INVOLUTIONS WITH 1- OR 2-DIMENSIONAL FIXED POINT SETS ON ORIENTABLE TORUS BUNDLES OVER A 1-SPHERE AND ON UNIONS OF ORIENTABLE TWISTED I-BUNDLES OVER A KLEIN BOTTLE by WOLFGANG HERBERT HOLZMANN B.A., University of Calgary, 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES. DEPARTMENT OF MATHEMATICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1984 © Wolfgang Herbert Holzmann, 1984 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. | Department | of | Mathematics | |------------|----|-------------| | _ | | | The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date April 23rd, 1984 # Thesis Supervisor: Dr. Erhard Luft #### Abstract We obtain a complete equivariant torus theorem for involutions on 3-manifolds M. M is not required to be orientable nor is $H_1(M)$ restricted to be infinite. The proof proceeds by a surgery argument. Similar theorems are given for annuli and for discs. These are used to classify involutions on various spaces such as orientable twisted I-bundles over a Klein bottle. Next we restrict our attention to orientable torus bundles over S¹ or unions of orientable twisted I-bundles over a Klein bottle. The equivariant torus theorem is applied to the problem of determining which of these spaces have involutions with 1-dimensional fixed point sets. It is shown that the fixed point set must be one, two, three, or four 1-spheres. Matrix conditions that determine which of these spaces have involutions with a given number of 1-spheres as the fixed point sets are obtained. The involutions with 2-dimensional fixed point sets on orientable torus bundles over S^1 and on unions of orientable twisted I-bundles over a Klein bottle are classified. Only the orientable flat 3-space forms M_1 , M_2 and M_6 have involutions with 2-dimensional fixed sets. Up to conjugacy, M_1 has two involutions, M_2 has four involutions, and M_6 has a unique involution. | Table o | f Cor | itent | <u>. S</u> |---------|-------------|-------|------------|-----|------|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|---|---|---|-----| | Abstrac | t | | | • | | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | ii | | List of | figu | ıres | | • | | • | • | • | • | • | | • | • | • | • | • · | • | • | • | • | v | | Acknowl | edger | nent | | • | | • | • | • | • | • | | • | • | • | • | • | | • | • | | vi | | Introdu | ction | n . | | • | | • | • | | • | • | | • | • | • | • | • | • | • | • | • | . 1 | | Chapter | I. E | quiva | ariar | t T | ran | sve | rs | ali | ty | a | nd | Di | sc | Tì | nec | ore | ems | S . | • | • | • | 4 | | | ∮ 1. | Prel | imi | ņar | ies | | • | • | • | •, | | | | • | • | • | • | • | • | • | 4 | | | ∮ 2. | Equi | var | ian | t T | ra | nsv | er | sa | li | ty. | | • | • | | • | • | | • | • | 8 | | II. I | nvol | ution | 15 0 | n t | he | 3- | Ce] | 1 | an | đ | the | S | ol: | id | To | ori | ıs | • | | | 25 | | | § 3. | Some | e In | vol | uti | on | s. | • | • | • | | • | • | • | • | • | • | • | • | • | 25 | | | ∮ 4. | Invo | lut | ior | 5 C | n | the | e S | ol | id | ТС | ru | s. | • | • | • | • | • | • | • | 31 | | III. E | quiv | arian | nt A | nnı | ılus | a | nd | Тс | ru | S | The | or | em | 5. | • | • | • | • | • | • | 42 | | | § 5. | Annı | ılus | Th | eor | em | s. | • | • | • | | | • | • | • | • | • | • | • | • | 42 | | | ∮ 6. | Equi | ivar | iar | t I | or | us | Th | eo | re | m. | | • | | | ٠ | • | • | • | • | 48 | | IV. I | nvol | ution | ns c | n C | rie | ent | ab] | le | 1- | Bu | ndl | les | 0 | vei | r | | | | | | | | | | Tori | i an | d F | lei | in | Bot | ttl | .es | | • | | • | | • | • | • | • | • | • | 62 | | | ∮ 7. | Inv | olut | ior | s c | n | the | P | ri | vi | al | I- | Bu | nd: | le | | | | | | | | | | Ove | r a | Tor | us. | | • | • | • | • | • | | | • | • | • | ٠ | • | • | • | 62 | | | ø 8. | Inv | olut | ior | s c | on | the | e C | ri | en | tal | ole | I | -B | un | dle | Э | | | | | | | | 0 | | עו. | in | Р. | ++. | 1 _ | | | | | | | | | | | | | 76 | | V. Involutions on Orientable Torus Bundles Over a | |--| | 1-Sphere and on Unions of Orientable Twisted | | I-Bundles Over Klein Bottles 90 | | ∮9. Involutions With 1-Dimensional Fixed Sets 90 | | ∮10. Involutions With 2-Dimensional Fixed Sets . 110 | | Bibliography | . . | List | of | Figures | |------|----|---------| . • | Figure | 1. | • | 6 | |--------|-----|---|---|---|---|---|---|---|---|----|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|----| | Figure | 2. | • | • | • | • | • | • | • | • | | • | • | • | • | | • | | | • | • | • | • | • | • | • | 9 | | Figure | 3. | • | • | • | • | • | • | • | • | | • | • | • | • | | | | • | • | | • | • | • | | | 24 | | Figure | 4. | • | • | • | • | • | • | | • | •, | • | • | • | • | • | • | • | • | | • | • | • | • | • | | 27 | | Figure | 5. | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | | | | • | • | • | | • | | 32 | | Figure | 6. | • | • | • | | • | • | | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | | 43 | | Figure | 7. | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | | • | • | • | • | • | 50 | | Figure | 8. | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | | • | • | | • | • | 53 | | Figure | 9. | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | 55 | | Figure | 10 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | 63 | | Figure | 11 | • | • | • | • | • | • | • | • | • | • | • | • | • | • . | • | • | • | | | • | • | • | • | • | 78 | | Figure | 12 | • | 99 | | Figure | 1 2 | # Acknowledgement I wish to thank my supervisor, Dr. Erhard Luft, whose guidance and encouragement have been invaluable to me. Also I wish to express my gratitude to the Natural Sciences and Engineering Research Council of Canada and the University of British Columbia for providing me with financial support. I appreciate the efforts of numerous other persons who in various ways contributed to the completion of this project. With Sinan Sertöz's helpful suggestions the numerous problems encountered in producing this thesis on a computer were overcome. I wish to thank my parents for the help that they have given me in many ways. #### INTRODUCTION We investigate the problem of classifying involutions with 1-dimensional or 2-dimensional fixed sets on orientable torus bundles over S¹ or on unions of orientable twisted I-bundles over a Klein bottle. Cutting these spaces on incompressible tori T gives trivial I-bundles over tori or orientable twisted I-bundles over a Klein bottle. Chapter III we prove a complete equivariant torus theorem for involutions. This theorem allows the cutting to be done in a manner that respects both the involution ι and the fixed set Fix, i.e., such that either $\iota T \cap T = \emptyset$ or $\iota T = \emptyset$ T and T and Fix are transversal. The problem then reduces to one of classifying involutions on trivial I-bundles over tori or orientable twisted I-bundles over a Klein bottle. Such theorems have been proved in [8] and [14] but under additional hypotheses, such as, the first homology being infinite and the manifold being orientable. In [11] an equivariant torus theorem was proved under the assumption that the fixed set is a number of isolated points. Our theorem extends these results. In the nonorientable case we may have to allow the cutting torus to be replaced by a Klein bottle. Even in the orientable case two types of exceptional cases are possible. To prove the equivariant torus theorem cut and paste techniques are used. An equivariant transversality theorem is also required. In the two dimensional case when M is nonorientable transversality can not be guaranteed. Certain interesting exceptional points arise; these will be called saddle points. Saddle points must be treated separately in the surgery arguments. Analogous to the torus theorem are the annulus and disc theorems. These theorems are used in Chapter IV to classify the involutions on the trivial I-bundle over a torus and on the orientable I-bundle over a Klein bottle. Let M denote an orientable torus bundle over S¹ or a union of orientable twisted I-bundles over a Klein bottle. In [6] Kim and Sanderson have classified the orientation reversing involutions on orientable torus bundles over S¹. Our techniques allow us to classify the involutions with 2-dimensional fixed point set on all M. A subclass of these spaces are the orientable flat 3-space forms M₁, M₂,···M₆, see Wolf [15]. M₆ is not a torus bundle and H₁(M₆) is finite. We show in ໑10 that M₁, M₂ and M₆ are the only M having involutions with 2-dimensional fixed point sets. These involutions are determined up to conjugacy. The case of 1-dimensional involutions on these spaces is far less restrictive. Each of the orientable space forms has involutions with 1-dimensional fixed point sets but these are
not the only M with such involutions. We determine in §9 which spaces M have involutions with 1-dimensional fixed point sets. We do not deal with the problem of uniqueness in this thesis. Several topics for further research present themselves. For example, classify the involutions on the nonorientable torus bundles over S¹. Can an equivariant theorem be proved for surfaces of higher genus? One could also investigate how the results would generalize from involutions to n-cyclic actions and finite group actions. #### I. EQUIVARIANT TRANSVERSALITY AND DISC THEOREMS # ∮1. Preliminaries Use \square , \square and \square to denote set intersection, union and subset. \square does <u>not</u> denote disjoint union. Use upper indices to indicate dimension. Throughout we use the piecewise linear category. This is to avoid wild fixed sets which can arise in the topological category, see [1]. A piecewise linear homeomorphism will be called an isomorphism. ## Definition 1.1 Let M be a manifold with boundary ∂M and F a submanifold of M of lower dimension. F is proper if $F_{\square} \partial M = \partial F$. In particular a point is proper in M only if it is in the interior of M. We will assume that all submanifolds are proper. F will usually denote a surface, a compact connected manifold. A surface F in a 3-manifold M is **incompressible** if F is not a 2-sphere or 2-cell and if for each 2-cell B in M with $B_{\square}F=\partial B$ there is a 2-cell D $_{\square}F$ with $\partial D=\partial B$. A manifold M is **irreducible** if each 2-sphere in M bounds a 3-cell in M. Let M be a connected compact 3-manifold. An involution ι is an isomorphism with $\iota \neq \mathrm{id}$ and $\iota^2 = \mathrm{id}$. Let Fix denote the fixed set Fix=fix(ι)={x: ι (x)=x}. Let ι be an involution on a manifold M and ι ' an involution on a manifold M'. ι and ι ' are conjugate if there is an isomorphism h:M—>M' with ι '=h. ι .h⁻¹. Call h a conjugation between ι and ι '. of ι and an isomorphism $h_0:\partial M\longrightarrow \partial M'$ with $\iota'|_{\partial M'}=h_0\cdot\iota|_{\partial M}\cdot h_0^{-1}$ then there is a conjugation $h:M\longrightarrow M'$ extending the isomorphism h_0 . Note that if ι is conjugation extendable then so is any conjugate ι' . Further, to show conjugation extendability it suffices to check the case $\iota'=\iota$. ι is conjugation extendable with respect to a class H of isomorphisms $\partial M \longrightarrow \partial M'$, depending on the choice of conjugate ι' of ι , if at least for any $h_0 \in H$ with $\iota' \mid = h_0 \cdot \iota \mid \cdot (h_0^{-1})$ there is a conjugation $h: M \longrightarrow M'$ extending the isomorphism h_0 . The following construction will be used often. See Figure 1. Let $M=B_{\square} \iota B$ with $B_{\square} \iota B=\partial B_{\square} \partial \iota B$ and similarly for M' and B'. Let $h_0:B\longrightarrow B'$ be an isomorphism such that $h_0|:B_{\square} \iota B\longrightarrow B'_{\square} \iota' B'$ is a conjugation between $\iota|B_{\square} \iota B$ and $\iota'|B'_{\square} \iota' B'$. h_0 is **extended by equivariance** to $h:M\longrightarrow M'$ if we define $h|_{B}=h_0$ and $h|_{\iota B}=\iota' \cdot h_0 \cdot (\iota^{-1})$. Then h is a conjugation between $\iota|M$ and $\iota'|M'$. Figure 1. ## Lemma 1.2 Given a simplicial subdivision K of M and an involution ι of M there is a subdivision L of K with ι simplicial with respect to L. # Proposition 1.3 Let ι be an involution on a manifold M. Let L be a subdivision of M with $\iota:L$ —>L simplicial and let L' be the first barycentric subdivision of L. Then $Fix=fix(\iota)$ is a subcomplex of L'. Fix is the union of disjoint 0-, 1- and 2-dimensional proper submanifolds. Write Fix^0 , Fix^1 and Fix^2 respectively for the unions of the 0-, 1- and 2-dimensional components of Fix. If $v \in Fix^0 \sqcup Fix^2$ then ι is locally orientation reversing at v. If $v \in Fix^1$ then ι is locally orientation preserving at v. In particular if M is orientable then ι is orientation reversing if $Fix^0 \sqcup Fix^2 \neq \emptyset$ and ι is orientation preserving if $Fix^1 \neq \emptyset$. Proof: Use the following: - 1) Let Δ be a standard m-simplex (with standard subdivision) invariant under ι . Then $\operatorname{Fix}_{\square}\Delta$ is a subcomplex of the first barycentric subdivision of Δ . - 2) If Fix contains a 3-simplex then $\iota=id$. - If $v \in Fix$ is a vertex of int(L) consider the link Lk of v. - 3) If $Lk_{\square}Fix$ contains a 1-cell then $Lk_{\square}Fix$ is one 1-sphere. So $v \in Fix^2$. - 4) If $Lk \sqcap Fix$ consists of m ≥ 0 vertices then $$\chi(Lk/\iota) - m = \frac{1}{2} (\chi(Lk) - m)$$ Since Lk/ι is a surface and Lk is a 2-sphere it follows m=2 and hence $v \in Fix^1$, or it follows m=0 and hence $v \in Fix^0$. QED ## Corollary 1.4 Let ι be an involution on M with fixed set Fix. Then $M/\iota = M/(m \sim \iota(m))$ for all $m \in M$ is a manifold with possible singularities. Fix \cong Fix/ ι a disjoint union of submanifolds Fix⁰, Fix¹ and Fix² with Fix⁰ and Fix¹ proper in M/ι and with Fix² a submanifold of $\partial(M/\iota) = (\partial M)/\iota_{\square}$ Fix². **Proof:** Consider the link Lk of vertices of Fix. QED #### Remark 1.5 The fixed point free involutions on a manifold M correspond to 2-fold coverings by M. If ι is an involution then $M/\iota=M/(m_{\sim}\iota(m))$ for all $m_{\ell}M$ is 2-fold covered by M. Conversely, if $p:M\longrightarrow X$ is a 2-fold cover then define an involution ι by requiring ι to interchange the two points of $p^{-1}(x)$ for every $x_{\ell}X$. ι is the nontrivial deck transformation induced by p. Involutions on M with fixed set Fix correspond to 2-fold coverings by M branched on Fix. $\iota \mid M$ -Fix is fixed point free and p $\mid M$ -Fix is unbranched. # ∮2. Equivariant Transversality In order to be able to perform surgeries on a surface F_0 in a 3-manifold M we would like to perform an ambient isotopy on F_0 such that the isotopic surface F has the property that F, ιF and Fix are pairwise transversal. This can be done if the manifold is orientable. If $Fix^2 \neq \emptyset$ and M is nonorientable, however pairwise transversality is not possible in general. This necessitates using a somewhat weaker form of transversality. ## Lemma 2.1 Let F be a proper surface in a 3-manifold with F, ι F and Fix pairwise transversal. Then the components of F $_{\square}\iota$ F are 1-spheres and proper 1-cells. If C is a component of F $_{\square}\iota$ F with C_{\square} Fix $^2\neq\emptyset$ then C_{\square} Fix 2 . **Proof:** The first statement follows by transversality of F and ιF . The second statement follows on considering the star of a point in $C_{\square}Fix^2$. OED For the 3-cell $B^3 = \{(x,y,z): |x| \le 1, |y| \le 1, |z| \le 1\}$ in \mathbb{R}^3 let i: \mathbb{B}^3 —>> \mathbb{B}^3 be the map i(x,y,z)=(-x,y,z). Then Fix(i) is the intersection of \mathbb{B}^3 with the yz plane. Let S be the 1-sphere obtained as the join of $\{(1,1,1),(-1,-1,1)\}$ with $\{(-1,1,-1),(1,-1,-1)\}$ and let D be the cone from (0,0,0) on S. D is a saddle shaped region. See Figure 2. (We could alternately take D defined by $\{z=xy/\sqrt{x\cdot x+y\cdot y}\}$ [(0,0,0)].) Notice that D_{\square} iD is the part of the x and y axis in B^3 while D_{\square} Fix(i) is part of the y axis. D and Fix(i) are transversal and iD and Fix(i) are transversal, but D and iD are not transversal at (0,0,0). There is a subdivision making these spaces simplicial with all the vertices on $\partial B^3_{\perp\perp}(0,0,0)$. # Definition 2.2 Let F be a proper surface in a 3-manifold M and ι an involution on M with fixed set Fix. Call a point v a saddle point if $v \in F \cap Fix^2$ and if $(F, \iota F, Fix) \cap star(v)$ is isomorphic to (D, iD, Fix(i)). #### Remark 2.3 Saddle points exist since i is an involution with fixed set Fix(i). Although ∂D , ∂iD , $\partial Fix(i)$ are pairwise transversal there is no 2-cell E with $\partial E=\partial D$ and E, iE, Fix(i) pairwise transversal. Otherwise, since $\partial E_{\square} \partial iE - Fix(i) = (\pm 1,0,0)$ there is a 1-cell I of $E_{\square} iE$ with $(1,0,0) \in \partial I$ and this 1-cell must meet Fix, contradicting the previous lemma. Let d denote the identification $(x,1,z)\sim(x,-1,-z)$ for all x and z. Then D/d is an annulus in a solid Klein bottle B^3/d and no isotopy of D/d moves it to an annulus with F, iF, and Fix(i)/d pairwise transversal. ## Definition 2.4 Let F be a proper surface in a 3-manifold and ι an involution on M with fixed set Fix. Then F, ι F, and Fix are almost pairwise transversal if: - 1) F, ιF and Fix are pairwise transversal except at a finite number of saddle points, - and 2) The only components of $F_{\square}Fix$ containing saddle points are 1-spheres and each such 1-sphere contains at most one saddle point. Let E be the closure of $(F_{\square} \iota F) - Fix^2$. E consists of disjoint 1-spheres and proper 1-cells: in a neighborhood of a saddle point, $F_{\square} \iota F - Fix^2$ corresponds to $[-1,0)x0x0_{\square}(0,1]x0x0$ in the B^3 model for saddle points. Let E be a component of E that contains a saddle point v. Then E has a fixed point and is invariant under ι . Therefore, either E is a 1-cell with no fixed points other than v or E is a 1-sphere with exactly two fixed points v and v. By transversality v is in v or v or v is a saddle point. We obtain the following proposition: # Proposition 2.5 Let F, ι F and Fix be almost pairwise transversal. Then the components of F \sqcap ι F are of one of the following forms: - 1) Components with no saddle points
(standard components): - a) proper 1-cell I with $I \cap Fix=\emptyset$ or $I \in Fix^2$ - b) proper 1-cell I with $I \cap Fix=I \cap Fix^1=v$, v a point - c) 1-sphere S with $S \cap Fix=\emptyset$ or $S \cap Fix^2$ - d) 1-sphere S with $S \sqcap Fix=S \sqcap Fix^1=v_1 \sqcup v_2$ where v_1 and v_2 are points. - 2) Components with saddle points: Type I component: $S_1 \sqcup I$ with $S_1 \sqcap I = Fix \sqcap I = w$, $S_1 \sqcap Fix^2$ and w is the only saddle point on $S_1 \sqcup I$. Type II component: $S_1 \sqcup S$ with $S_1 \sqcap S = w$, $S_1 \upharpoonright Fix^2$, $S \sqcap Fix = v \sqcup w$, $v \in Fix$ and w is the only saddle point on $S_1 \sqcup S$. Type III component: $S_1 \sqcup S_2 \sqcup S$ with $S_1 \sqcap S_2 = \emptyset$, $S_i \sqcap S = w_i$, $S_i \sqcap S_1 = w_1 \sqcup w_2$ and w_1 and w_2 are the only saddle points on $S_1 \sqcup S_2 \sqcup S$. Here S, S, and S, are 1-spheres, I are 1-cells and $\boldsymbol{w}_{\dot{1}}$ are points. Note a regular neighborhood of any of S, S_1 , or S_2 is a solid Klein bottle in case 2). Thus case 2) does not occur if the manifold is orientable. **Proof:** If the regular neighborhood N of S is a solid torus then $Fix_{\square}N$, $F_{\square}N$ and $\iota F_{\square}N$ are all annuli or all Möbius bands. Consider the components of $F_{\square} \partial N$ and $\iota F_{\square} \partial N$ in ∂N - Fix for a contradiction. For example, if they are all annuli then let A be a component of ∂N -Fix. A $_{\square}$ Fix and A $_{\square} \iota$ Fix are two 1-spheres that intersect transversally at one point. This is not possible in an annulus A. Compare with the proof of case 3 and 4 in step 1 of the next theorem (transversality theorem). QED # Corollary 2.6 If F, ι F and Fix are almost pairwise transversal, then they are pairwise transversal if one of the following holds: - a) M is orientable - b) F is a 2-cell - c) F is a annulus with $\partial F_{\Box} \iota \partial F = \emptyset$. Proof: In case a) regular neighborhoods of 1-spheres are solid tori. In cases b) and c) Type II or III components are excluded since the 1-sphere S is nonseparating. In case c) type I components are excluded a priori, while in case b) 1-sphere S₁ separates so a proper 1-cell C cannot intersect S₁ transversally at one point. QED A proper 1-cell I bounds a disc D in a surface if $I = \overline{\partial D} - \overline{\partial F}$. ## Corollary 2.7 Let F, ι F, and Fix be almost pairwise transversal and C a proper 1-cell or 1-sphere component of $F_{\square}\iota F$, that is, let C be a standard component. Then any disc in F or ιF bounded by C contains only standard components. Proof: As in case b) in previous corollary. QED # Equivariant Transversality Theorem 2.8 Let ι be an involution on a 3-manifold M with $\mathbf{Fix}=\mathrm{fix}(\iota)$ and let $\mathbf{F_0}$ be a proper surface in M. Then there is an ambient ϵ -isotopy on M taking $\mathbf{F_0}$ to a proper surface F such that F, ι F and \mathbf{Fix} are almost pairwise transversal. In ∂ M, if ∂ F, ι ∂ F and \mathbf{Fix} are pairwise transversal then the isotopy may be taken to be the identity on ∂ M-N where N is a given neighborhood of ∂ Fix 2 \Box ∂ F. **Proof:** Let $F = F_0$ be a proper surface. By Proposition 1.3 and Lemma 1.2 subdivide M so that ι is simplicial with respect to the subdivision, **Fix** is a subcomplex of the subdivision and **Fix** is a disjoint union of 0-, 1- and 2-dimensional components Fix^0 , Fix^1 and Fix^2 . All isotopies performed in the construction will be done in the star neighborhoods of certain simplexes. By taking a sufficiently fine subdivision ϵ -isotopies are obtained. Step 1) Adjust F near Fix². By isotopies similar to those in the third step below we can assume F and Fix are transversal, the isotopy not moving ∂F unless ∂F and ∂F ix are nontransversal. In particular $F \cap F$ ix $^0 = \emptyset$. Then $F \cap F$ ix 2 consists of disjoint 1-spheres and 1-cell components proper in M. Let S be a 1-sphere component of $F_{\sqcap}Fix^2$. Let N' be a regular neighborhood of S with N' $_{\sqcap}F$ and N' $_{\sqcap}Fix$ transversal and each an annulus or Möbius band. S has a regular neighborhood N contained in int(N') invariant under ι with no vertices on int(N) - S such that N $_{\sqcap}Fix$ is a regular neighborhood of S and $Fix_{\sqcap}\partial N$ has a regular neighborhood Q in ∂N which is invariant under ι and has no vertices except on $Fix_{\sqcup}\partial Q$. Case 1) $F_{\square}N$ and $Fix_{\square}N$ are annuli. Then N is a solid torus, ∂Q has four components and N-Fix consists of two components N_1 and N_2 which are interchanged by ι . Let J_1 and J_2 be components of ∂Q with $J_1=N_1$ and $\iota J_1\neq J_2$. Let A_1 be the annulus with $\partial A_1=J_1\sqcup S$ having no vertices except on ∂A_1 . Fix isotopic to a surface F' by an ambient isotopy which is the identity on M-N' and such that $F'_{\square}N'_{\square}Fix_{\square}N$ and $F'_{\square}N$ = $A_1 \sqcup A_2$. Since $\iota J_1 \neq J_2$ it follows $F' \sqcap N \sqcap \iota (F' \sqcap N) = S$ and $F' \sqcap N$, $\iota (F' \sqcap N)$, $Fix \sqcap N$ are pairwise transversal. Case 2) $F_{\square}N$ and $Fix_{\square}N$ are Möbius bands. Then N is a solid torus, and ∂Q has two components that are interchanged by ι . If J is one of these, then J and S determine a Möbius band A with $\partial A=J$. Proceed as in case 1. If M is orientable Case 3 and 4 do not arise. Only in these cases do saddle points arise. Case 3) $F_{\square}N$ is an annulus and $Fix_{\square}N$ is a Möbius band. Then N is a solid Klein bottle. Let A be one of the two (open) annuli components of ∂N -Fix. There are two 1-spheres J_1 and J_2 which represent generators of $H_1(A)=Z$ with J_1 and J_2 intersecting transversally and at only one point x. J_1 and S bound an annulus A_1 with $A_1 \square A_2 = S_{\square}I$ where I is a 1-cell with $\partial I=x_{\square}y$ where $y \in S$. Proceed as in Case 1 using $F'_{\square}N = A_1_{\square} \iota A_2$. Then y is a saddle point and $F'_{\square}N$, $\iota(F'_{\square}N)$ and $Fix_{\square}N$ intersect pairwise transversally elsewhere in N. Case 4) $F_{\square}N$ is a Möbius band and $Fix_{\square}N$ is an annulus. This case is similar to case 3. Here $A=\partial N-Q$ is an invariant annulus under ι . Find a curve J that bounds a Möbius band by lifting (from annulus A/ι) a curve J' which represents twice a generator and which is embedded in A/ι except for one transversal self intersection. When S is a 1-cell component of $F_{\square}Fix^2$, use an isotopy similar to the one of case 1 above. This isotopy may change ∂F in $N_{\square} \partial M$. Step 2) Adjust F near Fix1. By step 1, $F_{\square}Fix^1$ consists of a number of vertices in int(M). If $v \in F_{\square}Fix^1$ let N' be a regular neighborhood of v and let N be the star neighborhood of v. Take the subdivision so that N is in the interior of N', $F_{\square}N$ is a proper 2-cell in N and $Fix_{\square}N$ is a proper 1-cell. Since F is transversal, $F_{\square}\partial N$ is a generator of $H_1(N-Fix)$. Let J' be a curve in the annulus $(\partial N-Fix)/\iota$ representing twice a generator of this annulus. Take J' embedded except for one transversal self intersection. J' lifts to two 1-spheres J and ιJ , which on coning to v give 2-cells D and ιD . D, ιD and I are pairwise transversal in int V. Proceed as in case 1 of step 1. We obtain a surface F and a neighborhood N of Fix such that F has the required transversality properties in N. The following construction adjusts F only on star neighborhoods of simplexes of $\overline{F-N}$ where F and ιF are not already pairwise transversal. By subdividing sufficiently we may assume without loss that $Fix=\emptyset$. For convenience assume also $\partial F=\emptyset$. Let K be a subdivision of M with ι simplicial and F a subcomplex of K. Let Δ be an m-simplex of F in K with m = 0, 1 or 2. Define $St(\Delta)$, the reduced star of Δ in K, to be all 3-simplexes σ of K with Δ $_{\Gamma}$ σ together with their faces. Let $\operatorname{St}_{F}(\Delta)$, the reduced star of Δ in F, be all 2-simplexes σ of K with Δ $_{\Gamma}$ σ $_{\Gamma}$ F together with their faces. Let $\operatorname{p:M-->M/\iota}$ be the projection. Step 3) There is a subdivision of M and a proper surface F' ϵ -isotopic to F such that for every simplex Δ of F' either $p^{-1}p(\Delta) \sqcap F' = \Delta$ or Δ is a 0- or 1-simplex with int(St_F,(Δ)) and int(St_F,(Δ)) transversal. Call a simplex exceptional if it fails to satisfy these conditions and is of the highest possible dimension m = 0, 1 or 2. Induct on the number of such simplexes. If there are no exceptional simplexes the theorem is established. Add all the vertices (and their translates under ι) of form (m+2)/(m+3) b + 1/(m+3) v where b is the barycenter of Δ and v is a vertex of $St(\Delta)-\Delta$. This determines a refinement K' of K with the same number of exceptional simplexes; no m-simplexes are subdivided for m=1,2, while for m=0 transversality already holds away from vertices of K. Consider the reduced stars in K'. $\partial St'_F(\Delta)$ is a 1-sphere that decomposes $\partial St'(\Delta)$ into two components D, and D. There is an ambient isotopy taking F to $F_1=(F-St'_F(\Delta))_{\square}D_+$ which is the identity except on $St'_F(\Delta)$. F_1 has fewer exceptional simplexes. When m≠2 this follows since $D_+\square D_-$ intersects the interior of any 2-simplex of
$St(\Delta)$ transversally. Regular neighborhoods of the standard components of $F_{\square} \iota F$ can be taken in a special form. # Definition 2.9 Let F, ιF and Fix be almost pairwise transversal and S a 1-sphere component of $F_{\square} \iota F$. Suppose, in addition, that the regular neighborhood of S in F and ιF is an annulus. Then there exists a regular neighborhood V $_{\square}$ int(M) of S with the following properties: - 1) $V_{\square}F$ and $V_{\square}\iota F$ are annuli. Since these intersect transversally, V is a solid torus. - 2) Fix and ∂V intersect transversally, $\operatorname{Fix}_{\square} F_{\square} V_{\square} S$ and the closure of each component of $(\operatorname{Fix}_{\square} V)$ S meets S and ∂V . In particular $\operatorname{Fix}^0_{\square} V = \emptyset$. - 3) Fix \(\text{V} \) is an annulus, two proper 1-cells or empty. - 4) If $\iota S=S$ then $\iota V=V$ - 5) If $\iota S \neq S$ then $\iota V \cap V = \emptyset$ and the above properties hold simultaneously for ιV . Property 3) can be arranged since if $\mathbf{Fix}_{\square}\mathbf{S}\neq\emptyset$ then $\iota \mathbf{S}=\mathbf{S}$. ι is an involution on a 1-sphere so either $\iota = \mathrm{id}$ or ι has exactly two fixed points. Call V a standard neighborhood of S. The four 1-spheres $(F_{\sqcup} \iota F)_{\sqcap} \partial V$ decompose ∂V into four (closed) annuli a_1 , a_2 , β_1 and β_2 with $a_1 \sqcap a_2 = \emptyset$ and $\beta_1 \sqcap \beta_2 = \emptyset$. Call these annuli the standard annuli corresponding to the standard neighborhood of V. Suppose $\iota S=S$. Relabelling, if necessary, we may assume $\iota(a_1 \sqcap \beta_1) = (a_1 \sqcap \beta_2)$. It follows that $\iota a_1 = a_1$. Then $\iota \beta_1 = \beta_2$ and $\iota a_2 = a_2$. When $\operatorname{Fix}_{\square} V \neq \emptyset$ we obtain $\operatorname{Fix}_{\square} a_1 \neq \emptyset$, $\operatorname{Fix}_{\square} a_2 \neq \emptyset$, $\operatorname{Fix}_{\square} \beta_1 = \emptyset = \operatorname{Fix}_{\square} \beta_2$, and each component of $\operatorname{Fix}_{\square} a_2 \neq \emptyset$ meets both a_1 and a_2 . # Definition 2.10 Let S be a 1-cell component of $Fix_{\square} \iota Fix$ where F, ιF , Fix are pairwise transversal (near S). Then there exists a regular neighborhood V of S with $V_{\square} \partial M$ a regular neighborhood of ∂S , called a standard neighborhood of S with the following properties: - 1) $V_{\square}F$ and $V_{\square}\iota F$ are 2-cells with $\partial M_{\square}V_{\square}F$ and $\partial M_{\square}V_{\square}\iota F$ each two 1-cells. Necessarily V is a 3-cell. - 2), 4) and 5) as for 1-sphere standard neighborhoods. - 3) $Fix_{\square}V$ is a disc, one proper 1-cell or empty. The four 1-cells $(F_{\square} \iota F) \cap \overline{\partial V} - \partial M$ subdivide $\overline{\partial V} - \partial M$ into four discs a_1 , a_2 , β_1 and β_2 with $a_1 \cap a_2 = \emptyset$, $\beta_1 \cap \beta_2 = \emptyset$ and the properties as in the previous situation. Call these discs the **standard discs** corresponding to V. ## Remark 2.11 In the following theorem certain 1-sphere components S of $F_{\square} \iota F$ have standard neighborhoods because S bounds discs in F and ιF . In the disc theorem and partial annulus theorem, F is orientable so again there are standard neighborhoods. In the torus theorem the construction will be made so as to keep S in this form always. In the annulus theorem the case of a nonorientable F, a Möbius band, with 1-sphere components is treated separately. # Theorem 2.12 Let M be a 3-manifold with involution ι and F_0 be an incompressible proper surface. Then there is an ambient isotopy of M which is an ϵ -isotopy on ∂ M taking F_0 to a proper surface F such that F, ι F, and Fix are almost pairwise transversal and no 1-spheres in $F_{\square} \iota$ F bound 2-cells in F. If on ∂ M, ∂ F, ι \partialF and ∂ Fix are pairwise transversal then the isotopy may be taken to be the identity on ∂ M-N where N is a given neighborhood of ∂ Fix ∂ F. **Proof:** By the preceding transversality theorem there is an F with all the above properties except possibly 1-spheres in F_{\square} ιF bound 2-cells in F. By Corollary 2.7 those 2-cells contain no saddle components. Let S be a 1-sphere of F_{\square} ιF innermost in ιF , that is, there is a 2-cell D $_{\square}$ ιF ix with $D_{\sqcap}F=\partial D=S$. Since F is compressible, S bounds a 2-cell B in F. If $\iota S=S$ then we may assume $\iota B=D$. Let V be a standard neighborhood of S. Such a neighborhood exists since S bounds a disc in F and ι F. Let a be the standard annulus meeting D but not B. Then $\iota a \sqcap a = \emptyset$. There is a bicollar Dx[-1,1] of D=Dx0 with $$\partial Dx[-1,1] = Dx[-1,1] \Box F = Sx[-1,1]$$ and with $Dx1 \sqcap a \neq \emptyset$. Since D is innermost it follows that for a sufficiently thin collar $(Dx1) \sqcap \iota(Dx1) = \emptyset$ and $F \sqcap \iota(Dx1) = \emptyset$. Consider $F' = (F - (B \sqcup Sx[-1,1])) \sqcup Dx1$. Then $F' \sqcap \iota F' \sqcap \iota F' \sqcap \iota F$ — S and F', $\iota F'$ and Fix are almost pairwise transversal. Since M is irreducible and $D \sqcup B$ is a 2-sphere, F' and F are ambient isotopic by an isotopy being the identity on ∂M . By induction, all 1-spheres bounding 2-cells can be removed. QED #### Definition 2.13 A 2-cell B in a 3-manifold is **essential** if it is proper and ∂B does not bound a 2-cell in ∂M . In an irreducible 3-manifold a nonseparating proper 2-cell is essential. The following theorem also appears in [3]. #### Disc Theorem 2.14 Let M be an irreducible 3-manifold with involution ι . Suppose M has an essential 2-cell B_0 . Then there is an essential 2-cell $B_{\ \ \ }$ M such that B and Fix are transversal and either $B_{\ \ \ }$ ι B=Ø or ι B=B. In the former case $B_{\ \ \ }$ Fix=Ø and in the latter case $B_{\ \ \ }$ Fix is a proper 1-cell of B or one point in the interior of B. If $\partial B_0 \cap \iota \partial B_0 = \emptyset$ then one can take $\partial B = \partial B_0$ and B and B_0 are ambient isotopic by an isotopy that is the identity on ∂M . Proof: By Theorem 2.12 and Corollary 2.6 there is an essential 2-cell B with B, ιB and Fix pairwise transversal, B and B₀ ambient isotopic and B_{\(\pi\)}\(\theta\) is either empty or consists of proper 1-cells only. Assume B_{\(\pi\)}\(\lambda\) (in particular then $\partial B_0 \cap \iota B_0 \neq \emptyset$). By induction it suffices to show how to obtain a new 2-cell B_{\(\text{i}\)} with fewer 1-cells in B_{\(\text{i}\)}\(\theta\). Let D be an outermost disc of B: D $_{\mathbb{C}}$ B with D $_{\Pi} \iota B = \partial D_{\Pi} \iota B = I$ a proper 1-cell of B and $\partial D - I$ $_{\mathbb{C}} \partial B$. If $\iota I = I$ define D' $= \overline{\iota B - \iota D}$. If $\iota I \neq I$ define D' to be the closure If $\iota I = I$ define $D' = \iota B - \iota D$. If $\iota I \neq I$ define D' to be the closure of the component of $\iota B - \iota D$ that does not contain ιI . See Figure 3. Let V be a standard neighborhood of I and let a_1 , a_2 and β be standard discs of V with $a_1 \sqcap a_2 = \emptyset$, $a_1 \sqcap \beta \sqcap D \neq \emptyset$ and $\beta \sqcap D' \neq \emptyset$. Consider $$B_1 = (D_{\sqcup} \beta_{\sqcup} D') - int(V) \text{ and } B_2 = D_{\sqcup} (\iota B - D').$$ Then $B_1 \sqcap \iota B_1 \sqcap \iota B_1 \sqcap \iota B_1 = I$. If B_1 is essential we are done by induction or arrive at case $B_1 \sqcap \iota B_1 = \emptyset$. If B_1 is not essential then ∂B_1 bounds a 2-cell E of ∂M . Since M is irreducible the 2-sphere $B_1 \sqcup E$ bounds a 3-cell. This 3-cell does not meet I, otherwise ιB would not be essential. Using the 3-cell construct an ambient isotopy taking B_2 to ιB . So we may assume B_2 is essential. If $I=\iota I$ we have $\iota B_2=B_2$ and note that $\mathbf{Fix}_{\square}B_2$ [$\mathbf{Fix}_{\square}I$ which is necessarily a point of I or all of I. If $I_{\square}\iota I=\emptyset$ consider a sufficiently thin bicollar $D\mathbf{x}[-1,-1]$ of $D=D\mathbf{x}0$ such that $D\mathbf{x}[-1,-1]_{\square}I$ is a bicollar of I in ιB and $D\mathbf{x}1$ meets a_1 . Then $B_2'=(D\mathbf{x}1_{\square}\iota B)-(I\mathbf{x}[-1,0)_{\square}D')$ is essential since it is isotopic to B_2 and $B_2'_{\square}\iota B_2'_{\square}B_2'_{\square}B_{\square}\iota B_{\square}I$. QED ## II. INVOLUTIONS ON THE 3-CELL AND THE SOLID TORUS # ∮3. Some Involutions The classification of involutions on a solid torus will be useful in the proof of theorems in the next chapter. The disc theorem will be used to reduce the problem of classifying involutions on a solid torus to one of classifying the involutions on a 3-cell. ## Definition 3.1 Let C be the complex numbers. Let $I=I^1=[-1,1]$ be the standard 1-cell $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ be the standard 1-sphere $D^2 = \{z \in \mathbb{C} : |z| \le 1\}$ be the standard 2-cell $T^2=S^1xS^1$ be the standard torus $D_{\cdot} = \{z \in D^2 : z = x + y \cdot i, y \ge 0\}, a 2-cell$ Re= $\{z \in D^2: z=\overline{z}\}$ [D^2 , a proper 1-cell $Im=\{z \in D^2: z=-\overline{z}\}$ \cap D^2 , a proper 1-cell Define involutions on the above spaces as follows. On S¹: $\kappa(z)=\overline{z}$ which is orientation reversing with fixed set two points ±1. a(z)=-z which is orientation preserving and fixed point free. Then $a \cdot \kappa = \kappa \cdot a = -\kappa$ is conjugate to κ by a rotation by 90°. On $D^2: \hat{\kappa}(z) = \overline{z}$ orientation reversing with fixed set one 1-cell Re. $\hat{a}(z) = -z$ which is
orientation preserving with fixed set one point 0. Then $-\hat{\kappa}$ is conjugate to $\hat{\kappa}$ and has fixed set Im. On I: $\tau(t)=-t$ which is orientation reversing with fixed set one point 0. Define the map $\rho:S^1xS^1$ —> S^1xS^1 by $\rho(z,w)=(zw,w)$ and map $\hat{\rho}:D^2xS^1$ —> D^2xS^1 similarly. Define involution $\omega:S^1xS^1$ —> S^1xS^1 by $\omega(z,w)=(w,z)$, which has fixed set one 1-sphere $\{(z,z):z\}$. # Lemma 3.2 There are five involutions up to conjugacy on an annulus S^1xI . They are: 1) axid which is orientation preserving and fixed point free, 2) $ax\tau$ which is orientation reversing and fixed point free, 3) $\kappa x\tau$ which is orientation preserving with fixed set two points, 4) $idx\tau$ which is orientation reversing with fixed set a 1-sphere, and 5) κxid which is orientation reversing with fixed set two proper 1-cells. Proof: When the dimension of the fixed set is one the fixed set separates. In the other case use the Euler characteristic argument given in part 4) of proof of Proposition 1.3. QED # Definition 3.3 For the 3-cell D^2xI define the following involutions (see Figure 4): $j_2=idx\tau$ having fixed set a proper 2-cell D^2x0 . $j_1 = \hat{\kappa} x \tau$ having fixed set an unkotted 1-cell Rex0. $j_0 = \hat{a}x\tau$ having fixed set one point 0x0. j_2 and j_0 are orientation reversing while j_1 is orientation preserving. j_1 is conjugate to $j_1'=\hat{a}x$ id which has fixed set 0xI. ## Theorem 3.4 An involution on a 3-cell is conjugate to j_2 , j_1 or j_0 . All involutions on a 3-cell are conjugation extendable. **Proof:** Let ι be an involution on 3-cell E. Apply Lemma 1.2 and Proposition 1.3. Suppose $\operatorname{Fix}^2 \neq \emptyset$. Since Fix^2 is proper and $\pi_1 \operatorname{E=1}$, Fix^2 separates. Let $\operatorname{E_1}$ and $\operatorname{E_2}$ be the components, $\operatorname{E=E_1} \sqcup \operatorname{E_2}$ with Figure 4. Fix²=E_{1 \sqcap}E₂. If Fix² were compressible then let B be a compressing disc in E₁, say. Then ι B compresses Fix² in E₂. Using a Mayer-Vietoris sequence we see [∂ B] must be trivial in H₁(E₁) \oplus H₁(E₂) \cong H₁(Fix²). Hence Fix² is a proper 2-cell. We show ι is conjugate to j_2 . Let $D_1=D^2x[0,1]$. Construct an isomorphism h_0 from the disc which is the closure of ∂E_1 -Fix to the closure of ∂D_1 - D^2x0 . In the conjugation extendable case we may assume this isomorphism is given. Extend h_0 over the fixed set Fix and then cone to a point to obtain an isomorphism $h:E_1\longrightarrow D^2x[0,1]$. Extend this isomorphism by equivariance to get a conjugation. Suppose $\operatorname{Fix}^2 = \emptyset$. The Euler characteristic argument referred to in part 4) of proof of Proposition 1.3 applied to $\iota \mid \partial \mathsf{E}$ shows $\operatorname{Fix}_{\square} \partial \mathsf{E}$ has 0 or 2 fixed points. In the former case ι is orientation reversing so $\operatorname{Fix}^1 \sqcup \operatorname{Fix}^2 = \emptyset$ and in the latter case $\operatorname{Fix}^1 \neq \emptyset$. Suppose $\operatorname{Fix}^1 \sqcup \operatorname{Fix}^2 = \emptyset$. By a Lefshetz number argument ι has one fixed point only, call it \mathbf{v} . $\partial \mathbf{E}/\iota$ is a projective plane so there is a conjugation $h_0:\partial \mathbf{E} \longrightarrow \partial (D^2\mathbf{x}\mathbf{I})$ between $\iota \mid$ and $j_0 \mid$. In the conjugation extendable case h_0 is given. By subdividing we may assume $\operatorname{star}(\mathbf{v}) \sqcup \partial \mathbf{E} = \emptyset$ and $\mathbf{E} = \operatorname{int}(\operatorname{star}(\mathbf{v}))$ \cong $\mathbf{S}^2\mathbf{x}\mathbf{I}$. Extend \mathbf{h} to a conjugation $\mathbf{E} = \operatorname{star}(\mathbf{v}) \longrightarrow \mathbf{D}^2\mathbf{x}\mathbf{I} - \operatorname{star}(0,0)$. This can be done by Theorem 1 in [9] since ι has no fixed point on $\partial \mathbf{E}$. Finally cone to \mathbf{v} . Suppose $\operatorname{Fix}^1 \neq \emptyset$. By the above $\operatorname{Fix}^1 \cap \partial E$ is two points. Consider the double $\operatorname{E}_{\square} \operatorname{E}'$ of E . It is a 3-sphere with involution $\iota_{\square} \iota'$ induced by ι . By a result of Waldhausen [16], this involution has fixed set one unknotted 1-sphere. Let B be a 2-cell with ∂B the fixed set and such that B is in general position with respect to ∂E . B $_{\square} E$ is a punctured 3-cell and all but one component of B $_{\square} \partial E$ is a 1-sphere in the interior of B. By standard arguments these can be removed giving a 1-cell B' $_{\square} E$ with $\partial B'$ $_{\square} \partial E \cap Fix^1$. This shows Fix^1 is one unknotted proper 1-cell. We claim there is a (nonproper) disc B embedded in E with Fix $_{\Box}$ $_{\partial}$ B $_{\Box}$ Fix $_{\Box}$ $_{\partial}$ E such that $_{\Box}$ $_{\mathcal{C}}$ B=Fix. Moreover, if C $_{\Box}$ $_{\partial}$ E is a 1-cell with $_{\Box}$ $_{\mathcal{C}}$ C= $_{\partial}$ C= $_{\partial}$ Fix then we may assume $_{\partial}$ B $_{\Box}$ $_{\partial}$ E=C. To establish this claim note that if N is a star neighborhood of Fix then the closure V of E-N is a solid torus with $_{\Box}$ fixed point free and orientation preserving. $_{\Box}$ V $_{\Box}$ N is an annulus and $_{\Box}$ (V $_{\Box}$ N) is also fixed point free. Using these facts and Disc Theorem 2.14 it is possible to construct a disc as required in the claim. Construct a conjugation to j₁ as follows. Construct an isomorphism $B\longrightarrow D_*x0$ and extend by equivariance to $B_{\sqcup} \iota B\longrightarrow D_*x0$. In the conjugation extendable case we set $C=h^{-1}((\partial D_{\sqcap}D_+)x0)$. Then $B_{\sqcup} \iota B$ separates E into two 3-cell components. We extend to an isomorphism over one of these components and then by equivariance to the other, giving a conjugation E-->DxI. QED ## Lemma 3.5 Let F be a 2 sided surface in a 3-manifold M and let ι be an involution on M with ι F=F and such that ι interchanges sides of F. Then F is ambient isotopic to a surface F' with F' $\square \iota$ F'= \emptyset . **Proof:** Construct an ι invariant bicollar Fx[-1,1] of F=Fx0 by using a star neighborhood of F. Then consider F'=Fx1. QED #### Remark 3.6 Suppose $\iota F=F$ for a 2-sided surface F. Let N be the 3-manifold obtained by cutting M along F. That is, replace Fx[-1,1] M by distinct copies $F_1x[-1,0]=Fx[-1,0]$ and $F_2x[0,1]=Fx[0,1]$. N has a subdivision induced from M. Let $d:F_1=F_1x0\longrightarrow F_2=F_2x0$ be the canonical identification. Then $M\cong N/d$. Since ι is simplicial there is a canonical involution k on N with $\iota=k/d$. Note $k\cdot d=d\cdot k$ and $k(F_1)=F_1$ iff ι does not interchange the bicollar. Conversely if $k\cdot d=d\cdot k$ for an involution k then k induces an involution ι in M with $\iota=F$. # §4. Involutions on the Solid Torus # Definition 4.1 Let V be the solid torus $V=D^2xS^1=\{(z,w): |z| \le 1, |w|=1, z, w \in C\}$. Recall Definition 3.1. Define the following involutions on V (see Figure 5): $j_{\lambda} = \hat{\kappa}xid$ having fixed set the annulus RexS¹. $j_{M} = \hat{\rho} \cdot (\hat{\kappa}xid)$ having fixed set the Möbius band $\{(s \cdot e^{\pi it}, e^{2\pi it}) : 0 \le s \le 1, -1 \le t \le 1\}$ $j_{2D} = idx \kappa$ having fixed set two 2-cells $D^2x \pm 1$. $j_{DP} = \hat{\rho} \cdot (idx_{\kappa})$ having fixed set a 2-cell and a point $D^2 x 1_{11} 0 x - 1$. $j_S = \hat{a}xid$ having fixed set one 1-sphere $0xS^1$. $j_{2C} = \hat{\kappa} x \kappa$ having fixed set two 1-cells Rex±1. $j_{2D} = \hat{a}x\kappa$ having fixed set two points $0x\pm1$. $j_{N} = \hat{\kappa} x a$ fixed point free and orientation reversing. j_0 =idxa fixed point free and orientation preserving. So $j_M(z,w)=(\overline{z}w,w)$ and $j_{DP}(z,w)=(z\overline{w},\overline{w})$. The subscript describes the fixed point set or for the fixed point free involutions the orientability type. Recall by Proposition 1.3, since V is orientable, involutions with 0- or 2-dimensional fixed sets are orientation reversing. Those with 1-dimensional fixed sets are orientation preserving. None of the above involutions are conjugate since all have different fixed sets or orientation type. Using $V=D^2xI/d$ Figure 5. Fixed point sets for the standard involutions. where $d=\hat{a}x(\tau\,|\,\partial I)$, involutions conjugate to j_M and j_{DP} can be defined as follows: $j_{M}' = \hat{\kappa} x i d/d$ having fixed set Möbius band RexI/d $j_{DP}' = i dx \tau/d$ having fixed set $D^2 x 0 \sqcup 0x 1/d$. # Theorem 4.2 If ι and ι ' are involutions on $V=D^2xS^1$ with nonempty isomorphic fixed point sets or if ι and ι ' are fixed point free and of the same orientation type, then ι and ι ' are conjugate. An involution on V is conjugate to one of the nine involutions listed above. **Proof:** Let ι be an involution on V. We show it is conjugate to a standard involution. For any given essential 2-cell B_0 of V there is an isomorphism h of V which takes B_0 to $B=D^2x-1$. So by applying the Disc Theorem 2.14, and replacing ι by the conjugate involution h^{-1} . ι .h for a suitable h, we may assume ι satisfies: Case 1) $\iota B=B$ and B intersects Fix transversally at Rex-1 Case 2) $\iota B=B$ and B intersects Fix transversally at 0x-1 or 3') $\iota B \cap B=\emptyset$ There is an isomorphism $(D^2xI)/d$ — $>D^2xS^1$ where $d=idx(\tau|_{\partial I})$ is given by $d(z,t)=(z;e^{i\pi t})$. The isomorphism takes D^2x-1/d to B. Write also $B=D^2x-1$. In case 3') by adjusting the isomorphism h we may assume that $\iota B=D^2x1=(D^2x0)/d$. Call $C = D^2 x[-1,0]$ and $C_+ = D^2 x[0,1]$. The case 3') splits into two
cases: Case 3) $\iota B \sqcap B = \emptyset$ and $\iota C_{\bullet} = C_{\bullet}$ Case 4) $\iota B \sqcap B = \emptyset$ and $\iota C_* = C_*$. We show first, if the involution ι falls into: case 1) it has fixed set that of j_{λ} or j_{M} , case 2) it has fixed set that of j_{ς} , case 3) it is fixed point free as j_N and j_O are, case 4) it has fixed set that of j_{2D} , j_{DP} , j_{2C} or j_{2P} , and we show **second**, if ι and ι ' fall into the same case 1) - 4) then ι and ι ' are conjugate. This will complete the proof because the nine standard involutions cover all possible fixed sets that can arise and none occurs in more than one case 1) - 4). All constructions done for ι are to be performed for ι ' also even if not explicitly stated. Use a prime ' to denote the corresponding construct. In Case 1): The involution ι on D^2xI/d induces an involution λ on D^2xI with the property $\lambda \cdot d = d \cdot \lambda$ when restricted to $D^2x\partial I$. Fix(λ) is proper and 2-dimensional since Fix=fix(ι) is transversal to B. So λ is conjugate to the standard involution j_2 of the 3-cell. In particular Fix(λ) is a 2-cell. Fix is obtained by identifying two disjoint 1-cells in the boundary of the two cell so Fix is an annulus or Möbius band. Suppose ι ' is given. $\lambda \mid B$ and $\lambda \mid B'$ are conjugate so there is a conjugation $h:B\longrightarrow B'$. Using d and d' we may extend h to a conjugation $D^2x\partial I \longrightarrow D^2'x\partial I$. $\partial Fix(\lambda)$ decomposes ∂D^2xI into two 2-cells which are interchanged under λ . Let J be an (open) component of $(\partial D^2x-1) - Fix(\lambda)$ selected so that h(J)=J'. Then Fix is an annulus if J and d(J) are in the same 2-cell determined by $\partial Fix(\lambda)$ and Fix is a Möbius band if J and $\iota d(J)$ are in the same 2-cell determined by $\partial Fix(\lambda)$. Therefore, h can be extended to a conjugation $$h:D^2x\partial I \sqcup Fix(\lambda) \longrightarrow D^2'x\partial I \sqcup Fix(\lambda').$$ Extend h over one of the 2-cells that $\partial Fix(\lambda)$ decomposes D^2xI into. Then extend to the other cell by equivariance. This gives a conjugation h defined on $\partial(D^2xI)$. By the conjugation extendable property for the 3-cell, h extends to all of D^2xI and hence induces a conjugation on D^2xI/d between ι and ι '. In case 2): As in case 1) the involution ι on $D^2 \times I/d$ induces an involution λ on $D^2 \times I$ with $\lambda \cdot d = d \cdot \lambda$ on $D^2 \times \partial I$. Fix(λ) is proper and 1-dimensional so λ is conjugate to the standard involution j_1 of the 3-cell. So Fix is a 1-sphere. Suppose ι ' is given. $\lambda \mid B$ and $\lambda \mid B'$ are conjugate so there is a conjugation $h:D^2x\partial I \longrightarrow D^2'x\partial I$ with $h\cdot d=d'\cdot h$. Since $\lambda \mid \partial B$ is orientation preserving, h extends to $\partial (D^2xI)$. By the conjugation extendable property for 3-cells, h extends to all of D^2xI and hence induces a conjugation on D^2xI/d . In case 3): The involution must be fixed point free. Let ι and ι' be of same orientation type. Construct an isomorphism h:B—>B' and extend to a conjugation h:B— ι B—>B' \sqcup ι' B' by equivariance. Since the orientation type is the same, h extends to all of ∂C_{\bullet} and then to an isomorphism h:C $_{\bullet}$ —>C' $_{\bullet}$ by coning. Finally extend to D²xS¹=C $_{\bullet}$ \sqcup C. by equivariance. In case 4): $\iota \mid C_+$ and $\iota \mid C_-$ are involutions on 3-cells so each has fixed set a point, a proper 1-cell or a proper 2-cell. Since $(B_{\sqcup} \iota B)_{\sqcap} Fix=\emptyset$ it follows $Fix=Fix(\iota \mid C_+)_{\sqcup} Fix(\iota \mid C_-)$. Moreover $\iota \mid C_+$ and $\iota \mid C_-$ must have the same orientation type so Fix is one of: two 2-cells, two points, a 2-cell union a point, or two 1-cells. Suppose ι and ι ' have isomorphic fixed sets. Arrange notation so that $\iota \mid C_+$ and $\iota \mid C_+$ have isomorphic fixed sets. Construct a conjugation $h: B_{\sqcup} \iota B_- \to B'_{\sqcup} \iota' B'$ as in case 3). In view of the conjugation extendable property of 3-cells, it suffices to show h extends to a conjugation $\partial C_+ \to \partial C_+$. Let $G=\partial C_+$ and let Fix now denote $Fix(\iota \mid C_+)$. Case 4.1) $\iota \mid C$, is conjugate to j_2 . Fix decomposes G into two components one of which, E, contains B. Extend h to an isomorphism h:E——>E' and by equivariance to a conjugation h:G--->G'. Case 4.2) $\iota \mid C_{\bullet}$ is conjugate to j₁. G/ι is a 2-sphere such that $Fix=Fix/\iota$ misses B/ι . So lifting an appropriate 1-cell J₁ in $(G/\iota)-(B/\iota)$ gives a 1-cell J of G with $J_{\square} \iota J=Fix$. In addition, $J_{\square} \iota J$ determines a component E of ∂G containing B but not ιB . Define an isomorphism $h_0:J\longrightarrow J'$ and extend by equivariance to $J_{\square} \iota J$. Notice we could have selected $h_0:J\longrightarrow \iota'J'$ instead, so if orientations are fixed for $J_{\square} \iota J$ and $J'_{\square} \iota'J'$, we may select h_0 to be either orientation preserving or orientation reversing. Hence $h|_{B\square} h_0$ extends over the (open) annulus $E-(B_{\square} J_{\square} \iota J)$ to an isomorphism $h_1:E\longrightarrow E'$. Extend by equivariance to G. Case 4.3) $\iota \mid C_{+}$ is conjugate to j_{0} . Then $E=(G-int(B_{\square} \iota B))/\iota$ is a Möbius band and h induces an isomorphism ∂E —> $\partial E'$. This isomorphism extends to all of E. G double covers G/ι and the isomorphism lifts to an isomorphism h':G—>G' extending h. By construction h' is a conjugation. QED Let C_iP be the space obtained by coning a real projective space to a point v_i . Then (C_iP,v_i) is isomorphic to $(B^3,0)/j_0$. The descriptions of the standard involutions j on a solid torus V can be used to compute V/j. Use Fix to denote Fix/j and recall Corollary 1.4 in this connection. V/j_A is a solid torus D^2xS^1 with Fix an annulus $Re(\partial D^2)xS^1$. V/j_M' is a solid Klein bottle $D^2_*xI/-\hat{\kappa}x(\tau|\partial I)$ with Fix the Möbius band RexI. V/j_{2n} is a 3-cell with Fix two 2-cells. V/j_{DP} ' is C_1P with Fix the point v_1 and a 2-cell. V/j_S is a solid torus D^2xS^1 with Fix the 1-sphere $0xS^1$. V/j_{2C} is a 3-cell with Fix two proper unknotted 1-cells. V/j_{2P} is a boundary connected sum of C_1P and C_2P with $Fix=v_{1+1}v_2$ (i.e.) $V/j_{2P}=D^2xS_+$ / ((z,1)~(-z,1) , (z,-1)~(-z,-1)) where $S_+=D_+ \square S$, $v_1=(0,1)$, $v_2=(0,-1)$ and D^2xi is the connected sum disc. V/j_N is a solid Klein bottle $D^2xI/\hat{\kappa}x(\tau|\partial I)$. V/j_O is a solid torus. #### Corollary 4.3 If ι is an involution on a solid torus V then V/ι is isomorphic to one of the spaces V/j above. The isomorphism type of the fixed set and orientability type of ι determine V/ι up to isomorphism. #### Example 4.4 j_O is not conjugation extendable because s(z,w)=(z,zw) determines a conjugation $s:\partial V$ —> ∂V for $j_o|\partial V$ that does not extend to V. # Corollary 4.5 The orientation reversing involutions are conjugation extendable. If V and V' are solid tori with conjugate orientation preserving involutions ι and ι ' respectively then the involutions are conjugation extendable with respect to the class of isomorphisms ∂V —> ∂V ' that: - 1) extend to isomorphisms $V \longrightarrow V'$, for the case ι conjugate to j_0 or j_s . - 2) extend to isomorphisms $V_{\square}Fix\longrightarrow V'_{\square}Fix'$, for the case ι conjugate to j_{2C} . obtain a conjugation. Let W=V/j. When $Fix^2 \neq \emptyset$ notice that h is only defined on a proper submanifold $(\partial V)/j$ of $\partial (V/j)$. The extensions H of h are clear for j_A , j_{2D} , j_S , j_O , j_{DP} and j_{M} . For j_{N} and j_{2P} , ∂W is a Klein bottle. For j_{N} , the boundary of an essential proper disc D represents the unique element of order two in $H_1(\partial W) = Z_2 \oplus Z$. Since $h(\partial D)$ is also of order 2, h(D) bounds an essential proper disc D'. Extend by coning over D and then over the 3-cell W-($\partial W_{\perp}D$). For j_{2D} , ∂D^2xi is a 1-sphere that separates Ж in ∂W. Such 1-spheres represent the element 2-sided $(0,2) \in H_1(\partial W)$. Proceed jaci as above. For h: $\partial W \sqcup Fix \longrightarrow \partial W' \sqcup Fix'$ be given. A 1-sphere in ∂W -Fix that decomposes $\partial W_{1,1}Fix$ into two components each containing one component of Fix has the property that it bounds a proper 2-cell D in W that misses Fix. Use this 2-cell to extend h. QED # Remark 4.6 Consider the solid Klein bottle $V=D^2xI/d$ where $d=\hat{\kappa}x(\tau|\partial I)$. Then $j_A=\hat{\kappa}xid/d$ with fixed set an annulus, $j_M=-\hat{\kappa}xid/d$ with fixed set a Möbius band, $j_{DC}=idx\tau/d$ with fixed set a 2-cell and a 1-cell, $j_{CP}=-\hat{\kappa}x\tau/d$ with fixed set a point and a 1-cell, and $j_S=\hat{\alpha}xid/d$ with fixed set a 1-sphere are the only five involutions on a solid Klein bottle, up to conjugacy. The proof is very similar to the one given for the solid torus. Since d is orientation reversing, however, case 3) does not arise and in case 4) only the combinations that were disallowed previously can occur. # III. EQUIVARIANT ANNULUS AND TORUS THEOREMS #### ∮5. Annulus Theorems # Definition 5.1 A proper annulus A in a 3-manifold M is trivial, if A decomposes M into a solid torus $V=D^2xS^1$ and a submanifold M_0
such that: $$M = M_{O \cup I}V$$, $M_{O \cup I}V = \partial M_{O \cup I}\partial V = A$ and there exists a nonseparating proper 2-cell B $_{\Gamma}$ V with B $_{\Gamma}$ A = ∂ B $_{\Gamma}$ A a nonseparating 1-cell in A. Otherwise call A nontrivial. Call V a solid torus that trivializes A. Note that if A does not separate M or if ∂A is in different boundary components of M then A is nontrivial. #### Definition 5.2 Call a nontrivial incompressible proper annulus an essential annulus. Call an incompressible proper Möbius band an essential Möbius band. Let F be a surface and S a component of $F_{\square} \iota F$. In some surgeries performed later we will wish to replace F by F'=Fx1 where Fx[-1,1] is a bicollar of F. To insure that F', $\iota F'$ and Fix are transversal at least in standard neighborhoods (see Definitions 2.9-.10), the following lemma is used. #### Lemma 5.3 Let V be a solid torus and $\iota:V$ —>V an involution. Let A_0 and A_1 be annuli in ∂V with $\partial A_0 = S_0 \sqcup S_1$, $\partial A_1 = S_1 \sqcup S_2$, $A_0 \sqcap A_1 = S_1$, $\iota S_0 = S_0$, $(A_0 \sqcup A_1) \sqcap \iota (A_0 \sqcup A_1) = S_0$ and $Fix \sqcap (A_0 \sqcup A_1)$ $\sqsubseteq S_0$. Then there is a proper annulus $A \sqsubseteq V$ such that A, ιA and Fix intersect transversally with $A \sqcap \iota A = S$ a 1-sphere and ∂A having one component in $int(\iota A_0)$ and the other component is S_2 . A similar statement holds if V is a 3-cell and A_0 , A_1 are 2-cells and S_1 are 1-cells. See Figure 6. **Proof:** By transversality of **Fix**, by taking a sufficiently small regular neighborhood N of $A_0 \sqcup A_1 \sqcup \iota A_0 \sqcup \iota A_1$ we may assume one of the following holds: - 1) $Fix \cap N=\emptyset$ - 2) $Fix \cap N$ consists of two disjoint 1-cells I_i with exactly one point of ∂I_i in S_0 and the other in int(V) $\bigcap \partial N$ or 3) $Fix_{\bigcap}N$ is an annulus such that one boundary component is S_0 and the other in int(V) $\bigcap \partial N$. Further, there is a regular neighborhood N' of S₀ $_{\square}$ N such that ι N'=N', A_0 '=N' $_{\square}A_0$ is an annulus, A_0 ' $_{\square}\iota A_0$ '=N' $_{\square}\partial V$ and properties 1)-3) hold with respect to N'. Let B be the annulus which is the closure of N'- $A_0 \sqcup \iota A_0$. Then there is an S in int(B) with $\iota S=S$ and $Fix \sqcap B \upharpoonright S$. There is an annulus A" in $\overline{V-N'}$ such that $\partial A"=S_2 \sqcup S$ and $A" \sqcap \iota A"=S$. Let A' be the component of B-S that meets ιA_0 . Then $A=A' \sqcup A"$ is the desired annulus. QED # Remark 5.4 A solid Klein bottle is a twisted I-bundle over an annulus. The annulus is essential but it does not separate the boundary. #### Lemma 5.5 If U is a solid torus then U has no essential annuli. If U is a solid Klein bottle then U has no essential annuli that separate ∂U . Moreover, suppose A' is an annulus contained in ∂U such that a nonseparating proper disc D of U intersects A' in exactly one nonseparating 1-cell of A'. If A is an incompressible proper annulus disjoint from A' then the solid torus which trivializes A may be taken to be disjoint from A'. **Proof:** Suppose A is an essential annulus. Then let D be any proper nonseparating 2-cell of U. (When A' is given, take D as in the statement.) Make A and D transversal. Since A is incompressible adjust D so that $A_{\square}D$ consists of 1-cells only. If $A \cap D = \emptyset$ then A is contained in a 3-cell obtained by removing a sufficiently small regular neighborhood of D from U. This contradicts incompressibility. If $A_{\square}D\neq\emptyset$ let B be an outermost 2-cell of D (and disjoint from A' if A' is given): so $B_{\square}A=\partial B_{\square}A=I$ is a 1-cell and $B_{\square}\partial U=\overline{\partial B-I}$. If I bounds a 2-cell in A, then by an isotopy moving B, obtain a disc D' with fewer 1-cells in $A_{\square}D'$. Assume now that I does not bound a 2-cell in A. Then I separates A. Let V be the closure of the component of U-A that meets int(B). ∂A decomposes ∂U into two annuli or possibly, in the case where U is a solid Klein bottle, into an annulus and two Möbius bands. However, in the latter case $\partial B_{\square}\partial U$ must meet the annulus. It follows that $\partial V_{\square}\partial U$ is an annulus and V is a solid torus with the properties making A trivial. We next state the partial annulus theorem and the annulus theorem. The proofs are omitted. They are similar in spirit to the proof of the torus theorem. # Partial Annulus Theorem 5.6 Let M be an irreducible 3-manifold with involution ι . Let A_0 be an essential annulus with $\partial A_0 \cap \iota \partial A_0 = \emptyset$. Then: - 1) there is an essential annulus A with A $_{\square}$ ι A= \emptyset and ∂ A $_{\square}$ ι ∂ A= ∂ A $_{\square}$ ι ∂ A $_{o}$ - or 2) there are two disjoint essential annuli A_1 , A_2 with $\iota A_1 = A_1$, $\iota A_2 = A_2$, and $\partial (A_1 \sqcup A_2) = \partial A_0 \sqcup \iota \partial A_0$ and **Fix** is transversal to A_1 and A_2 . # Example 5.7 The involution $\hat{\kappa}$ xid on D^2x I induces an involution ι on $RP^2xI=D^2xI/d$ where d=axid is an identification defined on $\partial D^2xI=S^1xI$. Fix= $(Re_{\square}\{i\})xI$. No essential annulus or Möbius band satisfies $A_{\square}\iota A=\emptyset$ or $\iota A=A$ and A and Fix transversal. There is an annulus, however, with $\iota A=A$ but it is not transversal to Fix. # Example 5.8 Consider the nonorientable twisted I-bundle IxIxI/d over a torus, where $d=(\tau \mid \partial I)xidx\tau_{\square}idx(\tau \mid \partial I)x\tau$. The involution $\iota=idx\tau x\tau/d$ has Möbius bands but no annuli A with A \square ι A= \emptyset or ι A=A and A and Fix transversal. # Annulus Theorem 5.9 Let M be an irreducible 3-manifold with involution ι . Suppose A_0 is an essential annulus or Möbius band in M with $\partial A_0 = S_{0,1} \sqcup S_{0,2}$ where, if A_0 is a Möbius band, $S_{0,1} = S_{0,2}$. Let R_1 , respectively R_2 , be the component of ∂M with $S_{0,1} \sqcup R_1$, respectively $S_{0,2} \sqcup R_2$. Assume R_1 is incompressible and if $R_1 \neq R_2$ assume also that R_1 is not a projective space. Then there is an essential annulus or Möbius band A with either $A_{\square} \iota A = \emptyset$, or $\iota A = A$ and A and Fix transversal and in both cases $\partial A_{\square} \iota \partial A = R_1 \sqcup R_2 \sqcup \iota R_1 \sqcup \iota R_2$. If M is orientable A may be taken to be an annulus. ## ∮6. Equivariant Torus Theorem #### Lemma 6.1 Let M be an irreducible 3-manifold containing an incompressible torus. Let F be a 1-sided Klein bottle in the interior of M and W a regular neighborhood of F in M with ∂W a torus. Then ∂W is an incompressible torus. **Proof:** If not then $M=W_{\square}U$ with U a solid torus. Necessarily W is an orientable twisted I-bundle over T and M is orientable. The inclusion of U in M determines an index two subgroup of $\pi_1(M)$. Consider $p:M\longrightarrow M$, the 2-sheeted covering corresponding to that subgroup. Then $p^{-1}(W)=Tx[-1,1]$ where T is a torus with p(Tx0)=F. $p^{-1}(U)=V_1_{\square}V_2$ is two disjoint solid tori. M is a lens space. But M and hence M contains a 2-sided incompressible torus. QED # Equivariant Torus Theorem 6.2 Let M be an irreducible 3-manifold with involution ι . Suppose M contains an incompressible torus. Then one of the following holds: (I) There is a 2-sided incompressible torus or Klein bottle T in int(M) transversal to Fix with $T_{\Box} \iota T = \emptyset$ or $\iota T = T$. (II) M=V_1 \sqcup V $_1$ \sqcup U $_1$ \sqcup U $_1$ where V $_i$ and U $_i$ are solid tori and ι V $_i$ =V $_i$ and ι U $_1$ =U $_1$. There are annuli A_{i} , $i=\pm 1$, with $A_1 \sqcup A_{-1}$ is a 2-sided incompressible torus or Klein bottle transversal to Fix. $\iota \mid V$; is orientation preserving. (III) $M=V_1 \sqcup V_2 \sqcup V$ where V_1 , V_2 and V are solid tori each invariant under ι such that ι is orientation preserving when restricted to any of V_1 , V_2 and V. There is a 1-sided Klein bottle T with $T \sqcup \iota T = S \sqcup \inf(V)$ a generator of $\pi_1(V)$. $V_1 \cap V_2 = (T_{\bigcap} \iota T) - int(V)$ are two annuli. T, ιT and Fix are pairwise transversal and $Fix_{\bigcap} \partial V_2 = \emptyset$ and $Fix_{\bigcap} S \neq \emptyset$. V is a standard neighborhood of S. See Figure 7. (IV) $M=W_{\square}V$ where W is a twisted I-bundle over a torus T $_{\square}W$ and V is a solid torus with $\partial W=\partial V=W_{\square}V$ and $\iota W=W$, $\iota T=T$ and $\iota V=V$. Fix is transversal to ∂W and T except for a possible 1-sphere component S of Fix 1 contained in T. **Proof:** Let T_0 be an incompressible torus in int(M). By Theorem 2.12 assume T_0 , ιT_0 and Fix are almost pairwise transversal and that no 1-spheres in $T_0 \cap \iota T_0$ bound 2-cells in T_0 . As a first step we handle the cases where saddle components arise. Only Type III and Type II components are possible. In both cases since S and S₁ intersect transversally at one point, there can be only one component in $T_0 \sqcap \iota T_0$. Suppose $T_0 \sqcap \iota T_0$ is a Type III component $S \sqcup S_1 \sqcup S_2$. Then S_1 and S_2 bound an annulus A in T_0 since $S_1 \sqcap S_2 = \emptyset$ and both intersect S transversally once. Let $T = A \sqcup \iota A$. Then $\iota T = T$ and T and Fix are transversal. T is 1-sided since a regular neighborhood of S_1 is a solid Klein bottle. Let N be a regular neighborhood of T invariant under N. If ∂N is incompressible then it is a 2-sided
torus satisfying (I). If ∂N is compressible we arrive at (IV). Suppose $T_0 \sqcap \iota T_0$ is a Type II component $S \sqcup S_1$. First we construct a torus T' isotopic to $T=T_0$ with $\iota T'=T'$. Let N(S) and $N(S_1)$ be regular neighborhoods of S and S_1 respectively, both invariant under ι such that $N=N(S) \sqcup N(S_1)$ is a regular neighborhood of $S_{1,1}S_1$ and such that $T \sqcap N(S)$ and $T \sqcap N(S_1)$ are annuli, $N(S) \sqcap Fix$ is a Möbius band, $N(S_1) \sqcap Fix^2$ is a proper 2-cell and $N(S_1) \cap Fix^1$ is a proper 1-cell. Both N(S) and N(S₁) are Klein bottles. By transversality there are two disjoint open 2-cell components K_1 and K_2 of $N(S)-(T_{11} \iota T)$ that meet Fix and there are two disjoint open 2-cell components L₁ and L₂ of $N(S_1) - (T_{11} \iota T)$ that do not meet Fix². By considering the effect of ι near saddle points we see $A=(K_{1,1},K_{2,1},L_{1,1},L_{2})$ \square ∂N is an annulus with $\partial A=C_{1,1}\iota C$ where $C=\partial N \cap T$. The closure of $A_{++}(T-N)_{++}\iota(T-N)$ is a 2-sphere which by the irreducibility of M bounds a 3-cell E. E cannot contain the proper punctured torus $T_{\square}N$ so E_{\square} int $(N)=\emptyset$. Since Fix^1 is transversal to ∂E and $\iota \partial E = \partial E$ it follows $\iota E = E$. particular $\iota \mid E$ is conjugate to j_1 , the standard involution of a 3-cell with fixed set one 1-cell. A is invariant and contains $Fix^1 \cap \partial E$. Hence one shows there is a proper 2-cell D with ∂D a generator of $H_1(A)$ such that Fix $^{1}\Box E$ is a proper 1-cell of D and $\iota D=D$. Since $\iota \partial D=\partial D$, by taking N sufficiently small we can construct a proper punctured torus P in N with $\partial P=D$ and $\iota P=P$ (namely isotope $T_{\square}N$). Consider the torus $T'=P_{\square}D$. Fix² intersects T' transversally at S_1 and Fix^1 is contained in T'. T' is 1-sided. Let W be a regular neighborhood of T' invariant under . If dw is incompressible then it is a 2-sided torus satisfying (I). If ∂W is compressible we arrive at (IV). We may now assume $T_0 \sqcap \iota T_0$ has no saddle components. T_0 , ιT_0 and Fix are pairwise transversal and $T_0 \sqcap \iota T_0$ consists of disjoint 1-spheres bounding annuli in T_0 and ιT_0 . We successively construct incompressible tori or Klein bottles T with fewer 1-spheres in $T_1 \iota T$, but always keep $T_1 \iota T$ consisting of 1-spheres bounding annuli in T and ιT . Therefore any 1-sphere of $T_1 \iota T$ will always have a standard neighborhood. See Definitions 2.9-.10. It also follows then that any 1-sided Klein bottle arising from such a construction has a regular neighborhood W with ∂W a torus. So Lemma 6.1 is applicable. Note: Suppose T satisfies all the conditions of (I) except that T is 1-sided instead of 2-sided. Let W be a regular neighborhood of T. We can take W so that ∂W and Fix are transversal and $\iota W=W$ or $W_{\square} \iota W=\emptyset$. ∂W is 2-sided. If ∂W is incompressible, ∂W satisfies (I). If ∂W is compressible, by Lemma 6.1 T is a torus. Now $V=\overline{M-W}$ is a solid torus. If $\iota T=T$ we have (IV). If $\iota T_{\square} T=\emptyset$ then the solid torus V contains an embedded 1-sided torus ιT , a contradiction. There are four main cases now depending on the number of 1-spheres of $T_{\square} \iota T$ and the compressibility of certain surfaces. Assume $T_{\square} \iota T$ consists of at least two 1-spheres. Let $A_{\square} \iota T$ be an innermost annulus: $A_{\square} T = \partial A$. ∂A decomposes T into two annuli A' and A'' with $T = A'_{\square} \iota A''$ and Figure 8. $\partial A = \partial A' = \partial A'' = A' \cap A''$. T'=A' \cap A and T"=A" \cap A are tori or Klein bottles. See Figure 8. Case 1) T' is incompressible. Case 1.1) $\iota \partial A = \partial A$ and $\iota A = A'$. Then $\iota T' = T'$. One sees Fix is transversal to T' by considering the standard neighborhoods of ∂A . We arrive at case (I) or (IV). Case 1.2) Either $\iota \partial A = \partial A$ and $\iota A = A$ " or $\iota \partial A \sqcap \partial A$ is a single 1-sphere S and $\iota A \sqcap A$ ". In the latter case ι S=S. Let V_1 and V_2 be distinct standard neighborhoods of ∂A and let γ_1 and γ_2 be the two distinct standard annuli that meet both A and A'. Let $T_1 = (A' \sqcup A \sqcup \gamma_1 \sqcup \gamma_2) - \operatorname{int}(V_1 \sqcup V_2)$. Then $T_1 \sqcap \iota T_1 \sqcap \iota T_1 \sqcap \iota T_1 = (T \sqcap \iota T) - \partial A$ because $(\gamma_1 \sqcup \gamma_2) \sqcap \iota (\gamma_1 \sqcup \gamma_2) = \emptyset$. T' and T_1 are ambient isotopic so T_1 is incompressible. Fix $\sqcap (\gamma_1 \sqcup \gamma_2) = \emptyset$ and A is innermost so T_1 , ιT_1 and Fix are pairwise transversal. Proceed with T_1 . Case 1.3) Either $\iota \partial A \cap \partial A$ is a single 1-sphere S and ιA [A' or $\iota \partial A \cap \partial A = \emptyset$. Let $\partial A=S_{\square}S'$. Let V be a standard neighborhood of S and let γ be the standard annulus that meets both A and A'. Let $Ax[0,\epsilon]$ be a sufficiently thin collar of A=Ax0 in M such that $$S'x[0,\epsilon] \ [A', Sx[0,\epsilon] \ [T and (A \ OV)x[0,\epsilon] = (Ax[0,\epsilon]) \ OV.$$ The collar exists since V is a solid torus. In the first case, $\iota S=S$ and $\iota \gamma=\gamma$. By Lemma 5.3 if $(Ax\epsilon)_{\square} \gamma\neq\emptyset$ we may assume $(Ax\epsilon)_{\square} V$ and $\iota((Ax\epsilon)_{\square} V)$ intersect transversally in a 1-sphere S_1 and that both are transversal to Fix. In all other cases set $S_1=S$. Define $T_1 = (Ax\epsilon) \bigsqcup \overline{A' - ((S' \bigsqcup S)x[0,\epsilon])} \bigsqcup (Sx[0,\epsilon]) - A'$ Then $T_1 \bigsqcup \iota T_1 \sqsubseteq ((T \bigsqcup \iota T) - \partial A) \bigsqcup S_1$. T_1 is incompressible since it is ambient isotopic to T'. T_1 , ιT_1 and Fix are pairwise transversal. Proceed with T_1 . By case 1) we may now assume T' and T" are compressible. Case 2) For every annulus A $_{\Box}$ ιT with A $_{\Box}$ T= ∂A , both corresponding surfaces T' and T" are compressible and T $_{\Box}$ ιT contains more than two 1-spheres. Then let A_1 and A_2 in ιT be annuli with $A_1 \sqcap T = \partial A_1$ and with $\partial A_1 = S_0 \sqcup S_1$ where S, S_1 and S_2 are 1-spheres with $S_1 \neq S_2$. Let A, A_1 ' and A_2 ' be the three annuli of T that these 1-spheres decompose T into: $\partial A = S_1 \sqcup S_2$ and $\partial A_1' = S_0 \sqcup S_1$, i=1,2. See Figure 9. Define $T_1=A_{\square}A_1_{\square}A_2$. T_1 is incompressible. Otherwise T_1 bounds a solid torus or a Klein bottle U. Say A_1' [U. A_1' is trivial in U by Lemma 5.5. If $A_1'_{\square}A_1$ bounds the trivializing torus then the incompressible $T=A_1'_{\square}A_2'_{\square}A$ is ambient isotopic to $A_1_{\square}A_2'_{\square}A$ which was compressible by hypothesis. If $A_1'_{\square}A_2_{\square}A$ bounds the trivializing torus then, since A_1' and A_2 meet on S_0 , A_2 must also be trivial in $A_1'_{\square}A_2_{\square}A$. So T is ambient isotopic to $A_2'_{\square}A_2$ which was assumed compressible. We have five cases: Case 2.1) $\iota(S_1 \sqcup S_2) = S_1 \sqcup S_2$ and $\iota S_0 \upharpoonright A$. Then $\iota(A_1 \sqcup A_2) = A$. Case 2.2) $\iota(S_1 \sqcup S_2) = S_1 \sqcup S_2$ and $\iota S_0 \upharpoonright A'$. Then $\iota(A_{111}A_2)=A_1'_{11}A_2'$ and $\iota S_0=S_0$. Case 2.3) $\iota S_1 = S_1$ and $\iota S_0 = S_0$. Then $\iota A_1 = A_1$ and $\iota S_2 \upharpoonright A_2$. Case 2.4) $\iota (S_1 \sqcup S_2) \sqcap (S_1 \sqcup S_2) = \emptyset$. Figure 9. Case 2.5) $\iota(S_1 \sqcup S_2) \sqcap (S_1 \sqcup S_2)$ is a one 1-sphere. These cases cover all possibilities. In each case we find a T; with fewer 1-spheres. In case 2.5) this follows from the other cases. After relabelling assume S_1 is the 1-sphere in the intersection. Then $\iota S_1 = S_1$. By case 2.3) we assume $\iota S_0 \neq S_0$. Let A_3 be the innermost annulus adjacent to A_1 : $A_3 = \iota T_1$ with $A_3 = I_1 = \partial A_3 = I_2 = I_3$ where $I_3 \neq I_3 = I$ In case 2.1) use $T_1 = \iota T_1$. Fix is transversal to T_1 since the standard annulus meeting A_1 and A is invariant. In case 2.2) and case 2.3): For i=1,2 let V_i be the standard neighborhoods of S_i with γ_i the standard annuli that meet both A and A_i . In all cases $(\gamma_1 \sqcup \gamma_2) \sqcap \iota(\gamma_1 \sqcup \gamma_2) = \emptyset$. Define T_2 to be the incompressible surface ambient isotopic to T_1 given by $$T_2 = T_1 \sqcup \gamma_1 \sqcup \gamma_2 - int(V_1 \sqcup V_2).$$ Then T_2 , ιT_2 and Fix are pairwise transversal and $$T_2 \sqcap \iota T_2 \vdash T_1 \sqcap \iota T_1 - (S_1 \sqcup S_2).$$ In case 2.4): First assume $\iota S_0 \neq S_0$. By symmetry assume $\iota S_0 \neq S_1$. Let $(A_1 \sqcup A_2) \times [0, \epsilon]$ be a sufficiently thin collar of $A_1 \sqcup A_2 = (A_1 \sqcup A_1) \times 0$ in M such that $(S_1 \sqcup S_2) \times [0, \epsilon]$ T and $S_0 \times [0, \epsilon]$ A1. Define T_2 as $(A_1 \bigsqcup A_2) \times \epsilon \bigsqcup \overline{A^-((S_1 \bigsqcup S_2) \times [0, \epsilon])} \bigsqcup ((S_1 \bigsqcup S_2) \times [0, \epsilon] - A).$ Then $T_2 \bigsqcup \iota T_2 \sqsubseteq \iota (T \bigsqcup \iota T) - S_0$. T_2 is ambient isotopic to incompressible T_1 . T_2 , ιT_2 and Fix are pairwise transversal. If $\iota S_0 = S_0$, proceed as above but replace the condition $S_0 \times [0, \epsilon]$ [A_1 by $S_1 \times [0, \epsilon]$ [A_2 Use Lemma 5.3 on a standard neighborhood of S_0 to adjust the
collar so that $(A_1 \sqcup A_2) \times \epsilon$ and $\iota (A_1 \sqcup A_2) \times \epsilon$ intersect transversally in one 1-sphere S_3 . Then $T_2 \sqcup \iota T_2 \subseteq (\iota (T \sqcup \iota T) - (S_0 \sqcup S_1)) \sqcup S_3$. Case 3) For each annulus A $_{\text{C}}$ ι T with A $_{\square}$ T= ∂ A, both corresponding surfaces T' and T" are not incompressible and T $_{\square}$ ι T is exactly two 1-spheres. Set $\iota T = A_{-1} \sqcup A_1$ with $A_{-1} \sqcap A_1 = \partial A_1 = \partial A_{-1} = T \sqcap \iota T = S_1 \sqcup S_2$. Then $T = \iota A_{-1} \sqcup \iota A_1$. There are solid tori or Klein bottles U_i and V_i ($i = \pm 1$) pairwise disjoint on their interiors with $\partial V_i = A_i \sqcup \iota A_i$ and $\partial U_i = A_i \sqcup \iota A_{-i}$. None of U_i or V_i are solid Klein bottles. Otherwise, if say V_1 is a solid Klein bottle, then since S_1 decomposes ∂V_1 into two annuli it follows that S_1 bounds a disc in V_1 . This contradicts the incompressibility of T. By considering the standard annuli of a standard neighborhood of S_1 we see $\iota V_i = V_i$ and $\iota U_i = U_{-i}$. Next we show $\iota \mid V_1$ and $\iota \mid V_{-1}$ are orientation preserving. If not then by Section 4, $\iota \mid V_1$ is conjugate to j_A , j_{2D} , j_N , j_M or j_{DP} , the standard involutions on a solid torus. j_{2D} and j_{DP} are not possible since S_1 or S_2 would bound a disc contradicting the incompressibility of T. If $\iota|V_1$ is conjugate to j_M then say S_1 [Fix and $S_2 \sqcap Fix = \emptyset$. Then $\iota|V_2$ has a 2-dimensional fixed set component that has only one boundary component. It follows $\iota|V_2$ is also conjugate to j_M . So Fix contains a Klein bottle K. There is a regular neighborhood W of K with $\iota\partial W = \partial W$ and $W \sqcap Fix = \emptyset$. Since V_i are solid tori and $K \sqcap V_i$ is a Möbius band, ∂W is a torus. By Lemma 6.1, ∂W is incompressible. We arrive at (I). If $\iota \mid V_1$ is conjugate to j_A , then $[S_1]$ represents a generator of $H_1(V_1)$ and hence there is an ambient isotopy taking ιT to ∂U_{-1} (move A_1 to ιA_1). This contradicts that ιT is incompressible. Finally suppose $\iota \mid V_1$ is conjugate to the involution $j_N = \hat{\kappa} x \alpha$ on $D^2 x S^1$. If $\iota S_1 = S_1$ then $S_1' = 1 x S^1$ and $S_2' = -1 x S^1$ determine annuli A' and $\iota A'$ of $\partial D^2 x S^1$. It is possible to construct a conjugation $\partial V_1 \longrightarrow \partial D^2 x S^1$ taking A_1 to A'. This conjugation extends to a conjugation $V_1 \longrightarrow D^2 x S^1$. But $[S_1']$ is a generator of $H_1(D^2 x S^1)$ and we get a contradiction as for the j_A case above. If $\iota S_1 = S_2$ then use $S_1' = \partial D^2 x 1$ and $S_2' = \partial D^2 x - 1$ and proceed as above but this time obtaining a contradiction as for j_{2D} above. Case 4) $T_{\square} \iota T$ is a single 1-sphere S. Then $\iota S=S$. Let V be a standard neighborhood of S and let a_1 , a_2 , β_1 and β_2 be the standard annuli with $a_1 \sqcap a_2 = \emptyset$, $\beta_1 \sqcap \beta_2 = \emptyset$, $\iota a_1 = a_1$, $\iota a_2 = a_2$ and $\iota \beta_1 = \beta_2$. Define $T_1 = (T_{\square} \iota T_{\square} a_1 \sqcup a_2) - \operatorname{int}(V)$ and $T_2 = (T_{\square} \iota T_{\square} \beta_1 \sqcup \beta_2) - \operatorname{int}(V)$. If T is 2-sided then T_1 is 2-sided. Also $\iota T_1 = T_1$. Since T is 2-sided it follows that a sufficiently thin collar $Tx[0,\epsilon]$ of T=Tx0 can intersect only one of $int(a_1)$ and $int(a_2)$. Hence T_1 cannot separate and therefore T_1 is incompressible. We arrive at (I). From now on assume T is 1-sided. T_1 and T_2 are tori. This follows since V is a solid torus and either both of the annuli T-int(V) and ι T-int(V) are "twisted" relative to V (if T is a Klein bottle) or neither is (if T is a torus). If either of T_1 or T_2 is incompressible we arrive at (I). Assume then that T_1 and T_2 are compressible. Then T_1 bounds a solid torus V_1 . If $S_1 V_2$ then V_1 contains a 1-sided torus or Klein bottle, a contradiction. So $M=V_1 V_1 U_2$ with int(V), $int(V_1)$ and $int(V_2)$ pairwise disjoint. By choice of a_1 and a_2 , ι interchanges the components of $\partial a_{\dot{1}}$. Therefore $\iota \mid a_{\dot{1}}$ is conjugate to one of $\mathrm{id} \mathbf{x} \tau$, $\kappa \mathbf{x} \tau$ or $a \mathbf{x} \tau$, the standard involutions of $S^1 \mathbf{x} I$. Let $S_{\dot{1}}$ be a 1-sphere of $a_{\dot{1}}$ that is the image of $S^1 \mathbf{x} 0$ under some conjugation. Note that S_i does not bound a disc D in V_i , otherwise T would be compressible. Note also that if there is an annulus A $_{\mathbb{C}}$ V, with $\partial A=S_1 {\;\sqcup\,} S_2$ and ${\;\iota\,} A=A$ then we arrive at property (I) and (IV) as follows. Torus V, is separated by A. Since ${\;\iota\,}$ interchanges the components of ∂a_1 , ${\;\iota\,}$ interchanges the components of $A-V_1$. A is trivial in V, so it follows V, can be given a trivial I-bundle structure over A. There is an annulus B $_{\mathbb{C}}$ V with $\partial B=S_1 {\;\sqcup\,} S_2$ and ${\;\iota\,} B=B$. V is an I-bundle over B. Consider $T_3=A_{\;\sqcup\,} B$. It follows $V_{\;\sqcup\,} V_1$ is an I-bundle over T_3 with $\partial (V_{\;\sqcup\,} V_1)=T_2$ a torus. Moreover T_3 does not separate T so T_3 is 1-sided. If T_3 is a torus we arrive at (IV). If T_3 is a Klein bottle, Lemma 6.1 gives (I). Since V is a standard neighborhood, $\operatorname{Fix}_{\square} a_1 = \emptyset$ if and only if $\operatorname{Fix}_{\square} a_2 = \emptyset$. Therefore $\iota \mid a_1$ and $\iota \mid a_2$ are conjugate. Case 4.1) $\iota \mid a_1$ is conjugate to $\mathrm{id} x \tau$. Then $\iota \mid V_1$ has a 2-dimensional fixed set that meets ∂V_1 in two fixed 1-spheres. By Section 4 it follows that S_1 bounds a disc or $S_1 \sqcup S_2$ bound an annulus A fixed by $\iota \mid V_1$. By the above comments, we arrive at (I) or (IV). Case 4.2) $\iota \mid a_1$ is conjugate to $ax\tau$. Then $\iota \mid V_1$ is orientation reversing. $\iota \mid \partial V_1$ is conjugate to $ax\kappa$ on S^1xS^1 by a conjugation taking S_i to $S^1x(-1)^i$. By Section 4 $\iota \mid V_1$ is conjugate to $\hat{a}x\kappa$ or $ax\hat{\kappa}$ by a conjugation extending the one given on the boundaries. In the first case S_1 bounds a disc and in the second case $S_1 \sqcup S_2$ bound an annulus with $\iota A=A$. Again by the above comments we arrive at (I) or (IV). Case 4.3) $\iota \mid a_1$ is conjugate to $\kappa x \tau$. Then $\iota \mid V_1$ and $\iota \mid V$ are orientation preserving. Now $\iota \mid V_2$ is orientation reversing if and only if T is a torus. To see this let $S_1 = a_1 \sqcap \beta_1$ and without loss say $S_1 \sqcap T$. Orient S_1 . S_1 and ιS_1 bound two annuli A_1 and A_2 of ∂V_2 with $\iota A_1 = A_2$. Consider the ways of inducing an orientation on ιS_1 . The orientation induced by A_1 and the orientation induced by a_1 are the same if and only if T is a torus. Since $\iota \mid a_1$ is orientation reversing the orientation induced by a_1 and the orientation induced by $\iota \iota = a_1$ and $\iota = a_2$ are opposite. So $\iota \iota = a_1$ and $\iota = a_2$ induce opposite orientations on $\iota \in a_1$ if and only if T is a torus. Since $\iota = a_1$ induce opposite orientations on $\iota \in a_1$ if and only if T is a torus. Since If T is a torus then $\iota \mid V_2$ is orientation reversing so $\iota \mid \partial V_2$ is conjugate to the involution $ax\kappa$ on S^1xS^1 by a conjugation taking S_1 to ixS^1 . As in case 4.2) we arrive at (I) or (IV). If T is a Klein bottle then we arrive at (III). $\iota \mid \partial V_2$ is fixed point free so $\iota \mid V_2$ is conjugate to j_S or j_O while $\iota \mid V_1$ is conjugate to j_{2C} . QED # IV. INVOLUTIONS ON ORIENTABLE I-BUNDLES OVER TORI AND KLEIN BOTTLES ## ∮7. Involutions on the Trivial I-Bundle Over a Torus As an application of the annulus theorem we classify the involutions on various I-bundles. #### Definition 7.1 Let $W=S^1xS^1xI$ be the trivial I-bundle over the torus $T=S^1xS^1$. Define the following involutions on W (see Figure 10): $k_{T} = idxidx\tau \text{ having fixed set the torus } S^{1}xS^{1}x0$ $k_{2A} = idx\kappa x id \text{ having fixed set two annuli } S^{1}x\pm 1xI$ $k_{2S} = idx\kappa x\tau \text{ having fixed set two 1-spheres } S^{1}x\pm 1x0$ $k_{A} = (\rho \cdot (idx\kappa))x id \text{ having fixed set the annulus } S^{1}x1xI$ $k_{S} = (\rho \cdot (idx\kappa))x\tau \text{ having fixed set the 1-sphere } S^{1}x1x0$ $k_{4C} = \kappa x\kappa x id \text{ having fixed set four 1-cells } \pm 1x\pm 1xI$ $k_{4P} = \kappa x\kappa x\tau \text{ having fixed set four points } \pm 1x\pm 1x0$ $k_{OF} = axidxid$ $k_{OF} = axidxid$ $k_{NI} = ax\kappa x id$ $k_{NI} = ax\kappa x id$ $k_{OI} = ax\kappa x \tau$ Here $\rho \cdot (idx_K)(z,w) = (z\overline{w},\overline{w})$. The last four involutions are fixed point free. The subscript O means the involution is orientation preserving, N means it is orientation reversing, F means it keeps the boundary components fixed (as sets), Figure 10. Fixed point sets for the standard involutions. and I means it interchanges the two boundary components. The orientation type of the other involutions is determined by the dimensions of their fixed point sets. These eleven involutions are not conjugate, because fixed point sets, orientability type and F/I properties are conjugacy class invariants. k_A and k_S are conjugate to the following. On S^1xIxI define the identification $d=ax\tau|_{\partial I}xid$. Then $W\cong S^1xIxI/d$. Let $k_A'=(idx\tau xid)/d$
with fix set $(S^1x0xI)/d$ and $k_S'=(idx\tau x\tau)/d$ with fix set $(S^1x0x0)/d$. The other involutions can be given similar alternate conjugate representations using $d=ax\tau|xid$ or $d=idx\tau|xid$. #### Lemma 7.2 Let A be an essential annulus in Tx[-1,1]. Then $(Tx[-1,1],A) \cong (S^1xS^1x[-1,1],S^1x1x[-1,1]).$ **Proof:** By an isomorphism take one of the boundary components of A as $S^1x1x[-1,1]$. First show A meets both boundary components of Tx[-1,1]. If not then let A' be the annulus $S^1xJx[-1,1]$ where J is an interval chosen sufficiently close to $1 \in S^1$ and small enough so that $A' \cap \partial A = \emptyset$ and A' is in the component of Tx[-1,1] - A that meets Tx-1. Then, in the solid torus $Tx[-1,1]/(z,w,-1)\sim(z,w',-1)$, the disc $1xS^1x[-1,1]/\sim$ is a nonseparating 2-cell meeting A' in one nonseparating 1-cell of C. By Lemma 5.5 there is a solid torus V that trivializes A and does not meet A'. Necessarily V does not meet Tx-1 so A is also trivial in Tx[-1,1]. This is a contradiction. Next adjust by an isomorphism so that A and $1xS^1x[-1,1]$ meet in a single proper 1-cell. Then the isomorphism can be constructed. QED #### Theorem 7.3 Let ι and ι' be involutions on $W=S^1xS^1xI$ with isomorphic fixed point sets. If ι and ι' are fixed point free assume, in addition, that both have the same orientation type and that ι interchanges boundary components of ∂W if and only if ι' interchanges boundary components of ∂W . Then ι and ι' are conjugate. An involution on W is conjugate to one of the eleven involutions listed above. **Proof:** Let ι be an involution on W=S¹xS¹xI. We show it is conjugate to a standard involution. By the Annulus Theorem 5.9 there is an essential annulus A with either $\iota A \sqcap A = \emptyset$ or $\iota A = A$ and A and Fix transversal. In the latter case, by Lemma 3.5 assume the collar of A is not interchanged. By the previous lemma take A of form S¹x1x[-1,1]. With further adjustment take $\iota A = S^1 x - 1x[-1,1]$ if $\iota A \neq A$. Let $W_+ = S^1 x \{x + y \cdot i : y \ge 0\} x[-1,1]$ and $W_- = S^1 x \{x + y \cdot i : y \le 0\} x[-1,1]$. There are three cases: Case 1) $\iota A=A$, A and Fix are transversal and the collar of A is not interchanged. Case 2) $\iota A \cap A = \emptyset$ and $\iota W_+ = W_+$. Case 3) $\iota A \cap A = \emptyset$ and $\iota W_+ = W_{-}$. We show that & is conjugate to: in case 1) k_{OF} , k_{NI} , k_{T} , k_{2A} , k_{2S} , k_{A} or k_{S} in case 2) k_{NF} , k_{OI} , k_{2A} , k_{2S} , k_{A} , k_{S} , k_{4C} or k_{4P} . in case 3) k_{OF} , k_{NI} , k_{NF} or k_{OI} . Several of the standard involutions are listed in more than one case. Each standard involution (or at least a conjugate of one) can in fact arise in the case it has been listed under. To see this it suffices to display an annulus A' in W, not necessarily of form $S^1x_1x_1$, with properties analogous to those of A. Consider A' as follows: in case 3) take $1xS^1x_1$; in case 2) take $S^1x_1x_1$; in case 1) take $S^1x_1x_1$ for k_{OF} , k_{NI} , k_{T} , take $1xS^1x_1$ for k_{2A} , k_{2S} and take $\{(z,z^2,t):z,t\}$ for k_{A} , k_{S} . Call two involutions on W of same type if they have isomorphic fixed sets and, in addition, when they are fixed point free, if they have the same orientation type and simultaneously interchange or do not interchange boundary components. It suffices to show, first, that ι has the same type as a standard involution listed under a corresponding case, and second, if ι and ι ' have the same type and fall into the same case 1) - 3) then they are conjugate. Constant use is made of Section 4. Reserve j to denote standard involutions on the solid torus. All constructions done for ι are to be performed for ι' , even if not explicitly stated. Case 1) $\iota A=A$, A and Fix are transversal and the collar of A is not interchanged. Then $W=S^1xIx[-1,1]/d$ where $d=idx(\tau|\partial I)xid$. The involution ι induces an involution λ on the solid torus $V=S^1xIx[-1,1]$ with the property $\lambda.d=d.\lambda$ when restricted to $S^1x\partial Ix[-1,1]$. Fix(λ) is proper since Fix is transversal to A. Let A also denote the copy S^1xIx1 in V. Since the collar is not interchanged $\lambda(A)=A$. See Remark 3.6. By adjusting ι in a collar of A we may assume $\iota \mid A$ and $\lambda \mid A$ are one of the five standard involutions on an annulus (Lemma 3.2). Let S be a fixed component of ∂A . $[S]_{\epsilon H_1}(V) = Z$ is a generator. Write $V=D^2xS^1$. Let $M=S^1x1$ and $L=1xS^1$. Then [M] and [L] generate $H_1(\partial V) = Z \oplus Z$ and with a proper choice of orientations $[S]_{\epsilon}=[L]_{\epsilon}+a[M]$ where $a \in Z$. λ is not conjugate to j_S , j_M , j_{DP} or j_{2P} : If λ were conjugate to j_S then, since j_S is orientation preserving and $\partial Fix(j's) = \emptyset$, $\lambda | \lambda = \alpha xid$. Therefore S is kept setwise fixed by λ . So $[S/\lambda]$ represents twice—the—generator of $H_1(V/\lambda)=Z$. However $[Fix(\lambda)]$ also represents a generator of $H_1(V)$ and $[Fix(\lambda)/\iota]$ is a generator of $H_1(V/\lambda)$. If λ were conjugate to j_M —then— $\iota_*[S] = \iota_*[L]+a\iota_*[M] = [L]+[M]-a[M] \neq \pm [S]$ contradicting $\iota A=A$. If λ were conjugate to j_{DP} —then— $\iota_*[S] = -[L]-[M]+a[M] \neq \pm [S]$ contradicting $\iota A=A$. If λ were conjugate to j_{2P} —then since j_{2P} is orientation reversing and $\partial Fix(j_{2P})=\emptyset$, $\lambda |A=ax\tau$. Therefore $[S]=\iota_*[S]$. This implies [L]+a[M]=-[L]+a[M], a contradiction. Hence λ is conjugate to j_A , j_{2D} , j_{2C} , j_O or j_N . Let B be a component of V-int($A_{\square}d(A)$) that meets S. We investigate the five possibilities for $\lambda|A$. Since we will see these give rise to involutions of different types, select a conjugation $h:A_{\longrightarrow}>A'$ between $\lambda|A$ and $\lambda'|A'$ and choose S'=h(S). This conjugation extends to a conjugation $h:A_{\square}d(A)_{\longrightarrow}>A'_{\square}d'(A')$. Case 1.1) $\lambda | A = \kappa x \tau$. Let Fix($\lambda | A$)={x,y}. Necessarily λ is conjugate to j_{2C} . If x and d(x) are in the same component of Fix(λ) then Fix is two 1-spheres. Otherwise Fix is one 1-sphere. So ι has the type of k_S or k_{2S} . Now x' and d'(x') are in the same component of Fix(λ ') iff x and d(x) are in the same component of Fix(λ). The conjugation extends over Fix so extend it to a conjugation h:V—>V' between λ and λ '. A conjugation h:W—>W' between ι and ι ' is induced. Case 1.2) $\lambda \mid A = \kappa x i d$. Proceed as in case 1.1) except now $Fix(\lambda \mid A)$ is two 2-cells, so Fix is either two or one annuli. Thus ι has type of k_{2A} or k_{A} . Now $\iota B = B$. h extends over B since Fix separates B into two components. Extend similarly over the annulus $\partial V - (B_{+1}A_{+1}\iota A)$. Case 1.3) $\lambda | A=idx\tau$. Then λ is conjugate to j_A so Fix is a torus and ι has the type of k_T . Proceed as in 1.1). Case 1.4) $\lambda | A = \alpha x \tau$. It follows $\lambda B_{\square} B = \emptyset$. So λ is conjugate to j_N and ι is of type k_{NI} . Proceed as in 1.1). Case 1.5) $\lambda | A = a \times id$. Then λ is conjugate to j_{2C} or j_{O} . j_{2C} is not possible since $[S] = \lambda_*[S] = j_{2C^*}([L] + a[M]) = -[L] - a[M] = -[S]$. So λ is conjugate to j_{O} and ι is of type k_{OF} . Let $B_1 = B$ and $B_2 = \overline{\partial V} - (A_{\square}d(A)_{\square}B)$. Let J be a nonseparating 1-cell of A with $J_{\square}\lambda J = \emptyset$ and let I_i be any path in B_i from ∂J to $d(\partial J)$. B_i/ι is an annulus so by lifting an embedded path that is path homotopic to I_i/ι we may also assume that $I_i \square \iota I_i = \emptyset$. By making proper choices, we arrange that $I_i \square I_2 \square J_{\square}d(J)$ bounds a 2-cell in V. A similar property holds for λ' for J' = h(J). Use I_i and I_i' to extend h to a conjugation $\partial V \longrightarrow \partial V'$ and complete the argument as before. Case 2) $\iota A_{\square} A = \emptyset$ and $\iota W_{+} = W_{+}$. Let S be a fixed component of ∂A . Let B be a component of $W_{+} \cap \partial W$ that meets S. Let $\lambda = \iota \mid W_{+}$. There are two possibilities: # 2b) $\lambda B \cap B = \emptyset$. In 2a) ι interchanges boundary components of ∂W , while in 2b) it does not. W_+ is a solid torus, so λ is conjugate to one of the standard involution of the solid torus. This splits the present case into four subcases. In fact in case 2a) if ι is orientation preserving then λ is conjugate to j_{2C} . if ι is orientation reversing then λ is conjugate to j_A or j_N . in case 2b) if ι is orientation preserving then λ is conjugate to j_S or j_O . if ι is orientation reversing then λ is conjugate to j_{2P} . To show this note that in $H_1(W_+)=Z$, [S] is a generator. Since $S = \partial W_+ - Fix$, λ cannot be conjugate to j_{2D} , j_{M} or j_{DP} . In case 2a) $\lambda_*[S]=-\mu(\lambda)[S]$, while in case 2b) $\lambda_*[S]=\mu(\lambda)[S]$, where $\mu(\lambda)$ is +1 if λ is orientation preserving and -1 if λ is orientation reversing. If λ is conjugate to j_{2C} or j_{2P} then $\lambda[S]=-[S]$. In all other cases $\lambda[S]=[S]$. This establishes the claim. $\lambda = \iota \mid W$ must satisfy the (similar) case 2a) - 2b). Combining
λ and λ in all the different possible ways gives involutions of types as listed previously. For example, combining a j_A with a j_N gives an involution of type k_A . Let ι ' be of same type as ι . It remains to show they are conjugate. Find an isomorphism h:A---->A' and extend by equivariance to $h:A_{\sqcup} \iota A---->A'_{\sqcup} \iota' A'$. It suffices to show that h extends to W_+ when $\lambda=\iota\,|W^+$ and $\lambda'=\iota'\,|W_+$ are conjugate. Take B and B' as above. Case 2.1) λ is conjugate to j_A . Fix \square B is a 1-sphere and the components of B-Fix are interchanged. Extend hover one of these components and then extend over all of B by equivariance. Similarly for the other annulus of W, \square ∂ W. By the conjugation extendable property of j_A this conjugation extends to all of W.. Case 2.2) λ is conjugate to j_N . Then B/ι is a Möbius band. The isomorphism h extends to B/ι . Lift to B and proceed as in 2.1. Case 2.3) λ is conjugate to j_{2C} . B/ι is a 2-cell with $Fix_{\square}B/\iota$ being two points. There is an isomorphism which extends the given induced one on $\partial B/\iota$ and takes the two points of $Fix_{\square}B/\iota$ to $Fix'_{\square}B'/\iota'$ in either of the two possible ways. This isomorphism lifts and with correct choices h extends as in 2.1. Case 2.4) λ is conjugate to j_{2P} . Extend h in any way to B and then extend by equivariance to ∂W_{\bullet} . Case 2.5) λ is conjugate to j_O or j_S . Then $B_{\square} \lambda B = \emptyset$. Let J be a proper 1-cell of A and let J' = h(J). Select a proper 1-cell I of B with $\partial I = \partial (J_{\square} \lambda J)_{\square} A$ and consider C=I $_{\square}$ λ I $_{\square}$ J $_{\square}$ λ J. C cannot be used to extend h since even if C bounds a disc in W, C' may not bound a disc in W'. As before let W. \cong D²xS¹, M=S¹x1 and L=1xS¹. Then [M] and [L] generate H₁(∂ W.)=Z \oplus Z and with correct choices [S]=[L]+a[M] as classes in H₁(∂ W.), for some a.Z. By changing I assume [C]= μ [L]+b[M] where μ is 0 or 1 and b.Z. Achieve this by altering the path class of I by concatenating with S and by using the fact that λ_* [S]=[S]. Now W./ λ is a torus. Let p:H₁(∂ W.)—>H₁(∂ W./ λ) be the obvious homomorphism. Let [M₁] and [L₁] be generators for H₁(∂ W./ λ) defined as for ∂ W.. Without loss for jO. $$p[M] = [M_1]$$ and $p[L] = 2[L_1]$ and for js, $$p[M]=2[M_1]$$ and $p[L]=[L_1]$. For j_S , $p[C]=\mu[L_1]+2b[M_1]$. Since C/λ is double covered by C it follows μ is even. So $\mu=0$. Let $C_1=C$. For j_O , suppose μ is 0. Then $p[C]=b[M_1]$ so b is even since again C/λ is double covered by C. Then $[(I_{\square}J)/\lambda]=(b/2)[M_1]$ and it follows $(I_{\square}J)/\lambda$ lifts to a 1-sphere. This is a contradiction since $\partial(I_{\square}J)\neq\emptyset$. So $\mu=1$. Then let I_1 be a proper 1-cell in B with $I_1 \cap I=\partial I_1=\partial I$ such that $C_1=I_1 \cap \lambda I_{\square}J \cap \lambda J$ has class $[C_1]=d[M]$ for some $d \in \mathbf{Z}$. In any event we obtain a curve C_1 with $[C_1]=0\,\epsilon H_1(W_*)$. Since j_S and j_O determine different μ it follows that for ι ' we can define C_1 ' in the same way as C_1 (i.e.) using I_1 ' if C_1 uses I_1 . Extend h over I (and I_1 for j_0 case). This h then extends to a conjugation by construction. Case 3) $\iota A \cap A = \emptyset$ and $\iota W_{\bullet} = W_{\bullet}$. Then ι is fixed point free. Suppose ι ' is of same type. Let h:A--->A' be any isomorphism extend by equivariance to conjugation $h:A_{1}, \iota A \longrightarrow A'_{1}, \iota' A'$. Fix a component S of and S'=h(S). Let B be the component of W+ $_{\square}$ ∂ W that meets S. B is an annulus. Similarly define B'. Since ι and ι ' have the same interchange type (F/I property) we have $h(\partial B-S)=\partial B'-S'$. Since they have the same orientation type h | dB extends to h:B—>B'. The isomorphism determined on the $A_{++}B_{++}\iota A$ necessarily extends to an isomorphism of the solid tori W. ---->W.'. Extend to W=W. W. by equivariance. QED ### Corollary 7.4 Let W and W' be trivial I-bundles over a torus. Involutions conjugate to k_T are conjugation extendable. If ι on W is conjugate to k_A or k_{2A} and ι ' on W' is conjugate to ι then a conjugation $h:\partial W$ —>> ∂W ' is conjugation extendable if it satisfies the following condition: Let Fix_1 be a component of $Fix=Fix(\iota)$ and let $Fix_1x[-1,1]$ be a bicollar of $Fix_1=Fixx0$ such that $\partial Fix_1x[-1,1]$ bicollars ∂Fix_1 . Similarly for Fix_1 ', where Fix_1 ' is a component of $Fix'=Fix(\iota')$ meeting $h(\partial Fix_1)$. Then require that h extends to an isomorphism h: $\partial W_{\sqcup} \operatorname{Fix}_{1} x[-1,1] \longrightarrow \partial W'_{\sqcup} \operatorname{Fix}_{1} x[-1,1].$ There are conjugations of ∂W that are not extendable! #### Proof: For k_T , the fixed set separates. Let ι on W be conjugate to k_T . Let W_{\bullet} be the closure of one of the components. Then W_{\bullet} is isomorphic to Tx[0,1] by an isomorphism taking $\partial W_{\bullet} - Fix$ to Tx0 and Fix to Tx1 where $T=S^1xS^1$. Clearly the isomorphism $h:Tx0\longrightarrow T'x0$ extends to an isomorphism on W_{\bullet} taking Tx1 to T'x1. Extend by equivariance. For k_A , let ι , ι ' and h be as in statement of corollary. It follows h extends to a conjugation $h:\partial W \sqcup Fix$ —> $\partial W' \sqcup Fix'$. Cutting W open along Fix gives a solid torus V having two copies of Fix in its boundary. The involution ι on W is induced by an involution λ on V which interchanges these copies of Fix. Similarly for W'. By the condition on the bicollar, $h \mid (\partial W \sqcup Fix)$ is induced from a conjugation $h_1:\partial V$ —> $\partial V'$. Now λ is conjugate to j_N so by the conjugation extendable property for j_N , h_1 extends over V and hence induces a conjugation on W extending h. For k_{2A} , let ι , ι ' and h be as in statement of corollary. It follows h extends to a conjugation $h: \partial W_{||} Fix_1 \longrightarrow \partial W_{||} Fix_1$ '. Since all components of Fix and $\partial W - Fix$ are annuli h extends to a conjugation h: $\partial W \sqcup Fix$ —> $\partial W \sqcup Fix$ '. Let C and ι C be the two 3-cells that Fix decomposes W into. By the bicollar condition h(∂ C) is contained in one of the two 3-cells that Fix' decomposes W' into. Say h(∂ C) $_{\Box}$ ∂ C'. Then extend h to an isomorphism h: W \sqcup C \longrightarrow W' \sqcup C' by coning to a vertex and extend by equivariance to the desired conjugation. QED #### Corollary 7.5 If ι is an orientation preserving involution on W=S'xS'xI then W/ ι is isomorphic to one of the following spaces: $W/k_{2S} \cong D^2xS^1$ a solid torus with Fix/k_{2S} two unknotted 1-spheres $(\pm 1/2)xS^1$, $W/k_S \cong D^2xS^1$ a solid torus with Fix/k_S one unknotted 1-sphere $\{(e^{\pi it}/2, e^{2\pi it}): -1 \le t \le 1\}$ representing twice a generator of $H_1(D^2xS^1)$, W/k $_{OI}$ an orientable twisted I-bundle over a Klein bottle, W/k $_{4C}$ \cong S²xI with Fix/k $_{4C}$ = {four points}xI. W/k $_{OF}$ \cong W. Proof: ι is conjugate to a standard involution k. Use the representations for the standard involutions. In all cases except for k_{OF} , $W/k \cong S^1x\{x+y\cdot i:0\leq y\}xI/(g_{\coprod}g')$ where g is an identification of S^1x1xI and g' is an identification of S^1x-1xI depending on k. For k_S note that $S^1x\{x+y\cdot i:0\le y\}x0/(g_{\square}g')$ is a Möbius band with boundary Fix/k_S . QED # ∮8. Involutions on the Orientable I-Bundle Over a Klein Bottle # Definition 8.1 Let W=S¹xIxI/d be the orientable twisted I-bundle over the Klein bottle S¹xIx0/d, where $d=\kappa x(\tau|\partial I)x\tau$. More explicitly, W=S¹x[-1,1]x[-1,1]/(z,-1,t)~(\overline{z} ,1,-t). z=±i is a separating annulus, whereas z=1 is a nonseparating Möbius band. See Figure 11. The I-fibers are zxsxI. An involution λ on S¹xIxI with $\lambda|\cdot d=d\cdot\lambda|$ where $\lambda|$ denotes $\lambda|(S¹x\partial IxI)$ induces an involution $k=\lambda/d$ on W. Fix=Fix(k) = $(Fix(\lambda)_{+1}Fix(d^{-1}\cdot\lambda|))/d$. Define the following involutions on W (see Figure 11): $k_{K} = i dx i dx \tau / d \text{ having fixed set a Klein bottle S}^{1}xIx0 / d$ $k_{2M} = \kappa x i dx i d / d \text{ having fixed set two M\"obius bands}$ ±1xIxI/d $k_{2S} = \kappa x i dx \tau / d$ having fixed set two 1-spheres $\pm 1xIx0/d$ $k_A = (-\kappa)xi dxi d/d$ having fixed set an annulus $\pm ixIxI/d$ $k_S = (-\kappa)xi dx \tau / d$ having fixed set a 1-sphere $\pm ixIx0/d$ $k_{A2P} = i dx \tau x i d/d$ having fixed set an annulus and two points $(S^1x0xI_{11} \pm 1x - 1x0)/d$ $k_{S2C} = idx\tau x\tau/d$ having fixed set a 1-sphere and two 1-cells $(S^1x0x0 \downarrow \pm 1x-1xI)/d$ $k_{2C} = (-\kappa) \times \tau \times id/d$ having fixed set two 1-cells $\pm i \times 0 \times I/d$ $k_{2P} = (-\kappa) \times \tau \times \tau/d$ having fixed set two points $\pm i \times 0 \times 0/d$ $k_{O} = a \times id \times id/d$ fixed point free and orientation preserving $k_N = axidx\tau/d$ fixed point free and These eleven involutions are not conjugate because their fixed point sets or orientability types are different. Recall that the involutions with even dimensional fixed point sets are orientation reversing and that the ones with odd dimensional fixed sets are orientation preserving since W is orientable. # Lemma 8.2 Let $W=S^1xIxI/d$ be the
orientable I-bundle over a Klein bottle. Then if A is an essential annulus there is an ambient isotopy moving A so that A is of form S^1x-1xI/d if A is nonseparating or of form $\pm ixIxI/d$ if A is separating. Figure 11. Fixed point sets for the standard involutions. **Proof:** Remove components of $A_{\square}(S^1xix0)/d$. For details see [11]. OED ### Theorem 8.3 Let ι and ι ' be involutions on the orientable I-bundle over a Klein bottle, W=S'xIxI/d where d= κ x(τ | ∂ I)x τ . Suppose ι and ι ' have isomorphic fixed sets and if ι and ι ' are fixed point free assume, in addition, that they have the same orientation type. Then ι and ι' are conjugate. An involution on W is conjugate to one of the eleven involutions listed above. Proof: The proof is similar to the proof of Theorem 7.3. Let ι be an involution on W=S'xIxI/d. We show it is conjugate to a standard involution. By the Annulus Theorem 5.9 there is an essential annulus A with either $\iota A \cap A = \emptyset$ or $\iota A = A$ and A and Fix transversal. In the latter case by Lemma 3.5, assume the collar of A is not interchanged. By the previous lemma take A to be nonseparating of form S'x-1xI/d or separating of form $\pm ixIxI/d$. In the case where A is nonseparating and $\iota A \cap A = \emptyset$ make $\iota A = S'x0xI$. Let $W_* = S'x[0,1]xI$ and $W_* = S'x[-1,0]xI$. There are five cases: Case 1) (A=A, A is nonseparating, A and Fix are transversal and the collar of A is not interchanged. Case 2) $\iota A \sqcap A = \emptyset$, A is nonseparating and $\iota W_{+} = W_{+}$. Case 3) $\iota A \sqcap A = \emptyset$, A is nonseparating and $\iota W_{\bullet} = W$. Case 4) (A=A, A is separating, A and Fix are transversal and the collar of A is not interchanged. Case 5) $\iota A \cap A = \emptyset$ and A is separating. We show that ι is conjugate to: in case 1) k_K , k_{2M} , k_{2S} , k_A , k_S , k_O or k_N in case 2) k_{A2P}, k_{S2C}, k_{2C} or k_{2P} in case 4) k_K, k_{2M}, k_{2S}, k_{A2P} or k_{S2C} in case 5) k_A , k_S , k_{2C} , k_{2P} , k_0 or k_N and that case 3) does not arise. Several of the standard involutions are listed in more than one case. Each standard involution (or at least a conjugate of one) can in fact arise in the case it has been listed under. To see this it suffices to display an annulus A' in W with properties analogous to those of A. Consider A' as follows: in case 1) take S^1x-1xI/d ; in case 2) take $S^1x(-1/2)xI/d$; in case 4) take $\pm ixIxI/d$; in case 5) take $e^{\pm i\pi/4}xIxI/d$. It suffices to show, first, that ι has the same (fixed set) type as a standard involution listed under a corresponding case, and second, if ι and ι' have the same type and fall into the same case 1) - 5) then they are conjugate. Constant use is made of Section 4. Reserve j to denote standard involutions on the solid torus. All constructions done for ι are to be performed for ι' , even if not explicitly stated. Case 1) Proceed as for Case 1) of Theorem 7.3. The identification is now $d=\kappa \mathbf{x}(\tau|)\mathbf{x}\tau$ instead of $d=id\mathbf{x}(\tau|)\mathbf{x}id$. Thus two of the five possibilities for $\lambda|A$ give different fixed sets. When $\lambda|A=\kappa\mathbf{x}id$ we have $Fix(\lambda)$ is two 2-cells. Then Fix is either two Möbius bands or one annulus. When $\lambda|A=id\mathbf{x}\tau$ we have $Fix(\lambda)$ is an annulus. Then Fix is a Klein bottle. Case 2) $\iota A_{\square} A = \emptyset$, A nonseparating and $\iota W_+ = W_+$. Select the component $S = S^+ x - 1 x - 1$ of ∂A . Let B_+ be the component of $W_+ \square \partial W$ that meets S_+ Let $\lambda_+ = \iota \mid W_+$. There are two possibilities: $$2a) \lambda_B = B$$ 2b) $$\lambda_* B_* \square B_* = \emptyset$$. Similarly for B. and $\lambda = \iota \mid W$. Suppose λ , satisfies case 2a). Then $\lambda_{+}(S) = S^{1} \times 0 \times -1$. Since $(\lambda \mid A) \cdot d = \lambda_{+} \mid A$ evaluating at S gives $\lambda_{-}(S^{1} \times 1 \times 1) = S^{1} \times 0 \times -1$. Therefore λ_{-} satisfies case 2b). Similarly if λ_{+} satisfies case 2b) then λ_{-} satisfies case 2a). The conjugacy class of λ_{-} is also restricted by the orientation type of ι . Up to symmetry there are four cases: Case 2.1) λ_{\star} is conjugate to j_{2C} and $\lambda_{.}$ is conjugate to j_{c} . Case 2.2) λ_{\star} is conjugate to j_{2C} and λ . is conjugate to j_O. Case 2.3) λ_{+} is conjugate to j_{λ} and λ . is conjugate to j_{2p} . Case 2.4) λ_{\star} is conjugate to j_{N} and $\lambda_{.}$ is conjugate to j_{2P} . These give rise to involutions with fixed sets as claimed for this case. The case is completed as case 2) in Theorem 7.3. Case 3) $\iota A_{\square} A = \emptyset$, A nonseparating and $\iota W_+ = W_-$. Take $S = S^1 \times I \times 0$ with some choice of orientation. Then S is a generator of $H_1(W_+)$ and $H_1(W_-)$. Now $\iota \mid (W_- \cap S) = d \cdot \iota \mid (W_+ \cap S)$ but $d_*[S] = -[S]$. This is a contradiction so this case cannot arise. Case 5) $\iota A \sqcap A = \emptyset$ and A separates. It follows that ιA also separates and that ιA is contained in one of the two components that A decomposes W into. By a suitable isomorphism, we may assume $A = e^{\pm i \pi/4} x I x I/d$ and $\iota A = e^{\pm i 3\pi/4} x I x I/d$. A and ιA decompose W into three solid tori components U_0 , U_1 , U_2 with $U_1 \sqcap U_2 = \emptyset$, $U_0 \sqcap U_1 = A$, $U_0 \sqcap U_2 = \iota A$ and $\iota U_1 = U_2$ and $\iota U_0 = U_0$. Moreover, if S is a component of ∂A then [S] $_{\epsilon H_{1}}(U_{0})$ is a generator and [S] $_{\epsilon H_{1}}(U_{1})$ is twice a generator. $\lambda = \iota \mid U_{0}$ is an involution on a solid torus that interchanges the disjoint annuli λ and $\iota \lambda$ and both annuli have boundaries representing a generator of $H_{1}(U_{0})$. This is the same situation as for λ in case 2) of Theorem 7.3. That argument showed λ is conjugate to j_{2C} , j_{A} , j_{N} , j_{S} , j_{O} or j_{2P} . Since ι has the same fixed set as $\iota \mid U_{0}$ we obtain fixed sets as listed above. Suppose ι' also falls into this case. Then select an isomorphism $h:\lambda$ —> λ' which we extend by equivariance to a conjugation $h:\lambda$ ι λ —> λ' ι ι λ' . The arguments for case 2) in Theorem 7.3 show λ extends to a conjugation $\lambda : U_{0}$ —> $\lambda : U_{0}$. The following claim shows $\lambda : U_{0}$ 0. The following claim shows $\lambda : U_{0}$ 1. Extend to $\lambda : U_{0}$ 2 by equivariance obtaining a conjugation $\lambda : U_{0}$ 2. W' between ι and ι' and concluding this case. Claim: Let U be a solid torus and A an annulus in ∂U . Suppose a component S of ∂A represents twice the generator of $H_1(U)$. Similarly for A' in U'. Then an isomorphism $h:A\longrightarrow A'$ extends to an isomorphism $h:U\longrightarrow V'$. To prove this, choose 1-spheres M and L in ∂U so that [M] and [L] generate $H_1(\partial U)$ and [M] is trivial in $H_1(U)$. The choice can be made so that [S]=a[M]+2[L] where "a" is an odd integer. Let I be a proper 1-cell in A meeting both boundary components of A. Similarly for U', using I'=h(I). $B=\overline{\partial V-A}$ is an annulus. There is a proper 1-cell J of B with $\partial J=\partial I$. Let S₁=I_{\square}J. Then [S₁]=b[M]+c[L] where "c" is an odd integer since S_{\square}S₁ is a point. There is an isomorphism of ∂U to itself leaving A fixed which changes [S₁] by a given multiple of [S]. So we may choose J so that [S₁]=d[M]+[L] for some deZ. Choose J' similarly. Extend h|A to an isomorphism h:A_{\square}J—>A_{\square}J'. Since int(B-J) is an open 2-cell, h can be extended by coning to an isomorphism h: ∂U —> $\partial U'$. Then $(2d-a)h_*[M] = h_*(2[S₁]-[S]) = 2[S₁']-[S'] = (2d'-a')[M']$. Since a and a' are odd and [M] and [M'] are generators we get $h_*[M]=\pm[M']$. Hence h extends to h:U—>U'. Case 4) (A=A, A is separating, A and Fix are transversal and the collar of A is not interchanged. Let $W_{\cdot} = \{z:z=x+y \cdot i, x \ge 0\}xIxI/d$ and $W_{\cdot} = \{z:z=x+y \cdot i, x \le 0\}xIxI/d$. Then $\iota W_+ = W_+$ and W_+ and W_- are solid tori. Let S be a component of ∂A . $\lambda_- = \iota \mid W_+$ is conjugate to a standard involution j of a torus $D^2 \times S^1$. Let $M = S^1 \times 1$ and $L = 1 \times S^1$. Then on choosing correct orientations [S] = a[M] + 2[L] ϵ $H_1(\partial(D^2 \times S^1))$ where a is odd. Since $\iota A = A$ it follows $\lambda_+ \times [S] = \mu[S]$ where $\mu = \pm 1$ and μ depends only on $\iota \mid A$. Checking these conditions for the standard involutions on a solid torus gives: $\mu=1$ and λ_{\star} is conjugate to j_{O} , j_{S} or j_{M} . $\mu=-1$ and λ_{\star} is conjugate to j_{2C} or j_{DP} . Similarly for $\lambda_{\star}=\iota/W_{\star}$. The collar is not interchanged so ι and $\iota \mid A$ have the same orientability type. We obtain four cases: - Case 4.1) λ_{\star} and λ_{\star} are conjugate to j_{M} and $\iota \mid A$ is conjugate to $idx\tau$ or $ax\tau$. - Case 4.2) λ_{+} and λ_{-} are conjugate to j_{DP} and $\iota \mid A$ is conjugate to κxid . - Case 4.3) λ_{\star} and λ_{\star} are conjugate to j_{S} or j_{O} and $\iota \mid A$ is conjugate to axid. - Case 4.4) λ_{\star} and λ_{\star} are conjugate to j_{2C} and $\iota \mid A$ is conjugate to $\kappa x \tau$. For case 4.1) we will show the
isomorphism class of the fixed set determines $\iota \mid A$. We will also show the different cases 4.1) - 4.4) have nonisomorphic fixed sets. Therefore given ι' with fixed set isomorphic to that of ι , there is a conjugation h:A—>A'. We show h extends to a conjugation h:W₊—>W₊'. Similarly h extends over W₋ and the proof will be complete. Let $B=\overline{\partial W_+-A}$. B is an annulus. In case 4.1) $\iota \mid A$ is conjugate to $idx\tau$ or $ax\tau$. In the first case $Fix_{\square}A=S^1$ so Fix is a Klein bottle while in the second case $Fix_{\square}A=\emptyset$ so Fix is two Möbius bands. In the first case B/ι is a Möbius band. It follows $h:A\longrightarrow A'$ extends to a conjugation $h:\partial W_{+}\longrightarrow \partial W_{+}'$. In the second case B/ι is an annulus with $\partial(B/\iota)=(\partial A/\iota)_{\square}(\partial Fix_{\square}W_{+})/\iota$. Extend h/ι and lift to a conjugation $h:\partial W_{+}\longrightarrow \partial W_{+}'$. In both cases the conjugation extendable property of j_{M} shows this conjugation extends to h:W,--->W,'. In case 4.2) let Fix, denote the fixed 2-disc component of λ_{+} . Let $Fix_{+}x[-1,1]$ be a bicollar of Fix_{+} . Since a component of ∂A has intersection number ± 2 with Fix_{+} it follows $Fix_{+}x1$ meets both components of A-Fix. Similarly for $Fix_{+}x1$. Hence $Fix_{+} \sqsubseteq Fix_{+}$ is bicollared so it must be an annulus. Thus the fixed set of ι is an annulus and two points. Extend the conjugation to $A \sqsubseteq \partial Fix_{+} \longrightarrow A' \sqsubseteq \partial Fix_{+}'$. Since $\partial W_{+} = (\partial Fix_{+} \bigsqcup A)$ is two open 2-cells that are interchanged under ι we can extend to a conjugation $\partial W_{+} \longrightarrow \partial W_{+}'$ and so by the conjugation extendable property of j_{DP} to W_{+} . In case 4.3) let S be a fixed component of A. W_{+}/ι is a solid torus. Let $p:H_{+}(W_{+})--->H_{+}(W_{+}/\iota)$ be the obvious homomorphism. [S]=a[M]+2[L] where a is an odd integer. First we show j_{0} is not possible. Compare with case 2.5) of Theorem 7.3. $p[S]=a[M_{+}]+4[L_{+}]$. However, S double covers S/ι so it follows a is even, a contradiction. So only j_S occurs and Fix is two 1-spheres. Then $p[S]=2a[M_1]+2[L_1]$ and $[S/\iota]=a[M_1]+[L_1]$. Let I be a proper 1-cell in A that meets both boundary components of A such that $I_{\square} \iota I = \emptyset$. Similarly for I'=h(I). There is a proper 1-cell J_1 in W_+/ι with $\partial J_1=\partial(I/\iota)$ and $[J_1 \sqcup I]=\pm[M_1]$. Let $S_0=J_{\square} \iota J_{\square} I_{\square} \iota I$ where J is a lift of J_1 by p^{-1} . Then $[S_0]=\pm[M]$. Similarly for ι' . Extend $h:A-\longrightarrow A'$ to h:A $_{\square}J$ —>A $_{\square}J'$ and then by equivariance to h:A $_{\square}J_{\square}\iota J$ —>A' $_{\square}J'_{\square}\iota' J'$. Now $\partial W_{\bullet}-(A_{\square}J_{\square}\iota J)$ consists of two 2-cells that are interchanged under ι . So h extends to h: ∂W —> $\partial W'$. The condition on $[S_0]$ and the conjugation extendable property of j_S show h extends to a conjugation on W. In case 4.4) λ_{+} has fixed set $\operatorname{Fix}_{1+\square}\operatorname{Fix}_{2+}$ where Fix_{1+} and Fix_{2+} are proper 1-cells of W_{+} . Arguments similar to those given already show that $\operatorname{Fix}_{1+\square}A$ cannot be exactly one point, i=1,2. Say then that $\partial\operatorname{Fix}_{2+\square}A$. Similarly for λ_{+} . Then the fixed set of ι is two 1-cells Fix_{1+} , Fix_{1+} and one 1-sphere $\operatorname{Fix}_{2+\square}\operatorname{Fix}_{2+}$. $(\overline{\partial \operatorname{W}_{+}-A})/\iota$ is a 2-cell and h/ι is given on the boundary. Clearly h/ι can be extended over the 2-cell. On lifting obtain a conjugation $\operatorname{h:}\partial\operatorname{W}_{+}\longrightarrow \partial\operatorname{W}_{+}$. Since $\operatorname{Fix}_{\square}A$ are two points in the same component of $\operatorname{Fix}_{\square}W_{+}$ and since also $\operatorname{h}(\operatorname{Fix}_{\square}A)=\operatorname{Fix'}_{\square}A'$ are in the same component of $\operatorname{Fix}_{\square}W_{+}$ the conjugation extendable property of j_{2C} gives a conjugation $\operatorname{h:}W_{+}\longrightarrow \operatorname{W_{+}}'$. QED # Corollary 8.4 On the orientable I-bundle over a Klein bottle involutions with 2-dimensional fixed sets are conjugation extendable. **Proof:** For k_{A2P} the conjugation extends over the fixed set. Then cut open on the fixed set and use the conjugation extendable property of the solid torus involution j_{2P} . The other cases are similar to those for the trivial I-bundle over a torus. QED # Corollary 8.5 If ι is an orientation preserving involution on an orientable twisted I-bundle W=S¹xIxI/d over a Klein bottle then W/ ι is isomorphic to one of the following spaces: $W/k_{2S} \cong D^2xS^1$ a solid torus with Fix/k_{2S} two unknotted 1-spheres $\pm 1/2xS^1$, $W/k_S \cong D^2xS^1$ a solid torus with Fix/k_S one unknotted 1-sphere $\{(e^{\pi it}/2, e^{2\pi it}): -1 \le t \le 1\}$ representing twice a generator of $H_1(D^2xS^1)$, $W/k_{S2C} \cong D^2xI$ a 3-cell with $Fix/k_{S2C} = \pm 1/2xI$ \sqcup ((3/4)(z/|z|))x0 two 1-cells and one linked 1-sphere, $W/k_{2C} \cong D^2xI/(a|\partial D^2)x\tau$ an orientable I-bundle over a projective plane with $Fix/k_{2C} = (\pm 1/2)xI$ two 1-cell fibers, $W/k_{O} \cong W$. **Proof:** ι is conjugate to a standard involution k. Use the representations for the standard involutions. W/k arises from the following subspaces of W by identifications on their boundaries: $\{x+y\cdot i:0\le y\}xIxI$ for k_{2S} and k_{0} , $S^1xIx[0,1]$ for k_{S} , and $S^1x[0,1]xI$ for k_{S2C} and k_{2C} . QED # V. INVOLUTIONS ON ORIENTABLE TORUS BUNDLES OVER A 1-SPHERE AND ON UNIONS OF ORIENTABLE TWISTED I-BUNDLES OVER KLEIN BOTTLES # ∮9. Involutions With 1-Dimensional Fixed Sets Let $g:T^2\longrightarrow T^2$ be an isomorphism where $T^2=S^1xS^1$ and let $d:T^2x-1\longrightarrow T^2x1$ be defined by d(x,-1)=(g(x),1). Define the torus bundle M_g by $M_g=T^2xI/d$. Then M_g is irreducible and T^2x1 is a nonseparating incompressible 2-sided torus. Up to isotopy $g:T^2\longrightarrow T^2$ is uniquely determined by $g_*:H_1(T^2)\longrightarrow H_1(T^2)$. Let $S_1=S^1x1$ and $S_2=1xS^1$. Then with respect to the basis $[S_1]$, $[S_2]$ of $H_1(T^2)$, g_* is given by a matrix M(g) of $GL_2(z)$. The matrix with respect to a different basis of $H_1(T^2)$ is a conjugate Q^{-1} M(g) Q of M(g), where $Q_*GL_2(z)$. M_g is orientable if and only if g is orientation preserving. g is orientation preserving when and only when the det(M(g))=1. Of interest are the orientable flat space forms M_1, \dots, M_5 . See [15]. These are determined by g as follows: $$M_1 = S^1 \times S^1 \times S^1$$: $g = id$. Then $M(g) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. $$M_2$$: $g = \kappa x \kappa$ (i.e.) $g(x,y) = (\vec{x},\vec{y})$. Then $M(g) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. $$M_3$$: $g=\omega \cdot (\kappa x id) \cdot \rho$ (i.e.) $g(x,y)=(y,\overline{x}\overline{y})$. Then $M(g)=\begin{bmatrix}0&1\\-1&-1\end{bmatrix}$. $$M_4$$: $g=\omega \cdot (\kappa x id)$ (i.e.) $g(x,y)=(y,\overline{x})$. Then $M(g)=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$. M_5 : $g=\omega \cdot \rho \cdot (\kappa x id)$ (i.e.) $g(x,y)=(y,\overline{x}y)$. Then $M(g)=\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$. Each of these spaces has involutions with 1-dimensional fixed sets. Let W_1 and W_2 be two orientable twisted I-bundles over a Klein bottle. An isomorphism $d:\partial W_1 \longrightarrow \partial W_2$ determines a union along the boundaries of two orientable twisted I-bundles over a Klein bottle $M_d=(W_1\sqcup W_2)/d$. M_d is double covered by an orientable torus bundle over S^1 . M_d is irreducible. Let $T^2=\partial W_1$. The nonseparating annuli of W_1 determine a canonical generator (1,0) of $H_1(T^2)=Z\oplus Z$ up to sign. Separating (nontrivial) annuli or Möbius bands of W_1 determine a generator (0,1) up to sign. Note that the involutions k_{2M} and k_{A2P} on W_1 are isomorphisms of W_1 that reverse the signs of these generators. As before, the isomorphism d determines a matrix of $GL_2(Z)$. An alternate description for these spaces is $M = T^2xI/(d_1(x),-1)\sim(x,-1), (d_1(x),1)\sim(x,1)$ where d and d are fixed point free orientation reversing isomorphisms. Then $T^2 \times 0$ decomposes M into two orientable twisted I-bundles over a Klein bottle. Note that M_2 is a union of orientable twisted I-bundles over a Klein bottle: $S^1x\pm 1xI$ are two Klein bottles. The orientable flat 3-dimensional space forms have been classified (see Wolf [15]). Up to affine equivalence there are only six such space forms M_1, \dots, M_5 and M_6 . Define M_6 by $M_6 = S^1xS^1xI/(x,y,-1)\sim(-x,-\overline{y},-1), (x,y,1)\sim(-\overline{x},-y,1)$ M_6 is a union of orientable twisted I-bundles over a Klein bottle but is not a torus bundle since $H_1(M_6)=Z_2\oplus Z_2$ is finite. M_6 is also known as the Hantzsche-Wendt manifold (see [4]). We need two lemmas which describe the position of incompressible tori in M. For details see [11]. #### Lemma 9.1 Let M be an orientable torus bundle over S^1 and let T be an incompressible torus in M. If T is nonseparating then $M \cong T^2x[-1,1]/d$ where $d:T^2x-1\longrightarrow T^2x1$ is an isomorphism. If T is separating then T decomposes M into W_1 and W_2 , two orientable twisted I-bundles over a Klein bottle. $M=W_{1},W_{2}$ and $T=\partial W_{1}=\partial W_{2}=W_{1},W_{2}$. ####
Lemma 9.2 Let M be the union of orientable twisted I-bundles over a Klein bottle and let T be an incompressible torus in M. If T is nonseparating then M is an orientable torus bundle over S^1 . If T is separating then T decomposes M into W_1 and W_2 , two orientable twisted I-bundles over a Klein bottle. $M=W_1 \coprod W_2 \text{ and } T=\partial W_1=\partial W_2=W_1 \coprod W_2.$ **Proof:** Two fold cover M by a torus bundle M. Argue by cases depending on whether $p^{-1}(T)$ is one or two tori. Note the deck transformation of M is a fixed point free involution. For details see [11]. QED #### Lemma 9.3 Let M be an orientable torus bundle over S¹. Suppose M is also a union of orientable twisted I-bundles over a Klein bottle. Then M has a basis as an orientable torus bundle over S¹ so that its matrix is $\begin{bmatrix} -1 & a \\ 0 & -1 \end{bmatrix}$ and a (canonical) basis as a orientable twisted I-bundle over a Klein bottle so that its matrix is $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$. Proof: M=T'xI/d for some identification d:T'x-1->Tx1. Let p:T'xI->M be the induced projection. M contains a Klein bottle K. Isotope K so that $p^{-1}(K)$ consists of annuli A_i meeting both components of $\mathfrak{d}(T'xI)$. Since K is a Klein bottle one of the A_i must have boundary components representing opposite elements γ and $-\gamma$ of $H_1(T')$. Since M is orientable it follows M has a matrix of the form $\begin{bmatrix} -1 & a \\ 0 & -1 \end{bmatrix}$. On the other hand, M is a union of orientable twisted I-bundles W_1 and W_2 over a Klein bottle. $W_1 \sqcap W_2 = T$. T' determines a nonseparating annulus in each of W_1 and W_2 . Hence by choosing appropriate generators we may assume the matrix of M, as a union of orientable twisted I-bundles over a Klein bottle, is $\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$. M has a two fold covering $q:M\longrightarrow M$ by a orientable torus bundle over S^1 , $M=U_1 \sqcup U_2$ such that $U_1 \cong T^2xI$ double covers W_1 . The deck transformation restricted to U_1 is a fixed point free involution k_1 on U_1 that interchanges boundary components of W_1 . Hence k_1 is conjugate to $k_{OI} = ax \kappa x \tau$. Using this involution one sees that the matrix for the torus bundle M is $\begin{bmatrix} 1 & 2b \\ 0 & 1 \end{bmatrix}$. The torus T' which determines nonseparating annuli of W_1 and W_2 must lift to two tori and therefore a matrix for M is also $$\begin{bmatrix} -1 & a \\ 0 & -1 \end{bmatrix}^2 = \begin{bmatrix} 1 & -2a \\ 0 & 1 \end{bmatrix}$$ Abelianizing the fundamental group of a torus bundle M_{C} with matrix $\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}$, one sees that $H_1(M_C) = \mathbf{Z} \oplus \mathbf{Z} \oplus (\mathbf{Z}/c\mathbf{Z})$. Also the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ conjugates $\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}$ to $\begin{bmatrix} 1 & -c \\ 0 & 1 \end{bmatrix}$ and M_C and M_{-C} are isomorphic. It follows b=±a and so b=a for a suitable choice of generators. QED # Proposition 9.4 Let M be an orientable torus bundle over S¹ or a union of orientable twisted I-bundles over a Klein bottle. Let ι be an involution on M and let T be a separating incompressible torus with $T_{\square} \iota T = \emptyset$. Then there is a nonseparating incompressible torus with $\iota T = T$ and Fix and T transversal. **Proof:** By Lemmas 9.1 and 9.2, $M=W_1 \sqcup W_2$ ' with $W_1 \sqcap W_2$ '=T where W_1 and W_2 ' are orientable twisted I-bundles over a Klein bottle. Without loss say ιT is in W_2 '. Using the lemmas again we see $M=W_1 \sqcup (T'x[-1,1]) \sqcup W_2$ with (for i=1,2) $$W_{i} \cap (T'x[-1,1]) = \partial W_{i} = T'x(-1)^{i}$$ $\iota W_1 = W_2$, $\iota (T'x[-1,1]) = T'x[-1,1]$ and with W_i orientable twisted I-bundles over a Klein bottle. Let A be a nonseparating proper annulus in W_1 . Write $\partial A=S_1 \sqcup S_2$. There is an essential annulus A_0 in T'x[0,1] with $\partial A_0=S_1 \sqcup \iota S_2$. Then $\partial A_0 \sqcap \iota \partial A_0=\emptyset$. By the Partial Annulus Theorem 5.6 there are disjoint essential annuli A_1 and A_2 transversal to Fix with $\partial A_0 \sqcap \iota \partial A_0 = \partial A_1 \sqcup \partial A_2$ and with either $\iota A_1 = A_2$ (i=1,2) or $\iota A_1 = A_2$. Let $T_1 = A_{\square} \iota A_{\square} A_1_{\square} A_2$. Essential annuli of T'x[-1,1] must meet both boundary components so T_1 is connected. T_1 is a torus. This follows since A is nonseparating in W_1 so A is "twisted" relative to T'x[-1,1] as is ιA . $\iota T_1 = T_1$ and T_1 is transversal to Fix. T_1 is nonseparating hence incompressible. QED Recall that up to conjugacy there are three orientation preserving involutions j_{2C} , j_{S} and j_{O} on a solid torus V, five orientation preserving involutions k_{2S} , k_{S} , k_{4C} , k_{OF} and k_{OI} on a trivial I-bundle W over a torus and five orientation preserving involutions k_{2S} ', k_{S} ', k_{S2C} ', k_{2C} ' and k_{O} ' on an orientable twisted I-bundle over a Klein bottle. By applying the Torus Theorem 6.2 to M we obtain the following theorem. # Theorem 9.5 Let M be an orientable torus bundle over S^1 or a union of orientable twisted I-bundles over a Klein bottle. Let ι be an involution with a 1-dimensional fixed set component. Then one of the following holds: - 1) There is a nonseparating (incompressible) torus T with $\iota T_{\square} T = \emptyset$. T and ιT decompose M into two trivial I-bundles W₁ and W₂ over a torus with $\iota \mid W_{i}$ conjugate to k_{2S} , k_{S} or k_{OI} . - 2) There is a nonseparating (incompressible) torus T with ι T=T and its collar is not interchanged. M \cong W/d where W is a trivial I-bundle over a torus and d is an isomorphism between the boundary components of W. ι is induced from an involution on W that is conjugate to k_{AC} . - 3) There is a separating incompressible torus T with ι T=T. M is the union of orientable I-bundles W₁' and W₂' over a Klein bottle with W₁' $_{\square}$ W₂'=T. ι |W₁' and ι |W₂' are both conjugate to k_{2C}' or k_{2C}' or are both conjugate to k_{2S}', k_S' or k_O'. - 4) M satisfies case (III) of Torus Theorem 6.2 and $Fix(\iota)$ is exactly one 1-sphere. $\iota|V_1$ is conjugate to j_{2C} and $\iota|V_2$ is conjugate to j_{0} . M is M_6 . **Proof:** Apply the Torus Theorem 6.2. Assume for the moment that case (III) does not occur. Then since M is orientable there is a torus T satisfying case (I) or (II) of that theorem. By Proposition 9.4, if $\iota T=T$ then T separates. If $\iota T=T$ and the collar is interchanged then we arrive at case (1) by considering the boundary of a collar of T. We show that case (II) can be eliminated. Then to complete the proof, case (III) is handled. Suppose case (II) occurs and suppose $\iota S_1 = S_1$. Since $A_1 \sqcup A_1$ is a separating incompressible torus it follows by Lemmas 9.1 and 9.2 that $U_{-1} \sqcup V_1$ is an orientable twisted I-bundle over a Klein bottle. ιA_1 is a separating annulus so S^1 bounds a proper Möbius band A of U_{-1} . $K = A_{\square} \iota A$ is a Klein bottle with $\iota K = K$. Then by Lemma 6.1 the boundary of a regular neighborhood of K is an incompressible torus invariant under ι giving case (I). Suppose $\iota S_1 = S_2$. Since ι has a 1-dimensional fixed set and $Fix_{\square} S_1 = \emptyset$, assume $\iota \mid V_1$ is conjugate to j_S . As above ιA_1 is a separating annulus in the orientable twisted I-bundle over a Klein bottle $U_{-1 \sqcup 1} V_1$. So S_1 represents twice a generator of $H_1(V_1)$. Selecting appropriate generators [M] and [L] of $H_1(\partial V_1) = \mathbf{Z} \oplus \mathbf{Z}$ where [M] is trivial in $H_1(V_1)$, we may assume $[S_1] = a[M] + 2[L]$ for some integer a. Let $p: H_1(\partial V_1) \longrightarrow H_1(\partial V_1/\iota)$ be the obvious homomorphism. Then $p[M] = 2[M_1]$ and $p[L] = [L_1]$ for suitable generators $[M_1]$ and $[L_1]$ of $H_1(\partial V_1/\iota)$. Then $p[S_1] = 2a[M_1] + 2[L_1]$ but this contradicts that $S_1 \longrightarrow S_1/\iota$ is an isomorphism. Now consider case (III). Let V_1 " be the closure of the component of $M^-(T_{++}\iota T)$ that contains V_1 . Let V_1 ' be the solid torus obtained from V₁" by replacing S by two copies S_1 and S_2 . Then $V_1' \cong V_1''/(S_1 \sim S_2)$. Similarly for V_2' and V_2 ". Let W_1 be a regular neighborhood of T. ∂W_1 is an incompressible torus. By Lemmas 9.1 and 9.2, $W_2 = \overline{M} - \overline{W}_1$ is an orientable twisted I-bundle over a Klein bottle. LT-int(W1) is a separating annulus. Let $\partial(\iota T-W_1)=C_{1+1}C_2$. See Figure 12. It follows C₁, C₂, S₁ and S₂ represent twice a generator in both $H_1(V_1')$ and $H_1(V_2')$. Let ι_1 be the involution on V_1' induced by ι . Similarly for ι_2 . From the Torus Theorem 6.2, ι_1 is conjugate to j_2 and ι_2 is conjugate to j_5 or j_6 . The argument given above for case (II) shows ι_2 is not conjugate to j_S since ι_2 interchanges components of $\partial V_2 - (S_1 \sqcup S_2)$. Also the 1-cell S_1/ι_1 in V_1'/ι_1 cannot meet both components of Fix (ι_1) because otherwise its lift S₁ would be a 1-sphere representing an odd multiple of a generator of $H_1(V_1')$. Hence S_1 meets only one component of Fix(ι_1)'. Therefore Figure 12. Fix(ι) is one 1-sphere. Since C_1 is a boundary component of the nonseparating annulus $\iota T_{\square} W_1$ of W_1 and of the separating annulus $\iota T_{\square} W_2$ of W_2 we see that a (1,0)-generator of W_1 and a (0,1)-generator of W_2 correspond. Let C_2 be a 1-sphere in T meeting S transversally in one point. Let A be the annulus of V_2 ' determined
by T. Since ι_2 is conjugate to j_0 and ∂A represents twice a generator of $H_1(V_2)$, there is a proper 2-cell D of V_2 ' with $\iota_2 D_{\square} D = \emptyset$. Also arrange that D meets A in two proper nonseparating 1-cells of A, one of which is C_1 , and that D meets $\iota_2 A$ in two proper nonseparating 1-cells. Then $\iota_2(\partial D_{\square} \iota_2 A)$ and $\partial D_{\square} A$ are four disjoint nonseparating proper 1-cells of A. Now consider A as an annulus in V_2 '. Since ι_1 is conjugate to j_{2C} and $(j_{2C})_*$ on $H_1(V)$ is multiplication by -1, it follows that $\iota_1 \iota_2(\partial D_{\square} \iota_2 A)_{\square}(\partial D_{\square} A)$ bounds a disc in V_2 . But $(\iota_1 \iota_2) | \iota_1 T$ = id so ∂D bounds a disc D_1 in V_1 '. By choice of C_1 , $(D_{\square} D_1)_{\square} W_1$ is two Möbius bands so its boundary is a (0,1)-generator of W_1 . On the other hand $(D_{\square}D_1)_{\square}W_2$ is a nonseparating annulus of W_2 since it has two boundary components and does not separate V_1 . This gives M_6 . To show how M_6 arises in this manner we give the following construction. See Figure 13. Let V_j '= D^2xS^1 and $A_i=\{(e^{2\pi i\,(t+v)},e^{4\pi i\,t}):t\in R,\ 0\le v\le 1/4\}$ Let $\iota_1 = j_0 = idxa$ and $\iota_2 = j_{2C} = \hat{\kappa}x\kappa$. Let d be the identification $(e^{2\pi it}, e^{4\pi it}) \sim (e^{2\pi i(1-t)}, e^{4\pi i((3/4)-t)})$ on ∂A_j . Let V_j "= V_j '/d. Define $h:A_2 \longrightarrow A_1$ to be induced from the identity and define $$h | (\iota_2 A_2) = \iota_1 \cdot h \cdot \iota_2 | A_2 = \hat{\kappa} x (-\kappa)$$ (ie) $h: \partial V_2' \longrightarrow \partial V_1'$ is h(x) = x if $x \in A_1$ and $h(x) = (\hat{\kappa} x - \kappa)(x)$ otherwise. Then $M_6 = V_1' \sqcup V_2' / h \sqcup d$ and involution $\iota_1 \sqcup \iota_2$ has fixed set one 1-sphere. (In the previous construction one can take $D_{1,1}D' = \{t=-1/8\}$) QED # Corollary 9.6 Let ι be an involution on an orientable torus bundle over S¹ or a union of orientable twisted I-bundles over a Klein bottle with a 1-dimensional fixed set. Then the fixed set is one, two, three or four 1-spheres. ## Corollary 9.7 Let M an orientable torus bundle over S^1 or a union of orientable twisted I-bundles over a Klein bottle. Let ι be an involution on M with a 1-dimensional fixed set. Then M/ι is a lens space, P^3 , $P^3 \# P^3$, or the boundary union of a solid torus with an orientable twisted I-bundle over a Klein bottle. Proof: Use Corollary 7.5 and Corollary 8.5. Consider the cases of Theorem 9.5. In 1) when each of $\iota \mid W_i$ is conjugate to k_{2S} or k_{S} , M/ι is a union along the boundaries of two solid tori. When one of $\iota \mid W_i$ is conjugate to k_{OI} then M/ι is the boundary union of a solid torus with an orientable twisted I-bundle over a Klein bottle. - In 2) W/k_{2C} is S^2xI . The identification of S^2x-1 with S^2x1 gives the lens space S^2xS^1 . - In 3) for k_{2S} ', k_{S} ' and k_{O} ' we get the same spaces as in 1). For k_{S2C} ' and k_{2C} ', capping W/k_{S2C} ' gives a 3-sphere and capping W/k_{2C} ' gives P^3 . - In 4) V/ ι is a 3-cell and V $_{\square}$ V $_1/\iota$ is two 2-cells. V $_1/\iota$ is a 3-cell so V $_{\square}$ V $_1/\iota$ is a solid torus. Since V $_2$ is also a solid torus M/ ι is a lens space. Note that torus bundles may also be unions of twisted I-bundles over a Klein bottle. (See Lemma 9.3) In the following let $Q \in GL_2(\mathbf{Z})$. Let $E \in GL_2(\mathbf{Z})$ be in the subgroup K of $GL_2(\mathbf{Z})$ generated by $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$. Note $Z \longrightarrow Z_2 = Z/2Z$ induces an exact sequence: $$1 \longrightarrow K \longrightarrow GL_2(Z) \longrightarrow GL_2(Z_2) \longrightarrow 1$$ ## Theorem 9.8 Let M be an orientable torus bundle over S¹ or a union of orientable twisted I-bundles over a Klein bottle. Then M has an involution with fixed set exactly n 1-spheres (n>0) if and only if one of a), b) or c) below holds. a) M is a torus bundle with matrix conjugate to one of the following for some Q or E: (1) $$Q^{-1} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} Q \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$ $n = 2 \text{ or } 4$ $$(2) \quad Q^{-1} \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad Q \quad \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$$ $n = 1 \text{ or } 3$ $$(3) \quad Q^{-1} \quad \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \quad Q \quad \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$$ $n = 2$ (4) EP where $$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ $n = 4$ (5) EP where $$P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$ $n = 1 \text{ or } 3$ (6) EP where $$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ or $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $n = 2$ b) M is a union of orientable twisted I-bundles over a Klein bottle with matrix (with respect to some set of canonical generators) one of the following for some Q or E: In (7) - (9) the inverses of matrices are to be taken over the field of rationals but the product matrix is required to be integral. be integral. (7) $$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{-1} Q \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$ $n = 2, 3 \text{ or } 4$ (8) $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}^{-1} Q \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ $n = 1 \text{ or } 2$ (9) $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{-1} Q \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ $n = 1 \text{ or } 2$ (10) EP where $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $n = 2 \text{ or } 4$ (11) EP where $P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $n = 1 \text{ or } 3$ (12) EP where $P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $n = 3$ (13) EP where $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ $n = 2$ c) M is M_6 and n = 1 ## Remark 9.9 The proof shows how in each case (1) - (13) the involution on M arises from involutions on orientable torus bundles over S^1 or orientable twisted I-bundles over a Klein bottle. Proof: Apply Theorem 9.5. Suppose case (1) of Theorem 9.5 occurs: There is a nonseparating torus with $\iota T \sqcap T = \emptyset$. Let W_1 and W_2 be the two components of M determined by T and ι T. Let $h_1:W_1 \longrightarrow T^2xI$ and $h_2:W_2 \longrightarrow T^2xI$ be conjugations between $\iota \mid W_1$ and the standard involutions k_{2S} , k_{S} or k_{OI} with $h_1(T)=T^2xI$. Let $d:T^2xI \longrightarrow T^2xI$ be the identification induced by T. Then the involutions induce an identification $\iota_2.d.\iota_1:T^2x-1 \longrightarrow T^2x-1$. Consider the effect of these isomorphisms in $H_1(T^2)=H_1(S^1xS^1)=Z\theta Z$ with respect to basis $[S^1x1]$ and $[1xS^1]$ where orientations are induced from S^1 [C. Then $M\cong T^2xI/q$ where the matrix of q is $M(d)^{-1}M(\iota_2)M(d)M(\iota_1)$. The matrix of k_{2S} and k_{OI} is $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and of k_{S} is $\begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$. We obtain (1) = (3) above. Suppose case (2) of Theorem 9.5 occurs: There is a nonseparating torus with $\iota T=T$ and the collar of T is not interchanged. Cut M open on T. Then M \cong TxI/d' where d':Tx-1—>Tx1 is an isomorphism. ι is induced from an involution λ on TxI that satisfies d'. $(\lambda|Tx-1)=(\lambda|Tx1)$.d'. Let h:TxI—>T²xI be a conjugation between λ and k_{4C} (with h(Tx-1)=T²x-1). Define d=h|.d'. $(h|T^2x-1)^{-1}$. Then M \cong T²xI/d and ι is conjugate to the involution on T²xI/d induced from the involution $k_{4C}=\kappa x\kappa x$ id on T²xI. The matrix of M is conjugate to the matrix of d:T²=T²x-1—>T²x1=T². Note d satisfies $d.(\kappa x \kappa) = (\kappa x \kappa).d.$ Now $T^2/\kappa x\kappa$ is a 2-sphere. The class of all isomorphisms of $T^2/\kappa x\kappa$, up to isotopy, that keep the four points $\pm 1x\pm 1$ fixed is generated by two Dehn twists: a twist on $S^1xi/\kappa x\kappa$ and a twist on $ixS^1/\kappa x\kappa$, see [2]. A twist on $S^1xi/\kappa x\kappa$ lifts to a twist on S^1xi together with a twist on S^1x-i in the "same" direction. With respect to the basis $[S^1x1]$, $[1xS^1]$ of $H_1(T^2)$ the lifted twist has matrix $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ (or $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$). Hence if d keeps all four points fixed (and therefore Fix is four 1-spheres) then the matrix of d is in the subgroup K of $GL_2(Z)$. In general d induces a permutation on the four points $\pm 1x\pm 1$. Label these points as 1=1x1, 2=-1x1, 3=1x-1 and 4=-1x-1. The number of 1-sphere fixed components of ι is the number of orbits of the permutation induced by d on $\{1,2,3,4\}$. Note that $\rho_1(z,w)=(zw,w)$ commutes with $\kappa x \kappa$, induces the permutation (34) and has matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. ρ_1 is in fact a Dehn twist. $\rho_2(z,w)=(-zw,w)$ has the same matrix and induces the permutation (12). $\rho_3(z,w)=(z,zw)$ commutes with $\kappa x \kappa$, induces the permutation (24) and has matrix $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. $\rho_4(z,w)=(z,-zw)$ has the same matrix and induces the permutation (13). Also note that the following isomorphisms commute with $\kappa x \kappa$ and have matrix the identity:
αx inducing permutation (12)(34), idx α inducing (13)(24) and $\alpha x \alpha$ inducing (14)(23). There is a composition r of these isomorphisms such that d=d'.r and such that d' induces the identity permutation: Use axid, idxa and axa to reduce the possibilities to permutations (34), (24), (14), (12)(34), (243), (234), (1423), (1234) and (1243). Then use the ρ 's to generate these permutations. So the matrix of d is of form EP where E is the matrix of d' and hence is in K and P is of form listed in (4) - (6). Suppose case (3) of Theorem 9.5 occurs: There is a separating torus with $\iota T=T$. Then M is a union of two orientable twisted I-bundles W_1 and W_2 over Klein bottles. Let $d:\partial W_1 \longrightarrow \partial W_2$ be the identification. As above, by changing $\iota|W_1$ by a conjugation on W_1 , we may assume that $\iota_1 = \iota|W_1$ and $\iota_2 = \iota|W_2$ are standard involutions. Then $\iota_2 d = d\iota_1$. Select representatives of $H_1(\partial W_1) = Z \oplus Z$ in the canonical way: (1,0) arising from a nonseparating annulus of W_1 and (0,1) from a separating annulus. Suppose $\iota \mid \partial W_1$ is fixed point free. $T_1 = \partial W_1/\iota_1$ is a torus. We can select a basis for T_1 such that $p_1 : \partial W_1 \longrightarrow T_1$ has matrix $M(p_1) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ if ι_1 is conjugate to k_2S' or k_3' and matrix $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ if ι_1 is conjugate to k_0' . Similarly for T_2 . $d: \partial W_1 \longrightarrow \partial W_2$ induces an isomorphism $q: T_1 \longrightarrow T_2$ with $p_2 \cdot d = q \cdot p_1$. Then the matrix of d is (as a product in $GL_2(Q)$) the matrix $M(p_2)^{-1}QM(p_1)$ where Q is the matrix of q. Conversely, up to isotopy a matrix $Q \in GL_2(\mathbf{Z})$ determines an isomorphism $q:T_1 \longrightarrow T_2$ and this isomorphism lifts if $M(p_2)^{-1}QM(p_1) \in GL_2(\mathbf{Z})$. This gives (7) - (9). Suppose $\iota \mid \partial W_1$ is not fixed point free. Then $\iota \mid \partial W_1$ is conjugate to $\kappa x \kappa$. ι_1 and ι_2 are conjugate to $k_{2C}' = (-\kappa) x \tau x \tau / d$ or to $k_{S2C}' = i dx \tau x \tau / d$. For convenience use the representation $\kappa x \tau x i d / d$ for k_{S2C}' instead. For both k_{2C} ' and k_{S2C} ': $S_1 = S^1 \times 0 \times 1$ is invariant, meets both fixed 1-cells and represents $(1,0) \in H_1(\partial W_1)$, that is, is a boundary component of a nonseparating annulus. For k_{2C} ': $S_2 = 1 \times 1 \times 1 \sqcup 1 \times -1 \times 1$ is invariant, meets both fixed 1-cells and represents (0,1). For k_{S2C} ': $S_2 = i \times 1 \times 1 \sqcup -i \times -1 \times 1$ is invariant, meets only one fixed 1-cell and represents (0,1). The curves S_1 and S_2 give a way to assign labels 1, 2, 3 and 4 to the four points of $Fix_{\square} \partial W_1$ (e.g. 1 to $S_{1 \square} S_2$). The fixed sets of k_{2C} ' and k_{S2C} ' match these labels in a different way. The matching can be arranged to occur in the same way if a twist on S_2 is performed in the k_{S2C} ' case. The matching and determine the number of components of Fix. Proceed as in the case above where T was a nonseparating torus with $\iota T=T$. In the above listing (12) and (13) arise from combining a k_{2C} ' and a k_{S2C} '. (11) and (12) arise from combining a k_{2C} ' and a k_{2C} ' or from combining a k_{S2C} ' and a k_{S2C} '. Let M be an orientable torus bundle over S¹ with involution ι . Call ι fiber preserving if there is a fibration p:M—>S¹ such that $\iota(p^{-1}(x))=p^{-1}(\iota(x))$ for all $x \in S^1$ and if Fix=Fix(ι) is transversal to each fiber $p^{-1}(x)$. Note the involution $\iota(x,y,z)=(y,x,-z)$ on $S^1xS^1xS^1$ is not fiber preserving, in this sense, with respect to fibration obtained by projection to the last coordinate. ## Corollary 9.10 Let M be an orientable torus bundle over S^1 . Then M has a fiber preserving involution with fixed set exactly n 1-spheres (n>0) if and only if the matrix of M is conjugate to one of (4), (5) or (6) of Theorem 9.8. **Proof:** Let $x \in S^1$ be such that the fiber $T = p^{-1}(x)$ meets the fixed set. Then $\iota T = T$. Since T and Fix are transversal the collar of T is not interchanged. So T satisfies case (2) of Theorem 9.5. Now follow the proof of Theorem 9.8. OED ## ∮10. Involutions With 2-Dimensional Fixed Sets In the previous section the space forms M_1 , M_2 and M_6 were defined. Recall also Definition 3.1. Define the following involutions on these spaces. On Mi: $a_{2T}=idx\kappa xid/d$ having fixed set two tori $S^1x\pm 1xI/d$ $a_T=\omega xid/d$ having fixed set the nonseparating torus $\{(z,z)|z\in C\}xI/d$ On M₂: $$\begin{split} \beta_{2\mathrm{K}} = & \mathrm{id}\mathbf{x} \kappa \mathbf{x} \mathrm{id} / \mathrm{d} \text{ having fixed set two Klein bottles } \mathbf{S}^1 \mathbf{x} \pm 1 \mathbf{x} \mathbf{I} / \mathrm{d} \\ \beta_{\mathrm{K}} = & \omega \mathbf{x} \mathrm{id} / \mathrm{d} \text{ having fixed set the Klein bottle } \{(\mathbf{z}, \mathbf{z}) \mid \mathbf{z} \in \mathbf{C}\} \mathbf{x} \mathbf{I} / \mathrm{d} \\ \beta_{\mathrm{T}} = & \mathrm{id}\mathbf{x} (-\kappa) \mathbf{x} \mathrm{id} / \mathrm{d} \text{ having fixed set separating torus } \mathbf{S}^1 \mathbf{x} \pm \mathbf{i} \mathbf{x} \mathbf{I} / \mathrm{d} \\ \beta_{\mathrm{T4P}} = & \kappa \mathbf{x} \kappa \mathbf{x} \tau / \mathrm{d} \text{ having fixed set a torus and four points} \\ & (\mathbf{S}^1 \mathbf{x} \mathbf{S}^1 \mathbf{x} - \mathbf{1}_{11} \pm \mathbf{1} \mathbf{x} \pm \mathbf{1} \mathbf{x} \mathbf{0}) / \mathrm{d} \end{split}$$ On M₆: $\gamma_{\rm K2P} = (-\kappa) {\bf x} a {\bf x} i d/d \ \, {\rm having} \ \, {\rm fixed} \ \, {\rm set} \ \, a \ \, {\rm Klein} \ \, {\rm bottle} \ \, {\rm and}$ ${\rm two \ \, points} \ \, ({\bf S}^1 {\bf x} {\bf S}^1 {\bf x} {\bf 1} \, {\color{blue} \sqcup} \, 1 {\bf x} {\color{blue} \pm} 1 {\bf x} {\color{blue} -} 1)/d$ Here d denotes the identification for the corresponding space form M_i. #### Lemma 10.1 Let M be an orientable torus bundle over S¹ or a union of orientable twisted I-bundles over a Klein bottle. Let ι be an involution with fixed set containing a Klein bottle. Then there is a separating incompressible torus T with ι T=T and $T_{\Box}Fix=\emptyset$. **Proof:** By Lemma 6.1 the boundary of a regular neighborhood of the Klein bottle K is an incompressible torus. Since K is fixed under ι , arrange that the regular neighborhood is invariant under ι and that is meets **Fix** only at K. Then let T be the boundary of this regular neighborhood. QED ## Theorem 10.2 Let M be an orientable torus bundle over S^1 or a union of orientable twisted I-bundles over a Klein bottle. Let ι be an involution on M with a 2-dimensional fixed set component. Then M is isomorphic to M_1 , M_2 or M_6 and ι is conjugate to one of the seven involutions defined above. Proof: We apply the Torus Theorem 6.2. Some economy could be acheived by showing that the fixed set contains an incompressible torus or Klein bottle F. When F is a torus, F could then be used to construct a torus T with $\iota T_{\bigcap} T = \emptyset$. The present approach has the advantage that it generalized to the case of orientation reversing involutions. It also parallels the proof of Theorem 7.3. M is orientable so case (IV) of the Torus Theorem 6.2 does not arise and 2-sided Klein bottles do not occur. Cases (II) and (III) do not arise since ι is orientation reversing. So there is an incompressible torus T with either $T_{\square} \iota T = \emptyset$ or $\iota T = T$ and T and Fix transversal. By Proposition 9.4 there are three cases: Case 1) $\iota T \sqcap T = \emptyset$ and T does not separate. Case 2) ιT =T, T does not separate and the bicollar of T is not interchanged. Case 3) iT=T and T separates. By the last lemma we may assume T does not meet any Klein bottle components of Fix. We show ι is conjugate to: in case 1) a_{2T} , a_{T} , or β_{T4P} . in case 2) a_{T} if T_{\square} Fix is one 1-sphere, $a_{2\mathrm{T}}$, a_{T} , or β_{T} otherwise. in case 3) β_{2K} , β_{K} , β_{T} , β_{T4P} or γ_{K2P} . Several of the standard involutions are listed in more than one case. Each standard involution can arise in the case it is listed under. Namely consider $T=: S^1xixI$, $\{(x,ix,t):x,t\}, S^1xS^1x(1/2), S^1xS^1x0, S^1xS^1x0,$ $\{(x,\overline{x},t):x,t\}$, S^1xS^1x0 , $S^1x\pm ixI$, $\{(x,\pm ix,t);x,t\}$, $\pm ixS^1xI$, $S^1x\pm ixI$ and S^1xS^1x0 , respectively. It suffices to show ι has the same fixed set as a standard involution listed under the corresponding case, and that if ι and ι' have isomorphic fixed sets and fall into the same case 1)-3) then they are conjugate. We make use of Lemmas 9.1 and 9.2, Corollary 7.4 and Corollary 8.4. Case 1) $\iota T \sqcap T = \emptyset$ and T does not separate. $\iota T_{\square} T \quad \text{decomposes} \quad \text{M} \quad \text{into two components} \quad \textbf{W}_i \cong \textbf{T}^2 \textbf{x} \textbf{I} \quad \text{with} \\ \partial \textbf{W}_i = \textbf{T}_{\square} \ \iota \textbf{T}. \quad \text{Since there is a fixed set,} \quad \iota \textbf{W}_i = \textbf{W}_i. \quad \text{The boundary} \\ \text{components} \quad \text{of} \quad \textbf{W}_i \quad \text{are interchanged so} \quad \iota \mid (\textbf{W}_i) \quad \text{is conjugate to} \\ \textbf{k}_T, \quad \textbf{k}_{4P} \quad \text{or} \quad \textbf{k}_{NI}. \quad \text{Since} \quad \iota \quad \text{has a } 2\text{-dimensional fixed set assume} \\ \iota \mid (\textbf{W}_1) \quad \text{is conjugate to} \quad \textbf{k}_T. \quad \text{Fixed sets of the same type as} \\ \text{for the standard involutions} \quad
\textbf{a}_{2T}, \quad \textbf{a}_T, \quad \text{or} \quad \beta_{T4P} \quad \text{are obtained.} \\ \text{Given} \quad \iota' \quad \text{with isomorphic fixed set, let} \quad \textbf{h}: \textbf{W}_2 - - > \textbf{W}_2' \quad \text{be a} \\ \text{conjugation} \quad \text{between} \quad \iota \mid (\textbf{W}_2) \quad \text{and} \quad \iota \mid (\textbf{W}_2'). \quad \text{Then} \\ (\textbf{h} \mid): \partial \textbf{W}_1 = \partial \textbf{W}_2 - - > \partial \textbf{W}_2' = \partial \textbf{W}_1' \quad \text{is a conjugation which by the} \\ \text{conjugation} \quad \text{extendable property for} \quad \textbf{k}_T \quad \text{extends} \quad \text{to} \quad \text{a} \\ \text{conjugation} \quad \textbf{h}: \textbf{W}_1 - - > \textbf{W}_1'. \quad \text{Hence} \quad \iota \quad \text{and} \quad \iota' \quad \text{are conjugate.} \\ \end{cases}$ Case 2) $\iota T=T$, T does not separate and ι does not interchange the collar. . Then M is isomorphic to W/d where W=T²xI and d:T²x1—>T²x-1 is an isomorphism. ι is induced by an involution λ on W that does not interchange the components of ∂W . Since λ has a two dimensional fixed component, λ is conjugate to k_{λ} or $k_{2\lambda}$. Case 2.1) λ is conjugate to k_A . Then $\partial Fix(\lambda) = S_1 \sqcup S_2$ has two components so $T_{\square}Fix$ has one component. Orient S_1 . Then annulus $Fix(\lambda)$ induces an orientation on S_2 . If $d_*[S_1] = -[S_2]$ then Fix is a Klein bottle meeting T. So $d_*[S_1] = [S_2]$ and Fix is a torus. Let ι' be conjugate to ι and assume ι' falls into this case also. Construct $W'/d'\cong M'$ as above. Construct a conjugation $T^2x1 \longrightarrow (T^2x1)'$ between $\lambda \mid (T^2x1)$ and $\lambda' \mid (T^2x1)'$. Extend to a conjugation $h: \partial W \longrightarrow \partial W'$ by defining $h(T^2x-1) = d' \cdot h \cdot (d^{-1})$. Since Fix is a torus in an orientable manifold, h extends over a bicollar of Fix. Then the conjugation extendable property of k_A shows h extends to a conjugation h: $W \longrightarrow W'$ between λ and λ' . h induces a conjugation between ι and ι' Case 2.2) λ is conjugate to k_{2A} . Then $Fix(\lambda)$ has two annular components A_1 and A_2 and Fix meets T in two 1-spheres. Let $S_{ij}=T^2x(-1)^i \cap A_j$. Pick orientations so that each represents the same element of $H_1(W)$. $d:T^2x1\longrightarrow T^2x-1$ is orientation preserving and must take $S_{1,1}$ to $S_{2,1}$ or $S_{2,2}$. There are four subcases: - 1) $d(S_{11})=S_{21}$ and $d_*[S_{11}]=[S_{21}]$. Then Fix is two tori. - 2) $d(S_{11})=S_{21}$ and $d_*[S_{11}]=-[S_{21}]$. Then Fix is two Klein bottles. These meet T so this case does not occur. - 3) $d(S_{11})=S_{22}$ and $d_{*}[S_{11}]=[S_{22}]$. Then Fix is a nonseparating torus since d must interchange the components of W-Fix. 4) $d(S_{11})=S_{22}$ and $d_{*}[S_{11}]=-[S_{22}]$. Then Fix is one separating torus. If ι ' is also given then it will fall into the same one of these subcases. So a conjugation can be constructed between λ and λ ' as in Case 2.1. Case 3) ι T=T, T separates. Then M=W₁ \sqcup W₂ with T=W₁ \sqcap W₂ where W_i are orientable twisted I-bundles over a Klein bottle. We have ι W₁=W₁ and ι |(W_i) is orientation reversing. So $\lambda_i = \iota$ |W_i is conjugate to k_K, k_{2M}, k_A, k_{A2P}, k_{2P} or k_N. Since ι | ∂ W₁= ι | ∂ W₂ it follows: Case 3.1) Both λ_1 and λ_2 are conjugate to k_{K} , k_{2P} or k_{N} Case 3.2) Both λ_1 and λ_2 are conjugate to k_{2M} , k_{A} or k_{A2P} . In case 3.1) by symmetry assume λ_1 is conjugate to k_K . Fix is two Klein bottles, a Klein bottle and two points, or just one Klein bottle. If ι' is also given construct a conjugation by taking any conjugation between λ_2 and λ_2' and extending to W_1 using the conjugation extendable property of k_K . In case 3.2) the fixed set always intersects T. By construction we avoided Klein bottles meeting T. Therefore λ_i is not conjugate to k_{2M} . Next, it is possible that λ_1 is conjugate to k_A and λ_2 is conjugate to k_{A2P} . Let $Fix_{\square}T = S_1 _{\square}S_2$. Torus T induces an orientation on S_2 once an orientation on S_1 is fixed. In $k_{\hbox{\scriptsize A}}$ the annular fixed set induces the same orientation on S_2 as T does. In $k_{\hbox{\scriptsize A2P}}$ the annular fixed set induces an orientation on S_2 opposite to the one T induces. Therefore T would be a Klein bottle. Hence we have λ_1 and λ_2 are conjugate to $k_{\mbox{$A$}}$ and the fixed set is a torus or λ_1 and λ_2 are conjugate to $k_{\mbox{$A$}2P}$ and the fixed set is a torus and four points. If ι' is given it is easy to construct a conjugation between ι' and ι since $k_{\mbox{$A$}}$ and $k_{\mbox{$A$}2P}$ have the conjugation extendable property. QED # Bibliography - [1] R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. 56 (1952), 354-362. - [2] M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206. - [3] A. C. Gordon and R. A. Litherland, Incompressible surfaces in branched coverings, preprint. - [4] W. Hantzsche and H. Wendt, Dreidimensionale euklidische Raumformen, Math. Ann. 110 (1935), 593-611. - [5] J. Hempel, 3-manifolds, Ann. of Math. Studies 86, Princeton Univ. Press, 1976 - [6] P. K. Kim and D. E. Sanderson, Orientation-reversing PL involutions on orientable torus bundles over S¹, Michigan Math. J., 29 (1982), 101-110. - [7] P. K. Kim and J. Tollefson, PL involutions of fibered 3-manifolds, Trans. Amer. Math. Soc. 232 (1977), 221-237. - [8] K. Kwun and J. Tollefson, *PL involutions of* S¹xS¹xS¹, Trans. Amer. Math. Soc. 203 (1975), 97-106 - [9] G. R. Livesay, Involutions with two fixed points on the three-sphere, Ann. of Math. 78 (1963), 582-593. - [10] E. Luft, Equivariant surgery on incompressible annuli and tori with respect to involutions, to appear. - [11] E. Luft and D. Sjerve, Involutions with isolated fixed points on orientable flat 3-dimensional space forms, to appear in Trans. Amer. Math. Soc. - [12] P. Orlik, Seifert manifolds, Lecture Notes in Math. 291, Springer Verlag, 1972. - [13] C. Rourke and B. Sanderson, Introduction to Piecewise-Linear Topology, Erg. der Math. u. ihrer Grenz. 69, Springer Verlag, 1972. - [14] J. Tollefson, Involutions of sufficiently large 3-manifolds, Topology 20 (1981), 323-352. - [15] J. Wolf, Spaces of constant curvature, McGraw-Hill, 1967. - [16] F. Waldhausen, *Ober Involutionen der 3-Sphäre*, Topology 8 (1969), 81-91.