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Abstract 

Let fl be an arbitrary open set in M3 . Let || • || denote the L2(fi) norm, and let 

is shown to be the best possible. 

Previously, inequalities of this type were proven only for bounded smooth domains 

or convex domains, with constants depending on the regularity of the boundary. 

A new method is employed to obtain this sharp inequality. The key idea is to es

timate the maximum value of the quotient \u(x)\/ || Vu|| x/ 2 || AuH 1 / 2 , where the point 

x is fixed, and the function u varies in the span of a finite number of eigenfunctions 

of the Laplacian. This method admits generalizations to other elliptic operators and 

other domains. 

The inequality is applied to study the initial-boundary value problem for Burgers' 

equation: 

tained. Adapting and refining known theory for Navier-Stokes equations, the exis

tence and uniqueness of bounded smooth solutions are established. 

As corollaries of the inequality and its proof, pointwise bounds are given for eigen

functions of the Laplacian in terms of the corresponding eigenvalues in two- and 

three-dimensional domains. 

Ho(£l) denote the completion of Co°(fi) in the Dirichlet norm ||V-||. The pointwise 

bound 

n 
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Chapter 1 

A sharp inequality for Poisson's equation 

1.1 Introduction and the main result 

In this chapter we establish the following 

Theorem 1 Let ft be an arbitrary open set in 2R3 . For all u £ HQ(CI) with Au £ 

L2(Vl), there holds 

sup \u\ < WVuf'2 H A u l l 1 / 2 . (1.1) 

Cl V27T 
The constant \/yj2~Tr is the best possible. 

Throughout this thesis, || • || denotes the L2(Vl) norm. The gradient V and the 

Laplacian A are understood in the distributional sense. The homogeneous Sobolev 

space HQ(Q,) is denned to be the completion of Cfffo) in the Dirichlet norm ||V-1| . 

Inequalities of this type are used in the study of nonlinear partial differential 

equations (see [4, p. 299], [10, p. 12]). For bounded domains with smooth boundaries, 

an inequality of the form of (1.1), but with a constant depending on the domain, can 

be obtained by combining the Sobolev inequality 

sup |u| < c||u | | ^ ( n ) |H|J / 2
2

( n ) , (1.2) 

with the Poincare inequality 

H<c||Vu||, (1.3) 

and the a priori estimate 

< C I | A « | | • (1.4) 

1 
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The inequality (1.2) has been proven for domains that satisfy a weak cone condition 

[1]. The estimate (1.4) has been proven for domains with C 1 ' 1 boundaries or convex 

domains (see [6]). However, simple examples given in [2] show that (1.4) fails to hold 

for domains with reentrant angles. 

For bounded domains with possibly nonsmooth boundaries, the pointwise bound 

sup|u| < c||Au|| (1.5) 
n 

is known [8], with a constant c depending on the domain. In comparison, Inequality 

(1.1) has a smaller exponent on | | A u | | . For some applications, it is crucial that this 

exponent is less than one (see the remark in Section 2.4). In Section 1.5, as a corollary 

of the inequality (1.1), we give a bound for the constant c. 

Our proof of the inequality (1.1) is independent of such Sobolev inequalities and 

a priori estimates for elliptic equations, and of the various methods that are used in 

proving them. The key idea in the proof is to estimate the maximum value of the 

quotient \u(x)\/ | | V u H 1 / 2 || A u H 1 / 2 , where the point x is fixed, and the function u 

varies in the span of a finite number of eigenfunctions of the Laplacian. The method 

can be generalized to other elliptic operators and to other domains. Some of these 

generalizations will be given by the author in separate papers. 

That an inequality of the form (1.1) should be valid for arbitrary open sets was 

suggested to the author by Professor J. G. Heywood. He conjectured that an anal

ogous inequality also holds for the Stokes operator, and can be combined with the 

methods of [3] and [4] to obtain a regularity theory for the Navier-Stokes equations 

in arbitrary open sets. Partial results toward the proof of the analogous inequality 

for the Stokes operator have been obtained by the author. An existence theorem for 

smooth solutions of Burgers' equation based on (1.1) and the methods of [4] and [3] 

is given in Chapter 2. 
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1.2 Proof of the inequality for bounded smooth domains 

In this section, we assume that fl is bounded, with a C°° boundary 9f2. It is well 

known that the eigenfunctions of —A can be chosen to form a complete orthonor-

mal basis for L2(f2). Let <f)n denote the eigenfunctions, and An the corresponding 

eigenvalues. Then <f>n £ C°° (f l ) , An > 0, and they satisfy 

—A<̂>n = \n(f>n , <l>n\dQ = 0, ||̂ n|| = l , (ra = l,2, •••), 

/ <t>i<f>j dx = Q, {i^j). 

Our proof of (1.1) has three steps. 

Step 1. We first consider functions of the form 

m 

U( X) = X) Cn<t>n{x) , 

where c\, • • •, cm are real numbers. We have 

m m 

n—1 n = l 

Hence, for any y € f l , 

(1.6) 

Vn=l / \ n = l 

Let y and m be fixed. Then this quotient is a smooth and homogeneous function 

of (ci,---,cm) in JRm\{0) . Hence it attains its maximum value at some point 

(ci, • • •, cm), i.e., when the function is u = Y^=\ ^n<i>n • This maximum value is 

greater than zero, by the well-known fact that <f>i(y) ^ 0 . Differentiating 

l o g i i v . ' n L i i 5 5 l 0 i " 2 { y ) ' \loe 1 1 V "" 2 - 5 l o g l | A u | 1 2 
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with respect to cn at the critical point, we get 

2<Mv) Anc„ A 2c n 
= 0 , 

u(y) ||Vu||2 ||Au|p 

for n = l , - - - , m . Letting p, = || A£i||2/|| Vu||2 , we obtain 

^(y) v -
/i + A B ~ | | A « | P W 

Hence 
^ / 2 ^ ( y ) \ 2 / u(y) V ^ 2 2 u (̂y)_ 

BtiU + A j l l|Afi|p ; ^ " » ||Afi||» 

Therefore the maximum value of the quotient (1.6) is 

u\y) \\Au\ 
|Vu||||Au|| ||Vfi| I | A U | | 2 - 4 ^ U + AJ • ( L 7 ) 

Step 2. To bound the right hand side of (1.7), we use the Green function for the 

Helmholtz equation and its eigenfunction expansion. Let y and u be fixed as above, 

and let 
e-y/t\x-y\ 

s(x) = h—f- <L8) 
47r|x — y\ 

It is easy to verify that Ag(x) = pg(x) for all x ^ y . Let h(x) satisfy 

Ah = ph, h\dQ — g\au . 

There is a unique solution h 6 C°°(f l ) , since p > 0 and the domain is bounded 

and smooth. The function h(x) attains its minimum value at some point i i 6 fl. 

If xy G dft, then h(xi) = g(x\) > 0 . If x\ 6 fl, then Ah(xi) > 0 , and hence 

M x i ) = (1/A4)A/I(XI) > 0 . Therefore, we always have h(x) > 0 in fl. Let G = g—h. 

Then 

AG = fiG in fl\{y}, G\dU = 0 . 

We obtain G(x) > 0 in fl\{j/} similarly. Hence we have 0 < G(x) < g(x) for all 

x 6 ^\{y} , and therefore 
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Let J l j C O be a ball centered at y with radius e. For any n > 1 , we have 

/ 0„AC7 - GA<j>n) dx= f U n ^ ~ dS, 
Ju\n€ Jd(n\nc) \ ou ou J 

by Green's formula, where u is the outward normal to the boundary. Hence 

/ (p + K)G(f>n dx = - f (<f>n^r ~ G ^ 1 ) dS , 
JQ\QC Jr=€ \ Or Or J 

where r = |x — y\. Since G has the same type of singularity as l/47rr, by letting 

e —• 0, we obtain 

(/* + AN) / G<f>ndx = <j>n{y). (i-io) 
JQ 

Therefore, by Parseval's equality, 

\ G2dx = J2( G<f>ndx) = £ 2 00 '*»(y)V 
^ + Any 

This, together with (1.9), provide a bound for the maximum value (1.7): 

u2(y) 
< Ay/u I G2 dx < = ^~ 

||Vu||||Au|| - v W n ~ 2TT' 

Thus we have proven Inequality (1.1) for all functions of the form u = cn<f>n • 

Step 3. Now, let u be any function in HQ(VI) with Ait 6 L2(Vt). Since Cl is 

bounded, we have HQ(CI) C L2(Cl) by virtue of the Poincare inequality. Hence we 

have the expansion u = Y^i^^n in L2{Ci), where cn — fnu<f)ndx. Let um = 

Yl™=i cn<f>n • Integrating by parts, we have 

/ V « • V u m dx = — uAum dx — y2 Ancn / ucj>n dx = \nc2 = ||Vum||2 . 
J a J Q n = l J n n = l 

Hence we get ||Vum|| < ||Vu|j by using the Schwarz inequality. Similarly, from 

/ A « m A u rfi = — A„cn / <f>n Au dx — — Anc„ / uAcj)ndx 
Jn ~i Jn ~. Jn 

7 1 = 1 7 1 = 1 
m 

= £ « = ||Aur 
"m||2 j 

n = l 
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we get ||Aum|| < ||Au||. Therefore, by the result of Step 2, we obtain 

sup |um|2 < ± - ||Vum|| ||Aum|| < -J- ||Vu|| ||Au||. 

By a well-known interior regularity theorem for elliptic equations, Au £ L2(tt) 

implies u £ H2
oc{fl), which in turn implies that u £ C ( A ) , by a well-known Sobolev 

imbedding theorem. Now, if (1.1) were not true, then there would be some x0 £ fi 

such that 

\u(x0)\2 > ||Vu|| ||Au|| > sup |um|2 , 
Z 7 T n • 

which is obviously contradictory to the fact that limT n_ ).0 0 \\um — u\\ = 0. This 

completes the proof of (1.1) for bounded smooth domains. 

1.3 Proof of the inequality for arbitrary domains 

Let fi be an arbitrary open set in IR?, and suppose that u £ H^ft) and Au £ 

L2(fl). We can choose a sequence of bounded domains fln with smooth boundaries, 

such that fl\ C O2 C • • •, and IJSLi An = fi • For each n > 1, there exists a unique 

un £ /z~o(̂ n) such that 

/ Vun-Vvdx=f Vu-Vvdx, V v £ H^(fln), (1.11) 

by the Riesz theorem. We get || Vun||£2(o,n) < ||Vit|| by letting v = un and using the 

Schwarz inequality. Integrating by parts on the right hand side of (1.11), we obtain 

/ Vun-Vvdx = -f (Au)vdx, V v £ #o(A„), 

and hence Aun = Au\un . Therefore, by the result of Step 3, we have 

sup K|2 < i - ||Vu n|| L 2 ( f 2 n ) ||Atxn||L2(n„) < i - ||V«|| ||Au||. (1.12) 

Setting un equal to zero in fl\fln , we get un £ H^fl) • From (1.11) we have 

lim / Vun-Vvdx= j Vu-Vvdx, V v £ CZ°(fl). 
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This and ||Vwn|| < ||Vu|| imply that lim^oo un = u in H^ft) . Therefore, by the 

inequality ||w||z,6(n) < c||Vt>|| (see [6, p. 10] for a simple proof giving c — \/4&), we 

have linin^oo \\un — « | | L 6 ( O . ) = 0. This and (1.12) imply (1.1) by reasoning similarly 

as in Step 3 above. 

1.4 Proof that the constant in the inequality is optimal 

We first consider the case fl = IR3 . Define 

u(x) = f(r) = < 1 - c -
r = 0, 

, r > 0 , 

where r = |x|. The function u is continuous, with a maximum value u(0) = 1. We 

notice that U/ATT is equal to the difference between the fundamental solution for the 

Laplace equation, and that of the Helmholtz equation ((1.8), with u = 1). Hence we 

immediately obtain Au — —e~r/r in the distributional sense. We have Au £ L2(fl) 

since 

|Au|2 dx = jT° ) 4?rr2 cir = 2?r. 

Integrating by parts (which is easily justified), we obtain 

f IT-, ,i i f * , f°° 1 ~ e~r e _ r 

/ Vu di — — I uAudx = / 

JJR* 7JR3 Jo r 

4 7 r r 2 dr = 2ir 

Hence, the equality in (1.1) actually occurs for the function u . 

To show that u £ HQ(]R3) , we modify the function u to define a sequence of 

functions. Let / ' denote df/dr. For each n > 1, let 

/'(1/n) 

un(x) 

2n 

f'(n)2 

4/(n) 

0, 

( n V - l) , 0 < r < 1/n, 

1/n < r < n, 

, n < r < rn = n 

rn < r < oo. 

2/(n) 
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It is easily seen that un G CQ(M3) and that un is piecewise C 2 . By explicit calcu

lation, we find that 

Jim | | V ( u B - u)\\L2(E?) = 0. 

Hence u G HQ(M3) . (It is interesting to note that u g" HQ(1R3) since u g" L2(M3)). 

By explicit calculation, we also find that 

lim u„(0) = 1, lim ||A(u„ - u)\\L2tR3) = 0. 

Hence 

^ H V U n l l ^ H . ) ||Au n ||$ R 3 ) l l V u l l ^ , | | A U | | ^ K 3 ) V 7 ^ ' 

We now consider an arbitrary open set fi. Let \x — xo\ < e be a ball contained 

in it. For each n > 1, define vn(x) = un(er~1(a; — x0)). Then u n vanishes outside 

the ball. Clearly, we have vn G Cl(fi) and A v n G L 2 ( f i ) , for all n = 1,2, • • • . It is 

easy to verify that 

Vn(xo) _ Un(0)  

\\Vvn\\^2\\Avn\\^2 - | | V u n | | # w ) | | A u n | | ^ 3 ) ' 

Noticing (1.13), we conclude that the constant l/y/2n in Inequality (1.1) cannot be 

improved, for any given domain. This completes the proof of our theorem. 

1.5 Corollaries 

In this section, we give several immediate corollaries of Theorem 1. Let fl denote 

an arbitrary open set in JR3 , except in Corollary 4. Note that the constants in the 

corollaries are not claimed to be the best possible, except for the special case stated 

in Corollary 1. 

Corollary 1 / / u G H^{fl) a n d A u G L 2 ( f i ) , then 

sup|u|<^=(||Vu||+ | | A u | | ) . 

The equality occurs for some functions in the case fl = M3 . 
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Corollary 2 If u £ HQ(Q) and Au £ L2(ft), then u satisfies 

sup |u|< -)= Hull1/4 || A u f / 4 . 
n V27T 

Corollary 3 // u £ H^(Ct) and Au £ Z2(fi), tfien 

8 u p H < - L = ( H + 3 | | A u | | ) . 
n 4v27r 

Corollary 4 Let fl 6e an open set in Ft3 such that the Poincare inequality 

\\u\\ <7||Vu||, Vu£ J ff 0
1 (A) (1.14) 

holds. Then, for all u £ HQ(Q,) with Au £ L2{Vi), there holds 

ŝ P 1̂ 1 < 7^||Au||. 

Proof of the corollaries. Corollary 1 follows from Inequality (1.1) directly and the 

example given in Section 1.4. Corollary 2 follows from (1.1) by using 

||Vu||2 = - / uAudx < ||u|| ||Au||. (1.15) 

Corollary 3 follows from Corollary 2 and Young's inequality. Corollary 4 follows from 

(1.1), since we have ||Vu|| < 7 ||Au|| from (1.15) and (1.14). 

It is easy to show that Theorem 1 and the corollaries are also valid for vector-

valued or complex-valued functions. 

1.6 Pointwise bounds for eigenfunctions of the Laplacian 

As a special case of Corollary 2, we have 

Theorem 2 Let fl be an arbitrary open set in M3 . If A > 0 and <f> satisfy 

-A<f> = \<j>, teH^n), p>|| = i , 

then 
A 3 / 4 

sup |̂ | < Q V27T 
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That is, we have a pointwise bound for any eigenfunction <f> of the Laplacian, 

depending only on the corresponding eigenvalue A . As in Corollary 2, the constant 

here is not optimal. We give a better constant in the theorem below. 

Theorem 3 Let fl be a bounded open set in M3 with a smooth boundary. If A > 0 

and (j) satisfy 

-A<t> = \<f>, 4>£Hl
0(fl), U\\ = \ , 

then 

T w s \ / ! ( f ) 3 / 4 - ( 1 1 6 ) 

Proof. For any y 6 fl and any p > 0, as the equality (1.10), we have 

(f>(y) = (u + \) I G<j>dx. 
Jn 

B y the Schwarz inequality and (1.9), we have 

\Hy)\ = f> + A) / G<f>a 
Jn 

< ( , + A ) ( / n C 7 ^ x ) 1 / 2 ( / f l ^ ^ 1 / 2 

< ̂ + A)(L^ 2^) 1 / 2 

(p + A) ( — ^ 
1/2 

87ry/jlJ 

The right hand side attains a minimum value when p = A/3 . Letting p, = A/3 , we 

obtain (1.16). 

The following theorem is an analogue of Theorem 3 in two dimensions. 

Theorem 4 Let fl be a bounded open set in M2 with a smooth boundary. If A > 0 

and (f> satisfy 

-A<f> = \<!>, teH^fi), U\\ = i, 

then 

supM<J- . (1.17) 
fi V 7T 
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Proof. In two dimensions, the fundamental solution corresponding to (1.8) is 

= -^Ko(yMx - y\) > 

where KQ is a modified Bessel function. We have 

Hence, similar to the proof of Theorem 3, we have 

The right hand side attains a minimum value when u = A. Letting \i = A , we obtain 

(1.17). 

Since for special domains, the eigenvalues and eigenfunctions are explicitly known 

in terms of special functions, these pointwise bounds can be used to derive inequalities 

for the special functions. 



Chapter 2 

Application to Burgers' equation 

2 . 1 The main result 

In this chapter, we apply the inequality (1.1) to study the following problem for the 

three-dimensional Burgers' equation: 

du _ 
— + u • Vu - Au, 
at 

u(t) G Hl(Cl), (2.1) 
u(0) = UQ . 

Here, the spatial domain 0 is an arbitrary open set in IR3 , and the initial vector field 

«o is given in Hl(Vl) = H^Cl)3. The Burgers' equation is studied for its analogy 

with the Navier-Stokes equations. We establish the following theorem by methods 

which will carry over immediately to the Navier-Stokes equations, if we are successful 

in proving the analogue of (1.1) for the Stokes operator. Hereafter, we use Dt to 

denote the partial derivative with respect -to the time variable (t or s). 

Theorem 5 Let 0 be an arbitrary open set in M3 . Let u0 G HQ(CI) be given. Let 

T _ 256TT2 

27||Vw0||4 ' 

Then there exists a unique vector field u such that 

u G C°°(f2 x (0, T)) n C°°((0, T), Xoo(O)), 

u - uo G C ([0, T), Hl(il)) n C~ ((0, T), Hl(Q)) , 

A w G C°°((0, T), L2(ft)), 

12 
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and satisfies Problem (2.1). The solution also satisfies the estimates: 

\\u(t) - woll2 < tF(t), 

tk+i/2 ||£)*+iu|| + \\DfuWoo + tk \\VDku\\ + tk+1'2 ||ADku\\ < F(t), k > 0, 

j[f(||A«||3 + |Mll, + | | A « | | 2 ) d 8 < F ( t ) l 

J\2k (\\Dk+lu\\2 + s-^ \\Dk
tu\\lo + s'1 \\VDku\\2 + ||A£>M|2) ds < F(t), k > 1, 

for all t £ (0, T) , where the F(t) denotes appropriate continuous functions on [0, T) 

that can be obtained explicitly in terms of k and ||V«o||, independently of f l . 

Theorem 5 is an adaptation and refinement of known existence theorems for the 

Navier-Stokes equations, based on a differential inequality for ||Vu(r)|| , and its ana

logue for Galerkin approximations. The method originated with Prodi [9], who used 

it to prove the existence of generalized solutions in bounded domains. Hey wood [3] 

introduced a further infinite sequence of differential inequalities, to obtain classically 

smooth solutions. He also extended the method to unbounded domains. Heywood 

and Rannacher [4] developed the method further through use of weight functions de

pendent on the time variable to give more precise estimates as t —> 0 + . All of these 

developments are incorporated into the existence theorems given here. 

The principal innovation here is that the nonlinear term is now estimated in a 

new way, using the inequality (1.1), to give results that are not only sharper but also 

valid in arbitrary domains. 

The energy estimate basic to many works on the Navier-Stokes equations is not 

valid for the three-dimensional Burgers' equation. Theorem 5 is independent of it. 

Observe that the solution can have an infinite X2(fl)-norm in unbounded domains. 

We point out that unlike the Navier-Stokes equations, there is a maximum prin

ciple for solutions of Burgers' equation. An existence theorem for Burgers' equation 

based on the maximum principle was given by Kiselev and Ladyzhenskaya [5]. Incor

porating it with Theorem 5, the solution can be continued globally in time. 

file:////DfuWoo
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2.2 Preliminaries 

In this section we list some lemmas that will be used later. 

Notations. We use boldface symbols to denote three-dimensional vector-valued 

functions and their spaces. We use || • ||p to denote the LP(D.) or Lp(tt) norm. When 

p = 2, we simply use || • || to denote the norm, and use (•, •) to denote the inner 

product. We use || • ||oo to denote the supn | • | norm. 

The vector version of Theorem 1. Let fl be an arbitrary open set in JB? . If 

Proof. The inequality (2.2) is obtained by simply applying (1.1) to each component: 

u € iT 0(fl) and Aw 6 L2 (fl), then 

1 (2.2) 

The constant 1 /y/2~w is the best possible. 

3 

oo 

It is obvious that the constant remains optimal. 

Holder's inequalities. If p, q > 1 and l /p+ 1/q = 1, then 

(2.3) 

If p, q, r > 1 and 1/p + l/q + l/r = 1, then 

dx < (J | /| p <k) 1 / P ( / \g\qdxy/q (J \h\rdx) 
l / r 

These are well known. We will use the case p = 6, q = 2, r = 3: 

(2.4) 
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Sobolev inequalities. For all u G C 0
x 3(iR 3), there hold 

H i e < c||V«||, (2.5) 

||u||3 < cHwll^l lVwII 1 / 2 . (2.6) 

A simple proof of (2.5) can be found in [6, p. 10], with c = \/48. Letting 

p = 4/3,? = 4 and / = g = |u|3/2 in (2.3), we obtain 

\3/4 / » \ 1/4 
J \u\3dx < (J \u\2dx^j (J \u\*dx^ 

Combining this with (2.5), we obtain (2.6). 

Young's inequality. If a,6,p, q > 0 and l/p + l/q = I, then 

ap bq 

a f e <^_ + L . (2.7) 
p q 

2.3 Galerkin approximations 

Similar to Section 1.2, we first assume that fl is a bounded open set in M3, with a 

C°° boundary d f l . The vector-valued eigenfunctions of —A can be chosen to form 

a complete orthonormal basis for £ 2 ( f l ) . Let <pn denote the eigenfunctions, and An 

the corresponding eigenvalues. Then <pn 6 C°°(f l ) , An > 0, and they satisfy 

-A<pn = An<£n, <pn\att = 0, ||<pn|| = l , (n = l,2,-.-), 

(</>,, <p,) = 0, (i^j). 

These eigenfunctions and eigenvalues can be obtained immediately from their scalar 

counterparts. 

We seek Galerkin approximations in the form 

TO 
«m(M) = 53C(*)*n(*) 

n-1 

where the cm(£) are smooth functions of t. The advantage of using this form is that 

dum/dt and Aum are also linear combinations of the first m eigenfunctions. Let 
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um satisfy 

— -Aum+um-Vum,<pn\ = 0, (2.8) 

( u m ( - , 0 ) - « o , cj>n) = 0, (n = l ,2 , - . . ,m) , (2.9) 

i.e., 
j m 

- C ( t ) = - A n C ( i ) - E ^ - ^ ^ n W W , 
d * . J = i (2.10) 

C (0 ) = ( « o , < £ „ ) , ( n = l , 2 , - - - , r o ) . 

To find a time interval on which the solution exists, we need a priori estimates. 

Hereafter we suppress the superscript m. From (2.8) we obtain 

(Dk+1u-ADku + Dk(u-Vu), v) =0, V v G spanf^, • • •,<pm} . (2.11) 

In particular, we can take v = D\A^u. Here i,j,k>0. 

2.4 Main estimates 

Let h = 0 and let v = Aw in (2.11). We get 

I|||W||2+ ||Au||2 = ( u - V u , A«) (2.12) 

< M o o ||Vti|| ||Ati|| (2.13) 

< -j= ||V«||3/2 ||A«||3/2 (2.14) 

< ^ ( a - 6 | | V W f + 3a2||A«||2) (2.15) 

= C7e||V«||6 + e||Aw||2. (2.16) 

We obtain (2.12) by integration by parts; (2.13) by using the Schwarz inequality; 

(2.14) by using (2.2); (2.15) for any a > 0, by using Young's inequality (2.7); and 

(2.16) by letting 
_ 3a2 _ a~6 27 

e — —;= , C, — 
4v/27' ' 4 ^ 10247r2e3' 

Hence 

~l|V«H2 + (l-e)||Au||2<C7£||V«f. 
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Let 

¥>(*)= ||V«(*)U2 4-2(l - e ) f \\Au(s)r ds . 
Jo 

Then, when 0 < e < 1, we have 

d 
-<p(t)<2C^(t), V(0)= ||V«(0)||2. 

Comparing this with 

j $ { t ) = 2C^\t), $(0) = ||V«o||2, 

and noticing that we have ||Vu(0)||2 < ||VM 0|| 2 from (2.9), we obtain 

^ ) < $ W = (||V W o||- 4-4C7 £ i ) - 1 / 2 , 

||Vtt(t)||: 

where 

+ 2(1 - e) f \\Au(s)\\2ds < . l | V " ° 1 1 2 , (0 < t < e3T) 
J o yj\ - t/e3T 

256TT 2 

27||Vu0|h 
Letting e = 1 we obtain 

, 2 ^ I I V U O H 2 

l | V w W " 7rf / r ' ( 0 - t < r ) - ( 2 - 1 7 ) 

Letting e = ^Jt/T , we obtain 

/ * ||Aw||2^ < l | V " ° 1 1 2 (0 < t < T). (2.18) 
2(l-fi/T)y/l-y/t/T 

Since ||Vu(*)||2 = £ m
= 1 An|cm(f)|2, the a priori estimate (2.17) ensures that the 

solution of the o.d.e. system (2.10), hence the Galerkin approximation, exists on the 

interval [0, T), with T independent of m and Cl. 

Remark. If the inequality (1.5) is used instead of (1.1), one would obtain 

\ft\\Vu\\2+ ||A«||2<c||Vu||||AU||2, 
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which does not lead to a bound for ||Vw||, unless one restricts the initial values to 

those satisfying c||Vtt0|| < 1 • 

2.5 Further estimates 

To prove the smoothness of the solution, we need further a priori estimates. We first 

prove some differential inequalities. 

We use c to denote a constant that does not depend on m or fi, but possibly 

depends on k . The actual value of c may change at each occurrence. 

Lemma 1 For 0 < t < oo, there hold 

\\Dku\\2 < cHA^-^H 2 

+ c £ IIVA*-1-'"!!2, * > 1, (2-19) 
i=0 

ft\\Dku\\*+ \\WDku\\2 < c(||V«||4
 + l)||DM|2 

+c£ \\VDiu\\2 ||VZ?t
fc-,"«Ha , * > 1, (2.20) 

| ||VA*«||a + ||AAfc«Ha < c(||Vu||* + H|L) ||VD*«||2 

+ * £ WD>\\lo IIV^-^H2 , k > 1, (2.21) 
i=l 

HAfc«l|2oo < c||V2?*u||||AD*u||, k>0. (2.22) 

Proof of (2.19). Letting v = Dk+1 u in (2.11) and using the Schwarz inequality, 

we get 

\\Dk+1u\\ < \\ADku- Dk(u- V«)||. 

Hence 

\\Dk+1u\\2 < 2 ||AAfc«||2 + 2 \\Dk(u • Vu)\\2. (2.23) 

We have 
k 

Dk(u • Vu) = £ cD\u • VZ>*-'ii, (2.24) 
t=0 
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by the Leibniz formula, hence 

\\Dk(u • Vu)|| < cjz \\D\u\U \\VDkru\\. (2.25) 
«'=o 

Using this in (2.23) and replacing k by k — 1, (2.19) is obtained. 

Proof of (2.20). Letting v = Dku in (2.11) we get 

\jt\\Dk
tu\? + \\VD'u\\2 = -(Dl(u.Vu),Dku) (2.26) 

< c ^ l p i t t l l f l l l V D f - u l l l l A ^ l l a (2.27) 
j'=0 

< l|VZ?;u|| ||Vflf-'u|| \\Dku\\^\\VDku\\^ (2.28) 
i=0 

< i ||V£>*«||3 + c ( ||V«||4 + l) \\Dk
tu\\2 

+ c £ II VD\uf || V^-wH2 . (2.29) 
i=i 

We obtain (2.26) by integration by parts; (2.27) by using Leibniz's formula (2.24) and 

Holder's inequality (2.4); (2.28) by using Sobolev inequalities (2.5) and (2.6); (2.29) 

by using Young's inequalities. Hence (2.20) is proved. 

Proof of (2.21). Letting v = AD*u in (2.11) we get 

ld_ 
2dt \j\\VDk

tu\\2+\\&Dku\\2 = (Dk(u.Vu),ADku) 

< \\\ADku\\* + c\\Dk(u.Vu)\\\ (2.30) 

From (2.25), we have 

\\Dk(u.Vu)f < i||ADNH2 + c||V«|H|VAfc«||2 

k-i 

+cE||JD>||Ll|VAfc-tw||2, (2-31) 
i=0 

since 

IPMIL liv«||2 < ^ ||VAfc«ll \\&Dku\\ ||W||2 

< i||AAfc«ll2 + c||vw||4||VAfc«ir, 

file:////D/u/U
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by using (2.2) and (2.7). The inequality (2.21) follows from (2.30) and (2.31). 

Proof of (2.22). This is directly obtained by applying (2.2) to the function u. 

Now, differential inequalities (2.20) and (2.21) cannot be integrated directly, be

cause we do not have initial values at t = 0. To overcome this difficulty, we will 

follow the method of Hey wood and Rannacher [4], introducing the weight functions 

Lemma 2 Suppose ip, xp, ct, /3 E C 1(0,T) are all non-negative and satisfy 

-£ + tp < oap + P, (0 < t < T). 

Suppose also that 

where n is a positive integer and F\,F2,F3 £ C[0,T) . Then we have 

where F4 = (F 3 + nFi) exp F2 £ (7[0, T). 

Proof. We have 
d 

— ( t » + tnif> < atn(p + tN(3 + nt71'1^. 
dt 

For 0 < e < t < T, let $£(r) = tn(p(t) + f snr^(s) ds . Then 

dt 

Hence 

$e(<) < e"cp(e) + / ' exp (- f' a dr) [snp + n s n " V ds exp ads 

< [eV(e) + F3(t) + nF^t)] exp F2(t) 
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for t<t<T. The existence of / sn 1ip(s)ds implies that 
Jo 

liminfeTV(<0 = 0, 
£—0+ r W ' 

completing the proof of the lemma. 

Now, corresponding to Lemma 1, we prove the following estimates. 

Lemma 3 For 0 < t < T, there hold 

/V1"2 ll/J>||2d5 < F(t), i>l, (2.32) 
Jo 

i 2 * ' " 1 II D\u\\2 + /V'"1 \\VD\ufds < Fit), i>l, (2.33) 
Jo 

r2 i ||VD;u||2 + [*s2i\\AD\u\\2ds < F(t), z>0, (2.34) 
Jo 

f s^WDiuWlds < F(t), i>0, (2.35) 
Jo 

where the F(t) denotes generically a continuous and increasing function on [0, T) 

depending only on i and ||Vwo|| > independent of fl and m . 

Proof. We obtain (2.34-0) from (2.17) and (2.18), and then obtain (2.35-0) by using 

(2.22-0). 

From (2.34-0) and (2.35-0), we see that the coefficients in the differential inequal

ities (2.20) and (2.21) are integrable, i.e., they satisfy the condition set for a in 

Lemma 2. 

We proceed by mathematical induction. Let k > 1 and assume that (2.32)-(2.35) 

are true for i < k — 1 . 

From the assumption and (2.19) we have 

f s2k-2\\Dku\\2ds < c f s^WAD^ufds 
Jo Jo 

+cE f {s2k~2-2t llVZ^-'wH2) (s2' ||L>||2) ds 
i=0 J o 

< F(t). 

file:////VD/ufds
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Hence we obtain (2.32-k). This technique of appropriately distributing the weight 

functions will be repeatedly used below without further comment. 

With (2.32-k) and the assumption, we can apply Lemma 2 to the differential 

inequality (2.20) to obtain (2.33-k), which in turn enables us to apply Lemma 2 again 

to the differential inequality (2.21) and obtain (2.34-k). Finally, we obtain (2.35-k) 

from (2.22). This completes the proof. 

Lemma 4 For 0 < t < T, there holds 

t2i+1 \\ADiu\\2 < 

t2i+1/2\\Dlu\\l < 

Proof. Letting v = ADku in (2.11) we get 

||ADku\\2 < 2 \\Dk+1u\f + 2\\Dk(u • Vu)\\2. 

Using (2.31) we obtain 

||A£>M|2 < c\\Dk+1u\\2 + c\\Vu\\4\\VDku\\2 

+cE\\Diu\\l\\VDtiu\\2. (2.38) 
»=o 

Using the estimates obtained in Lemma 3, by mathematical induction on (2.38) 

and (2.22), the proof is completed. 

2.6 Proof of the theorem 

With the estimates given in Lemma 3 and Lemma 4, we can follow the argument in 

[3] to prove the existence and regularity of the solution of Problem (2.1), as asserted 

in Theorem 5. The solution in the bounded smooth domain is obtained as a limit 

of a subsequence of the Galerkin approximations. Given an arbitrary domain, we 

can choose a sequence of bounded smooth subdomains expanding to the domain, and 

F(t), i > 0 , 

Fit), » > 0 , 

(2.36) 

(2.37) 
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solve the problem in each subdomain with properly chosen initial data, and take a 

subsequence of these solutions which converge to the solution in the given domain. 

The estimates carry over in the above mentioned processes of taking limits. 

Thus, we need only prove the uniqueness of the solution. 

Suppose v is another solution. Let w = v — u. Then 

dw 
— + u • Vto + w Vu + w • Vw = Aw , (2.39) 

and 

Km||V«»(t)|| = 0. (2.40) 

Multiplying (2.39) with Aw and integrating over 0, we get 

ij4||Vu>||2 + ||Au>||2 = (u • Vw + w • Vu + w • Vw , Aw). 

We have 

{u-Vw,Aw) < Halloo [|Vw|| ||Aw|| 

< ^WAwr + cWuWlWVwf, 

(w-Vu,Aw) < \\w\loo \\Vu\\ \\Aw\\ 

< clival 1/ 21|V«|| ||Aw||3/2 

< i||A«,||2 + c||VW||4||V«;||2, 

(w-Vw, Aw) < I I I O I I ^ H V I O I I I I A I D I I 

< C||V«J||3/2||AU.||3/2 

< | | | A « | | A + C||Vtc||6, 

using the inequality (2.2) and Young's inequality. Hence 

dt 

Since 

||VH| 2 <c(H| 2
0+ l|Vu||4) ||V«,||2 +c||V«;| 

j f (NIL + liv«||4) ds < F(t) 

file:////w/loo
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and we have (2.40), it is easy to prove that || Vu>(<)|| = 0 for all 0 < t < T. Hence 

w(t) = 0. 

R e m a r k 1: If a bounded portion of the boundary of 0 is Cm , then D*[u(x,t) is 

uniformly Cm up to that portion of the boundary, for all k . 

R e m a r k 2: If we consider Burgers' equation with a "viscosity coefficient" v. 

du 
— + u • V u = i/Att, 

then T should be multiplied by v3 . If we consider nonhomogeneous boundary values 

and an external force term, then we can prove a similar theorem of local existence 

and uniqueness of the solution, with T depending on the given data. 
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