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Abstract

The purpose of this paper is to present a survey of some important
results in the classification of differentiable manifolds. We begin
with the Poincaré conjecture and its partial solution using the
h-cobordism theorem. We review next the work of Kervaire and Milnor,
concerned with the diffeomorphism classes of homotopy spheres. The
surgery problem developed from their work, and we present its solution
in the simply-connected case, by Browder. This solution amounts to
the surgery invariant theorem, the fundamental surgery theorem and
associated results. Wé end our discussion with the plumbing theorem,
and several important classification theorems of Browder, Novikov

and Wall.
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Chapter I. The Poincaré Conjecture.

§1. The Poincaré Conjecture and the h-cobordism Theorem.

The original form of the Poincaré conjecture was the following:

1.1 If M is a closed 3-manifold such that H*(M)éH*(Sg),
" then M=s3, |

This was shown to be false, through the following counter-example:
The binary icosahedral group I* is defined by the generators A, B,
and C, and relations A3=B2=C5=ABC between them. I* is perfect, and is
a subgroup of S3. Define a closed 3-manifold M=Sa/I* . Then ﬂl(M)=I*,
and Hl(M)=ﬂ1(M)ab=I:b=l; By Poincaré duality, H, (M)=1. Thus,
H*(M)=H*(Ss), but M is not homeomorphic to S3, because nl(M)=I*,
whereas ﬂ1(33)=l.

The failure of the original conjecture led to an amended formulation:
1.2 If M is a closed, simply-connected 3-manifold, then M=S3,

Note that, by the Hurewicz isomorphism theorem, the Poincaré
duality theorem,. and the universal codfficient theorem, the hypothesis
that M is simply-connected implies that in fact ﬂ*(M)En*(és), and
hence that M=S3,

Although there have been'partial results concerning this conjecture,
it has not yet been completely settled.

The Poincaré conjecture can be extended to dimensions other than 3:
1.3 If M is a closed n-manifold which is homotopically

equivalent to Sn, it is homeomorphic to Sn.

This statement has been proved for n#3,4. 1In fact, 1.3 can be
stated in an apparently weaker form which is, by the Hurewicz isomorphism
theorem, actually equivalent to 1.3:

1.4 If M is a closed, simply-connected n-manifold with the
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integral homology of Sn, then M is homeomorphic to Sn.

We will prove the generalized Poincaré conjecture in dimensions
greater than 4 by means of the h-cobordism theorem.

A smooth manifold triad is defined to be a triple (W;V,V'),
where W is a compact, smooth ménifold, and the boundary of W is the
disjoint union of two open and closed submanifolds V and V'.
1.5 Theorem (h—?obordism.theorem): Suppose the triad (W;V,V') has
the properties: (1) W,V, and V' are simply-connected,

(2) H, (W,V)=0,
(3) dim W=n>6.

Then W is diffeomorphic to Vx[0,1].

The following proposition is central to the proof of the generalized
conjecture:
1.6 Proposition: Suppose W is a compact simply-connected smooth
n-manifold, n26, with a simply-connected boundary V. Then the following
four assertions are equivalent:
(1) W is diffeomorphic to Dn.
(2) W is homeomorphic to p".
(3) W is contractible.
(4) W has the integral homology of a point.
Proof: It is clear that (1)->(2)>(3)>(4), so that we need only prove
4)~»Q). 1If D6 is a smooth n-disc imbedded in intW, then (W\intDg,9Dq,V)
satisfies the conditions of the h-cobordism theorem. In particular,
by excision H*(W\intDo,BDO)EH*(W,D0)=O.

Since the cobordism (W;¢,V) is the composition of (Dg;¢,00;) with
a product cobordism (W\intDg;3Dg,V), W is homeomorphic to Dy. A theorem
of Milnor shows that the composition preserves differentiable structures,

so that W is in fact diffeomorphic to Dg. QED



We are now ready to prove the generalized conjecture.

Proof of 1.4: Case 1: n>5. If DycM'is a smooth n-disc, then M\intDj

satisfies the hypothesis of 1.6. In particular,

H.(M\intDo)EHn_l(M\intDo,BDO) by Poincaré duality
i

EHn‘_i'(M,Do) by excision
0 if 1i>0
Z if i=0 by the exact cohomology sequence.

Consequently, M=(M\intDy)uDy is diffeomorphic to a union of two copies

D;, Dg of the n-disc with the boundaries identified under a diffeomorphism

h:8D§+3D;. Such a manifold is called a twisted sphere. The proof is

completed by showing that any twisted sphere M=D"u, DT is homeomorphic

1h2
to sT. Let gl:DIll—rsn be an embedding onto the southern hemisphere
n_ . n+l Cf : .
of SER . (I.e. the set {x| [xf=1, xn+1S0}.) Each point of D, may
be written tv, 0<t<1, veaD;. Define g:M—>Sn by g(u)=g1(u) for ueD?,

n+1

= sin(™Ly -1 Tty 1y
g(tv)= sin( 2)gl(h (v))+cos( 2)en+l’ where e (0,...,0,1)eR ,

n+l=
for all pbints tveDg. Then g is a well-defined injective continuous
map onto Sn, and is hence a homeomorphism. This completes the proof
for case 1.
Case 2: n=5. We use here:
1.7 Theorem: Suppose M is a closed, simply-connected smooth manifold
with the homology of Sn. Then if n=4,5, or 6, M bounds a smooth,
compact, contractible manifold.

Thus, 1.7 and 1.6 imply‘tde”M5”Bbhnds a manifold homeomorphic
to D6, so that M® is homeomorphic to s>,
Remark: The generalized conjecture holds in dimensions 1 and 2 as well.

The proof is trivial, because of the well-known classification of

1- and 2-manifolds.



By using 1.7 and 1.6 one can show that in fact a simply~connected
homology n-sphere is diffeomorphic to Sn, for n=5,6. However, Milnor
has proved that this is not true for n=7. The next section will be

devoted to an examination of this result.

§2. Exotic Differential Structures on the 7-Sphere.

i

The invariant \(M’)

For every closed oriented smooth 7-manifold satisfying the hypothesis
2.1 H3 (M) =H"* (M)=0
we will define a residue class A(M) modulo 7. According to Thom every
closed smooth 7-manifold M is the boundary of a smooth 8-manifold,B.

The invariant A (M) will be defined as a function of the index T and
the Pontrjagin class p; of BS.

If ueH;(M7) is the distinguished generator, then an orientation
veHg(BB,M7) is determined by the relationship 8v=p. Define a quadratic
form over the group H*(B®,M7)/torsion by the formula o+<v,a2>.

Let 7(B®) be the index of this form (the number of positive terms
~minus the number of negative terms when the form is diagoﬁalized over R).

Let pleH”(Be) be the first Pontrjagin class of the tangent bundle
of B8, (For the definition of Pontrjagin classes, see [Milnor 1974].)
The hypothesis 2.1 (together with the long cohomology sequence of the
pair (B8,M”)) implies that the inclusion homomorphism 1 :H* (B8 ,M7)>1" (B®)
is an isomorphism. Therefore, we can define a 'Pontrjagin number'
q(B®)=<v, (1 1py)2%>.

2.2 Theorem: The residue class of 2q(B8)—T(BS) modulo 7 does not

depend on the choice of the manifold B8.



Define A(M7) as this residue class. As an immediate consequence,

we have:
2.3 Corollary: If A(M7)¢0 then M 1is not the boundary of an 8-manifold
with fourth Betti number zero.

Proof of Theorem-2.2: Let B?,Bg be manifolds both having boundary M’.

(We may assume they are disjoint.) Then C8=B?UM7B§ is a closed 8-manifold
which possesses a differentiéble structure compatible with that of
B% and Bg. Choose that orientation v for @8 which is consistent with
the orientation v; of B? (and therefore consistent with -vy).
Let q(Cs) denote the Pontrjagin number <v,p%(C8)>.
According to [Thom 1954] we have
T(C®)=<v ;75 (7p, (%) -p2 (C®)>,
and therefore
451 (C8)+q(C®)=7<v,ps (C®)>=0 (mod 7)
This implies
(1) 2q(C8)-1(c8)=0 (mod 7)
2.4 Lemma: Under the above conditions we have
(2) - (€®)=1(8%)-1(B}), and
(3) q(c®)=q(B%)~-q(8).
Formulae (1),(2), and (3) clearly imply that
2q(B?)—T(Bg)EZq(Bg)—T(BS), (mod 7)
which is just the statement of the theorem.

_ Proof of Lemma 2.4: Consider the diagram:

1 (By M) @l (B, ,M) +—— H(C,M)

il 912 j
1 (By ) @™ (By) «—— H™(C)

Note that for n=4 these homomorphisms are all isomorphisms.



If a=jh !(aj®a,)eH*(C), then

(4) <v,u2>=<v,jhrl(u%eu§)>=<v1®(—v2),a%$u%>=<v1,a%>—<v2,a§>
Thus the quadratic form of C is the 'direct sum' of the quadratic

form: of By and the negative of the quadratic form of Bp. This clearly

implies formula (2).

Define aj=ijlpy(B7) and as=i,1p;(By). Then the relation

k(p (C))=p1 (B1)®p7 (By)
implies that jh_l(a1®u2)=p1(c). The computation (4) now shows that

<v,p%(c)>=<v1,u%>—<v2,a2

27

which is just formula (3). This completes the proof of the lemma and
of the theoremn.
The following property of the invariant )\ is clear:
2.5 Lemma: If the orientation of M is reversed, then A (M) is multiplied
by -1.
As a consequence we have:
2.6 Corollary: If A(M7)20 then M7_possesses no orientation-reversing

diffeomorphism onto itself.

_A partial characterisation of the n-sphere.

Consider the following hypothesis concerning a closed manifold M
2.7 There exists a differgntiable function f:M»R having only
two critical points xp,%X;. Furthermore, these critical
points are non-degenerate.
(That is, ‘if Up,...,u  are local codrdinates in a neighbourhood
of x5 (or x;) then the matrix (azf/auiauj) is nonsingular at xg (or x3)).
2.8 Theorem: If M' satisfies hypothesis 2.7 then there exists a

homeomorphism of M onto s™ which is a diffeomorphisﬁ except possibly



-at~asingle point.
Proof: This result is entirely due to [Reeb 1952].

The proof will be based on the orthogonal trajectories of the
manifolds f=constant. Normalise the function so that f(xg)=0,f(x;)=1.
According to [Morse 1925, Lemma 4] there exist local coﬁrdinates
Visee oV in a neighbourhood ¥'6f xy3 so that f(x)=v1+...+-vn for xeV.
(Morse assumes that f is of class C3, and constructs coordinates of
class Ql, but the same proof works in the c case.) The expression
dsz=dv%+...+dvﬁ defines a Riemannian metric in the neighbourhood V.
Choose a differentiable Riemannian metric for M' which cofncides
with this one in some neighbourhood V' of xg. (This is possible
by [Steenrod 1951, 6.7 and 12.2].) Now the gradient of f can be
considered as a contravariant vector field.

Following Morse we consider the differential equation

‘~g%= grad f/|grad £]2.
In the neighbourhood V' thié equation has solutions
(vl(t),...,vn(~t))=(a1/E,...,anft‘)' for Ost<e,
where a=(a1,...,an)€Rn is any n-tuple with Zai=l. These can be
extended uniquely to solutions xa(t) for 0<t<l. Note that these
solutions satisfy the identity f(xa(t))=£.
Map the interior of the unit sphere of R" into M® by the map
(a1VE, ... ,a_/D)—x_(0).

It is easily verified that this defines a diffeomorphism of the

open n-cell onto M\{x;}. The assertion of the theorem now follows.

Given any diffeomorphism g:Sn—l—+Sn-l,

an n-manifold can be
obtained as follows.

2.9 Construction: Let Mn(g) be the manifold obtained from two copies

of R" by matching the subsets R™M\{0} under the diffeomorphism



u—ver g ().
lu & ul
(Such a manifold is clearly homeomorphic to Sn. If g is the

, . . . , n

identity map, then Mn(g) is diffeomorphic to S .)

2.10 Corollary: A manifold M" can be obtained by the construction 2.9
if and only if it satisfies the hypothesis 2.7.

Proof: If Mn(g) is obtained by the construction 2.9, then the function

w2 1
T+Hu]D - @V [D)

will satisfy the hypothesis 2.7. The conversé can be established by

. F(x)=

a slight modification of the proof of theorem 2.8,

Examples of 7-manifolds

Consider 3-sphere bundles over the 4-sphere, with the rotation
group SO(4) as structural group. The equivalence classes of such
bundles are in one-to-one correspondence (by [Steenrod, 1951, §18])
with the elements of the group m3(S0(4))=2Z®Z. A specific isomorphism

between the groups is obtained as follows. For each (h,j)eZeZ, let .

J

f. ,:5— S0(4) be defined by fhj(u)-v=uh-v0u , for veR . (Quaternion

hj
multiplication is understood on the right of the equation.)

Let 1 be the standard generator for H”(S”). Let Ehj be the
sphere bundle corresponding to [fhj]en3(50(4)).
2.11 Lemma: The Pontrjagin class pi(ghj) equals *2(h-j)1.

(The proof will be given later. One can show that the characteristic
class E(Ehj) (see [Steenrod 1951]) is equal to (h+j)1)

For each odd integer k let Mﬁ be the total space of the bundle ghj’
where h and j are determined by the equations h+j=1, h-j=k. This

manifold has a natural differentiable structure and orientation, which

will be described later.



2.12 Lemma: The invariant A(Mﬁ) is the residue class modulo 7 of k?-1.
2.13 Lemma: The manifold satisfies the hypothesis 2.7.

.Combining these we have:
2.14 Theorem: For k?#1 mod 7 the manifold ME is homeomorphic, but
not diffeomorphic, to s’.

(For k=t1 the manifold Mﬁ is diffeomorphic to S7, but it is not
known whether this is true for any other k with k%=1 mod 7.)

Clearlylaﬁy.differentiable structure on S’ can be extended
throughout R8\{0}. However:
2.15 Corollary: There exists a differentiable structure on S7 which
cannot be extended throughout RS.

This follows immediately from the preqeding assertions, together
with corollary 2.3.

Proof of Lemma 2.11: It is clear that the Pontrjagin class pl(Ehj)

is a linear function of h and j. Furthermore it is known to be

independent of the orientation of the fibre. But if the orientation

of S3 is reversed, then ghj is replaced by £ j,-h° This shows that
-j,-

pl(Ehj) is given by an expression of the form c(h-j)1. Here c is a

constant which will be evaluated later.

Proof of Lemma 2.12: Associated with each 3-sphere bundle Mlz——>SL+

there is a 4-cell bundle pk:Bﬁ—+S”. The total space Bﬁ of this

bundle is a differentiable manifold with boundary M7_ The cohomology
group H“(Bi) is generated by the element u=p;(1). Choose orientations
u,v for M/ and Bli so that <v,(i !a)2>=+l. Then the index T(B}) will be 1.

The tangent bundle of B8 is the Whitney sum of (1) the bundle of

k

vectors tangent to the fibre, and (2) the bundle of vectors normal to

the fibre. The first bundle (1) is induced (under pk) from the bundle
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ghj’ and therefore has Pontrjagin class'p1=pZ(c(h—j)1)=cku. The second
is induced from the tangent bundle of Su, and therefore has first
Pontrjagin class zero. Now by the Whitney product theorem:

pl(Bﬁ)=cka+O.

For the special case k=1 it is easily verified that B? is the
quaternion projective plane QP2 with an 8-cell removed. But the
Pontrjagin class pl(QPz) is known to be twice a generator of H'(QP?).
Therefore the constant ¢ must be *2, which completes the proof of 2.11.

Now q(B§)=<v,(i—}(i2ka))2>=4k2, and 2q—T=8k2—1Ek2—l (mod 7).

This completes the proof of Lemma 2.12,

Proof of Lemma 2.13: As codrdinate neighbourhoods in the base space s

take the complement of the north pole, and the complement of the south
pole. These can be identified with the Euclidean spaceQRA under
stereographic projection. Then a point which corresponds to uéRA
under one projection will correspond to u‘=—TET7“under the other.

The total space Mi can now bé obtained as follows (cf._[Steenrod 1951
§18]). Take two copies of R*xS3 and identify the subsets (®*\{0})xS3 by

u uhvuJ ) .
]u[z'{ [u] 1, (using quaternion

the diffeomorphism (u,v)—+(u",v’)={"
multiplication). This makes the differentiable structure of Mﬁ precise.

Replace the codrdinates (u',v') by (u",v"), where u=u'(v') !.
R(v) R@u")
Yir[u[Z V1+u"[Z

where R(v) denotes the real part of the quaternion v. It is easily

Consider the function f:MiféR.defined by £(x):

verified that f has only two critical points (namely (u,v)=(0,f1))

and that these are non-degenerate. This completes the proof of Lemma 2.13.



§3. _Groups of Homotopy Spheres.

The following results about homotopy n-spheres are proved in

[Kervaire, Milnor 1963]:

(1) The h-cobordism classes of homotopy n-spheres form an abelian

group On under the connected sum operation.

(2) The h-cobordism classes of homotopy n-spheres which bound

parallelisable manifolds form'a subgroup an+l of @n. (This

will be proved below.)

(3) The quotient group G)n/an+l is isomorphic to a subgroup of

the cokernel of the Hopf-Whitehead homomorphism Jn (where

k.. . .
Jn.ﬂn(SOk)—+ﬂn+k(S Y ), and is finite.
(4) The group an+l

zero for n even, and finite cyclic for n odd, nz3.)

is finite, for n#3. (In particular, it is

(5) Thus, the group On of (h-cobordism classes of) homotopy

n-spheres is finite, for nz#3.

We recall from above that every homotopy n-sphere, n#3,4, is

11

homeomorphic to s, [Smale 1962] has shown that two homotopy n-spheres,

n#3,4, are h-cobordant if and only if they are diffeomorphic.

Thus

(for n#3,4 at. least) the group On can be described as the set of

diffeomorphism classes of differentiable structures on Sn, and the

last result above can be interpreted as stating that there are only

finitely many essentially different such structures, for each n, nz3,4.

We will now prove assertions (2) and (3) above.

Let M be an s-parallelisable closed n-manifold. (I.e. TM@el is

trivial, where Ty is the tangent bundle of M, and el is the trivial

+k

line bundle.) Choose an embedding i:M—s" , with k>n+l1. Such an
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embedding exists and is unique up to differentiable isotopy.

3.1 Lemma (Kervaire, Milnor): An n-dimensional submanifold of Sn+k,

n<k, is s-parallelisable if and only if its normal bundle is trivial.

Thus vM is trivial. Let ¢ be a trivialisation of vy Then the

Pontrjagin-Thom construction yields a map p(M,¢):Sn+k—+Sk. The

homotopy class of p(M,¢) is a well-defined element of the stable

homotopy group Hn=ﬂ (Sk). Allowing the trivialisation to vary,

n+k
we obtain a set p(M)ﬁ{p(M,¢)}5Hn.

3.2 Lemma: p(M)gTIn contains the zero of Hn if and only if M bounds
a parallelisable manifold.
Proof: <=. If M=3W and W is a parallelisable manifold, then, because

+
of dimensional considerations, the embedding 1 :M—s" k can be extended

to an embedding of W into Dn+k+l, and W will have trivial normal bundle.

Choose a trivialisation ¥ of vw and let ¢=w|M. The Pontrjagin-Thom map

p(M,¢):Sn+k---—>Sk extends over‘Dn+k+l, and hence is null-homotopic.

=>, If pM,$)=0, we have a map F:Dn+k+lisn+k><[O,l]/Sn+le-—-+Sk
n+k><0=p(M,¢), and FlSn+le=€*, the constant map.

+
F can be made regular at * (the base point), relative to Sn kxO, SO

which satisfies F|S

we shall assume, without loss of generality, that it is. Then

F_l(*)gDn+k+lis a submanifold W, and ¢ can be extended to a trivialisation

Y on W. By Lemma 3.1 above and the following lemma, W is parallelisable.

3.3 Lemma: A connected manifold with non-vacuous boundary is

s-parallelisable if and only if it is paralleliséble. [Kervaire, Milnor]
This complétes the proof of Lemma 3.2.

3.4 Lemma: If My is h-cobordant to My, then p(My)=p(Mp).

Proof: If My+(-M;)=08W, choose an embedding of W in Sn+kX[0,l] such that

Md—+sn+kxq for q=0,1. Then a trivialisation ¢q of Yy extends to a

q
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trivialisation ¥y on W, which restricts to a trivialisation ¢l-q on Ml—q'
Clearly (W,y) gives rise to a homotopy between p(My,¢g) and p(M;,$7).
3.5 Lemma: If M and M' are s-parallelisable then p(M)+p(M')Cp(M#M')CHn.
Proof: Construct a manifold W with boundary (-M)u(-M")uM#M') as follows:
beginning with Mx[0,11uM'x[0,1], join the boundary components Mx1l and
M"x1 by a smooth connected suﬁ.‘ This sum..can be extended smoothly over
neighbourhoods of the joined portioms, in Mx[0,1] and M'x[0,1]. (The
details of this construction are given in [Kervaire, Milnor 1963].)
The manifold W has theﬂhomotopy type of the one-point union MVM'.

Embed. W in Sn+kX[0,1] such that (-M) and (-M") are mapped into
well-separated submanifolds of Sn+kXO, and such that the image of M#M'

lies in Sn+kx

1. Given trivialisations ¢ and ¢' of the normal bundles
of (-M) and (-M'), it is not. hard to see that there exists an extension
defined throughout W; Let ¥ denote the restriction to M#M' of this
extension. Then clearly p(M,d)+p(M',¢') is homotopic to p (M#M',y).
This completes the proof.
3.6 Lemma: The set p(Sn)CHrl is a subgroup of the stable homotopy -group
Hn. For any homotopy sphere I the set p(Z) is a coset of this subgroup
p(Sn). Thus the correspondence I—p(Z) defines a homomorphism p' from
Hn to the quotient group Hn/p(Sn).
Proof: Coﬁbining the previous lemma with the ideptities
(1) s"#sP=s™  (2) s™zEr (3) T#(-r)=S", we obtain
o8 p(Sn)+p(Sn)Cp(Sn), which shows that p(Sn) is a subgroup of Hn,
(2) p(Sn)+p(Z)cP(Z), which shows that p(f) is a union of cosets of

this subgroup, and

(3) p(Z)+p(—Z)cP(Sn), which shows that p(Z) must be a single coset.



Ay
This completes the proof of Lemma 3.6.
By Lemma 3.2 the kernel of p':@n—+Hn/p(Sn) consists exactly of all
h~cobordism classes of homotopy n-spheres which bound parallelisable
manifolds. Thus, these elements form a group which we denote by an C@n.

+1

It follows that an+ is isomorphic to a subgroup of Hn/p(Sn). Since

1
Hn is finite [Serre 1951], this completes the proof of assertions (2)
and {3). (Theé relationship with the Hopf-Whitehead homomorphism,

mentioned in assertion (3), is established in [Kervaire 1959, p.349].)
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Chapter I1. The Fundamental Theorem of Surgery.

§4. The Surgery Problem.

The technique of surgery, which Kervaire and Milnor used to obtain
their results on homotopy spheres, discussed. above, was also a key
element in Browder's solution of the surgery problem.(which was based on
work by Kervaire/Milnor, and Novikov).

Very informally, this problem can be stated as follows:

Given a map f:M—X between manifolds, when can f and M be modified

to £' and M' such that f':M'—X is a homotopy equivalence?

To state a more precise version of this problem, we shall first need
a few definitions.

A Poincaré pair (X,Y) of dimension m is a pair of CW complexes such
that thefe is an element [X]eHm(X,Y) of infinite order for which
[X]n*:Hq(X)—+Hm_q(X,Y) is an isomorphism for all q. This property is
called Poincaré duality, and [X] is called the orientation class of (X,Y).

Let (X,Y) be a Poincaré pair of dimension m (Y may be empty),

(M,3M) a smooth compact oriented m~manifold with boundary, and
f:(M,M)—(X,Y) a map. A cobordism of f is a pair (W,F) where W is a
smooth compact (m+l)-manifold, 8W=MUUmuM'm, 9U=9MuaM', F:(W,U)—(X,Y),
and F|M=f. If U=0MxI and F(x,t)=f(x) for xedM, tel, then (W,F) will be
calied a cobordism of f rel Y.

Let us assume that k>>m and that (M,3M) is embedded in (Dm+k,Sm+k_l)
with normal bundle vk, so that vIBM is equal to the normal bundle of 3M

n Sm+k—l. Let Ek.fé a k-plane bundle over X. A normal map is a map

£f:(M,3M)—(X,Y) of degree 1 together with a bundle map b:vk;+gk covering

f. A normal cobordism (W,F,B) of (f,b) is a cobordism (W,F) of £,
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together with an extension Bﬂmk—+£k of b, where mk is the normal bundle

m+k>< Sm+k--l><

of Wm+l in Dm+kXI, where the embedding is such that (M,aM)<(D
sm+k—l

0’ 0)’

(M',BM')C(Dm+le, m+k—lxI'

x1) and UcS
A normal cobordism rel Y is a cobordism rel Y such that it is a normal
cobordism and B(v,t)=b(v) for vevlaM, tel.
The precise version of the surgery problem is:
.froblem:Given a normal map (f£,b), f:(M,3M)—(X,Y), b:vk—+gk, when is
(f,b) normally cobordant to a homotopy equivalence of pairs?

A related question is the

Restricted Problem: Given a normal map (£,b), f:(M,M)—(X,Y), b:v—E,

when is (f,b) normally cobordant rel Y to (f',b'), where f':M'—X is
a homotopy equivalence? ’

The solution to the restricted problem is given by the following
two theorems:

4.1 The Invariant Theorem: Let .(f,b) be a normal map, as above, such

that’f]&linduces an isomorphism in homology. Then.there is an invariant
o(f,b) defined, 0=0 if m is odd, ce 4if m=0 (mod 4) and oce if m=2 (mod 4)
such that o(f,b)=0 if (f,b) is normally cobordant to a map inducing a

homology isomorphism.

CgEE)r " The Fundamentalésurgery Theorem: Let (f,b) be a normal map, as above,
and suppose (1) fISM'induces an isomorphism in homology, (2) X is
simply-connected, and (3) m25. If m is odd then (f,b) is normally cobordant
rel Y to a homotopy equivalence f':M'-—X. 1If m is even, then (f,b) is
normally cobordant. rel Y to (f',ﬂ') such that f':M'—X is a homotopy
equivalence if and only.if o(f,b)=0.

Our discussion of surgery follows very closely the treatment of

‘[Browder 19721, and consists of the definition of the invariant o,
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the statement and proof of certain properties it has, the proof of the
Invariant and Fundamental theorems, and.the statement of certain
consequences of the Fundamental theorem, particularly the technique of
plumbing and the Plumbing Theorem. Finally we will use the latter to

derive some classification results for manifolds.

§5. The Surgery Invariant.

Before defining o we shall recall some pertinent facts about
quadratic and bilinear forms over Z and Z,.

A symmetric bilinear form (+,*) on.a Z-module V satisfies:
(1) (x,y)=(y,x) and (2) QOxA'x',y)=x(x,y)+\"'(x',y) for A,\'eZ,

x,x',yeV. If{bi} is a basis for V and a =(bi’bj)’ then the matrix

ij
A=(aij) represents (+,*) in the sense that (x,y)=xA.yt (where x and y

on the right are representations of the elements in the basis {bi})'

If we pass to a new basis by an invertible matrix M, so that b'=Mb,

then in terms of the new basis (°,-) is represented by MAMt.

The bilinear form (+,*) defines a quadratic form q:V—Z by
q(x)=(x,x). We have (x,y)=%(q(x+y)—q(x)—q(y)) so that (+,+) is derivable
from q. Each of q and (+,*) is said to be associated to the other.

The form (-,*) also defines naturally a biliﬁear form {+,°*):VxQ—Q.
5.1 Proposition: If (+,+) is a symmetric bilinear form on a finite
dimensional vector space V over Q into Q, then there is a basis for
V such that the matrix representing (+,*) in that basis is diagonal.

Define the signature of a bilinear form (and hence of the

associated quadratic form) to be the number of positive diagonal

entries minus the number of negative diagonal entries, using a

diagonal matrix representing the form. The signature is, in fact,
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invariant under a change of basis, and we shall think of it as an invariant
of quadratic forms over Z, taking values in Z.

A quadratic (or bilinear) form over Z is called nonsingular if
the determinant of the matrix A representing it is 1. Over a field
it is called nonsingular if the determinant is nonzero.
5.2 Proposition: Let q be a nonsingular quadratic form on a finite
dimensional vector space V over RE. Then sgn(q)=0 if and only if
there is a subspace UcV such that:

(1) dimRU%dimRV and (2) (x,y)=0 for x,yeU.

Some results we will use follow.
5.3 Proposition: Let q be a nonsingular quadratic form V—>Z and
suppose q is indefinite (i.e. neither positive nor negative definite).
Then there is xeV, x#0 such that q(x)=0.
5.4”FProposition: Let q be a nonsingular quadratic form V and
suppose 2]q(x,x) for all xeV (q is called even). Then 8]|sgn(q).

A quadratic form q on a Zy-vector space V is a function q:V—Z,
such that q(6)=0 and q(x+y)-q(x)-q(y)=(x,y) is bilinear. Two quadratic
forms q,q' on V are equivalent if there is an automorphism o :V—V
such that q=q'ca. Under.this definition, it is clear that (x,y)=(y,x)
and (x,x)=q(2x)-2q(x)=0 so that (*,*) is a symplectic bilinear form.

If (+,*) is nonsingular, it follows that V is of even dimension, and

that we may finq a basis {ai,bi} for V such that (ai,bj)=61j,
(ai,aj)=(bi,bj)=0. Such a basis is called symplectic. We shall now
classify Z,—vector spaces with nonsingular quadratic forms, and thereby
define the Arf invariant of such forms.

Let U be the 2-dimensional Z,-vector space, with basis a,b, such

that (a,a)=(b,b)=0, (a,b)=1. There are two quadratic forms on U



- compatible with (¢,*): qp and q; , defined by qj(a)=q; (b)=1, qqg(a)=
qo (b)=0. Note that for both qi(a+b)=l. (The notations U,qq and q
will remain fixed throughout §5.)
5.5 Lemma: Any nonsingular quadratic form on a 2-dimensional Zz—vectdr
space is equivalent to qp or qi.
Since such a space has only 4 elements, the isomorphism is easy
to construct.
If q and q' are quadratic forms on spaces V and V', then q&q'
is the quadratic form on VeV' given by (q@q') (v,v")=q(¥v)+q'(v').
5.6 Lemma: On U®U, qu9qq is isomorphic to q;@qj.
The proof consists of a simple rearrangement of bases.
Now we can begin classifying forms.
5.7  Proposition: A nonmsingular quadratic form g on a Zy-vector space
(which must have even dimension 2m) is equivalent either to
qle(Qm_lqo) or to @mqo.
Proof: Let {ai,bi}; i=l,...,m be a symplectic basis of V, and let Vi
be the subspace spanned by ai’bi’ and let wi=q|Vi. Then by the nature
of the basis, q=?wi, and. by Lemma 5.5 wi is equivalent to qg or qj.
By Lemma 5.6 q19q1%qp®qp, so q is equivalent to either @mqo or
a8 qp) . | QED
To complete the classification, we must show that ¢0=®mq0 is
not equivalent to ¢1=q1®(®m_1q0). This is clear from the
5.8m_Prpposition: The quadratic form ¢; on V sends a majority of
elements of V to leZ,, while ¢, sends a majority of elements to 0OeZ,.
The proof is by induction on the dimension of V.
Using this notation, we define the Arf invariant of a nonsingular

quadratic form q on V as follows:
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0 if g=¢g

Arf(q)= .
1 if q=¢,
Thus we have:
5.9 Theorem:(Arf) Two nonsingular quadratic forms on a finite dimensional
Zp-vector space are equivalent if and only if they have the same Arf
invariant.

In analogy with a previous result concerning quadratic forms over
Z, we have the
5.10 Proposition: Let q be a nonsingular quadratic form on the Zy=vector
space V. .Then Arf(q)=0 if and only if there is a subspace U<V such that

(1) rankZZU=%rankZ2V, and (2) q(x)=0 for all xeU.

Given a bilinear fdrm (+,*) on a vector space V, define R, the
radical of V, to be {xeV| (x,y)=0 for all yeV}.

If q:V—Z, is a quadratic form with (+,*) as associated bilinear
form, we have defined Arf(q) only if R=0. 1If q[REO, it is easily seen
that q defines q' on V/R, and the radical of V/R is zero. In this case"
we may define Arf(q) to be Arf(q'). 1If qu#O, it doesn't make sense to
define the Arf invariant, and in fact the equivalence of the form is
determined by rankV and rankR.

Thus we have:

5.11 Theorem: Let q:V—-Z, be a quadratic form over Z,, R the radical
of the associated bilinear form. Then the Arf invariant Arf(q) is
defined if and only 1if q|REO. In general, if qIREO, then q is determined

up to isomorphism by rankZ V, rank, R, and Arf(q), while if qu#O,
2 2

Z
then q is determined by rankZ V and rankZ R.
2 2

Note: Browder uses the notation c(q) for the Arf invariant.

We will now define an invariant I which detects maps in the
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cobordism class of a homology isomorphism.

A map f:(X,Y)—(A,B) between Poincaré pairs of the same dimension
is said to be . of degree 1 if f*[X]=[A], where f*:H*(X,Y)—+H*(A,B)
is the map in homology induced by f. We denote.the map induced
H*(X}—+H*(A) by f*, and similar notation in. cohomology.

5.12 Theorem: Maps of degree 1 split, i.e. with notation as above,
there are

u*:H*(A,B)—+H*(X,Y), B*:H*(A)—+H*(X),

* % * x % *
o :H (X,Y)—H (A,B), B :H (X)—H (4),
- * % %%k

such that f a,=1, f*8*=l, o £f =1, B f =1.

The splittings are defined straightforwardly using the Poincaré
duality isomorphisms, and their inverses.

It follows from this theorem that there are direct sum splittings

H, (X,Y)=ker f @im o H, (X)=ker f oim B8,

*? *

H*(X,Y)=im f*eker a*, H*(X)=im E*ler B*.

Thus we establish the following notation:

Kq(X,Y)=(ker f*)qCHq(X,Y), Kq(X)=(ker f*)qcnq(X),

k4(x,¥)=(ker o )%end(x,v), KIX)=(ker 8”")Iend (@) ;"
(and similarly for (co)homology with coefficients).

kd and Kq have the following property:= -

In the exact homology and cohomology sequences of the pair (X,Y),
all the maps preserve the direct sum splitting, so induce a diagram,

commutative up to sign, with exact rows:

* *
...-——l-»Kq—T(Y)—(s*Kq(X','Y")—‘]—**Kq(X‘) Ly —2
a[X]n-l [X]ne [X]ne B[X]n-\
“.’;—Km_q(Y)**Km_q(X)l*‘*Km_q KD=K T (D)
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The proof of this property consists of the proof that the direct sum
splittings are preserved by the Poincaré duality map ([X]n¢) and the
homology maps.

From this sequence,‘and using the definition of the K4 groups, we
develop the following diagram, with exaét rows and columns:

0 0 0

A x4 4
coe— L (7 ) —xe X)<—~—-Kq( V) «—x 1 f (...

(f| ol
. —a(®)«—nat (A)<—Hq (A,B)+—H1"

,f

0
+
- —H (p)—a" (X)<——-—Hq (x,Y)«—n"
(
1\
0 o 0

PR

Suppose m=dim(X,Y)=4k and consider the pairing

2k 2k .

K™ (X,Y;@)8K" (X,Y;8)—Q - given by (x,y)=(xuy)[X].
This is symmetric because the dimension is even.

Define I(f) to be the signature of (*,°) on KZk(X,Y;Q). Note that
(+,+) is the rational form of the integral form defined on
2k % % %
K" (X,Y)/torsion by the same formula. If (f[Y) H (B;@)—H (Y;Q) is

. . . LF 2k 2k
an isomorphism, then so is j :K° (X,Y;@)—K" (X;@), and so
%

(xuy) [X]=((3 x)uy) [X].

But we have the following property of the k4 groups:
5.13 Proposition: Under the pairing Hq(X;F)®Hm—q(X,Y;F) F given by
(x,y)=(xuy) [X], where F is a ring, Km—q(X,Y;F) is orthogonal to
-% q q . ‘ * m-q
f (BH*(A;F)), K*(X3F) is orthogonal to f (H (A,B;F)), and on
Kq(X;F)®Km-q(X,Y;F) the pairing is nonsingular if F is a field.
If F=Z, it is nonsingular on Kq(X)/torsion®Km—q(X,Y)/torsion.

The proof is straightforward verification, depending on certain

elementary propertiés of the cup and cap products.
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Taking q=2k and F={, we see'that the pairing (+,*) defined above
is nonsingular. Similarly if (fIY)*:H*(B)—+H*(Y) is an isomorphism,
then the integral form is nonsingular. 1In particular this is the case
if Y=B=¢.
5.14 Theorem: Let f:(X,Y)—(A,B) be a map of degree 1 between Poincaré
pairs of dimension m=4k+1. Tlen I(f|Y)=O.
Proof: The proof is an application of Proposition 5.2.

5.15 Propogition: Under the hypotheses of the theorem we have

* *
rankQ(im i )2k=%rankQK2k(Y;Q), where i :KZk(X;Q)—+K2k(Y;Q) is induced

from the inclusion 1i:Y—X.

- Proof: We have a diagram, commutative up to sign:

* .
kR kP (0P (v —

[XIne [Yinet [X]ne
*
..;+K2k+l(X,Y,Q)——+K2k(Y,Q) — KZkgx,Q)————+...

In this diagram the rows are exact and the vertical maps are
isomorphisms. Hence (im i*)2k=(ker i*)2k° It is easily shown that the
Universal Cogfficient Formulae hold for K* and K,, and thus, since &

is a field, K “(Y:@)=Hom(K,, (Y;Q),d), K “(X:0)=Hom(K,, (X:0),),
| and i*=Hom(i*,1). Hence rankQ(im i*)2k=rankQ(im i*)Zk’ and
rankQ(im i*)2k+rankQ(ker i*)2k=rankQK2k(Y;Q)=rankQK2k(Y;Q).

*
Hence, rankQ(im i )2k=lrank KZk(Y;Q). QED

2 Q
. ., L.* 2k 2k
5.16 Lemma: With the hypotheses of 5.15, (im i )" K" (Y;&)

annihilates itself under the pairing (°,*).
Proof: (i'x,1'y)=(( ®)u y)) [¥1=(" (xuy)) [¥]=(xuy) (1,[¥]1)=0 since

i, [Y]=1,8[X]=0 in H,, (X).

4k
. L% .2k 2k .
_Proof of Theorem 5.14: By 5.15, (im i )" <K (Y;@) is a subspace of

rank“=“%fank'K2k(Y;Q), and by 5.16 it annihilates itself under the



pairing. Hence by Proposition 5.2, sgn(*,*)=0 on K2k(Y;Q), so- that

I1(f|Y)=0. - QED
The sum of Poincaré pairs is defined as follows:

If (Xi’XOUYi) i=1,2 are Poincaré pairs of dimension m, such that

X nX2=Xp , YinXo=Y0, and (Xp,Yp) is a Poincaré pair of dimension m-1,

then it follows [Browder 1972, p.13] that (XjuXp,Y1UY,) is a Poincaré

pair of dimension m, called the sum of (Xi’XOUYi) along (Xp,Yq).

If (X,Y) and (A,B) are the sums, respectively, of (Xi,YiUXo) and
(Ai,Biqu), and f:(X,Y)—(A,B) with f(Xi)CAi’ then the following
are .equivalent:

(1) £ has degree 1

(2) fo=f| (Xg,Yo) has degree 1

(3) fi=fl(Xi’YiUXO) have degree 1
(all with appropriate orientations).

We say that f is the sum of f; and f;.

5.17 Theorem: Suppose f:(X,Y)—(A,B), a degree 1 map, is the sum of
two maps fi:(Xi,XOUYi)—+(Ai,A0UBi), i=1,2, and suppose that the map
on the intersection fg:H*(AO,BO;Q)—+H*(XU,YO;Q) is an isomorphism.
Then I(fj=1(f1)+I(f2).

If (X,Y) is a Poincaré pair of dimension m=4k we may consider the
symmetric pairing HZk(X,Y;Q)®H2k(X,Y;Q)—+Q given by (x,y)=(xuy)[X],
and we define I(X,Y) to be the signature of (*,*) on HZk(X,Y;Q).

5.18 Theorem: I(f)=I(X,Y)-I(A,B).

Thus we have the important theorem
5.19__Theorem{ Let f:(X,Y)—(A,B) be a map of degree 1 between Poincaré
pairs of dimension m=4k. Suppose (f|Y)*:H*(B;Q)—+H*(Y;Q) is an isomorphism

and that f is cobordant rel Y to f':(X',Y)—(A,B) such that
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f'*:H*(A;Q)—+H*(X’;Q) is an isomorphism. Then I(f)=0.
Proof: Let U be the .cobordism rel Y between X and X', so that 3U=XuX"',
"XAX'=Y, (U,3U)is a Poincaré pair of dimension m+l, compatibly oriented,
and F is the map (U,Y)—(A,B) such that F|X=f, F|X'=f'. We may consider
F as a map of degree 1 G:(U,XuX')— (AxI,AxQuBxIUAx1). By Theorem 5.14,
I(G|XuX')=0, and by Theorem 5.17 I(G|XuX')=I(f)-I(f'). Now I(£')=0
since f'* is an isomorphism, and hence I(f£)=0. QED

Let (X,Y) be a Zo-Poincaré pair of dimension m (i.e. (X,Y) satisfies
Poincaré duality for homology witﬁ coefficients in Z,). Define a linear
map %i:Hm—i(X,Y;ZQ)—+Z2 by li(x)=(Sqix)[X], where Sqi is the ith Steenrod
square (see [Steenrod 1962}) and [X]eHm(X,Y;Zz) is the orientation class.
By Poincaré duality, Hi(X;Z2)®Hm_i(X,Y;Z2)—+Z2 given by (x,y)=(xuy)[X] is
a nonsingular pairing, so that Hi(X;Zz) is isomorphic, using this pairing
to Hom(Hm_i(X,Y;Zz),Zz), and hence Qi(x)=(x,vi) for a unique vieHi(X;Zz),
for all erm_i(X,Y;Zz).

Define the Wu class of X to be V=1+v +v +... , v eHi(X;ZQ) as above.

i
5.20 Proposition: Let (X,Y) and (A,B) be Z,-Poincaré pairs of dimension m,
f:(X,Y)—(A,B) a map of degree 1 (mod 2) (i.e. f*[X]=[A] for £, defined
on homology with Z, codfficients). Then vi(X)=§i+f*(vi(A)), where
v et

Tbe proof consists of a calculation to show that vi(X)—f*(vi(A))eKi(X)
5.21 Proposition: With notation as in 5.20, suppose m=2q. Then the
pairing (-,+) on Kq(X,Y;ZZ) is symplectic (i.e. (x,x)=0 for all x)
if and.oniy'if f*vq(A)=vq(X).
Proof: (x,%)=x?[X]=(8q"x) [X]=Gruv (1)) [X]=(x,v (X)) for xeH(X,Y322) ,
and since Kq(X,Y;Zz) and (im f*)qare orthogonal by Proposition 5.13,

S -
(x,f vi(A))=0 for XeKq(X,Y;Zz). Hence for xeKq(X,Y;Zz), (x,x)=(x,vq)
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by Proposition 5.20. Then (x,x)=0 if and only if ;q=vq(X)—f*vq(A)=0.
5.22 Corollary: Let (X,Y) and (A,B) be oriented Poincaré duality pairs
of dimension m=4%, and let f:(X,Y)—(A,B) be of degree 1. 1If f*sz(A)
=v22(X), then the pairing (x,y)=(xuy)[X] (for x,yéK*(X,Y)/torsion) is
even (i.e. 2I(x,x) for all x).

This follows from the fact that (x,x) reduced mod 2 is zero by 5.21
and thus (x,x) must be even.

5.23 Corollary: Let (X,Y) and (A,B) be oriented Poincaré pairs of
dimension m=4%, f:(X,Y¥)—(A,B) of degree 1 such that (f]Y)*:H*(Y)—+H*(B)
is an isomorphism. If f*(vzg(A))=V22(X)’ then I(f) is divisible by 8.

This follows directly from 5.22 and Proposition 5.4.

Let us now investigate the Wu class, with the aim of showing that
it is preserved by normal maps.

Let (X,Y) be a pair of spaces, and Ek a fibre bundle over X with
fibre F such.thét H*(F;Zz)=H*(Sk_1;Z2). Then we may define the Thom
space T(£)=XucE(£) using the projection of £ as attaching map. There
is a Thom class Uer(T(g);Zz) such that

0013 (x;25)—~ET (1 (2) 5 2)
UL (X, Y3 2,)—HIR (1) , T 1) 525)
*nU:H_(T () L, T(E|Y) 3Zo)—H__ (X,Y;25)
nU:H_(T(E)522)—H _ (X522)
are isomorphisms. - Let.h:ﬂr(A,B)—+Hr(A,B;Z2) be the Hurewicz homomorphism
mod 2. We have the following important theorem of Spivak:
5.24 Theorem: Let (X,Y) be an n-dimensional Poincaré pair, with X
simply-connected and Y a finite complex up to homotopy type. Then there

is a spherical fibre space £ with X as base space, its fibre a homotopy

(k=1)-sphere, and an element aeﬂn+k(T(£),T(£[Y)) such that h(a)nU=[X].
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The fibre bundle £ is called the Spivak normal fibre space of X,

and can also be defined for homology with coéfficients.
5.25 Proposition: Let (X,Y) be a Zp-Poincaré pair of dimension m,
Ek“a Zy Spivak normal fibre space over X (i.e. the fibre of £ is a
Zo homology (k-1)-sphere), aewm+k(T(£),T(E]Y)) such that h(o)nU=[X]
in H (X,Y;Z3). Then V(X)uU=Sq 1 (U).

We recall the fact that the Thom class Uer(T(E);Zz) is
characterised by the fact that j*(U) generates Hk(EF;Z2)=Z2, where
j:ZF—=T(f) is the inclusion of the Thom complex over a point into the
whole Thom complex.

5.26 Proposition: Let b:E—E' be a map of fibre spaces covering f:X—X',

where £ and £" have fibre F, H*(F;Z2)=H*(Sk_l;22). Then b induces a

%
map of Thom complexes T(b):T(§)—T(£'), and T(b) U'=U, where U and U"'
are the Thom classes of £ and £°'.
Proof: Let E,E' be the total spaces of £,f' resp., so that the following
diagram commutes: F—sE—>X
1 b f
,n.'
BT gt .
Hence, f,b induce T(H):XU}CE—4X'U",CE', and the diagram ZF~1—+T(£)
* * * * % 1 lT(b)
commutes. Hence j T(b) U'=j' U', so that j T(b) U’ .
*
generates Hk(ZF;ZZ), and thus T(b) U'=U. QED
5.27 Corollary: Let (X,Y) and (A,B) be Z, Poincaré pairs of dimension m,
£' a fibre space over A with fibre F a (k-1)-dimensional Z, homology
sphere. Let f:(X,Y)—(A,B) be of degree 1 in Z, homology, and let
. .
g=f (£'). -“Suppose there is an element ueﬂm+k(T(g),T(g[Y)) such that

* *
h(a)nU=[X]. Then £ (V(A))=V(X), in particular f vq(A)=vq(X) for all q.

*
Proof: By 5.26, if b:£—E' is the natural map, T(b) U'=U. Setting V(X)=V,
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* * * %

V(A)=V', we have, using 5.25, T(b) (V'uU')=f V'UT(b) U'=f (V')uU

* aaT it ymaq "l ) Mt eag "] *
=T(b) (Sq *‘U')=Sq “T(b) U'=Sq '‘U=VulU. Hence f V'=V,
5.28 Theorem: Let (X,Y) and (A,B) be oriented Poincaré pairs of
dimension m=4%, f:(X,Y)—(A,B) of degree 1 such that (fIY)* is an
isomorphism, and £' a fibre space over A with fibre F a Z, homology

*
(k-1)-sphere. Set &=f £' and suppose there is aeﬂm+k(T(g),T(g[Y))
such that h(e)nU equals the orientation class of (X,Y) reduced mod 2.
Then I(f) is divisible by 8.
*

Proof: By 5.27, f VZQ(A)=V22(X), so by 5.23 I(f) is divisible by 8.

-Let (f,b) be a normal map, f:;(M,dM)—(A,B) of degree 1, M a smooth
oriented m-manifold with boundary, (A,B) an oriented Poincaré pair of
dimension m, m=4%, and b:v—n a linear bundle map covering f, v the

normal bundle of (M,ZBM)<:(Dm-|_k,sm+k—l

), n a k-plane bundle over A.

5.29 Corollary: If (f,b) is a normal map with (flaM)* an isomorphism,
then I(f) is divisible by 8.
Proof: The pair:(f,b) satisfies the conditions of 5.28, where £'=n is
a linear bundle over (A,B).

Thus, we may make the following definition:

Let (f,b) be a normal map f:(M,3M)—(A,B), etc. with (fIBM)* an
isomorphism, m=4% the dimension of M. Define 0(f,b)=%1(f). Then the
Invariant Theorem for m=42 follows from Theorem 5.19.

Let (X,Y) and (A,B) be oriented Poincaré pairs of dimensiqn m=2q,
and let f:(X,Y)—(A,B) be a map of degree 1. Let £ be the Spivak
normal fibre space of (X,Y), and n that of (A,B), and let
aewm+k(T(g),T(£|Y)), Beﬂm+k(T(n),T(n|B)) be the elements defined such

that h(a)nUg=[X], h(B)nUn=[A], where U ,Un are the Thom classes of £,n

g

and h is the Hurewicz homomorphism. Let b:£—m be a map of fibre spaces
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covering f. We shall call the pair (f,b) a riormal map of Poincaré pairs.
Note that this definition is analogous to that of a normal map given
above. We also define normal cobordism.and normal cobordism rel B of
Poincaré pairs by the same analogy.

Browder [1972, III1.4] defines, using Spanier and Whitehead's S-theory,
a quadratic form w:Kq(X,Y;ZZ)44ZZ with.associated.bilinéar form (+,+),
where (x,y)=(xuy)[X] for x,y Kq(X,Y;Zz). If (flY)*:H*(B;Zz)—+ﬂ*(Y;Zz)
is an isomorphiém, it follows from Proposition 5.13 that (+,*) is
nonsingular on-Kq(X,Y;Zz) (EKq(X;Zz)). Then the Arf invariant of ¥ is
defined.

Let (f,b) be a normal map of Poincaré complexes, f:(X,Y)—(A,B),
and suppose that (flY)*:H*(B;Zz)—+ﬁ*(Y;Z2> is an isomorphism. Then
define the Kervaire invariant c(f,b)=Arf(¥).

Now we will develop some properties of the Kervaire invariant.

Let (f,b) be a normal map, f:(X,Y)—(A,B), etc. and suppose in
addition that Y and B are sums of Poincaré pairs along the boundaries,
and that f sends summands. into summands. In particular, suppose that
Y=Y)UYp, Yo=Y1nYp, B=BjuBy, Bo=B1nBy, £(Y,)cB,, and that (B,,Bg) and
(Yi,YO) are Poincaré pairs compatibly oriented with (X,Y) and (A,B).

If £,n are the Spivak normal fibre spaces of (X,Y) and (A,B), then
E]Yi, nIBi are the co?responding Spivak normal fibre spaces, so that
if fi=f|Yi, bi=b|(g|Yi), then (f;,b.) are all normal maps, i=0,1,2.

Note that if f;;H*(BZ;Zz)—+H*(Y2;ZZ) is an isomorphism then it
follows_that(fé:H*(Bo;Z2)—+H*(Y0;Z2) is also an isomorphism.

5.30 Theorem: Let (f,b) be a normal map as above, so that fTY is the sum
.
of f1 and f, on Y; and Yy, etc. Suppose f;:H*(Bz;Zz)—+H*(Y2;Zz) is an

isomorphism. Then c¢(f],b7)=0.
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This theorem has the following corollaries:
5.31 Corollary: If (f,b) is a normal map and is normally cobordant rel Y
to (£',b"), f'*:H*(A,B;ZZ)—+H*(X',Y;Zz) an isomorphism, then c(f,b)=0.
5.32  Corollary: If (f,b) is a normal map, f:(X,Y)—(A,B), then
c(£]Y,b] (]¥))=0.

The first corollary.is derived from the theorem by using the normal
cobordism as a normal map, the second by taking Yo=¢.

The proof of Theorem 5.30 relies on the definition of ¢, and is
given in [Browder 1972, III.4].

Let (£,b), f:(X,Y)—(A,B) be a normal map of Poincaré pairs, and
suppose (X,Y) and (A,B). are sums of Poincaré pairs, i.e. X=XjuXsp,

A=A1UAp, Xg=X1nXp, Ag=A1nAp, Y

i=XinY, Bi=AinB, f(Xi)gAi, and (Xi,XouYi),

(AifAOUBi) are Poincaré pairs oriented compatibly with (X,Y) and (A,B).

Set fi=f|Xi:(Xi,XOUYi)—+(Ai,AOUBi), £9=£]Xq : (X9 ,Y9)>{Ag,Bp), and
bi the appropriate restriction of b.

Now suppose that (flY)*:H*(B;Zz)—+H*(Y;Z2) and f::H*(Ab;Z2)—+H*(XO;Zz)
are isomorphisms. It folléws easily from arguments with the Mayer-Vietoris
sequence that (fi|XOUYi)* are isomorphisms, so c(f,b), c(f;,b1), and
c(fy,by) are all defined.

5.33 Theorem: c(f,b)=c(f, ,b,)+c(f,,by).
Proof: We shall present a partial proof here; the balance is to be found
in [Browder 1972].

Let y,y; and P, be the quadratic forms defined on Kq(X,Y),
Kq(Xl,Xoqu) and Kq(Xz,XOUYz) respectively. An argument with the
Mayer¥Vietoris sequence (which is really the exact sequence of the triple
of pairs (Xp,Yp)c(X,Y)c(X,YuXp), where the last pair is replaced by the

excisive pair (X;,Xgu¥i)u(Xp,XguYs)) gives an isomorphism
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x4 q q
91@92°K (Xl QXOUY].)@K (X29X0UY2)——*K (X’Y):
where pq is defined by the diagram

K1 (%; , XU ——K} (X, X, UY)

P1

4 thX,Y)
where the isomorphisﬁicomes from an excision, and the vertical arrow
is induced by inclusion (similarly for p,).
It remains to shpw w(pix)=wi(x), xeKq(Xi,XOUYi). Then ¢ is
isomorphic to the direct sum Y1@y,, so that Arf(y)=Arf(Yq)+Arf(ys,).
The remainder of the proof is given on pp. 72-73 of Browder.
Now suppose (A,B) is a Poincaré complex of dimension m, and &
is a linear bundle over A, f:(M,3M)—(A,B) is of degree l,and b:v—¢f
is a linear bundle map covering f, v is the normal bundle of (M,3M)

in (Dm+k’sm+k—l

); i.e. (£,b) is a normal map in the original sense.
Then by Theorem I.4.19 of Browder, there is a fibre homotopy equivalence
(unique up to homotopy) b':f—n such that T(b'),(T(b),(a))=8, where
aeﬂm+k(T(v),T(v[3M)) and 86ﬂm+k(T(n),T(n]B)) are the elements such that
h(a)nUv=[M] and h(B)nUn=[A]. Then b'b:v—n, and (f,b'b) is a normal
map of Poincaré pairs, and we define o(f,b)=c(f,b'b)eZ, if m=4k+2 and
(f|3M)* on 7, cohomology is an isomorphism.
5.34 Proposition: The value of (f,b) is independent of the choice of
'B€ﬂm+k(T(n),T(n|B)), and thus depends only on the normal map (f,b).
The proof of 5.34 is provided in [Browder 1972].
With this definition of o(f,b) for m=2 (mod 4), we see that
Corollary 5.31 provides the proof of the Invariant Theorem for m=2 (mod 4)

and thus completes the proof of that theorem.

We have also proved the following two properties of the invariant o:
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5.35 Proposition: (Addition Property) Suppose (f,b) is a normal map
which is the sum of two normal maps (fy,b;) and (f,,bs), and such that
f|BM, fIBM:,L i=1,2, and fIMO induce isomorphisms in homology. Then
o(f,b)=0(fy,b1)+c(f5,bs).

This property is proved for m=4% by Theorem 5.17, and for m=42+2
by Theorem 5.33. It is vacuously true for m=2q+l.
5.36 Proposition: (Cobordiém Property) Let (f,b) be a normal map,
£:(M,00>(X,Y), b:v—E, and set £!=f|3M:3M—~Y, b'=b| (v|oM) :v[aM—E]Y.
If m=Jk+l then (f',b")=0.

This property follows from Theorem 5.14 for the case m=42+1 and
from Corollary 5.32 for the case m=42+3.

Let us call the quantity I(X,Y) defined above the index of X.
Then by the Hirzebruch Index fheorem {Hirzebruch 1966], we have

Index M;Lk(pl(g—l),... ("1))[X], and Theorem 5.18 gives us directly

st
the following
5.37 Proposition: (Index Property) If Y=¢, m=4k, (f,b) a normal map,
then 80(f,b)=index M-index X, and index X equals the signature of the
quadratic form on sz(X;Q) given by <xux,[X]>, where [X].is the orientation
class in H4k(X;Q).

Finally we state without proof the
5.38 Proposition: (Product Formulae) Let (f;,by), (f3,bp) be normal maps
fi:(Mi,aMi)—+(Xi,aXi). Suppose o (f1xf,,byxby), o(fy,by)=07, and
6(fy,bp)=0, are all defined (i.e. fyxf,|d(MyxMy), filaMi are all homology
isomorphisms with appropriate cogfficients).

Then (1) o(£1%f5,b1%xby)=I(X;)0,+I(X;)0,+80,0, when My;xM, is of

dimension 4k, where I(Xi) is the index of Xi’

(2) o(f1xf5,b1xby)=x(X;)0r+x(X5)0; when MyxM, is of dimension 4k+2
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where X(Xi) is the Euler characteristic of Xi.

Note that I(X)=0 by definition if dim X}0 (mod 4).

§6. Surgery below the Middle Dimension.

We will now describe the technique of surgery, the use of which
will enable us to solve the surgery problem.

Suppose that ¢:prDq+l—+Mm, prqtl=m, is a differentiable embedding,
into the interior of M if M=z . Let Mg=M\int(im ¢). Then 3M0=8MU¢(SPXSq).
DefinemMr=M0U¢Dp+lXSq, with ¢(x,y) identified to (x,y)eSpXSq=8(Dp+lXSq).
Then M' is a manifold, 3M"=0M, and M' is said to be the result of surgery
using ¢, on M. It is sometimes denoted by x(M,9) (e.g. by Milnor).

We may define a cobordism W$+1 between M and M' as follows:
w¢=Mx[o,1]u(Dp*lxDq+l) such that (x,y)esPxp%lcr @PHxp®*ly ig

identified with (¢(x,y),1)eMxI. Clearly dW =Mu(8MxI)uM', and W, is called

¢ ¢

the trace of the surgery. As we have defined it, W¢ is not a smooth

manifold with boundary. However, it has a canonical smooth structure
(i.e. it is PL-homeomorphic to a smooth manifold) which is described

in [Milnor 1961]. (Milnor calls W¢ w(M,d).)

If wm+l is a manifold with 3W=Mu(OMxI)uM' and W' has 3W'=
M'u(3M'xI)uM", then we may define the sum of the two cobordisms by
taking W=WUW' and identifying M'coW with M'<dW'. Then it is clear that
AW=Mu (3MxT)uM".

6.1 Theorem: Let W be a cobordism with éw=MU(8MXI)UM'. Then there is a
sequence of surgeries based on embeddings ¢i,Ai=l,...,k, each surgery

being on the manifold which results from the previous surgery, and such

that W is the sum of W, ,...,W, .
$1 N
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The proof is an immediate consequence of the Morse Lemma, and a
lucid proof may be found in [Milnor 1961].
6.2 Proposition: If M' is the result of surgery on M based on an

embedding ¢:SPXDq+l—+M, then M is the result of surgery on M' based

+1

on an embedding w:SqXDp ~—M"' such that the traces of the two surgeries

are the same.

q+1

6.3 Proposition: Let ¢:SPXD —M" be a smooth embedding in the interior

of M, p+q+l=m, and let W, be the trace of the surgery based on ¢. Then

¢

W, has MU$DP+1 as a deformation retract, where $=¢[pr0.

¢
Proof: W¢E(MXI)U¢(DPﬁlXDq*l), image ¢cMxI, so we may deform MxI to Mx1l

q+1

leaving MX1U¢(DP+1XD ) fixed. Then Dp+l><Dq+l may be deformed onto

(Dp+lXO)U(SpXDQ+l), leaving this latter subspace fixed. This then yields
: . p+1

the deformation retraction of W¢ to MU$D .

6.4 Proposition: (a) Let f:(M,0M)—(A,B) be a map, M an oriented smooth

m-manifold, (A,B) a pair of spaces, and let ¢:SPXDq+l—+int M be a smooth

embedding, p+q+l=m. Then f extends to F:(W¢,8MXI)—+(AXI,BXI) to get a
cobordism of f if and only if fog is homotopic to the constant map sP—a.
(b) Suppose in addition that nk is a linear k-plane bundle over A,

b:\)k——mk is a linear bundle map covering f, v the normal bundle of

(M,BM)C(Dm+k,Sm+k_l), k>>m. Then b extends to b:w—n covering F, where
w is the normal bundle of W¢CDm+kXI, if and only if b](v|¢(Sp)) extends
to wle+lX0, covering FIDp+lX0.

—Dp+l is a deformation retract of W,, it follows that f

¢
But the latter is

Proof: Since Mu

p+l
=D .
¢

true if and only if fo¢ is null-homotopic, which proves (a).-

extends to W¢ if and only if f extends to Mu

For (b), it follows from the bundle covering homotopy property,

_Dp+l

and the fact that MU¢ is a deformation retract of W that b extends

¢’
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to w if and only if b extends to wIDp+lx0. QED

If (£,b) is a normal map, ¢:prDq+L—+int Mm, p+g+l=m,
f:(M,oM)—>(A,B), and if the trace of ¢ can be made a normal cobordism
by extending f and b over W¢, we will say that the surgery based on ¢
is ‘a normal surgery on: (f,b).

From Theorem 6.1, it follows easily that any normal cobordism rel B
is the composite of normal surgeries.

Let ¢:prDq+l—+int M be an embedding, with p+q+l=m. W¢ is the
trace, and M' the result of the corresponding surgery. We will
investigate the effect of surgery on the homotopy of M; in particular,

we will examine the relation between the homotopy groups of M and M',

below the 'middle dimension'.

m-1

2
= Y P
TTp(M )_'"p (M)/{‘i)#'”p(s )} s

6.5 Theorem: If p< then‘ni(M')Eﬂi(My for i<p, and

where {G} denotes the Z[m1(M)] submodule of ﬂp(M) generated by G.

p+l
~D .
)

= = Y p
ni(w¢) ﬂi(M) for i<p, and ﬂp(W¢) WP(M)/{¢#WP(S Y}. By 6.2 and 6.3,

Proof: By 6.3, W¢ is of the same homotopy type as Mu Hence

we have also that W¢Ewsz'UaDq+l, where w{SqXDPji—+M‘ gives the surgery

which reverses the effect of surgery base on ¢. Hence ﬂi(w¢)5ﬂi(M')

for i<q, ﬂq(W¢)5ﬂq(M')/{$#ﬂq(Sq)}. Since p<E§ly q¥p, SO ﬂi(M')Eﬂi(W¢)

for i<p and the result follows. QED

Let (f,b) be such that f:(M,3M)—(A,B), b:vk=+nk, k>>m, n a linear

mtk Sm+k--l

-bundle over A, v the normal bundle of (M,3M)c(D ), and let

$:SP—+intAM be a smooth embedding. Suppose that f extends to F:ﬁ—+A,

- + -
where M?MuaDP 1. We consider the problem of 'thickening M to a normal

- +
cobordism', i.e. of extending ¢ to a smooth embedding ¢>:Sp><Dq 1--—>int Mm,

p+q+l=m such that $=¢|SPx0, and so that F: (W, ,OM<T)—>(AxT,BxT) can be



covered by a bundle map b rw—n extending b, where w is the normal

+ -
bundle of w¢ in D" kXI, and F is the extension of F, unique up to

homotopy. (When this is possible, normal surgery based oni¢ will

kill the class of 5 in ﬂP(M).) Let V be the space of ortho-

k+q+1

k,q+l

normal k-frames in R

6.6 Theorem: There is an obstruction OSWP(V ) such that 0=0

k,qt+l
if and only if b extends to ¢ such that F:W—>A can be covered by

¢
brw—n extending b as above.
. . . mt+k
Proof: Since k is very large, we may extend the embedding McD
to MUgDp+lCDm+kXI, with Dp+l smoothly embedded and mgéting Dm+kX0

Dp+chm+k

perpendicularly. The normal bundle y of xI is trivial.

F defines a homotopy of f°$ to a point, which is covered by a
bundle homotopy b on vlg(Sp), ending with a map of v|$(Sp) into
‘a single--fibre of n, i.e. a trivialisation of vla(Sp), which is
well-defined up to homotopy. This trivialisation of vl&(sp),
which is a subbundle of yl@(Sp); which is also trivial, therefore

defines a map o of sP into the k-frames of Rq+k+l, oc:Sp—->Vk q+1°
b

which gives an element aeﬂp(V ). DNow if 5 extends to ¢ and b

k,q+1
extends to b as above, then the normal bundle w of W, restricted

p+1

¢

to Dp+l is a subbundle of Yy extending vla(sp), and b

s wID

:Dp+l—+v Hence 0=0 in

defines an extension of o to a' .
‘ k,q+l

( ).

1Tp Vk,q+1

+
Conversely, if 0=0, then o extends to a':DP 1—+V

K,q+1’ and

a' defines a trivial subbundle w' of dimension k in y, extending
v|$(Sp). The subbundle w" orthogonal to w' in y is trivial (being

a bundle over Dp+l) and the total space of w"

the total space of vy (all up to homeomorphism). Since w"|$(sp)

is Dp+1qu+chp+lqu+k+l,

36
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equals the normal bundle of $(Sp) in M, this embedding defines

¢:SPX q+l—+ , and o' defines the extension of b to b:w—n, where

DP+1=m' by construction. QED

N

]

We shall now study V in order to analyse the obstruction O.

k,qt+l
(0 will often be referred to as 'the obstruction to thickening (ﬁ,?)
to a normal cobordism'.)

Recall that the group SO(k+q+l) acts transitively on the set of

Rk+q+l

orthonormal k-frames in and S0(q+l) is the subgroup leaving a

given frame fixed. Hence V =30 (k+q+1)/S0(q+1), and V

k,q+l k,q+l 5

topologised to make this a homeomorphism. Further, we recall that
i P.oD . . .
S0(n)—S0(n+1) S is a fibre bundle map, where p is the map which
evaluates an orthogonal transformation on the unit vector
n__n+l . .
vog=(1,0,...,0)eS <R , 1.e. p(T)=T(vg). (For this material, reference
may be made to [Husemoller 1966].)
6.7 Lemma: i*:ﬂi(SO(n))—+ni(SO(n+l)) is an isomorphism for i<n-1,
and a surjection for isn-1.
Proof: ﬂi(Sn)=0 for i<n, so the result follows from the exact homotopy
sequence of the fibration SO(n+l)—R+Sn:
n, 9 i p n
o=, (8w, (SO(n) )—>1, (SO (n+l))—H>7, (S )—... QED
i+l i i i
6.8 Lemma: The map p:SO(n+1)—~>Sn is the projection of the principal
SO(n) bundle associated with the oriented tangent bundle of Sn.
Proof: Let f=(f1,...,fn) be a tangent frame to s™ at vp=(1,0,...,0).
Define a map e:S0(n+1)—F, the bundle of frames. of Sn, by e(T) is the
frame (T(fl),...,T(fn)) at T(vo)esn.< Then e is surjective, and injective.

Hence e is a homeomorphism, and. the lemma follows.

(Sn—l) is the

. . n, o p
» 6j9”uLemma, The composite ﬂn(S )——+ﬂn_l(SO(n))——#+ﬂn_l

boundary in the exact sequence of the tangent Sn—l bundle to Sn, and
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is 0 if n is odd, and multiplication by 2 if n is even.

~Proof.:: The tangent Sn_l bundle.is obtained from the bundle of frames

/
by taking the quotient by SO(n-1) SO(n), the structure group of the

bundle. Hénce we have the commutative diagram:

50 (n)—L—>50 (n) /S0 (n=1) =s""1
i‘,

SO (n+1)—=>50 (n+1) /S0 (n-1)

p

Sn l Sn - L U

It follows that in the exact sequence for the right hand bundle,

n-1

5=p#8:ﬁi(8n)—+ﬂ (s ). Now by the Euler-Poincaré Theorem the

i-1
tangent sphere bundle has a cross-section (there is a nonsingular
tangent vector field) if and only if the Euler characteristic x (M)
is zero, More precisely, the only obstruction to a cross—-section

to the tangent sphere bundle of a manifold M is x M)g, where
geHm(M;Z) is the class dual to the orientation class of M. Now if
M=Sn, the obstruction to a cross—-section can also be identified with

n-1

(s" 7).

the characteristic map (see [Steenrod 1951, 23.4]) gtﬂn(sn)+ﬂn_l
Hence 3=0 if n is odd, multiplication by 2 if n is even.

" 6.10 Theorem: p#:ﬂn(SO(n+l))f+ﬂn(Sn) is surjective if and only if
n=1,3, or 7.

Proof: If Py is surjective, then there is a map a:S"™—80(n+1l) such
that peax=l, and hence the principal bundle of Tgn has a sectibn and is .-
therefore trivial, i.e. s" is parallelisable. But it is known that
s" is parallelisable if and only if n=1,3 or 7.

6.11 Corollary: ker i#:ﬂn_l(SO(n))‘*ﬂn_l(SO(n+l)) is Z if n is even,

Zo if n is odd and n¥#1,3,7, and 0 if n=1,3,7.
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. n, . n

Proof: ker 1#—8ﬂn(S ) ﬁn(S )/p#ﬂn(SO(n+l)). If n is odd, by 6.9
p#ﬂn(SO(n+l))22nn(Sn),Aand by 6.10 the inclusion is strict, if n#1,3,7,
hence ﬁn(Sn)/p#ﬂn(SO(n+l))5Z2 if n is odd, n#1,3,7. If n=1,3, or 7,
Py is surjective, so ker i#=0.

If n is even, by 6.9 p#oa is a monomorphism, so aznn(Sn)—+ﬂn_l(SO(n))
is a monomorphism, so ker i#EZ. : QED
6.12 Theorem: ﬂi(Vk’m)=O for i<m, ﬂm(Vk,m)=Zz if m is odd, Z if m is even,

k>2. Further j#:ﬂi(-Vk m)—+ﬂi(V ) is an isomorphism for i<m, k22,
E]

k+1,m
and j#:ﬁm(Vl’m)=ﬂm(Sm)—+nm(Vk’m) is surjective, and an isomorphism if

m is even, where j is inclusion.

2’m=SO(m+2)/SO(m) and we have a natural
fibration over Sm+1=SO(m+2)/SO(m+l) with fibre Sm=SO(m+l)/SO(m). Also

_Proof: First,‘féke k=2, so that V

we have a commutative diagram of fibre bundles:

SO (m+1)—E—ss™

C

SO (m+2)—V

7 |

gntl 1 ol

© "By’“the naturality of the homotopy exact sequences we have:

m+1 1 m+-1
'”m-i’l(S )= m+l.(S )
| b

P
1 (SO (m+1))—Efsm (s™)
m m

By 6.9 p#°3=0 if m is even, p#oa is multiplication by 2 if m is odd.

‘Hence 8'=p#°3, and from the exact homotopy sequence of the fibre bundle,

(™20 (ML v, i

) )=0 for i<m,

Ti+1

we deduce that j# is surjective for i<m, and ﬂi(V m)=O for i<m,

2,

ﬂm(V Y=2 4if m is even, ﬂm(Vz’m)=Z2 if m is odd.

2,m

Consider next the natural inclusion Vk’ﬁ—¥Vk+l’mg1ven by



including SO(m+k)—SO(mt+k+1l) in such a way that the subgroup SO(m) is
preserved. We have the commutative diagram:

S0 (m)——L——*SO (m)

SO (mrHk )—>S0 (mrtk+1)

Ve, m Vierlm

!

and a corresponding diagram incorporating the exact sequences,

;;:—Tﬁi(SO(m%)ré~+ﬂ{(SO(m+k§0*4—f+n{GVE;m)—f—+ﬂi_l(SO(m))—+...

1 1] 1

y Iy

..;—+ﬂi(S (m))——+ﬂi(50 m+k+l)9——+ﬂi(Vk+ ")——+ﬂ1_1(5 (m))—...

1,m
- By-Lemma 6.7, i# is an isomorphism for i<m+k-1, and, since k=2,

it follows that j# is an isomorphism for i<m. QED
The following theorem describes what can be accomplished toward

solution of the surgery problem, by the use of surgery below the

middle dimension.

6.13 Theorem: Let (M,0M) be a smooth compact m-manifold with boundary,

m24, vk the normal bundle for (M,BM)C(Dm*k,Sm+k_l), k>>m. Let A be a

finite complex, BcA, nk a k-plane bundle over A, let f:(M,3M)—(A,B),
and let b:v—n be a line;r bundle map covering f.

Then there.is a cobordism W of M, with 3W=Mu(3MxI)uM', 3M'=3Mx1,
an extension F of f, F:(W,3MxI)—(A,B) with FIBMxt=f|aM fér each tel,
and an extension b of b, b:w—n, where w is the normal bundle of W in
Dm+kXI, such that f'=F|M':M'—+A is [%]—connected ([a] is the greatest
integer not larger than a).

Proof: The proof is by induction: we shall assume that f:M—A is

m
n-connected, n+l£[§], and show how to construct W,F, etc. as above,

with f':M'—A (nt+l)-connected (n+l is any nonnegative integer).

40
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If n+1=0, we need only show how to make the map induced on 7y
surjective. Since A is a finite complex, A has only a finite number

of components, A=A1uA2u...uAr. Let aieAi, and take M'=MuS?u...uS?,

where S?”is the m-sphere. Let W=MXIuDT+lu...uD:+l and let F:W—A

be defined by F[MXt=f for each tel, F(D?+l)=ai. Since the normal

bundle of'D?+l is trivial, and the extension condition on the bundle
1

map is easy to fulfill on the D?+ , 1t follows directly that b extends
to b over W. Clearly the map induced by f'=F|M' is onto mg(A), which
proves the initial step of our induction.

Now assume n+l=1, f:M—A is O-connected. Let M; and M, be two
components of M such that £(M;) and f(M,) are in the same component
of A. Take two points Xieint Mi’ i=1,2, and define $:Sb—+M by
$(1)=X1, 5(—l)=x2. Since f($(SO)) lies in a single component of A,
it follows that f:M—A extends to E:MU$D1—+A. Then, since m24, it
follows from Theorems 6.6 and 6.12 that ¢ extends to ¢:S°XDm;+M
defining a normal cobordism of f to f' and reducing the number of
components of M. Using this argument repeatedly, we arrive at a
1-to-1 correspondence of components.

Now we consider the fundamental groups. Let‘{al,...,as;rl,...,rt}
and {xl,...,xk;yl,...,yl} be presentations of mj (A) and m; (M), resp.
Let s copies of SO be embedded disjointly in an m-cell D" int M,
¢':SSQ—+M, and assume the base point of M.is in D" and f(Dm)=*, the -
base point of A. Let ﬂ=MU¢,(gD1). Then Wl(ﬁ)EWI(M)*F, where F is a
free group on-s generators gl,...,gs, where each gi is the homotopy
class of a loop in Dmu(ng) consisting of a path in Dm, one of the
Dl's, and another path in D". Hence ﬂl(ﬁ)={x1,...,xk,gl,...,gS;yl,...,yg}.

Define f:M—A extending f by letting the image of the ith p?
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traverse a loop representing the generator a;. Then f#:wi(ﬁ)—+n1(A)
is surjective, and furthermore we may represent f#'on the free groups
{XI,...,xk,gl,...,gS} and'{al,...,as} by a function a, with a(xi)=xi,
xi a word in the aj, and a(gi)=ai. Then as above, we may extend ¢'
=,

to ¢:(gS°)xDm—+M”to define a normal cobordism of f, and with W

¢

¢—+A.homotopic to f:M—A. .(Here W¢ is the trace of the simul-

taneous surgeries.) By Proposition 6.2, ﬂl(M')Eﬂl(W¢), where M' is

and F:W

defined by 3W¢=MU(8MXI)UM', and hence f#:ﬂl(M')—+ﬂ1(A) is surjective,
m1 (M') has the same presentation as ﬂl(ﬁ), and f# is also represented
by o on the free groups. In particular, f' is l-connected.
Let us consider the exact sequence of the map f:M—A in homotopy,
..—»ﬂh+i(f)——+ﬂﬁ(M)——+wn(A)——+nn(f)—+...

Recall that the elements of the groups ﬂn+l(f) are defined by commutative
n a
—

S M
nE
n+l B

D T——A

diagrams: where k is the inclusion of the boundary,

and all maps and homotopies preserve base points. Thus B defines a map
fiMUan+l—+A extending f.

6.14 Lemma: Let f:M—A be n-connected, n>0, and let‘(&,@)enn+l(f) be
the element represented by the above diagram (*). If f:MUaDn+l—+A4is
defined by B as above, then ﬂi(f)=ni(f)=0 for i<n, and wn+l(f)5nn+l(f)/K,
where K is .a normal subgroup containing the 7] (M) module generated by

(£).

the element (5,@) inm o

Proof  of Lemma 6.14: Consider the commutative diagram:

(B () (M)

bl b

(By—, (MuaDn“)—F—#—m RIS

~

A —*1\'2 +l

o4



Here i:M—+MUan+1

diagram (*) . (i.e. j,[8';a']=[8",ica’]).
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is inclusion, and j# is induced by (1,i) on the

Clearly, i# is an isomorphism

for 2<n, and surjective for %=n, so it follows easily that ﬂl(f)=ﬂ2(f)=0

for £ n (by the Five Lemma).

Clearly any map of Sn

so that any pair (B',a

the form (B",ica"):

n CX"

into MU_ p™tl

")

S ————+MU D
kl l
1
Dn+l B A

i n+1
M——Mu D

|

. "
Dn+l B

Hence j#:ﬂn+

l(f)—ﬁﬂn+l

I

1

A———A

(f) is surjective.

is homotopic to a map into M,

is homotopic to a pair of

Clearly (B,a) is in the kernel of j# and hence everything obtained

from (8,a) by the action of w1 (M) is also in ker j#, which proves the

lemma.

QED

We have already shown that we may assume, without loss of generality,

that f:M—A is léconnected, and that the fundamental groups have

presentations m] (M)={x7,...

X]_,...,Xk

only, ﬂl(A)ﬁ{al,...

,Xk’gl:-'-ag

,as;rl,...,rt}, with f

s;Y1""’y2}’ Yy words in

#:ﬂl(M)—+w1(A)

presented by the function (on the free groups) a(xj)=x3(a1,...,as)

a word in aj,...
6.15 Lemma: ker £

words x

Proof of Lemma 6.15: Adding the relations x

’as’ j=1,

#
(X (gl,...,g )), j=l,...,

into a set of generators.

with o defining the isomorphism.

k and r,(gl,..

The map a annihilates x

...k, and a(gi)=ai, i=1,

is the smallest normal subgroup containing the

.,g.), i=1l,...,t

(X (g)) makes gla--‘sgs

Adding the r (g) makes the group into my (A),

(X (8))
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and ri(é), so that these elements generate ker f# as a normal subgroup.

For each element xgl(xﬁ(é)) and ri(é) choose an element Ej,fieﬂz(f)
such that §j=x51(x3(§)), ;i=ri(§), and chooge embeddings S!—M to
represent the §j and(fi (also denoted by §j and fi) such that their
images .are all disjoint, which is possible by general position, since
m.4.‘ Let ﬁ=MU(k$tD%),with the 2-discs attached by these embeddings.
It follows from Lemma 6.14 that f#:ﬂl(ﬁ)—+ﬂ1(A) is an isomorphism.
Using again Theorems 6.6 and 6.12, it follows that there is a normal
cobordism W, and a map F:W—A such that McW is a deformation retract
and F|ﬁ=f, so that F#:ﬂl(w)—+ﬂ1(A) is an isomorphism. By Propositions
6.2 and 6.3, it follows that if M' is the result of surgery, then
f#:ﬂl(Mf)—#ﬂl(A) is an isomorphism, and hence m, (A)—m, (f) is surjective,
and thus 7, (f) is abelian.

We now proceed to the induction step. Suppose f:M—A is n-connected,
n>0, and if n=1 suppose m; (M)—wy (A) is an isomorphism, so that m, (f)
is abelian.
6.16 Lemma: nn+l(f) is a finitely generated module over m; (M).

This lemma is proved using universal covering spaces [Browder 1972].

Now we may represent each of this finite number of generators

n

in 7w (f) by a diagram: S ———NM If n+ls[mﬂ, then n<= and it follows
n+l oy 2 2
Dn+L———hk .
Bi

from Whitney's embedding theorem ('general position') that we may choose

n+1
i

),

(Bi,ai) so that the oy have disjoint images. Setting ﬁ=MU(gD
Dz+l attached by as f:M—A defined by the Bi, we may. apply Theorems
6.6 and 6.12 to thicken M to a normal cobordism W of M, and using 6.14,

wz(f)=0 for 2<n+l. If M' is the result of 'the surgeries.
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(i.e. 3W=Mu(oMxI)uM'), from Propositions 6.2 and 6.3 it follows that
ﬂi(f‘)ﬁﬂi(f)=0 for i<n+l. This completes the proof of Theorem 6.13. QED
Note that we have always used the low dimensionality of the groups
involved to ensure that O was zero (by Theorem 6.12) and to find
representatives of elements of nn+l(f) which were embeddings. To
derive results in higher dimensions, we shall have to find other

means of dealing with these obstacles.

§7. Initial Results in the Middle Dimension.

Let (A,B) be an oriented Poincaré pair of dimension m, let M be
an oriented smooth compact m-manifold with boundary oM, and let
f:(M,3M)—(A,B) be a map of degree 1. Let nk be a linear k-plane
bundle over A, k>>m, and let vk be the normal bundlé of (M,3M) in
(Dm+k;sm+k—l). Suppose b:v—n is a linear bundle map covering f.
Then (f,b) is what‘we have called a normal map. (Recall that we
defined a normal cobordism of (£,b) rel B to be an (m+l)-manifold
W with 9W=Mu(dMxI)uM', together with an extension of f,
F:(W,3MxI)—(A,B) for which F]BMXt=f|8M for each tel, and an extension
b of b to the normal bundle w of W in Dm+kXI.)

Suppose further that A is a simply-connected CW complex, m>5,
and that (flaM)*:H*(aM)—+H*(B) is an isomorphism.

7.1 Theorem: There is a normal cobordism rel B of (f,b) to (£',b")
such that £':M'—A is [%J+l—connected if and only if o(f,b)=0.

In particular, this is true if m is odd.

The proof of this theorem will occupy the balance of the present

chapter. First note the ultimate corollary.
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7.2 Corollary: (Fundamental Theorem of Surgery) The map f' above
is a homotopy equivalence. Hence, (f,b) is normally cobordant rel B
to a homotopy equivalence if and only if o(f,b)=0. In particular,
there is such a normal cobordism if m is odd.

_Proof of Corollary 7.2: By the naturality of the exact homology

sequence of pairs, we have

L e N T 4 L : t TN . LA L
..;—+Hi(8M )—f—+Hi(M )—frﬁHi(M , oM )?—f+Hi_1(aM )—~—+Hi_1(M y—...
(£']aM"), £l £! t(f']aM')* lf;
> B (A sl - . e e (B ..
ceo By (B H () ———H, (A, B)———Hy 4 (B)———H, _, ().

Since (f|8M)*:H*(8MD—+H*(B) is an isomorphism, and 3M'=3M,
f'IBM'=f|8M,.we see that (f'IBM')* is an isomorphism in.each dimension.
By 7.1, £':M'—A is [%ﬂ+l—connected, so that f;:Hi(M')—+Hi(A).is an
isomorphism for is%. Thus by the Five Lemma, f;:Hi(M',BM’)—+Hi(A,B)
is an isomorphism for iﬁg.- Since f' is a map of degree 1, it follows
from Poincaré duality that f'*:Hj(A)~+Hj(M') is an isomorphism for
jZm—%=%“u' Now f’*j:Hj(A)—éﬂj(M') is given by

f'*j=Hom(f;j,Z)+Ext(f;j_l,Z), according to the Universal
Coéfficient Theorem, where f;j:Hj(M')—%Hj(A), etc.

Since f;i is an isomorphism for i<Z it follows that f'*j is an
isomorphism for js%; and hence f'*:Hj(A)—+Hj(M") is an isomorphism
for all j. Thus, H*(f')=0, and the Universal Co&fficient Theorem‘
implies that H_(f£')=0. But M' and A are simply-connected, so that
by the Relative Hurewicz Theorem and the .Theorem of Whitehead we
have the result: f':M'—A is a homotopy equivalence. This establishes
the corollary.

We shall develop certain preliminary results before proceeding

with the proof of Theorem 7.1.
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By Theorem 6.13, we may assume that f:M—A is [%J—connected,
i.e. ﬂi(f)=0 for iS[%]- Set 2=[%]. Since A and M are simply-connected,

it follows from the Relative Hurewicz Theorem that T (£)=H

2+1 ).

2+1

This gives a commutative diagram:

f#
. ._+1T,Q,+l(f) “Q, (M) F qu (A)"‘*O

hy= h h

f, : 3
..s—+H2+l(f) HQ(M) HQ(A)—+O

where h is the Hurewicz homomorphism, and f# is the map induced by £
in homotopy. Recall that f*‘iswau:jective, and splits by Theorem 5.12.

e

. . n ,
Whitney's embedding theorem states: 'Let c:V —M" be a continuous

It follows that (ker f*)2=h(ker f

map of smooth manifolds, m>2n, m-n>2, M simply-connected, V connected.
Then c is homotopic to a smooth embedding.' (A proof can be found in
[Milnor 1965].)

| Since 25%3 it follows from Whitney's embedding theorem that any
elemént XET (f) may be represented by (B,4), where $:Sz—+int M is

2+1
a smooth embedding, and B:D2+1—+A, B°i=f°$. Set ﬁ%MU—Dz+l

3 s fiM—a

the extension of f defined using B.
We should like to thicken (ﬁ,f) to a normal cobordism; i.e. to
perform normal surgery usiﬁg ¢, and to examine ﬂ2+l(f')’ where f' is
the map on the result of the surgery, with the hope of having killed
the homotopy class of 5. However, there are two difficulties we must
face: First, if m=2%, then according to Theorems 6.6 and 6.12,
there is an obstruction O to thickening (M,f) to a normal cobordism,

).

which lies in a nontrivial group ﬂl(Vk .
b

Second, although we may compute T (£) using Lemma 6.14,

2+1
it is no longer clear how this group is related to ﬂ2+1(f'), if 2=[%].
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We shall first direct our attention toward the second difficulty.

Unless stated otherwise, we shall assume henceforth that (f,b) is
a normal map stisfying the hypotheses of Theorem 7.1, and f:M—A is
q-connected, where q=[%], i.e. m=2q or 2q+l.

7.3 _nggg: f is (gq+l)-connected if and only if f*:Hq(M)—+Hq(A) is
an isomdrphism, i.e. if and only if Kq(M)=0.

Proof: By the Relative Hurewicz Theorem, wq+1(f)EHq+1(f), and by
Theorem 5.12, f*:Hq+l(M)—+Hq+l(A) is suarjective, so that

Hq+l(f)£(ker f*)qEKd(M)} o QED

Thus we need not examine homotopy, but will study the effect
of surgery on homology. The following lemma will allow us to simplify
our arguments by considering only the case of closed manifolds.

Let (fi,bi), i=1,2, be two disjoint copies of the normal map
(f,b), so that fiiMi,aMi)—+(Ai,Bi), i=1,2, is just f renamed. Then
by the Sum:Theorem for Poincare pairs [Browder 1972, I.3.2],

A3=AqUA; with By identified to B, is a Poincaré complex (called the
double of A)., M3=M;uM,, united along 3M;=0M,, is a smooth closed
oriented manifold, and fg=f,uf,, by=bjub, define a normal map
(f3,b3) :M3—>A3. Since (leM)* is an isomorphism, the Mayer-Vietoris
sequences imply . that Hi(f3)=0 for i<g+l, and

Hq+1(f3)%Kq(M3)EKd(M¢)@Kq(MQ);

179 int M; is a smooth embedding such that

Now suppose ¢:quD
fqo¢=¢e, (the constant map), and such that ¢ defines a normal surgery
on M; and, by inclusion, on M3y (with respect to (f1,b;) and (f3,b3)).
If a prime denotes the result of surgery, we have Mi=MjuM, and

Kq(Mé)EKq(M{)@Kq(MZ). This follows from the fact that the surgery

has not affected the factor M, in the decomposition of Mg3.
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Thus we have:
7.4 Proposition: The effect of normal surgery on Kd(M) is the same
as the effect of the induced surgery on Kq(M3), and hence to compute
its effect, we may assume 9M=B=¢.
This construction will simplify the algebra in our discussion.
Let ¢:SqXDm_Q4+int M be a smooth embedding which defines a normal

surgery on M (with respect to (f,b)). Set My=M\int im ¢, and let-

m—-q=1: m-g-1 m-q-1_

= upd s , so that ¢(S%xs ) is identified with $Ixs

Dq+l

xg®aTLy

3( Then M' is the result of the surgery on M. Since ¢
defines a normal surgery, Hq(M')EHq(A)@Kq(M'), and we wish to determine
how Kq(M) changes to Kq(M') (which is the same as the change of Hq(M)
to Hq(MY)).
We formulate some useful results concerning the relation between
Poincare duality in manifolds and submanifolds.
7.5 Proposition: Let U and W be compact m-manifolds with boundary,
f:U—int W, g:(W,3W)— (W,W\int U) embeddings, with orientations compatible.
Then the following diagram commutes:
*

nd W, a_w)ﬁgi—f—:f:ﬁq-(w Avint U)——HL(U,30)

[W]lne (g [WhHne | [U]n-

H o (Wﬁfﬁr——l;*—+Hﬁ_qGW)*——E*—4—Hﬁ;q(U)'
so that for erq(U/Bﬁ), f;([U]nx)=[W]n§*(x), where g:W/3w—U/5U.
Proof: If f:(U,3U0)—(W,W\int U), then f*[U]=g*[W], since we have
oriented U and W compatibly. Then the commutativity follows from
the naturality of the cap product. QED
7.6 Corollary: Set E equal to the normal tube of f:Nn—+Wm, N closed
and oriented, and let é:W/ﬁW—+E/8E=T(w), where v is the normal bundle

- —%
of N'cW". Let UeH" n(T(\))) be the Thom class: Then [W]ng U=f*[N].
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Proof: Since [ElnU=[N] by 7.5, £, ([Eln0)=F,[N]=[W]n(z U).  QED

The intersection pairing in homology, -:Hq(M)@Hm_q(M,aM)—+Z
is defined by x-y=(x',y")=(x"uy') [M], where x'eHm—q(M,aM), y'qu(M)
are dual to x,y, i.e. [Mlnx'=x, [M]ny'=y. This induces an intersection
product -:Hq(M)®Hm_q(M)—4Z by xey=x-j,(y), where j:M—(M,3M) is inclusion.

The properties of the bilinear form (+,*) on cohomology induce
analogous properties for the intersection pairing, such as

(a) With cosfficients in a field F, Hq(M;F)@Hm_q(M,BM;F)—+F is

a nonsingular pairing. (Ttiis also holds over Z, modulo torsion.)

(b) If erq(M), yeHm_q(M), x-y=(—l)q(m"q)y'x.

7.7 Proposition: Let erq(M), yeHm_q(M,aM), X'eHm—q(M,aM), y'qu(M)
be such that [Mlnx'=x; [Mlny'=y. Then x+y=x'(y).

Proof: x-y=(x'uy"') [M]=x'([MIny')=x'(y), using elementary properties
of the cup and cap products.

“Now let ¢:SqXDm_q—+int M be a smooth embedding. Set E=SqXDm_q,
m—-g-1

My=M\¢ (int E), M1=MOU(Dq+lXS )}, the result of surgery based on ¢.

Following [Kervaire, Milnor 1963] we will consider the exact
sequences of the péirs M,Mg) and (M',Mg).

As usual, we have the excision ¢: (E,3E)—(M,Mp) which induces
isomorphisms on the relative homology and cohomology groups. Thinking
of E as the normal tube of SqCM, let UeHm_q(E,BE)=Z Be the Thom class,
a generator (cf. 7.6). If u=[E]lnU, then u=i*[Sq], i:Sq—+E, and
nex=U(x) for any XeHm_q(E,aE) by 7.7. This induces an isomorphism
Hm_q(E,BE)—»Z by property (a) above. Let j:M—(M,My) be the inclusion.

7.8 Proposition: u-(j*(y))=(¢*(u))°y-

_ Proof: u-(j*(y))=U(j*(y))=(j*U)(y)=(¢*(u))-y, using 7.7 and 7.6, and

identifying j :H, M)—H, (M,My) with the collapsing map
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J,tH, GD—H, (M/My)=H, (E/3E).

7.9 Corollary: The following sequence is exact:
X d
CO—H - (Mg)—H  (MD)———Z——H My )—H M)—0,
R o1 (03 OO
where x=¢*(u), uéHq(quDm—q) is the image of [Sq], the orientation

class of Sq.
Proof: The sequence is that of (M,My), replacing Hm_q(M,MO) by
Hm_q (E, aE.)T—,'Z—;—»HIﬁ_q M,Mp)
using the diagram e and using 7.8 to identify x-.
7

Thus there is an exact sequence

- 0—H o+ (MO)—>H (M )—-—+Z—é——+H (MO)———-*—>H M')—0

+l m—q-1
4tieg q- ),

—1_+Dq+lxsm-q—l

_ ' R m-q-
where y—w*(u ), u'—k*[S ] generates Hm— _1(D
lp:DqH'XSm 4= l—+M' is the natural embedding, and k':st e
is inclusion.

r+l,quSr)=Z be the generator such that U(}A)=1,

q
Let XEHr+l(S xD
and similarly for A'. (We shall allow X and peA, X' and u'+1' to be
confused.)

7.10 Lemma: i*d'(x')=¢*(u)=x and i;d(x)=¢*(u')=y.

Proof: Let m=q+r+l. We have a commutative diagram:

. .—H (quDr +1 ,S xS )— 1—+H (qus y—= il*—+H (quDr+1)_+...
r+1 T
Dyl b0y ¢*l
’ ) i
;uw——————+Hr+I(M;MU) Hr(Mg) % Hr(M)

,[,‘,)
Clearly, if® AeH (quDr+l,quSr) such that U(A)=1, then

81k=1®[S ]eH (sIxs” ). We also have the commutative diagram

H, (s%xs* )—-——2*—->H T

¢0*l . lw* and 12*(l®[sr])=“'
H, (M) —k H, (M")
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Hence i;d(k)=i;8¢*(k)=i;¢o*31(K)=¢*iz*(l®[5r])=w*(u')=Y-

A similar argument proves the other assertion. QED
7.11 Theorem: Let ¢:SqXDr+l—+M be an embedding, M a closed m-manifold,
m=q+r+l, gq<r+l. Suppose 5*[Sq]=¢(u)=k generates an infinite cyclic
direct summand of Hq(M), Then rank Hq(Mf)<rank Hq(M), and torsion Hq(M')E
torsion Hq(M), i.e. the free part of Hq(M) is reduced and the torsion
part is not increased. Further Hi(M')ﬁHi(M) for i<q.
7.12 Corollarz; Let (f,b) be a normal map, f£:(M,3M)—(A,B), (flaM)*
an isomorphism, and let ¢:SqXDr+l—+int M be an embedding which defines
a normal cobordism of (f,b), g<r+l. Suppose ¢,(n)=x generates an infinite
cyclic direct summand of Kq(M). Then rank Kq(M')<rank Kq(M), and
torsion Kq(M')ﬁtorsion Kq(M), while Ki(M;)EKi(M) for i<q.

The corollary follows directly from.7.11 and Proposition 7.4.

With a field of coefficients we have analogous results:
7.13 Theorem: Let ¢,M be as in 7.11,.and suppose ¢, (u)=x#0 in Hq(M;F).
Then.rankFHq(M';F)<rankFHq(M;F), and Hi(M'%F)iHi(M;F) for i«q.
7.14 Corollary: With the hypotheses of 7.12, suppose.only that
¢*(u)=x¢0 in Kq(M;F). Then rankFKq(M';F)<rankFKq(M;F) and
Ki(M';F)EKi(M;F) for i<q.

The proof of 7.14 is similar to that of 7.12.

Proof of. Theorem 7.11l: Consider the exact sequence of Corollary 7.9:

i X d
0—-—>Hr +1 (Mp)—*—H 7 Hr My )———>Hr (M)——0.

r+l(M)
Since x generates an infinite cyclic direct summand, it follows from
property (a) of the intersection pairing that there 1s an element
yeHr+1(M) such that xey=1 (since oM=¢).

Hence x* is surjective and we get

~ i
i*-Hr(MO)“Hr(M) O——+Hr+1(M0)———*—+Hr+l(M)~—+Z——+O &H)



Consider the exact sequence of Corollary 7.9 for (M',MO) and the

diagram from Lemma 7.10:

: N Mty I d' ) i.:.
0—H_ g Glo)—H_; 00—z ()

Hq(M ) 0 (2)

1y

Pfq‘”(M)

where 1,d'"(A")=x. Since .x generates an infinite cyclic direct summand,
it follows that_i*d' splits, so that d' splits, and

H, (o) 20K, Gr')  deH L Of)=H ) () 3)

From (3) it follows that rank'Hq(M')=rank Hq(MO)—l, and since
g=r or r+l, from (1) it follows that rank Hq(M)Zrank Hq(Mo), so that
rank Hq(M')<rank Hq(M) (the difference being 1 if q=r, 2 if gq=r+l).
From (1) it follows that torsion,Hq(Mo) is isomorphic to torsion Hq(M),
and from (3) it follows that torsion Hq(MO)Etorsion Hq(M'). Hence
torsion’Hq(M')itorsion Hq(M). QED

The proof of 7.13 is almost identical, using (1), (2), and (3)
with coéfficients in. F, and using property (a) of intersection with
coéfficients in F. The details are omitted.

To proceed further.in the proof of the Fundamental Theorem, we
must consider different dimensions separately; in particular, we must

distinguish 3 cases: m odd, méO (mod 4), and m=2 (mod 4).

§8. The Proof of the Fundamental Theorem for m odd.

From quollarY'7.12 we may deduce the following theorem.

8.1 Theorem: Let (f,b) be a normal map, f:(M,9M)—(A,B), A simply-

coﬁhected, (f BM)* an isomorphism, m=2q+125.- There is a normal

cobordism rel B of (f,b) to (f',b'), such that £':M'—A is g-connected,
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and Kq(M')Etorsion Kq(M).
Proof: By Theorem 7.11, we may first find a normal cobordism rel B to
(£1,b71), sucﬁ that f;:Mj—A is q-connected. We note that the surgeries
used in 7.11 are on embedded spheres of dimension less than q, so that
it follows from Propositions 6.2 and 6.3 that Kq(Ml)EKq(M)QF, where F
is the free abelian group produced by killing torsion classes in Kq—l(M)'
Thus we may assume without lo;s of generality that f is q-connected.

Let xeKq(M) be a generator of an infinite cyclic direct summand.
Since f is q-connected, it follows from the Relative HureWicz Theorem
that ﬂq+l(f)5Hq+l(f), andAHq¥1(f)5Kq(M) By Theorem 5.12. Since q<93

it follows from the Whitney Embedding Theorem that we may represent

x'enq+l(f) by (B,a), m%qfl f|7 such that a is a smooth embedding.

B
Then B defines a map f:M—>A where ﬁ=MUaDq+l, and by Theorem 6.12,

since q<m-q, the .obstruction to thickening M to a normal cobordism
is zero.  If x'eﬂq+l(f) is such that o represents xeKq(M), then by
Corollary 7.11, Kq(M') has rank one less than Kq(M), and the same . "%
torsion subgroup. Iterating this procedure until the rank is zero:
proves the theorem. QED

We derive an important diagram by uniting the two exact sequences
of Corollary 7.9.

. . |
8.2 Lemma: We have a diagram: Hq+l(M )

b
Ja

X 7 d 7Hq(M0) i

0——H M)

. 3
g+l Hq(M, 0

'
*

(M
q )

i
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+1
™y,

where i*d'(k')=x=¢*(u), i;d(k)=y=w*(u'), y is a generator of Hq(SqXD
u' of Hq(Dq+lXSq), etc.
Hence, Hq(M';/(i;dZ)EHq(M)/(i*d'Z).
Proof: This follows directly from Corollary 7.9 and Lemma 7.10, and the
fact that Hq o/ (i,4d ’Z)éHq My)/ (d'ZedZ) EHq "/ (i;dZ) . QED
If x=i*d'(k') is a torsion element of order s, tﬁen x+ is the zero
map, so that part of the diagram of 8.2 becomes the short exact sequence:
0—*Z—£1—-+Hq (M0~)—£*—,>Hq ) —0 1
Since i, is a homomorphism, sd'(A")eker i,=im d, so we have:
sd'(A')=d(n)=d((—t)k)=—td(l), and sd'(A")+td(A)=0 (2)
in Hq(MO), for some teZ.
8.3 Lemma: Suppose .x is a togsion element of finite order s in Hq(M).
Then y is of iﬁfinite“@fdérfif t=0, and of (finite) order t if t=0.
_ Proof: Since d(A) is of infinite order by (1) (which implies that d
is injective), (2) shows that d'(A') is also of infinite order if t#0
(since s=#0). Clearly ty=ti;d(k)=i;(—sd'(A'))=O, since i;Od'=O, and
using (2). Hence (order y)[t.
If t'y=0, then t'i;d(x)=i;(t'd(k))=0, so t'd(d)eker i,=im d',
and t'd(A)=—s'd'(A') for some seZ, or s'd'(A")+t'd())=0 in Hq(MO).
Applying i, we get s'i*d'(x')=s'x=0, so s'=fe*s. Subtracting % times
(2) from s'd'(A")+t'd(1)=0 wé’get (t'-2t)d(A)=0. But d()) is of infinite
order, so t'-%4t=0, or t*=Lt. Hence t|t', and t=order y.
“Suppose t=0 so that sd'(A')=0. Then ker iictorsion Hq(MO), s0
i; is injective on:dZ, and hénce y=i;d(k) is of infinite order in Hq(M‘).
Consider the commutative diagram on the next page, in which d and d’

are from the exact sequences of Corollary 7.9.



: N +1
Hq(sqxsq)+—f-——————:Hq+l(Dq x5, 59xs%y=z

3 d' (3)

_ q 5+1_ q,..9,__4d (M ).
7 Hq+l(S xD ,S tx8™) uq(M.)

-

Recall that erq+l(SqXDq+l,sqxsq) is such that ax=10[s%}, and

a1, 59 ¢9xg9y s such that 3'A'=[s%]e1.

1
A qu+1(D
Suppose M is closed, so that 3M0=SqXSq, and ¢0:SqXSq—+M is the
inclusion of the boundary. Then we have the exact sequence diagram
of Poincaré duality:

q+l

-u.w4‘—+4——+Hﬂ(Moar——vjﬂh—¥—+Hq(SqXSq)——Ji—+H ( ,qusq)———+...

[Mpne [s9xs%70s [Moln-|

..—~+Hq%1(M0,SqXSq)f—éﬂ—+Hq(SqXSq)'7 00 H ()=
Thus, [quSq]n(im ¢g)=ker $04- 4
By (3), d'(\")=60,8' (\")=6g,([s%]e1), and
d(\)=¢9,8 (\)=¢g, (1o[s1]),
so that (2) can be rewritten as ¢0*(s([Sq]®l)+t(l®[Sq]))=O.
8.4 Lemma: Let q be even. Then ¢0*(s([Sq]®l)+t(l®[Sq]))=O implies
either s=0 or t=0. ‘
‘Proof: Let UeHl(s?) be such that U[s¥]=1. Then [$9x5%1n(Us1)=18[5%]
and [s%xs%1n(1ev)=[s%]e1, in H_(s9xs%). Hence
d

[s%xs9n (s (1oU)+£ (U®1) ) =s ([sTJe1)+t (10[571),
and by (4) it follows that s(l@U)+t(U®1)=¢§(z) for some zqu(Mo).
But ¢::H2q(Mo)—*H2q(quSq) igs zero,.as ¢y is the inclusion of the
(connected)'boundary of My. Hence (s(l@U)+t(U®l))2=¢§(zz)=0.
But (s(1®U)+t(U®1))2 =25t (U8U) if q=dim U is even. Hence it is zero
if and only if s=0 or t=0. QED

_Proof of Theorem 7.1 for m=2q+l, q even: By Theorem 8.1, we may assume

f:M—A is thdnnected and Kq(M) is a torsion group. Let xeKq(M) be the
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generator of a cyclic summand of order s. Let ¢:SqXDq+l—+M be an
embedding with ¢, (u)=x, and defining a normal cobordism of (f,b).
Assume M is closed, using Propoéition 7.4. Consider the diagram
of Lemma 8.2. By Lemma‘7.10,”i*df(k')=x, a generator of a summand
ZSqu(M). By (2) and Lemma 8.4, sd"(A')=0, so d'"(A') generates a
cyclic -direct summand ZSqu(M ).

From (1) it follows that torsion Hq(MO) is isomorphic to a
subgroup of torsion Hq(M), and since Hq(M')ﬁHq(Mo)/d'Z, it follows
that torsion Hq(M')mis isomorphic to a subgroup of to?sion Hq(M)
with at least one cyclic summand ZS missing{wso the séme is true
for Kq(M'). (It follows also that rank Hq(M')=rank Hq(M)+l.)

By Theorem 8.1 we may find a normal cobordism of (f',b') to
(£",b") with Kq(M“)=torsion Kq(M').

Iterating these constructions a finite number of times (since
Kq(M) is finitely generated) will.produce an (f;,b;) normally
cobordant to (f,b) with Kq(M1)=O, and f; (gq+l)-connected. This
completes the proof for m=1l (mod 4). QED

- Proof of Theorem 7.1 for m=2q+l, q odd: Let ¢:SqXDq+l—+M_be an embedding

" which defines a normal cobordism, i.e. so that (f,b) extend over the

trace of the surgery based on ¢, W Let w:Sq—+SO(q+l), with SO(q+1)

4"

acting on Dq+l from the right, and define a new embedding ¢w:SqXDq+l

—M
by ¢w(x,t)=¢(x,tw(x)). ‘Then.¢w defines a surgery with the result
' . qtl_ _qg . . v
. M-=M0Um,D xS*, where My comes from surgery using ¢, and w' is the
: q,, .4 q .9 _: ' =
diffeomorphism §*xS*—S*xS" given by w'(x,y)=(x,yu(x)).
8.5 Lemma: The trace of the surgery based on ¢w also defines a normal

cobordism if and only if the homotopy class [w] goes to zero in

ﬂq(SO(q+k+1)), i.e. i#[w]=0 where 1:50(q#1)—S0(q+k+1) is inclusion.
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:sOxp It RK X given by @ 1, (66D =(6 (5,10 (X))

m+k
bl

Proof: The map ¢iw

=(¢w(x,t),r) defines a new. framing of the normal bundle to s? in D

i.e. of v|Sq®v', where v is the normal bundle of MCDm+k, v' the normal

bundle of sleM. Then ¢w defines a normal c¢olordism if and only if the

framing extends to a framing of the normal bundle of Dq+1 in Dm+kxI,

so that the first part of the frame defines an embedding of Dq+l><Dq+1

in Dm+kXI extending'¢w:quDq+lgMCDm+k, and the second part of the frame

><Dq+l

extends the trivialisation of v|¢(Sq ) defined by b:v—n, to a

q+lxDq+l

trivialisation of the normal bundle of D , and hence that of

mxTupT hpdtL

ﬁBDq+l, Dq+lCDm+kXI such that the normal bundle of s in

gq+1 i

Now S%

Dm+kX0 is the restriction to st of Y, the normal bundle of D

Dm+kXI, Now vy has a framing defined on s by the map ¢:quDq+IXRk—+E(v),

n

&(x,t,r)¥(¢(x,t),r) since ¢ defined a normal cobordism. The difference
of these two framings is a map of s? into SO0(q+k+1) which 1is obviously iw.
Hence the frame“¢iw extends over Dq+1 if apd only if iw is homotopic
to zero in SO(q+k+1). QED
By Lemma 6.7, ﬂq(SO(q+r))—+ﬂq(SO(q+r+l)) is an isomorphism for r>1,
80 that(kerwi#, i#:wq(SO(q+l))—+ﬂq(SO(q+k+1)), is the same for a}l k>1.
For k=1, the exact homotopy sequence of the fibre space-

50 (q+1)—r—50 (q+2)—ss It

+1 +1
s, (st

where 80:“q+l .

gives the result that (ker i#)q=3

0" g1 >y (80(q+1))

is the boundary of the exact sequence. Hence from Lemma 8.5, if

q ndt+1 ,
$:8'xD' "M defines a normal cobordism, then we may change ¢ by
m:Sq—+SO(q+1) if [w]eaoﬂq+l(sq+l), and ¢w will still define a normal

cobordism.

Now we will compare the effect of the surgeries based on ¢ and ¢w'
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Let gi=[s]e1, gi=18[s%1end(sxsY).

8.6 TLemmanget.g.be,a generator of w (Sq+l), and let [w]=m80(é);

q+l
¢'=6 . Then ¢§,(81)=00,(a1)+2mbo,(e3), ¢0x(ed)=b0z(ed).
Proof: Recall that Lemma 6.19 says that the composition

qtl,_ 99 1 o (cd
qqﬂ(s ) —Hrq(SO(q+l))—-E~# -nq(S)

is multiplication by 2, if .q is.odd. No&Ww, 94.1s represented by the

composition»-‘sqxs\ql-"w' sdxg M"’\MO“’ where w' is given by (x,y)—>(x,yw(x)).
If v is taken to be thé base point yOeSq, then by definition ygw(x)=pw(x),
where p:SO(q+l)-—+Sq is' the bundle projection. Hence on Squo, ¢ (x,y0)
=¢g (x,pw(x)), so ¢f=¢g(1xpw)A on SquO, where A:5%—gxs? 1s given by
x> (x,X).

If gewq(Sq) is the generator, il(x)=(x,yO), iz(x)=(y0,x),‘gj=(ij)#g,
then A#g=g1+g2, and h(gj)=g3, where h is the Hurewicz homomorphism.

Thus, ¢6#(g1)=¢o#(lxpw)#A#(g)=¢o# (1xpw) 4 (g1+82) =00 4 (81 +2mgy)

=604 (81)+2mbg 4 (g2) .

Since w(yoj is the identity of SO(q+l), we have ¢6|y0xsq=¢o|y0xsq,
so ¢6#(g2)=¢0#(g2). The result in homology follows by applying h. QED

Returning to the diagram of Lemma 8.2, where d(k)=¢0*(l®[sq])
=h¢0#(g2), and d'(A')=h¢0#(g1), if we costruct the ;nalogous diagram
using ¢w instead of ¢, we find dw(x)=h¢w0#(g2)=d(k), and d;(x')=h¢w0#(g1)
=d'(A")+2md(A); or d(k)=dw(k), d'(A')=d;(A')—2mdw(K). Hence (2) becomes

s(d&(k')—2mdw(k))+tdw(k)=0, or sdé(l')+(t—2ms)dw(k)=0. (5)
8.7 Proposition: Let p be a prime and let xeKq(M) be an element of
finite order such .that (x)p¢0 in Kq(M;ZP), where (-)p denotes reduction
mod p. Let ¢:quDq+l—+int M be an embedding which represents x, i.e.
¢, (u)=x, and which defines a normal surgery of (f,b). .Then one may

choose w:Sq—+SO(q+l) so that ¢w:SqXDq+l—+int M also defines a normal
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surgery of (f,b), order(torsion Kq(M&))Sorder(torsion Kq(M)), and
rankZqu(Mg;Z§)<rankZPKq(M;Zp). (The order of a torsion group T is
the smallest positive integer n such that nx=0 in T for all xeT.)
Proof: By Lemma 8.2, Hq(M)/(x)ﬁHq(M')/(y), where (x) indicates the
subgroup generated by x. If the order of x is s, then (2) gives
sd'"(A")+td(A)=0, and Lemma 8.3 states that the order of y is t if t=0,
and is infinite if t=0. By Lemma 8.5 we may change ¢ so that (2)
becomes (5): sd;(k')+(t—2ms)dw(k)=0, so that Hq(M)/(x)EHq(Mg)/(yw)
with order yw=t—2ms if t-2ms 0, and Y, of infinite order if t-2ms=0.
Choose m so.that -s<(t-2ms)<s, which' guarantees that order ywSorder X
or vy, is of infinite order. Hence, order(torsion Hq(M&)) is not
larger than order(torsion Hq(M)), and so order(torsion Kq(M&)) is less
than or equal to order(torsion Kq(M)). But if (x)P¢0, then by

L
Corollary 7.14, rank Kq(Mm,ZP)<rankZ

P P
We are now able to complete the proof of Theorem 7.1 for m=3 (mod 4).

; Kq(M;ZP). QED

Let (f,b) be a normal map, and by Theorem 8.1 we may assume f is
g-connected, and Kq(M) is a torsion group. Let p be the largest prime
dividing order Kd(M), and let”xeKq(M) be an element such that (x)p¢0
in Kq(M;Zp)ﬁw'By Whitney's embedding theorem we may.find an embedded
q 2q+1
S* int M representing x, and by Theorems 6.6 and 6.12, we may
extend this embedding to an embedding ¢:SqXDq+1~»ihf M such that
¢ defines a normal surgery on (f,b).

By Proposition 8.7, ¢ may be chosen so that order(torsion Kq(M'))
<order(torsion K (M and rank, K (M';Z )<rank, K (M;Z ).

Proceeding in this fashion step by step, we will find after a

finite number of such surgeries, a normal cobordism of (f,b) to (f;,b7)

such that f; is q-connected, order(torsion Kq(Ml))£order(torsion Kq(M)),
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and rank Kq(Ml;ZP)=O. Since the Universal Cosfficient Theorem holds

Z

for thg Kz, K* groups, Kq(Ml;Zp)EKq(M1)®Zp, because Ki(M1)=O for i<q,
and it follows that Kq(Ml) is a torsion group of order prime to p, and
order Kq(Mi)Sorder Kq(M). Since Kq(M) has p-torsion, it follows that,
in fact, order Kq(M1)<order Kq(M). Hence we have reduced the order of
the kernel, and so a finite number of iterations will make the order
of the kernal zero, thus producing a normal cobordism of (f,b) with
some (f,b), where f is g-connected and Kq(ﬁ)=0; Hence f is actually

(q+1)-connected, which proves Theorem 7.1 for m=3 (mod 4). This also

completes the proof of Theorem 7.1 for m odd.

'§9. The Proof of the Fundamental Theorem for m even.

Set m=2q. Let (f,b):beé a normal map with f:(M,oM)—(A,B) such
that (fIBM)*:H*(BM)—+H*(B) is an isomorphism, and f is q-connected.
Then Ki(M)=O for i<q, and by Poincaré duality Km—i(M,BM)EKm—i(M)=O
for i<q. Since the K, and K* groups satisfy the Universal Coéfficient
Theorem, it follows that Ki(M) =0 for i>q, and Kq(M) is free. Let
xeKq(M) be represented by an embedding a:8%t—int M, so that'(S,a)eﬂq+l(f),
and define ﬁ:MUaDq+l, fiM—A extending f, defined using B:Dq+l—+A.

By Theorem 6.6, there is an obstruction Oewq(Vk’q) (which is.Z if ¢
is even, Zp, if q is odd) such that 0=0 if and only if f:M—>A can be
thickened to a normal cobordism. Let x'eKq(M,BM) be defined by
[M]nx'ﬁxeKq(M). Recall that, as part of our definition above of the

surgery invariant o(f,b), we defined a bilinear pairing (+,*) on

Kq(M,BM), and made use of a quadratic form w:Kq(M,aM;Zz)—+ZZ.



9.1_,Theorem: The obstruction O to thickening f:M—A to a normal
cobordism is given by
O=(x',x"'") 4if q is even, 0=y ((x'),) if q is odd,
where (+), denotes reduction mod 2.
Before proving Theorem 9.1, we shall use 1t to complete the
proof of Theorem 7.1.
Theorem 4.1 .states that if (f,b) is normally cobordant rel B
to a homotopy equivalence, then o(f,b)=0. Thus, our intent is to
assume that o(f,b)=0, and.then to construct a normal cobordism of
(f,b) to a homotopy equivalence.
First, suppose q is even. Then (f,b)=%I(f), so that if
(£,b)=0, it follows that I(f), the signature of (+,+) on KI(M,dM),
is zero. By Theorem 6.13 we may assume that Ki(M)EKi(M,BM)=O for
i<q, and is free for i=q. By Proposition 5.3, there is an x'eKq(M,BM)
such that (x',x')=0, so by 9.1, [M]nx'=xeK (M) can be represented
q
by ¢:SqXDq—+int M, (i.e. ¢,(1)=x, u the generator of Hq(SqXDq)),
such that the surgery based on ¢ defines a normal cobordism of (f,b).
But we may choose x' to be indivisible. (for otherwise, x'=kx", where
x" is indivisible, and (x';x’)=0=(kx";kx")=k2(x",x"), so (x",x")=0),
so the generator of a direct summand of Kq(M,BM). Hence, by Corollary
7.12, rank Kq(M')<rank Kq(M), and f' is still g-connected, where
f':(M',5M')—(A,B) results from normal surgery based on ¢ (in fact,
the rank.decreases by 2: see Lemma 8.2). Since (f,b) and (f',b'")
are normally cobordant, I(f")=I(f)=0 (see Theorem 5.14), and we may
repeat the procedure. In fact, if we iterate the process until Kq

is reduced to zero, the resulting map is (q+1)—conneéted, as desired.
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Now take q odd. Then o(f,b)=c(f,b) is the Arf invariant of
on KQ(M,BM;ZZ). If o(f,b)=0, then there is certainly some yeKq(M,BM;ZZ)
for which ¥ (y)=0 (see for example Propsition 5.8 or 5.10). If f is
g-connected, then,Kq(M,BM;ZZ)EKq(M,BM)®ZZ, and y=(x'), for some
indivisible x'eKq(M,BM). By 9.1, x=[MInx' is represented by
¢:SqXDq—+int M such that ¢ defines a normal cobordism, and by Corollary
7.12, rank Kq(M“)<rank Kq(M), with f' still gq-connected. But
o(f',b")=0c(f,b)=0, since (f',b') is normally cobordant to (f,b),
so we may proceed as above to.produce a (q+l)-connected map. This
completes- the proof of Theorem 7.1, and hence of the Fundamental
Theorem.

-The‘balance of this section will be taken up by the proof of
Theorem 9.1.

Let (fyb) be a normal map, f:(M,3M)—(A,B), M is of dimension
m=2q, and f is g-connected. Choose an xeKq(M), and let it be represented
by.an embeddingndtsq—+int M. Let Cq'denote the normal bundle of the
image of o in M, and set ﬁ=MUaDq+1. Then f may be extended to f:MA.
Let Oeﬂq(vk,q) be the obstruction to thickening ™ and T to a normal
cobordism (cf. Theorem 6.6), and let Bzﬂq(Vk,q)—+nq_1(SO(q)) be the
connecting homomorphism in the exact sequence of the fibre bundle

p:SO(k+q)—V, =S0(k+q)/S0(q), with fibre SO(q).

k,q
We define the characteristic map of a k-plane bundle over a sphere
as follows: let €k=(E,Sn,n) be a k-dimensional orientable vector bundle.
If Sn={(xi)eRn+1|x8+x%+...+x§=l},.then we may define two subsets Di and
DE such that Dz (resp. DE) is the hemisphere centred on the N (resp. S)
n . N n;-. n
pole of S , . 1i.e. D+={(xi)eS |xn20}, and similarly for D_. Clearly

Sn=DiUDE{ and it is -easy to show that DinD?ESn-l (the 'equator' of Sn).



Since the restrictions of £ to Di and DE are both trivial, we may
choose trivialisations T+'and T_ such that T+!EID2f+D:XRk (similarly
k

for t_). Since T, and 1_ are fibre isomorphic, the map sX:Rk—*R

defined for each xeSn?léDinDE by T_oril(x,y)=(x,sx(y)) is in fact an

orientation-preserving linear transformation of Rk, i.e. sXESO(k).
Thus, we have defined.a map c(E):SnﬁL—+SO(k) given by C(E)(x)=sx.
This is called the characteristic map éf £, and although it is not
unique, it is well-defined up to homotopy. (Thus it can be held that
the characteristic 'map' is mot really a map, but only an element
of nn_l(SO(k)).)

With ¢ and O defined as above, we have
9.2 hProEosition: 90 is the characteristic map of r, an element of
wq_l(SO(q)).
gtk

Proof: Choose a base point JpeSO(q+k), a (gq+k)-frame in Let

p:S0(qt+k)—V 250 (q+k)/S0(q) be the projection, given by selecting

k,q
the first k elements of a (k+q)-frame. Let xoeSq be a base point

such that, if h:Sq---+SO(q+k)/SO(q)=Vk,q represents O, then h(xg)=p(Jyp).
Divide s into two cells, Sq=DiUD§, so that xoeDianésq_léaDi=8Dg.
Without loss of genérality, we may assume that h(Dg)=p(J0), since

DE is contractible. Let ﬁfDif+SO(q+k) be such that_ﬂ(x0)=J0 and

poﬂ=h on Di. Then pﬁ(Sq;1)=h(Sq—l)=p(J0), so that the first k
elements of ﬂ(y) for yeSq—l make up the base frame of Vk, . Let
1:80(q)—S0(q+k) be the representation of SO(q) acting on the subspace
of Rq+k orthogonal to the space spanned by p(Jp). Then there is a map

Y:Sqf1—+SO(q) such that h(y)=Jy(iey(y)). By the definition of 3,
0

Y represents BOeﬂq_l(SO(q)) (see [Steenrod 1951]).
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Now £ is the orhtogonal bundle to the trivial bundle spanned by
h(x), for xeSq. SinceAh(Di)=p(J0), the last q vectors in Jy give a
trivialisation of [ over DE, and since p°ﬂ=h, the last q vectors of
h(x), for xeDi, give a trivialisation of ¢ over Di. Since y(y), for
yeSq_l, sends the last part of Jy into the last part of ﬁ(y), it
follows that y is c(g), the characteristic map of ¢ (see [Steenrod
1951, (18.1)1]). QED

From our discussion above of the homotopy properties of SO(n),
we derive the following
9.3 Proposition: The boundary Bzﬂq(Vk’q)~+ﬂq_l(SO(q)) is a monomorphism
for q#1,3, or 7.
Proof: By comparing various related fibre bundles, we produce the

following commutative diagram:

]
. -1
S0/(q)——=——50 (q)—LE—>50(q) /80 (q-1)=84
iq i, ' ij
) !
S0 (g+1)—2+—+80 (q+k ) ——————V
(q+1) (q+k) t1,4-1
“P1 P2 P3
. !
Aoy . d' ‘ _
S Vl,q Vk,q - Vk,q-

where the pj‘are the projections of fibre bundles, and ij are inclusions
of fibres. Let Bj be the connecting homomorphism in the homotopy exact
sequence of the bundle with projection pj. By Lemma 6.9, if q is even,
p#&lznq(sq)—+nq_l(sq_l) is multiplication by two, and is thus injective.
But by the commutativity of the diagram, p#°31=83°j#. Hence j# is a
monomorphism, and since by Theorem 6.12 ﬂq(Vk’q)=Z if q is even, it
follows that 93=3 is a monomorphism if q is even.

If q#1,3,"or 7, and q is odd, then by Corollary 6.11 ker i#=Z2,

where 1#:wq_l(SO(q))—+ﬂq_l(SO(q+l)). Hence 3; is onto ZZCWq_l(SO(q)),
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and since j#:ﬂq(sq)—+ﬂq(vk;q) is surjective by Theorem 6.12, 81=830j#,
it follows that 33(wq(Vk’q))2Z2. Since ﬂq(Vk,q)=Zz for q odd (by 6.12),
we have 93=0 a monomorphism for q#1,3, or 7. QED

Thus for q#1,3, or 7, the obstruction O to doing normal surgery on
a particular Sq embedded in qu can be identified with the characteristic
map of ¢z, the normal bﬁndle of the chosen S% in M, Ocker i#gﬂq_l(SO(q)),
and is therefore zero if ¢ is trivial. Now ker i# is generated by 93; (1),
where leﬂq(Sq) is the class of the identity, so that 31 (1) is the
characteristic map for the tangent bundle T of Sq. It follows that
0=x(31(1)) for some AeZ.

1f q is even, the Euler class x(r)=2gqu(Sq), where g is the generator
for which g[Sq]=1. This follows from the general formula X(TM)=X(M)8;
or may be deduced for M=s

, q even, using the fact that 1, is equivalent

M
to the normal bundle of the diagonal M in MxM. For if Uqu(E,Eo) is the
Thom class, it follows from Corollary 7.6 that [qusq]nn*U=[Sq]®l+1®[Sq],
the homology class of the diagonal, where n:SqXSq—+E/EO is the mnatural
collapsing map. Hence n*U=g®l+l®g, and n*(Uz)=(n*U)2=(g®l+l®g)2=2g®g,
if q is even. Since n* is an isomorphism on qu, it follows that U2=2gU,
so yx(1)=2g, since by definition x(E)U£=(U€)2 for a bundle £.

The Fuler class is represented by the universal Euler class
erq(BSO(q)), where BSO(q) is the classifying space for oriented gq-plane
bundles (see [Husemoller 1966] or [Steenrod 1951]1). That is, if

- c:¥—BS0(q) is the classifying map of a q-plane bundle £ over X, c*(y)=£,
where vy is the universal g-plane bundle over BSO(q), then X(€)=c*(x).

If c:Sq—+BSO(q) represents Tgds then c*(x)=2g as above, but if
c':Sq—*BSO(q) represents A(qu) in the homotopy group wq_i(SO(q)),then

% %
Ac and c¢' are homotopic, i.e. [Ac]=[c'] in wq(BSO(q)). Hence c' =ic-,
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so we have:
9.4 Lemma: If q is even and 320=197 (1), then x(g)=2\g, where ¢ is the
normal bundle of a(Sq) in qu, representing an element in Kq(M), O the
obstruction to doing a normal surgery on this Sq.
9.5 Lemma: x(c)[Sq]=(x',x'), where [M}nx'=x, a:Sq—+M2q is an embedding
representing xeKq(M), ¢ the normal bundle of a(Sq), as above.
Proof: x(c)U=U2 by definition of y, where Uqu(E(c)/EO(C)) is the Thom
class. Clearly (X(c))[Sq]=(X(§)U)[E]=U2[E]=(n*U)2[M], where
[E]equ(E(g)/Eo(C)) is the orientation class, so [E]=n,[M], where
n:M/9M—E/Ey is the natural collapsing map.

By Corollary 7.6, [M]nn*U=x, so that n*U=x'. Hence

X (@) [841=(n" 12 M]= ()2 1= (x" %) QED

By 9.4 and 9.5 for q even, (x',x')=2) where 3,0=)33;(1). By 9.3
9 is a monomorphism for q even, so we may identify O with (x',x'),
which proves Theorem 9.1 for q even.

Finally, we turn our attention to the case of g odd..

Let ai:Sq—+M2q; i=1,2, Be'éﬁﬂ@&ﬁings representing x eKq(M),

i
where, as usual, Kq(M) is defined using a normal map (f,b), f:(M,3M)—(A,B),
(f[aM)*:H*(BM)—+H*(B) an isomorphism. Suppose the oy have disjoint
images, and let 07 and O, be the obstructions to doing normal surgery
on al(Sq) and az(Sq) respectively. Join al(Sq) to uz(SQ) by an arc,
disjoint (except, of course, at its endpoints) from both.images. By
thickening this to a tube TEDqX[l,Z] we may take

(a1 59\ (1)) udgTu (ap s\ (0%x2))
where 30T=8qu[l,2], qui=Tnai(Sq). This subset of M is homeomorphic

to Sq, and so gives us an embedding a:5%—M representing x;+x;, which

can be made differentiable by 'rounding the corners'.



9.6h'Lemma:_0=01+02 in~1Tq(Vk q), where O is the obstruction to doing

3

surgery on a(Sq);

Proof: Since TcM, we may multiply T by [0,e] to obtain Tx[O,e]<MxI.

+ +
If we have MCDm k, then MxTIeD" kXI, and by composing embeddings we

produce TX[O,E]CDm+k*I. Choose.Dg+lCDm+kXI such that ai(Sq)=8Dg+l,

+ .
and Dg+l meets Dm kx0 transversally in ai(Sq). _Then we may assume

that a neighbourhood of ai(Sq) in Dg+l is given by ai(sq)x[o,el.
set DI (pIt I\ (%x1x[0,e 1) Yul (3D [1,21%[0,e 1) uDIx [1,2]xe) }
g+l

u{pg "\ (DIx2x[0,e1)}.
s 3 W o . , m+k, q '
This is a (g+l)=cell meeting D  x0 transversally in a(S”), and we
may smooth this Dq+l, together with u(SQ), by 'rounding corners'.’
The smoothed Dq+1 is the uhion of three cells, Dq+l=A1UBUA2, which

correspond to the three expressions in braces, in the expression

: +
for Dq+l above, after closure and smoothing. Assume AiCDg l. Then

Ci=Di\int A, is a (q+l)-cell, BCinBD =F Fi a g-cell in BDi,

i i1’

‘BnAi=8CinAicaB and 33\((3C10A1)U(3C20A2))=sq_1x1,

Since the definition of the obstruction O doesn't‘depend on the

choice of the framing of the normal bundle y of Dq+l, we may assume

Dq+1 q+i

+
D% l, and Dy have been chosen so that

that the framings over s
the framings over'Dq+1 and Di+l coincide over Ai' Further we may
assume that the framings of v, the normal bundle of M in Dm+k,bover
a(Sq), al(Sq), and uz(Sq), induced by b, have been chosen so that
over Fi.they are all the same, comifig from a framing of VIT (note
that T is a cell), and the framings of v, y;, and yp may bé assumed
to extend that of v over Tna(Sq), Tnai(Sq) (as is appropriate).

Thus the three maps-B,Bi, i=1,2, s:a(éq)—+vk;q, Bi:ai(Sq)—ﬁvk’q
defining O and Oi’ may be taken to be the base k-frame over Tnu(Sq),
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Tnai(Sq), and Bl(di(Sq)na(Sq))=Bi|(ai(Sq)na(Sq)). It follows that
for the homotopy classes, [B1=[B1]1+[Bs] in “q(vk,q)’ or 0=01+0,. QED
9.7 Lemma: If 0=0, then ¥((x');)=0, with notation as above.
MEEQQEE,Since 0=0, we can perform. normal surgery based on u:Sq—+M2q,
sg‘that the trace is a normal cebordism W2q+l, W=Mu (3MxI)uM', and
if i1:9W—W and k:M—3W are inclusions, i,k,x=0. It follows from
elementary results about K, and K*'(see p. 21 above), -that x"=i*z,
zeKQ(W), where x"ekq(aw) is defined by [dW]nx"=k x, and Kq(W) comes
from the map F:W—AxI extending f '‘on M.

1f k3(dW;Z,) is defined for the map OF:d3W—>AxOUuBxIUAx1, and
Yg is the quadratic form Kq(BW;Zz)—+Zz used in the definition of the
Kervaire invariant, it follows from a lemma in [Browder 1972, III.4.13]
that Vo ((i 2)2)=Y((x"),)=0. Now 3F is clearly the sum of (f,b) on M
and (f',b') on M' (the result of surgery). By an intermediate result
in the proof of Theorem 5.12, wo(n*(x')2)=¢((x')2), x'eKq(M,BM), s0
it remains to show that n*(x')2=(x")2 (where n:3W—M/3M).

Consider k*x=k*([M]nx')=k*(n*[8W]nx')=[8W]nn*x', using identities
of the cap product (cf. Corollary 7.6), so that since [3W]nx"=k*x,
it follows that g"=n*x', and hence ¢((x'),)=0. QED

Now we prove that O0=¢((x'),). If 0=0, then y((x'),)=0 by 9.7,
so it remains to show that if 0=1 then?w((x')2)=l.

By taking the connected sum with the map qusq—+szq, or alternately
doing a normal surgery on. a Sq—chchMZq’ we may add to Kq(M) the free
module on two generators a; and aj, corresponding to [Sq]®l and l®[Sq]
in Hq(quSq), and add to Kq(M;BM) the elements gj,g, such that
[M#(qusq)]ngi=ai, with (g1,872)=1, (gi,gi)=0, i=1,2, orthogonal to the

original Kq(M,BM), and such that ¥(g1)=y(gy)=0. ‘i ac.
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Hence ¥ (gy+g2)=¥(g1)+¥(g2)+(g1,82)=1.

If 8:5%M#(sIx5?) represents the diagonal class aj+as, it follows
from 9.7 that the obstruction O to surgery on.8 is 1, since if it were
zero, then y(gy+gr) would be zero. Then on the sum embedding a+f
representing x+(aj;+a,), the obstruction 0"=0+0' by Lemma 9.6, so that
0"=1+1=0. Hence Y ((x')o+(g1+g>))=0 by 9.7. But since ((x');,(g1+g2))=0,

P ((x")odCgr+e2))=v ((x") )+ (g1+82) =Y ((x')7)+1=0,
we see that Y((x')y)=1. QED
'Tﬁiéﬁcompletes'the_proof of Theorems 9.1 and 7.1, and thus of

the Fundamental Theorem.
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Chapter III. Plumbing and the Classification of Manifolds.

§10. Intersection and Plumbing.

Let N; and N, be smooth submanifolds of dimension p (resp. q)
of a smooth m-manifold M, such that p+q=m. A point xeNjnN, will be
called discrete if there is an open neighbourhood V of x in M such
that VnNjnNo={x}. Note that if every point in NjnN, is discrete,
then NynN; "is a discrete subset. of M.
If xeNjnN, is discrete and V is as above (i.e. V is open in M
and VnNjnN,={x}) then (V\Nl)U(V\N2)=V\{x}. Thus we have a pairing
Hq(V,V\Nl)®HP(V,V\N2)f4Hp+q(V,V\{x}) given by the relative cup product.
Suppose that M, N; and Np are oriented, and let [M]erm(M,M\{x}),
[Nl]YGHP(NlaNl\{Y}) and [Nz]zeHé(Nz,Ng\{z}) be the generators compatible
with the orientatiohs. Let Ei’ i=1,2, be a tubular neighbourhood of
N, in M, E0=Ei\Ni' Then the inclusion (Ei’Eg)C(M’M\Ni) is an excision,

i i

* *

so H (M,M\Ni)EH (Ei,Eg). If the Ei are oriented, and r, denotes the

inclusion (V,V\Ni)C(Ei,Eg), then by the Thom Isomorphism Theorem there
*

is an element Ulqu(El,EQ) such that rlUlqu(V,V Ni) is a generator,

and *uUj, *nU; are isomorphisms (similarly for Np). We shall also assume

*

that the orientations are compatible, i.e. so that [M]ani

U= 1y
for xeN,.
i
Under the preceding conditions we may define the sign or orientation
* *

of a discrete point xeNjnN» by sgn(x)=(r1U1ur2U2)[M]x, using the pairing
above. We shall call x a (homologically) transverse point of intersection
if sgn(x)=t1l. Note that geometrically transverse points are also

homologically transverse. (A point xeNjnN, is geometrically transverse

if x has an open neighbourhood V in M such that there is a diffeomorphism
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(V,VnNy ,VnNy )—> (Rm,RPXO , OXRq) 2)

If Ny is compact and NjnNpndM is empty, it has been shown that
given an ¢>0 there is a diffeomorphism h:M—M, which is the identity
on- M, and is e-isotopic to lM’ such that h(Nj)nN, consists solely
of (geometrically) transverse points.

On p.50 above we defined a pairing ':HP(M)®Hq(M}—+Z by

xey=(x'uy"')[M], where x'qu(M,BM), y'er(M) are defined

by [M]nx'=x, [Mlny'=j,y, and j is inclusion.

- Let N?,:NgﬂﬁBETcompact oriented submanifolds of Mm, a cOmpactx
oriented manifold with boundary, m=p+q, and suppose N; is closed in M,
9MNNy1=¢, and OMnN,=3N,. Assume further that Nj and N, intersect
thomologically) transversally. Let ij:Nj—+M denote.the inclusions.

We state without proof the following theorem from [Browder 1972].
10.1 Theorem: (i3 [Ny1)+(ip,[Ny])=Isgn(x), where the sum is taken
over all points xeNjnN,.
Thus, the intersection of the orientation classes counts the number
of intersection points, with sign.
1f N? is a closed submanifold lying in the interior of qu, with
normal bundle cq,~then we may consider how N intersects itself. It is
possible (see above) to change N by an e-isotopy so that it intersects
itself transversally. Then Theorem 10.1 gives us: i [N]-i [N]=Zsgn(x),
the sum running over the points of self-intersection. However, we can
also interpret this result using the normal bundle z:
10.2 Proposition: i,[N]<i, [N]=x(z)[N], where x(z) is the Euler class of z..
We are now prepared to describe the construction known as plumbing
disc bundles.

Let Ci be a g-plane bundle over a smoothhq—manifold Ni’ and let Ei



be the total space of the closed disc bundle associated to gi.
Suppose that Ei’Ei and Ni are oriented compatibly for i=1,2.

Choose x,¢N, and B,cN, a q-cell with x,ecint B Since B,
i i i i i i

1

is contractible, Ei]Bi is trivial, and that part of E, lying

i

over Bi is diffeomorphic to B XDi, where Di is a g-disc, such

i

that the fibres are mapped to xxDi. We may choose diffeomorphisms
h_ ,h+:B1—>D2 s k_,k+:D1—+B2 s

where a subscripted + indicates orientaﬁion—preserving, and a -

indicates orientation-reversing.

We plumb E7 with E; at x; and x, by identifying the subsets of
the disjoint union EywE; given by ByXDy and BsxDy using the map
I+(x,y)=(k+y,h+x) or the map I_(x,y)=(k_y,h_x). We shall say that
the plumbing is with sign +1 if.I+ is used, and with sign -1 if TI_
is used. The resulting manifold is denoted by E [JE,, and it can
be smoothed in a canonical way.

Since both of I+ and I_ preserve orientation if g is even, and
reverse it if q is odd, E1[JE, can be oriented compatibly with N;,Z;,
No, and z, if q is even, and with Nj,%1,-Np, and ¢, if q is odd.
'NOte‘thatTN?éEiCEiDEz, where the inclusions are obvious, and that
NynNp={x1}={x,} (in E,0E,), which is a transversal intersection,
and that the sign of x is the same as the sign of the plumbing.

(0f course, all of this diséﬁssion can be applied to the case of
plumbing one manifold with itself, if we choose two distinct points
in it and take E =E,.)

If we choose several pairs:.of points in Ny and N,, we may plumb
E; and E, together repeatedly, choosing the sign of each plumbing.

We will still denote the result by Ej[JE,, and we see from 10.1 that
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i1*[N1]'iz*[N2] is determined by the way we choose the sign of the
plumbings. Thus, if we choose a number njp, and plumb-E; with Ep at
ny, points, always with sign +1, then we have i [Nj]-is,[Nz]=nj;.
We may go on to plumb with other disc bundles, by making sure that
the points in NjUN, we choose to plumb at are well away from the
finite number of points in NyjnN,, and by choosing the signs of the
plumbings, we may cause i*[Nj]°i*[Nk]=njk, j#zk, to take on any value

we like. (Note that we must have n .) The self-intersections

= q
kj—(-l) n,

jk
are determined by the Euler class x(Ci), according to Proposition 10.2.
Thus, we arrive at the remarkable

10.3 Theorem: Let M be a symmetric nxn matrix with integer entries,
and with even diagonal entries. Then for k>1 there is a manifold WAk
with boundary such that W is (2k-1)-connected, 3W is (2k-2)-connected,
HZk(w) is free abelian, the matrix of the intersection pairing
HZk(W)®H2k(W)—+Z is given by M (or equivalently, M is the matrix of the
bilinear form (¢,*) on HK(W,BW)), and there is a normal map (f,b), with

£f:(W, 8W)—+(D4k , gik-1

) for which M is the intersection matrix on K2k(W).
The proof is provided in detail in [Browder 1972].
We have from the same source the
10.4 Lemma: In the construction of 10.3, 3W is a homotopy sphere if
and only if the determinant of M is *1.
Consider the following 8x8 matrix due to Hirzebruch:

| 0

3

2 1
1 2
1

=N
i

0

O N
O N -
oNR O
N OO
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This matrix is, as reqﬁired, symmetric ‘and even on the diagonal.
Simple computation shows that |M0|=l and that the signature of My is 8.
We may quickly prove the following theorem of Milnor.
10.5  Theorem: Let k>1. There is a manifold W and a normal map (f,b),

4k,S4k—l) such that (fIBW) is a homotopy equivalence, and

£:(W,oW)=%(D
o(f,b)=1.
Proof: Let W be the 4k-manifold with boundary constructed in Theorem
10.3 using the matrix Mp. Since |M0|=l, we have by 10.4 that 3W is a
homotopy sphere. By 10.3, the bilinear form (-,*) on K2k(W,3W) has
matrix My, and sgn My=8. Thus, if (f,b)bis the normal map of 10.3,
it follows.that o(f,b)=%I(f)=%§gn Mp=1. QED

A somewhat different construction in dimensions congruent to
2 mod 4 gives us the following theorem of Kervaire.
- 10.6 Theorem: For q odd there is a manifold U and a normal map (g,c)

such that g:(U,50)— (0°9,s%971

) with o(g,c)=1.

Taking Theorems 10.5 and 10.6 together with Proposition 5.35
(the Addition Property of o), we derive immediately the Plumbing Theorem:
10.7 Theorem: If m=2k>4, then there is an m-manifold M with boundary,
and a normal map (g,c),'g:(M,BM)—+(Dm;Sm_1), c:vk—+€k (where ek is the

trivial bundle over Dm), with g{BM a homotopy equivalence and with

o(g,c) taking on any desired value.

:vi. The Homotowr Tvpes of &mocth fdsnifolds and Classif’ catioen.

It has "=, shown by [Browdex 19621 =z.. [Novikov 1964] th-.

“win macoatoly condd tionsn Fre o gpace torbelof. G- howsteny bo7T
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§11. The Homotopy Typés of Smooth Manifolds and Classification.

It-has been shown by [Browder 1962] and [Novikov 1964] that certain
necessary conditions for a space to bé of the homotopy type of a smooth
manifold are sometimes also sufficient.

In the theorem we will use the following notation: h:ﬂi—+Hi is the
Hurewicz homomorphism, £ is an oriented k-plane bundle over a space X,
Uer(T(g)) is. its Thom class, p,; are its Pontrjagin classes, and Lk are
the Hirzebruch polynomials.

11.1 Theorem; Let X be a simply-connected Poincaré complex of dimension
m=5, & an oriented k-plane bundle over X, k>mtl, aeﬂm+k(T(£ )) such that
h(a)nU=[X]. If (1) m is odd, or

(2) m=4k and index X;(Lk(pl,pz,...,pk))[x],
then there is a homotopy equivalence f:M—X, for some smooth m-manifold
M, such that v=f*(£) is the normal bundle of an embedding MCSm+k; and
f can be found in the normal cobordism class represented by o.

- Outline of Proof: A representative f:Sm+k—+T(£) of o is chosen, and the

manifold M is defined by pulling X back to a submanifold of Sm+k

via f
(after some modifications). The map f induces a normal map (f,b) with
f:M—X, b:v—£. Then by the Fundamental Theorem of Surgery (4.2), (f,b)
is normally cobordant to a homotopy equivalence if m is odd, and if m=2q
then (f,b) is normally cobordant to a homotopy equivalence if and only
if o(£f,b)=0. But if m=4k, then by the Index Property (Proposition 5.35),
0(f,b)=(Lk(p1,...,pk))[X]—index X, which is zeretwhén (2) holds. QED

'Remark; If m=6,14,30, or 62 (none of which are covered by 11.1), then

with the above hypotheses theré is a homotopy equivalence f:M—X with"

*
f (£)=v, but f may not be normally cobordant to a map representing o.
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We have defined above the connected sum of Poincaré complexes
for the purpose of the Addition Property. Given Poincaré pairs (Xi,Yi),
k-plane bundles Ei.over Xi’ smooth manifolds (Mi,BMi), and normal maps
(fi’bi) such that fi:(Mi,BMi)—4(Xi,Yi), we have the Poincaré -pair
(X1#X5 ,Y1uY5), the smooth manifold Mj#Mp; with boundary 9MjuodM,, and
the normal map (f1#f5,b1#by) such that f£i#£,: (My#Mp, MM My )— (X1 #Xp ,YuY9)
and bl#bzzv#—+£1#€2, where v, is the normal bundle of M;#M; in p™k

If Mi and Yi are all nonempty, we may define the connected sum
along (components of) the boundary. See [Browder 1972] for details.
We produce analogous constructs: MjUM,, X;8X,, and maps fikf;, byllbs.
Note that 3(M;MM,)=3M;#3M,, and that (X|lX,,¥1#Y,) form a Poincaré pair.
Then (fiMf,,b1dlbs) is a normal map.
11.2 Proposition: Let (f,b),(g,c) be normal maps with f:M,oM)—(X,Y),
g:(N,aN)—+(Dm,Sm_l)._ Then (fig,blic) is normally cobordant to (f,b).

This proposition together with previous results leads to the
11.3 Theorem: Let (X,Y) be a m—dimensidnal Poincaré pair with X
simply-connecetd and Y nonempty, m35, and let (f,b) be a normal map
with f:(M,3M)~(X,Y) and (fIBM)* an isomorphism. Then there is a
normal map (g,c), g:(U,BU)—+(Dm,Sm—l) with glaU a homotopy equivalence,
such that (fag,buc) is normally cobordant rel Y to a homotopy equivalence.
In particular, (f,b) is normally cobordant to a homotopy equivalence.
Proof: By the Plumbing Theorem (10.7) there is a (g,c) as above with
o(g,c)==c(f,b). By the ‘Addition Property, Proposition 5.35, o (fug,buc)
=0 (f,b)+0(g,c)=0, so-by the Fundamental Theorem (4.2) (fug,bfic) is
normally cobordant rel Y to (f',b'), where f':M'—>X is a homotopy
_1)

equivalence. (Note that (X.\\Dm,Y#Sm 2(X,Y)). Then 11.2 shows that

(f,b) is normally cobordant to (f',b'). QED
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Recall that a cobordism W between M and M' (i.e. 3W=MuUuM',
3McU, 9M'cU) is an h-cobordism if the inclusions McW, M'cW, 3McU,
and dM"<U are all homotopy equivalences.
With this definition we can state the classification theorem
of Novikov, and its corollary.
11.4 Theorem: Let X be a simply-connected Poincaré complex of

—..).X’

“‘dimension m=4, and (fi’bi) for i=0,1, be normal maps with fi:Mi

where Mi is a smooth m-manifold. Suppose that fy and f; are homotopy
equivalences. If fp is normally cobordant to fj, then there is a
normal map (g,c) with g:(U;BU)—+(Dm+l;Sm), where g]BU is a homotopy
equivalence, such that (fg,bp) is h-cobordant to (f1 g|93U,b; c|av).
In particular, My is h-cobordant to M; if m is even, and to My#(3U)
if m is odd.
11.5 Corollary: Let M and M' be closed smooth simply-connected
manifolds of dimension. not less ‘that 5. A homotopy equivalence
f:M—M'- is homotopic to a diffeomorphism f':M#I—M' for some
homotopy sphere I=3U, U parallelisable (thus M is homeomorphic
to M#£) if and only if there is a bundle map b:v—v' covering £
such that T(b)*(a)=u', where a,a' are the natural collapsing.maps
aeﬁm+k(T(v)), u'enm+k(T(v')).

Finally we have a theorem of Wall and its corollary.
11.6 Theorem: Let (X,Y) be a Poincaré pair of dimension m=6, with
both.X and Y simply-connected, Y nonempty.. Let £ be a k-plane bundle
over X, and choose aewm+k(T(€),T(£tY)) such that h(a)nU=[X]. Then
the normal map. represented by a is normally cobordant to a homotopy
equivalence (f,b), f:(M,dM)—(X,Y), which is unique up to h-cobordism.

In particular, (X,Y) has the homotopy type of a differentiable manifold,
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unique up to h-cobordism in the given normal cobordism class.

We will prove the existence part of this theorem. The proof of
uniqueness (as well as the other proofs omitted from this section) is
to be found in [Browder 1972, II.3].
Proof: Let (f',b') with £':(M',3M')—(X,Y) be a normal map representing
0. By the Cobordism Property, 5.36, c(f'[BM';b'IBM')=O, so that by ‘the
Fundamental Theorem (4.2) (f'!BM',b'[BM') is normally cobordant to a
homotopy equivalence. This normal cobordism extends to a normal cobordism
of (£',b') to some (£",b") such that f”]BM" is a homotopy equivalence.
By Theorem 11.3, (f",b") is normally cobordant to a homotopy equivalence,
(f,b).
11.7 Corollary: Let M and M' be compact smooth simply-connected
manifolds of dimension m26, with 9M and 9M' simply-=connected and
nonempty. Then a homotopy equivalence f:(M,dM)—(M",3M') is isotopic
to a diffeomorphism f':M—M' if and only if there is a bundle map
b:v—v"' covering f such that T(b)*(a)=u', where v,v' are the normal
bundles, and aeﬂm+k(T(v),T(v|8M)), a'ewm+k(T(v'),T(v'|3M')) are the

collapsing maps.
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