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ABSTRACT

The accurate modelling of bulk passive properties of neural tissue is essential :to
the modelling .of macroscopic phenomena in the brain such as spreading
depression and epilepsy. Properties which characterise the .passive .and active
flows of ions or electric current through tissue are referred to as transport
properties. Such properties associated with passive flows include bulk conductivity,
bulk diffusion coefficient, and those associated with electrically ‘mediated ionic flux
which is called ’spatial buffer flux’. While models for such transport properties of
cortical tissue have been published, each of these models contained different
assumptions about the structure of the tissue. Recent data on potassium transport
through neural tissue are important for the construction of a unified model (.e.,
based on a consistent set of assumptions) because they provide measurementé of
the amount of bulk electric current bassing through cell membranes.

In this thesis the Nernst-Planck equation is used as the governing
‘equation for Jdon .transport and .electric potential, with specification .of the jump
conditions at the cell membrane. An asymptotic expansion and - averaging
procedure is -described which reduces -the computation -of :bulk properties to a
calculation for a single cell. The idea of transport numbers (a proportionality
constant between ion transport and electric field vectors) in electrolytes is
introduced and it is shown that this idea applies to bulk tissue. Estimates of the
coefficients in the averaged equations are computed numerically for different
geometries and a range of microscopic parameter values including lcell size,
membrane conductance, intracellular iconductivity, extracellular space fractional
volume. An important finding s that -theoretical transcellular current, i.e., ‘vthe

bulk current flow through disconnected cells, is significant and relatively
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insensitive to several of these parameters, in particular cell size and membrane
conductance. |

The role of electrotonic parameters (the parameters involving electrical
constants) in the tissue model is discussed and a formal analogy between
transcellular current and electrostatic polarization is introduced as an aid to
physical understanding of the transport properties of arrays of disconnected
(physically separated) cells. Asymptotic analyses of the electrotonic parameters are
performed in orde;“- to supplement the numerical solutions with qualitative results,
and it is shown how to incorporate asymptotic assumﬁtions about these
parameters into an asymptotic model.

The properties of steady solutions to the averaged equations are discussed
and it is shown that some coefficients of the equations cannot be estimated in a
steady experiment. It is argued that the general model proposed here is simpler
and more aﬁpropriate ‘than cable theory for bulk tissue. For example, it is
-concluded that specialized transfer cells are ‘unnecessary to -explain -transcellular
flux and spatial buffering, that disconnected cells cannot be neglected, and that
cells of differing sizes may contribute :.significantly to transcellular flux. Since
transcellular flux is significant and insensitive to geometry and intracellular
conductivity in 01;1' model, our .results imply that spatial buffering occurs very
generally.

This model is chosen to include most measurable quantities such as
extracellular  potential and  extracellular K+ concentration, and to be
fnathematically simple. Since it is shown that the bulk .parameters of the model
are relatively insensitive to many of the microscopic parameters of the tissue,

the resulting governing equations should be applicable to many physiological
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situations.
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When the mind wills to recall something, this wvolition causes the vlitt‘le [pineal]
gland, by inclining successively to different sides, to impel the animal spirits
toward different parts of the brain, until they come upon that part where the
traces are left of the thing which it wishes to remember; for these traces are
nothing else than the circumstance that the pores of the brain through which the
spirits have already taken their course on .presentation of the object, have
thereby acquired a greater facility than the rest to be opened again the same
way by ‘the spirits which come to them; so that these. spirits coming upon the
pores enter therein more readily than into the others’.

R. Descartes (1664)

Passions of the Soul.

Part I, Article 42
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The concept of the brain cell microenvironment rests on a triadic relationship,
as yet very incompletely defined, between neuron, glia, and the encompassing
extracellular space. Glia remain the least categorized element and for this reason
are sometimes included as constitutents of the microenvironment and sometimes
not .... Ambiguity of definition is desirable in our present ignorance because too
much rigor would stifle imaginative conception. The brain cell microenvironment
does indeed resemble that of a social environment, such as a city, where both
structure and space play constantly varying roles in the -total ambience.’
-C. Nicholson, (1980)
‘Dynamics - of the brain cell microenvironment.

Neuroscience Research Program Bulletin; Vol.18, no. 2, pl185.
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’ The postulate that the transfer cells form a syncytium is not strictly
necessary. 1Independent transfer cells with processes that overlap with their
peighbours by distances much greater than their electrical space constants would

?

behave in essentially the same way.
A. Gardner-Medwin (1983 b)
Analysis of potassium dynamics in mammalian brain tissue.

Journal of Physiology, Vol.335, p397.
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I. GENERAL INTRODUCTION

1.0. OBJECTIVES

Studies -of the brain from a variety of points .of view, :e.g., -experimental,
theoretical, .microscopic, macroscopic, vertebrate, invertebrate, functional, structural,
chemical, electrical, etc. have enormously increased our understanding of many
different brain phenomena.t Current research on excitable cells seeks to
understand the sub-microscopic processes controlling the permeation (passage) of
ions fhrough the membrane which imbue the membrane with so called active
properties. The behavior | of singlé ion conducting channels is being studied in
experimental electrophysiology, molecular biology, and by theoretical means. From
a more general point of view these studies are valuable for at least -the
following reasons. Firstly, the study of the brain ultimately may illuminate the
nature of thought and behavior, as Descartes realized (see page xi). Secondly, the
medical treatment of pathological conditions such as epilepsy requires a basic
scientific understanding of -brain function.

\ Since the .operation -of the brain depends upon -physical and chemical
‘mechanisms, the physics and chemistry .of -the nervous system are relevant to
thought and behavior, to medicine, and to the principles of brain function. The
present work is intendéd to advénce the understanding of the physics of brain

function.

T For a general introduction to neurophysiology, the reader is referred to a
reference such as Kandel & Schwartz, (1983). While it is not possible to provide
a detailed introduction to neurophysiology here, many terms which may not be
familiar to every reader will be defined. Despite Nicholson’s remark (see page
iii), which referred to nomenclature rather than mathematical definitions,
-definitions are essential to -construction of models. Biological terms which .are
standard, but which may not be familiar to mathematicians such as anion,
membrane, etc. are underlined and defined in the glossary which appears at the
end of this introductory Chapter.



I. General Introduction / 2

In this thesis a mathematical model of electrical potential and ionic
concentrations in mammalian nervous tissue is derived, as much 'as possible, -from
Hirst principles. The resulting‘ equations are analysed, solved numerically, .and -the
physiological implications of the analysis are discussed. "Qur -ultimate aim -is to
produce a single model for the macroscopic electrical and ionic properties of
neural tissue, so that results on tissue conductivity, ion transporf, cell swelling
and electrical potential can be correctly incorporated within the same model.
Here, we derive and solve (approximately) an equation for the‘ membrane
potentials of a collection -of -electrically discontinuous  potassium permeable cells of
differing physical and electrotonic lengths, subjected to an electric field, and
spatially varying potassium concentration.

Many of the interesting aspects of brain function, the most important
example of which is behavior, occur at a macroscopic scale, involving the joint
activity of many cells. Understanding the physical processes underlying membrane
:potential changes in individual cells is generally recognized to be inadequate, in
itself, to account for learning, memory, and the computing capabilities of the
brain (Kandel & Schwartz, 1983, .pl11,23; Lashley,1950). For this Teason .it is
desirable to study the properties of large numbers of cells in bulk.

The cells which are thought to be important in most present theories of
brain function are neurons (Kandel & Schwartz, 1983; Hebb, 1955,1958). While
the active properties of neurons are seen as the primary mediators of brain
function, many significant manifestations of active properties such as neuronal

firing rates are sensitive to the resting -transmembrane -potential. The resting

‘transmembrane potential is determined to a -great -extent by the prevailing

electrical potential gradients within the tissue and the extracellular concentration



I. General Introduction / 3
of potassium. Thus, an essential preliminary to -the study of -active ‘properties in
‘bulk tissue is an understanding -of the factors affecting the electrical potential
-gradients and extracellular potassium concentfation.

‘The present work is a theoretical study .of these factors. The work -will
be directly relevant to several types of experiment; namely those which involQe
electrical brain stimulation, measure ionic concentrations in tissue, measure
effective bulk physical properties of tissue, such as impedance or diffusion
coefficient, or involve electrically mediated potassium transport (which is discussed
in -detail Dbelow). From an understanding of the factors influencing these
parameters, (indirect) inferences fnay be drawn as to the electrical - and ionic
‘'microenvironment’ or ambient conditions experienced by neurons (Nicholson, 1980)
in vivo and hence about processes of direct physiological interest. Along with the
modelling of ion homeostasis, the determination of bulk current-voltage relations is
an essential step in developing accurate continuum models of gross phenomena in
‘the nervous system, such .as spreading .cortical .depression (Tuckwell & Miura,
1978) and epilepsy (Prince, 1978).

The use of mathematical models in -modelling amicroscopic properties is well
established (Hodgkin & Huxley, 1952 d). In the present chapter the classical
(microscopi'c) model of the neuron is described and we indicate how basic physics
as embodied in the cable equation (described below) has influenced theory and
experiment. The relatively new field of macroscopic neural modelling is briefly
described, with its connections to neuroanatomy and the Dbrain cell
microenvironment. If successful, the theory of tissue properties presented here will
play ‘a role in macroscopic modelling analogous to the -role of cable theory in

discussions of the neuron.



I. General Introduction / 4

The general mathematical problem is to determine the bulk average flow
of an ion which flows according to -the Nernst-Planck :equations in én
inhomogeneous medium containing periodically placed inclusions. Inside ‘these
inclusions the ionic concentrations .and electrical -conductivity are different from the
surrounding medium, and the inclusions are surrounded by barriers (membranes)
.across which jump conditions are satisfied, relating the sizes of the discontinuities
in electrical potential and ionic concentrations to the flux across the barrier. The
so}ution of this mathematical problem will be applicable to the flow through
tissue of permeating ions.

Related abstract mathematical problems are discussed in Bensoussan et al.,
(1978). There, it is shown how to construct formal multiple scale solutions to
these related problems and the convergence of these expansions. is proved under
various assumptions. The application of such techniques to determining the
average properties of inhomogeneous media is called homogenization. The
-application of the technique to -the Nernst-Planck - equations, and to the type of
inhomogeneous medium- described here is new, however. Exposition of -the details
of -this reduction, solution, and .interpretation of -the mathematical problem .and its
application to ionic homeostasis form the substance of this thesis.

There are some novel physical features in our derivation. The final
averaged equations for the membrane potential are non-linear. Each biological cell

generates current through the extracellular space because of wvariations in -the

ionic Nernst potentials along its length. When the flux lines of these (or other)
current -sources pass through -‘the membranes -of adjacent cells, ions must
enter/leave the extracellular space, thus complicating the description of the ionic

concentration profiles.
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2.0. PHYSIOLOGY AND PHYSICS DEVELOP IN PARALLEL

It will clarify 'the objectives to state our view of the .relationship between
neurophysiological phenomena and mathematical models of them, and to briefly
review ‘the history of this relationship.

Rene Descartes (1545-1650) the French philosopher, was one of the first
writers to formulate a neurophysiological model different from those of the
Greeks. While his model was not mathematical, the model sketched in the
introductory quotation (see page xi) is similar to modern neurophysiological models
because of its dependence on physical mechanisms.

Later, physiological models became more detailed in order to accommodate
the measurements of a more mature physics and improved instrumentation
technology. Once techniques had been invented to measure electrical - phenomena,
theoretical electrical mechanisms replaced the hydraulic physiological mechanisms‘
.postulated by Descartes, and theories began to be tested.

In his memoir of 1791, Luigi Galvani described the response of a frog
nerve-muscle preparation to electrical - stimulation from a sparking machine,
atmospheric electricity, and a bi-metallic arc. The galvanometer was invented by
Ampere and Babinet (1822); and the ’action current’ of muscle and nervet was
.'discovered by du Bois-Reymond in the = 1840’s (e.g., du Bois—Reymbnd
(1848,1849)).

Theoretical developments in physics also influenced the development of

neurophysiology. Maxwell’s Treatise on Electricity and Magnetism appeared in
1873, and the Nernst-Planck equations for diffusion of charged particles in an

electric field were formulated about 1890. The .availability of these equations was

t In modern terminology, the ’action potential’ or ’'nerve impulse’.
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a factor in the development of several theories of ionically mediaﬁed bioelectric
phenomena by Nernst (1899), Cremer (1906,1909), and Bernstein (1912) in the
early part of this century.

The roles of .lons and of electricity ‘in physiology are 'insepa;rable. The
dissociation of electrolytes in water into charged species called ’ions’ was
demonstrated by Arrhenius in 1883. Theories of bioelectric phenomena prevalant
since the late nineteenth century depend on the potassium ion, (K+), and other
ions such as sodium, (Na+), and chloride, (C1) (Biedermann, 1895; Ostwald,
1890;. Donnan, 1911). The apparently disparate topics of  tissue -electrical
properties and ion transpo’rt' are intimately intertwined from the physiological
point of view,

In the post-World War II period, Hodgkin énd Huxley (1952 a-d) used a
mathematical model to describe the action potential as a regenerative change in
ionic permeability of nerve cell membrane and this model is accepted today in
most essential features. Their theoretical work was -confirmed by detailed
measurements using the (then) new technique of the voltage clamp, and clever
.experimental protocols.

Thus, since the eighteenth century, mathematical f,heory in physiology has
advanced in tandem with physical theory and measurement techniques.

Recently, the invention of ion-selective micro-electrodes has made possible
the in vivo recording of variations in extracellular ionic concentrations within
nervous tissue (Zeuthen, 1981). To complement this development, a more detailed
-and rigorous mathematical theory of ion transport in inhomogeneous ‘media would
be valuable.

Following Aris (1978) a mathematical model may be defined as: ’any
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[mathematically] complete and consistent set .of mathematical equations which is
thought to correspond to some other -entity, its -prototype.’ By enforcing
mathematical consistency among the relations of the model it is possible to
summarize empirical .relations ~ec0n§mically, discover sources -of inconsistency, and
to formulate new testable hypotheses. A mathematical model applicable to
neurophysiology will serve these purposes for neurophysiologists. Therefore, an
applicable model must be tractable, and logical completeness does not (entirely
determine its wvalue. However, it is necessary to accommodate relevant physical

measurements which are .presently possible.

3.0. NEURONS AND GLIA

Biological cells consist of cytoplasm and cell organelles surrounded by a
lipid membrane.t

Anatomists of the eighteenth century believed that the brain was glandular
and considered nerves to be ducts which conveyed the secretions of the brain to
the periphery. The foundations ‘of :modern neuroanatomy were laid by 'Santiago
Ramon y Cajal and Camillo -Golgi in the nineteenth century (Cajal, 1892; Golgi,
1906) who (with others) developed the histological ‘techniques such .as *the silver
impregnation method (which allowed the visualization of an individual nerve cell
in a tissue slice containing many cells) and ‘the conceptual ‘fou.ndation which led
to the modern view of the neuron as the primary active elemenﬁ in brain
function.

Neurons are excitable cells, and they are able to transmit information

v The topics of these sections are technical, but treated in standard modern
textbooks (e.g., Kandel & Schwartz, 1983; Jack et al.,, 1975). Material to be
used here will be given in self-contained form, but with relatively little
commentary.
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down the long process of the neuron, called the axon, by means of propagating

action potentials.

The central nervous system of humans consists of some 1011 neurons of

which 1010 are in the cerebral cortex. Neurons are surrounded by satellite cells,

glia in the brain, and other morphologically distinct cells in the peripheral

nervous system. Central glia are classified by morphology -énd location into
astrocytes, oligodendrocytes, microglia, and ependymal cells and outnumber central
neurons by about nine to one. The functions of glia have not been completely
elucidated and have been the subject of increased speculation and experiment
(Varon & Somjen, 1979; Walz & Hertz, 1983). Glia contribute a third to a half
of the total intracellular volume, and are found in close association with both
blood vessels and neurons. Because astrocytes typically possess many radiating
processes they contribute a substantial fraction of the large membrane surface
area separating the intracellular and extracellular spéces in brain tissue (Hertz,
1982). 1 -Oligodendrocytes are physiologically important because -they form the
myelin which coats the axons of central neurons; however, data on the
differences ‘between the physical properties of astrocytes and .oligodendrocytes are
only recently becoming available (Hertz, 1982; Pevzner, 1982; Kettenman, et al,
1984 b), and data about other types of glia are sparsé. The functions ‘of glia
other than astrocytes and oligodendrocytes have not been established. Because of
this lack of data we will not differentiate between types of glia in this thesis.
Ions do not easily cross a lipid membrane; however, neural membrane
contains pores which selecti\‘7e1y permit the passage -of certain ions such as K+

and Na+, and Cl . A pore which selectively passes potassium ions is called a

t,The surface volume ratio in mammalian brain has been estimated at 5u2 per
u~ of tissue (Horstmann & Meves, 1959).
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‘potassium -channel and a pore which selectively passes sodium ions is called a
sodium channel. The abundance and properties of different membrane channels
‘determine the permeability of the membrane to each ion. The states of these
-channels, -and hence, the membrane permeabilities, may depend .on the electrical
potential difference across the membrane, as discussed in Section 5.0. In additiqn,
the states of some membrane channels are governed by chemical factors released

by neurons at synapses during synaptic transmission.

The passage of cations (positively charged ions) out of the cell, or anions
(negatively charged ions) into the cell constitutes an outward electric current. For
neurons and glia the intracellular potassium concentration, [K+]i’ exceeds the
extracellular potassium concentration, [K+]O, (where the subscripts i and o refer
to intracellular and extracellular concentrations, Trespectively), and vice versa for
[Na+]i and [Na+]o.‘ Because the concentrations of the ions inside and outside the
cell are different, they tend to move across the membrane, carrying electrical
charge -with ‘them. The -resulting iransmembrane electrical :potential (inside
potential minus outside potential) opposes the chemical gradient due to the
-concentration -differences. A resting .transmembrane electrical -potential, Vr’ is
attained when the net transmembrane current remains zero.

If a membrane is permeable to only one ion, the transmembrane potential
Vi associated with zero net transmembrahe current is given by the Nernst

equation:

, _ RT 1
(3 1) Vi = 2L I Ci /C)

where
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Cf; is the extracellular concentration and Cii is the intracellular concentration
of the -on .and z; is its ionic valence.T
When the membrane is permeable to several ions, the transmembrane
potential is :more difficult to -calculate. .In :this case, the physics are approximately
governed by the Nernst-Planck equations discussed in Chapter II, however, the
internal parameters of the membrane and the correct physical model for the
membrane are not certain (Plonsey, 1969; MecGillivray & Hare, 1969). Such
difficulties cannot be resolved by theoretical analyses alone. For this reason, we
assume (Hodgkin & Huxley, 1952 a-d; Kandel & Schwartz, 1983) that the
resting transmembrane potential satisfies the -Goldman-Hodgkin-Katz equation

(Goldman, 1943; Hodgkin & Katz, 1949):

(3.2) vV = ﬂln( Py[Na ]+ P,[K'] + P,ICl ] )

Py[Na'] + P,[K'] + P,Cl ],

where R is the gas constant (joule K'lmol-l), F is Faraday’s constant, T is the
absolute temperature, and ‘the subscripted quantities ‘Pi, 1i=1,2,.3 are -the
permeabilities of the membrane to Na+, K+, and Cl , respectively. This
equation is empirically correct for the squid axoﬁ, (Hodgkin & Katz, 1949) which
is tﬁe classical physiological model for nerve membrane, and may . be derived
heuristically from the Nernst-Planck equations assuming that the electric field

within the membrane is constant and separate ionic fluxes are uncoupled. When

the permeability to sodium, P,, and to chloride, P,, .are zero, equation (3.2)

1 -Equations are numbered consecutively within Sections. Thus, the first equation
" of Section 3 of Chapter I is equation (I.3.1). Subsection numbers do not appear
in equation numbers and the Chapter prefix is only used to refer to equations
from other Chapters. :
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reduces to the Nernst equation (3.1) for potassium.. This assumption about the
sodium and chloride .permeabilities is supported by most reports on glial cells
(Varon & Somjen, 1979), and (3.1) approximates the resting potential for
meuronal .membrane, ‘presumably because P, is -relatively large.

Although the ‘net transmembrane current at rest is zero, the membrane
may admit net fluxes of K+, Na+, and CI . A steady concentration of these
ions in the cytoplasm is maintained by the sodium-i)otassium pumb; (Glynn &
Karlish, 1975), a complicated assembly of protein subunits in the membrane
which exchanges external aK+ ions for internal Na+ at the expense of metabolic
energy. Transport of ions which utilizes metabolic energy 1is called active
transport, (Kandel & Schwartz, 1983). The distribution of anions between the
cytoplasm and extracellular region may be determined by the distribution of
cations. The net charge of the cell interior relative to the extracellular region is
limited by the small capacitance of the membrane, so that the total electrical
charges of ‘intracellular .anions and cations .are .equal. In the invertebrate nervous
system, the distribution of ions in extracellular space 1is influenced by the
-presence -of negative charges -on molecules in the intercellular -clefts. Because
diffusion in the mammalian brain is unaffected by the charge of the diffusing
ion, (Nicholson & Phillips, 1981) and in view of other evidence (Gardner-Medwin,
1983a) this effect is not considered here. The distribution of  specific anions,
especially Cl  and HCO3', may be modified by an anion transport system
(Kimelberg & Bourke, 1982) in some cases. We will not model active transport
of ions in this thesis, however. ‘—‘Unless otherwise étated it is simply assumed
that the active transport flux is chosen to cancel the net transmembrane fluxes

of K+ and Na+ over the entire cell at the resting potential.



'1. General Introduction / 12

It is assumed that neural .membrane is of two -types. First, glial
membrane, which -has a fixed permeability .to K+ (Pape & Katzman, 1972;
Somjen & Trachtenberg, 1979) and exhibits a membrane potential given by (3.1),
and second, neuronal membrane which ‘has wvoltage- and time-dependent

+

permeabilities to K+, Na', and ClI with resting potential given by (3.2). The

separate transmembrane ionic fluxes Ii are assumed to follow the equations:
(3.3) Ii=gi(V - Vi)

th

where Ii 1s the -outwardly directed flux of the i~ ion, V is the transmembrane

potential, Vi is the Nernst potential for the i‘Ch ion, and g is the ionic
conductance of the membrane for the ith ion (mS). Each of Ii’ g V, and Vi is,
in general, a function of space and time. For the case of glial membrane it is
assumed that the g; are fixed, and equal to zero for all ioﬁs except K+. For
neuronal membrane, ‘the g; will vary in a manner to -be described.

These assumptions about neural membrahe are simplifications of the real
membrane properties -of .central .neurons which are not -completely known (Crill &
Sch.windt,, 1986). For examplke, dendritic membrane has a significant permeability‘
to the calcium ion Ca2+ at some membrane potentials (Kandel & Schwartz,
1983). This permeability is not expected bto have a large influence on potassium
concentrations, which are the focus of this work. Techniques which permit voltage
clamp experiments on isolated microscopic patches of membrane have led to the
recent -discovery of -many channels with varying properties, (e.g. Sonnhof, 1987)

and the detailed characterisation -of -those already known (Aldrich et al., 1983).

The attempts to understand brain function have involved many different
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types of experiment. The underlying purpose of such experiments 1is to
understand -physiological ‘processes in vivo . Hdwevér, for such -understanding to
be made ©precise in a mathemaﬁcal model, it is necessary to obtain
measurements of -cell and tissue .characteristics under - controlled (or known)

physical conditions, e.g., from in vitro experimentation.

4.0. BULK TISSUE PROPERTIES

4.1. Electrical Properties

The first systematic study of the effect of -electrical brain stimulation‘ was
made by Fritsch & Hitzig in 1870, on the motor cortex of the dog. The first
recording of electrical activity from the brain was reported by Richard Caton in
1875. The recent experimental literature on electrical currents in the brain is too
" vast to summarize here, though early references may be found in Brazier (1961).
In this section we discuss the models which have been used to predict the
passive electrical .properties of cells and tissue.

The extensive use of electrophysiological methods as an investigative tool is
an important reason to establish the ‘bulk current-voltage -relations .of -cerebral
tissue. For example,. the bulk current-voltage characteristics of cerebral tissue .
must be known in order to compute the distribution of current injected during
stimulation experiments (Ranck, 1975), to compute the distribution of curreﬁt
sources in the cerebral cortex (Nicholson, 1973), or to interpret the impedance
characteristics of neural tissue (Ranck, 1964).

When neurons are stimulated electrically with sufficiently small voltages,
action potentials are not generated. Under these circumstances, the intracellular,

extracellular, and transmembrane electric potentials are described by the classical
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Maxwell governing equations Tfor electricity dn a conducting and/or dielectric
medium. Neural signalling which -depends on such phenomena is called -electrotonic
transmission. Electrotonic ‘transmission in neurons -or other -cells depends ‘on cell
geometry, membrane properties, and .electrical properties -of "the -extracellular .and
intracellular media.

The use of the cable equation (described below) as a model for electrotonic
transmission in the neuron is well-established (Jack et al., 1975). Generalizations
of the cable equation have been discussed for branching structures, (Rall, 1959,
1969) bundles (Clark & -Plonsey, 1970, a, b), and syncytia (Jack et al.,, 1975).
The cable model and its generalizations are useful and are the motivation of
much experimental work on the microscopic electrical properties of neural tissue
(Pellionisz & Llinas, 1977; Johnston, 1980; Stafstrom et al.,, 1984; Turner &
Schwartzkroin, ,1984)' |

Because the nervous system is complex both rhicroscopically and
macroscopically, modelling -of bulk tissue properties .hés not ~been attempted often
(Ranck, 1964; Havstad, 1976). The lack of theory for the bulk electrical
properties of tissue 1s particularly noticeable. Tor example, the first -modern
revievy of the distribution of stimulating electrical currents is due to J.B. Ranck
(1975). -General results on the bulk electrical properties of neural tissue (apart
from ion transpor;t) are useful in themselves (cf. Nicholson, 1973) because of
their application to such experiments.

Cerebral tissue is an inhomogeneous medium of considerable complexity. In
particular, conductivity varies with the direction and (more' subtly) with the
length scale on which it is being measured (Ranck & Bement,1965; Nicholson &

Phillips, 1981). This is because tissue elements which are sufficiently extended
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relative to the distance between electrodes will alter impedance measurements in
-a complicated manner related to this distance.

Several treatménts of the conductivity of cellular tissue have previously
~ been .published, (Ranck,1963; Nicholson, 1973; Nicholson & Freeman, 1975;
Havstad, 1976; Eisenberg et al, 1979; Gardner-Medwin, 1983; ). These
treatments have modelled the effects described above in various ways. The two
main assumptions used in electrophysiological models for the electrical potential in
Bulk tissue are the syncytial assumption (Jack et al., 1975) and the assumption
of infinite membrane resistance (Nicholson, 1973). It is also possible to discuss
effective bulk conductivity from an empirical point of view, so that no specific
assumption about current through cells is made (Nicholson & Freeman, 1975). As
discussed later in this chapter, however, current through cells is an important
part of the present work,

In electrophysiology, the term syncytium refers to a collection of distinct
-biological cells whose intracellular regions .are electrically continuous with each
other, possibly due to gap junctions. Thé syncytial assumption is known to be
wvalid for invertebrate glha (Varon & Somjen, 1979).

Equations describing the electrical potential in syncytial tissue were
discussed by Jack et al., (1975), Eisenberg '_e_t al., (1979), Mathias et al., (1979),
and Peskoff (1979). Syncytial tissues have been modelled by three-dimensional
versions of cable theory assuming the extracellﬁlar and intracellular spaces are
extensively interdigitated.

The existence of a glial syncytium in mammalian cortical tissue is still
controversial. While intercell junctions have been observed (Varon & Somjen,

1979) and there is electrophysiological evidence of coupling between some glial
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cells (Somjen, 1984; Schoffeniels et .al., 1978), studies of bulk properties do not
suggest that there is extensive coupling 4in mammalian tissue (Hounsgaard &
Nicholson, 1983; Gardner-Medwin, 1983 a, 'b). In view of -the complex nature of
cerebral tissue, it is desirable to investigate the statement that isolated cells can
behave like a syncytium and to investigate alternative models for bulk tissue.

The assumption of infinite membrane resistance implies that extracellularly
generated currents cannot pass through neurons and glia, which therefore form
opaque obstacles to current flow. The problem of determining the electrical
botential in ‘tissue under this assumption is formally equivalent to the problem -of
determining the steady -concentration profile of a non-permeating ion in neural
tissue. Both the electrical potential and ' steady concentration satisfy Laplace’s
equation in the extracellular space and no flux conditions at the cell membranes.

If the classiéal equations of electricity govern the extracellular potential
and membrane resistance is infinite, then according to porous media theory,
(Gray & Lee, 1977) the bulk electrical potential may be described by an
equation in which the effective conductivity is a tensor 3 (Nicholson, 1973) and

‘the -extracellular -electrical potential ¢ satisfies

3 .
(4.1) T g 926 -

Y

where op, p=1,2,3, are the constant components of ¢, i is a current source
density, (possibly due to the currents generated by action potentials) and the
-potential ¢ is an average, defined in some appropriate way. Equation (4.1) -is

shown later to be valid under our more general assumptions when extracellular
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ionic concentrations are. constant, and the averaging pfocedure is  specified
precisely. The explicit dependencies of -3 on geometry, the 'éonductivities of the
intracellular and extracellular media, and membrane resist;ance have not ‘been
calculated.

The assumption of infinite membrane resistance has been wuseful in the
interpretation of field potentials (Nicholson & Freeman, 1975) because the fraction
of extracellular current which passes through cells is small in many experimental
paradigms._ However, evaluation of the anisotropy of conductivity measurements in
mammalian cortex (Gardner-Medwin, 1980) suggests that electric current passes
through cells in sufficient quantity to appreciably influence the bulk resistance of
neural tissue. Most importantly, because electrically mediated potassium transport
occurs chiefly by means of current flow through cells, it would be inappropriate
to employ the assumption of infinite membrane resistance in the computation of
ion transport properties. For example, in Gardner-Medwin’s current passing
experiment, ‘the small fraction of ‘imposed current -which passed through cells
apparently accounted for a significant potassium flux.

The formulation of more general systematic physical .models for tissue
electrical potential might help to resolve difficulties in the interpretation of
electrophysiological data in bulk tissue (cf. Somjen & Trachtenberg, 1979). For
example, it is not known whether high or low membrane resistance of the cells
(neurons or glia) might f'avor electrically mediated ion transport in tissue which

is not syncytial.
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4.2. Ion Transport Due to Diffusion and Spatial Buffering

In this thesis the term "transport" usually refers to the flux of some
conserved quantity, such as net electric charge or an .ionic -species, in response to
a .gradient of intensity (e.g., potential, concentration) of that -quantity (cf.
Batchelor, 1974).

While electrophysioloéy dates from the mid-nineteenth century (du
Bois-Reymond, 1848; Helmholtz, 1850,a,b) the concomitant measurement of ionic
effects has become possible only recently. Experiments with squid axon to
measure transmembrane ionic fluxes wusing radioactive tracers date from the
1950°s (Hodgkin & Keynes, 1957), while wuseful ion selective microelectrodes
became available only in the 1960’s (Zeuthen, 1981; Nicholson, 1980). Thus,
some of the electrophysiological literature does not explicitly treat ions and it is
indeed possible to obtain theoretical predictions about electrical properties of tissue
without including jonic effects.

Recently, it has become clear that within the mammalian central nervous
system, physiological states such as spreading depression (Leao, 1944; Grafstein,
1956) and seizure activity ( Moody et al., 1974; Fisher et al., 1976; Futamachi
et al, 1979) can give rise to spatial variations in extracellular [K+]. These
spatial vai‘iations can vary in their characteristic spatial wavelengths from several
mm to .5mm (approximately half the length of a Purkinje cell arborization).
Thﬁs, these variations have spatial waveleﬁgths which are long compared to most
cortical cells.

Potassium release occurs during nervous .activity due to K+ efflux from
neurons during the repolarization phase of action potentials. Spatial gradients in

depth presumably develop because K+ release is primarily from the cell bodies
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of neurons, which are concentrated in particular layers of the cortex (Futamachi
et al, 1974; Moody et al., 1974; Sypert & Ward, 1974). Spatial gradients
parallel to the surface of the cortex may occur because of an advancing wave of
spreading depress‘ion, which is always accompanied by drastic changes in
extracellular ion concentrations. The potassium released under the -conditions
described above is cleared from bulk tissue by several mechanisms, including
active transport, diffusion, and spatial buffering.

The diffusion of ions in neural tissue. is different from diffusion in a
medium without cells because ions do not move freely across cell membranes.
Solution of the diffusion equation for non-permeating ions is complicated by the
tortuous geometry of the medium. In the physiological literature (Nicholson &
Phillips, 1981) diffusion of non-permeating ions has been described by the

equation:

(4.2) Dv:c + Q = 3C
a

Qs
s

‘where D is the diffusion coefficient, a is the extracellular space volume fraction,
Q is a source density and C is an averaged local extracellular concentration.
The constant A is a dimensionless geometrical factor called the tortuosity factor.
Equé.tion (4.2) is not the most general equation for diffusion in an inhomogeneous
medium, because it has been assumed that diffusion is isotropic.

Assuming that the diffusion equation holds extracellularly for a
non-permeating ion, the theory of porous media (Lehner, 1979; Gray & Lee,
1977) shows that equation (4.2) is ‘a correct description of steady diffusion in a

geometrically complicated medium, provided that the average is taken in an
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appropriate way. The averaging proceduré is 'precisely specified, and equation
(4.2) can be derived using .this proc_edure if there are no -electrical forces and the
ions are non-permeating. The explicit relation between A and the geometry and
parameters of the :medium has not been determined in a physiological context.
The constants a and )\ have been determined empirically, however, for
non-permeating ions in brain tissue (Nicholson & Phillips, 1981). The factor A is
approximately 1.5, and a about .2, in mammalian cerebellum and cerebré.l cortex.

Because potassiurﬁ ions K+ cross cell membranes under resting conditions,
equatioh (4.2) is not appropriate for accurate computation of potassium s;;atial
transport. The approach taken in this work will lead to the derivation of a more
appropriate governing equation.

The gradients of [K+]0 described above give rise to electrical currents
which cause an electrically mediated transfer of K+ from rggions of high [K+]0 :
to regions of low [K+]0, a transport mechanism called spatial buffering.
Electrically mediated spatial transport of potassium was first described by Orkand
et al.,, (1966) and is usually attributed to glial cells. In detail, the mechanism
may ‘be -explained as Tfollows. -Glial and resting . nerve membranes are
predominantly permeable to K+. Thus, extracellular [K+] is the primary factor
determining  the local  transmembrane poﬁential (cf. (3.1)). When the
transmembrane potential varies along the length of an electrically continuous
elongated cell, the longitudinal voltage gradient causes current flow through the
cells and extracellular space.

A displacement of the membrane -potential V. toward =zero is called a
depoiarization and a displacement of the membrane potential toward more

negative potentials is called a hyperpolarization. Higher [K+]O corresponds to
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depolarized transmembrane potentials, and lower [K-l_]O to  hyperpolarized
transmembrane potentials relative to the resting value. When a single cell is
exposed to a spatial gradient of- []?(-{—.]0 the local Nernst potentials (3.1) become
different at different points -of the :cell. Since a return .path for the current
exists via the intracellular and extracellular media, a closed current loop is
formed which passes inward through the cell membrane at one point, goes
through the intracellular space, passes outward through the membrane at another
point, and finally completes the loop through the extracellular medium (see figure
174.1).T As a result of this current flow, the true transmembrane potentials differ
slightly from the Nernst potentials; and these differences will be precisely
calculated in subsequent chapters. In addition to the currents described,
extracellular current may be imposed on tissue due to the mass firing (production
of action potentials) of many neurons (Nicholson & Freeman, 1975) or by an
.experimental current generator, and these currents may result in transmembrane
curfents ‘which enter cells at one location and leave at other remote locations.

When electric current flows in a liquid medium containing ions (electrolyte)
‘the flow of charge is due to the movement of ions through the medium. Charge

flux or current is defined by (mol sec'1 cm-2 or amp sec'lcm'z)

(4.3) 1= 3C -3,

where the flux of cations, jC’ and of anions, j A» are the sum, respectively, of
the signed fluxes of each cation .and anion in the solution. The symbol J will be

used to denote a flux which consists of the weighted sum of several ionic fluxes,

T The first figure of Section 4 of Chapter I is numbered I-4.1, and so on.
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Figure 4.1. The spatial relationships between extracellular K+ concentration, +
depglarization/hyperpolarization of biological cell membranes, and the flux of K ,
Na , and Cl ions results in the transport of K from regions of high to low
concentration.
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while _3 will be employed to denote a specific ionic flux.

If -electric current in .an electrolytic medium consisted entirely of the flux
of potassium, then by conservation of current, no :concentration changes of
potassium would occur along the current path. However, -only about 1.2% of
extracellular  currents consist of potassium flux (Gardner-Medwin, 1983).
Extracellular currents consist mainly of sodium and chloride fluxes, while
transmembrane and intracellular currents consist mainly of potassium _ﬂux. Hence,
in the current loop described above, a net efflux of potassium occurs from the
extracellular space at one location and a net influx -occurs -at others, with the
result that local [K-}’]0 is altered. Other sources of extracellular current such as
those due to an experimental source may also modify [K+]o.

Such spatial transport of potassium (or other ions) by electric current will
be referred to as electrically mediated spatial transport. Reference to Figure 4.1
shows that when current loops result from spatial gradients of [K+]o, the effect
of electrically mediated spatial -transport is to reduce [‘K+]0 where it is high and
to increase [K+]o where it is low. Therefore, this 'phenomenon is called spatial
buffering.

To estimate the magnitude of these effects, A. Gardner-Medwin (1983 a,
b; Gardner-Medwin & Nicholson, 1983) performed experiments in which electric
current was passed through brain tissue and the consequent movement of K+
ions was measured. Current was passed perpendicular to the cortical surface
through fluid contained in a circular cup placed on the cortical surface. The
potassium contents -of ‘the cup was monitored during current passage. It was
verified by means of intracellular recording and application to the cortex of

tetrodotoxin (TTX), a pharmacological agent which suppresses the generation of
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action potentials by acting upon sodium channels, that the observed effects were
independent of any .effect on .action potentials -of :current passage. For some
experiments, the .extracellular potassium concentration, [K+}O, was monitored at
various depths in the cortex ‘beneath the cup. Finally, the ‘results were
interpreted according to a theoretical model. The results .were consistent with the
conclusion that electrically mediated potassium (spatial buffer) flux is about five
times the diffusive flux for potassium distributions varying over distances much
greater than 200 um in the rat braih. The theoretical model was necessary .
because spatial buffering and dif‘fusioﬁ both result from spatial .gradients of
[K+]O, so that the results of such an experiment are confounded, and theoretical
assumptions must be made in order to attribute a definite fraction of ‘the
potassium flux to either diffusion or electrically mediated flux.

The theoretical model for the tissue electrical potentials used by
Gardner-Medwin to interpret data was the cable model. It was assumed that
intracellular current flowed through a coupled cell population in the cortex, called.
’transfer cells’, and that intracellular current consisted of potassium flux.
However, the cell .population which was supposed ‘to “be -the substrate -of the
cable equation was not identified. Thus, it was necessary to estimate the
parameters of this putative population from the data. This procedure, while
useful, does not indicate the relationship between the observations and independent

measurements of the microscopic parameters of cell populations.

5.0. NEURAL MODELLING
In this section we summarize Hodgkin and Huxley’s model of the action
potential. The relation between models for active and for electrotonic properties of

nerve is illustrated for the case of Hodgkin and Huxley’s model. This is expected
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to be instructive in evaluating the present work, though it is well-known to the
biological reader. While the Hodgkin-Huxley equations were originally -developed for

the squid giant axon, they represent the -classical -physiological model of ‘the

action potential, which is assumed (Crill .& Schwindt, 1983, 1986) to .apply to
the neurons in mamfnalian central nervous system in some possibly generalized
form. For‘ example, dendritic membrane exhibits action potentials based on the
voltage dependent calcium permeability (Kandel & Schwartz, 1983).

By means of a series of experiménts Hodgkin and Huxley, (1952a-d)t
were able to formulate quantitative descriptions of the quantities g; in equation
(3.2) for the squid axon. It was found that the transmembrane -current could be
satisfactorily described as the sum of the capacitive current, ‘IC, the -potassium
currenf IK’ the sodium current, INa’ and the current carried by chloride and
other ions, Il’ called the leakage current. Thus, the total transmembrane current

I (umA cm'z) is given by:

(5.1) I1 =1

The ionic conductances of (3.2) satisfy a set of ordinary differential equations
with coefficients depending on the membrane potential V.

An action potential is a rapid (lasting ca. 1 msec) regenerative
depolérization of the neuronal membrane as a result of a complicated set of
changes in the membrane conductances. It is characterized by a rapidly rising

phase in which the membrane sodium conductance increases dramatically, and a

T For an elementary account, see Aidley, 1978, or many other standard texts.
This model contains explicit hypotheses on the non-linear voltage and time
dependent ’active’ properties of neurons.
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somewhat less rapid return to equilibrium in which the sodium conductance
decreases and potassium conductance increases. In general, excitable membranes
contain voltage dependent sodium channels (Aidley,1978).

From the 'expefimentally determined formulas describing ‘the ionic
conductances, it was possible to reconstruct the action potential, assuming that
VK’ VNa’ and V1 are constant. When the membrane potential V is constant in
space, the associated action potential is called ’space clamped’ and does not
depend on the electrotonic properties of the axon or cell.

To calculate a propagating action potential, a model for the spatial
'dependence of the potential is needed. For this purpose, Hodgkin and Huxley
employed the core conductor model of Hermann (1879), alsoc known as the cable
theoryt It is assumed that the axon is an elongated cylinder of uniform cross
section aligned ‘with the Z axis, and only the axial coordinate is considered. Since
the axon is a three dimensional object, radial current flow must occur, so that
these assumptions .are artificial in some respects.

The model equations of cable theory are:

(]
(5.2) a%t =

(5.3) I

ot ©
-

T. The original cable equation of classical physics is due to Kelvin.
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(5.4) 0¢ = -y 1°

(5.5) ,}Zv) = -erlt

where -'IOt is - the -axial current flow vin the external medium, Iit, the axial
current flow in the internal medium, -im is the transmembrane current per unit
length, ¢O is the potential in the external medium, ¢i is the potential in the
internal medium, Ty is the resistance -of the external medium per unit length,

and r, is the resistance of the internal medium per unit length, A standard

argument using (5.2) - (5.5) yields:

: . 1 22V
>0 m T R o
where V = ¢1—q50. For 'a fibre of radius a, -im = 2mal and ry = Rl/'rra2

where R' is the specific resistivity of the cytoplasm (R cm). The relation between
ry and R® the resistivity of the external medium is complicated because the

three-dimensional current flow is not axial. Because R is small however, Hodgkin

and Huxley assumed R0=O, and thus obtained:

]m = a. BZV
27a. oR' 0z°

(5.7) I =
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The validity of the assumptions (5.2) - (5.5) has been investigated
-experimentally by Hodgkin and Rushton (1946), and Lorente de No (1947),7 and
mathematically by Clark and Plonsey (1966). 1t is found that these assumptions
are approximately correct for isolated preparations . In addition, the use of the
cable model for the intracellular and transmembrane potentials (but not the
extracellular potential) can be mathematically justified by a three-dimensional
analysis of the electrical potential (Clark & Plonsey, 1966).

A steady propagating action potential must have the form V=V(z-6t),
where 6 is the conduction velocity. The propagating action potential, which
satisfies an equation obtained by equating (5.1) and (5.7) has a propagation
speed (or wave speed) 6, which is determined from the equations by a
numerical iteration procedure.

The pf‘opagation speed and the dependence of the action potential on z—6t
depend upon the simplification (5.7) and the values of a, the fibre diameter, and
CM the membrane capacity. Despite the necessity to ‘estimate these parameters,
and the various simplifying assumptions, the predicted propagation speed (18.8m/s)
of the .action .potential (Hodgkin & Huxley, 1952d) -closely matched the observed
speed (21.2m/s). The wuse of cable theory was an essential étep of this
calculation, thoﬁgh the cable model for electrotonic properties is simple.

The role of cable theory in the model of the action potential shows that
(microscopic) electrotonic properties of neurons play an essential role in their
physiology and it may be anticipated that bulk passive properties will be

important in the formulation of any macroscopic model.

¥ 1 am indebted to Dr. E. Puil for pointing out this fundamental early
reference. '
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5.1. ‘Spreading Depression
Spreading depression (SD) was -discovered by the physiologist Leao (1944)
during studies of experimental epilepsy in the cerebral cortices of rabbits. SD is
characterised by a marked and prolonged -depression of the spontaneous electrical
activity of the brain. Subsequently, SD has been observed in many brain
structures and species (Bures et al., 1974). In addition to the electrical changes,
later studies revealed large changes in the normal ionic equilibrium of the brain.
Kraig and Nicholson (1978) measured changes in the exfracellular concentrations
of several physiological ions during SD in the cerebellum, namely, an elevation in
the concentration of potassium from 4 mM to 40-50 mM , a fall in the
concentration of sodium from 80 mM to 60 mM , a fall in the concentration of
calcium from 1.2 mM to .12 mM and a fall in the concentration of chloride

from 85 mM to 50 mM. Spreading depression has been observed in cerebellum,

olfactory bulb, Ahippocampus, and in vitro in the slice preparation (Somjen &

Aiken, 1984).

This section is intended to indicate what factors must be included in any
model of SD which accounts for its observable .effects. Neither a review of the
SD literature nor an evaluation of competing hypotheses 1is intended. A
satisfactory model must include the factors which interact to f)roduce the primary
observable effect, but it need not include epiphenomena which accompany the
main phenomenon. The factors producing the main phenomenon will be referred
to as mediating factors.

Like the nerve impulse, the experimental phenomenon exhibits a wavelike
character but with a (much slower) wave speed of 1-9 mm/min. Also it exhibits

recovery since the electrical activity and ionic concentrations of the tissue return
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to their original levels after several minutes. A detailed comparison of the SD
wave and the nerve impulse may ‘be found in Miura (1981).

These changes may be initiated by a variety of stimuli, including electrical
stimulation, mechanical stimulation, and the local .application of KCl. The
pronounced and robust nature of SD affords a unique opportunity to study the
interaction of electrical and ionic mechanisms within neural tissue at a
macroscopic level.

Several hypotheses have been advanced as to the mediating faétors of SD.
During the 1950’s it was known that extracellular potassium concentrations
increased greatly during SD (the magnitude of the increase was later .measured
to be 40 - 50 mM, in some preparations (Nicholson & Xraig, 1981)). Grafstein
(1956) hypothesized that spreading depression was due to the spread of
extracellular potassiﬁm, which depolarized neurons‘ and caused further potassium
.release by means of" action potentials. At that time, the role of other released
factors such as glutamate, which is an important intracellular anion, (Puil, 1981)
was not understood. Van Harreveld (1978) postulated that the principal chemical
can be potassium, or the neurotransmitter L-glutamate, resulting in two -distinct
mechanisms for SD. However, the phenomenon does not depend critically. on the
generation Qf (sodium) action poténtials. The SD wave is not antagonized by
treatment of the cortex with tetrodotoxin. (TTX) (Sugaya et al., 1975).

Tuckwell and Miura (TM) (1978) formulated a simplified mathematical

model for SD,T which accounts for the essential features of the phenomenon

T Our calculations are not intended exclusively to extend the SD model. A
detailed evaluation and extension of .this model from a physiological point of
view, would require experimental work, which is beyond the scope of this thesis.
Tuckwell and Miura’s work is cited here as a paradigm for macroscopic modelling
of neurophysiological phenomena.
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(depression of spontaneous brain activity, wavelike propagation, ionic concentration
changes, and recovery) by incorporating several. physiological mechanisms,
well-known through microscopic studies, into a set of equations. Tuckwell and
Miura hypothesized that conductance changes in post-synaptic -membrane rather
than action potentials are responsible for the release of potassium by neurons
during SD. The increase in extracellular potassium leads to depolarization of
neuronal membrane according to equations (3.1) and (3.2). This depqlarization
leads to the entry of calcium into pre-synaptic terminals which causes release of
neurotransmitter (Katz, 1969; Krnjevic, 1974). The neurotransmitter (likely
L-glutamate) acts at post-synaptic (and pre-synaptic) receptor sites, changing the
conductivities of post-synaptic neurons and leading to further potassium release. It
is not necessary to specify the identity of the neurotransmitter within. the
mathematical model, and it is possible that Vot;her neurotransmitters, such as
acetylcholine might play the same or a similar role.

According -to this model, .propagation of the SD wave depends on the
spatial transport of potassium from the site of the initial stimulus to remote
regions of ‘the extracellular space. The -wave speed predicted ‘by this model s
about - Imm/min, which is at the lower end of the observed wave speeds of
1-9mm/min in mammalian éortex. This discrepancy is. small, given the simplicit&
of the model, but because many of ‘the other parameters of the model were
obtained by fitting the data for the observed wave, the model wave speed might
be expected to depend primarily on the diffusion coefficient of potassium, which is
accurately known (Horvath, 1985). Hence the -discrepancy likely results from the
omission of some mediating factor, and not from inaccuracy in the numefical

parameters.
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Because potassium transport is the basic factor in the propagation of the
SD wave in the TM model, refinements of this model might naturally begin with
a more complete account of potassium transport in the cortex.

While a tortuosity factor was used to account for the effect -of geometry
on the effective diffusion coefficient for K+ the TM model contains no specific
assumption (analogous to cable theory) concerning the effect of geometry of the
extracellular and intracellular spaces on the transmembrane potential. Therefore,
the formulation of a model for this relationship is a second natural refinement of
the SD model.

Several empirical correlates of SD are not presently known to be
mediating or epiphenomenal. The observations -of Nicholson .and Kraig, (1981)
suggest that SD is accompanied by massive movement of an (unknown) anion
from the intracellular space. The mechanism for this putative - anion movement is
not known and it is possible that this ion may be one of several organic anions,
including glutamate. It 'is found (Van 'Harreveld‘-&‘ ‘Khattab, 1967) -that SD is
accompanied by a dramatic reduction of the extracellular space due (at least
partly) ‘to ewelling of the dendrites in the .affected areas. It is likely that this
swelling is osmotic and is caused by a net flux of salt (anion and cation) into
the intracellular space. Since the osmolarity of intracellular spéce must be
preserved, water enters cells, causing an increase in intraeellular volume. At the
same time, the electrical resistance of the cortex rises dramatically during SD
(Van Harreveld & Ochs, 1957; Ranck, 1964;).

The role -of 'these -concomitant factors in SD has not yet been -clarified,
and some theory would be required to obtain the relation between cell swelling,

elevated tissue resistance, transmembrane potentials, and spatial buffering within
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the tissue itself. The calculations performed in the present work do not apply to
the extreme conditions -which prevail during SD, however, they are compatible
with the observed correlation between - cell swélling and the changes in tissue
resistance.

Elevations in the extracellular potassium concentration may produce slow
field potentials by depolarizing the membranes of glial cells (Kuffler, 1967;
Somjen, 1975). A relation between extracellular potassium, glia, and slow field
potentials is strongly suspected on experimental grounds. Extracellular potassium
concentration may be involved in certain types of neural signalling (Lebovitz,
1970) and a variety of metabolic effects (Krhjevic & Morris, 1981), even though
it may not be the single most critical factor in every case (Somjen, 1984).

A theory of potassium transport and the relation between extracellular,
intracellular, and transmembrane potentials is a basic prerequisite for accurate
macroécopic modelling of SD and other phenomena, e.g., epilepsy. (Prince, 1978;
Crill & Schwindt, 1986; Traub et al., 1985 ab) in which ion concentrations and

extracellular potentials in bulk tissue may play a mediating role.

6.0. ‘OUTLINE OF THESIS

In Section II.1.17Y we introduce the Nernst-Planck equation, which is the
governing equation for ion transport and electric potential, and specify the jump
conditions at the cell membrane. In Section IL.2, appropriate scalings for the
equations are chosen. This section also deals with the structure of the tissue
model and methods for incorporatipg the jump conditions into formal calculations.

In Chapter III, an asymptotic expansion and averaging procedure is

ol

t Chapters  are referred to by capital roman numerals and sections by arabic
numerals separated by a decimal point. Thus Section II.1.1 refers to subsection 1
of section 1 of Chapter II
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described which reduces the computation of bulk properties to a calculation for a
single cell. In Section IV.1, the idea -of -transport numbers in electrolytic media
(Horvath, 1985) is introduced and it is shown that this idea applies to bulk
tissue. Coefficient estimates -in the averaged equations are .computed numerically
for a range of microscopic parameter values including cell size, membrane
conductance, intracellular conductivity, extracellular space and geometry, in
Sections IV.3 - IV.6. An important finding is that theoretical transcellular
current, the bulk current flow through disconnected cells, is significant and
relatively insensitive to many of these parameters, depending primarily on cell
size and membrane conductance.

In Chapter V, the role of electrotonic parameters (the parameters involving
electrical constants) in the tissue model is discussed. Section V.1.2 presents a
formal analogy between transcellular current and electrostatic polarization as an
aid to physical understanding of the transport properties of arrays of disconnected
cells. In Section V.2, asyﬁlptOi;iC analyses ‘in the electrotonic parameters are
performed in order to supplement the numerical solutions with qualitative resuits,
‘while in "Section V.3 it is shown how to .build asymptotic assumptions about
electrotonic parameters into the model.

In Chapter VI, we discuss biological implications of the analyses from the
body of the thesis. The properties of steady solutions to the averaged equations
are discussed in Section VI.2 and it is shown that some coefficients of the
equations cannot Be éstimated in a steady experiment. It is argued that the
general mode! proposed here is simpler and more appropriate than (syncytial)
cable theory for bulk tissue. For example, Section VIL3.1 concludes that

specialized transfer cells are unnecessary to explain transcellular flux and spatial
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buffering, while Sections VI1.3.2 - VI.3.3 conclude that disconnected cells cannot
be neglectéd, and that tissue structure may be important.

Section V1.4 discusses the ‘signiﬁcance -of current -through :cells and
observed phenomena which may be affected by the length scales which are
imposed by experimental -observations. Limitations of our approach are discussed
in Section VL5. Finally, Section VI.6 briefly contrasts the présent model with
pfevious models.

The present model is chosen to include measurable quantities such as
extracellular  potential and  extracellular K+ concentration and to  be
mathematically simple. Since it is shown that the bulk parameters of the  model
are relatively insensitive to many of the -microscopic parameters of the ‘tissue,
the resulting governing equations should be applicable to many physiological

situations.

GLOSSARY

Action potential , A rapid (lasting ca. 1 msec) regenerative depolarization of the
‘neuronal -membrane accompanied by .a complicated set of -changes in ‘the
-membrane -conductances. <In the <classical case, it .is characterized by .a rapidly
rising -phase -in -which the membrane sodium -conductance .increases - dramatically,
and a somewhat less rapid return to -equilibrium in which sodium conductance
decreases and potassium conductance increases.

Active properties In Hodgkin-Huxley theory, properties associated with the
voltage-sensitive membrane ionic channels.

Active transport Net movement of molecules or ions, often between intracellular
and extracellular spaces, which depends on metabolic energy. The use of the
term "transport" in this phrase differs from the use of the term in the rest of
the thesis.

Anion A negatively charged ion.



. I. General Introduction / 37

Axon An extended tubular process of the neuron which projects to neighbouring
neurons, sometimes over a considerable distance (Im or more).

Capacitance The capability of storing electrical .energy by ‘the -separation -of
opposite electrical charges.

Cation A -positively charged ion.
Central nervous system The higher portion of the nervous system, including the

spinal cord, brain stem, cerebellum, basal ganglia, diencephalon and cerebral
hemispheres.

Cerebellum A large part -of the brain with motor functions, situated near the
base of the brain and with a cellular architecture similar to cerebral cortex.

Cerebral cortex The outer .layer of gray matter of the cerebral hemispheres,
associated with higher perceptual, cognitive and motor functions and having a
layered cellular .architecture.

Cytoplasm The jelly-like material surrounding the nucleus of a biological cell.
Epilepsy A disorder of the nervous system which results when a large collection
of neurons discharge in synchrony. Along with this discharge, stereotyped
behaviors may occur, including convulsions.

Excitable Capable of producing action potentials.

Extracellular space The region exterior to biological cells within a tissue.

Gap junctions Intercellular junctions at which <cells are connected by
transmembrane .pores, permitting the exchange of intracellular molecules and
electrical .charge.

-Glia The passive interstitial cells of the central nervous system.

Hippocampus A subcortical brain structure with a distinctive shape (the name is
. from the Greek for seahorse) and regular cellular architecture. It is associated
with memory in man.

Ion An electrically charged atom or group of atoms.

Intracellular space The regions interior to biological cells within a tissue, taken
together.

In vitro A phrase used to characterize biological experiments made under artificial
conditions, and not in a living animal.
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In vivo A phrase used to characterize biological experiments or conditions in a
living - animal; as opposed to in vitro.

Invertebrate The :biological phylum consisting of .animals -which -lack backbones,
such as the squid, leech, insects, etc..

Membrane A ‘thin flexible sheet composed of dipid .molecules which forms the
surface of ‘biological cells or organelles, and -which .separates -intracellular and
extracellular regions.

Metabolic Pertaining to the chemical processes occurring within a biological cell.
Motor cortex A region of the cerebral cortex associated with motor function.

Myelin Layers of lipid and protein substances composing a sheath around nerve
fibers.

Neuron The primary cell type of the nervous system, which is capable of
producing action potentials. It consists of the nerve cell body and its processes,
the axon, and other processes called dendrites.

Olfactory bulb A region of the cerebral cortex associated with the sense of smell.

Osmolarity The sum of the total concentrations of all solutes in a solution, so
called because of the importance of this quantity for osmotic phenomena.

Osmotic Pertaining to the process by which two different solutions which are
mechanically separated (for example, by a membrane) tend to equalize their
respective total solute -concentrations by the flow 'of solvent from -one to the
other.

‘Organelle A membrane-enclosed structure with a specific -biochemical function
within a biological cell.

Passive A technical term referring to membrane properties which are not voltage
dependent, as opposed to the active voltage- and time-dependent conductances of
the Hodgkin-Huxley model.

Peripheral nervous system‘ The parts of the nervous system outside the central
nervous system.

Permeability The relative ease with which an ion passes through membrane
pores. This may be measured by a mathematical coefficient.

Preparation Part of an organism which is "prepared” in some way (in vivo or in
vitro) ‘which facilitates physiological study, e:g., of squid axon, frog muscle, etc..
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Processes Continuous anatomical extensions of a biological cell body, which may
be tubular or sheetlike.

Resting transmembrane potential The transmembrane :potential .across excitable
membrane in the absence of stimulation, when action potentials are not occurring.

Squid giant axon A . physiological preparation of the axon of the squid Loligo ,
used because its -large size facilitates- experiments.

Slice preparation A thin section of tissue, often from the cerebral cortex or
hippocampus which preserves cellular architecture and function in vitro .

Soma The cell body of a neuron, containing the nucleus of the cell.

Synapse A specialized contact zone at which two neurons are closely apposed and
where communication occurs by electrical or (typically) chemical transmission.

Synaptic transmission The process by which the information of the action
potential is transmitted from one neuron to another, typically through the release
of a chemical factor which diffuses across the synapse.




II. THE MODEL EQUATIONS

1:0. INTRODUCTION

In this chapter the mathematical problem for determination of electrical
and ion transport properties from a model of neural -tissue -containing two types
of cell (neurons and glial cells) is specified precisely. The objectives .of this
mathematical formulation are to ca}lculate the averaged electrical and ion transport
properties of the tissue in a systematic way and to‘ exhibit the dependence of
macroscopic tissue properties on the the microscopic properties of cells. This
provides a theoretical connection between studies of microscopic cellular properties,
such as those described by Turner and Schwartzkroin (1984), and studies of
macroscopic  tissue properties such as those by Ranck (1963,1964) and

Gardner-Medwin (1983 a, b).

1.1. Trénsport Equations in. Electrolyte Solution

We now sketch the physical chemistry thought to apply to :ion transport
in solution (Horvath, 1985; Carnie & Torrie, 1984; Fuoss & Accasina, 1959) .and
justify the transport equations to be used in the remainder of this thesis. ¥ This
section is intended to justify the wuse of these equations here, rather than to
derive them, since these derivations are described in elementary textbooks or in
the voluminous literature of classical chemistry. The discussion of transport given
in this section vrefers to electrolyte solutions such as those of the extracellular

medium in neural tissue. In these basic electrochemical equations, averages are

T As stated in Chapter 1 the term "transport” refers here to the flux of some
conserved quantity such as net electric charge or an ionic species, in response to
a gradient of intensity (e.g., potential, concentration) of that conserved quantity
{cf. Batchelor, 1974).

40
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taken over length scales of 10 - 100 A° rather than 10 - 100 um as in the
tissue equations 1.(4.1) - 1.(4.2). 1t is assumed that no convective transport
occurs and the discussion  is restricted to transport due only -to -diffusion and
electrical forces.

From a theoretical point of view, the simplest transport process is
diffusion. If there are neither electrical forces nor concentration gradients, then
ionic and solvent molecules undergo brownian motions due to thermal energy, but
have no average relative motion. In the presence of an ionic concentration
gradient these random motions result in movement (diffusion) of ions from regions
of high concentration to regions of low concentration. The result of the individual
motions of the molecules and average flux in aqueous solution {(Robinson &
Stokes, 1955) is precisely described by Fick’s law:

(1.1) ip = -D¥C,

where C is the ionic concentration -(mol cm‘3), -E‘D is the ionic flux wvector 'in mol
sec-lcm-2, and Di is the -diffusion coefficient '(cm2 sec'l) for the ith ionic - species.

The description of ionic flux in an electric field requires some assumptions,
however. For reasons discussed below, it will be assumed that the> sum of the
total concentration of cations multiplied 'by their valence is equal to the sum of
the total concentration of anions multiplied by their valence in any non-zero
volume. This assumption is referred to as ’electroneutrality’ because it implies
Zero net charge within ahy non-zero volume. Since variations in the Di’s are
unlikely to be important under physiological conditions of moderate variation in

temperature and concentration, the diffusion constants Di will be treated as
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-empirical constants depending on the identities of solvent and solute, and

independent of concentration. Using electroneutrality this assumption -implies that

'Zzi'DiVCi = 0, where z, is the valence of the ith ionic species, so that the net
electric flux due to diffusion is zero throughout the solution.f

When both electrical and concentration gradients exist, we assume that the

- -1 -2 th . . . .
total flux 3 (mol sec cm ) of the i ion is given by the classical

Nernst-Planck equation

(1.2) . J; = ~D{VC, + zC, %Tv_qs},

The first term on the right-hand-side of (1.2) is a flux proportional to
concentration gradient and, therefore, will be referred to as the diffusive transport
term. The second term on the right-hand-side of (1.2) is proportional to an
electric potential gradient and will be referred to as the electrical transport term.

Using :the .above assumptions, summation .of (1.2) gives the total -diffusive

mass flux vector:

(1.3) J -Z D,VC,
D i=1

where the flux jD (mol sec_lcm-z) is a sum of diffusive fluxes. Multiplication of

T Since Fick’s law is valid for electrolytes, the coefficients D i=1,.n, must be
consistent with the possibility .that (electrical current) z D ve'+ 2D VCa =0
at the ‘boundary for a solution composed of a single cation and. anion, where C
is the concentration of cations and C_ the concentration of anions, and z_ an
are, respectively, the valences .of cation and anion. Becauss of
eflectroneutrahty, zVC + z VC_ = 0 throughout the solution. Combining the
latter two equatloﬁs 1cmp11es &ithdr D =D , or VC =VC =0, so that the above
X . a a c
result is true throughout the solution.
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(1.2) by the wvalence z, and summation gives the net current in mol sec_lcm'z

1.4 1 = - L 4vy,
(1.4) ‘ " 3
where 0 :=lei2DiCi (mol sec'lcm'l) will be referred to as mass conductivity

where ’mass’ refers to the dimensions of this quantity. It is shown bélow that
this quantity, o, is proportional to the electrical conductivity of the solution.
When the electrolyte considered consists only of uni-valent ions, Vo is just the
total .diffusive flux of ions. |

Thus, the form of the Nernst-Planck equations is simplified by assuming
electroneutrality. Equation (1.4) asserts that under the stated assumptibns, a
spatially dependent conductivity k = x(?{), (m$S cm'l) may be assigned to
electrolyte solutions of given composition. The electric current 3 may be written

in the local form of Ohm’s law as;
(1.5) 1 = -«vs,
where k = an,/ RT has the dimensions of conductivity.

1.2. Limitations of the Nernst-Planck Equations

While the Nernst-Planck equations (1.2) are taken as the model equations,
it is important to note that this entails some compromise. The Nernst-Planck
equations (1.2) give each ionic flux independently of the others. For ‘low
concentrations or strong electrolytes, this prediction is born out empirically and 1is

known as Kohlrausch’s law of independent migration of ions. Equation (1.5)
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asserts that an electrolyte solution ‘behaves ohmically and the effective
conductivity is a linear function of thg ‘concentrations of each ion. The ohmic
- behavior has considerable support while the status of the linearity assumption is
“less -certain. There -is considerable 'experimental evidence (Horvath, 1985) that
electrolyte solutions are ohmic (-: = kV¢); however, at low concentrations (<<

.1M), electrolyte solutions exhibit conductivities given asymptotically by;
(1.8) ' k = ClAg - byC)

where C is the ionic ‘strength and A0 and b are constants independent of
concentration.

In addition to (1.8), there are a large number of other semi-empirical
non-linear formulas applicable to particular electrolyte "types (Horvath, 1985). It is
not clear vwhich if any of these formulas are applicable ’in the physiologiéal
context. At :physiological concentrations, the dependence of the conductivity of a
strong electrolyte on concentration is approximately linear.

As C —0 in (1.6), k—> CAO, where Kk was defined in Seection 1.1, so
that AO is the lim'ﬁ,ing molar conductivity at infinite dilution. The quantity AO
may be approximately calculated from thermodynamic argurﬁents. The theoretical
value appears in the Nerﬁst—Planck equations (1.2) and may be calculated using

(1.4), (1.5), and (1.6). For example, for a solution of a single uni-univalent

electrolyte (such as KCI):

1.7 A, = 2 FEp
(1.7) | 0 B
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wheré D is the diffusion éoefﬁcient for the electrolyte, and Ay is computed using
the definition .of ¢ with two uni-valent ions.

. For self-consistency of the rﬁodel, the assumed diffusion coefficients will be
the effective coefficients at physiological temperatures and -concentrations, and
solution conductivitiés will . be computed from these values. "The resulting
conductivities will be less than the tabulated infinite dilution conductivities
(Robinson & Stokes, 1955) but this procedure should produce more accurate
‘approximations to the solution conductivity than the use of infinite dilution data,
since it incorporates . an empirical correction forl concentration.

In principle, the individual ionic fluxes should be governed by non-linear
formulas analogous to (1.6) and, due to non-linearity, -each flux must be a
function of the local concentration ‘of all the solute ions. However, in contrast to
the experimental data leading to (1.6), these more detailed data are not
available. In view of this situation, it is assumed in our model that the local
ion fluxes .are predicted by the Nernst-Planck equations. ‘Because the conductivity
of physidlogical solutions is determined largely by strong electrolytes, the
non-linear -correction .which is neglected -shouid ‘be small.

A theoretical account of the observed deviations of transport properties
from those predicted by (1.2) is complicated. First, the Nernst-Planck equations
(1.2) do not specify the electric. potential ¢. Since this equation describes the
motions of charged particles (ions), a completely satisfactory ‘moAdel would
determine ¢ sov that it included the effect of the ionic charges. The correct
resolution of this problem, using the principles of statistical mechanics is the
subject of currént research (N. Patey, personal communication).

The use of Poisson’s equation to compute ¢ is inappropriate because it
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assumes that a smooth, stationary charge density is a valid approximation to the
collective effect of individual charges. lonic .charges of opposite sign rapidly cluster
around one another, however, in an effect known as charge screening, so that
the charge density is not smooth or -stationary in time. In this thesis, we have
accepted, with others (Plonsey, 1969; Carnie & Torrie, 1984), a classical
treatment of this problem known as the Gouey-Chapman theory (Gouey, 1910;
Chapman, 1911). Gouey-Chapman theory consists of studying the properties of

the Poisson-Boltzmann equation:

3
(1.8) VP = %z zCe
1i=

—
€

b

where q, is the charge of an electron, and €, is a dielectric permittivity (farads
cm-l). The Poisson-Boltzmann equation assumes the chemical solution has a bulk
-dielectric  permittivity, € and identifies the -electrostatic .potential with the
corresponding thermodynamic potential. The reader is referred to Plonsey (1969)
for mathematical details, and to Carnie and Torrie (1984) for the relationship of
Gouey-Chapman theory to other theories. Physically, the fheory asserts that
charge separation cannot occur over a large region because charge separation
requires energies which are large compared to the available thermal energy.
Gouey-Chapman theory prédicts electroneutrality of the solution over any length
scale larger than the Debye shielding distance. This distance is 9.6 A° units in
.1 molar wuni-univalent electrolyte solution (McGillivray & Hare, 1969; Plonsey,

1969). Thus, in this work the concentrations of anion and -cation are taken as

equal in any volume element, and no charge separation occurs in the bulk
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L

solution. 1

2:0. THE NON-DIMENSIONAL MODEL EQUATIONS

2.1, Scaling of the Transport: Equations

In order to prepare the transport equations for asymptotic and numerical
analyses, it is wuseful to choose non-dimensional wvariables which reflect the
magnitudes of the physical quantities of interest. These choices are made both
for reasons of numerical convenience, and in order to identify small
non-dimensional parameters which may be .used to construct asymptotic
approximations to the full equations.

| We begin with a brief description of the electrical and ionic environment
within nervous tissue. In a common experimental preparation (mammalian brain
slice) typical extracellular concentrations of physiological ions are as shown in
_Table 2.1 (Llinas & Sugimori, 1980). For comparison, typical concentrations of
physiological ions in human --cerebrospinal fluid (CSF) (Davson, 1976) are also
shown. Magnesium, Mg2+, and calcium, Ca2+, are also present in the brain, in
cerebrospinal fluid, and are included in experimental bathing solutions, at about 1
4 mM concentration, but .they will play no role in our trénsport equations
because these ions contribute little to solution coﬁductivity. The Ca2+ ion may.
play some role in determining the resting membrane potentials of some neurons,
however, this omission is not expected to qualitatively affect the conclusions of
the present work with respect to potassium and electrical potential.

Intracellular concentrations of ions are less certain but may be estimated -

1t This assumption is not satisfied for ionic fluxes across biological membranes,
and the treatment of flux across membranes involves model equations different
from those given here (Shultz, 1980; Plonsey, 1969).
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Table 2.1. "Extracellular Jonic Concentrations.

Jon Slice CSF

Na™ 150 mM 147 mM

K 6.2 mM  2.86 mM

cr 131 mM | 113 mM

HCO, : 26 mM 23.3 mM
(mM = milli-molar)

as Na+ (30 mM), K+ (130 mM), CI” (10 mM), and organic anions (150 mM)
(Llinas et al., 1980), which -consist mainly -of glutamate and aspartate (Puil,
1981). Hence the intracellular concentration of potassium, [K+]i, exceeds the
extracellular concentration, [K+]0, by a factor of 20-40, and the extracellular
concentration of sodium, [Na+]o, exceeds the intracellular concentration [Na+]i by
a factor of ‘5. Differences also occur for the other physiological ions. The
.concentration [K+]O may vary considerably -during abnormal physiological states,
reaching 12 mM -during epileptic activity (Prince, 1978) and 40-50 -mM -during
spreading -depression (Nicholson -& /Kraig, 1981). Spreading -depression is also
accompanied by large changes in the concentrations of Naf, Cl, and Ca2+.
Tabulatedi conductivity data for electrolyte solutions give an estimate for
the conductivity of the extracelluiar fluid of 20 mS cm'1 at 37C° which is in
agreement with the observed conductivity of cerebrospinal fluid (Nicholson, 1980).
Correct values of the intracellular conductivityv are considerably less certain owing
to the .complicated morphology of neurons and the fact that axoplasm ‘is not a
»simple. electrolyte solution. Typical measured values are between 1 to 4 times the

resistivity predicted by the composition of the intracellular medium (Barrett &
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Crill, 1974; Carpenter et al.,, 1971, 1973; Schanne & Ruiz P.-Ceretti, 1978).
Using the concentrations cited above, this leads to an estimate for the ir;ternal
resistivity, ros between 67-268 Qcm, while -the resistivity of somatic cytoplasm is
.even more variable (Schanne & Ruiz P.-Ceretti, 1978). Extracellular electrical
potential gradients are usually between [V¢| = | 1 mV to 250 mV cm’ (Somjen,
1979). Typical length scales for cells in brain tissue are L = 10 um to 100
um. For example, dendrites may be 1 um in diameter, the cell body of a
Purkinje cell may have a radius of 10 um, astrocyte processes may extend 40
um to 50 um, while the complete arborization' of a Purkinje cell may extend for
500 um (Hounsgaard & Nicholson, 1983).
At physiological témperatures and concentrations, diffusion coefficients for
KCI and NaCl are approximately 1.7 x 10° and 1.3 x 107 cmZSec'l,
respectively, and at the physiological temperature, T= 37C, RT/ F is 27mV.
Non-dimensional variables are chosen so that under typical conditions the
magnitudes of relevant -quantities are -close to unity. A .convenient (though
arbitrary) choice is to take the non-dimensional voltage gradient to be near unity.
The -scaled spatial coordinate is -defined .as Ej = Xj/ L and the scaled voltage ¢
= F¢/RT where vRT/F is the typical voltage variation over the length L and
v is a non-dimensional_ constant. Denoting a typical ionic concentration by C, we
obtain the non-dimensional concentrations; Ci = Ci/(_f , which will differ between
intracellular and extracellular environments.
For the case of potassium, K+, 'the magnitudes of the terms in the
Nernst-Planck equations may be roughly deduced as follows. Each nerve impulse
releases K= at approximately 2 x 10% m mole em? sec! (Orkand, 1980), at

a frequency between 1 Hz and 100 Hz. At 100 Hz the flux associated with this
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s

release rate corresponds to a current density of 2 x 10'5 amp cm . In
;:ontrast, an extracellular potential gradient of .1 \% crri_1 (Somjen, 1981) at an
effectiére conductivity T of .31mS leads to a current density of 3.1 x 10.5 amp
cm-z. Hence, the diffusive ana €lectrical terms are of comparable magnitudes.

Dimensionless variables are selected so that typical concentrations and
voltage gradients will be of order unity. Thus, it is appropriate in the case of
‘the potassium ion, K+, to take L = 50 um, D, = .85 x 10 %cm? sec'l, c =
5 mM, and vRT/F = .5mV (that is .5mV/50um =100mV /lem) which implies
v = .0185. Since p is small, the flux associated with a voltage gradient of
order unity is small compared to the flux associated with a concentration
gradient of order unity. No special use will be made of this fact, but it is
necessary for later calculations that the electrical flux be at most of the order of
the diffusive flux. It is important to note, however, that ;che magnitudes of the
characteristic electric potential- gradients on long and short .length scales may
differ because of fine structure in the tissue conductivity induced by the presence
of cells.

A similar choice of scalings is .appropriate for equations (1.1) - (L.5). It 'is
convenient to scale ¢ by 0 = ID. C, while the variables x and ¢ are scaled

1

as before.

2.2. Asymptotic Assumptions
In this work, we focus on results which are independent of detailed
considerations of cell geometry and placement, because such results are more

likely to be applicable to a wvariety of different preparations. It is assumed for

T The apprbximate effective partial conductivity due to potassium in the
extracellular medium.
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convenience that the tissue contains a large number of periodically arranged cells.
The periodic -domains correspond to the -smallest .repeating subunits of the periodic
structure -of the tissue model, which will be called crystallographic unit cells.t
The assumption -of .periodicity and other assumptions made later about cell shape
are convenient for computation. While the mathematical model employed could be
used in two or three dimensions, it is convenient to perform the numerical
calculations in two dimensions.

It is expected that the properties of this abstract model, .and properties of
the real tissue, will depend in similar ways -on characteristic dimensionless
parameters related to the extrécellular space fractional volume, electrical properties
of the intracellular and extracellular media, and cell size, since these model
parameters can be matched to the real ones.

It is assumed that there are two fine characteristic length scales; a fine
length scale, L, which is characteristic of neuron size and a finest length, L,
which is characteristic of glial cell size, (see Figure 2.1). Since it. will not be
assumed that neuronal membrane has properties distinet from glia in this model,
-the ’neuronal’ - cell -population could be any asymptotically -larger cell population.
This two-tier structure is chosen to model the structure of real tissue, which
containé both coarse and fine structures of various kinds. For example, dendrites,
and glial cell bodes and processes are expected to have finer spatial dimensions
than neuronal cell bodies and axons (Peters et al, 1976). The asymptotic
expansion in Chapter III will be constructed using this assumption (referred to as
a two-tier model). The calculation for a simple periodic array (one-tier model)

forms a part of the two-tier calculation and this simpler model is considered in

T This term is borrowed from elementary chemistry.
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Figure 2.1. Periodic arrays of model cells can be arranged in different ways to
match the properties of biological tissue. Possible shapes for the biological cell are
shown, and assumptions about the spatial length scales L,, L,, and are
illustrated. The model tissue used later will be in two dlmensxons (compare
Figures IV-3.1 and IV-6.3).
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many of the numerical calculations.

While "our results show that the two-tier model may be -useful, further
experimental data would be required to justify more detailed study of this model.
Figure 2.1 illustrates the hypothesis that larger cells are aligned anisotropically,
while finer cells are aligned isotropically. Such an alignment might be expected
because neurons and glia have complicated branching structures, so that the finer
structures tend to have less spatial organization. To completely justify this model
however, it will be necessary to gather detailed quantitative data on the relative
size, shapes, and positions of cells in neural tissue.

In order to determine relationships between macroscopic and microscopic
properties of tissue, we calculate the macroscopic properties of this tissue model
over a coarse length scale, L = Lg. The notation Lg, L,, and. L, will denote
asymptotic length scales which may correspond to various physical quantities. It
will always be assumed that L,/Ly, = € and L,/Ly, = O(ez) where O(e) is
the usual order notation. The extracellular and intracellular media are assumed to
inélude only the uni-valent ions, Na+, K+, and Cl . Neuronal and glial
membrane are assumed to be permeable only to K.+ ions. This is correct for
glial membrane and is approximately correct for resting neufonal membrane
(Kandel & Schwarti, 1983, p40). The electric potential, ¢, and qoncentration; Ci’
are discontinuous across the cell membranes.

The time-dependent equations for the electrical and ion transport properties
of tissue are more compli(;ated thén those formulated here. Such equations would
have included capacitive current and the time dependence of the membrane
conductances. However, appreciable ion transport takes place only over times on

the order of a second or longer. Thus, the time scale of interest (several
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seconds) is long compared to the time constant (a few milliseconds) for charging
of the membrane capacity, or the time constant(s) for relaxation of the
membrane conductances toward their steady state values. It may be shown by
an elementary calculation that the charge or 1ion transport associated with
charging of membrane capacity and relaxation of conductances is smaller (by a
factor of about 1000) than the net charge and ion transport which can occur
over several seconds. A characteristic time, tc, of this order will be chosen and
will appear in the definitions of the non-dimensional variables. Thus, in computiﬁg
the electrical and ion transport properties of neural tissue it will be assumed
that the membrane charge and conductances have attained their steady state
values. The extracellular ion concentrations will be (slowly) time dependent, and
the equations specifying this time dependence will be given. Thus, a quasi-steady
non-linear averaged equation for the evolution of the extracellular potassium
concentration is derived. The present analysis is different from previous analyses
(see Chapter I) ‘because it does not assume that the tissue is syncytial, includes
more than one type of cell, and explicitly treats electrodiffusion of ions in the

extracellular medium .according to equation (1.2).

2.3. ‘Model Equations

Table 2.2 shows the dimensional parameters and Table 2.3, the
dimensionless parameters to be used in the model equations.

Table 2.4 gives the definitions of dimensionless‘ variables used in the
model equations. The tilde =~ denotes dimensionless variables in Tables 2.2 - 2.4,
and will be dropped in the text. Displayed equations are always given using the

dimensionless variables of Table 2.4.
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Table 2.2. Characteristic Dimensional Parameters.

‘Description

length

measurement length

fine tissue sti;ucture length
finest tissue structure length
concentration

mass conductivity

“time

conductivity / cm

Table 2.3. Dimensionless Parameters.

Description

voltage gradient parameter

time constant parameter

ionic -diffusion parameters

Table 2.4. Dimensionless Variables

Description

space coordinate
time

concentration
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¢ = F¢/ vRT electric potential
0 = o0/0 conductivity
Hi = »qu /o concentration source density
_ 2 L .
Q, = ZL%. / @ ionic source density
) — - .
q, = L zq; /o charge source density
¥ = F V/uRT transmembrane potential
Vr = F Vr/ vRT resting transmembrane potential
?g'i = L gi/§ membrane conductance
'f)'i = L p,/Fo active transport ionic flux
P, =z 5i active transport ionic flux
P, = Z zp. active transport charge flux

If -;1 is the flux of the ith ionic species given by the Nernst-Planck
equation and each ionic species is conserved, it is shown (by a derivation
identical to ‘that for the diffusion .equation (Carrier & Pearson, 1976) with _Ei

substituted for the diffusive flux) >that:

(2.1) -v )= G, + q

where VX is the gradient operator with respect to % and q; is a source density
(mol/ sec cm-3). The ionic source q; is zero in the intracellular .and extracellular
media unless ions are introduced experimentally. Equation (2.1) and all following

equations hold in the interiors of the extracellular and intracellular regions. The
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quantities -5 » Ci’ q;, are functions of the spatial coordinates .
-Using the Nernst-Planck equations (1.2), the dimensionless form of (2.1)

becomes:

(2.2) (9ivici + vz,6V_+(C,V¢) = T%Ci+ q, i=12,.,N

where the variables and parameters are defined in Tables 2.2 - 2.4. Note that
since 8. = D./ID., the sum Z6.C. is o.
i i k 11

‘Summing (2.2) over i gives:

v 2 ac
(2.3) I = Tiz=l-afi + Q,

where Q,:= L2Ziqi/ 0. Multiplying (2.2) by z, the ionic valence, and summing

over 1 gives:

(2.4) 'VVX'(OVX'¢) = Q,

where the new quantity Q, is defined (Table 2.4) as Q, := Zi Lzziqi/ 0. The

time derivatives on. the right-hand-side of (2.2) sum to zero by electroneutrality.

2.4. Jump Conditions and Boundary Conditions
Sign conventions are illustrated in Table 2.5. The abbreviations ECS and
ICS denote the extracellular and intracellular spaces, respectively. The normal 3

to the cell membrane is outward pointing. The signs of the ion fluxes, -ji’ imply
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Table 2.5. Corresponding Sign "Conventions .at Membrane.

Name ECS ICS Symbol
Direction

Normal Vector < 3

Membrane Potential + - V:=¢i-¢° < 0

Current > 1.2 <o

Potential Gradient < Vé-3 >0

Cation Flux > _3 .3 <0

that cations flow in the same direction as electric current. Thus, the electric
potential, ¢, is defined so that cation flux is in the direction of decreasing
potential and diffusive .ﬂux (the first term of (1.2)) is in the direction of
decreasing concentration. As a result of these conventions, the values of V and
0V¢-ﬁ ‘have opposite sign. |

Using equation 1.(3.3) for the transmembrane current, and the definition of

B’i, the jump -conditions for ¢ and Ci at cell membranes are:

- n-’ - .-’ = — ‘
(2.5) - GiVXCi n vziGiCiV¢ n vzigi(Vr Vi) +. P,

where P, is an active transport or ’pump’ term and the transmembrane potential
V is defined by V:= ¢1 - ¢0 where ¢1 and ¢O are the intracellular and
extracellular potential, respectively, at adjacent -points across the cell membrane.

The electrical potential ¢, concentrations Ci’ and their spatial derivatives, are

discontinuous at the cell membranes. The quantity Vr is the membrane resting
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potential given by the Goldmann-Hodgkin-Katz formula (equation (1.2) of Chapter
I) and the surface ‘integral is evaluated over the membrane of -a single cell. The

dimensionless Nernst potentials, Vi’ are given by:

(2.6) wW. = L @/c)
i Z. 1 i
1

where (2 denotes extracellular and Cii intracellular ionic concentrations.

The jump conditions (2.5) hold intracellularly and‘ extracellularly, and so
(2.5) specifies two equations. Conditions of the same form hold at the cell
membranes of both the smaller and the larger cell populations. In addition,
boundary conditions are prescribed on the boundary of a region which is large
compared to both cell lengths (order one in the L, scale).

The pump term P, is chosen so that no net ionic flux occurs between
intracellular and extracellular space. This is physiologically correct .under normal

conditions over many seconds. ‘It is assumed that:

(2.7). fM{Vzigi(Vr = V) + pldS = 0

Summation of (2.5) produces, using electroneutrality:

3
(2.8) -V. o3 = Z v»zg(V - V) + P,
X i=l 171 1

and (2.8) - (2.9) hold at the cell membranes. Multiplication of (2.5) by z; and

summation results in: .



JI. The Model Equations / 61

(2.9) -0V _¢-8 = vg(V - V) + Py

e W

=1

When g. = 0 = p. for i such that sgn(z.) = const, the membrane is
1 1 1

permeable to only cations or only anions and a useful simplification ensues. For

: 3
example if the membrane is permeable only to cations; Z {vgi(V - Vi) + Zipi}
3 1=1 ‘
= Z {vzg(V - V.) + p} so that from (2.8) - (2.9).
i=l 171 1 1
(2.10) ’ - V_o.% = »oV_¢-1,
X X

at the membrane. This condition will be applied at the membrane of model glial
cells since theyv are permeable only to potassiurﬁ, K+. )

. Because the 'quantities g, Pi’ and q; contain thé dimension o_f length,
-independent .assumptions must -be made about the asymptotic orders of .the
corresponding dimensionless quantities, just as assumptions must be made’ about
the asymptotic orders of -cell lengths. .Different assumptions -correspond to ‘tissue
models with different physical properties. It should be noted that the definitions
of Ei and Bi imply that the dimensionless quantities may become large as L

—_— @,

T -The model equations remain fully coupled because of the time derivative
occurring in (2.3). ‘
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2.5. Continuity and Smoothness Conventions

The dependent variables are differentiable everywhere, except possibly at
the cell membrane, where jumps may occur. It is assumed that the dependent
variables ¢, and Ci’ containing transmembrane jumps take some bhounded values.
inside the membrane, but only the transmembrane jumps will enter the
calculation. The ionic and charge fluxes are continuous, and given by (2.2) and
(2.4) respectively, away from the membrane. When thé electric potential and ion
concentrations jump across the membrane, the derivatives of these quantities do
not exist at the membrane. Thus, the intracellular and extracellular solutions are
coupled through the jump conditions (2.5) at the membrane.

While the above conditions completely specify the solutions, it is still
necessary to evaluate averages of the spatial derivatives of the electrical potential
_and ionic concentrations over the complete unit cell, including the membrane,
during the formal calculation of bulk properties. One straightforward approach to
this computation would be to replace the membrane- by a thin region of low
conductivity and to take limits as the thickness of the region and its -conductivity
jointly tend to zero. To avoid such lengthy analytic arguments ‘in ‘the course -of
the asymptotic calculation, however, it is useful to extend the interpretation of
Vthe spatial derivatives and to use an extension of the divergence theorem,
discussed in this section. While similar results could be obtained in three
dimensions, we only need the two-dimensional result in later chapters.

The divergence theorem may be extended to functions with jump
discontinuities along a piecewise smooth curve in two dimensions as follows. Let
F be a vector field to which the divergence theorem applies on two disjoint open

regions, R1 and R2, with boundaries, 9R; and 0OR,, where R1 and R2 are



II.. The Model Equations / 63
separated by a curve, VM, which lies -in aRl and BRZ. A jump discontinuity in
F occurs on M, and the divergence operator Ve« is interpreted‘ so -that (cf.
Royden, 1968):

(2.11) lim [ v-RdA= [ Fo-F )R ds,
6->0 M M ‘

6,

where i‘zr, r=1,2, are the wvalues of F in Rr adjacent to M, ?lM is a .unit
normal to M pointing into R1 and M is traversed once. The right-hand-side méy

be computed as the limit as §—>0 of a sequence of functions b 5 where each

P 5 changes smoothly from ?’1 to ?2 in the neighbourhood of M, M 5 Then:
f v-FdA = v.FdA + fV.-FdA + lim  f V.FdA
RUM intR, intR _ 6->0 M s

(2.12) = [ F.dds + By ds + f FeRds
oR;-M M oR,-M
,fM?*z-ﬁM ds + :{Vi{?*z - f,}-KM ds
= J F.dds
oR-M ‘
where R is an outward pointing unit normal! on 8R, U 38R, - M, boundary
arcs are traversed counterclockwise, ‘and R = R1 U R2. This is the same

formal result as -the divergence theorem except that P is discontinuous.

To illustrate the extended divergence theorem, let S®@) be defined. by:
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"4

S'®@) for * in ECS

in M

e

(2.13) SE)= S°@3@) for

in ICS

"

S2(®) for

where Sr, r=0,1,2, are continuous in their respective domains, ECS denotes the
extraceliular space, ICS the intracellular space, and M the separating membrane.
For example, the function S(§) could be the conductivity function, 0. Let é be
continuous except for a jump across the membrane. The function é corresponds
to a dependent variable ¢ or Ci'

Using the extended divergence theorem (2.12) on R = ICS)UECS)UM),

we obtain

(2.14) fv.SG dA = § sG.3as
R aR-M

which is zero when there are periodic ‘boundary conditions on R - M. A similar

calculation for the integral:

215 f sv-&dA = [ sv.Gda + f s@2-G"-% dS
| R R-M M

vields two terms.
‘When G is the gradient of .concentration or electric potential, the first

/integral of the right-hand-side of (2.15) represents the average flux of the
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associated quantity and the second integral is pfoportional to the net
transmembrane flux. Thus, if the associated quantity is conserved within the cell,
-the second integral is zero.

These results are used later to -simplify expressions of the form of the
left hand sides of (2.14) - (2.15), bby removing the need to integrate over the

membrane.

2.6. The Mathematical Approach

The equations, non-dimensionaliiations, and assumptions presented in this
Chapter complete the specification of the mathematical model for bulk tissue
propertiés. This modgel corresponds mathematically to a non-linear
initial-boundary-value problem with coefficients rapidly varying in space. In
Chapter III it will be shown that computation of the macroscopic pfoperties of
this model can be reduced, using the method of mulﬁiple scales, to a sequence of
numerical boundary-value problems on periodic domains (Keller, 1977; Bensoussan
et al., 1978). These problems are called ’cell’ problems in Bensoussan et al., and
are called ’canonical’ problems here to avoid confusion. Whereas the solution -of
the original problem when € is small is an ill-conditioned and complicated
computational problem (Traub et al., 1985 a,b; Babuska, 1976)? the numerical
solution of the~ canonical problem is straightforward. The applicétion of the
method of multiple scales to the computation of ' averaged properties of
inhomogeneous rﬁedia is called ’homogenization’ (Babuska, 1976; Bensoussan et al.,

1978; Sanchez-Palencia, 1980).
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1.0. INTRODUCTION

The dependent variables ¢, ‘0, .and 'Ci are functions of time and the
spatial coordinates, ¥. In order to apply the method of multiple scales, additional
scaled spatial coordinates are defined by, U= %/ Lo, Vo= %/ L,, w o= 3
/ L.

The conductances, g appearing in the jump conditions I1.(2.5) are each
defined by scaling with respect to an arbitrary length L in Table I1.2.4. Because
we are interested in the bulk properties of cell arrays, the scaled conductance is
equal to the entry in Table 11.2.4 with L=Lg,, where L, is long compared to
the cell length. An additionally scaled value of g is defined as follows. Since
experimental data (Turner & Schwartzkroin, 1984) show that neuronal electrotonic
length scales (length scales formed from the electrical parameters) and the cell
length are of similar magnitude, the scaled wvalue of g with L=L1- is O(1).
Hence, we define a .new g using L=L, .and rewrite the scaled conductance as
e'lgi where the new g is O(1). A similar argument .is used to .define rescaled
pump fluxes. The -pump fluxes must have the same order as g in order to
balance the transmembrane fluxes as described in Chapter II

Since the asymptotically larger population Vmight not be neurons, other
‘rescalings of g, are possible. However, the above assumption is the least-order
assumption about membrane conductance which allows O(1) flux through this
population. The role bf electrotonic parametefs in tissue models is discussed in
more detail in Chapter V.

_ In the asymptotically finer ’glial’ population, g is rescaled in the same

way as above, and we rewrite the scaled conductance as e-lgi where the new

66
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g is O(1). Thus, electrotonic length scales have been assumed to be the same in
the tv@rp populations, so that the membranes and intracellular and extracellular
media of the finer population are assumed to have the same properties as in
the coarser population. This assumption is made because there is relatively little
data about membrane properties of very fine tissue structures. Because the
leading-order equations up to O(1) will contain no time derivatives, the time

dependence is suppressed.

1.1. Expansion

With the above definition of the scaled spatial coordinates, we have the

formal correspondence:

vV —> e'2V + e'lv + Vv
X w v u
0 m
(1.1) =z ™D
R m=-2 m

It is assumed ‘that ¢, o0, and Ci may be expanded :in the form: ¢ =

oo 9] [

Z e'nqb , 0 = L "o , and C.= Z €"C. . Details of the expansion of
— n _ n i _ in

n=0 n=0 n=0

operators and boundary conditions are given in Appendix IILA.

Collecting the équations from (A.4) - (A.6) for ¢o, 0o, and Cio we have:

Vw' (aovw¢0) = 07

. ‘ 0 _
(1.2) » VWGO - 07
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V. 0V . C) + vV +(8C V. ¢o) = 0.

110 W

The jump -conditions in W are applied at glial membrane. Since the membrane is

permeable only to K+, we use the simplification (I1.2.10) to obtain -explicitly;

Uovwd’o'ﬁ = 0,
> _
(1.3) Vwoo-n = 0,
6.V C. 2 = 0
1 W 10

These conditions together with periodicity in w specify ¢o,, 0o, and Cio’
intracellularly and extracellularly, though not the transmembrane Jjump. Because
‘the equations (1.2) are potential equations and the jump conditions (1.3) are
homogeneous Neumann conditions, 0g -is .a function -of U and v alone. Thus do
is a function of u and v alone. Using these observations it is concluded that
Cio is a function Qf U and v alone. The jump across the membrane will be
determined later using (A.8) - (A.10).

‘ Gathering equations for ¢,, 0,, and Ci1’ in the expansiops (A.4) - (A.6)

produces:

Alodo + Y, (00Y 61 = 0,
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2 -
(L4 A0, + Vo, = 0,

3

: C =
6.A,C. + VW-(GiVWCh) + Vzi{eiA-3¢° + VW-(G.C. V_ ¢4} = 0,

i -3 Tio 1710 W
f
where A_3=Vv-(foVW) + VW-(fOVV) + Vw-(f1Vw) , and from (A.8) - (A.10):

3
_Vao{Vw¢1-3 + VV¢O.R} = I 1gio(vVo-vVi) + P,,
1=1,

, 3 ' |
(1.5) -Vwo1-3 - vvoo.ﬁ = iZ=1zjgio(VVo-Vvi) + P,
“ - o-’ l—’ = - -
6V C. B + V.C R = z(1 - 6.C /oo)g, ,WVo-»V) + p,.

The integral of ‘the transmembrane fluxes (1.5) over the cell membrane
must ‘be zero, where -the integral over ’glial’ membrane is performed in the w
‘coordinate. Since the ‘O(1) solution of (1.2) - (1.3) implies that the right hand
sides are functions of 4 and v alone, this implies that the right hand sides of
(1.5) are ideﬁtically zéro.

The definition of Af:3 and the form of ¢,, 0o, and Cio in w imply that
Af:3 annihilates each of the operands in (1.4). The equations (1.4) for ¢,, 0,4,
and Ci1 in the intracellular and extracellular media are thus identical to those
for ¢o, 0p, and Cio'

Equations (1.4) reduce to potential equations because of the form of

$0,00, and Cio in w. However, the jump conditions depend on ¢,, 0o, and
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Cio which are arbitrary functions of V. For example, because ¢, is an arbitrary
function of -\;, each derivative VV¢0 is an arbitrary function in the solution for
¢41. It may be verified by direct substitution into (1.4) and (1.5) that if ¢,,
01, and Ci1’ respectively, have the form; ¢, = §'Vv¢o + $q, 0;= %-Vvoo
+ 6., and, Ci1= zi'vvcio + éi1’ where ¢ ,, 64, and éi1 are arbitrary

. 5 5> - ) )
functions of u, and X, n and k satisfy the vector equations:

2 % -> _
VW'('OO WX) - 07

(1.6) V.V 3

with jump conditions at ’glial’ membrane:

2 22 _ 2
wa-n = -n
S 2.2 _ _=2

(1.7) an-n = -n,
V k-d = R,
wi

then a solution is obtained.
Because (1.4) reduce to -potential equations, no other non-trivial w

dependence is possible, by applying the same argument that was used at order



III.- Asymptotic Expansion / 71
one to the difference of two solutions.

It is only necessary.to know ‘the general form of ¢,, o,, an’d Ciz in
the computation of the a-dependence of ¢o, 0o, and Cio' The computation which
specifies ¢,, 0., and Ciz is given in Appendix IHI.B. It is shown that the
intracellular and extracellular equations for these quantities are potential equations

and the solutions assume a simple form analogous to that of ¢,, o,, and Ci1'

2.0. AVERAGING

2.1. Introduction

The symbol MW(-) denotes the average over the \_1:7 unit cell;

(2.1) My (F) = L [ Fda

w W wMm v
where W denotes the W unit cell, dA"W = dw,dw,, and
(2.2) Wl = [ FdA_.

The interpretation of averaging for our asymptotic solutions is now given,
and the asymptotic size of the averaging region is specified precisely. This
clarifies the relationship between the periodic average given by (2.1) - (2.2) and
the average over a ’sufficiently large’ region in the unscaled spatial Variablg,
often referred to in the physical literature (Garland & Tanner, 1978) without
mathematical definition. |

Suppose that a formal flux vector, j(?:,i), is given by the multiple scales
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procedure where ¥ = (xl,xz) are the space coordinates, X = (X17X2) =
(xl/e,xz/e ), and-j is doubly periodic in (Xer) and a' smooth function of .
Then the spatial flux vector is defined bv-j & ,e) := ¥ X e).

It will be shown that a smooth flux vector 3 A can ‘be .defined at each
point 320 1= (xy0» Xgp) by averaging -3'(33,6) over a square region, Ru, of side u
centered at ;;0-’ assuming that g = eP for some p, 0 < p < 1 as € -> O,F
and récalling that the cells have length O(e). The result J A(x is independent
of the choice of p, 0< p <1 . A property which holds locally will hold -within
an asymptotic region of this size. Also, it will be shown that averages over Ru
are functions only of the first set of arguments of J (coarse variables), and may
be evaluated by integrating over a single period of the second set of arguments
(fine wvariables).

The above staberﬁents follow from computing the average of -3 over Ru, a

square area element of side u=eP, centered at X

o
(2.3) *jR(e,}O = 1 '3(?;0, xo/€) dA,
where |Rep| = e2p . Then the average flux vector will be the limit of (2.3) as
€>0, ie., jA Iime>0 -ER(G’;;O)'

To evaluate the limit it is useful to make the change of variables in the
integrand: x1 = e'l (Xl - XlO) and 'x"z = e_l (XZ - XZO)’ or in vector form
2=¢ '@ - X). 1t then follows that dA=dxydx, = ¢ df, dF,=¢  dA and

the regions of integration transform iRep——->ﬁ€p_1 where



IIL. "Asymptotic 'Expansion / 73

- . ) . P, P ; P
Rep = {()Ll,xz). XlO e"/2< Xl <X10+€ /2, Xzo e"/2< X2 <X20+€ /2}

(2.4)

”-'ﬁ-ep_l = {(xl,xz): —ep_1/2 < x, < ep_1/2; —e”'l/z < x, < ep/2}.

1 2

‘The vector dJ A may now be expressed as an integral over the fine variables

(XI’XZ) since as € ->0 :

3, = lim Jo(eXy) = lim [ IR -eX, R /e-%)dA
A = .]R 0 J 0 ’ Xo X
e>0 Rep

2.5) = tm L. [ J&EH0P), xye-¥)dx
e>0 e-zb R p-l
€
T S
= im L T 3@ ax.dx
TS—>e48T -7 -3 172

where the last equality is obtained from the multi-periodicity of 3(?1,-) , setting

S=T=ep-1/2, X1= -x ,+ xlO/e , and X2 = __§2 + x20/e. For fixed (X10’

1
XZO), the periodicity of J implies that the average in (2.5) may be evaluated
over a single period. Thus, for regions of appropriate asymptotic size, an average

flux vector 4 A is defined even though J may not be continuous, and J A(?c) is a

function of the coarse variables alone.
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2.2. Averaging Procedure
In this section the specification of the average governing -equation at
coarse length scales is completed. The -\;-dependence of ¢o, 0g, ‘Cio’ is deduced
from a necessary condition for the .existence of a bounded solution for ¢j;, 03,
and Cia’ namely the Fredholm Alternative applied to a constant function at
0(6-2) in (A.4) - (A.6). This condition is equivalent to the physical observation
that there can be no steady periodic solution to the potential equation unless
(charge or concentration) is conserved, so that the periodic source density must

have zero integral over each period. This leads to the conditions:

fW{A_Zao + Ag04)dAy = 0
(2.6) . fW{A‘_’2¢o + A% 91MdAy = 0

C C -
[61A0C, * A5G, * vyfAh 60 + AGeNAy = 0

where A_f2= Vu-(f'OVw) + VW-(foVu) +'Vv-(f',Vw) + Vw-(f1Vv) + Vv-(f'oVV)
+ Vw o(f 2,Vw) , and the integrals are interpreted as described in Section IL.2.5.
Thus, usiﬁg the eitended divergence theorem, the integrals of Vw applied to
discontinuous \?v-periodic quantities are zero.

To obtain the a-dependence of ¢o , 0o , and Cio , the same necessary
.condition - for the existence of bounded ¢, , o4, , and Ciu is applied to the O(1)
equations from ‘the expansion of Appéndix III.LA. These equations are ‘integrated

> > .
over w and v to give:
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B V{AO 0o+A L0y +A 0, A dA {W{Q1 + T?: CioldAydAy,
g [ g —_
@n f V{A0¢0+A_1¢1 +A% ¢,)dAdA, = f VdeAVdAW

[ BAGCI, A, G +A G dAydAy,
C C C

= aC.
%v V{qi+ 700 JdAydAy,

where WV is the wunit cell in -\: space and Af;) = Vu-(fOVu) -+ Vu-(f' ,Vv) +
Vv-(f1Vu) + Vu-(f'sz) + Vw'(fzvu) + Vv-(f3VW) + VW°(f3Vv) +
Vw-(f QVW) .

"This averaging procedure, as -applied ‘to the computation of bulk properties
of inhomogeneous materials is discussed by Bensoussan et al.,, (1978) but has not
previously been applied to any non-linear - equation with jump conditions in the
interior of the domain. However, the main objective here is the application of the
analysis, rathgr than mafhematical novelty. These equations provide an alternative
to the cable model in coinputing the bulk properties of brain tissue and this
treatment differs from those of Ré.nck (1964) and Havstad (1976) by the use of
a systematic averaging procedure and the iﬁcorporation of ion transport into the
model. |

The resulting averaged equations have an extracellular and intracellular

part. In order to apply the averaged equations it is necessary to determine the
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extracellular and intracellular parts. Thus we now investigate the specific form of
the solutions to (2.6) (2.7). This part of the calculation appears to be new.

It is assumed that a‘ geometry has been chosen in which the averaged

coefficients reduce to scalars. In this case, the .averaged equations (2.6) become

eViao = 0,

i
e

(2.8) VV-(aOOVquo)

V +(6.eV C. ) = 0,
v i vio
with periodic boundary conditions on the v unit cell (neuronal scale) and the

jump conditions at neuronal membrane:

-eVVooo?l = P, + gzo{vVo—ka}

2.9 -vaoovvqso-ﬁ = P+g20{¥Vo-»Vy}

_ 2 - _
eiciovv¢° n eieivvcio n p, + zigio{vVO vV

1)

where vVK:= In( Cgo/ C;o) and the definitions of a, e, and e'i are given in
Appendix III.C with the more general calculation. The right-hand-sides of these
equations are zero by an argument similar to that given for the right-hand-sides

of equations (1.5). These equations have continuous intracellular and extracellular
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solutions ¢q, 0g, C. , where ¢10 = ¢% + VK while 010 and dio are constants.

10’

After averaging in w (described in Appendix III.C) the Of(e) equations are:
eV%m = 0,
(2.10) V, @V ¢,) = 0,
V-0,V C,) + »zV -(8eC. V. $y) = 0,

1110 V

with jump conditions at 'neuronal’ membrane:

: i 0
eV 0,3 + V o0o-8} = geofvV, + (21 - Cary,
C2o C2o
. 0
(2.11) —200{V ¢1+B + V 608} = gaolvV, + (C21 - Caz1y),
c; c?
™20 20

i o .
~0ev G, 2+ VuCio'H} - zi(l-eieiCio/aao)gzo{VV1_+(_C.21-_CZ1 b

1 (o]
CZO CZO

and periodic boundary conditions on the unit cell. The periodic boundary conditions
follow from the periodic structure of the tissue. These equations (2.11) hold
intracellularly and extracellularly.

The equations (2.10) - (2.11) are linear and the solutions may be obtained

by the substitutions



III. Asymptotic Expansion / 78

-, > . - >
gq1= »( ﬂp'vu¢o + nV‘VuVo )+ M, Vucio oy Vqu + 64,
> > 3 ' >
(2.12) v, = p( xp-qu)o + xv-VuVo ) + )(C-VuCio + xS-Vuoo + ¢4,

P 2 ind bl A
Ci1— VCio( Kp'Vu¢0 + Kv-VuVo ) -+ CiO(KC.VuCi_o + "S‘vuao )+C1.

h -+ > > -+ > > > > > > > d > to b
where Xp’ Xy Xc’ X ﬂp> Ny Mo Mg Kp, K, K and Kk are e
determined. We write 04 =a0, yi =e, 6 ; and drop the tildes in what follows.
Substituting as described into (2.10) - (2.11), it is found that the variables to be
determined in (2.12) satisfy the potential equation extracellularly and

intracellularly, with jump conditions at the cell membrane given by:

- =V np,'ﬁ = .gzo{Xim")éfn'*"C}n—K&h
(2.13) —Oo{VvXp1'?1 + n,} = gzo{Xim‘X%ﬁ'C‘ﬁ"‘%J’

4 _ _ - _ v. _
=6,C;,V, k1B = g,(1-6,C; /00Xy~ Xpy t+ Ky~ Ky},
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(2.14) =gV X?m'ﬁ = -0 {vaiw B+n,} = gzo{#;,,w@ﬁx‘;,-x?,,},

v

: 3 _ i i
TG Ve B = g (170G, /000X T X i T i,

‘—%{ergfg + n,} = gzo{)és1_7@,1+"is1_’%1}’
(2.15) -ooVsz1-?1 = gaol{Xy = R, + Ky - 2.}

5 . .
—eiciovv Ksatm = gio(l‘GiCio/oo){x‘s1— Byt Ky~ )

- i'V\Jfé, 3= gzo{)ém")g1+ ’ém—.K%J

a
(2.16) ‘OC,‘VVXC_,'?I = gzo{*'(:")a1+'éc1-'%1}

~6,C, VK B = -6{CIV R R + ny)

1 10 V
= £,,(1-6,C; 100} Xy~ Ry + Ky~ )

. I
where the subscript 1 denotes the first components of the quantities X, 7, and
k. Later it is shown that the canonical problem for each component ‘is the same

and thus, that these coefficients reduce to scalars under appropriate geometrical
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assumptions.
Since the variables -15 do not appear on the right-hand-side of (2.11), it is
. s K, K

?

possible to solve (2.10) - (2.11) by first solving for xp, Xy Xo Xg K c

p
and K because they are -independent of the 17 ’solutions. In addition, as
described in Chapter IV, it is assumed that Vu0¢=0. ‘Hence the 7 solutions do
not appear in the expressions for ¢,, 04, and Ci1 and need not be computed.
The x and k solutions, which are calculated numerically in Chapter IV, will be
substituted into the averaging conditions (2.7) to obtain the average governing

equations which are the goal of this chapter.

Substitution of the X and Kk solutions into (2.7) gives the equations:

D1Vi¢o + E1Vi\7o + F,ViCo = Q;

(2.17)

Dzv%l¢o + EZV%IVO + FzViCO = q + T%O

‘where CO is the potassium ionic concentration and the coefficients are defined

using (2.1) - (2.2) by

Dy =0oMyft,(1+ VX )
E1 =00Mv{t0(tﬁ + VVXV1)}7

-1
F1 =0V MV{tOVVX01}’

(2.18)
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Dz:gOMV{thO(1+ vapl) + vapl},
E2=00MV{tho( (tﬁ + vavl) + VVKVI)}’
F2=p'1{MV{ (0CoV kyy + 6) + ootyet VX i1

where tB is unity intracellularly and zero otherwise, and t0= oo/a%.

The periodic problems for the 7, X, and k variables depend on 04, Z20,
and Cio through (2.13) - (2.16) and thus are, in general, functions of V. Thus
an infinite number of the canonical periodic problems must be solved in order to
obtain the (variable) coefﬁc;ient functions of (2.17). This is because the original
mathematical problem was non-linear. It is shown in Chapter IV that it is
appropriate to approximate (2.17) by a system with ‘constant coéf'ﬁcients obtained
from a single set of canonical problems in -which Vu0=0. As it 1is impractical to
so]\?e numerically for ‘the wvariable coefficients this :is a useful simplification. The
coefficients ~D;, D,, E,, E;, Fy, and F, are tabulated in Chapter IV using
this assumption.

The calculations of this chapter show that the coefficients of. the average
governing equation are different depending .on the length scale. This has
implications in the interpretation of data from experiments on the bulk properties
of brain tissue‘, and some specific comparisons of one-tier with two-tier models

are made later.



III. - Asymptotic Expansion /- 82
APPENDIX III.A. OPERATOR EXPANSIONS

Using the correspondence (1.1) it follows that:

V—s 92 4+ 39w v + e2W .V +V .V + 'VZ‘)
X w Vv W u W w u
(A.1) + eV .V + V.V +V
u v v u u

0
= Iz eTA ,
m=-4 m

where mixed partials such as Vu-VV and VV-Vu must be distinguished from
each other in view of the discontinuity at the cell membrane. While the
boundary-value problem is formulated using jump conditions at the membrane, it
is still necessary to interpret expressions such as Vu-(ovw¢) and VW-(aVu¢) in
performing averages of derivatives over the unit cell R (intracellular and
extracellular spaces and membrane).

3

©
Thus if f = £ €°f
n=0 n

-2 -1
f VX_> € fovw + € (foVV+f1VW)

n
€ (anu + fn+lvv + f V)

[« -]
(A.2) + E n+2 w
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In general

. o
Vof V—>( 2y + elv +v).@ LB
X X W v u n

n=-2

[o -]
(A.3) = T e A
n

So that the model equation (11.2.3) becomes:

0 -3 + -] 3
(A.4) z Z e "UA o = Qy + 7Z L enac‘n
m=-4 n=0 m-n n=01=1 t
and (I1.2.4) becomes:
0 [-3)
(A.5) | > mEn 0 4 = Q,.
m=-4 n=0 m'n
We define the operator A := Al where f = 0.C. The differential
equations (I1.2.2) for Ci become:
0 3 c© o
Iz ™Mea ¢+ oz L ™Al
m=-4 n=0 1 m1 m=-4 n=0 ! n
(A.6)
[+ ] 3 n
=Z Z € 9C + q.
n=01=1 -mm !

The jump -conditions .are now expanded in the new variables. These

conditions are to be applied at the asymptotic scales corresponding to the
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assumptions about cell sizes. The condition for ’glial’ membrane is applied in the

- . . . : . -
w variable and ‘the condition for ’neuronal’ membrane is applied in the v

variable.
[+ =} Qo )
We define g. by expanding: -g.(Z V. )= I qu‘ , Sso that
in =0 \ n n=0 in
— ' — 1 " (] . '
g0 gi(VO)’ g4 gi(VO)Vl’ 8o _2_{g iV1 + 2g 1Vo%} where the prime
£ €e"h. so that:
N in

denotes dgi(V)/dV and define hin by expanding Vgi(V-Vi)=

— -1 i
hip=gigl¥Vy = €/ G,
1

(A.7)
_ v - 1 i _ 1, ¢ -
b1 =&, WV - & I / Gt + golrV, = i i B
e ®
io io
etc.
Then the jump conditions (I1.2.5) become:
0 m+n m-+n ,2C >
-z Z {e o n + vz € ' 6D ¢ -n}
m=-2 n=0 i“min i“m'n
[}
(A.8) =z ™lzh +ep
=0 1in i

at the ’glial’ and ’'neuronal’ membranes, where the scaling of p; was discussed in

the introduction to this chapter. The equatfon (I1.2.8) transforms to:

0
(A.9) -z
m=-
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and (I1.2.9) to:

[+ <] < + o
(A.10) vz £ ("™yyd = n + P,
m=-2 n=0 " n n=0 m

at the glial membrane.

APPENDIX TIILB. SECOND ORDER PERTURBATIONS OF THE
DEPENDENT VARIABLES
To O(e™®) (A.4) - (A.6) imply that ¢,, 05, and C,, satisfy:
A% po + A% 6, + V <(0oV _¢,) = 0
-9 [¢) -3 1 w o] w 2 »
2
(B.l) A_zao + A_30'1 + Vwaz = 0,
6.A . .C. + 6.A..C. +V +(6.Y C.)
17-21 10 177-31 11 w 1 w2
C C . _
+v2{0,A7. 60 + 6AZ G, + V -(6,C V. 6r) =0,
where A, = V (V) + V (V) + V_«EV) + V V) +

Vw-(f 2 VW) _\, while the jump conditions at glial membrane become:

i 0
~Zh, = 200V, +(C21-Cat)}= vo (v ¢, R+V g0 1
‘ Czo Cio N N .,
+V00{VVV¢2 'n+vv¢1 '1’1+Vu¢o‘n}‘ 3
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1 o i
B.2) -Zzh = ~g,0{rV,+(C21- C21 1= 'Vwaz-?1+VVo1-ﬁ+Vuoo-ﬁ ,
' ‘-Clzo 'Cgo
=h. = =g,0(1-8.C. /oo)}{pV +(C'iz1— Cz; }= 64V C A4V C._ -R+V_C -1}
iy~ 220 i‘io' "0 T e el 77 Y% ™50 v i1 w iz :
1 0 - .
CZO CZO

The definition of A_f2 and the form of $0, 0o, and C, imply that A_f2
reduces to VW-(f 1VV) + VV-(foVV) , when applied to the O(1) terms in (B.1).

No similar reduction is .possible for .A_f3

simplified by substitution of the known forms for ¢,, 04, Ci1' By an explicit

but the equations (B.1) -.(B.Z) may be
calculation, we obtain the equivalent equations for ¢:

- 2 2>

> 3 2
"V, 00V 92) = 2V XV (V_¢o) + VVUO'VWX'VWTI‘V",¢0

B.3 + v V 2V o + 0oV + V v
(B.3) JI0 V-V _do 0oV %o 90V, %o
The equations for ¢ .are (cancelling \‘Gi):

2 _ > ' o
(8.4 Vie, = W 7.V (V. o) + Voo

while the equations for Ci are:

2 ‘ . > ) .
vie, + 2%WK-?7‘;(vvcio> + vzvcio + vz« (C, Y $2)
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B ) 2 5 =2 2 8 2 o
(B.5) + ZCiOVW)('VV(VVqSO) + vVCio.VW'X.an.VV‘q&O
+ VC ¥ %VC + C Poog+V C -V = 0
v-io  Ywh Viytio ~io V¢O v7io V¢°}-"

where ;, '—n), and 7< ére defined in (1.6) - (1.7).

By the solution to (1.4) - (1.5), the first term in the definition of hi1 18
zero, so that the jump condition for ¢ in equation (B.1) has been simplified to:
~g,0#V1 — (€47 Co- €3/ C = v0,(V 613 + V goB) + voo(V, ¢,-n
+ Vvd)";; + qubo-ﬁ). Also, equations (1.6) - (1.7) imply that the terms
pr.oportional to o, vanish in the latter expression. Hence the expression reduces

to:

voo{V, é2°8 + (X-V):V ¢oB + V ¢,:B + V go-7)

(B.6) = —g,ofvV,+(C21-C21 )} |

i 0
Cz0 C2o
Similarly:

v0o{V, 028 + (@-V)-V 00-R + V ¢,-% + V ¢o-1)
= ~ga0{pV, +(C21- C21 ),
Cio €%
B.7)

8V C. & + (R+V):V C. R + VC % + VC. -8
1" W 12 v vV 10 vV 11 u 10
cl,_c?
= —gzo(l—GiCio/ao){vV1+( 21— Y21 )}

1 (o]
CZO CZO
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Since ¢, 0o, and Cio do not depend on —\’7, under the specific
assumptions made here, the functions ¢,, 04, and Ci1 do not depend on v by
(2.8) - (2.9). Thus, inspection of (B.3) - (B.7) shows that the intracellular and
extracellular equations for ¢,, 0., an& Ci2 are potential equations and the
solutions assume simple forms -analogous to those for ¢,, o0,, and Ci1' This

observation simplifies the computation of the a—dependence of ¢, 0o, and Cio'

APPENDIX III.C. GENERAL AVERAGING

In this appendix; the averaging calculations are carried out in the general
case. Without special assumptions about the geometry, the computed average
coefficients do not reduce to scalars, even though the microscopic parameters,
solution conductivity, and diffusion coefficients are constant. Because the objective
of this calculation is only the general form of the average coefficients, it is not
necessary to separately -consider ‘the extracellular and intracellular parts of the
solutions.

Substitution into (2.6) of the previously derived forms for ¢,, o0;, and

Ci1 yields the averaged equations at ’neuronal’ length scales:

Z 3 {e, 900} = 0,

(C.1) Z 93 {008,090} = 0,
T, T,
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Z8 {6. + 3 {6.C =0
jk%;’ll i%iki Wo} Y4 -a—j{ iio Jk 70}]
where a, =  Mg(5, +3x /W) , e = My (8., +80/0W) e, .=
ik W%k iy Sk WOk T M IOWI s Gy
MW(Sjk+aKk/aWj) , and & is the Kronecker delta, 6jk= 1 when j=k and 0

otherwise.
It is shown in Chapter IV that for the geometries assumed here;
- - >
ajk—a(u), ejk—e(u), ejki—ei(u)'
The quantities ¢o , 0o, and Cio satisfy jump conditions obtained by
averaging fluxes of order e'l at ’neuronal’ membrane since (1.1) implies that

OVVq) is associated with a flux of this order. These conditions are:

—zkek%inl = gzo{VVo‘VVk} + P,
J

(C.2) "Z Vooak_g’_on = gzo{VVo'VVk} + P

—; GleJkl.a_‘; = gzo(l_eicio/ao){VVO—VVk} + pi

’

The -\;-dependence of ¢, , o0,, and Ci1 is deduced from a necessary
condition for the existence of a bounded solution for ¢; , 05 , and .Cia ,

namely, the Fredholm Alternative applied at order e'l; yielding
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fW‘{A_loo +A 504 +A_,3az}dAW = .0
(C.3) J'W{A‘flqso +4% ¢, +A‘_’3¢2}dAW - 0
S 01 G +A5C;, +A_3;Ciz}+ v2.0.(8% 00+ 4,0, +85,0,0dA, = 0

f .
where A = V (V) + V. @V) + V (V) + V (V) +
VoV ) + V e(fV) + V_ (V) .

Hence, these averages yield (corresponding to 2.10):

z a{e 004} =
Jk'a_\_f kmk

(C.4) Z 3 {ooa 3¢1} =0
Jkav L -5—

fk%gv{eek W1} + vz, av.{el io Jk_5Q1}] =0

with jump conditions:

k{801n+800n} = g,o{rV, +(Cz1-cz1 )
k dvi I Duy J
C20 Czo
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(C.5) =-vooL a, {0¢1n+09 = vV, +(Cz1— Cz1)
o.]k k{-aJkJ .a_(i{n} g20f }
Czo €36

"ei;kejki{'%‘nj+a’5c?i°nj}' = 78, (176,C,/ 0PV +(_C,;_‘"_C&)}
3 k k cl c?
20 20
This is a system similar to (1.5) - (1.6) except that the coefficients now
contain averages and the boundary conditions are applied at ’neuronal’ ﬁlembrane.
The explicit form of the solutions when the coefficients are scalar is given in
equations (2.10) - (2.15).
Finally, to obtain the a-dependence of ¢o , 0o , and C.lo , the necessary
condition, equation (2.7), for bounded ¢, , 0, and Ciu is applied to the
_\-;I-averaged equation at O(1) which yields, using the previously computed v

dependence of ¢o, 05, C.

n o
io’ ¢y, 04, and C“

21,230} = Q, + 7z 2

J,k uj T oy i ot’
(C.6) | z a {aoa 3¢o} =
CO BRI

0}] = 79C. + q,

Z [0 {6, é_]kl _‘10} t vy -a—a-{el io Jk
Y

jkag;

where ajk’ éjk’ and éjki’ are defined in a manner -analogous to ajk’ ejk’ and

. . >
ejki’ by taking -\;-averages over v-unit cells of canonical problems with w
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averaged coefficients, in the same way that (C.1) were obtained by averaging

- .
over w unit cells.



IV. CANONICAL PROBLEMS AND THE COMPUTATION OF BULK

PROPERTIES

1.0. INTRODUCTION

‘The physical theory of ion transport is based on ideal assumptions which
are useful for obtaining the qualitative features of such transport (Horvath,
1985). It is desirable to incorporate these ideéliza’cions into our model because
most relevant experimenpal work on ion transport in Biology is ‘described with
reference to this (transport number) theory (Horyath, 1985; Gardner-Medwin,
1983; Barry & Hope, 1969 a, b). More generally, the physical applications of
results from homogenization theory have been relativély néglected, (1. Rubénsteiﬁ,
personal communication) and much of the theoretical work has only reproduced
' results already known to experimentalists or derivable through other -techniques
(Batchelor 1974; Lehner, 1979). It is expected that the incorporation of physical
theory will facilitate new physical insights ‘as well as appliéations.

Thus, in ‘this chapter, we are concerned with the relationship between the
expansion procedure of Chapter III and the existing -physical .theory -of .ion
transport. It is shown that “this transport number theory applies ‘to bulk tissue,
and a further simplification of the canonical problems of _ Chapter IIl is made for
.consistency wif,h the physical theory. Finally, bulk properties of the tissue model

are computed for a variety of parameters.

1.1. Transport Numbers in Electrolyte
It is observed experimentally that when a steady electric current is passed
through an electrolyte solution, the current i= Zizi-j : is approximately divided

into constant fractions, ti’ depending only on the composition of the electrolyte

93
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(Horvath, 1985). These transport numbers, ti, have been justified within the
thermodynamic literature and tabulated (Robinson & Stokes, 1955). The theory of
-transport numbers assumes that (ideally) ionic fluxes are proportional to electric
current with a single constant of proportionality over space and that the electric
current is specified by a linear equation with constant coefficients. If these
assumptions are true, it is simple to predict the effect of current passing
experiments on the concentrations of ions. The appropriateness of this idealization
for a simple electrolyte solution is now discussed.

While our model equations (I1.1.2) fepresent a simplification of a more
complete thermodynamic treatment (see Chapter 1), they still give rise to
non-linear governing equations. Thus, in general, the transport number is not
constant under this model. If we assume that (II.1.2) is correct and

electroneutrality holds, then we have in the steady state away from sources:

(1.1 ‘Ve(oVe) = 0,

-Vl = Ve(6VC, ) + »zV-(6,CVe) = 0

Thus, when o0 is known, the computation of the electrical potential ¢ is
straightforward. When Ci are constant, this implies that VCi=0, the diffusive
term is zero in (I1.1.2), and o=constant bhecause of its definition (Section II.1.1).

In this case the ion transport vector has the simple form:



“IV. Canonical "Problems. and “the Computation ‘of Bulk Properties / 95

-

(1.2) -); = VziGiCdiS = -rvtiziqub,

-where ti=6iCi/ 0. Under these conditions, Ziti: 1. The numbers ti are the
theoretical transport numbers measured by passing current through electrolyte
solutions (Horvath, 1985).1

Since Ci is not constant in general, this assumption concelrning the
transport properties of electrolyte solution is an idealization which is reasonable
as long as variations in Ci are not large. The diffusive portion of the ionic flux
is assumed to remain unchanged.

Because the intracellular regions have transport properties different from
the extracellular medium, the definition of bulk tissue transport numbers is more

complicated than the definition of transport numbers in electrolyte.

1.2. Discontinuous Ionic Flux in Bulk Tissue

The idealizaﬁion of -constant transport mumber in electrolyte solution is
useful and accepted in physical theory. Fortunately, no further assumptions are
necessary in order to derive bulk transport properties for tissue which are

similar to those for electrolyte solution. That is, potassium transport in bulk

-t It is important to note that these are not the only conditions under which -5
may be linearly related to electric current. For example, if o=constant and CiV$
is small: »V+(8.C.V¢) = 0 holds, and the electric potential satisfies, and C.
nearly satisfies, the potential equation. If, on the boundary of some region, the
potential ¢ and the concentration Ci satisfy boundary conditions of the form
8¢/ on= K aci/ on, then VCi will " be proportional to V¢ everywhere in the
region .and so ;= G.LVCi' + vt..ziquS is proportional to 1 the electric current. A
physical situation similar to this one, with more complicated boundary conditions,
occurs  in bulk tissue and is reflected in the mathematical form of averaged
coefficients in Sections 1.3 and 6.6. '
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tissue is a linear function of the electric current,‘ and the -electric current 1s
specified by a constant coefficient potential equation.. The physical basis for the
transport mumber theory in bulk tissue is now described.

In the extracellular medium, K+ ions -have a relatively low tabulated
transport number of about .012, while Na+ has a transport number of about
0.4, and Cl- of about 0.6. In contrast, because glial and resting neuronal
membrane are primarily permeable bo K+ (Dietzel et al.,, 1980) the transport
number for K+ across such membraﬁes is close to unity.

It is difficult to estimate the transport number for K+ inside glia or
neurons because the intracellular medium is different from standard -electrolyte
solutions, containing cell organelles' and a variety of organic molecules. However,
since '[K+]i is considerably higher than [K+]0, the intracellular transport number
of K+ must be closer to unity and‘ the ﬂux. of K+ must be a larger fraction
of the intracellular electrical current than in the extracellular current. Therefore,
it will be assumed that the intracellular transport -number for K+ is unity. This
assumption about intracellular transport number is not crucial (though it simplifies
calculation), but since -we will assume simple .geometry it seems appropriate -to
make simple assumptions about transport numbers in this section.

The above idealization permits a conceptually simple description of
eleétrically mediated spatial potassium transport. Beéause of these assumptions,
the K+ flux vector is nearly unaffected by the electric field in the extracellular
medium, but is proportional to the electric current vector in the intracellular
-medium.

The situsation .can be visualized by imagining that the electrical streamlines

(charge paths) passing through the inhomogeneous medium consisting of
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intracellular and extracellular compartments are coloured. Some of these
streamlines will pass through one or more cells. If current streamlines are
coloured blue extracellularly and red where they pass through cell interiors then
relatively more electrical potassium transport occurs along the red segments of
streamlines, and relatively little along the blue segments because of the difference
in intracellular and extracellular transport numbers.? If there are no initial
concentration gradients, then the average of the red flux is the average K+ flux
at the instant the electric field is turned on. In the steady state, the average

N .

K flux is the spatial average of the red intracellular flux and the diffusive

flux due to extracellular concentration gradients.

1.3. Local Transport Number in Bulk Tissue

Formal expressions for the fluxes of electric charge 1 (current) and
potassium —EK: =-32 are obtained from the multiplé scales procedure. To define a
local average transport number it must first .be shown that average electric
current is determined by a linear equation with constant coefficients over a
region which includes a large -number of cells. This requirement concerning the
equation for ¢ follows from the form of the multiple scales expansion and the
. discussion of averagihg in Chapter III.. As was described earlier,_ "local’ means,
over a length scale u which includes many cells but is small 'compar.ed to the
measurement scale, Lg,, for example, u=ep for p < 1. We denote such a

region by

T In the extracellular medium, K+ moves primarily by diffusion (in this
idealization). Because the extracellular medium contains high concentrations -of
other current carrying ions, Na and Cl , there is no inconsistency in the
specification of ¢. Diffusion does not cancel the electrical transport because, unlike

the electric flux, it has no preferred direction in free space or in cortical tissue
(Nicholson & Phillips, 1981).
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A linear relationship between bulk current and potassium flux follows from
an appropriate interpretation of the averaged coefficients occurring in the
expansion since, physically, the averaged -coefficients are equivalent to avéraged
fluxes. The linear relationship of averaged current and average ionic flux implies
that the local transport number theory carries over to tissue.

Bulk transport numbers describe any local linear relation between an
electrical and ionic flux. It is simple to define them physically. We denote the
extracellular and 'intracellular transport numbers by t% and t;{ respectively. There
are at least two approximate ways to define bulk transport numbers which are
useful. In general, the relation between -SK and 1 will be a matrix function
instead of a simple proportionality.

The first definition assumes that -EK is zero in the extracellular space and

thus the average of -';K involves an integral only over the intracellular space.

(1.3) MO = L g el 1aa,
WHK W 10s K

where W denotes the unit cell. Eduation (1.3) defines a local linear operator
applied to 1. Since any such linear operator is associated with a matrix, this
defines a matrix of ’local transport numbers’.

The second definition assumes that o=constant, »V<(C,;V¢)=0 and no
average change in conce_ntration occurs over the wunit cell. This case is a
modification of the situation described in the footnote -of Section 1.1. The average

- .
of Jk is given approximately by:
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1.4 M) = L feotaa + L 5 2 1da + » [ oy dA),
wOK T il gR Wi EcsK ECS 9
where \[/J satisfies membrane jump conditions of the form 1.2 = van[/J-ﬁ and

periodic boundary conditions on the unit cell. The function \[/J corresponds to the
flux due to concentration gradients set up by the jump conditions. Despite the
periodic boundary conditions, the average . of Vy J is not zéro because of the
presence of the ‘biological cell. Because J depends linearly on 1 through the
jump condition, equation (1.4) defines a linear operator applied to 1 and this
defines a matrix of ’local transport numbers’.

Thus, assuming the transport number theory is valid in electrolyte, it may
be deduced that bulk tissue has transport properties which parallel those of

electrolyte solution, though the transport numbers are not, in general, scalars.

2.0. FINAL SIMPLIFICATION -OF THE BULK EQUATION

Inspection of the governing equations for ¢o,0,, and Cio (11L.2.8) -(111.2.9)
shows that these quantities are constant extracellularly and constant intr'acéllularly
overv'R‘u for u=eP. Thus, the coefficients of the equations for the dependfence of
¢1,04, and Ci1 on the fine variables are constant both extracellularly and
intracellularly over Rl-l' Hence, locally, to leading order, the transport number
theory is. valid intracellularly and extracellularly over RIJ'

It is now assumed, in addition, that the transport number theory is valid
over asymptotically larger regions Rl-l’ u= eo, consistent with the transport
number theory of the physical literature. Mathematically, this assumption means

that we assume Vo,=0 and that GiCi is replaced. by t.0o in the expression for
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electrical ionic flux. In the calculations which follow, a geometry has been
selected in which matrix coefficients reduce to scalars.

It has been shown that a bulk transport number theory is valid locally.
The assumption that transport numbers are constant throughout the extracellular
and intracellular spaces, therefore, implies a bulk transport number theory‘ which
is valid throughout the tissue. While this assumption is ad hoc in a
mathematical sense, it is important to note that the assumption o=constant is a
consistent assumption because o does not appear on the right-hand-sides of
(I11.2.11). Also these assumptions are supported by experimental studies
(Gardner-Medwin, 1983 a, b; Havstad, 1976) which found no evidence that such
non-linear effects qualitatively affected bulk properties.

The idealization that the (electrolyte) transport numbers in the extracellular
space and intracellular space are constant will convert the variable-coefficient
averaged equation into an equation with constant coefficients, This is useful
because the coefficients of the averaged equation have to be computed numerically
and the numerical computation of the wvalues of variable coefficients is impractical
‘here. At the same time, the dependence of the membrane potential -on K'+
_concentré.tion and the presence of intracellular and extracellular compartments will
make the averaged equations different from those which hold in‘ electrolyte
solution. |

Inspection of (II1.2.11) shows that it is not consiistentb to assume that the
concentrafion C is constant in computing ¢. However, some comparisons will be
made with such a model because it is simple, and, as we show by direct

computation, qualitatively correct in some respects.
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3.0. COMPUTATION OF COEFFICIENT ESTIMATES

3.1. Introduction
In order to apply the results from Chapter III and the present .chapter to
ion transport in tissue, it is necessary to solve the canonical microscopic

boundary-value problems for the wvariables xp, X, X, Xs’ K

, kK, kK, and K_,
v C \% C S

p
to be determined in (II1.2.12). These quantities satisfy Laplace’s equation

intracellularly and extracellularly, periodic boundary conditions on a fundamental

domain W, and the jump conditions (II1.2.13) - (II1.2.16) which have the form:

—Oo{vap1°H + nq} = g{Xﬁ')&*K}m"‘%ﬁ’

(3.1)
-GConlcp1-ﬁ = g(l‘GCo/Oo)(Xlﬁ‘X&‘*'Kim"KgJ,
_ 0 > _ _ i - _ i i -
OOVVX31'1’1 = 0o {valw°n+rn1} = g{xlw x971+’c1v1 '4)71}’
(38.2)
—GCOVVKV,'B = g(l—GCo/OO){XiV,—)@,,'*ICiv]"lC?,,},
—OOVVXC1'H = g{%_,%1+'éc\_'%1}’
(3.3)

~0CoV Koy B = -6{CV_K, B + ny}

= g(1-6Co/0o ) Ny= 2, + - £},
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where g:=g, at the -cell membrane. Solutions must be obtained for a range of
values of membrane and intracellular conductivity values.

Since it is impractical, numerically, to obtain many solutions of these
boundary-value problems in three dimensions, solutions -were computed in two
dimensions. Although bulk conductivity and other properties should depend on
whether the calculations are carried out in two or in three dimensions, the
values we obtain are consistent with the experiments. Also, the diécussion n
Chapter V of transcellular conductance (average -current flowing through cells per
unit voltage drop) when membrane resistance is extremely- high or low will
suggest that the qualitative behavior of this conductance does not depend on the
number of dimensions in which the computations are conducted. Therefore, a
two-dimensional computation should suffice to estimate the order of magnitude of
the coefficients in (II1.2.17) and to determine the nature of their dependence on
a number of ‘important physiological parameters such as cell size, membrane
conductance, -intracellular conductivity, the extracellular -space fraction, and the
relative positions of the cells.

For convenience in computation, cells are assumed to ‘have straight
boundaries. It is assumed that cells are square, although rectangulaf, or other
rectilinear cell shapes would pose no special difficulties. Below, it is shown that

. ) - >
this assumption reduces X and k to scalars.
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3.2. General Properties of Solutions

The unit cells W employed in straight and staggered arrays are shown in
Figure 3.1 surrounded by dashed lines. The jump conditions (3.1) - (3.3) in
which n,; appears are equivalent to a set of line sources at the membrane
surfaces (indicated in Figure 3.1 by ). Because of the source distributions and
geometry, solutions are odd functions about the lines O and even functions about
the lines E.

Typical solution surfaces for xp, X Xy Ko Kp, and K which satisfy
Laplace’s equation, periodic boundary conditions and jump conditions _(3.1) - (3.3),
are shown in Figurves 3.2a-f. The horizontal axes are in units of h = (1/72)L
where L:= -€L,/L,, is the length of the unit cell, h is the numerical space
step for this solution, and the vertical axis is dimensionless. The numerical
values of the solution surface will depend on the conductivity distribution
intracellularly, extracellularly, and at the membrane, and the intracellular and
extracellular transport numbers, ti{ and t% It is seen -that the solution surfaces
are discontinuous across the membranes. This jump apparently occurs over a
length (1/72)L, in -the pictures, because it 1is convenient ‘to represent the
membrane as a region of reduced conductivity between mesh points. T There is
an apparent non-uniqueness in the solutibﬁ of (I11.2.10) - (I11.2.11), because the
proportional boundary conditions in (II1.2.11) give rise to an arbitrary constant in
the jump across the membrane. .In addition, when thé intracellular transport

number, ti{ is unity, the Kk quantities are given by an arbitrary constant

intracellularly. This non-uniqueness is resolved by the hypothesis in Chapter II

T In a centred finite difference scheme the difference between the finite difference
solution at adjacent mesh points represents the true solution derivative (flux)
half-way between the mesh points.
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Figure 3.1. Two-dimensional biological cells can be arranged in straight or
staggered periodic arrays. The crystallographic unit cells in each case (indicated
by dashed lines) are different. Plus (+) and minus (=) signs correspond to the
signs of the virtual sources associated with the jump conditions 3.1 - 3.2 at the
membrane. :
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Figure 3.2. Typical (L=72.1 um) solution surfaces for canonical solutions ¥x_, X
Xy Koo Koo and K, are shown in Figure 3.2.a -3.2.f, whilé solution surfac%s for
staggered grrays are shown in Figures 3.2.g 3.2.1. These solutions satisfy
Laplace’s equation, periodic boundary conditions, and the jump conditions (3.1) -
(3.2). Each solution was computed on a 72 x 72 grid with an extracellular
space fraction of 23%. These solutions represent, respectively, the O(e)
perturbations indicated in each figure title. A description of the main features of
these solutions is given in Section 3.2.
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that the pump fluxes force the net ionic flux and electric current to be zero
over the cell membrane.

Most of the wunit - cell is occupied by the biological cell, which is
surrounded by a narrow extracellular gap. Solutions are =zero along the two
opposite ends of the unit cell which are axes of odd symmetry and have zero
normal derivative along the sides of the unit cell which are axes of even
symmetry. The solutions have two types of appearance; one type of solution is
nearly a planar segment intracellularly, which is non-zero and tilted because of
the presence of source terms, and the second type of solution is non-zero because
of flux conditions at the membrane and exhibits considerably more curvature.
Solution maxima ranged from approximately .15 to 50, depending on the

parameters and type of solution.
4.0. NUMERICAL METHODS

4.1. Choice of Numerical Method

The canonical microscopic -problems specified by -(I11.2.10) - (IIL.2.15), '‘have
been solved using finite differences. Details of the numerical algorithm are
discussed later in this section. It is shown here that the features of the
biological modelling problem make our choice of numerical method more suitable
than other possible choices. It is not suggested that other methods could not be
applied, but that finite differences is a simple and appropriate method in view of
the special features of the modelling problem. |

Two special features of this biological problem are the low membrane

conductance, and the relatively small extracellular space fraction necessary to
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simulate the biological problem. First, it is easily verified that when the
membrane conductance g->0, the problems (II1.2.10) - (II1.2.15) ‘have no unique
solution and the intracellular and extracellular solutions differ by an arbitrary
constant. Thus, it is expected that at g=0 the coefficient matrix associated with
~any numerical method will be singular and for small g it will be ill-conditioned
and difficult to invert numerically. If g were zero, an arbitrary constraint could
be added to the equations to make the solution unique, but physiological values
of g are small, so that some other approach is necessary. Second, it is desirable
to be able to determine the dependence of solutions on the extracellular -space.
fraction independent of the shape of the extracellular space and to employ
biologically relevant extracellular space fractions less than 0.2. These features
makg certain classical methods for solving the potential équation, those involving
integral equations, and those involving separation of variables, difficult to apply.

One approach to solving the potential equation in an array of periodic
inclusions assumes that a separaﬁon of wvariables solution 'is :available for .the
potential equation in the intracellular and extracellular domains.t McPhedran &
McKenzie (1978) used this technique to compute the average conductivity -of an
infinite array of spheres with conductivity k1 ~imbedded in a medium of
conductivity k2. Although the biological probilem hére differs from their problem,
in that cells are surrounded by .membrane, and our equations are coupled,  the
same techniques are applicable. The technique consists of equating the values of
the periodic separation of variables solutions centred at different cells to obtain
an infinite system -of linear equations for the series coefficients. This infinite

system is truncated at some large M, where M is the row dimension of the

t This technique was anticipated by Maxwell (1878), exactly 100 years earlier.
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coefficient matrix, and solved exactly.

Also, the use of a separation .of wvariables solution depends on the
availability of such solutions in the form of classical special functions, for
example, those availablev on -elliptical regions. The use of elliptical regions in two
dimensions has drawbacks, however, because the largest packing fraction
(fractional area occupied by cells) which can be aftained in an array which is
not staggered is w/4 = 0.785. Since the usual extracellular space fraction is
about 0.2, it becomes necessary to use unit cells with geometries close to this
theoretical packing fraction. At the theoretical limit (w/4) the extracellular space
has zero width where the cells touch and theA width of this gap controls bulk
conductivity. For example, if. the conductivity of the inclusions is zero, bulk
conductivity is zero when they touch; while if the inclusions are perfect
conductors, bulk conduct_ivity is infinite when they are in contact.

Therefore, if cells are elliptical, it is difficult to study the effect of small
extracellular space fractions. Because -this can -only -be achieved by rearranging
the cells, the effects of rearrangement and extracellular space fraction changes
-cannot he separated. Unfortunately, most obvious -cell shapes -for which separation
of variable solutions are available have similar drawbacks.

Other methods for solving the potential equation involve integral equations.
We denote typical solutions of the canonical problems by . Since AY=0
intracellularly and extracellularly, the solution of such a boundary-value problem
i_sb determined by the normal derivative 9y /9dn of the solution at the cell
membrane, using a Green’s function. Solution techniques for the potential equation
based on Green’s functions when the conductivity is piecewise constant have been

described by Geselowitz (1967). Such an approach is possible for any cell shape
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including the square cell shape assumed here. Howeéver, the near singularity of
the numerical problem for small values of the membrane conductance, g, is a
difficulty for this method since the coefficient matrices which arise do not have
any useful structure.

‘For these reasons it seemed desirable to choose a rectilinear shape for the
inclusions and to solve the canonical problems using a finite-difference method.
The choice of a square or rectangular shape creates additional difficulties because
such domains contain corners at which the spatial derivatives do not exist. Thus,
numerical methods based on the existence of these derivatives suffer a loss of
accuracy near the corners.

For the potential equation in which the solution (but not its derivatives) is
continuous at the corners, this is not a serious difﬁculj;y. Near a two-dimensional
corner, with angle a radians, the solution  of the potential equation (where
oy /9n but not Y is discontinuous at the corner) takes the form:

1+a/27

(4.1) Re{Az - zo) b+ f2),

where z is a complex variable, f(z) is analytic, z, is the location of the corner

0
in the complex plane, and A is a real constant. This formula becomes
asymptotically correct near the corner so that at mesh points adjacent to the

{
corner the solution has the form f(z) + O(h1+a/21r

) as h—>0. The
finite-difference formula produces an approximation to f(z) which is second order
away from a boundary or jump locus. Finite difference methods -are less accurate

at boundaries (Mitchell, 1969), however. If a method with second-order accuracy

in space is used, for example, accuracy near a boundary (or jump locus) is first



IV. Canonical Problems and the Computation of Bulk Properties / 123
order. That is, the local truncation error of the finite-difference formula near the
boundary is O(h) where h is the space step. Hence, the accuracy of ‘the

finite-difference formula near the corner, which is "O(h1+a/ 27

), is as good as
the usual accuracy at boundary points. The .magnitude of the global error may

be estimated by variation of the mesh size.

4.2. Numerical Algorithm

The finite difference approximation to the Laplacian:

(4.2) 80, 05,05 = Uije1t Uit Uiy 10, 7405

was employed in the interior of each (intracellular and extracellular) domain.
From a computational point of view it was convenient to model the jump
conditions as discontinuities in the coefficients of the original potential equation.
Thus, ‘the region Mh in the Figure 4.1 is assigned a conductivity O nh -(mS)
with the property that as h—>0 the approximation to .the transmembrane current

may be written equivalently as
: i_,o _ i_,o0
(4.3) WV h = oWy

where o is in mS cm'l. In this way the same numerical séheme could be
used throughout intracellular and extracellular domains and across the membrane.
This is an -advantage because this means that the stability properties of an
iferative numerical scheme. are preserved.

The line sources at the membrane surfaces which are equivalent to the
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Figure 4.1. In the finite difference approximation, the membrane is represented
by a region M, of thickness h and conductivity o, , (mS). Conductivities in the
extracellular and intracellular spaces are ¢  and o, respectively. The unit cell is
bounded by the dashed lines.
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jump conditions (3.1) - (3.3) are of magnitude lao-omh| extracellularly and
|oi-omh} intracellularly. The line sources are discretized, ahd represented by point
sources. The intensities of the individﬁal point sources on the source loci depend
on h, since the sum of the point sources equals the total intensity of the line
source. The: difference equations for the model system adjacent to the membrane

are

(4.8) Uy +U 5  +U o+

AU +1J-(3+)\r)Uij+F()\r—1)+q.lj=0, . r=12,

where qij is a source density. This difference formula is zero when (i,j) are on
membrane loci of the form . pictured in Figure 4.2.A within the same tolerance,
where F is. a source s;trength, 7\‘:=hg/00, and )\2:=hg/oi. Thus, A s
proportional to the mésh size h, reflecting the fact that while Ui,j +1 ~ Ui,j goes
to zero as h—>0 intracellularly and extracellularly, the transmembrane jump

tends to a non-zero value.

At inside corners (4.4) was modified to (Figure 4.2.B)

2 - 2 -2 —
(4.5) Uij—1_+Ui+1,j+)\ (Ui-l,j+Ui,j+1) 2(1+ A )Uij+F(1 A )+qij 0,

and at outside corners:

4.6 U +U +U. . .—4U..+F(A°-1)+q..=0.
(4.6) § i ( )q1J

ij+1 7 Y511 i Y

In some cases N was taken as small as .5 x 1074,
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Figure 4.2. The locations of the points (i-1,-1), G-1,j), G,j-1), G,j), etc., in the
difference. formulas (IV.4.4) - (IV.4.6), is shown near the membrane locus,
indicated by the solid lines (compare Figure 4.1).
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While the boundary-value problem being solved is ill-conditioned for small
g, the éorresponding initial-value problem contains no such difficulty. This suggests
that certain types of iterative methods wi_ll not be affected- by this type of
ill-conditioning. For this reason, a commercial iterative solver for the
two-dimensional- potential equation with variable coefficients (NAG library
DO3UAF) was employed. This solver performed a single iteration of the strongly
implicit procedure described by Ames (1965).- |

Making use of the symmetries, the minimum area over which a numerical
solution had to be obtained was one quadrant of the unit cell, bounded by the
lines O, E, and the dashed lines in Figure 3.1. Becau_se the staggered unit cell
array was more complicated, the use of symmetry was less effective in reducing
the size of the numerical problem for a fixed extracellular space gap. Because of
the symmetry in the problem solved here, appropriately chosen Dirichlet and
Neumann conditions were equivalent to periodic boundary conditions. The
symmetry was necessary in order to apply ‘the present numerical method, since
Dirichlet, Neumann, or Robin conditions were required as input to the solver.

The numerical -iteration was started with an initial guess for (xg ,1;8 ).
Coupling of the pairs of dependent variables (xp,xp), (XC,KC), (xv,xv), was
acheived by using each variable to generate a source term in the iterations
performed on the other. For example, ki iterations of the solver are pérformed

toward the solution for Kpﬂ*'l in

V2 "pr%+1 = 0,

(4.7)
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- n+1 3 _ _ i
6CoV,, Ky n = g1 GCo/ao){xpr}‘ —pr},O + K‘pn+11_hpr}+1o

followed by 1 iterations of the solver toward the .solution for xpr}+1 in

v2 xpl’:"i‘l - 0,
(4.8)

~0o{V xp1 .ﬁ+n1) = g{xpr}-i—ll Xpn+10 n+1;i n+1l.o

Kp —K‘p1 ’ }7

where (ki’li) are a sequence of pairs of integers.

A cyclic sequence for (ki,li), . i=1,...,6; given by
(20,1),(1,2),(1,2),(2,1),(2,1),(1,20) was found by trial to be effective, and produced
much faster convergence than (ki’li) = (1,1}, i= 1,...,N. However, iterations in the
above sequence were terminated at a preset error tolerance and the overall
solution algorithm -terminated when the residuals in the finite ’differénce equations
were < 10'5, and -the solutions had not changed by more than 10°. In
addition, it was necessary to use large values of an internal DO3SUAF parameter
APARAM, to reliably avoid failure (blowup) of the iteration procedure. We took
APARAM=10 in the % iteration and APARAMF= 100 in the k solutions. Solut;ions
a.lt neighbouring values of A' were used to start the iteration for new values, a
procedure called continuation. The results of varying mesh size are described in
Appendix IV.A, but the results from the finest grid used (72 x 72) will be
reported. |

With continuation, some 100-300 iterations were required to obtain the

accuracy described. It was convenient to implement this procedure on the Floating
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Point Systems processor model 164 (FPS-164/MAX) attached to the general
purpose Amdahl computer at the University of British Columbia. \
To assess the effect of the coupling between the concentration and
potential equations, some solutions of an ’uncoupled’ version -of the xp system, 1n
which the k terms were omitted in the first equation of (3.1) are described in
Appendix IV.B. Solving the uncoupled equations was less time consuming than
solvingA the coupled equation with jump conditions (3.1) - (3.3). However, there
was some indication that the uncoupled equations were more difficult to solve,
since continuation ‘and parameter selection required greater care than the coupled

case when the NAG routine was used. A finite difference method similar to that

described for the coupled case was used to obtain the uncoupled solutions.

5.0. BIOLOGICAL PARAMETER SELECTION

Because the geometry selected for the cellular matrix does not model the
real geometry and because exact microscopic parameter values are not known in
some cases, it 1s .necessary to choose length scaleé and membrane conductances
so that they apﬁroximate the characteristic values prevalent in ‘the neural tissue
and to explore the dependence of the solutions on these parameters in -order to
obtain qualitative results. Results which are not sensitive to the geometry and
parameters chosen may be assumed to hold in vivo .

As will be shown iﬁ Chapter V, for purposes of analysis, cell size and
membrane conductance may be combined into a single parameter, analogous to
the electrotonic length of cable theory. This fact was used in the choice of the
order of the jump conditions in Chapter III. In what follows, it is assumed  that
the cells under discussion have membrane resistivity equal to 320 Qcmz, which

.is ‘Havstad’s (1976) estimate of glial membrane conductance. Deduced parameters
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then depend on the éharacteristic size of the cells and their surface/volume ratio
(discussion below). For other cells (neurons), membrane resistivity might be 3000
to 5000 Qcm2, based on the resistivity of dendritic membrane. In this case the
parameters employed in numerical studies correspond to cells which are larger by
a factor equal to gg/g d (or its square root, as we describe below) where gg and
gy are glial and dendritic membrane conductances, respectively.

In choosing biologically relevant parameters, we followed Gardner-Medwin
(1983) in taking into acéount the surface/volume ratio for cells in the brain. This
has been estimated at 5 umhl (Horstmann & Meves, 1959) on the average, or
5 umz of membrane per um3 of tissue. The (two-dimensional) .cells are square
and, as discussed in Section 3.3, the choice of straight cell boundaries was made
to facilitate the study of the effect of realistic extracellular space fraction values,
as well as for ease in computation. The dimensional length of the unit- cell is
denoted by [ and the biological cell will have length fi, where f is a fixed
fraction close to unity. For an extracellular space fraction .of a=23%, the value
of f is .875. Had these elements been extended normal to the W-plane, the
resulting square shafts would have had surface volume ratio 4if /22=4f /Z. The
parameter A\ can be written as A’ =hg/00=l;g/2400 and A2 ‘—'hg/ai=lg/240i
for a mesh which is 24 x 24. The value of g in two dimensions may be
deduced from the assumption that these extended shafts have the membrane
conductance observed experimentally. For each characteristic size [, it was
assumed that the effective membrane conductance was increased by a factor
equal to that necessary to make the surface volume ratio of the unit cell equal
to 5‘ um'l, say [=I,. The formulas for A' when the surface-volume ratio is

taken into account and when it is not are:
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A= log/240°,
(5.1)
2
\' = 1 lyg5ly = 5l
24 o0 4f 96f0°
The correspondence between [lo(um) and A' for g'1 = 320 &'lcm2 is given in

Table 5.1. If the mesh were 48 x 48, the corresponding A' values would be
half these values; or [, twice as large for the same values of A' when the
surface / volume correction is not applied.

Our numerical studies of membrane conductance with a 24 x 24 mesh
were carried out with A' values selected from those listed in Table 5.1 where
lo and [, respectively, are the characteristic unit cell sizes ass:)ciated with
corresponding assumptions about the surface/volume ratio. It is expected that
.characteristic sizes ‘between 5 um and 50 um will be appropriate .for glia while
characteristic sizes between 50 um and 500 um will be appropriate for neurons
or -syncytial glial elements of similar length.

The intracellular conductivity is usually assumed to be 10 mS (Shelton,
1985; Gardner-M‘edwin, 1983; Havstad, 1976), but here some studies were carried
out with intrécellular conductivities of 4 mS and 2 mS to establish the
sensitivity of the results to the intracellular conductivity, because this conductivity

is uncertain, Knowledge of the sensitivity of results is useful for compé.risons

with the qualitative investigations of Chapter V.
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Table 5.1. Unit Cell Lengths.

1037\1 lo (um) 14 (um)
100 153600 328
50 76800 o 234
20 3072 146
10 1536 103
5 | 768 | 72.1
2 308 46.0
1 154 32.5
0.1 15.4 10.3

6.0. PARAMETER STUDIES

6.1. Computation of Coefficients from Canonical Problems

Sin.ce the unit cells are -‘unchanged -by an interchange of the space
coordinates, the canonical problems .are the same for each coordinate direction.
The computation of f;he bulk coefficients reduces to the evaluation of integrals of

the fofm

(6.1) f KywiK, + z_aaﬁ }dA,
A% wj

where Kj’ j=1,2 is proportional to o(w,,w,) and ¥, a typical canonical solution
is independent of the spatial direction. Thus, bulk coefficients reduce to scalars

(cf. Section III.2.2); In addition, because of the symmetry discussed in Section
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3.2, the off—diagénal elements in the bulk coefficient formulas are zero under
averaging. The integral (6.1) over the intracellular region may be evaluated
- directly since K, 1is constant intracellularly. 1t is convenient to avoid numerical
integration of the derivative when the integral is taken over the - extracellular
region. For this purpose, the second term of (6.1) is integrated by parts in Wj

and the periodic boundary conditions are used to give

6.2 K,0¢ dA = - aK dA.
(6.2) fW 1-5%\3. lel/ '53:

As 0K;/9W, (the case of j=1) is a set of line sources, this reduces the
calculation to a summation over the source locations.

In computing coefficients from the finite difference solutions, it is possible
to assume either that the membrane lies halfway between the adjacent mesh
points on opposite sides of the membrane, or that the membrane contains. the
extreme extracellular and extreme intracellular mesh points. The first assumption
‘necessitates an -extrapolation to determine solution values .at the membrane. This
extrapolation cannot improve the asymptotic accuracy (n h) of the coefficient
estimates, so nothing is lost if (Figure 3.1. and 3.2) the available values at the
extreme mesh pointé are used instead. Thus, the extracellular space fractions

referred to below use the second assumption.
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6.2. Bulk Conductivity and Flux Proportional to Electric Field
The coefficients Dy and D, of the average governing equations (I11.2.17)
contain the averages of the canonical solutions Kp and xp which represent,
physically, - O(e) fluxes proportional to the extracellular potential gradient, Ve¢g.

The fluxes proportional to wap, where xp is the  perturbation in ¢, and VWK

b

p
where Kp is the the perturbation in C, are discussed in this section. Using

(I11.2.17), the bulk conductivity may be identified with the coefficient D; because
D,V¢, is the bulk eleétrical current which is proportional to V¢o.T The effective ’
» transcellular conductance is defined as the coefficient D2=ogMW{tho(1+ wapl)
+ vwkpl} and in the uncoupled model .the transcellular conductance is defined
by a((),MW{tho(1+ wapl)}: The effective transcellular conductance is a weighted
average of intracellular and extracellular flux which is predominantly intracellular
because tf{ << t;( and physically represents the ionic flux proportional to ¢,.
The coefficient D, is ‘compared to the transcellular conductance of ‘the uncoupled
model in Appendix IV.B. These quantities have similar numerical values because
the intracellular transport number ti{ =1 and t% = 0. The flux associated with
’lecp occurs -in the definition of D, but not in the transceliular conductance.
This flux may be interpreted physically as the diffusive ionic trans:port due to
local concent-ration gradients caused by ionic flux through cells. The ‘average of
Vpr makes a positive contribution to D, of 9% at [,=32.5 um and 5% at
1y, =146 um, compared to the total effective transcellular conductance. Since xpl

in the coupled and wuncoupled models are distinct, however, wap does not

determine the relative magnitudes of the conductances in the coupled .and

7 As noted in Chapter III, we do not distinguish between the one- and two-tier
models except in Section 1IV.6.3, so we write here: D1:=0%M {t 1 +

) 0 WYo
0x/0W )} where ta=ao/ao.
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uncoupled models.

Computed bulk conductivity versus cell sizes are shown in Figure 6.1.A,
and corresponding effective bulk transcellular conductance estimates in Figure
6.1.B for straight arrays of square cells (72 x 72 point solutions with an
extracellular space of 23%). These calculations assumed an extracellular
conductivity of 20 mS and an intracellular conductivity of 10 mS, which has
been taken as typical. The. bulk conductivity estimates range from 2.8 to 3.9 mS
in the parameter range of biological interest ({;= 32.5 um to [,= 146 um),
and are an increasing function of the cell size (membrane conductance). For
comparison, conductance estimates from an uncoupled calculafion are presented in
the figures. When {,=32.5 um, the coupled and uncoupled models agree to three
significant figures, while at [,=146 wum, they differ in this coefficient by about
20%. These values are consistent with observed conductivities (= 5 mS) for bulk
cortex and cerebellum (Nicholson, 1980). An extensive review of experimental data
.on electrical properties of biological tissue may ‘be found in ‘Schanne and Ruiz
P.-Ceretiti, (1978); At low membrane conductances, L = 10.3 wum, bulk
conductivity is 2.62 mS and transcellular conductance is approximately 2% of
this.

The bulk transcellular conductance ranges from 7% of bulk conductivity at
l,=382.5 ufn, to 30% at l,=146 um. This agrees closer with the uncoupleci
model at 32.5 um, but is some 13% less than the uncoupled model at
1,=103 um. Gardner-Medwin (1983) found that transceliular current, as
measured by K+ transport over a large (5 mm) region was about 6% of the
total current. Hence, the present theory suggests that transcellular current is at

least as large as was observed in that experiment, and supports the
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Figure 6.1. Bulk conductivity (A) and transcellular conductance (B) versus cell ;
size (I4y) are plotted for coupled and uncoupled models for o°= 20 mS, and ¢ =
10 mS. A logarithmic vertical scale is used in B.
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Table 6.1. E,, Dy, and D, by Cell Length.

l D, (10 mS) D,(10 mS) E,
(um)

32.5 280 024 019
46 .296 ‘ ©.040 .032
72.1 s 069 .059
108 355 096 | 084
146 386 122 | 111

experimental demonstration that such currents are significant.

It is useful to be able to deduce the values of coefficients other than D,
and D, from fluxes proportional to .Vq)' because these fluxes are easy to
measure experimentally (Gardner-Medwin, 1983a). The coefficient, E,
=UOMW{‘P‘°(F5 + wavl)}, is formally distinct from the effective transcellular‘
:conductance, ‘but it will be shown by direct calculation -that the :effective
transcellular .conductance ‘D, is .a useful approximation .to ‘E; (and 'E;). The
coefficients E; and E, play an important role in determining the magnitude of
the spatial buffering efféct. Examination of Table 6.1, shows that this
épproximation will be in error by at most 4 to 18%.

Typical values of D,, Dz, an‘d E, are tabulated in Table 6.1. The
‘values of D, correspond to Figure 6.1.A, and may be compared to uncoupled
values displayed there, while D, and. E; do not have analogues in the
-uncoupled -model.

It- is seen that while D, does not vary greatly over the biological range

of cell size/conductivity, (= 30%) the coefficients D, and E, ‘vary by a factor of
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6.3. Effect of Intracellular Conductivity on Bulk Conductivity

Figures 6.2.A' and 6.2.B show the -bulk conductivity -and effective
transcellular conductance when intracellular conductivity i1s 10 mS (Section 6.2), 4
mS, and 2 mS. While the influence of intracellular conductivity ai was relatively
slight from !; = 32,5 um up to [;=103 um, bulk transcellular conductance
was sensitive to the membrane | conductance. Between [, #32.5 um  and
[,=103 um, the transcellular conductance changes by a minimum of 220% over
each of the three choices of ai while the change in transcellular conductance for
any A' from 10 mS to 2 mS is at most 27%. At [,=146 um, a five-fold
reduction in oi reduces transcellular current by 45%.

These results demonstrate directly that for the parameter values discussed
in Sections 6.2 - 6.3,' the intracellular and extracellular electric potential are
-described qualitatively by ‘the asymptotic analysis (of Chapter V) :for .electrical
space constants which are long compared to cell length. These asymptotic
-solutions and -‘hence, the numerical conclusions, -do .not depend strongly .on
geometry. In addition, it is biologically significant that these model cells which
exhibit bulk transcellular currents: from 7 to 30% of total current had electrical
space constants‘ which were long compared to the cell dimension, and thus were
‘electrotonically unlike an electrical syncytium.

In the one-tier model, coefficients other than D, and D, are also
insénsitive to the intracellular conductivity. The values -of E,, F,, and F, for
ai= 10, 4 and 2 mS for various membrane conductances are tabulated in Tables

6.2. The values of E, were close to those of E,. As suggested above, E, is
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Figure 6.2. Bulk conductivity (A) and transcellular conductance (B) versus cell
size ([y) are plotted for o'= 10, 4, and 2 mS. A logarithmic vertical scale is
used in B.



Transcellular Conductance

o

- A
A o'= 4mS O
> O o'=2mS A O
> O
E e
3 3
5 &
()
X
5
o .
' A
2 : r . J.
0 50 100 150 200
Cell Size (u)
1.500 +
P ¢
O c = 10mS
~ A o'= 4ms ©
1.000 + P A
: O o=2mS o
| A O
¢ ° .
0.500 4 O
-0.000 ; § = ; ;
0 50 100 150 200
‘ Cell Size (u)

Figure 6.2 Intracellular Conductivity and Bulk Conductivity .



"IV.-Canonical ' Problems ‘and the Computation..of Bulk Properties / 144
closely approximated by the transcellular conductance for these cases and thus

depends on the intracellular conductivity in a similar way.

6.4. Tissue Structure

The derivation in Chapter III assumes that the tissue has a two-tier
structure as discussed in Section I1.2.2. Thus, it is assumed that a periodic
array of asymptotically larger cells is imbedded in a periodic array of
asymptotically smaller cells. A one-tier model would assume that cells are
surrounded by an extracellular medium consisting only of electrolyte with
conductivity = 20 mS, while a two-tier model assumes an extracellular medium
containing another cell type, surrounded by extracellular electrolyte. The
assumptions of such a model are illustrated schematically in Figure 6.3. The
cells have been assumed to be two-dimensidnal and square, as before, and the
_cells are not shown to scale.

Numerical solutions were obtained under the .assumptions of the two-tier
model. It is aséumed that the areas N, in the unit cell V, and G, in the
subcell ‘"W, have the same relative ICS .fraction, x, -and that the total ECS
fraction is a=0.2. To obtain this ECS fraction, over the two-tier unit cell, the
relative intracellular space fraction, x, of each wunit cell; V or the subcell W
must satisfy x + x(1 - x) =0.8 since the total ICS in V is the space occupied
by N plus the space occupied in its (relative) extraceliular space by the areas G.
Therefore the intracellular space fraction is x =‘ 56%. For this reason, the
solutions were obtained for a=0.44, and assuming that the membrane
conductance is zero at O(e-l), as already assumed in Chapter III. The bulk

parameters for the extracellular space were then used in a further set of studies

\
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Table -6.2.A. E; Coefficient Versus Intracellular Conductivity

ly 10 mS 4 mS 2 mS
(um)

32.5 019 018 017
46 032 031 ' 028
72.1 .059 . o054 .046
103 | .084 | 074 | .061
146 111 .090 075

Table 6.2.B. F; Coefficient Versus Intracellular Conductivity

14 10 mS 4 mS _ 2 mS

(um)

32.5 1.83 1.77 1.68
46 3.11 2.94 2.69
72.1 5.47 4.72 . 4:06
103 6.76 ' 5.32 4.37"
146 6.25 3.97 : 3.10

Table 6.2.C. F, Coefficient Versus Intracellular Conductivity

14 10 mS 4 mS ' 2 mS
(um)
32.5 4.55 - 4.49 4.40

46 ' 5.93 5.76 551
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72.1 8.42 7.79 7.15
103 9.99 8.76 7.82
146 9.93 7.99 7.16

Figure 6.3. A two-dimensional two-tier model is schematically illustrated. The
asymptotically larger population (N) is surrounded by an asymptotically smaller
population (G). Unit cells are bounded by dashed lines. The spatial coordinate in
the larger unit cell is V and in the smaller unit cell, W. The diagram is not to
scale, since the ratio of the sizes of smaller to larger unit cells tends to zero in
the mathematical model.
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at a=0.44. Thus, we took a%=5.39 mS, in place of a%=20 mS. As described
dbove, the total extracellular space remains the same. If bulk parameters depeﬁd
sensitively on tier structure, these studi;as could produce Very different results
from the one-tier studies with a=0.2. The results for the uncoupled model,
discussed in Appendix B, indicate that bulk conductivity is altered by a factor of
2 ‘to 3 by differing tier structures (Figure B.3.A), but bulk transcellular
conductance is not sensitive to tier structure.

Conductivity estimates obtained for the coupled two-tier model are shown
in Figure '6.4. These results indicate a strong coupling effect at all membrane
conductance values, since they differ significantly from the uncoupled results. The
computed values of bulk and transcellﬁ]ar conducténce are also signiﬁcantb;
different than those seen in the one-tjer coupled model. Computed bulk
conductivities ‘are about half the one-tier results, ranging from 1.56 mS to 1.82
mS. In addition, the transcellular conductance was consistently lower than the
-one-tier result ;:by a factor of 3 to 5 The_transcellulaf ‘conductance as a fraction
of bulk conductivity varies from 7.5% at [,=32.5 um to 16% at [,=146 um
(vs. 25% in the -one-tier study). Thus, wwhile -the bulk .and transcellular
conductances were not sensitive to the intracellular conductivity (Section 6.3), thev
extracellular conductivity has a significant effect on these quantities in a cdﬁpled'
model. This effect - is lto decrease bulk and transcellular conductance, and to
decrease transcellular conductance as a fraction of bulk conductivity. The reasons
'for differences between one- and two-tier models are now diécussed.

The local, coupled, canonical problem -for 'Xp has not been simplified by
our use 6f the transport number theéry. Thus, it is expected that for some

parameter values, interactions between electrical potential and concentration will
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Figure 6.4. Bulk conductivities (A) and transcellular conductance (B) versus cell
size (I,) are plotted for one-tier and two-tier models. The one-tier model is
indicated by filled squares and the two-tier model by open triangles. A
logarithmic vertical scale is used in B.



Transcellular Conductance

Bo =10mS o

50

= 20mS, « - 23

A o = 10mS, o°=539mS, « = .44

.l
= u
= H
3
e
A ||
O
Y
=
@
24
A 4 )
VAN
1 } t } {
0 50 100 150 - 200
o Cell Size (u)
[
1.000 .
n
A
A |
AN
0.100 +
| B
0.025 } : 1 —
0 50 100 150 200
' Cell Size (u) |

Figure 6.4 A Two—Tier Conductance Study



IV. Canonical Problems and the V.Computétion -of " Bulk Properties /151
be significant. The average ionic fluxes associated with xp and Kp are tgbulated
in Table 6.3. It is found that there is a large fractional change in ionic flux
associated with the C perturbation (column 3), K_p, over different membrane
conductance values, and that this flux may become negative at I; = 146 um.

Thus, the coupling effect on transcellular conductance seen in the two-tier
results may be interpreted physically as follows. Transcellular conductance in an
uncoupled model increases with the membrane conductance, because more electrical
current proportional to Vv¢o takes an intracellular route. In a coupled model,
inward transmembrane current results in a depletion of [K+] near the outside of
‘the membrane, and outward transmembrané current results in accumulation of
[K+] near the outside of the membrane. This causes hyperpolarizétion of the
membrane near the region of inward current and depolarization near the region
of outward current (refer to Figure I1-4.1 of Che_a.pter I). The resulting intracellular
current flows in the directjon opposite to Vv¢o and tends to cancel it. This
effect is accentuated as the extracellular conductivity becomes smaller relative .to
membrane conductance, because increased electrical K+ transport through the
membrane and decreased -electrical K+ ‘transport -in the extracellular medium
causes more depletion (accumulation).

The values of D,, D,, and E; for the two-tier model are tabulatea in
Table 6.4. It is seen that D, remains a reasonable approxir;xation to E;. Other
coefficients are discussed in the next few sections.

Studies with staggered arrays were performed for 0°= 20.0 mS, oi=
10.0 mS, with a=.2 fqr one- and two-tier models. There was .little difference
between the results for staggered arrays and straight arrays. The coefficients D, -

and D, are tabulated in Table 6.5.A-C, f'or straight and staggered arrays for
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I Mygltgt o1+ Yy X ) O MyVk}
(um) |

32.5 . .0098 .0019
46.0 .0144 .0023
72.1 .0184 _ .0019
103.0 | .0237 .0002
146.0 .0324 -.0038

Table 6.4. Coefficients in (II1.2.17) for Two-Tier Model.

1 D,(10 mS) D,(10 mS) E,
(um)

32.5 .156 .0117 - .0079
46.0 161 .0167 .0127
72.1 .166 .0203 .0164
103 172 .0239 .0212
146 .182' .0286 ~.0289

the one-tier and two-tier model. The other coefficients followed the same pattern.
This is in contrast to the results for the uncoupled model (Appendix IV.B), in
which thé differences between staggered and straight arrays grew more
pronounced as membrane conductance increased. Thus, the coupling between
‘concentration’ and electrical ‘potential,l'which is expected to become more significant

with higher membrane conductance, apparently reduced the effects of geometry.
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Table 6.5.A. D, and Array Geometry: One-Tier Model.

4 Straight (mS) Staggered (mS)
(um)

10.1 2.62 , 2.50

32.5 2.80 2.69

46.0 2.96 2.84
721 3.27 8.15
103.0 3.55 3.44
146.0 3.86 _ 3.75

Table 6.5.B. D, and Array Geometry: One-Tier Model.

l, | Straight (mS) » Staggered‘ (mS)
(um)

10.1 .056 : .055

32.5 .242 .239

46.0 : .397 .389

72.1 .693 _ 891
103.0 .955 .958
146.0 1.222 1.222

Table 6.5.C. D, and Array Geometry: Two-Tier Model

1, Straight (mS) , Staggered (mS)

(pum)
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32.5 1.56 ‘ 1.43

46.0 1.61 1.48
72.1 1.66 1.53
103.0 1.72 1.60
146.0 1.82 1.70

Table 6.5.D. D, and Array Geometry: Two-Tier Model

ly Straight (mS) Staggered (mS)
(um)

32.5 . .117 121

46.0 .167 .172.

72.1 .202 .207
103.0 .239 .242
-146.0 286 .290

The existence of tier-structure 1is an -important theoretical possibility,
because coupling between concentration and electrical potential becomes important
in the two-tier model. Also, as discussed in Chapter VI, spatial buffering occurs
by a different mechanism in this model. However, while the _two-tiel; model
seems plausible, there is currently no experimental evidence to support this
relatively compliéated assumption. Thus, the chief conclusion of this section is
that the predictions of the one- and two-tier models are broadly similar and the

-differences between straight and staggered arrays are not large.



IV. Canonical Problems “and the Computation ‘of Bulk "Properties / 155

6.5. Ionic Flux Terms Proportional to Concentration Gradient
The coefficients specified by the K. and X, canonical problem are
associated with the potassium concentration gradient. If the membrane conductance
were zero, this canonical problem would simply be the governing equation for
diffusive flux. Since the membrane is permeable to potassium, however, ‘its
concentration at the membrane affects the Nernst potential to all orders. Thus,
these coefficients do not depend exclusively on the diffusive properties of the
tissue, but also reflect the interaction of the local Nernst potential with ’unstirred
layers’ (Schultz, 1980) at the membrane. These effects have not been included
previously in a model of this kind and the coefficients F; =a%v'1MW{t0Vchl}

and F, =v'1{MW{(GC. \Y% + 8) + a%thGVchl}} do not correspond to

ioYwXel
‘any commonly employed physical quantity, such as conductivity or diffusion
coefficient. For this reason, we do not discuss uncoupled estimates, or the
behavior of the component averages of F, and F,. As discussed in Appendix
IV.A, the solutions for X, and K, 'converge slowly as mesh size -tends to zero at
larger values of the membrane conductance and our estimates of F,;, and F,
are likely less accurate -than the estimates of Dy and D,.

At small values of the membrane conductance, in is proportional to the
bulk diffusion coefficient, reduced by the extracellular space fraction and
microscopic geometry of the medium. At [,= 10.3 um, which corresponds to a
high membrane resistivity, bulk conductivity is 2.6 mS which is 2.6/20= .13 as
a fraction of extracellular conductivity. On this basis, it may be calculated (for
comparison) that F,, the coefficient of V2C0 in (I11.2.17) would - be 2.64 with

g=0. If g=0, then ;=0 in the model.

In the one-tier models the effect of non-zero g is to increase F, by
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factors between 1.7 and 3.8, above the | value expected with pure diffusion. In
the one-tier model the coefficient F, .vis positive and comparable to F4 in
magnitude. In the two-tier model, F, is nearly zero at [,=103 um and negative
at [;=146 um. In both models the ionic flux associated with the ‘C perturbation,
Ko is more stable to changes in membrane conductance, while the ionic flux
associated with the ¢ perturbation, X is more sensitive to such changes. The
‘Kc-ﬁux varies from 2.9 to 4.55 in the one-tier model and from 7.22 to 8.81 in
the two-tier model, while the xc-ﬂux varies from 1.6 to 5.36 in the one-tier
model and from -.177 to 10.2 in thé two-tier model.

It is interesting that in the two-tier model, the variations in F; and F,
are chiefly due to- X the perturbation in the electrical potential ¢. In our
models, F; and F, are the coefficients of V2C in the bulk equation (III.2.17).
In the original physical equations for electrolyte solution, the coefficient of VZC is
simply a diffusion coefficient.

The wvalues of F; and F, are shown in Figures 6.5A and 6.5B,
respectively, for wvarious wvalues of oi, the intracellular conductivity, and a, the
extracellular space fraction, in a one-tier model. In the one-tie.r model, F; and
F, are increasing functions of membrane conductance up to [y= 103 um.
.However, both coefficients are relatively insensitive to the parameters over t;hese
ranges (i.e., vary by factors of about 2 to 3 when the 'independent parame'ters‘
vary b& factors of 5 to 20). A maximum in the values of F; and F,
consistently occurs at [;=103 um, though it is not pronounced. Electrically
mediated transcellular ionic flux associated with X, is -due to local
accumulation/depletion of potassium. Thus, the maximum may be due to the

accumulation/depletion effect described in the last section.
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Figure 6.5. Coefficients of VZC (in IIL.2.17) versus cell size (I,) are plotted for
different intracellular conductivities (01210, 4, 2mS) and extracellular space
fractions (@=0.16, 0.23, 0.37). For comparison, the value -of F, corresponding to
pure diffusion is indicated in B by a filled square.
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Figure 6.6. Coefficients of V2C (in TI1.2.17) versus cell size (I4) are plotted for
one- and two-tier models. Note that the coefficient F; is negative in A at
1y =146 um.
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The coefficients F; and F, for the two-tier model at wvarious cell sizes
are shown in Figure 6.6, It is seen that F; and F, are not monotone functions
of the membrane conductance in the two-tier model, with F; is decreasing above
1, =46 um, becoming negative near [; =103 um. This reversal of sign does not
qualitatively affect the solutions to the bulk equation (J11.2.17) since the effect of
negative F; is balanced by _other cbefﬁcients (see Chapter VI).

The. coefficient F, has a minimum near [,=103 um. This cannot be
simply explained as an accumulation/depletion effect. Presumably, this minimum
occurs because the solution surface .for X, changes its shape at larger values of
the membrane conductance (/4 =146 um). In other studies (not presented here),

in which tlo{ was lowered to .0074, this minimum did not occur.

6.6. Ionic Flux Terms Proportioﬂal to Nernst Potential Gradient

The coefﬁéients specified by the K, and X, canonical problems; are
associated with the Nernst potential gradient. These coefficients .are averages -of ‘
ionic and electric fluxes due to the ambient gradient in the Nernst potential
determined by 1n<c'go/ci20>. These fluxes are different from the fluxes ..averaged
in Fy and F, because the F coefficients only reflect accumulation and depletion
of K+ near the cell. It vis shown in Chapter VI that the .ﬂuxes associated with
the . Nernst potential represent the most important contributions to spatial
buffering at most cell sizes in the one-tier model.

The values of E, are shown in Figure 6.7A for various values of ai, the
intracellular conductivity, and a, the extracellular space fraction. Values of E,
are not shown because they are nevarly identical to E,. The coefficients are

relatively insensitive to the parameters over these ranges (i.e., vary by factors of
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Figure 6.7. In A, the coefficient of V2V (in II1.2.17) versus cell size (I4) is
plotted for different intracellular conductivities (01=10, 4, 2 mS) and extracellular
space fractions (a=0.16, 0.23, 0.37). The same coefficient is plotted against cell

size for one- and two-tier models in B. Both figures use logarithmic vertical
scales.
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about 5 when the independent parameters vary by factors of 5 to 20) and are
an increasing function of cell size.

The coefficient E, for the one-tier and two-tier models at wvarious cell
sizes i1s shown in Figure 6.7B. It is seen that this coefficient is considerably
reduced in the two-tier model. The lower wvalues of E, imply that spatial
transport of potassium by means of flux terms proportional to V, is significantly
reduced in this model. The relationship between transcellular conductance and E,
was maintained in both models, (with ratio = 1.1). More precisely, the ratio of
transcellular conductance to E, varies from approximatelvy 1.2 (I,=32.5 um) to
1.0 (=146 um), for both (one- and two-tier) cases. This is important because
transcellular conductance can be measured more easily than. E,, or E,;.
Relationships like the one between D,, E;, and E, (D,;=E,;=E,;) are .useful
because this may reduce the number of measurements which are necessary in
_practice. The ratio of effective transcellular conductance to bulk conductivity,
D, /Dy, i1s the observed transport number in a current passing experiment (see
Chapter VI). It is useful, to examine the relationships between D,/ D1 and E,
since these might provide further reductions in labour (cf. -Gardner-Medwin,
1983b). A plot of E, versus D, /D, is presented in Figure 6.8, using log axes.
It is seen that there is a linear trend in this plot, but that the data from

different parameter- studies lie on different lines.

APPENDIX IV.A. CONSISTENCY CHECKS ON THE COUPLED SOLUTION
Variation of mesh size was complicated by the fact that both intracellular
and extracellular spaces had to remain in the same proportion at the new mesh

size. 'For example if a solution was obtained on a 24 x 24 mesh with an
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Figure 6.8. The coefficient Ez versus bulk transport number D, /D, is plotted
for different cell sizes, values of a, and a, for one- and two-tier models.
Logarithmic horizontal and vertical axes are used in A. In B, points from the
two-tier model are plotted together with points from a one-tier model using linear
axes. It is seen that relationships between E, and transport number were
approximately linear within the studies identified by the legend symbols. Unless
indicated otherwise by the legend, a=0.23 and o '=10 mS. ’
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intracellular dimension of (22-3)h = 19h and an extracellular dimension of 3h =
(24 - (19 + 2)h, the new mesh had to preserve intracellular proportions of
19/24 and extracellular proportions of 3/24 T so that the resulting numerical

solutions would correspond to the same undérlying cell shapes.

For this reason, such variation of mesh size was limited to the integer
multiples of a smallest mesh size; 24 x 24 , 48 x 48, 72 x 72 and 96 x 96.
The results suggested that all coefficient estimates except X, and K, were
already accurate within 5% at the 48 x 48 size. While 72 x 72 results were
obtained for most cases, it is clear, in retrospect, that the use of 48 x 48
solution resuits would have led to the same general conclusions as those drawn
from the 72 x 72 results whenevér both were available, In addition, 72 x 72
computations were necessary for extracellular space fractions < 0.2 in order to
obtain a reasonable number of extracellular mesh points. Such studies did not
compare the smaller and larger‘ meshes, and were undertaken because the
extracellular .space may be reduced under some physiological conditions. The
solution properties for the pairs (xp,K p)’ (XV,KV), are shown in Tables A.1 and
A.2, for a=.23.

In the case of the coefficients X, and KC,. however, it was necessary to
use 96 x 96 results for the largest values of the membrane conductance in
order to be sure that the finite difference solutions converged as mesh size h
->0. At the three largest values of membrane conductance the coefficient derived
from the 72 x 72 solution appeared accurate within 25, 10, and 5 %,
respectively compared to the 96 x 96 -results (column 3, Table A.3). More

accurate solutions were not obtained because, in the absence of equally accurate

Tt This is an extracellular space of 1 - (21/24)2'—‘—23%.
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experimental data, this did not seem to be useful.

The properties of the solutions referred to in Tables A.1-A.3. are
representative of the other cases. Table A.1 displays solution maxirﬁa and
selected averages of the canonical solutions xp and Kp. These solutions appear in
the terms of ¢, and Ci1 proportional to V¢, in (II1.2.12). The solution ¥
occurs in the definitions of D, and D, and xp occurs in the definition of D,

in (I11.2.18).

Table A.1.A. Maxima of Xp and the Average UOMW{ta(1+ wapl)}'
10°)" 48 x 48 72 2 12
Max Average Max Average
20 4.28 .392 4.38 .386
10 4.45 357 4.54 355
5 4.61 .327 4.70 .327
2 4.80 .29-5 4.87 .296
1 4.88 .280 4.96 .280

Table A.1.B. Maxima of Xp and the Average .OOMW{t,KtU(1+ wapl)}'
10%)\1 48 x 48 72 x 72
Max Average | Max Average
20 4.28 | .121 4.38 .116
10 4.45 .090 4.54 .088
5 4.61 .063 4.70 .063
2 | 4.80 .035 4.87 © .036

1 4.88 .022 4.96 .022
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Table A.1.C. Maxima of ;cp and the Average oon{thova.pl}'
10%\ 48 x 48 72 x 72
Max Average Max Average
20 3.54 .0034 3.62 .0062
10 - 3.28 .0064 3.32 .0075
5 2.8.8 .0059 2.92 .0063
2 2.14 .0036 2.18 .0037

1 1.51 .0022 1.55 .0022

Table A.2 displays solution- maxima and selected averages of the canonical
solutions Xy and K- These solutions appear in the terms of ¢, and Ci1
proportional to VV, in (II1.2.12). The solution xv occurs in the definitions of E,
and E, and K occurs in the definition of E, in (II1.2.18).

Table A.2.A. Maxima of X, and the Average 0°MW{to(t5 + wavl)}.

10%n" 48 x 48 72 x 72
Max Average Max Average
20 4.36 116 436 111
10 4.51 .086 4.60 » .084
5 4.66 .059 4.74 .059
2 4.81 .032 4.90 : .032

1 4.89 | 019 5.00 019
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Table A.2.B. Maxima of Xy and the Average -UOMW{t.KtO (t-ﬁ -_i-V_val)}.

103>\1

48 x 48 72 %

Max Average - Max Average
20 4.36 .105 4.36 .100 |
10 -4.51 077 4.60 .076
5 4.66 .053 4.74 .053
2 4.81 .029 4.90 .029
1 4.89 .017 5.00 017

Table A.2.C. Maxima of K, and the Average OOMW{tha tﬁvwxvl}'

10%! 48 x 48 72 x

Max Average Max Average
20 3.36 .0032 3.42 .0055
10 -3.10 .0057 3.16 .0066
5 2.72 .0052 2.77 .0055
2 2.02 .0032 2.07 .0033
1 1.41 .0019 1.47 .0019
Table A.3 displays selected averages and solution maxima of the canonical

solutions X, and K. These solutions appear in the terms of ¢, and Ci1
proportional to VCio in (I11.2.12). The solution X, occurs in the definitions of F,
and F, and K, ocecurs in the definition of F, in (II1.2.18). Results from a 96 x

96-grid-solution are included since these solution pairs converged slowly as the
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mesh became finer.

Table A.3.A. The Average V-looM

W{t.ovwxcl}'
10%21 48 x 48 72 x 72 96 x 96
20 1.81 4.74 6.25
10 4.84 6.12 6.76
5 ) 4.69 ‘ 5.21 5.47
2 2.95 | 3.11
1 1.77 1.83

Table A.3.B. The Average » ' 0o{Mygltzt V. X ;1)

10% 48 x 48 72 x 72 96 x 96
20 1.58 4.15 5.48

10 4923 5.36 5.94

5 411 4.58 4.81

2 2.59 2.73

1 1.55 1.61

Table A.3.C. The Average p'l{MW{ (6C, VK, + O

10%)" 48 x 48 72 x 72 96 x 96
20 4.70 4.56 4.45

10 | 4.35 4.16 4.05
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2 ‘ 3.28 3.20

1 2.99 2.94

Table A.3.D. Maxima of ¥

C
10°)1 48 x 18 72 x 72 96 x 96
20 .219 .556 ‘.721
10 .582 714 178
5 .564 .610 .631
2 .359 .367
1 - 217 218

Table A.3.E. Maxima of k

C
10%8" 48 x 48 72 x 72 96 x 96
20 756 1.93 2.52
10 3.40 4.20 4.59
5 5.93 6.45 6.71
2 8.62 8.89
1 9.93 10.10

The position of the. maxima in the coefficients of Table A.3 at 103)\‘ =10
for the 48 x 48 solution, may be -inaccurate since it becomes less pronounced on
larger grids, however, the maximum occurs consistently at this value of A' and

is physically reasonable, as discussed in  Section 6.3.
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APPENDIX IV.B. UNCOUPLED BULK CONDUCTIVITY
Results of the wuncoupled calculations for straight arrays of square cells
(48 x 48 point solutions with an extracellular space of 19.7%) are shown in
Figure B.1. The bulk conductivity versus cell sizes and intracellular conductivity
are shown in Figure B.1.A, and the corresponding bulk transcellular conductance
estimate; in Figure B.1.B. The bulk conductivity estimates range from 2 - 7 mS
over a large range of the membrane conductance, 1,=10.3 u to l;=234 pu, and
afe an incfeasing function of the cell size (membrane conductance). These values
are consistent with conductivities observed for bulk cortex and cerebellum
(Nicholson 1980). This agreement of the computed values with data occurs despite
the fact that the model geometry is unrealisﬁic. The bulk transcellular

conductance was defined as:

(B.1) aB:=MW{tB(1 +0x/0W )}

and corresponds to the proportion of bulk conductivity due to current flow
through - cells. The factors affecting this quantity are investigated here.

This bulk transcellular conductance ranges from 7% to 36% .of bulk
conductivity in the parameter range which is likely to correspond to glia (that is,
cells wifh characteristic size from 32.5 u -103 ).

It is seen from Figure B.2 that the influence of intracellular conductivity
ai was relatively slight, from small values of I, up to [;=51u and that bulk
transcellular conductance was determined by the membrane conductance. Between:
1,=382.5 p and ;=103 pu, which corresponds to a ten-fold change in A, the

transcellular conductance changed by a factor of eight, while the effect of a
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Figure B.1. Bulk conductivity (A) and transcellular conductance (B) versus cell
size are plotted for 0'=10, 4 mS in the uncoupled model. A logarithmic vertical
scale is used in B.
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Figure B.2. Bulk conductivity (A) and transcellular conductance (B) versus cell
size over a large range ([;=0.1 u to =100 u) are plotted for o'= 10, 4, 2 mS
in the uncoupled model. Logarithmic horizontal axes are used in A and B, and a
logarithmic vertical axis is used in B.
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five-fold reduction in intracellular conductivity at [;=32.5 u is 10% and at
[{,=103 pu; 54%. It is biologically significant that these model cells which
exhibited bulk intracellular conductivities from 7 to 36% had electrical space
constants which were long compared to the cell dimehsion, and ‘thus were
electrotonically unlike an electrical syncytium.

The derivation in Chapter III assumes that the tissue has a two-tier
structure. Thus, it is assumed that a periodic array of asymptotically larger cells
is imbedded in a periodic array of asymptotically smaller cells. The assumptions
of such a model were illustrated schematically in Figure 6.3 and are described in
Section 6.4.

Uncoupled conductivity estimates obtained in this way are shown in Figure
B.3. If tier structure has no effect, the results (A) in Figure B.3 would be the
same as the results for (0) except for the errors made in selec‘ting the ECS
fraction due to the discrete nature of the mesh and in selecting the extracellular
-conductivity. In fact the bulk conductivity -estimates for a=0.44 (two-tier model)
are about 1.4 times the values obtained at a=0.23 for a simple square cell
This is a significant but not large -discrepancy, given the simplicity of the model.

On the other hand, the agreement between the transcellular conductance
Avalues is remarkable. It is seen that these values are close to those for the
one-tier studies, suggesting that the dependence on tier structure is not critical in
the uncoupled case.

In order to determine the effect of extfacellular space (ECS) fraction on
bulk parameters, numerical solutions were -obtained for several wvalues of -the
extracellular space fraction. First, the values of a=0.2 and a=0.23 were selected

in order to establish the sensitivity of the solution to the ECS fraction near the
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Figure B.3. Bulk conductivities (A) and transcellular conductance (B) versus cell
size (l;) are plotted for one-tier and two-tier uncoupled models. The one-tier
model is indicated by open circles and ‘the two-tier -model by open triangles. The
filled squares are the results obtained at the finest length scale, which are used
to determine o, in the two-tier study.



Bulk Conductivity

Transcellular Conductance

180

Bo'=10mS, ©= 20mS, o = .44
A a|.= 10mS, o= 6mS, o = .44

10 + O o'= 10mS, ¢°= 20mS, o = .23
gl |
. ’ .
6+ = O
A
4 L
)
A
51 A
0+ : f — !
0 50 100 150 200
' Cell Size (u)
. W o= 10mS, ¢%=20mS, « = .44
A o|.= 10mS, Go: 6mS, « = .44
O o'=10mS, ¢°=20mS, o = .23
34 ®)
A
1 m
)
T s 5
u
0 i i f :
0 50 100 150 200
Cell Size (u)

Figure B.3 A Two—Tier Conductance Study



IV. Canonical Problems and the Computation of Bulk Properties / 181
normal physiological value. In addition solutions were obtained at a=0.44, and
a=0.12. The bulk conductivity estimates for these ECS fractions are shown in
Figure B.4.

The bulk conductivity is an incréasing function of a while the transcellular
conductance is a decreasing function of a. It is seen that the bulk conductivities
are highly sensitive to the ECS fraction and increases by a factor between 2
and 6 between a=0.12 and a=0.44 for different characteristic cell lengths.
Transcellular conductance increases by about 50% at [,=73 u, as a changes
from a=0.44 to a=0.12, however the effect of a change in ECS fraction from
a=0.2 to a=0.12 is not large. Thus, for situations in which the ECS fraction a
is lowered, it 1is expected (all elsé being equal) that bulk conductivity will
decrease and slightly more transcellular current will flow. This is biologically
significant in situations in which the ECS fraction is decreased.

. Because simple geometrical assumptions have been made, it is important
to establish the .sensitivity of the results to the geometrical arrangement of the
cells.

The resilts of studies undertaken with staggered arrays are shown in
Figure B.5 along with corresponding values for straight arrays. It is seen that
while staggered arrays éxhibit significantly lower bulk conductivity values,
transéellular ‘conductance remains stable from one type of array to the other,
across a large range of membrane and intracellular conductivity values. In the

biological parameter range it depends chiefly on characteristic size/membrane -

conductance.
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Figure B.4. Bulk conductivities (A) and transcellular conductance (B) versus cell
size (I,) are plotted for a=0.12, 0.2, 0.23, and 0.44 in the uncoupled model. A
logarithmic vertical scale is used in B.
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Figure B.5. Bulk conductivities (A) and transcellular conductance (B) versus cell
size (l,) are plotted for each combination of a straight array, a staggered array,

and 0 =10 and 2 mS in the uncoupled model. A logarithmic vertical scale is
used in B.
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V. THE ROLE OF ELECTROTONIC PARAMETERS IN TISSUE MODELS
1.0. INTERPRETATION OF THE MODEL

1.1. Introduction

The tissue model used here has been chosen to be simple and easy to
solve, and involves a number of assumptions which may seem unrealistic, such
as a square geometry, and asymptotic assumptions about lengths and membrane
properties -of cell populations. Further analysis is required to see which aspects of
our artificial tissue model would be expected to reflect observations of real tissue.

While numerical results are affected by these assumptions, dimensional
analysis (Lin & Segel, 1965) predicts that the bulk physical properties of tissue
depend on the dimensionless parameters formed from combinations of thé
characteristic physical parameters in the tissue, and we may hope to determine
‘the -nature of this dependence from the model. In fact the expansion procedure of
Chapters II and IIl exploited the dependence of such properties on ratios of the
-characteristic :cell lengths. However, ‘the -dependence of bulk properties on
dimensionless parameters associated with conductance properties of the cell has
not been discussed; Dimensionless parameters formed by combining the
characteristic conductance properties of the cell are called electrotonic parameters.
An asymptotic analysis in these parameters gives information about the
correspondence between the asymptotic model and real tissue, the dependence of
transcellular current on geometry, and provides analytic :confirmation of the main
features of the mumerical solutions.

Comparison of the results of Sections IV.6.2 and IV.6.3 with Appendix

186
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IV.B demonstrate numerically that the averages of the coupled and uncoupled
models yield averages which have similar -dependence on electrotonic parameters.
Thus, vit is assumed that an analysis of the wuncoupled case is sufficient to
obtain the qualitative features of this dependence. The asymptotic analyses to be
carried out in Sections 2.2 and 2.3 assume in addition, that the intracellular
conductivity is less than the extracellular conductivity and that the membrane
conductance is either large or small. The two-tier studies of Section IV.6.4 do
not satisfy these assumptions since the extracellular conductivity is less than the
intracellular conductivity. The analyses of this chapter do not apply to the
two-tier case, however, as seen in Appendix IV.B, the conclusions would remain
correct if there were no coupling between electrical potential and ionic
concentration at Of(e).
Because this chapter focuses on the physicgl interpretation of the model,
we give a physical interpretation of trénscellular flux before proceeding with a
perturbation analysis of the relationship between transcellular flux and electrotonic
parameters. In the light of this discussion, it is seen that the averaged
" parameters of Chapters II and III are not uniquely determined unless (as stated
in Chapter II) specific assumptions are made concerning the asymptotic properties
of :electrotonic parameters. ‘In ~ Section 3..0, a conclusion is drawn cdncerning the

relative contribution of cells of different sizes to transcellular current.

1.2. Formal Analogy Between Intracellular Flux and Electrostatic
Polarization
As described in Section IV.1.2, the . electrical flux component of the

potassium flux vector (i=2 in equation (IV.1.2)) is discontinuous because of the
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differences in extracellular and intracellular  transport properties. Potassium
disappears from the ECS at one location and reappears at another remote
location with little time delay. This complicates -the interpretation (though not vthe
derivation) of differential equations for the average electrical flux of potassium.
This problem of physical interpretation is not new, however, and occurs in a
classical model of dielectric polarization (Landau & Lifshitz, 1960; Garland &
Tanner, 1978). This analogy is demonstrated and it is suggested that the reader
view bulk electrically mediated transport through inclusions as analogous to the
existence of bulk polarization in an (inhomogeneous) dielectric medium.

Let the flux strength of sorﬁe quantity (such as potassium) at the cell
membbranes be f(%) = V\I/-ﬁ where  is a potential function, 3 .denotes the
outward unit normal to the membrane and f(;)v) is doubly periodic. The quantity
fMG’vf(:v)dS will be referred to as the flux dipole moment of f. Although the flux
dipole moment of each cell is small, their sum may produce a bulk flux dipole
moment which 1is significant. If the -function f(\-z:z) were the density of electrical
charge, the integral fM\-;rf(:v)dS over a single cell would be the electrical dipole
moment of the charge distribution over a single cell.

The bulk flux dipole moment is a vectorial quantity which reflects the
intracellular flux throﬁgh cells. If f represents transmembrane ionic flux, fhen the
bulk flux dipolev moment represents the intracellular ionic -transport 6wing to the
presence of the cells, Under certain circumstances it is equal to the average of
the ionic flux vector intracellularly.

If the intracellular -potassium flux is equal to V¢, and V2\,l/=0 then the
bulk flux dipole moment associated with the flux distribution f(\:r) is numerically

equal to the integral of the interior flux through all the cells. This follows by
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applying the divergence theorem to the components .of the vector Vo(WiV\[/) where

'Wi denotes the ith component of w:

(L1 [ VWA = [ (Ve(w,VY),V-(w,V{)dA = [ w aﬁg dL.
ICS TCS M n

The intracellular flux mentioned is a virtual flux, rather than a real flux
because V2\[{¢O at the membrane. However, the flux dipole moment still equals
the integrated intracellular flux in our model because the flux dipole moment is
additive over regions in space.

This  definition is  primarily of  theoretical interest (experimental
measurement of bulk coefficients is discussed in Chapter VI) in providing a
physical interpretation of the formal averaged coefficients. If spatial buffer
capacity is defined as the average potassium flux associated with a unit voltage
gradient in the transmembrane potential, then the bulk flux dipole moment per
unit voltage gradient is proportional to the spatial buffer capacity -of an array of
cells. This -may -be verified by reference to the averaged equations (II1.2.17) in

[}
which the -coefficient of V“V corresponds to a bulk flux dipole -moment.

2.0. ASYMPTOTICS IN THE ELECTROTONIC PARAMETERS

2.1. Correspondence with Canonical Problem
In the calculations of Chapters II and III (see Table I1.2.4) we defined g
= Lg/S where g:= g, (S cm'l) is the dimensional (two-dimensional) value of

the membrane conductance to K+, L is an appropriate length scale, and S

depends on the extracellular conductivity and diffusion coefficients. The quantity
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(g/§)'1, which has the dimension of cm, is an electrotonic length scale arising
from the electrical parameters only.

In this section we let w = X/L,; and E= L,g/S .(these do not
correspond ‘to definitions in Chaptér III). This is done to make fluxes of the
form g(cj)i - d)o) and 9¢/0n of O(1) rather than O(e-l) in the analyses of this
Section and Sections 2.2-2.3. The tilde in g is dropped in the calculations which
follow.

The canonical O(e) problems (Chaptér ITI) which determine average
properties for conductivity, diffusion, and potassium transport consist of solving
the potential equation with  periodic boundary conditions and constant (intracellular
and extracellular) conductivities. We now calculate the qualitative -dependence of
the solutions and the flux dipole moments on the electrotonic parameters.

In the calculation which follows we consider the two-dimensional problems
(2.1) Ve(oVe¢) = 0,

where o 1s the electrolyte - conductivity, ¢ 1is the electrical potential and (2.1)
holds extracellularly and intracellularly. The jump condition at the cell membrane

is
2.2) 20 = g6 - ¢%,
o 39%1 g(¢ ¢

which actually is two -equations, with 08¢/9dn evaluated intracellularly and
extracellularly, % is an outward normal vector, g is membrane conductance, and

¢1—¢° is the transmembrane potential. Boundary conditions are given as ¢=A on
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one edge of the unit cell (say x;=constant), ¢=B on the opposite edge, and
0¢/0n =0 on the remaining edges of the crystallographic unit cell.

The latter problem 1is equivalent to a typical canonical problem from
(I11.2.12) - (I11.2.16) because the solution of (2.1) - (2.2) with the conditions
described has the form ¢= Aw, + 5(1 where w, is a spatial coordinate and

1

X' satisfies

(2.3) V. (oVx') = 0,
with periodic boundary conditions and jump conditions at the membrane given by
2.4) ofVx'+% + ny} = g{x'-x'%

where n,; is the first component of B, the outward unit normal vector, and X'
and X2 in -)E are analogous in form because the biological cells are assumed to
be square. Note that X =constant does not satisfy the jump condition (2.4) which
is mon-homogeneous. By geometric symmetry, ¢ must agree with the previously
stated conditions (2.1) - (2.2). Thus, because of the symmetry, the canonical
problem for x may be replaced by a problem >with fixed rather than periodic

boundary conditions and a fixed ambient voltage gradient.

2.2. Electrotonically Short Case and Transmembrane Transport
. | _ io0 -1 0 i
We define the new parameters y:= ¢ (0 + 0)  where ¢ and ¢ are
the extracellular and intracellular conductivities, respectively, 7\:=crlg-1 (cm) where

g is the membrane conductance, and §:= L,;/X where L, is the unit cell



V. The "Role of Electrotonic Parameters in Tissue Models / 192
length.

The asymptotic dependence of ¢ on vy and { now s calculated for the
unit cell. In view of the equivalence described in Section 2.1, this calculation
should give qualitative information on the effects of these parameters on bulk
properties. Because the potential equation is unaffected by .length scaling, and
boundary and jump condi‘tions will be satisfied uniformly as the dimensionless
conductivity —>0 and electrotonic length parameter £(—>0 or =, it is expected
that the expansion in y and { will be regular.

Rewriting the jump conditions (2.2) usiﬁg the definitions of =y, &, and A

and scaling :v=§/ L,;, as in Chapter II, gives the equations:

(2.5) @ 7y 28¢'= 2¢, @ ¢ - ¢° = tlag = ag',
Vo2t Wog T =i g

where (2.5i) arises from combining intracellular and extracellular jump conditions.

It is assumed that ¢ may be expanded in the form:
+1 2 +2
(2.6) ¢ = 9o t £ 7¢o1r * Y90 + OETT) + O(y™7) +

where + and - correspond to § —>0 and § —>o, respectively, and we will
write ¢0 for ¢00. Since the boundary conditions on the unit cell have no ¢ or
v dependence, ¢(;j=0 on the boundary of the unit cell when i or j >0.

The leading-order behavior of ¢ will be deduced from the dependence of
the jump conditions von v and £. In this section we assume §—>0, ie., the
ratio of cell length to the electrical length scale A\ is small, and so the '+’ sign

is used in (2.6).
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Using (2.6) in the jump conditions (2.5) yields:

2.7) v (3gh + vdpio + EDGL, + )
_l____’y_a_no 7_&110 E_a_ﬁm
By + vhho+ Edbi+ . = 63 - 10% - £60r ..
(2.8) = d6h + 0L, + EdGL, + ..,
_a_n‘?o 7'5510 E_a_nm

Thus, to O(1):

i

(2.9) @ 090 = 0, (1) 0¢o = O.
i) Po , n a_nO

Since (2.15 holds, the leading-order intracellular solution, ¢io is constant and the
extracellular -solution, -¢% is determined and non-constant. ‘Because V2¢%=0 away
‘from the wmembrane, the boundary conditions a¢%/ on=0 and ¢%= const = ¢io
would imply »d)% identically constant by a standard  expansion procAedure from the

theory of partial differential equations (Carrier & Pearson, 1978). Since ¢?-, is not

identically constant, ¢]0- ¢% is not identically constant on the membrane.

To O(y):
(2.10) @ 20h = 96% , (i) 3¢t, = 0.
| 1 A T ! 3

The left side of (2.10i) vanishes by (2.9ii). Thus, by (2.10ii) ¢11° is constant
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while ¢(1)o =0 because the boundary conditions have no vy dependence on the

unit cell.
To O(&):
. 0 .. i 0 1
(2.11) i) 09¢o1 = O, i) ¢o- ¢o = 0901
As in the case of ¢10, ¢8 1 = 0 because the boundary conditions on the unit

cell have no & dependence.

Since the transmembrane potential is O(1), the transmembrane current to
.leading-order is jm: g(d)io— ¢%). In order to obtéin a steady state 'solution at
O(f), the constant d)io must be chosen so that the average transmembrane
current is zero.

The. flux dipole moment in this case may be estimated by assuming that
¢%, the_ extracellular potential (which satisfies aqS%/ on=0 at the membrane), is a
linear function of the space variable. References to the discussion of (2.3) - (2.4)
and the numerical solutions show that d)% will have a wvoltage variation .over the
membrane which is greater than that which occurs if ¢% were ‘linear. Since X is
bounded, however, the voltage variation over the membrane locus will have the
same 'asympwtic order as for the case of linear extracellular potential. The
assumption of linearity has been used in models for conductivity of brain tissue
and produced good agreement with data (e.g., Ranck, 1963).

It has been assumed that the cell is square. The discussion of equations
(2.5) - (2.11), with the aésumption of linear extracellular potential .implies that to

leading order, the transmembrane current is a linear function of xy. The

transmembrane current per unit extracellular voltage drop over the unit cell is
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given by im =g 'xl/ L, (Amp/Vem) where we use the dimensional value of g
(S cm-l). Thus, the first component of flux dipole moment vector (1.1) per unit

voltage gradient is:

fL,/2 fL,/2
fxgi dl =2 [ X18 21 dxy + 2 [ fL, gfdxz
1 -fL,/2 L, -fL,/2 22
(2.12) = 2 gfoL2 | (cm@)

where f is the cell length as a proportion of the wunit cell length, dI is the
differential line element on the membrane in two dimensions, and the second
term comes from integrating over the ends of the cell. The second component of
flux dipole moment is zero because the integrand is odd. Thus, the quantity
(2.12) is proportional to the membrane conductance and the square of the cell
length. This result could not be obtained from dimensional analysis alone since
(as will be shown in Section 2.3) ‘the flux dipole moment can have other forms.
The dependence of the numerical solu-tions on g shows that this asymptotic case
corresponds -more -nearly to the -biological situation. By ‘the previously
demonstrated equivalence between flux dipole moment and virtual intracellular flux
(as ‘explained in Section 1.2), it is seen that (2.12) is the (approximate) total
transcellular current flow per unit voltage gradient per unit cell. It may be
interpreted as a transcellular conductance. As the units of a voltage gradient are
A" cmhl, the product of the quantity (2.12) with a voltage gradient has units of

amperes.
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2.3. Electrotonically Long Case and Transmembrane Transport
In the -electrotonically long case, ”E"1—>0_ .and the ’-’ sign is selected in
the expansion form _(2.6). The 'boundary conditions (2.5) become, on -substitution of

the expansion (2.6):

2.13 Y (@¢h + 10 e + £l0gb, + ..
(. ) e (a_go ’)‘_6%10 £ o1 )
$o + YP10 + 5-145:)1 + .= ¢~ 1850 - <£'l¢81 -..
-1 1 i 14,1
(2.14 = 0¢o + ) + 2¢ + L.
) ¢ Po Y _%110 £ %01 )
Thus to O(1):
(2.15) @ 3¢5 = o, @ ¢h - 0% = 0.
n

The extracellular solution is the same as in the short case, .and the intracellular
solution is determined from it via (2.15ii). Hence a¢io/ anIC, because qbic,: ¢% and
¢% is non-constant at the membrane by the- samé afgument as that in Section
2.2 following equation (2.9).

To O('y):

- O

- (2.16) i 2¢
1 _a_no

i
Y]
S

1

Q)
=]
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‘while to O(£™):

i

(2.17) @ 049, = o0, ) 6h,- 63, = 3.
£o1 $o1 = do1 o
Since ¢% = ¢io, d)?o = ¢im and a¢io/ on=0, the leading-order

transmembrane potential is given by (2.17ii).

The previous discussion (2.13) - (2.17) has established .thé leading-order
form of the transmembrane current. The flux dipole moment vector is
approximated using the same assumptions as before: ¢% is assumed linear and
the cell is square. The transmembrane current per unit voltage gradient (Amp/V

1 3¢/ on = o'/ L, on the membrane locus

cm) s im=g£'1(¢ér 4581 ) = UiL1-
where X1 =constant and is zero on the membrane locus where X9 =constant,
assuming that ¢% is linear in the xy direction and ¢%=¢i0 at the membrane.
Hence, the first component of the flux dipole moment vector per unit voltage
gradient may be computed as:

(2.18) fol i d=2 f L, dxy = ofL,

gi
~fL,/2 2 Ly

The second component of the flux dipole moment is zero by symmetry.

These calculations give an approximation to the total intracellular current
per unit voltage gradient per unit cell when £ is large, i.e., physical cell length
is large compared to the electrotonic length scale. This would be true for a
syncytium; or network -of electrically connected cells.

The asymptotic calculations were undertaken in order to determine which
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properties of the numerical solutions are likely to | characterise real tissue. The
bulk properties of tissue are expected to depend on both electrotonic parameters
and shape-dependeht geometric parameters which are O(1).

The asymptotic analyses give the dependence of the flux dipole moment -on
the electrotonic paré.meters, £ and v, for extreme values of these parameters.
These analyses do not indicate quantitatively how large or small such parameters
must be in order for this description to be accurate. Also, because of the
assumption that ¢O is linear, this description does not take into account the
effect of the square cell geometry on ¢0. However,‘ in the electrotobnically short
case, (which is biologically relevant) the intracellular solution is constant and
hence independent of geometry.? Thus, in this case, the difference between the
two-dimensional and three-dimensional results is a geometrical factor, independent
of the solution for ¢. Because of the assumption of linearity of ¢0, dependence
of the flux dipole moment estimate on the geometry is due only to the fact that
the membrane locus appears in -the integral. Since the numerical solution
indicates that the analysis of the short case is accurate for this geometry, the
numerical results in two dimensions should ‘be applicable to three dimensions in
the manner described.
| In view of the éomplexity of the three-dimensional geometry of neural
tissue, . the selection of a square two-dimensional geometry is a drastic
simplification. For example, neural tissue contains much fine structure and
relatively complex shapes. Yet, in many respects, reasonable agreement with
experiments was obtained. This likely occurs for the following reasons. Fifst,

geometry may be unimportant in the -electrotonically short case, as suggested

¥ A similar remark holds in the electrotonically long case.
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above. Second, the qualitative features of the two-tier calculation of Chapter III
show that there is no significant transcellular current when cell dimensions are
sufficiently fine, if physical membrane properties of fine structures are the same
as those of coarse structures.

Other successful models have assumed (Ranck, 1963; ‘Havstad, 1976) that
because the tissue contains elements with random orientations, the electrical
properties of neural tissue may be modelled by superposition of the properties of |
arrays of cylinders which are, perpendicular an_d parallel respectively, to the
ambient gradients. This assumption will not be discussed in detail here, but we
have followed these authors in using a geometrically simple model of the tissue.
The length scales suggested for cells here (32 um - 72 um) are characteristic of
the longitudinal dimensions of cell processes. Cylinders oriented perpendicular to
ambient gradients would have small effective size and would not contribute much
to bulk transcellular current.

These calculations show that the parameter £, which depends on ‘the cell
length, determines the nature of the solution for the potential. Because the cell
length formally depends on €, the asymptotic order of this ratio £ must be

chosen in order to complete the formal asymptotic model.

2.4. Choice of Scaling

In the canonical prbblems of Chapter III, the dimensionless parameter g
appears at different orders of € in the jump conditions. The reasoning used in
selecting appropriate asymptotic .assumptions for g is now discussed.

A fundamental assumption of dimensional analysis asserts that any bulk

coefficient P of an inhomogeneous medium will be some function of the
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dimensionless parameters which characterize the medium multiplied by a

dimensional constant K,
(2.19) P = K Pe, a, B, ... )

where P is to be determined from a canonical boundary-value-problem, and the
selection of dimensionless parameters is not unique. An approximation for P is to
be found by taking a iim_it as € —>0.

In some possible selections of dimensionless parameters e, a’, fB°, ... , the
parameters a’, f’, .. may depend on €. For example, g may depend on e.
Surprisingly, the dependence of g on e does not follow from the definition and
must be chosen in the asymptotic model.T The definition g = Log/S is not an
explicit function of e=L,; /Ly and it is not possible, in general, to pose the
canonical - boundary-value-problem for P in a form which does not involve g
(dropping the tilde).

The dependence of g on € may be chosen as follows. In the physical
-tissue, the parameters € and & take .definite values and an approximation to P
evaluated at these parameters is desired. While the asymptotic approximation is
formed from the limit e—>0, so that € is not fixed, it is reasonable to suppose
-that the best approximation to P is obtained by keeping the parameter(s) £,
fixed at the values which. characterise the tissue. This is equivalent to fixing Lig
where Li is the (dimensionless) cell length. Using this principle, the order of g

may be determined from the physical properties of the cells.

t It has been previously observed that the homogenization procedure (letting e
—>0) may not produce a unique answer, without choices of the general type
described here (cf. Babuska, 1976).
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For example, we compare the case of small cells and moderate
measurement length, for which L;=0(e) and L,=0(1), and the case of cells of
moderate length and a large expanse of tissue, for which L,=0(1) and
LO=O(e'1). Both situations result in L, /Lo =0(e). Suppose that the shapes and
relative placement of the biological cells in crystallographic unit cells are
geometrically similar. In order to keep & fixed, g must be O(e'l) in the first
case and O(1) in the second. These assumptions correspond to different
dimensional values of g, i.e., different physical membrane properties. Such
assumptions would lead to canonical boundary-value-problems which are identical,
and thus lead to the same bulk coefficients. In contrast, keeping the dimensional
g value fixed across the two cases, would lead to g appearing at O(e) and O(1)
respectively, and produce different bulk coefficients for each case. Both sets of
assumptions are mathematically consistent, but correspond to the different physical
models described.

When two electrotonic and two asymptotic length scales exist -as described
in Chapter II, this rule can still be used, though it will not be possible to fix
all dimensionless parameters other than e. If .there are two cell lengths, Lg and
an, and two sets of membrane conductances, gg and gy then the dimensionless
membrane conductances are ~gg= L ggg/§ and Enangn/ S. If it is assumed
‘that Lg’ Ln’ gg, and g, are such that Lg=0(e) , Ln=0(1) gg=0(e-1), and
gn=0(1), then the electrotonic parameters & of each population are fixed but the

quantity L g‘gn'—'O(e) is not fixed as e—>0.
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3.0. Neurons, Glia and Electrical Scale

Neurons comprise some 50% of the tissue volume in the brain, yet
several recent models of the electrical properties of neural tissue have neglected
current flow through neurons because of their high membrane resistance
(Nicholson, 1973; Gardner-Medwin, 1983).f While the extent of connéctions
between glia in  vertebrate neural tissue s not yet  established
(Gardner-Medwin,1983), glia have been thought to contribute more signiﬁcantiy to
electrical bulk tissue properties because of their low membrane resistance and the
(possible) electrical connections between them. However, the analyses of this
Chapter lead to the physiological conclusion that transcellular current through
neﬁrons should not be neglected.

Havstad (1976) suggested values of 3000 Qcmz for the resistivity of
neuronal membrane and 320 Qcm2 for glial membrane, and 14 um for the
characteristic diameter of a neuronal segment and 1.8 um for a glial cell
process. It is also expected that the cell lengths of -the two populations will “be
roughly in the same ratio, with glial processes extending some 20 .um - 50 um
and neuronal :processes some 100 um - 500 um, though with much variation.
Such values are approximate, but consistent, in general, with values cited by
others (Schanne & Ruiz-Ceretti, 1978; Shelton, 1985; Gardner-Medwin, 1983;
Nicholson, 1973; Lajtha, 1978). Thus, membrane resistivities and characteristic
cell dimensions of neurons and glia differ by an order of magnitude, but
maintain roughly the same ratio. As discussed below, the characteristic diameters.

of cell segments determine (in part) the electrotonic length scales in three

1t These were not neglected by Ranck, (1963, 1964) and Havstad (1976) in their
studies of brain impedance, but their studies dealt with alternating current (AC)
for which capacitive rather than resistive properties of membrane are more
significant.



V. The Role of Electrotonic Parameters in Tissue Models / 203
dimensions.

The characteristic dimensions of the cells stated above suggest that
neurons and glia are ’electrical scale models’ of one another. The idea of an
electrical scale model may be understood by reference to cable theory (Jack et
al., 1975). As stated in Chapter I, it is commonly assumed that  electrotonic
transmission- in cylindrical cells is described by the cable equation. The electrical

space constant A (cm) is defined as

2_
(2.20) A -—Rmd/(R0 + Ri)’

where d is the diameter of the cell, Rm is membrane resistivity and Ro and Ri
are extracellular and intracellular resistivities.

If the space coordinate x:=x/L is normalized so that the length of the
cell is wunity, then the dimensionless ratio £:= L/A, called the electrotonic
length, appears in the exponential steady state solutions to the cable -equation,
thus determining the electrical properties of the cell. One cell is an ’electrical
scale model’ of another cell if it has the same electrotonic ‘length and geometrical
shape as the other -cell. This is because the solutions for the transmembrane
potential differ only by a change of spatial scale. If two cells are geometrically
similar, their ratios of diameter to width are the same, and equation (2.20) and
the definition of § show that the membrane resistances of electrical-scale-model
cells must be proportional to their length. This result in three dimensions is the
same as the two-dimensional result described in Section 2.4.

The discussion of Section 2.4 implies that two tissues composed of cells

which are electrical scale models of one another in two dimensions have the
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same bulk electrical properties. According to the above discussion and the
parameter values cited, if neuronal and glia geometry were the same (and if glia
are not syncytial), neurons and glia would be three-dimensional electrical scale
models of .one another. Thus, it is expected that the leading-order bulk properties
of a tissue composed eﬁtirely of neurons would be similar to the bulk properties
of a tissue composed entirely of glia. Hence, the argument that neurons do not
influence bulk DC tissue properties because of their high membrane resistance is
incorrect.

It is possible that factors other than membrane resistance, e.g., geometry,
make the contribution of neurons to bulk tissue properties heglible. However, it -
seems unlikely that .geometry alone could reduce the contribution of 50% of the
tissue volume to a neglible amount. If glia are syncytial, then their contribution
to tissue properties might be substantially larger than that of neurons; however,
the analyses of this Chapter suggest that it is unlikely that this could reduce
the contribution of neurons to a neglible amount since the effects of connections

between glia (increasing average electrotonic length) are bounded.



VI. SUMMARY AND BIOLOGICAL CONCLUSIONS

1.0. THE ASYMPTOTIC APPROACH

| Governing equations for averaged ion transport -properties of a model of
brain tissue (I11.2.17) have been derived using an asymptotic method that reduces
the calculaﬁion of the averages to the -solution ~of periodic boundary-value
problems. A simple tissue model has been chosen for analysis and it has been
argued that the properties of this model correspond to those in real tissue.
Simple equations for the extracellular potential | and potassium concentration are
obtained for deseribing current passing and field potential experiments. While
other approaches are possible (e.g., McPhedran & McKenzie, 1978; McKenzie vc_ag
al.,, 1978; Havstad, 1976; Lehner, 1979), the asymptotic approach has the
following advantages:

(i) It correctly specifies, in general, the canonical ﬁlicroscopic. problem for a
large number of disconnected (physically separated) cells. Other approaches, such
as assuming a uniform potential gradient (Havstad, 1976) or a priori symmetry
in the cells (McKenzie et al., 1978), do not. ‘Examination of bulk conductivity
versus extracellular space fraction (Figure TV-B.4) show that -bulk cbnductivity
increases by a factor between 11 and 2 as a changes from a=0.12 to a=0.44,
for various cell sizes. Since the extracellular space fraction has changed by the
same factor (0.44/0.12 = 3.66) for. each cell size and the geometry has not
changed, it is seen that the effect of the adjacent cells on bulk flux, precisely
specified by ;)ur model, is significant.

| (ii) Bulk parameters are computed using only the microscopic parameters
which appear in the model, and these need not be estimated from the bulk

parameter data.

205
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(iii) The governing equation predicts all average bulk properties rather
than simply a single one. This, with the above features (i-ii) means that bulk
conductivity, current passing, and ‘spatial buffering are all specified functions of
the microscopic parameters. If all the -experimental observations were consistent
with these functions, the model would satisfy an exceptionally demanding
criterion.

(iv) The joint asymptotic analysis of dimensionless electrotonic -and cell
length parameters arises naturally in our approach and has not been appreciated
in other approaches. This analysis (Chapter V) gives information about the
sensitivity of the results to changes in membrane and intracellular conductivities.

(v) Finally, a new and surprising result of this apbfoach is that the
systemafically avéraged equation for potassium concentration does not contain a
true diffusion term. The coefficients of the terms in (II1.2.17) proportional to V2C
are different from those which would be obtéined with a non-permeating ion and
are a factor of 2 or 3 times larger than (it would be) if -only .diffusion occurred.
This is due to an ’unstirred layer’ at the membrane which causes local
variations in the transmembrane electrical potential. The term ‘’unstirred layer’
refers to the concentration gradient which develops near a membrane due to
electric current flow or other flux through the membrane. This fact could lead to
experimentally observable results if the. tissue has a two- or rﬁulti-tiered
structure.

Limitations of the present approach are discussed in Section 5.0.
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2.0. BIOLOGICAL CONCLUSIONS

2.1. Introduction

In the model of spreading depression developed by Tuckwell and Miura
(1978), the advancement of the SD wave depends upon the electrical response of
neural membrane to changes in [K+]o. Also, it has been speculated that [K+]0
might (Prince, 1978), or might not (Somjen, 1984) play a signiﬁcant role in
epilepsy and other forms of bulk neuronal response (Leibovitz, 1977). Finally,
variations in the concentration [K_{_]0 may have a wide variety of physiological
consequences under normal conditions (Krnjevic & Morris, 1981). The role of
[K+]0 in these phenomena is mnot established, in part because of wvariations in
physiological parameters between different preparations and wvariation during the
phenomena themselves. For example, the extracellular space and extracellular
electrolyte composition are known to change during SD (Nicholson & Kraig, 1981)
and epilepsy (Prince, 1978). When many changes occur simultaneously, it can be
difficult to decide which factors are mediating and which are epiphenoemenal.
Therefore, it is desirable to determine the existence and magnitude of potassium
spatial transport mechanisms e.g., transcellular current and .spatial buffering, to
describe the dependence of such transport oﬂ tissue parameters, as well as to
estimate these parameters from experiments.

In the following secﬁons the implications of our model for these problems
are discussed. Our most important conclusion is that elec.trically mediated spatial
transport does not require specialized cells and is relatively robust, i.e., ’ch/is
transport occurs in significant -amounts with physiologically relevant .parameter

values. Thus, this form of K+ transport must occur and must play a significant
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role in a wide variety of physiological situations. Such a conclusion is difficult to
obtain from experimental studies. Some difficulties in incorporating ion transport
theory into the bulk conductivity theory is described in Section 4. It is suggested

that these difficulties can be resolved by .experiment.

2.2. Properties of the Averaged Steady Equations

In vmany respects the properties of the averaged equations obtained here
are similar to those of the steady diffusion equation, i.e., Laplace’s equation and
the ’spatial buffering’ equations based on the cable model (SBCM) used by
Gardner-Medwin (1983b). This is not surprising because these equations both
describe conservative fluxes of electrical current and K+. The averaged equations
of this thesis have a form similar fo the SBCM equations in the asymptotic
limit of the electrical space constant for the cells going to zero. However, we
emphasize that our equations cannot be ’derived’ by the latter procedure. The
SBCM equations contain bulk and transcéllular conductances as empirical, rather
than derived, constants. In addition, the limiting forms of the SBCM would
contain a diffusion term, unlike the present -model.

The values of the bulk coefficients in the present model are independent
results of the model, unlike the coefficients of the SBCM. In this section we
discuss properties- of the averaged model equations in one dimension.

To compare the results from our model with experiments which have
involved passing current across the cortical surface over relatively long .periods, it
is important to establish the steady state properties of the solutions. Non-constant .
steady solutions to the model are obtained by prescribing c® = C, at some

d
fixed depth and c® = Cs at the surface "of the cortex. Such boundary conditions



VL. Summary and Biological -Conclusions / 209
are chosen arbitrarily, however. The most realistic steady solutions are those
with finite non-zero [K-’_]0 at infinity since CO=[K+.]0 presumably tends to a
constant deep within the tissue. If C were governed by Laplace’s equation, it is
obvious that the only such solution is C=constant. The safne is true for our
averaged equations (II1.2.17) as shown below.

The nature of the steady solutions for C may be deduced as follows. In

one dimension, the governing equations (III.2.17) become, if there are no sources:

D,¢ + E,V

+ F,C_ = 0,
uu

uu uu
(2.1

D,¢  + E,V

+ F,C = 7C
uu

uu uu t’

where Dj’ Ej’ and Fj’ j=1,2 V:= V'lln(Co/ C") are as defined in Sections IV.6.2
and IV.6.6 and the subscript u denotes a partial derivative with respect to the
space variable u. In the steady state 7'Ct = 0, and the equations can be
integrated directly. Integrating once, however, vyields the first-order differential

equations:
(2.2) D¢ + EV_ + F.C = K.
J'u Ju Ju J

Using the definition of V, eliminating 8¢ /9du from (2.2), and solving for Cu

‘yields
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(2.3) C = ) V(K1D2 - K2D1)C
V(D2F1 - 5D1F2)C + Ez - E1

For steady solutions in which C is constant and non-zero, (2.3) requires
D,K;-D;K,=0 and C identically constant, as was stated above. The importance
of this result is that the spatial derivatives of concentration and membrane
potential Cu=Vu=0 and hence the coefﬁcients Ej and Fj do not appear in (2.2)
and therefore, cannot be estimated from a steady state current passing
experiment. However, as noted in Chapter IV, the coefficients, E;, and E,, may
be estimated within 10% to 15% (in any of the models employed here) from the
value of D,, where D, is interpreted physically as the transcellular conductance:
The significance of E; is described in the next Section 2.3.

In the steédy state with C=constant, the electrical flux is given by D1¢u
= K; and the ‘ionic flux by D, ¢>u = K,. Since -both fluxes are proportional to
the electric field, the ionic flux as -a .fraction of electric current in such an
experiment is K, /K;= D, /D,;. Thus, D, /D, is the observed transport number
in a current passing experiment. As shown in Chapter IV (Figure 6.8), the
values of E; and D;/D; are not related. The wvalue of the bulk conductivity
D,, however, with the observed transport number, will suffice to reliably
determine E; and E,.

Since the present model predicts a reliable relationship between D,, D,
and E; and E,, the pgoverning equations could be tested by independent
measurements of these quantities. While D, and D, could be obtained from

steady state experiments, it would be necessary to measure membrane potentials
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and K+ transport during a time-dependent experiment to obtain E; and E,. If

E,; and E, are not as predicted, the model would have to be modified.

2.3. Magnitude of Spatial Buffering
The relationship between the bulk coefficients and the magnitude of spatial

buffering may be deduced by eliminating ¢ from (2.1) to obtain:
uu

(2.4) £V + Rc = rC

uu uu t

where B = E, - (D,/D,)E, and ® = F, - (D,/D,)F,. The values of D,,
D,, E,, F;, and F, are given in Tables IV.6.1 - IV.6.5, and E,, .shown in
Figure 1V.6.7, is the same as E; to two significant figures. Ma_thematically, we
say that spatial buffering occurs when 'rCt is more negative (or positive) than it
would be if diffusion alone were occurring for Cuu <€ 0 (or = 0). The coefficient
E of Vuu and T of Cuu in (2.4) are tabulated for (Case .A) o, = 20 mS, o,
= 10 mS, a= 0.2, in Tables 2.1.A and for the two-tier study (Case B) in
Table 2.1.B., where the values of E and F in Table 12.1.A and 2.1.B differ by
some 10% to 30% from the values of E, and F,. The minimum in F in
Tables 2.1.B and 2.2 co?responds to the minimum in F, discussed in Section
Iv.6.5.

In order to compare spatial buffering to diffusion ‘ it is useful to compare
the rates of decay of an initial concentration distribution, C= ¢(1 + asin(bu))
where 0 < a < 1, under (2.4) and under diffusion, respectively. To do this we
first obtain a bound for VVuu = C u/ C - (Cu/ C)“2 in terms of Cuu‘ For u

u

such that C < 0, we obtain:
uu



VI.: Summary . and Biological Conclusions / 212

Table 2.1.A. One-Tier Coefficients in Equation (VI.2.4).

11 (um) B R

32.1 0174 4.39
46.0 0280 5.51
72.1 .0460 7.26
103. 0600 8.17
146. - .0704 7.95

Table 2.1.B. Two-Tier Coefficients in Equation (VI.2.4).

14 (um) E ‘ F
32.1° .0072 11.39
46.0 .0109 12.88
72.1 .0131 ' 12.18
103. .0154 . 8.66
146. .0184 20.80
2 . : 2
VVuu = —ab“sin(bu) - ab cos(bu) )
1 + a sin(bu) 1 + a sin(bu)
(2.5) < -ab%sinbw) = 1 C_.
uu

1 + a 1 + a

Hence, concentration distributions with small amplitudes (a << 1) lead to

aV < V'lC . Hence, an approximate lower bound for the coefficient of C
uu uu uu



"VL -Su’mmary and Biological Conclusions / 213
in (2.4) is ® + »'B). This quantity is tabulated in Table 2.2.

It can be seen that the coefficient of icuu 1s not very sensitive to the
model employed, and does not depend on [ in a simple way. Since this
coefficient would have been 2.64 with vpure diffusion, there is a consistent spatial
buffer effect which is between 2 and 8 times the effect of diffusion. To obtain a
spatial buffer effect which is 5 times that of diffusion, as deduced by
Gardner-Medwin (1983b), requires a coefficient of Cuu of approximately 13, which
is generally consistent with Table 2.2.

The Evuu and ﬁcuu terms both contribute significantly to spatial
buffering in the one-tier ‘case (Case A), but Evuu contributes little in the
two-tier case (Case B). This means that in Case A, the spatial buffering effect
may be estimated accurately from Ei’ while in Case B it is necessary to know
all the bulk -coefficients, including Fi' The implications of this are discussed in

Section 3.3.

3.0. IMPLICATIONS FOR A MODEL OF TISSUE STRUCTURE

3.1. Transfer Cells Are Unnecessary

In the SBCM it is posﬁulated that a sparse network of electrically
continuous ’transfer cells’ is the substrate of the cable equations employed in
that model. In this section, it is argued that the assumption of a glial
syncytium is a complex assumption, and that it is unecessary. Gardner-Medwin
(1983bA) states "the assumption of a syncytium is not strictly necessary " and
that an array of cells would behave in essentially the same way. In this thesis
this statement has been tested by direct computation and found to be correct in

many respects. Differences between the present model and the SBCM are also
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Table 2.2. Lower Bound for C Coefficient.
— =qu

Iy Case A Case B
(um)

32.1 11.93 11.78
46.0 11.41 13.46
72,1 9.75 12.89
103. 7.08 9.49
146. 5.31 . 21.8
noted.

The assumption is complex because the present results and the SBCM
indicate that given reasonable assumptions about glial membrane, the bulk
transport numbers would be much larger than those observed if all glia were
electrically continuous. In addition, Hounsgaard and Nicholson (1983) have
examined potassium transport experimentally using ionophor.'etically applied 'K+
and concluded -that glia were not electrically continuous in vertebrate cerebellum.
Therefore, if the SBCM is used, it is necessary to postulate a sparse network of
syncytial - transport cells which, because they are sparse, have sufficiently high
internal resistance to account for observed bulk transport numbers.

Bulk potassium current within the tissue of between 7% and 30% of bulk
electric current is consistent with the present knowledge of parameters for a
tissue consisting of disconnected cells (neurons or glia). Therefore, the assumption
of syncytial transfer cells is unnecesséry, since the observed bulk transport
numbers can be accounted for by current flows through non-syncytial elements of

the general cell population (neurons and glial cells). The magnitude of the current
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depends mainly on the product of membrane conductance and cell length, and to
some extent on intracellular resistance, extracellular space, and relative position of
the cells with respect to eéch other. On the other hand, our analysis does not
‘rule out the possibility that specialized transfer cells exist.

It may be possible to test for presence of transfer cells by performing
current passage experiments in the presence of pharmacological agents which
disrupt the putative coupling between glia (Tang et al., 1985).

The computed transport number range includes values close to experimental
observations (0.06 over a 5 mm diameter region) és well as values considerably
higher than those observed. If our model is co'rrect, it is predicted that larger
transport numbers will be observed with other preparations. In addition, higher
transport numbers might be observed at finer length scales, since it is expected
that the governing equations will be different on such scales. Differences between
preparations also can occur because of tissue (tier) structure or differing

surface / volume ratios of cells.

3.2. ‘Disconnected Cells Cannot Be Neglected

Many of the cells in neural tissue are not electrically continuous or
syncytial and the present work was undertaken, in part, to assess the
importance of  such tissue éomponents. The mathematical technique
(homogenization) employed here derives for the first time the governing equation
for electric current and ionic flux through closely apposed but disconnected cells.

Although our model cells were electrically disconnected, they still exhibited
transcellular currents comparable to those obtained from the SBCM. Therefore,

even if a sparse syncytial network existed, the disconnected cells in the tissue
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could not be neglected. Our model cells were different electrotonically from a
syncytium because transcellular current was independent of ‘the intracellular
conductivity in the biological parameter range (Figure 1V.6.2). Instead, this
current depends almost exclusively on the membrane conductance. As shown in
- Chapter V, a syncytium may be characterized electrotonicaliy by the fact that
transcellular cﬁrrent depends primarily on its intracellular conductivity.

For high membrane conductance, the transcellular conductance of a coupled
two-tier model, is considerably less than that of an uncoupled model. Most -
-previous interpretations of such data have been based on uncoupled models,
however. Somjen and Trachtenberg (1979) suggested that the relatively high K+
conductance of glial membrane implies a bulk tissue conductivity much larger
than the observed value. This suggestion seems to be based on the idea that if
membrane conductance were high, then current would flow thréugh the
intracellular space, so that the bulk conductivity ought to be close to the
intracellular conductivity. ‘Our results show -that this conclusion need not 'be

correct in a coupled two-tier model.

3.3. Tier-structure May Be Important

| Because cells of different sizes coexist in neural tissue, we investigated the
- effect of cell populations with different asymptotic sizes. The results indicate that‘
different governing equations will hold for passive transport at different length
scales. Since transcellular flux depends almost entirely on cell size (or membrane
conductance), different populations of cells of known size will -characterize the
tissue depending on the given length scale. Such effects have been modelled here

with two cell populations, and it is supposed that the population composed of
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smaller cells has the same membrane properties as the larger population. These
simple assumptions have been used because little data exists to support more
complicated assumptions and the resuits obtained.

The results of Section 2.3 provide an experimental test of whether a
given tissue has a two- or multi-tier structure. In a tissue accurately described
by a one-tier model, the magnitude of spatial buffering observed can be predicted
from D,, D,, E;, and E,; which may be deduced from a current passing
experiment. ‘If the tissue is accurately described by the two-tier model, however,
the prediction of spatial buffering derived using this method will be smaller than
the spatial buffering observed.
| Another kind of tier structure which may exist, is a network of transfer
cells surrounded by disconnected glia. If a sparse network of specialized transfer
cells existed, it is likely ' that surrounding glia would render it ineffective as a
means éf K+ transport by raising the effective extracellular transport number for
K+. In Gardner-Medwin’s SBCM (1983b) ‘the parameter § may be interpreted as
the ratio of the magnitude bof' spatial buffer flux to diffusive flux and has the
form f= (1;;){)'1110(110-i—»Ri)'1 where Ri is the bulk transcellular -resistance and Ro
is the 4bu1k extracellular resistance. Hence, the given expression indicates that
relatively small changes in extrécellular transport number t;)( can dramatically
alter the importance of .spatia] buf’fering in a tissue corresponding to the SBCM
model. For example, the conservative assumption that 7% of current is
transcellular in the surroﬁnding glia, reduces B by a factor of 0.07/0.012= 5.8,

The model which was -used implicitly in the last paragraph was vnot
‘investigated in this thesis. Therefore, further experimental and theoretical work

are necessary to completely assess the possibility that small cells might reduce
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the effectiveness of a transport network composed of larger or connected celis.

4.0. -COMPARISON WITH EMPIRICAL PROPERTIES OF BULK TISSUE

4.1. Introduction

Nicholson and Phillips (1981) have investigated the- p‘roperties of diffusive
transport of non-permeating ions in brain tissue, and were able to describe such
diffusion with a simple isotropic model. The physiologically significant potassium
ion, however, is not described by this model. In this section it is shown that it
is necessary to wuse bulk governing equations and to consider diffusion,
conductivity, and transport number data in order to obtain a complete model for

potassium ilon transport.

4.2. Significance of Transcellular Current

If no bulk transcellular current flowed, bulk tissue would have few
interesting eélectrical or ‘on transport properties. For this reason it is important
to -demonstrate that significant bulk transcellular current exists. A direct
measurement of the bulk transcellular current is provided by the measurement of
potassium transport - through tigsue in the presence of an electrical current
(Gardner-Medwin, 1983a). The fact that very fow assufnptions were made here in
deriving a significant bulk transcellular current makes our theoretical study an
independent piece of evidence for the existence of significant transcellular flux.
The results réported here, however, show that the factors affecting transcellular
flux in a coupled model are complicated. Thus, the work presented here ‘is not

complete, because the results have not been compared to experiment.
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4.3. Scale Effects

The scale effects described in Sections V.2.4 and V.3 are likely to be
useful for many different situations because they are particularly simple. The
predictions of the present model are similar to those of the SBCM, as they
should be in order to explain known observations. However, the present model
also contains the possibility of increased, decreased, or énisotropic spatial buffer
capacities at shorter or longer length scales. These possibilities have not been
systematically investigated, though the existence of such phenomena is suggested
by an isolated finding of Gardner-Medwin (1983a). He found that the strength of’
field potentials due to superfusion of cortex with K+ over an area of diameter
1 mm produces a smaller (30%) field potential than that over a 5 mm diameter
area.

According to the SBCM (Gardner-Medwin, 1983b), spatial buffer fluxes
require potassium gradients to be extended for a longer distance than vthe
electricé] space constant --of the ’transfer cells’. Thus, (it is argued) .at very short
length scales spatial buffering is not significant compared to diffusion. This
argument is -correct for the SBCM model. However, we have shown that simple
diffusion may not occur in bulk for the potassium ions since disconnected cells
contribute to transcellular flux even if a transfer cell network also exists.
Therefore this conclusion requires further investigation.

The data on conductivity anisotropy appear to be inconsistent with' the
finding (Gardner-Medwin, 1983a) that only 6% of DC current passes through
cells. If diffusion in the cortex is isotropic and the steady diffusion equation is
the same as the equation for steady electric current, it follows that anisotropy

must be due to transcellular flux. However, based on our results (or the SBCM),
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it seems unlikely that transcellular flux could account for anisotropy of 3:1 to
5:1. Thus, it seems likely that such discrepancies must arise from scale effects.

These effects can be investigated by simultaneous measurement of
anisotropic .conductivity, diffusion, and spatial buffering at the same length scale.
It might be convénient‘ to _per%orrh ‘su‘éhvv an ‘eXperimént in -a slice preparation. If
the present model is correct,. the cohductivity, diffusion, and spatial buffering
results will be consistent when simultaneous measurements are performed at the

same scale, but will vary (together) as the scale of measurement is varied.

5.0. LIMITATIONS

5.1. Transport Number Simplification

The derivation of an averaged governing equation (II1.2.17) for electrical
current and ionic flux begins with a non-linéar equation and results in a linear
equation with constant coefficients. Most of the approximations employed can be
justified asymptotically or in other, well defined senses (Bensoussan, Lions, &
Papanicolaou, '1978). In .addition, the convergence properties -of similar multiple
scale expansions have been investigated numerically to some extent (Bourgat,
1977).

The final simﬁliﬁcation of Chapter IV is not an asymptotic approximation
of this type, however, and (until proven dtherwise) is ’mathe.matically ad hoc . It
is important to emphasize that existence of a transport number (with constant tIO{
and ti{) is a:ssumed throughout the experimental (Barry & Hope, 1969) and
thermodynamic -literature (Katchalsky & -Curran, 1965). In Chapter IV it is

shown that no -complications are introduced in extending this theory to bulk

tissue. Experimental evidence (Gardner-Medwin, 1983a; Gardner-Medwin &
. , |
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Nicholson, 1983; Havstad, 1976; Nicholson, 1975) suggest that the non-linear
effects neglected are not qualitatively significant under many conditions of

physiological interest.

5.2. Tortuosity and Geometry Assumptions

It was not practical here to solve a canonical microscopic problem which
exhibits the high tortuosity that is characteristic of real neural tissue, This
shortcoming of the present work, together with the fact that the coefficients were
calculated in two dimensions, complicates the interpretation of our results.

The limited investigation here of the effect of geometry was undertaken in
order to assess qualitatively the magnitude and direction of such effects. In this
respect our study is similar to the study by McPhedran and McKenzie (1978) of
the average conductivity of inhomogeneous media with spherical inclusions
arranged in lattices of different types. McPhedran and McKenzie’g results are not.
directly applicable here because they studied spherical .inclusions without
membranes.

In general our results indicate that when membrane conductance is low in
coupled or uncoupled models, there is little difference between the bulk
coﬁductivity of straight and staggered arrays of cells. At higher membrane
conductances, the uncoupled model éhows a reduction of global conductivity in the
staggered arrays because interaction between cells is more important at higher
membrane conductances. For coupled models, however, the results for straight and
staggered .arrays were nearly identical in all of our studi'es because the effects of
coupling between transmembrane potential and concentration dominate at higher

membrane conductances. Thus, effects of geometry in the coupled model are
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insignificant. Staggered arrays and straight arrays conduct similar proportions of
transcellular current in both coupled and uncoupled models.

Thus, our results suggest that the unrealistic geometries used here will

not seriously affect conclusions about transcellular flux.

6.0. SUMMARY

Historically, previous tissue models have been formulated in order to model
a single bulk property such as impedance (Havstad, 1976), spatial buffer capacity
(Gardner-Medwin, 1983a b), or diffusion properties (Nicholson & Phillips, 1981).
No previous model has attempted to synthesize the modelling of all three
properties. An important reason to do this is that reliable observations from the
experimental literature (isotropy of diffusion, anisotropy of conductivity, small bulk
tissue transport number of K+) cannot be easily reconciled with previous models
of cortical tissue structure.

Electrical models of tissue has been explored extensively; for example,
Ranck (1963,1964), Eisenberg et al., (1979), and Nicholson (1973) have’given
assumptions which have been wuseful experimentally. Unlike the studies of K+
transport, these impedance studies .contained no direct -measurements of
transcellular flux. Previous models of cortical cqnductivity or impedance either
have assumed that transcellular flux is the same as it would be in a uniform
voltage gradient (Havstad 1976) (an assumption which is qualitatively reasonable),
or assumed that transcellular flux is negligible (Nicholson, 1973), or not modelled
transcellular flux at all (Nicholson & Freeman,1975). These previous studies also
did not model unstirred layers at the membrane, which we have shown to be

important under some conditions.



lAPPENDIX VILA. RECENT LITERATURE

As noted ‘in the introduction, theoretical work on bulk tissue properties is
difficult and has appeared infrequently. Recent work (1985-1989) on conductivity
and spatial buffering has chiefly consisted of experimental work .-on microscopic
preparations in vitro and is therefore not directly relevant to the present work
on bulk properties. Aspects of these .studies are discussed below. The exceptions
are Gardner-Medwin’s (1986) theoretical exposition of the concept of ’spatial buffer
capacity’, and Dietzel and Heinemann’s (1989) simultaneous experimental study of
bulk current sources, spatial buffering, field potentials, and changes in
extracellular space. Gardner-Medwin’s work is a simple and brief extension of the
(1983b) theory. Dietzel and Heinemann found current sources and changes in
extracellular space consistent with our model (and the SBCM); but also deduced
that other, active, uptake processes played a signiﬁcant role in the removal of
potassium from the extracellular space.

Experimental studies of microscopic systems were of several types. Studies
of isolated retinal glial cells included studies of the distribution of potassium
-conductance, { Brew & Attwell, 1985; Newman, 1986; Reichenbach & Eberhardt,
1988) or cell shape (Eberhardt & Reio_:henbach, 1987), and metabolic effects of
K+' (Coles, 1989). Other studies examined spatial buffering in intact retina
- (Karwoski et al., 1989a, b). These studies of retinal cells are of independent
interest, but give limited information about the fundamental role of spatial
buffering in mammalian cortex and cerebellum. In addition, potassium channels of
different kinds ‘have been studied in retinal glial cells (Neﬁman, 1989) and

cultured astrocytes (Gray & Ritchie, 1986; Sonnhof & Schachner, ].986'; Sonnhof,

1987). These preparations are well suited to obtaining information about the

223
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membrane properties of glial cells and this work will likely lead to further
refinement of the microscopic properties used in bulk tissue models. Such findings
must be regarded as preliminary, however. In- particular, data must be obtained
regarding .the generality of observed glial membrane propertiés across cell types

and species before such properties are incorporated in general models.
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