . useful 

because this m a y reduce the number of measurements which are necessary in 

practice. The ratio of effective transcellular conductance to bulk conductivity, 

D 2 / D 1 ; is the observed transport number in a current passing experiment (see 

Chapter VI ) . It is useful, to examine the relationships between D 2 / D ^ and E 2 

since these might provide further reductions in labour (cf. G a r d n e r - M e d w i n , 

1983b). A plot of E 2 versus D 2 / D , is presented in Figure 6.8, us ing log axes. 

It is seen that there is a linear trend in this plot, but that the data f rom 

different parameter • studies lie on different l ines. 

APPENDIX IV.A. CONSISTENCY CHECKS ON T H E COUPLED SOLUTION 

V a r i a t i o n of mesh size was complicated by the fact that both intracel lular 

and extracel lular spaces had to remain in the same proportion at the new mesh 

size. F o r example i f a solution was obtained on a 24 x 24 mesh w i t h an 



IV. Canonical Problems and the Computation of Bulk Properties / 165 

Figure 6.8. The coefficient E 2 versus bulk transport number D 2 / D , is plotted 
for different cell sizes, values of a , and a, for one- and two-tier models. 
Logarithmic horizontal and vertical axes are used in A. In B, points from the 
two-tier model are plotted together with points from a one-tier model using linear 
axes. It is seen that relationships between E 2 and transport number were 
approximately linear within the studies identified by the legend symbols. Unless 
indicated otherwise by the legend, a = 0.23 and a = 10 mS. 
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intracel lular dimension of (22-3)h = 19h and an extracellular dimension of 3h = 

(24 - (19 + 2))h, the new mesh had to preserve intracel lular proportions of 

19/24 and extracellular proportions of 3/24 t so that the result ing numerical 

solutions would correspond to the same under lying cell shapes. 

F o r this reason, such variat ion of mesh size was l imited to the integer 

multiples of a smallest mesh size; 24 x 24 , 48 x 48, 72 x 72 and 96 x 96. 

The results suggested that a l l coefficient estimates except X c and were 

already accurate wi th in 5% at the 48 x 48 size. Whi le 72 x 72 results were 

obtained for most cases, it is clear, in retrospect, that the use of 48 x 48 

solution results would have led to the same general conclusions as those d r a w n 

from the 72 x 72 results whenever both were available. In addition, 72 x 72 

computations were necessary for extracellular space fractions < 0.2 in order to 

obtain a reasonable number of extracellular mesh points. Such studies did not 

compare the smaller and larger meshes, and were undertaken because the 

extracellular space ma}' be reduced under some physiological conditions. The 

solution properties for the pairs (Xp,Kp)> ( X y , K - y ) , are shown in Tables A . l and 

A . 2 , for a = .23. 

In the case of the coefficients X £ and K c > however, it was necessary to 

use 96 x 96 results for the largest values of the membrane conductance in 

order to be sure that the finite difference solutions converged as mesh size h 

->0. A t the three largest values of membrane conductance the coefficient derived 

f rom the 72 x 72 solution appeared accurate wi th in 25, 10, and 5 %, 

respectively compared to the 96 x 96 results (column 3, Table A . 3 ) . More 

accurate solutions were not obtained because, in the absence of equally accurate 

t Th is is an extracellular space of 1 - (21/24) 2 = 23%. 
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experimental data , this did not seem to be useful . 

The properties of the solutions referred to in Tables A . l - A . 3. are 

representative of the other cases. Table A . l displays solution m a x i m a and 

selected averages of the canonical solutions X p and K ^ . These solutions appear in 

the terms of <p i and C. proportional to V 0 O in (III.2.12). The solution x 
11 P 

occurs in the definitions of D , and D 2 and K occurs in the definition of D , 

in (III.2.18). 
Table A . l . A . M a x i m a of x and the 

P 
Average a 0 M ^ { t ^{1 + 

1 0 3 X 1 48 _x 48 72 x_ 72 

M a x Average M a x Average 

20 4.28 .392 4.38 .386 

10 4.45 .357 4.54 .355 

5 4.61 .327 4.70 .327 

2 4.80 .295 4.87 .296 

1 4.88 .280 4.96 .280 

Table A . 1 : B . M a x i m a of x and the 
P 

Average a 0 M w { t K t a ( l + 
V w * p l » 

1 0 3 X 1 48 _x 48 11 JL II 
M a x Average M a x Average 

20 4.28 .121 4.38 .116 

10 4.45 .090 4.54 .088 

5 4.61 .063 4.70 .063 

2 4.80 .035 4.87 .036 

1 4.88 .022 4.96 .022 
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Table A . l . C . Maxima o f and the Average a o ^ - y y { t j ^ t

a

v

w K p ^ } . 

10V 48 _x 48 21 2L 11 
Max Average Max Average 

20 3.54 .0034 3.62 .0062 

10 3.28 .0064 3.32 .0075 

5 2.88 .0059 2.92 .0063 

2 2.14 .0036 2.18 .0037 

1 1.51 .0022 1.55 .0022 

Table A. 2 displays solution maxima and selected averages of the canonical 

solutions X y and K^. These solutions appear in the terms of <j> ^ and C. 1 

proportional to VV 0 in (III.2.12). The solution x y occurs in the definitions of E, 

and E 2 and occurs in the definition o f E 2 in (III.2.18). 

Table A.2.A. Maxima of x and the Average o 0 M w { t (t„ + V x -,)}• 

loV 48 x_ 48 72 x_ 72 

Max Average Max Average 

20 4.36 .116 4.36 .111 

10 4.51 .086 4.60 .084 

5 4.66 .059 4.74 .059 

2 4.81 .032 4.90 .032 

1 4.89 .019 5.00 .019 
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Table A . 2 . B . M a x i m a of x 
V 

and the Average + V X n' w v l 

1 0 3 X 1 48 _x 48 72 _x 72 

M a x Average M a x Average 

20 4.36 .105 4.36 .100 

10 4.51 .077 4.60 .076 

5 4.66 .053 4.74 .053 

2 4.81 .029 4.90 .029 

1 4.89 .017 5.00 .017 

Table A . 2 . C . M a x i m a of K and the 
V 

Average o0M.^{tj^t^ p w v l J 

1 0 3 X 1 48 x_ 48 11 JL 11 
M a x Average M a x Average 

20 3.36 .0032 3.42 .0055 

10 •3.10 .0057 .3.16 .0066 

5 2.72 .0052 2.77 .0055 

2 2.02 .0032 2.07 .0033 

1 1.41 .0019 1.47 .0019 

Table A . 3 displays selected averages and solution m a x i m a of the canonical 

solutions x c and K c - These solutions appear in the terms of <f>, and C. I 

proportional to VC . q in (III.2.12). The solution x c occurs in the definitions of F : 

and F 2 and K c occurs i n the definition of F 2 in (111.2.18). Results from a 96 x 

96-grid-solution are included since these solution pairs converged slowly as the 
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mesh became finer. 

Table A . 3 . A . The Average / ^ o M ^ t V w x d } . 

1 0 3 X 1 48 x_ 48 72 72 96 _x 96 

20 1.81 4.74 6.25 

10 4.84 6.12 6.76 

5 4.69 5.21 5.47 

2 2.95 3.11 

1 1.77 1.83 

Table A . 3 . B . The Average ^ O o i M ^ t ^ t ^ x ^ } } . 

1 0 3 X 1 48 _x 48 72 x_ 72 96 _x_ 96 

20 1.58 4.15 5.48 

10 4,23 5.36 5.94 

5 4.11 4.58 4.81 

2 2.59 2.73 

1 1.55 1.61 

Table A . 3 . C . The Average f ' V ^ ^C[o^wK-cl + 

1 0 3 X 1 48 _x 48 11 1.11 96 96 

20 4.70 4.56 4.45 

10 4.35 4.16 4.05 

5 3.86 3.70 3.61 
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2 3.28 3.20 

1 2.99 

Table A . 3 . D . M a x i m a of 

2.94 

X c • 

1 0 3 X 1 48 _x_ 48 72 x. 72 96 _x 96 

20 .219 .556 .721 

10 .582 .714 .778 

5 .564 .610 .631 

2 .359 .367 

1 .217 

Table A . 3 . E . M a x i m a of 

.218 

K . 
C 

1 0 3 X 1 48 _x_ 48 72 x_ 72 96 _x_ 96 

20 .756 1.93 2.52 

10 3.40 4.20 4.59 

5 5.93 6.45 6.71 

2 8.62 8.89 

1 9.93 10.10 

The position of the m a x i m a in the coefficients of Table A . 3 at 10 X 1 = 1 0 

for the 48 x 48 solution, m a y be inaccurate since it becomes less pronounced on 

larger grids, however, the m a x i m u m occurs consistently at this value of X 1 and 

is physica l ly reasonable, as discussed i n Section 6.3. 
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APPENDIX IV.B. UNCOUPLED BULK CONDUCTIVITY 

Results of the uncoupled calculations for straight arrays of square cells 

(48 x 48 point solutions wi th an extracellular space of 19.7%) are shown in 

Figure B . l . The bulk conductivity versus cell sizes and intracel lular conductivity 

are shown in Figure B . l . A , and the corresponding bulk transcel lular conductance 

estimates in F igure B . l . B . The bulk conductivity estimates range f rom 2 - 7 m S 

over a large range of the membrane conductance, Z ^ I O . 3 a to Z, =234 a, and 

are an increasing function of the cell size (membrane conductance). These values 

are consistent wi th conductivities observed for bulk cortex and cerebellum 

(Nicholson 1980). This agreement of the computed values wi th data occurs despite 

the fact that the model geometry is unrealistic. The bulk transcellular 

conductance was defined as: 

(B . l ) a / 3 : = M w { y i +3x/3W,)} 

and corresponds to the proportion of bulk conductivity due to current flow 

through cells. The factors affecting this quantity are investigated here. 

This bulk transcellular conductance ranges f rom 7% to 36% of bulk 

conductivity in the parameter range which is l ikely to correspond to glia (that is , 

cells w i t h characteristic size f rom 32.5 a -103 u). 

It is seen from Figure B . 2 that the influence of intracel lular conductivity 

a1 was relat ively slight, f rom smal l values of up to li=51u and that bulk 

transcellular conductance was determined by the membrane conductance. Between 

=32.5 a and Z -i = 103 a, w h i c h corresponds to a ten-fold change in X, the 

transcellular conductance changed by a factor of eight, while the effect of a 
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F igure B . l . B u l k conductivity (A) and transcel lular conductance (B) versus cell 
size are plotted for a = 10, 4 m S i n the uncoupled model. A logarithmic vertical 
scale is used in B . 
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F igure B . 2 . B u l k conductivity (A) and transcel lular conductance (B) versus cell 
size over a large range ( Z ^ O . l fx to —100 M) are plotted for a =10 , 4, 2 m S 
in the uncoupled model. Logar i thmic horizontal axes are used in A and B , and a 
logarithmic vert ical axis is used in B . 
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five-fold reduction in intracellular conductivity at Z, =32.5 u is 10% and at 

Z! = 103 a; 54%. It is biologically significant that these model cells which 

exhibited bulk intracel lular conductivities f rom 7 to 36% had electrical space 

constants which were long compared to the cell dimension, and thus were 

electrotonically unlike an electrical s y n c y t i u m . 

The derivation in Chapter III assumes that the tissue has a two-tier 

structure. Thus , it is assumed that a periodic a r r a y of asymptotical ly larger cells 

is imbedded in a periodic a r r a y of asymptot ical ly smaller cells. The assumptions 

of such a model were i l lustrated schematically in Figure 6.3 and are described in 

Section 6.4. 

Uncoupled conductivity estimates obtained in this w a y are shown in Figure 

B . 3 . If tier structure has no effect, the results (A) in F igure B .3 would be the 

same as the results for (O) except for the errors made in selecting the E C S 

fraction due to the discrete nature of the mesh and in selecting the extracellular 

-conductivitj ' . In fact the bulk conductivity estimates for a = 0.44 (two-tier model) 

are about 1.4 times the values obtained at a = 0.23 for a simple square cell. 

This is a significant but not large discrepancy, given the simplici ty of the model. 

O n the other hand, the agreement between the transcellular conductance 

values is remarkable . It is seen that these values are close to those for the 

one-tier studies, suggesting that the dependence on tier structure is not crit ical in 

the uncoupled case. 

In order to determine the effect of extracellular space (ECS) fraction on 

bulk parameters , numerical solutions were obtained for several values of the 

extracellular space fraction. F i r s t , the values of a = 0.2 and a = 0.23 were selected 

in order to establish the sensitivity of the solution to the E C S fraction near the 
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Figure B.3. Bulk conductivities (A) and transcellular conductance (B) versus cell 
size (Z!) are plotted for one-tier and two-tier uncoupled models. The one-tier 
model is indicated by open circles and the two-tier model by open triangles. The 
filled squares are the results obtained at the finest length scale, which are used 
to determine a in the two-tier study. 
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normal physiological value. In addition solutions were obtained at a = 0.44, and 

a = 0.12. The bulk conductivity estimates for these E C S fractions are shown in 

F igure B .4 . 

The bulk conductivity is an increasing function of a while the transcellular 

conductance is a decreasing function of a. It is seen that the bulk conductivities 

are highly sensitive to the E C S fraction and increases by a factor between 2 

and 6 between a = 0.12 and a = 0.44 for different characteristic cell lengths. 

Transcel lular conductance increases by about 50% at Z 1 = 73 n, as a changes 

from a = 0.44 to a = 0.12, however the effect of a change in E C S fraction f rom 

a = 0.2 to a = 0.12 is not large. Thus , for situations in which the E C S fraction a 

is lowered, it is expected (all else being equal) that bulk conductivity w i l l 

decrease and slightly more transcellular current w i l l f low. This is biologically 

significant in situations i n which the E C S fraction is decreased. 

Because simple geometrical assumptions have been made, i t is important 

to establish the sensitivity of the results to the geometrical arrangement of the 

cells. 

The results of studies undertaken wi th staggered arrays are shown in 

F igure B .5 along w i t h corresponding values for straight a r rays . It is seen that 

while staggered arrays exhibit significantly lower bulk conductivity values, 

transcellular conductance remains stable f rom one type of a r r a y to the other, 

across a large range of membrane and intracel lular conductivity values. In the 

biological parameter range it depends chiefly on characteristic size/membrane 

conductance. 
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Figure B.4. Bulk conductivities (A) and transcellular conductance (B) versus cell 
size (I)) are plotted for a = 0.12, 0.2, 0.23, and 0.44 in the uncoupled model. A 
logarithmic vertical scale is used in B. 
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Figure B.5. Bulk conductivities (A) and transcellular conductance (B) versus cell 
size (7.1) are plotted for each combination of a straight array, a staggered array, 
and o1—10 and 2 mS in the uncoupled model. A logarithmic vertical scale is 
used in B. 



1-8 5 

1 0 

> 
o 

3 

C 
o 
o 
3 
CQ 

O Straight Array, a' = 10mS 

• Straight Array, a' = 2mS 

O Staggered Array, a' = 10mS 

A Staggered Array, a' = 2mS 

o 

• 
A 

• A 

10. 100 Cell Size (fi) 

cu 
o 
c 
o 
o 
3 

TD 

C 
O 

o 

a 
_3 
"cp 
o 
co 
c 
o 

1.000 

0.100 + 

0.010 
0.006 

o 

B 

10 100 

Cell Size (fi) 
Figure B.5 Array Geometry and Bulk Conductivity 



V. T H E ROLE OF ELECTROTONIC PARAMETERS IN TISSUE MODELS 

1.0. INTERPRETATION OF THE MODEL 

1.1. Introduction 

The tissue model used here has been chosen to be simple and easy to 

solve, and involves a number of assumptions which may seem unrealistic, such 

as a square geometry, and asymptotic assumptions about lengths and membrane 

properties of cell populations. Further analysis is required to see which aspects of 

our artificial tissue model would be expected to reflect observations of real tissue. 

While numerical results are affected by these assumptions, dimensional 

analysis (Lin & Segel, 1965) predicts that the bulk physical properties of tissue 

depend on the dimensionless parameters formed from combinations of the 

characteristic physical parameters in the tissue, and we may hope to determine 

the nature of this dependence from the model. In fact the expansion procedure of 

Chapters II and III exploited the dependence of such properties on ratios of the 

characteristic cell lengths. However, the .dependence of bulk properties on 

dimensionless parameters associated with conductance properties of the cell has 

not been discussed. Dimensionless parameters formed by combining the 

characteristic conductance properties of the cell are called electrotonic parameters. 

An asymptotic analysis in these parameters gives information about the 

correspondence between the asymptotic model and real tissue, the dependence of 

transcellular current on geometry, and provides analytic confirmation of the main 

features of the numerical solutions. 

Comparison of the results of Sections IV.6.2 and IV.6.3 with Appendix 

186 
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I V . B demonstrate numerical ly that the averages of the coupled and uncoupled 

models yield averages which have s imilar dependence on electrotonic parameters. 

Thus , it is assumed that an analysis of the uncoupled case is sufficient to 

obtain the qualitative features of this dependence. The asymptotic analyses to be 

carried out in Sections 2.2 and 2.3 assume in addition, that the intracellular 

conductivity is less than the extracellular conductivity and that the membrane 

conductance is either large or s m a l l . The two-tier studies of Section IV .6 .4 do 

not satisfy these assumptions since the extracellular conductivity is less than the 

intracel lular conductivit.y. The analyses of this chapter do not apply to the 

two-tier case, however, as seen i n Appendix I V . B , the conclusions would remain 

correct i f there were no coupling between electrical potential and ionic 

concentration at 0 (e ) . 

Because this chapter focuses on the physical interpretation of the model, 

we give a physical interpretation of transcellular f lux before proceeding w i t h a 

perturbation analysis of the relationship between transcellular f lux and electrotonic 

parameters . In the l ight of this discussion, it is seen that the averaged 

parameters of Chapters II and III are not uniquely determined unless (as stated 

in Chapter II) specific assumptions are made concerning the asymptotic properties 

of electrotonic parameters. In Section 3.0, a conclusion is d r a w n concerning the 

relative contribution of cells of different sizes to transcellular current. 

1.2. Formal Analogy Between Intracellular Flux and Electrostatic 

Polarization 

A s described in Section I V . 1.2, the electrical f lux component of the 

potassium flux vector (i = 2 in equation (IV. 1.2)) is discontinuous because of the 
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differences in extracellular and intracellular transport properties. Potassium 

disappears from the ECS at one location and reappears at another remote 

location with little time delay. This complicates the interpretation (though not the 

derivation) of differential equations for the average electrical flux of potassium. 

This problem of physical interpretation is not new, however, and occurs in a 

classical model of dielectric polarization (Landau & Lifshitz, 1960; Garland & 

Tanner, 1978). This analogy is demonstrated and it is suggested that the reader 

view bulk electrically mediated transport through inclusions as analogous to the 

existence of bulk polarization in an (inhomogeneous) dielectric medium. 

Let the flux strength of some quantity (such as potassium) at the cell 

membranes be f(w) = Vi// • n where \p is a potential function, n denotes the 

outward unit normal to the membrane and f(w) is doubly periodic. The quantity 

J" wf(w)dS will be referred to as the flux dipole moment of f. Although the flux 
M 

dipole moment of each cell is small, their sum may produce a bulk flux dipole 

moment which is significant. If the function f(w) were the density of electrical 

charge, the integral / wf(w)dS over a single cell would be the electrical dipole 
M 

moment of the charge distribution over a single cell. 

The bulk flux dipole moment is a vectorial quantity which reflects the 

intracellular flux through cells. If f represents transmembrane ionic flux, then the 

bulk flux dipole moment represents the intracellular ionic transport owing to the 

presence of the cells. Under certain circumstances it is equal to the average, of 

the ionic flux vector intracellularly. 
2 

If the intracellular potassium flux is equal to VuV, and V i^ = 0 then the 

bulk flux dipole moment associated with the flux distribution f(w) is numerically 

equal to the integral of the interior flux through all the cells. This follows by 
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applying the divergence theorem to the components of the vector V«(W.Vi//) where 

W . denotes the I^1 component of w: 

The intracellular f lux mentioned is a v i r t u a l f lux, rather than a real f lux 

2 

because V if/*0 at the membrane. However , the f lux dipole moment st i l l equals 

the integrated intracellular f lux in our model because the f lux dipole moment is 

additive over regions in space. 

Th is definition is p r i m a r i l y of theoretical interest (experimental 

measurement of bulk coefficients is discussed in Chapter VI) in providing a 

physical interpretation of the formal averaged coefficients. If spatial buffer 

capacity is defined as the average potassium flux associated w i t h a unit voltage 

gradient in the transmembrane potential, then the bulk flux dipole moment per 

unit voltage gradient is proportional to the spatial buffer capacit j ' of an arra3 r of 

cells. This m a j ' be verified by reference to the averaged equations (III.2.17) in 
which the coefficient of V"V corresponds to a bulk f lux dipole moment. 

2.0. ASYMPTOTICS IN T H E ELECTROTONIC PARAMETERS 

2.1. Correspondence with Canonical Problem 

In the calculations of Chapters II and III (see Table II.2.4) we defined g 

:= L g / S where g:= g 2 (S cm )̂ is the dimensional (two-dimensional) value of 

the membrane conductance to K + , -L is an appropriate length scale, and S 

depends on the extracellular conductivity and diffusion coefficients. The quantity 

(1.1) / V\//dA = 
I C S 

J ( V . ( w 1 V ^ ) , V . ( w 2 V i | / ) ) d A 
I C S 
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(g/S) \ which has the dimension of cm, is an electrotonic length scale arising 

from the electrical parameters only. 

In this section we let w = x / L , and ~g = L , g/ S (these do not 

correspond to definitions in Chapter III). This is done to make fluxes of the 

form g(0! - (j>°) and 90/9n of 0(1) rather than 0(e )̂ in the analyses of this 

Section and Sections 2.2-2.3. The tilde in g is dropped in the calculations which 

follow. 

The canonical 0(e) problems (Chapter III) which determine average 

properties for conductivity, diffusion, and potassium transport consist of solving 

the potential equation with periodic boundary conditions and constant (intracellular 

and extracellular) conductivities. We now calculate the qualitative dependence of 

the solutions and the flux dipole moments on the electrotonic parameters. 

In the calculation which follows we consider the two-dimensional problems 

(2.1) V»(aV0) = 0, 

•where a is the electrolyte conductivity, <$> is the electrical potential and (2.1) 

holds extracellularly and intracellularly. The jump condition at the cell membrane 

is 

(2.2) o 9^ = g(^ - A 

which actually is two equations, with o30/9n evaluated intracellularly and 

extracellularly, n is an outward normal vector, g is membrane conductance, and 

is the transmembrane potential. Boundary conditions are given as <f> = A on 
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one edge of the unit cell (say x-^ = constant), <j> = B on the opposite edge, and 

3 0 / 9 n =0 on the remaining edges of the crystallographic unit cell. 

The latter problem is equivalent to a typical canonical problem from 

(III.2.12) - (III.2.16) because the solution of (2.1) - (2.2) wi th the conditions 

described has the form <j> = A w ̂  + X ^ where w t is a spat ia l coordinate and 

X 1 satisfies 

(2.3) V-(crVx1) = 0, 

w i t h periodic boundary conditions and j u m p conditions at the membrane given by 

(2.4) a fVx ^ n + n , } = g{x l i"X 1 0} 

where n , is the f irst component of n , the outward unit normal vector, and x 1 

and x 2 i n x are analogous in form because the biological cells are assumed to 

be square. Note that x = constant does not satisfy the jump condition (2.4) which 

is non-homogeneous. By geometric s y m m e t r y , <j> must agree w i t h the previously 

stated conditions (2.1) - (2.2). Thus , because of the s y m m e t r y , the canonical 

problem for x m a y be replaced by a problem w i t h fixed rather than periodic 

boundary conditions and a fixed ambient voltage gradient. 

2.2. Electrotonically Short Case and Transmembrane Transport 

W e define the new parameters y: = a1(a° + a1) * where a° and a1 are 

the extracellular and intracel lular conductivities, respectively, X: = a'g * (cm) where 

g is the membrane conductance, and £ : = /X where L t is the unit cell 
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length. 

The asymptotic dependence of 0 on 7 and £ now -is calculated for the 

unit cell. In view of the equivalence described in Section 2.1, this calculation 

should give qualitative information on the effects of these parameters on bulk 

properties. Because the potential equation is unaffected by length scaling, and 

boundary and j u m p conditions w i l l be satisfied uni formly as the dimensionless 

conductivity 7—>0 and electrotonic length parameter £—>0 or °°, it is expected 

that the expansion i n 7 and £ w i l l be regular . 

Rewri t ing the jump conditions (2.2) using the definitions of 7, £ , and X 

and scaling w = x / L 1 , as in Chapter II, gives the equations: 

where (2.5i) arises f rom combining intracel lular and extracellular j u m p conditions. 

It is assumed that <p m a 3 ' be expanded in the form: 

where + and - correspond to £ —>0 and £ —><*>, respectively, and we w i l l 

wri te (J>Q for 0QQ - Since the boundary conditions on the unit cell have no £ or 

7 dependence, 0° j = O o n the boundary of the unit cell when i or j >0. 

The leading-order behavior of <p w i l l be deduced f rom the dependence of 

the j u m p conditions on 7 and £. In this section we assume £—>0, i.e., the 

ratio of cell length to the electrical length scale X is smal l , and so the ' + ' sign 

is used in (2.6). 

(2.5) 

(2.6) <t> = 4>o + { \ i + 7 0 i o + 0 ( i ± 2 ) + 0 ( 7
± 2 ) + 
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U s i n g (2.6) in the jump conditions (2.5) yields: 

(2.7) 7 (30o + 73010 + £ 3 0 o i + •••) 
T=7""5n "cm 75n 

£(0o + 7 0 i o + £0qi + - - 00 - 7 0 ° o _ £0oV •••) 

(2.8) = 3^o + 73010 + £ 3 0 o i + .... 

7m oh TTn 

Thus , to 0(1): 

(2.9) (i) 30o = 0, (ii) 30o = 0. 

75n TJn 

Since (2.1) holds, the leading-order intracellular solution, 4>\ is constant and the 

extracellular solution, <j>°0 is determined and non-constant. Because V^<pO

o=0 away 

from the membrane, the boundarj ' conditions 3 0 ° / 3n = 0 and 0 o = const = <pl

0 

would imply C6Q identically constant by a standard expansion procedure from the 

theory of par t ia l differential equations (Carrier & Pearson, 1978). Since 0o is not 

identically constant, 0o~ 0° * s n ° t identically constant on the membrane. 

To 0(7): 

(2.10) (i) 30o = 30^0 , (") 3 0 i o = 0. 
7Tn "3n "cm 

The left side of (2.10i) vanishes by (2.9ii). Thus , by (2.10ii) 0 ^ 0 is constant 
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while <j>! o =0 because the boundary conditions have no y dependence on the 

unit cell. 

As in the case of 4>-^Q, <t>oi — 0 because the boundary conditions on the unit 

cell have no £ dependence. 

Since the transmembrane potential is 0(1), the transmembrane current to 

leading-order is i m
= g(0o~ <Ao)- I n order to obtain a steady state solution at 

0 (£ ) , the constant 0o must be chosen so that the average transmembrane 

current is zero. 

The flux dipole moment in this case may be estimated by assuming that 

(fy'o, the extracellular potential (which satisfies O4>°QI 9n = 0 at the membrane), is a 

linear function of the space variable. References to the discussion of (2.3) - (2.4) 

and the numerical solutions show that 4>°o w i l l have a voltage variation over the 

membrane which is greater than that which occurs if 4>°0 were linear. Since X is 

bounded, however, the voltage variation over the membrane locus will have the 

same asymptotic order as for the case of linear extracellular potential. The 

assumption of linearity has been used in models for conductivity of brain tissue 

and produced good agreement with data (e.g., Ranck, 1963). 

It has been assumed that the cell is square. The discussion of equations 

(2.5) - (2.11), with the assumption of linear extracellular potential implies that to 

leading order, the transmembrane current is a linear function of x̂ '. The 

transmembrane current per unit extracellular voltage drop over the unit cell is 

To 0(|): 

(2.11) 
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given by i = g x ^ / L , ( A m p / V c m ) where we use the dimensional value of g 

(S cm *). Thus , the f irst component of f lux dipole moment vector (1.1) per unit 

voltage gradient is: 

f L , / 2 f L , / 2 
J X l i dl = 2 / x l g f l d X l + 2 J ! L i i f d x 2 

M m - f L , / 2 L 1 - f L , / 2 2 2 

(2.12) = - f - g f 3 ^ , (cmfi" 1 ) 
o 

where f is the cell length as a proportion of the unit cell length, dl is the 

differential line element on the membrane in two dimensions, and the second 

term comes f rom integrating over the ends of the cell. The second component of 

flux dipole moment is zero because the integrand is odd. Thus , the quanti ty 

(2.12) is proportional to the membrane conductance and the square of the cell 

length. This result could not be obtained f rom dimensional analysis alone since 

(as wi l l be shown in Section 2.3) the f lux dipole moment can have other forms. 

The dependence of the numerical solutions on g shows that this asymptotic case 

corresponds more nearly to the 'biological situation. By the previously 

demonstrated equivalence between f lux dipole moment and v i r t u a l intracellular f lux 

(as explained in Section 1.2), i t is seen that (2.12) is the (approximate) total 

transcellular current flow per unit voltage gradient per unit cell . It m a y be 

interpreted as a transcellular conductance. A s the units of a voltage gradient are 

V c m \ the product of the quanti ty (2.12) w i t h a voltage gradient has units of 

amperes. 
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2.3. Electrotonically Long Case and Transmembrane Transport 

In the electrotonically long case, i;"^—>0 and the ' - ' sign is selected in 

the expansion form (2.6). The boundary conditions (2.5) become, on substitution of 

the expansion (2.6): 

(2.13) 7 (3*o + TS&IO + I'13*oi + •••) 
T ^ l f r 9n lTn 

11 i .1 . , .0 ,0 o - l . O 

* o + 7<Pio + £ * o i + ••• ~ * o ~ 7*10 ~ ? *01 ~ — 

(2.14) = ^(dj^o + 7 3 * i o + S ' ^ o i + ...)• 

on on ~b~n 

Thus to 0 (1) : 

(2.15) (i) 3 * o = 0, (ii) * o - * o = 0. 

"5n 

The extracel lular solution is the same as in the short case, and the intracel lular 

solution is determined from it v i a (2.15ii). Hence d<t>lJ 3 n * 0 , because * a = * o and 

* o is non-constant at the membrane by the same argument as that in Section 

2.2 fol lowing equation (2.9). 

To 0 ( 7 ) : 

(2.16) (i) 3 * o = 3^.?o , (ii) * r o " * ? o = 0, 
on dn 



V . The Role of Electrotonic Parameters in Tissue Models / 197 

while to CKS"1): 

(2.17) (i) 90^1 = 0, (ii) 0 O 1 - 0°, = 30o. 
o n "cm 

Since 0o = 0o> 01*0 = 0io> a n d 30V dn&O, the leading-order 

transmembrane potential is given by (2.17ii). 

The previous discussion (2.13) - (2.17) has established the leading-order 

form of the transmembrane current. The flux dipole moment vector is 

approximated using the same assumptions as before: 0Q is assumed linear and 

the cell is square. The transmembrane current per unit voltage gradient ( A m p / V 

cm) is i = gi ; ^(0oi~0oi ) = cr 1 ]^ ^ 30V 3n = OVL , on the membrane locus 

where X j = constant and is zero on the membrane locus where x 2 = constant, 

assuming that 0Q is l inear in the x^ direction and 0o = 0o a t t n e membrane. 

Hence, the f irst component of the f lux dipole moment vector per unit voltage 

gradient m a y be computed as: 

f L , / 2 fr j i~2 
(2.18) J x , i dl = 2 f L k i £ d x 9 = a f L , , 

M 1 m -kyl2. 2 L , 2 

( c m P / 1 ) . 

The second component of the f lux dipole moment is zero by symmetry . 

These calculations give an approximation to the total intracellular current 

per uni t voltage gradient per unit cell when £ is large, i .e., physical cell length 

is large compared to the electrotonic length scale. This would be true for a 

s y n c y t i u m , or network of electrically connected cells. 

The asymptotic calculations were undertaken i n order to determine which 
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properties of the numerical solutions are likely to characterise real tissue. The 

bulk properties of tissue are expected to depend on both electrotonic parameters 

and shape-dependent geometric parameters which are 0(1). 

The asĵ mptotic analyses give the dependence of the flux dipole moment on 

the electrotonic parameters, ij and j, for extreme values of these parameters. 

These analyses do not indicate quantitatively how large or small such parameters 

must be in order for this description to be accurate. Also, because of the 

assumption that * ° is linear, this description does not take into account the 

effect of the square cell geometry on <6°. However, in the electrotonically short 

case, (which is biologically relevant) the intracellular solution is constant and 

hence independent of geometry.! Thus, in this case, the difference between the 

two-dimensional and three-dimensional results is a geometrical factor, independent 

of the solution for 0. Because of the assumption of linearity of <t>°, dependence 

of the flux dipole moment estimate on the geometry is due only to the fact that 

the membrane locus appears in the integral. Since the numerical solution 

indicates that the analysis of the short case is accurate for this geometry, the 

numerical results in two dimensions should be applicable to three dimensions in 

the manner described. 

In view of the complexity of the three-dimensional geometry of neural 

tissue, the selection of a square two-dimensional geometry is a drastic 

simplification. For example, neural tissue contains much fine structure and 

relatively complex shapes. Yet, in many respects, reasonable agreement with 

experiments was obtained. This likely occurs for the following reasons. First, 

geometry may be unimportant in the electrotonically short case, as suggested 

t A similar remark holds in the electrotonically long case. 
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above. Second, the qualitative features of the two-tier calculation of Chapter III 

show that there is no significant transcellular current when cell dimensions are 

sufficiently fine, if physical membrane properties of fine structures are the same 

as those of coarse structures. 

Other successful models have assumed (Ranck, 1963; Havstad, 1976) that 

because the tissue contains elements with random orientations, the electrical 

properties of neural tissue may be modelled by superposition of the properties of 

arrays of cylinders which are, perpendicular and parallel respectively, to the 

ambient gradients. This assumption will not be discussed in detail here, but we 

have followed these authors in using a geometrically simple model of the tissue. 

The length scales suggested for cells here (32 um - 72 um) are characteristic of 

the longitudinal dimensions of cell processes. Cylinders oriented perpendicular to 

ambient gradients would have small effective size and would not contribute much 

to bulk transcellular current. 

These calculations show that the parameter £, which depends on the cell 

length, determines the nature of the solution for the potential. Because the cell 

length formally depends on e, the asymptotic order of this ratio £ must be 

chosen in order to complete the formal asymptotic model. 

2.4. Choice of Scal ing 

In the canonical problems of Chapter III, the dimensionless parameter g 

appears at different orders of e in the jump conditions. The reasoning used in 

selecting appropriate asymptotic assumptions for g is now discussed. 

A fundamental assumption of dimensional analysis asserts that any bulk 

coefficient P of an inhomogeneous medium will be some function of the 
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dimensionless parameters which characterize the medium multiplied by a 

dimensional constant K, 

(2.19) P = K V(e, a, p\ ... ) 

where V is to be determined from a canonical boundary-value-problem, and the 

selection of dimensionless parameters is not unique. An approximation for P is to 

be found by taking a limit as e —>0. 

In some possible selections of dimensionless parameters e , a ' , p", ... , the 

parameters a ' , ... may depend on e . For example, g may depend on e. 

Surprisingly, the dependence of g on e does not follow from the definition and 

must be chosen in the asymptotic model.t The definition "g = L 0 g / S is not an 

explicit function of e = L , / L 0 and it is not possible, in general, to pose the 

canonical boundary-value-problem for V in a form which does not involve g 

(dropping the tilde). 

The dependence of g on e may be chosen as follows. In the physical 

tissue, the parameters e and £ take definite values and an approximation to P 

evaluated at these parameters is desired. While the asymptotic approximation is 

formed from the limit e—->0, so that e is not fixed, it is reasonable to suppose 

that the best approximation to P is obtained by keeping the parameter(s) £, 

fixed at the values which characterise the tissue. This is equivalent to fixing L.g 

where L. is the (dimensionless) cell length. Using this principle, the order of g 

may be determined from the physical properties of the cells. 

t It has been previously observed that the homogenization. procedure (letting e 
—>0) may not produce a unique answer, without choices of the general type 
described here (cf. Babuska, 1976). 
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For example, we compare the case of small cells and moderate 

measurement length, for which 1^=0(6) and L 0 =O(l) , and the case of cells of 

moderate length and a large expanse of tissue, for which L T =0(1) and 

L 0 =0(e )̂. Both situations result in L 1 / L 0 = 0 ( e ) . Suppose that the shapes and 

relative placement of the biological cells in crystallographic unit cells are 

geometrically similar. In order to keep £ fixed, g must be 0(e )̂ in the first 

case and 0(1) in the second. These assumptions correspond to different 

dimensional values of g, i.e., different physical membrane properties. Such 

assumptions would lead to canonical boundary-value-problems which are identical, 

and thus lead to the same bulk coefficients. In contrast, keeping the dimensional 

g value fixed across the two cases, would lead to g appearing at 0(e) and 0(1) 

respectively, and produce different bulk coefficients for each case. Both sets of 

assumptions are mathematically consistent, but correspond to the different physical 

models described. 

When two electrotonic and two asymptotic length scales exist as described 

in Chapter II, this rule can still be used, though it will not be possible to fix 

all dimensionless parameters other than e. If there. are two cell lengths, and 

L , and two sets of membrane conductances, g and g , then the dimensionless 
n' g n 

membrane conductances are g = L_g /S and ~g =L g / S . If it is assumed 
g & S n n n 

that L , L , g , and g are such that L =0(e) , L =0(1) g =0(e *), and g n' 6 g ' 6 n g n 6 g 

g n = 0(l), then the electrotonic parameters £ of each population are fixed but the 

quantity L _g =0(e) is not fixed as e—>0. 
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3.0. Neurons, G l i a and Electrical Scale 

Neurons comprise some 50% of the tissue volume in the bra in , yet 

several recent models of the electrical properties of neural tissue have neglected 

current flow through neurons because of their high membrane resistance 

(Nicholson, 1973; G a r d n e r - M e d w i n , 1983).f Whi le the extent of connections 

between glia in vertebrate neura l tissue is not yet established 

(Gardner -Medwin , 1983), gl ia have been thought to contribute more significantly to 

electrical bulk tissue properties because of their low membrane resistance and the 

(possible) electrical connections between them. However , the analyses of this 

Chapter lead to the physiological conclusion that transcellular current through 

neurons should not be neglected. 

2 
H a v s t a d (1976) suggested values of 3000 J2cm for the resist ivity of 

2 

neuronal membrane and 320 ficm for gl ial membrane, and 14 n m for the 

characteristic diameter of a neuronal segment and 1.8 p.m for a gl ial cell 

process. It is also expected that the cell lengths of the two populations w i l l be 

roughly in the same ratio, wi th gl ial processes extending some 20 n m - 50 /nm 

and neuronal processes some 100 nm - 5 0 0 nm, though w i t h much variat ion. 

Such values are approximate, but consistent, in general, w i t h values cited by 

others (Schanne & Ruiz-Ceret t i , 1978; Shelton, 1985; G a r d n e r - M e d w i n , 1983; 

Nicholson, 1973; La j tha , 1978). Thus , membrane resistivities and characteristic 

cell dimensions of neurons and gl ia differ by an order of magnitude, but 

m a i n t a i n roughly the same ratio. A s discussed below, the characteristic diameters, 

of cell segments determine (in part) the electrotonic length scales in three 
t These were not neglected by Ranck, (1963, 1964) and H a v s t a d (1976) in their 
studies of bra in impedance, but their studies dealt w i t h al ternating current (AC) 
for which capacitive rather than resistive properties of membrane are more 
significant. 
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dimensions. 

The characteristic dimensions of the cells stated above suggest that 

neurons and glia are 'electrical scale models' of one another. The idea of an 

electrical scale model m a y be understood by reference to cable theory (Jack et 

a l . , 1975). A s stated in Chapter I, i t is commonly assumed that electrotonic 

t ransmiss ion in cyl indrical cells is described by the cable equation. The electrical 

space constant A (cm) is defined as 

(2.20) A 2 = R d / ( R + R.) , 
m o l 

where d is the diameter of the cell, R is membrane resist ivi ty and R and R. 
m o i 

are extracellular and intracel lular resistivities. 

If the space coordinate x : = x / L is normalized so that the length of the 

cell is uni ty , then the dimensionless ratio £ : = L / A , called the electrotonic 

length, appears in the exponential steady state solutions to the cable equation, 

thus determining the electrical properties of the cell. One cell is an 'electrical 

scale model ' of another cell i f i t has the same electrotonic length and geometrical 

shape as the other cell . This is because the solutions for the transmembrane 

potential differ only by a change of spat ia l scale. If two cells are geometrically 

s imi lar , their ratios of diameter to width are the same, and equation (2.20) and 

the definition of £ show that the membrane resistances of electrical-scale-model 

cells must be proportional to their length. This result in three dimensions is the 

same as the two-dimensional result described in Section 2.4. 

The discussion of Section 2.4 implies that two tissues composed of cells 

which are electrical scale models of one another in two dimensions have the 



V. The Role of Electrotonic "Parameters in Tissue Models / 204 

same bulk electrical properties. According to the above discussion and the 

parameter values cited, if neuronal and glia geometry were the same (and if glia 

are not syncytial), neurons and glia would be three-dimensional electrical scale 

models of one another. Thus, it is expected that the leading-order bulk properties 

of a tissue composed entirely of neurons would be similar to the bulk properties 

of a tissue composed entirely of glia. Hence, the argument that neurons do not 

influence bulk DC tissue properties because of their high membrane resistance is 

incorrect. 

It is possible that factors other than membrane resistance, e.g., geometry, 

make the contribution of neurons to bulk tissue properties neglible. However, it 

seems unlikely that geometry alone could reduce the contribution of 50% of the 

tissue volume to a neglible amount. If glia are syncytial, then their contribution 

to tissue properties might be substantially larger than that of neurons; however, 

the analyses of this Chapter suggest that it is unlikely that this could reduce 

the contribution of neurons to a neglible amount since the effects of connections 

between glia (increasing average electrotonic length) are bounded. 



VI. SUMMARY AND BIOLOGICAL CONCLUSIONS 

1.0. THE ASYMPTOTIC APPROACH 

Governing equations for averaged ion transport properties of a model of 

bra in tissue (III.2.17) have been derived using an asymptotic method that reduces 

the calculation of the averages to the solution of periodic boundary-value 

problems. A simple tissue model has been chosen for analysis and it has been 

argued that the properties of this model correspond to those in real tissue. 

S imple equations for the extracellular potential and potassium concentration are 

obtained for describing current passing and field potential experiments. While 

other approaches are possible (e.g., M c P h e d r a n & M c K e n z i e , 1978; M c K e n z i e et 

a l . , 1978; H a v s t a d , 1976; Lehner , 1979), the asymptotic approach has the 

fol lowing advantages: 

(i) It correctly specifies, in general, the canonical microscopic problem for a 

large number of disconnected (physically separated) cells. Other approaches, such 

as assuming a uniform potential gradient (Havstad, 1976) or _a_ priori sy mme try 

in the cells (McKenzie et ah , 1978), do not. -Examination of bulk conductivity 

versus extracellular space fraction (Figure IV-B.4) show that bulk conductivity 

increases by a factor between 11 and 2 as a changes from a = 0.12 to a = 0.44, 

for various cell sizes. Since the extracellular space fraction has changed by the 

same factor (0 .44/0 .12 = 3.66) for each cell size and the geometry has not 

changed, i t is seen that the effect of the adjacent cells on bulk f lux, precisely 

specified by our model, is significant. 

(ii) B u l k parameters are computed using only the microscopic parameters 

which appear in the model, and these need not be estimated from the bulk 

parameter data. 

205 



VI. Summary and Biological Conclusions / 206 

(iii) The governing equation predicts all average bulk properties rather 

than simply a single one. This, with the above features (i-ii) means that bulk 

conductivity, current passing, and spatial buffering are all specified functions of 

the microscopic parameters. If all the experimental observations were consistent 

with these functions, the model would satisfy an exceptionally demanding 

criterion. 

(iv) The joint asymptotic analysis of dimensionless electrotonic and cell 

length parameters arises naturally in our approach and has not been appreciated 

in other approaches. This analysis (Chapter V) gives information about the 

sensitivity of the results to changes in membrane and intracellular conductivities. 

(v) Finally, a new and surprising result of this approach is that the 

systematically averaged equation for potassium concentration does not contain a 
2 

true diffusion term. The coefficients of the terms in (III.2.17) proportional to V C 

are different from those which would be obtained with a non-permeating ion and 

are a factor of 2 or 3 times larger than (it would be) if only -diffusion occurred. 

This is due to an 'unstirred layer' at the membrane which causes local 

variations in the transmembrane electrical potential. The term 'unstirred layer' 

refers to the concentration gradient which develops near a membrane due to 

electric current flow or other flux through the membrane. This fact could lead to 

experimentally observable results if the tissue has a two- or multi-tiered 

structure. 

Limitations of the present approach are discussed in Section 5.0. 
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2.0. B I O L O G I C A L C O N C L U S I O N S 

2.1. I n t r o d u c t i o n 

In the model of spreading depression developed by Tuckwel l and M i u r a 

(1978), the advancement of the S D wave depends upon the electrical response of 

+ + 
neural membrane to changes in [K ] . A l s o , i t has been speculated that [K ] q 

might (Prince, 1978), or might not (Somjen, 1984) p lay a significant role in 

epilepsy and other forms of bulk neuronal response (Leibovitz, 1977). F i n a l l y , 

variat ions i n the concentration [K- + ] o m a y have a wide var iety of physiological 

consequences under normal conditions (Krnjevic & M o r r i s , 1981). The role of 

[ K + ] q in these phenomena is not established, in part because of variat ions in 

physiological parameters between different preparations and var iat ion during the 

phenomena themselves. F o r example, the extracellular space and extracellular 

electrolyte composition are known to change during S D (Nicholson & K r a i g , 1981) 

and epilepsj ' (Prince, 1978). W h e n m a n y changes occur s imultaneously, it can be 

difficult to decide which factors are mediat ing and which are epiphenomenal. 

Therefore, i t is desirable to determine the existence and magnitude of potassium 

spatial transport mechanisms e.g., transcel lular current and spat ia l buffering, to 

describe the dependence of such transport on tissue parameters , as wel l as to 

estimate these parameters f rom experiments. 

In the following sections the implications of our model for these problems 

are discussed. O u r most important conclusion is that electrically mediated spatial 

t ransport does not require specialized cells and is re lat ively robust, i.e., this 

transport occurs in significant amounts w i t h physiologically relevant parameter 

values. Thus , this form of K + t ransport must occur and m u s t play a significant 
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role in a wide variety of physiological situations. Such a conclusion is difficult to 

obtain f rom experimental studies. Some difficulties in incorporating ion transport 

theory into the bulk conductivity theory is described in Section 4. It is suggested 

that these difficulties can be resolved by experiment. 

2.2. Properties of the Averaged Steady Equations 

In m a n y respects the properties of the averaged equations obtained here 

are s imi lar to those of the steady diffusion equation, i.e., Laplace 's equation and 

the ' spat ial buffering' equations based on the cable model ( S B C M ) used by 

G a r d n e r - M e d w i n (1983b). This is not surpris ing because these equations both 

describe conservative fluxes of electrical current and K + . The averaged equations 

of this thesis have a form s imi lar to the S B C M equations in the asymptotic 

l imi t of the electrical space constant for the cells going to zero. However , we 

emphasize that our equations cannot be 'derived' by the latter procedure. The 

S B C M equations contain bulk and transcellular conductances as empir ical , rather 

than derived, constants. In addition, the l imi t ing forms of the S B C M would 

contain a diffusion term, unlike the present -model. 

The values of the bulk coefficients in the present model are independent 

results of the model, unlike the coefficients of the S B C M . In this section we 

discuss properties of the averaged model equations in one dimension. 

To compare the results f rom our model w i t h experiments which have 

involved passing current across the cortical surface over relat ively long periods, i t 

is important to establish the steadj ' state properties of the solutions. Non-constant 

steady solutions to the model are obtained by prescribing C° = C ^ at some 

f ixed depth and C° = C at the surface of the cortex. Such boundary conditions 
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are chosen arb i t rar i ly , however. The most realistic steady solutions are those 

with finite non-zero [K + ] at inf ini ty since C° = [K + ] presumably tends to a 
o o 

constant deep w i t h i n the tissue. If C were governed by Laplace 's equation, it is 

obvious that the only such solution is C = constant. The same is true for our 

averaged equations (III.2.17) as shown below. 

The nature of the steady solutions for C m a y be deduced as follows. In 

one dimension, the governing equations (III.2.17) become, i f there are no sources: 

D,<2> + E , V + F , C = 0 , 
1 u u 1 uu 1 uu 

(2.1) 

uu ' uu c uu t D2<6 + E 2 V + F 2 C = TC., 

where D . , E . , and F . , j = l , 2 V : = j ' " 1 l n ( C 0 / C 1 ) are as defined in Sections I V . 6 . 2 

and I V . 6 . 6 and the subscript u denotes a par t ia l derivative wi th respect to the 

space variable u . In the steady state rC^. = 0, and the equations can be 

integrated directly. Integrating once, however, yields the first-order differential 

equations: 

(2.2) B.<j> + E . V + F . C = K . . 
J u j u j u j 

U s i n g the definition of V , e l iminat ing 3 * / 9 u f rom (2.2), and solving for C 

yields 
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(2.3) C u = HK,D2 ~ K . D Q C 

v(T)2F, - -DTF^C + E 2 - E , 

For steady solutions in which C is constant and non-zero, (2.3) requires 

D 2 K 1 - D 1 K 2 = 0 and C identically constant, as was stated above. The importance 

of this result is that the spatial derivatives of concentration and membrane 

potential C u = V u = 0 a n d hence the coefficients E. and F. do not appear in (2.2) 

and therefore, cannot be estimated from a steady state current passing 

experiment. However, as noted in Chapter IV, the coefficients, E , and E 2 , may 

be estimated within 10% to 15% (in any of the models employed here) from the 

value of D 2 , where D 2 is interpreted physically as the transcellular conductance. 

The significance of E 2 is described in the next Section 2.3. 

In the steady state with C=constant, the electrical flux is given by D 1 #u 

= K 1 and the ionic flux by D 2 0^ = K 2 . Since -both fluxes are proportional to 

the electric field, the ionic flux as a fraction of electric current in such an 

experiment is K 2 / K 1 = D 2 / D v Thus, D 2 / D , is the observed transport number 

in a current passing experiment. As shown in Chapter IV (Figure 6.8), the 

values of E 2 and D 2 / D , are not related. The value of the bulk conductivity 

D ! , however, with the observed transport number, will suffice to reliably 

determine E^ and E 2 . 

Since the present model predicts a reliable relationship between D , , D 2 

and E , and E 2 , the governing equations could be tested by independent 

measurements of these quantities. While D ^ and D 2 could be obtained from 

steady state experiments, it would be necessary to measure membrane potentials 
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and K + transport during a time-dependent experiment to obtain E , and E 2 . If 

E , and E 2 are not as predicted, the model would have to be modified. 

2.3. Magnitude of Spatial Buffering 

The relationship between the bulk coefficients and the magnitude of spatial 

buffering m a y be deduced by el iminat ing 0uu f rom (2.1) to obtain: 

(2.4) £v + fC TC„ 
u u u u t 

where £ = E 2 - ( D j / D ^ E , and £ = F 2 - ( D 2 / D 1 ) F 1 . The values of D 1 ; 

D 2 , E , , F , , and F 2 are given in Tables I V . 6 . 1 - I V . 6 . 5 , and E 2 , shown in 

F igure I V . 6 . 7 , is the same as E , to two significant figures. Mathemat ica l ly , we 

say that spat ia l buffering occurs when r C ^ is more negative (or positive) than i t 

would be i f diffusion alone were occurring for C y u ^ 0 (or > 0). The coefficient 

£ of V and £ of C in (2.4) are tabulated for (Case A) a = 20 m S , 0-

uu UU 0 1 

= 10 m S , a = 0.2, in Tables 2.1. A and for the two-tier study (Case B) in 

Table 2 . I .B . , where the values of £ and f in Table 2 .1 .A and 2.1.B differ by 

some 10% to 30% from the values of E 2 and F 2 . The m i n i m u m in £ in 

Tables 2.1.B and 2.2 corresponds to the m i n i m u m in F 2 discussed in Section 

I V . 6 . 5 . 

In order to compare spatial buffering to diffusion it is useful to compare 

the rates of decay of an ini t ia l concentration distribution, C = c ( l + asin(bu)) 

where 0 ^ a ^ 1, under (2.4) and under diffusion, respectively. To do this we 
2 

first obtain a bound for y V = C / C - (C / C ) in terms of C . For u 
u u u u u u u 

such that C < 0, we obtain: u u 
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Table 2 . I . A . One-Tier Coefficients in Equation (VI.2.4). 

Z,(Mm) £ f 

32.1 .0174 4.39 

46.0 .0280 5.51 

72.1 .0460 7.26 

103. .0600 8.17 

146. .0704 7.95 

Table 2 . I .B . Two-Tier Coefficients in Equat ion (VI.2.4). 

/,(nm) £ t 

32.1 .0072 11.39 

46.0 .0109 12.88 

72.1 .0131 12.18 

103. .0154 8.66 

146. .0184 20.80 

„ V 
uu 

2 

- a b sin(bu) 

1 + a sin(bu) 

(-

(2.5) 
2 

< - a b sin(bu) 

1 + a 

ab cos(bu) 

1 + a sin(bu) 

1 C . 

1 + a uu 

Hence, concentration distributions wi th smal l amplitudes (a < < 1) lead to 

a V < v'^C . Hence, an approximate lower bound for the coefficient of C u u u u r r u u 
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in (2.4) is (t + v~l£). This quantity is tabulated in Table 2.2. 

It can be seen that the coefficient of C is not very sensitive to the 
uu 

model employed, and does not depend on I in a simple w a y . Since this 

coefficient would have been 2.64 w i t h pure diffusion, there is a consistent spatial 

buffer effect which is between 2 and 8 t imes the effect of diffusion. To obtain a 

spatial buffer effect which is 5 times that of diffusion, as deduced by 

G a r d n e r - M e d w i n (1983b), requires a coefficient of C u u of approximately 13, which 

is generally consistent w i t h Table 2.2. 
The £ V and F C terms both contribute significantly to spatial uu uu 

buffering in the one-tier case (Case A), but £ ^ u u contributes little in the 

two-tier case (Case B). This means that i n Case A, the spatial buffering effect 

m a y be estimated accurately f rom E . , while in Case B it is necessary to know 

all the bulk coefficients, including F . . The implications of this are discussed in 

Section 3.3. 

3.0. I M P L I C A T I O N S F O R A M O D E L O F T I S S U E S T R U C T U R E 

3.1. T r a n s f e r C e l l s A r e U n n e c e s s a r y 

In the S B C M it is postulated that a sparse network of electrically 

continuous ' transfer cells' is the substrate of the cable equations employed in 

that model. In this section, it is argued that the assumption of a gl ial 

syncyt ium is a complex assumption, and that it is unecessary. G a r d n e r - M e d w i n 

(1983b) states "the assumption of a s y n c y t i u m is not str ict ly necessary " and 

that an a r r a y of cells would behave in essentially the same w a y . In this thesis 

this statement has been tested by direct computation and found to be correct in 

m a n y respects. Differences between the present model and the S B C M are also 
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Table 2.2. L o w e r Bound for C Coefficient. 
— — u u 

Z, Case A Case B 

(Mm) 

32.1 11.93 11.78 

46.0 11.41 13.46 

72.1 9.75 12.89 

103. 7.03 9.49 

146. 5.31 . 21.8 

noted. 

The assumption is complex because the present results and the S B C M 

indicate that given reasonable assumptions about gl ial membrane, the bulk 

transport numbers would be m u c h larger than those observed i f a l l gl ia were 

electrically continuous. In addition, Hounsgaard and Nicholson (1983) have 

examined potassium transport experimental ly using ionophoretically applied K + 

and concluded that gl ia were not electrically continuous in vertebrate cerebellum. 

Therefore, i f the S B C M is used, it is necessary to postulate a sparse network of 

syncyt ia l t ransport cells w h i c h , because they are sparse, have sufficiently high 

internal resistance to account for observed bulk transport numbers . 

B u l k potassium current w i t h i n the tissue of between 7% and 30% of bulk 

electric current is consistent w i t h the present knowledge of parameters for a 

tissue consisting of disconnected cells (neurons or glia). Therefore, the assumption 

of syncyt ia l transfer cells is unnecessary, since the observed bulk transport 

numbers can be accounted for by current flows through non-syncyt ia l elements of 

the general cell population (neurons and gl ial cells). The magnitude of the current 
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depends mainly on the product of membrane conductance and cell length, and to 

some extent on intracellular resistance, extracellular space, and relative position of 

the cells with respect to each other. On the other hand, our analysis does not 

rule out the possibilhvy that specialized transfer cells exist. 

It may be possible to test for presence of transfer cells by performing 

current passage experiments in the presence of pharmacological agents which 

disrupt the putative coupling between glia (Tang et aL, 1985). 

The computed transport number range includes values close to experimental 

observations (0.06 over a 5 mm diameter region) as well as values considerably 

higher than those observed. If our model is correct, it is predicted that larger 

transport numbers will be observed with other preparations. In addition, higher 

transport numbers might be observed at finer length scales, since it is expected 

that the governing equations will be different on such scales. Differences between 

preparations also can occur because of tissue (tier) structure or differing 

surface / volume ratios of cells. 

3.2. Disconnected Cells Cannot Be Neglected 

Many of the cells in neural tissue are not electrically continuous or 

syncytial and the present work was undertaken, in part, to assess the 

importance of such tissue components. The mathematical technique 

(homogenization) employed here derives for the first time the governing equation 

for electric current and ionic flux through closely apposed but disconnected cells. 

Although our model cells were electrically disconnected, they still exhibited 

transcellular currents comparable to those obtained from the SBCM. Therefore, 

even if a sparse syncytial network existed, the disconnected cells in the tissue 
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could not be neglected. Our model cells were different electrotonically from a 

syncj'tium because transcellular current was independent of the intracellular 

conductivity in the biological parameter range (Figure IV. 6.2). Instead, this 

current depends almost exclusively on the membrane conductance. As shown in 

Chapter V, a syncytium may be characterized electrotonically by the fact that 

transcellular current depends primarily on its intracellular conductivity. 

For high membrane conductance, the transcellular conductance of a coupled 

two-tier model, is considerably less than that of an uncoupled model. Most 

previous interpretations of such data have been based on uncoupled models, 

however. Somjen and Trachtenberg (1979) suggested that the relatively high K + 

conductance of glial membrane implies a bulk tissue conductivity much larger 

than the observed value. This suggestion seems to be based on the idea that if 

membrane conductance were high, then current would flow through the 

intracellular space, so that the bulk conductivity ought to be close to the 

intracellular conductivity. Our results show that this conclusion need not be 

correct in a coupled two-tier model. 

3.3. Tier-structure May Be Important 

Because cells of different sizes coexist in neural tissue, we investigated the 

effect of cell populations with different asymptotic sizes. The results indicate that 

different governing equations will hold for passive transport at different length 

scales. Since transcellular flux depends almost entirely on cell size (or membrane 

conductance), different populations of cells of known size will characterize the 

tissue depending on the given length scale. Such effects have been modelled here 

with two cell populations, and it is supposed that the population composed of 
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smaller cells has the same membrane properties as the larger population. These 

simple assumptions have been used because little data exists to support more 

complicated assumptions and the results obtained. 

The results of Section 2.3 provide an experimental test of whether a 

given tissue has a two- or mult i - t ier structure. In a tissue accurately described 

by a one-tier model, the magnitude of spat ia l buffering observed can be predicted 

f rom D r , D 2 , E 1 ? and E 2 ; which m a y be deduced f r o m a current passing 

experiment. If the tissue is accurately described by the two-tier model, however, 

the prediction of spatial buffering derived using this method w i l l be smaller than 

the spatial buffering observed. 

Another k ind of tier structure w h i c h m a y exist, is a network of transfer 

cells surrounded by disconnected gl ia . If a sparse network of specialized transfer 

cells existed, i t is l ikely that surrounding glia would render it ineffective as a 

means of K + t ransport by ra is ing the effective extracellular transport number for 

K + . In Gardner -Medwin ' s S B C M (1983b) the parameter |3 m a y be interpreted as 

the ratio of the magnitude of spatial buffer f lux to diffusive flux and has the 

form .6= (t£) ^"R (R +R.) ^ where R. is the bulk transcellular -resistance and R 
^ Tv o o i i o 

is the bulk extracellular resistance. Hence, the given expression indicates that 

relat ively smal l changes in extracel lular transport number t ^ can dramatica l ly 

alter the importance of spatial buffering i n a tissue corresponding to the S B C M 

model. For example, the conservative assumption that 7% of current is 

transcellular in the surrounding gl ia , reduces ^ by a factor of 0 . 0 7 / 0 . 0 1 2 = 5.8. 

The model which was used impl ic i t ly in the last paragraph was not 

investigated in this thesis. Therefore, further experimental and theoretical work 

are necessary to completely assess the possibility that s m a l l cells might reduce 
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the effectiveness of a transport network composed of larger or connected cells. 

4.0. COMPARISON WITH EMPIRICAL PROPERTIES OF BULK TISSUE 

4.1. Introduction 

Nicholson and Phi l l ips (1981) have investigated the properties of diffusive 

transport of non-permeating ions i n bra in tissue, and were able to describe such 

diffusion w i t h a simple isotropic model. The physiologically significant potassium 

ion, however, is not described by this model. In this section i t is shown that i t 

is necessary to use bulk governing equations and to consider diffusion, 

conductivity, and transport number data in order to obtain a complete model for 

potassium ion transport. 

4.2. Significance of Transcellular Current 

If no bulk transcellular current flowed, bulk tissue would have few 

interesting electrical or ion transport properties. F o r this reason it is important 

to demonstrate that significant bulk transcellular current exists. A direct 

measurement of the bulk transcellular current is provided by the measurement of 

potassium transport through tissue i n the presence of an electrical current 

(Gardner -Medwin , 1983a). The fact that very few assumptions were made here in 

der iving a significant bulk transcel lular current makes our theoretical study an 

independent piece of evidence for the existence of significant transcellular f lux. 

The results reported here, however, show that the factors affecting transcellular 

f lux in a coupled model are complicated. Thus , the work presented here is not 

complete, because the results have not been compared to experiment. 
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4.3. Scale Effects 

The scale effects described in Sections V . 2 . 4 and V . 3 are likery to be 

useful for m a n y different situations because they are part icular ly simple. The 

predictions of the present model are s imi lar to those of the S B C M , as they 

should be in order to explain known observations. However , the present model 

also contains the possibility of increased, decreased, or anisotropic spatial buffer 

capacities at shorter or longer length scales. These possibilities have not been 

systematical ly investigated, though the existence of such phenomena is suggested 

by an isolated f inding of G a r d n e r - M e d w i n (1983a). H e found that the strength of 

field potentials due to superfusion of cortex wi th K + over an area of diameter 

1 m m produces a smaller (30%) field potential than that over a 5 m m diameter 

area. 

According to the S B C M (Gardner -Medwin , 1983b), spatial buffer fluxes 

require potassium gradients to be extended for a longer distance than the 

electrical space constant of the 'transfer cells'. Thus , (it is argued) .at very short 

length scales spatial buffering is not significant compared to diffusion. This 

argument is correct for the S B C M model. However , we have shown that simple 

diffusion m a y not occur in bulk for the potassium ions since disconnected cells 

contribute to transcellular f lux even i f a transfer cell network also exists. 

Therefore this conclusion requires further investigation. 

The data on conductivity anisotropy appear to be inconsistent w i t h the 

f inding (Gardner-Medwin, 1983a) that only 6% of D C current passes through 

cells. If diffusion in the cortex is isotropic and the steady diffusion equation is 

the same as the equation for steady electric current, i t follows that anisotropy 

must be due to transcellular f lux. However , based on our results (or the S B C M ) , 
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it seems unl ike ly that transcellular flux could account for anisotropy of 3:1 to 

5:1. Thus , i t seems l ikely that such discrepancies must arise f rom scale effects. 

These effects can be investigated by simultaneous measurement of 

anisotropic conductivity, diffusion, and spatial buffering at the same length scale. 

It might be convenient to perform such an experiment in a slice preparation. If 

the present model is correct, the conductivity, diffusion, and spatial buffering 

results w i l l be consistent when simultaneous measurements are performed at the 

same scale, but w i l l v a r y (together) as the scale of measurement is var ied. 

5.0. LIMITATIONS 

5.1. Transport Number Simplification 

The derivation of an averaged governing equation (III.2.17) for electrical 

current and ionic f lux begins w i t h a non-linear equation and results in a l inear 

equation w i t h constant coefficients. M o s t of the approximations employed can be 

justified asymptotical ly or in other, wel l defined senses (Bensoussan, L ions , & 

Papanicolaou, 1978). In addition, the convergence properties of s imilar mult iple 

scale expansions have been investigated numerical ly to some extent (Bourgat, 

1977). 

The f ina l simplification of Chapter I V is not an asymptotic approximation 

of this type, however, and (until proven otherwise) is mathematical ly ad hoc . It 

is important to emphasize that existence of a transport number (with constant t ^ 

and ) is assumed throughout the experimental (Barry & Hope, 1969) and 

thermodynamic l iterature (Katchalsky & C u r r a n , 1965). In Chapter I V it is 

shown that no complications are introduced in extending this theorj ' to bulk 

tissue. E x p e r i m e n t a l evidence (Gardner-Medwin, 1983a; G a r d n e r - M e d w i n & 
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Nicholson, 1983; H a v s t a d , 1976; Nicholson, 1975) suggest that the non-linear 

effects neglected are not qual i tat ively significant under m a n y conditions of 

physiological interest. 

5.2. Tortuosity and Geometry Assumptions 

It was not practical here to solve a canonical microscopic problem which 

exhibits the high tortuosity that is characteristic of rea l neural tissue. This 

shortcoming of the present work, together w i t h the fact that the coefficients were 

calculated in two dimensions, complicates the interpretation of our results. 

The l imited investigation here of the effect of geometry was undertaken in 

order to assess qualitatively the magnitude and direction of such effects. In this 

respect our study is s imi lar to the study by M c P h e d r a n and M c K e n z i e (1978) of 

the average conductivity of inhomogeneous media w i t h spherical inclusions 

arranged i n lattices of different types. M c P h e d r a n and M c K e n z i e ' s results are not 

directly applicable here because they studied spherical .inclusions without 

membranes. 

In general our results indicate that when membrane conductance is low in 

coupled or uncoupled models, there is little difference between the bulk 

conductivity of straight and staggered a r r a y s of cells. A t higher membrane 

conductances, the uncoupled model shows a reduction of global conductivity in the 

staggered a r r a y s because interaction between cells is more important at higher 

membrane conductances. For coupled models, however, the results for straight and 

staggered a r r a y s were near ly identical i n a l l of our studies because the effects of 

coupling between transmembrane potential and concentration dominate at higher 

membrane conductances. Thus , effects of geometry in the coupled model are 
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insignificant. Staggered arrays and straight ar rays conduct s imi lar proportions of 

transcel lular current in both coupled and uncoupled models. 

Thus , our results suggest that the unrealistic geometries used here wi l l 

not seriously affect conclusions about transcellular f lux. 

6.0. SUMMARY 

Histor ica l ly , previous tissue models have been formulated in order to model 

a single bulk property such as impedance (Havstad, 1976), spat ia l buffer capacity 

(Gardner-Medwin, 1983a b), or diffusion properties (Nicholson & Phi l l ips , 1981). 

N o previous model has attempted to synthesize the modelling of all three 

properties. A n important reason to do this is that reliable observations from the 

experimental l i terature (isotropy of diffusion, anisotropy of conductivity, smal l bulk 

tissue transport number of K + ) cannot be easily reconciled w i t h previous models 

of cortical tissue structure. 

Electr ical models of tissue has been explored extensively; for example, 

Ranck (1963,1964), Eisenberg et ak, (1979), and Nicholson (1973) have given 

assumptions which have been useful experimental ly. U n l i k e the studies of K + 

transport , these impedance studies contained no direct measurements of 

transcel lular f lux. Previous models of cortical conductivity or impedance either 

have assumed that transcellular f lux is the same as it would be i n a uni form 

voltage gradient (Havstad 1976) (an assumption which is quali tat ively reasonable), 

or assumed that transcellular f lux is negligible (Nicholson, 1973), or not modelled 

transcel lular f lux at a l l (Nicholson & F r e e m a n , 1975). These previous studies also 

did not model unst irred layers at the membrane, which we have shown to be 

important under some conditions. 



APPENDIX VI.A. RECENT LITERATURE 

A s noted in the introduction, theoretical work on bulk tissue properties is 

difficult and has appeared infrequently. Recent work (1985-1989) on conductivity 

and spatial buffering has chiefty consisted of experimental work on microscopic 

preparations i n vitro and is therefore not directly relevant to the present work 

on bulk properties. Aspects of these studies are discussed below. The exceptions 

are Gardner -Medwin ' s (1986) theoretical exposition of the concept of ' spatial buffer 

capacity ' , and Dietzel and Heinemann's (1989) simultaneous experimental study of 

bulk current sources, spatial buffering, field potentials, and changes in 

extracellular space. Gardner -Medwin 's work is a simple and brief extension of the 

(1983b) theory. Dietzel and Heinemann found current sources and changes in 

extracellular space consistent w i t h our model (and the S B C M ) ; but also deduced 

that other, active, uptake processes played a significant role in the removal of 

potassium f rom the extracellular space. 

Exper imenta l studies of microscopic systems were of several types. Studies 

of isolated ret inal gl ial cells included studies of the distribution of potassium 

-conductance, ( B r e w & A t t w e l l , 1985; N e w m a n , 1986; Reichenbach & Eberhardt , 

1988) or cell shape (Eberhardt & Reichenbach, 1987), and metabolic effects of 

K + (Coles, 1989). Other studies examined spatial buffering in intact re t ina 

• ( K a r w o s k i et ak, 1989a, b). These studies of ret inal cells are of independent 

interest, but give l imited information about the fundamental role of spatial 

buffering in m a m m a l i a n cortex and cerebellum. In addition, potassium channels of 

different kinds have been studied in ret inal glial cells (Newman, 1989) and 

cultured astrocytes (Gray & Ritchie, 1986; Sonnhof & Schachner, 1986; Sonnhof, 

1987). These preparations are wel l suited to obtaining information about the 

223 
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membrane properties of glial cells and this work will likely lead to further 

refinement of the microscopic properties used in bulk tissue models. Such findings 

must be regarded as preliminary, however. In particular, data must be obtained 

regarding the generality of observed glial membrane properties across cell types 

and species before such properties are incorporated in general models. 
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