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Thesis Supervisor: Dr. Erhard Luft

Abstract

We obtain a complete equivariant torus theorem for
involutions on 3-manifolds M. M 1is not reguired to be
orientable nor is H,(M) restricted to be infinite. The proof
proceeds by a surgery argument.

Similar theorems are given for annuli and for discs.
These are used to classify 1involutions on wvarious spaces
such as orientable twisted I-bundles over a Klein bottle.

Next we restrict our attention to orientable torus
bundles over S' or unions of orientable twisted I-bundles
over a . Klein bottle. The equivariant torus theorem is
applied to the problem of determining which of these spaces
have involutions with 1-dimensional fixed point sets. It is
shown that the fixed point set must be one, two, three, or
four 1-spheres. Matrix conditions that determine which of
these spaces have involutions with a given number of
'-spheres as the fixed point sets are obtained. |

The involutions with 2-dimensional fixed point sets on
orientable torus bundles over S' and on unions of orientable
twisted 1I-bundles over a Klein bottle are classified. Only
the orientable flat 3-space forms M,, M, and Mg have
involutions with 2-dimensional fixed sets. Up to conjugacy,
M, has two involutions, M, has four involutions, and Mg has

a unique involution,

ii
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INTRODUCTION

We investigate the problem of classifying involutions
with 1-dimensional or 2-dimensional fixed sets on orientable
torus bundles over S' or on unions of orientable twisted
I-bundles over a Klein bottle. Cutting these spaces on
incompressible tori T gives trivial I-bundles over tori or
orientable twisted I-bundles over a Klein bottle.

In Chapter 1I1I1 we prove a complete equivariant torus
theorem for involutions. This theorem allows the cutting to
be - done in a manner that respects both the involution ¢ and
the fixed set Fix, i.e., such that either (THT = @ or (T =
T and T and Fix are transversal. The problem then reduces to
one of classifying involutions on trivial I-bundles over
tori or orientable twisted I-bundles over a klein bottle.
Such theorems have been proved in [8] and [14] but under
additional hypotheses, such as, the first homology being
infinite and the manifold being orientable. In [11] an
equivariant torus theorem was proved under the assumption
that the fixed set is a number of isolated points. Our
theorem extends these results. In the nonorientable case we
may have to allow the cutting torus to be replaced by a
Klein ‘bottle. Even in the orientable case two types of
exceptional cases are possible.

To prove the eguivariant torus theorem cut and paste

technigques are used. An equivariant transversality theorem



is also reqﬁired. In the two dimensional case when M is
nonorientable ‘transversality can not be guaranteed. Certain
interesting exceptional points arise; these will be called
saddle points. Saddle points must be treated separately in
the surgery arguments.

Analogous to the torus theorem are the annulus and disc
theorems. These theorems are used in Chapter IV to classify
the involutions on the trivial I-bundle over a torus and on
the orientable I-bundle over a Klein bottle.

Let M denote an orientable torus bundle over S' or a
union of orientable twisted I-bundles over a Klein bottle.
In [6] Kim and Sanderson have <classified the orientation
reversing involutions on orientable torus buqdles.over s'.
Our techniques allow us to classify the 1involutions with
2-dimensional fixed point set on all M. A subclass of these
spaces are the orientable flat 3-space forms M,, M,,---Mg,
see Wolf [15]. Mg 1is not a torus bundle and H,(Mg) is
finite, We show in ¢10 that M;, M, and Mg are the only M
having involutions with 2-dimensional fixed point sets.
These involutions are determined up to conjugacy.

The case of 1-dimensional involutions on these spaces
is far less restrictive. Each of the orientable space forms
has 1involutions with 1-dimensional fixed point sets but
these are not the only M with such involutions. We determine

in §¢9 which .spaces M have involutions with 1-dimensional



fixed point sets. We do not deal with the problem of
uniqueness in this thesis.

Several topics for further research present themselves.
For example, classify the involutions on the nonorientable
torus bundles over S'. Can an eguivariant theorem be proved
for surfaces of higher genus? One could also investigate how
the results would generalize from 1involutions to n-cyclic

actions and finite group actions.



I. EQUIVARIANT TRANSVERSALITY AND DISC THEOREMS

§1. Preliminaries

Use 4,  and [ to denote set intersection, union and
subset. |, does not denote disjoint union. Use upper indices
to indicate dimension.

Throughout we wuse the piecewise linear category. This
is to avoid wild fixed sets which can arise in the
topological category, see [Ij.

A piecewise linear homeomorphism will be called an

isomorphism.

Definition 1.1

Let M be a manifold with boundary oM and F a
submanifold of M of 1lower dimension. F 1is proper if
F~0oM=3F. In particular a point is proper in M only if it is
in the interior of M, We will assume that all submanifolds
are proper.

F will wusually denote a surface, a compact connected
manifold. A surface F .in a 3-manifold M is incompressible if
F is not a 2-sphere or 2-cell and if for each 2-cell B in M
with BF=3B there is a 2-cell D [ F with 2D=0B. A manifold
M is irreducible if each 2-sphere in M bounds a 3-cell in M.

Let M be a connected compact 3-manifold. An involution

¢« is an isomorphism with (#id and c2=id.



Let Fix denote the fixed set Fix=fix(¢)={x:¢(x)=x}. Let
¢« be an involution on a manifold M and (' an involution on a
manifold M'. ¢ and (' are conjugate if there "is an
isomorphism h:M—>M' with t'=h...h”'. call h a conjugation
between ¢ and '.

t 1is conjugation extendable if given any conjugate '
of t - and an isomorphism ho:dM—>03M' with
L‘|aM,=honL|aMoh0_1 then there 1is a conjugation h:M——>M'
extending the isomorphism h,.

Note that if ¢ is conjugation extendable then so is any
conjugate (¢'. Further, fo show conjugation extendability it
suffices to check the case t('=¢. ¢ is conjugation extendable
with respect to a class H of isomorphisms dM—>03M',
depending on the choice of conjugate ¢' of ¢, if at least
for any hyeH with L'I=hooL|.(ho-1) there 1is a conjugation
h:M——>M' extending the isomorphism hy.

The following construction will be wused often. See
Figure 1. Let M=B (B with B tB=0B~9:B and similarly for

M' and B'. Let hy:B——>B' be an isomorphism such that

ho

:Bq tB—>B'qt'B' 1is a conjugation between (|B ¢B and
¢'|B'q¢'B'. hy is extended by equivariance to h:M—-—>M' if
we define h|g=h, and h| p=t'.ho.(¢ ). Then h is a

conjugation between ¢|M and ¢'|M'.



| ho - |
— :
¢ (; “III‘ ‘) !
\*/ -
_1/
t'.he.(e ')

Figure 1.
Lemma 1.2
Given a simplicial subdivision K of M and an involution
¢« of M there is a subdivision L of K with ¢ simplicial with

respect to L.

Proposition 1.3

Let ¢ be an involution on a manifold M. Let L be a
subdivision of M with (:L—>L simplicial and let L' be the
first barycentric subdivision of L. |

Then Fix=fix(¢) is a subcomplex of L'. Fix is the union
of disjoint 0-, 1- and 2-dimensional proper submanifolds.
Write Fixo, Fix' and Fixz'respectively for the unions of the
0-, 1- and 2-dimensional components of Fix.

OL_,Fix2 then ¢ is locally orientation reversing

If veFix
at wv. If VeFixl then ¢ is locally orientation preserving at
v. In particular if M is orientable then « 1is orientation
reversing if FixoLJFixz ¢‘¢ and ¢ is orientation preserving

if Fix! # &.



Proof: Use the following:

1) Let A be a standard m-simplex (with standard
subdivision) invariant under (. Then Fix—~A is a subcomplex
of the first barycentric subdivision of A.

2) 1f Fix contains a 3-simplex then (=id.

If veFix is a vertex of int(L) consider the link Lk of v.

3) 1f Lk Fix contains a 1-cell then Lk~Fix 1is one
1-sphere. So veFixz.

4) If Lk Fix consists of m20 vertices then

x(Lk/¢) - m = % (x(Lk) - m)
Since Lk/t¢ is a surface and Lk is a 2-sphere it follows m=2
and hence veFixl, or it follows m=0 and hence veFixo.

QED

Corollary 1.4

Let « be an involution on M with fixed set Fix. Then
M/t = M/(m~t(m) for all meM) is a manifold with possible
singularities.  Fix = Fix/. a disjoint wunion of

0

submanifolds Fixo, Fix1 and Fix2 with Fix  and Fix1 proper

in M/t and with Fix2 a submanifold of 8 (M/¢) = (aM)/LLJFiXZ.

Proof: Consider the link Lk of vertices of Fix.

QED



Remark 1.5

The fixed point free 1involutions on a manifold M
correspond to 2-fold coverings by M. If « is an involution
then M/L=M/(m~t(m) for all meM) is 2-fold covered by M.
Conversely, if p:M———>X‘is a 2-fold cover then define an
involution ¢ by requiring ¢ to interchange the two points of
p_1(x) for every xeX. ¢ is the nontrivial deck
transformation induced by p.

Involutions on M with fixed set Fix correspond to
2-fold coverings by M branched on Fix. (| M-Fix is fixed

point free and p| M-Fix is unbranched.

§2. Equivariant Transversality

In order to be able to perform surgeries on a surface
Fo 1in a 3-manifold M we would like to perform an ambient
isotopy on F, such that the 1isotopic surface F has the
property that F, (F and Fix are pairwise transversal. This
can be done if the manifold is orientable. If Eix2¢¢ and M
is nonorientable, hcwev;r pairwise transversality is not

possible in general. This necessitates using a somewhat

weaker form of transversality.



Lemma 2.1

Let F be a proper surface in a 3-manifold with F, (F
and Fix pairwise transversal. Then the components of F [y (F
are 1-spheres and proper 1-cells. If C is a component of

Fq (F with CFix’#¢ then C [ Fix%.

Proof: The first statement follows by transversality of F
and (F. The second statement follows on considering the star
of a point in erFixz.

QED

For the 3-cell B3={(x,y,z): |x|<1,|y|=1,]z|£t} 1in RS?
let i:_B3————>B3 be the map i(x,y,z)=(-x,y,z). Then Fix(i) is
the intersection of B?® with the y z plane. Let S .be the
1-sphere obtained as the join of {(1,1;1),(-1,—f,1}} with
{(-1,1,-1),(1,-1,-1)} and let D be the cone from (0,0,0) on
S. D is a saddle shaped region. See Figure 2. (We could

.alternately tage D defined by {z=xy/Vx-x+y-y} ,{(0,0,0)}.)




Notice that D iD is the part of the x and y axis 1in B?
while DQFix(i) 1is part of the y axis. D and Fix(i) are
transversal and iD and Fix(i) are transversal, but D and 1iD
are not transversal at (0,0,0). There 1is a subdivision
making these spaces simplicial with all the vertices on

3B? ,(0,0,0).

Definition 2.2

Let F be a proper surface in a 3-manifold M and ¢ an
involution on M with fixed set Fix. Call a point v a saddle
point if veFr-|Fix2 and if (F,.F,Fix) star(v) is isomorphic

to (D,iD,Fix(i)).

Remark 2.3

Saddle points exist since i is an 1involution with
fixed set Fix(i). Although 9D, 9iD, 9Fix(i) are pairwise
transversal there is no 2-cell E with ©8E=9D and E, 1iE,
Fix(i) pairwise transversal. Otherwise, since 09ERdiE -
Fix(i) = (%1,0,0) there 1is a 1-cell I of EQRiE with
(1,0,0)edI and this 1-cell must meet Fix, contradicting the
previous lemma.

Let d denote the identification (x,1,z)~(x,-1,-2) for
all x and z. Then D/d is an annulus in a solid Klein bottle
B3/d and no ‘isotopy of D/d moves it to an annulus with F,

iF, and Fix(i)/d pairwise transversal,.

10



Definition 2.4

Let F be a proper surface in a 3-manifold and ¢ an
involution on M with fixed set Fix. Then F, (F, and Fix are
almost pairwise transversal if:

1) F, (F and Fix are pairwise transversal except at a
finite number of saddle points,
and 2) The only components of FQRFix containing saddle
points are 1-spheres and each éuch i-sphere contains at most
one saddle point.

Let E be the closure of (Fp(F) - Fix?. E consists of

disjoint 1-spheres and proper {-cells: in a neighborhood of
a saddle point, Fr (F - Fix? corresponds to
[-1,0)x0%0,,(0,1]1x0x0 in the B® model for saddle points.

Let E be a component of E that contains a saddle point
v. Then E has a fixed point and 1is invariant wunder .
Therefore, either E is a 1-cell with no fixed points other
than v or E is a 1-sphere with exactly two fixed points v
and w, By transversality w is in Fix® or Fixz. In the latter

case w 1is a saddle point., We obtain the following

proposition:

11



Proposition 2.5

Let F, (F and Fix be almost pairwise transversal. Then
the components of F (F are of one of the following forms:
1) Components with no saddle points (standard components):

a) proper t-cell I with IFix=@ or I Fix2

b) proper 1-cell I with Iquix=Ir1Fix1=v, v a point

c) 1-sphere S with SFix=¢g or S C Fix®

d) t-sphere S with Sr-]Fix=S,--,Fix1=v1L_,v2 where v, and v,
are points.

2) Components with saddle points:

Type 1 combonent: Syl with S, qI=Fix~I=w, SF C Fix2 and

w is the only saddle point on S, I.
2

’

Type 11 component: S, ;S with §,~S=w, S,  Fix
SFix=v ,w, veFix and v is the only saddle point on S, ,S.
Type III1 component: S, S, S with S, S:=¢, S:mS = w., S,
C Fixz, SHFix= w,  w, and w, and w, are the only saddle
pointé on S, ,S2S.
Here S, S, and S, are 1-spheres, I are 1-cells and Wy

are points.

ﬁg&g'a reqular neighborhood of any of S, §;, or S, 1is a

solid Klein bottle in case 2). Thus case 2) does not occur

if the manifold is orientable.

Proof: If the regular neighborhood N of § is a solid torus

then FixN, FRN and ((FN are all annuli or all Mdbius

12



bands. Consider the components of F 9N and (FdN in 3N -
Fix for a contradiction. For example, if they are all annuli
then let A be a component of aN—Fix.‘Aquix and A (Fix are
two 1-spheres that intersect transversélly at one point.
This is not possible in an annulus A. Compare with the proof
of case 3 and 4 in step ' of the next theorem
(transversality theorem).

QED

Corollary 2.6

If F, (F and Fix are almost pairwise transversal, then
they are pairwise transversal if one of the following holds:
a) M is orientable
b) F is a 2-cell

c) F is a annulus with 3F  t3F=@.

Proof: In case a) regular neighborhoods of 1-spheres are
solid tori.

In cases b) and c¢) Type I1 or 1III1 components are
excluded siﬁce the 1-sphere S is nonseparating. In case c)
type 1 components are excluded a priori, while 1in case b)
1-sphere S, separates so a proper 1-cell C cannot intersect
S, transversally at one point.

QED

13



A proper 1-cell 1 bounds a disc D in a surface if

I1=0D~0F.

Corollary 2.7

Let F, (F, and Fix be almost pairwise transversal and C
a proper 1-cell or 1-sphere component of F (F, that is, let
C be a standard component. Then any disc in F or (F bounded

by C contains only standard components.

Proof: As in case b) in previous corollary.

QED

Equivariant Transversality Theorem 2.8

Let ¢ be an involution on a 3-manifold M with
Fix=fix(¢) and 1let F, be a proper surface in M. Then there
is an ambient e-isotopy on M taking F, to a proper surface F
such that F, (F and Fix are almost pairwise transversal. In
oM, if 9F, (9F and Fix are pairwise transversal then the
isotopy may be taken to be the identity on 3dM-N where N is a

given neighborhood of aFixzran.

Proof: Let F=F, be a proper surface. By Proposition 1.3 and
Lemma 1.2 subdivide M so that ¢ is simplicial with respect
to the subdivision, Fix is a subcomplex of the subdivision

and Fix 1is a disjoint wunion of 0-, 1- and 2-dimensional

14



components Fixo, Fix1 and Fixz. All isotopies performed in

the construction will be done in the star neighborhoods of
certain simplexés. By taking a sufficiently fine subdivision
e-isotopies are obtained.
Step 1) Adjust F near Fixz.

By isotopies similar to those in the third step below we can
assume F and Fix are transversal, the isotopy not moving BdF
unless 9F and dFix are nontransversal. In particular F,—-,Fix0
= . Then Fquixz consists of disjoint 1-spheres and 1-cell
components proper in M.

Let S be a l-sphere component of Fquixz. Let N' be a

regular neighborhood of S with N'F and N' qFix transversal

and each an annulus or Mobius band. S has a regular

neighborhood N contained in int(N') invariant under ¢ with
no vertices on int(N) - S such that NQFix is a regular
neighborhood of S and Fix oN has a regular neighborhood Q
in 9N which is invariant under ¢ and has no vertices except
on Fix ;0Q.

Case 1) FpQN and FixnN are annuli. Then N is a solid

torus, 9Q has four components and N-Fix consists of two

components N, and N, which are interchanged by (. Let J, and

J, be components of 3Q with J;=N; and «J,#J,. Let Ay be the
annulus with 8A.=J. ;S having no vertices except on 2dA;. F
is 1isotopic to a surface F' by an ambient isotopy which is

the identity on M-N' and such that F' R N' R Fix N and F' 4N

15



= A, A,. Since J4#J; it follows F' N ((F'~N)=S and
F' N, «(F'qN), FixN are pairwise transversal.

Case 2) FN and FixqN are Mobius bands. Then N is a
solid torus, and 8Q has two components that are interchanged
by . If J is one of these, then J and S determine a Mdbius
bana A with 9A=J. Proceed as in case 1.

If M 1is orientable Case 3 and 4 do not arise. Only in
these cases do saddle points arise.

Case 3) FAN is an annulus and Fix~N is a M8bius
band. Then N is a solid Klein bottle. Let A be one of the
two (open) annuli components of 0ON-Fix. There are two
1-spheres J, and J, which represent generators of H,(A)=2Z
with J, and_ J, intersecting transversally and at only one
point x. J. and S bound an annulus A, with A,nRA; = SI
where I is a 1-cell with 3I=x ;y where yeS. Proceed as in
Case 1 using F'N = A, ,tA,. Then y is a saddle point and
F'RN, «(F'N) and Fix~N intersect pairwise transversally
elsewhere in N,

Case 4) FHN is a MoObius band and FixpN is an
annulus. This case is similar to case 3. Here A=3N-Q 1is an
invariant annulus under (. Find a curve J that bounds a
Mébius band by lifting (from annulus A/¢) a curve J' which
represents twice a generator and which is embedded in A/:

except for one transversal self intersection.

16



When S is a l-cell component of Ferixz, use an isotopy
similar to the one of case 1 above. This isotopy may change
oF in N aM.

Step é) Adjust F near Fixl.

By step 1, Fquix1 consists of a number of vertices in
int(M). If VeFquixl let N' be a regular neighborhood of v
and let N be the star neighborhood of v. Take the
subdivision so that N is in the interior of N', FpQN 1is a
prbper 2-cell in N and FixN is a proper 1-cell. Since F is
transversal, FoN is a generator of H,(N - Fix). Let J' be
a curve in the annulus (dN - Fix)/. representing twice a
generator of this annulus. Take J' embedded except for one
transversal self intersection. J' lifts to two 1-spheres J
and «J, which on coning to v give 2-cells D-and (D. D, D
and Fix are pairwise transversal in int N. Proceed as in
case 1 of step 1. |

We obtain a surface F and a neighborhood N of Fix such
that F has the required transversality properties in N. The
following constrﬁction adjusts F only on star neighborhoods
of simplexes of F-N where F and (F are not already pairwise
transversal. By subdividing sufficiently we may assume
without loss that Fix=@. For convenience assume also 3F=@.

Let K be a subdivision of M with ¢ simplicial and F a
subcomplex of K. Let A be an m-simplex of F in K with m = 0,

1 or 2. Define St(A), the reduced star of A in K, to be all

17



3-simplexes o of K with A [ o together with their faces. Let
StF(A), ghe reduced star of A in F, be all 2-simplexes o of
K with A [ 0 ¢ F together with their faces. Let p:M——>M/1t
be the projection.

Step 3) There is a subdivision of M and a proper
surface F' e-isotopic to F such that for every simplex A of
F' either p—]p(A)r1F'=A or A is a 0- or 1-simplex with
int(StF.(A)) and int(StLF,(A)) transversal.

Call a simplex exceptional if it fails to satisfy these
conditions and is of the highest possible dimension m = 0, 1
or 2. Induct on the number of such simplexes. If there are
no exceptional simplexes the theorem is established.

Add all the vertices (and their translates under ¢ ) of
form (m+2)/(m+3) b + 1/(m+3) v where b is the barycenter of
A and v is a vertex of St(A)-A. This determines a refinement
K' of K with the same number of exceptional simplexes; no
m-simplexes are subdivided for m=1,2 , while for m=0
transversality already holds away from vertices of K.
Consider the reduced stars in K', aSt'F(A) is a 1-sphere
that decomposes 3St'(A) into two components D, and D.. There
is an ambient isotopy taking F to F;=(F - St‘F(A))LJD, which
is the identity except on St'F(A). F, has fewer exceptional
simplexes. When m#2 this follows since D, D. intersects the
interior of any 2-simplex of St(A) transversally.

QED

18



Regular neighborhoods of the standard components of

F (F can be taken in a special form.

Definition 2.9

Let F, (F and Fix be almost pairwise transversal and S
a 1-sphere component of F(F. Suppose, in addition, that
the regular neighborhood of S in F and F 1is an annulus.
Then there exists a regular neighborhood V [ int(M) of S
with the following properties:

1) VMF and VR (F are annuli, Since these intersect
transversally, V is a solid torus.

2) Fix and @V intersect transversally, FixFRV [ S and
the closure of each component of (FixV) - S meets S and
oV. In particular Fix0r1V=¢.

3) Fix_V is an annulus, two proper 1-cells or empty.

4) If ¢S=S then (V=V

5) If (S#S then «(VH{ V=@ and the above properties hold
simultaneously for (V.

Property 3) can be arranged since 1if FixpS#@ then
tS=S. ¢ 1s an involution on a 1-sphere so either (=id or
has exactly two fixed points.

Call V a standard neighborhood of S. The four 1-spheres
(F |, (F) q 9V decompose dV into four (closed) annuli a,;, a,,

B, and B, with aya,=¢ and B, B,=@. Call these annuli the

19



standard annuli corresponding to the standard neighborhood.

of V. Suppose tS=S. Relabelling, if necessary, we may
assume t(ayBy)=(a,~B:). It follows that ta,=a,. Then
tf1=f, and taz=a,. When FixV#@ we obtain FixrHa,#g,
Fixrqag¢¢, Fix f,=@=Fix—~f,, and each component of Fix

meets both a; and a,.

Definition 2.10

Let S be a 1-cell component of Fix (Fix where F, .F,
Fix are pairwise transversal (near S). Then there exists a
regular neighborhood Vv of S with VA M a. regular
neighborhood of aS,vcalled a standard neighborhood of S with

the following properties:.

1) VRF and VH(F are 2-cells with aMVHF and aMr1Vr1LF4

each two 1-cells. Necessarily V is a 3—cell..
2), 4) and 5) as for 1-sphere standard neighborhoods.
3) FixV is a disc, one proper 1-cell or empty.
The four 1-cells (F ,«F) 4 9V-0M subdivide 3V-3M into
four discs a,, a;, By and B, with aym~a,=@, B, B.=P and the
properties as in the previous situation. Call these discs

the standard discs corresponding to V.,
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Remark 2.11

In the following theorem certain t-sphere components §
of F (F have standard neighborhoods because S bounds discs
in F and (F. In the disc theorem and partial annulus
theorem, F 1is orientable so again there are standard
neighborhoods. In the torus theorem the construction will be
made so as to keep S in this form always. In the annulus
theorem the <case of a nonorientable F, a Mdbius band, with

'-sphere components is treated separately.

Theorem 2,12

Let M be a 3-manifold with involution ¢ and F, be an
inéompressible proper surface. Then there 1s an ambient
isotopy of M which 1is an e-isotopy on 8M taking F, to a
proper surface F such that F, tF, and Fix are almost
ﬁairwise transversal and no 1-spheres in F (F bound 2-cells
in F. If on oM, oF, 1dF and 0Fix are pairwise transversal
then the isotopy may be taken to be the identity on 9M-N

where N is a given neighborhood of aFixzran.

Proof: By the preceding transversality theorem there is an F
with all the above properties exéept possibly 1-spheres in
F (F bound 2-cells in F. By Corollary 2.7 those 2-cells
contain no saddle components. Let S be a 1-sphere of Fp(F

innermost in (F, that is, there is a 2-cell D [ (Fix with
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D F=3D=S. Since F is compressible, S bounds a 2-cell B in
F. If (S=S then we may assume ¢B=D.

Let V be a standard neighborhood of S. Such a
neighborhood exists since S bounds a disc in F and (F. Let a
be the standard annulus meeting D but not B. Then taa=9@.
There is a bicollar Dx[-1,1] of D=Dx0 with

aDx[-1,1) = Dx[-1,1]  F = Sx[-1,1]
and with Dx1 [ a # @. Since D is innermost it follows that
for a sufficiently thin collar (Dx1)p ¢(Dx1)=@ and
Fr(Dx1)=@. Consider F'=(F-(B Sx[-1,1])) ,Dx1. Then
F'¢F' ¢ (Fq¢F) - S and F', (F' and Fix are almost
pairwise transversal. Since M is irreducible and D ;B 1is a
2-sphere, F' and F are ambient isotopic by an isotopy being
the identity on oM. By 1induction, all 1-spheres bounding

2-cells can be removed.

QED

Definition 2,13

A 2-cell B in a 3-manifold is essential if it is proper
and 9B does not bound a 2-cell in aM. In an irreducible
3-manifold a nonseparating proper 2-cell is essential.

The following theorem also appears in [3].

22



Disc Theorem 2.14

Let M be an irreducible 3-manifold with involution .
Suppose M has an essential 2-cell B,. Then there is an
essential 2-cell B [ M such that B and Fix are transversal
and either B tB=@ or (B=B. In the former case BqFix=@g and
in the latter case B Fix is a proper 1-cell of B or one
point in the interior of B. If 8By t3Bo=@ then one can take
0B=0B, and B and B, are ambient isotopic by an isotopy that

is the identity on 3M.

Proof: By Theorem 2.12 and Corollary 2.6 there 1s an
essential 2-cell B with B, (B and Fix pairwise transversal,
"B and B, ambient isotopic and BB is either empty or
consists of broper 1~cells »only. Assume BB (in
particular then 3B, tBo#@). By induction it suffices to
bshow how to obtain a new 2-cell B, with fewer 1-cells in
Bi’_‘ LBi.

Let D be an outermost disc of B: D [ B with
D~ tB=3D~ tB=I a proper 1-cell of B and 3D-I [ 9B.
1f (I=1 define D'=(B-(D. If (I#I define D' to be the closure
of the component of ¢B-:D that does not contain (I, See
Figure 3. Let V be a standard neighborhood of I and let a,,
a, and B be standard discs of V with a,na,=@, a,pB8RD*%
and fD'#@. Consider

B,=(D_,B4D') - int(V) and B,=D, («B-D').
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Figure 3.

Then By tB, (B tB) - I. If B, is essential we are done
by induction or arrive at case B, B;=¢. If B, is not
essential then 9B, bounds a 2-cell E of 09M. Since M is
irreducible the 2-sphere B, E bounds a 3-cell. This 3-cell
does not meet I, otherwise (B would not be essential. Using
the 3-cell construct an ambient isotopy taking B, to B.

So we may assume B, 1is essential. If 1I=¢I we have
tB,=B, and note that FixB, [ FixqI which is necessarily a
point of I or all of I. If I (I=g consider a sufficiently
thin bicollar Dx{-1,-1] of D=Dx0 such tha£ Dx[-1,-1]1R1 is a
bicollar  of 1 in (B and Dx1 meets a;. Then
B,'=(Dx1,B)-(I1x[-1,0) 4 4D') is essential since it |is
isotopic to B, and B,'tB,' [ BqB - I.

QED
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II. INVOLUTIONS ON THE 3-CELL AND THE SOLID TORUS

§3. Some Involutions

-The classification of involutions on a solid torus will
be useful in the proof of theorems in the next chapter. The
disc theorem will be wused to reduce the problem of
classifying involutions on a solid torus to one of

classifying the involutions on a 3-cell.

Definition 3.1

Let C be the complex numbers. Let
I=1'=[-1,1] be the standard 1-cell
S'={zeC :|z|=1} be the standard 1-sphere
D?={zeC :|z|<1} be the standard 2-cell
T?=S'xS' be the standard torus
D,={zeD?:z=x+y+i, y20}, a 2-cell
Re={zeD?:2=2z} [ D?, a proper 1-cell
Im={zeDé:z=-E} r D?, a proper 1-cell
Define involutions on the above spaces as follows.

On S': k(z)=z which is orientétion reversing with fixed
set two points *1. a{(z)=-z which is orientation preserving
and fixed point free. Then a.k=k.a=-k is conjugate to x by a
rotation by 90°.

On D?:k(z)=z orientation reversing with fixed set one
1-cell Re. a(z)=-z which 1is orientation preserving with

fixed set one point 0. Then -k is conjugate to k and has



fixed set Im.,

On I:7(t)=-t which is orientation reversing with fixed set

one point 0.

Define the map p:S'%xS'——>S'%xS' by p(z,w)=(2w,w) and
map p:D2xS'—>D2xS! similarly. Define involution
w:S'xs! >S$'xS' by w(z,w)=(w,z), which has fixed set one

1-sphere {(z,z):z}.

Lemma 3.2

There are five involutions up to conjugacy on an
annulus S'xI, They are: 1) axid which is orientation
preserving and fixed point free, 2) axr which is orientation
reversing and fixed point free, 3) kxr which is orientation
preserving with fixed set two points, 4) idxr which is
orientation reversing with fixed set a 1-sphere, and 5) «xxid
which is orientation reversing with fixed set two proper

i-cells.

Proof: When the dimension of the fixed set is one the fixed
set separates. In the other case use the Euler
characteristic argument given 1in part 4) of proof of

Proposition 1.3.

QED
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Definition 3.3

For the 3-cell D?xI define the following in&olutions
(see Figure 4):
j,=idxr having fixed set a proper 2-cell DZx0.
jy=kx7 having fixed set an unkotted 1-cell RexO.
jo=ax7 having fixed set one point 0x0.
j, and j, are orientation reversing while j, is orientation
preserving. j, is conjugate to j,'=axid which has fixed set

OxI.

Theorem 3.4

An involution on a 3-cell is conjugate to j., j; Or Jjo.

All involutions on a 3-cell are conjugation extendable.

Proof: Let « be an involution on 3-cell E. Apply Lemma 1.2
and Proposition 1.3.
Suppose Fix2¢¢. Since Fix2 is proper and m,E=1, Fix2

separates. Let E, and E, be the components, E=E,; ,E; with

Fix

Figure 4.



Fix2=E,r1E2. 1f Fix® were compressible then 1let B be a
compressing disc in E,, say. Then (B compresses Fix2 in E,.
Using a Mayer-Vietoris sequence we see [aBj must be trivial
in H,(E,)®H,(E;) = Hl(Fixz). Hence Fix? is a proper
2-cell.

We show « 1is conjugate to 3j,. Let D,=D?x[0,1].
Construct an isomorphism h, from the disc which 1is the
closure of ©J8E,-Fix to the closure of 3D, - D?x0. In the
conjugation extendable case we may assume this isomorphism
is given. Extend h, over the fixed set Fix and then cone to
a point to obtain an isomorphism h:E,—>D?x[0,1]. Extend
this isomorphism by equivariance to get a conjugation.,

Suppose Fix2=¢. The Euler characteristic argument
referred to in part 4) of proof of Proposition 1.3 applied
to (|dE shows Fix—dE has 0 or 2 fixed points. In the former

. . . . .1 . 2
case ¢ 1s orientation reversing so Fix™ Fix

=g and in the
latter case Fix1 # .

Suppose FileJFix2=¢. By a Lefshetz number argument ¢
has one fixed point only, call it v, 3E/¢ 1is a projective
plane so there is a conjugation hy:3E——>3(D?xI) between (|

and jo|. In the conjugation extendable case h, is given. By

subdividing we may assume star(v) 9E=@ and E - int(star(v))
= S?xI. Extend h to a conjugation E -
star(v)—>D2xI-star(0,0). This can be done by Theorem 1 in

[9] since ¢ has no fixed point on 3E. Finally cone to v.
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Suppose Fix1¢¢. By the above Fix1r1aE is two points.
Consider the double E E' of E. It 1is a 3-sphere with
involution ¢,,¢' induced by . By a result of Waldhausen
[16], this involution has fixed set one unknotted 1-sphere.
Let B be a 2-cell with 3B the fixed set and such that B is
in general position with respect to 3E. B E is a punctured
3-cell and all but one component of B 3E is a 1-sphere in
the interior of B. By standard arguments these <can be
removed giving a 1-cell B'  E with 9aB' aELJFixl. This
shows Fix1 is one unknotted proper'1—cell.

We claim there 1is a (nonproper) disc B embedded in E
with Fix [ 9B [ Fix ,0E such that B (B=Fix. Moreover, if C
r 8B is a 1-cell with Cp:C=3C=03Fix then we may assume
3B dE=C. To establish this claim note that if N is a star
neighborhood of Fixq then the closure V of E~-N is a solid
torus with ¢| fixed point free and orientation preserving.
VAN is an annulus and ¢|(VHN) is also fixed point free.
Using these facts and Disc Theorem 2.14 it 1is ©possible to
construct a disc as required in the claim.

Construct a conjugation to j, as follows. Construct an

isomorphism B——>D,x0 and extend by equivariance to

B, B >Dx0. In the conjugation extendable case we set C =
h™'((8DD.)x0). Then B, tB separates E into two 3-cell
components. We extend to an isomorphism over one of these

components and then by eqguivariance to the other, giving a
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conjugation E——>DxI.

QED

Lemma 3.5

Let F be a 2 sided surface in a 3-manifold M and let
be an involution on M with (F=F and such that ¢ interchanges
sides of F. Then F is ambient isotopic to a surface F' with

F' R (F'=¢.

Proof: Construct an ¢ invariant bicollar Fx[-1,1] of F=Fx0
by using a star neighborhood of F. Then consider F'=Fx1.

QED

Remark 3.6 -

Suppose (F=F for a 2-sided surface F. Let N be the
3-manifocld obtained by cutting M along F. That is, replace
Fx[-1,1] M by distinct copies F,x[-1,0]=Fx[-1,0] and
sz[0,1j=Fx[0,1]. N has a subdivision inducéd from M. Let
d:F,=F,x0—>F,=F,x0 be the canonical identification. Then
M = N/d. Since « is simplicial there 1is a canonical
involution k on N with (=k/d. Note k.d=d.k and k(F,)=F, 1iff
t does not interchange the bicollar. Conversely if k.d=d.k

for an involution k then k induces an involution ¢ in M with

(tF=F,
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§4. Involutions on the Solid Torus

Definition 4.1

Let V be the s0lid torus

V=D?xS'={(z,w):

z|<1,|w|=1, z,weC}. Recall Definition 3.1.

Define the following involutions on V (see Figure 5):

jA=kxid having fixed set the annulus RexS'.

jM=b,(kxid) having fixed set the M&bius band
{(s-e™F, e2™t)  0<s<1, - 15821}

j2D=idxx having fixed set two 2-cells D?xt1.
jpp=P- (idxk) having fixed set a 2-cell and a point
D2x1,0x-1,

js=&xid having fixed set one 1-sphere 0xS'.
j2C=kxx having fixed set two 1-cells Rexttl.
j2P=axx having fixed set two points Oxti.
jN=Rxa fixed point free and orientation reversing.
jo=idxa fixed point free and orientation preserving.

So jM(z,w)=(Ew,w) and ij(z,w)=(zW,W). The subscript

describes the fixed point set or for the fixed point free

involutions the orientability type. Recall by Proposition

1.3, since V 1is  orientable, involutions with 0- or
2-dimensional fixed sets are orientation reversing. Those
with 1-dimensional fixed sets are orientation preserving.
None of the above involutions are conjugate since all have

different fixed sets or orientation type. Using V=D?xI/d
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Figure 5.

Fixed point sets for the standard involutions.
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where d=ax(7r|91), involutions conjugate to jM and jDP can be

defined as follows:

jM'=ind/d having fixed set Mdbius band RexI/d

jpp'=idx7/d having fixed set D?x0,0x1/d.

Theorem 4.2

If ¢ and ' are involutions on V=D2xS' with nonempty
isomorphic fixed point sets or if « and (' are fixed point
free and of the same orientation type, then ¢ and (' are
conjugate. An involution on V is conjugate to one of the

nine involutions listed above.

Proof: Let ¢ be an involution on V. We show it is conjugate
to a standard involution. For any given essential 2-cell B,
of V there 1is an 1isomorphism h of V which takes B, to
B=D?x-1., So by applying the Disc Theorem 2.14, and replacing
¢ by the conjugate involution h“'...h for a suitable h, we
may assume ¢ satisfies:

Case 1) (¢B=B and B intersects Fix transversally at Rex-!

Case 2) (B=B and B intersects Fix transversally at 0x-1

or 3') (B B=¢

There is an isomorphism (D?xI)/d——>D?xS' where d=idx(r|aI)
is given by d(z,t)=(z;ei“t). The isomorphism takes D?x-1/d
to B. Write also B=D?x-1, In case 3') by adjusting the

isomorphism h we may assume that (B=D?x1=(D?x0)/d. Call
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C.=D?x[-1,0] and C,=D?x[0,1]. The case 3') splits 1into two

cases:
Case 3) (B B=g and (C,=C.

Case 4) (B B=@ and (C,=C,.

We show first, if the involution ¢ falls into:

case 1) it has fixed set that of jA or jM,

case 2) it has fixed set that of js,

case 3) it is fixed point free as jN and jO are,

case 4) it has fixed set that of j2D’ jDP' jZC or j2P'
and we show second, if ¢ and (' fall into the same case 1) -
4) then ¢ and (' are conjugate. This will complete the proof
because the nine standard involutions cover all possible
fixed sets that can arise and none occurs in more than one
case 1) - 4).

All constructions done for ¢ are to be performed for '
also even if not explicitly stated. Use a prime ' to denote
the corresponding construct.

In Case 1): The involution ¢ on D?xI/d induces an
involution A on D2?xI with the property A.d=d.\X when
restricted to D?xdI. Fix(\) 1is proper and 2-dimensional
since Fix=fix(:) 1is transversal to B. So ; is conjugate to
the standard involution j, of the 3-cell. 1In particular
Fix(A) 1is a 2-cell., Fix 1is obtained by identifying two

disjoint 1-cells in the boundary of the two cell so Fix is
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an annulus or Mobius band.

Suppose ¢' is given. A|B and A|B' are conjugate so
there is a conjugation h:B——>B'. Using 4@ and d' we may
extend h to a conjugation D2?x3I-—>D2'x3l. aFix ()
decomposes 09D?xI into two 2-cells which are interchanged
under A. Let J be an (open) component of (3aD?x-1) - Fix(A)
selected so that h(J)=J'. Then Fix is an annulus if J and
d(J) are in the same 2-cell determined by 3Fix(X) and Fix is
a Mobius band if J and ¢d(J) are in the same 2-cell
determined by 3Fix(A). Therefore, h can be extended to a
conjugation

h:D?x3I | Fix(A)—>D?"x3I | Fix(\').
Extend h over one of the 2-cells that oFix(A) decomposes
D?xI into. Then extend to the other cell by equivariance.
This gives a conjugation h defined on ©3(D?xI). By the
conjugation extendable property for the 3-cell, h extends to
all of D2%xI and hence 1induces a conjugation on D?xI/d
between ¢ and ¢'.

In case 2): As in case 1) the involution ¢ on D?xI/d

induces an involution A on D2xI with A.d=d.A on D?%x3I.
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Fix(A) 1is proper and 1-dimensional so X is conjugate to the

standard involution j, of the 3-cell. So Fix is a 1-sphere.
Suppose (' 1s given. X|B and A|B' are conjugate so
there is a conjugation h:D?x3I——>D?'x31 with h.d=d'.h.

Since \|3B is orientation preserving, h extends to 3(D?*xI).



By the 'conjugation extendable property for 3-cells, h
extends to all of D?xI and hence induces a conjugation on
D?x1/d.

In case 3): The involution must be fixed point free.
Let ¢ and ' be of same orientation type. Construct an
isomorphism h:B——>B' and extend to a conjugation
h:B , tB—>B' |, ¢'B' by equivariance. Since the orientation
type 1is the same, h extends to all of 38C, and then to an
isomorphism h:C,—>C', by conihg. Finally extend to
D?xS'=C, | ,C. by equivariance.

In case 4): t¢|C, and (|C. are involutions on 3-cells so
each has fixed set a point, a proper 1-cell or a proper
2-cell. Since (B, ¢tB) nFix=¢ it follows
FiX=FiX(L|C,)LJFiX(LlC.).: Moreover L|C+'and t|C. must have
the same orientation type so Fix is one of: two 2-cells, two
points, a 2-cell wunion a point, or two 1-cells. Suppose
and (' have isomorphic fixed sets. Arrange notation so that

t|C, and '|C,' have isomorphic fixed sets. Construct a

conjugation h:B ;«B—>B' ,¢'B' as in case 3). In view of
the conjugation extendable property of 3-cells, it suffices
to show h extends to a conjugation 3C,——>09C,'. Let G=2dC,
and let Fix now denote Fix((|C,).

Case 4.1) (|C, is conjugate to Jj,. Fix decomposes G

into two components one of which, E, contains B. Extend h to

an isomorphism h:E———>E' and by equivariance to a
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conjugation h:G——>G'.

Case 4.2) (¢|C, is conjugate to j,. G/¢ 1is a 2-sphere
such that Fix=Fix/: misses B/t. So lifting an appropriate
1-cell J, in (G/¢)-(B/t¢) gives a 1-cell J of G with
Jm ¢J=Fix. In addition, J,(J determines a component E of aG
containing B but not (B. Define an isomorphism hgy:J—>J'
and extend by equivariance to J ,«J. Notice we could have
sélected ho:J——>¢'J' instead, so if orientations are fixed
for J,«¢J and J' ;¢'J', we may select h, to be either
orientation preserving or orientation reversing. Hence
higho extends over the (open) annulus E-(B,J,,¢J) to an
isomorphism h,:E——>E'., Extend by eguivariance to G.

Case 4.3) c|C, is conjugate to Joe Then
E=(G-int(B;¢B))/t 1is a Mobius band and h induces an
isomorphism 3E——>3E'. This isomorphism extends to all of E.
G double covers G/¢ and the 1isomorphism 1lifts to an
isomorphism h':G——>G' exténding h. By construction h' is a

conjugation,

QED

Let CiP be the space obtained by <coning a real
projective space to a point V.. Then (CiP,vi) is isomorphic
to (B%®,0)/jo. The descriptions of the standard involutions j
on a solid torus V can be used to compute V/j. Use Fix to

denote Fix/j and recall Corollary 1.4 in this connection.
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V/jA is' a solid torus D?xS' with Fix an annulus
Re(daD?)xS’,

V/jM' is a solid Klein bottle D? ,xI/-kx(7|31) with Fix the
Mobius band RexI.

V/j2D is a 3-cell with Fix two 2-cells.

V/jDP' is C,P with Fix the point v, and a 2-cell.

V/jS is a solid torus D?xS' with Fix the 1-sphere 0xS'.

V/j2C is a 3-cell with Fix two proper unknotted t-cells.

V/j2P is a boundary connected sum of C,P and C,P with
Fix=v, v,
(i.e.) V/j2P=D2xS. / ((z,1)~(-2,1) , (z,-1)~(-2,-1)) where
$,=D, S, v,=(0,1), v,=(0,-1) and D?xi is the connected sum
disc.

V/jN is a solid Klein bottle DZxI/kx(r]|231).

V/jO is a solid torus.

Corollary 4.3

If « 1is an involution on a solid torus V then V/. is
isomorphic to one of the spaces V/j above. The isomorphism
type of the fixed set and orientability type of ¢ determine

V/¢ up to isomorphism.
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Example 4.4

jO is not conjugation extendable because s(z,w)=(z,zw)
determines a conjugation s:39V—>93V for jo|dV that does not

extend to V.

Corollary 4.5

The orientation reversing involutions are conjugation
extendable. If V and V' are solid tori with conjugate
orientation preserving involutions ¢ and ' respectively
then the involutions are conjugation extendable with respect
to the class of isomorphisms 3V——>093V' that:

1) extend to isomorphisms V—-—>V', for the case
conjugate to jo or js. |
2) extend to isomorphisms V Fix——>V' Fix', for the case

¢t conjugate to j2C'

Proof: It suffices to show conjugation extendable for the
standard involutions j only. In fact it suffices to show
given h':39V——>3V an isomorphism with h'.j,(h'-1)=j, that h'
extends to an isomorphism H' :V—->V with H',jo(H'_l)=j. Now
h' induces an isomorphism h:3V/j——>03V/j. We show, for each
j, h extends to an isomorphism H:V/j—>V/j. Let p:V—->V/j
be induced by inclusion. p|(V-Fix) is a double cover and
p|Fix is an isomorphism. Check that H.(p]):

V-Fix——>(V-Fix)/j 1lifts to H':V-Fix—>V-Fix and thus
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obtain a conjugation.

Let W=V/j. When Fix2¢¢ notice that h is only defined on
a proper submanifold (dV)/j of a(Vv/j).

The extensions H of h are clear for jA, sz, js, jo,
jDP and jM. For jN and jzp' oW is a Klein bottle. For jN,
the boundary of an essential proper disc D represents the
unique element of order two in H,(3dW)=2,8Z. Since h(3D) is
also of order 2, h(aD) bounds an essential proper disc D'.
Extend by coning over D and then over the 3-cell W-(aW ;D).
For jzp' 9D?x1 is a 1-sphere that separates ©9W and is
2-sided in o0W. Such 1-spheres represent the element

(0,2)eH, (W) . Proceed as above. For let

Jocr
h:9W Fix—>0W'  /Fix' be given. A 1-sphere in 3W-Fix that
decomposes oW  Fix into two components each containing one
component of Fix has the property that it bounds a proper

2-cell D in W that misses Fix, Use this 2-cell to extend h.

QED

Remark 4.6

Consider the solid Klein bottle V=D?x1/d4 where

iy =
= idxr/d with

d=kx(7]01). Then j, = kxid/d with fixed set an annulus,

-kxid/d with fixed set a Mobius band, jDC

fixed set a 2-cell and a 1-cell, = -gx7/d with fixed set

Jcp
a point and a 1-cell, and jS = axid/d with fixed set a

1-sphere are the only five involutions on a solid Klein
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bottle, up to conjugacy. The proof is very similar to the
one given for the solid torus. Since d is orientation
reversing, however, case 3) does not arise and in case 4)
only the <combinations that were disallowed previously can

occur.
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III. EQUIVARIANT ANNULUS AND TORUS THEOREMS

§5. Annulus Theorems

Definition 5.1

A proper annulus A in a 3-manifold M is triviai, if A
decomposes M into a solid torus V=D?xS' and a submanifold M,
such that:

M =M, ,V, MoqV = Mo 3V = A
and there exists a nonseparating proper 2-cell B  V with
B A=3BA a nonseparating 1-cell in A,

Otherwise <call A nontrivial. Call V a solid torus that
trivializes A.

Note that 1if A does not separate M or if 2A is in

different boundary components of M then A is nontrivial.

Definition 5.2

Call a nontrivial incompressible proper annulus an
essential annulus. Call an incompressible proper Mdbius band

an essential Mobius band.

Let F be a surface and S a component of F(F. In some
surgeries performed later we will wish to replace F by
F'=Fx! where Fx[-1,1) is a bicollar of F. To insure that F',
(F' and Fix are transversal at least in | standard

neighborhoods (see Definitions 2.9-.10), the following lemma
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is used.

Lemma 5.3

Let V be a solid torus and t¢:V—>V an involution. Let
Ao, and A, be annuli in 3V with 08A,=S,,S,, 0A;=S,,S,,
Ao A1=Sy, S0=So, (Ao A1) t(Ag A, )=S, and Fix (A, A,)
r So. Then there is a proper annulus A [ V such that A, tA
and Fix intersect transversally with A (A=S a 1-spheré and
dA having one component in int(t¢A,) and the other component
is S,.

A similar statement holds if V is a 3-cell and A,, A,

are 2-cells and Si are 1-cells. See Figure 6.

Proof: By transversality of Fix, by taking a sufficiently
small regular neighborhood N of A, A, Ay jtA, we may
assume one of the following holds:

1) FixN=g

2) FixN consists of two disjoint 1-cells I. with

A=A' I_IA“
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exactly one point of aIi in S, and the other in int(V)oN
or 3) FixHN is an annulus such that one boundary compoﬁent
is S, and the other in int (V) 9N,

Further, there is a regular neighborhood N' of S, [ N
such that (N'=N', A,'=N' A, is an annulus, Ay,'  tAs'=N'HoV
and properties 1)-3) hold with respect to N'.

Let B be the annulus which 1is the closure of N' -
Ao tAg. Then there is an S in int(B) with (S=S and FixB
S. There 1is an annulus A" in V-N' such that 3A"=S, ;S and
A"~ (A"=S. Let A' be the component of B-S that meets (Ag.
Then A=A' A" is the desired annulus.

QED

Remark 5.4

A solid Klein bottle 1is a twisted I-bundle over an
annulus. The annulus is essential but it does not separate

the boundary.

Lemma 5.5

I1f U is a solid torus then U has no essential annuli.
If U is a solid Klein bottle then U has no essential annuli
that separate 09U.

Moreover, suppose A' is an annulus contained in 3U such
that a nonseparating proper disc D of U intersects A' 1in

exactly one nonseparating 1-cell of A', If A 1s an
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incompressible proper annulus disjoint from A' then the
solid torus which trivializes A may be taken to be disjoint

from A'.

Proof: Suppose A is an essential annulﬁs. Then let D be any
proper nonseparating 2-cell of U. (When A' is given, take D
as in the statement.) Make A and D transversal. Since A is
incompressible adjust D so that AD consists of 1-cells
only.

I1f AR D=¢ then A is contained in a 3-cell obtained by
removing a sufficiently small regular neighborhood of D from
U. This contradicts incompressibility.

1f ARD#@ 1let B be an outermost 2-cell of D (and
disjoint from A' if A' is given): so B A=3BA=I is a
1-cell and B oU=0B-1. If I bounds a 2-cell in A, then by an
isotopy moving B, obtain a disc D' with fewer 1-cells in
ARD'. Assume now that I does not bound a 2-cell in A. Then
1 separates A. Let V be the closure of the component of U-A
that meets int(B). 9A decomposes 23U into two annuli or
possibly, in the case where U is a solid Klein bottle, into
an annulus and two Mdbius bands. However, in the latter case
B 30 must meet the annulus. It follows that 8V 29U is an
annulus and V is a solid torus with the propertiés making A
trivial.

QED
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We next state the partial annulus theorem and the
annulus theorem. The proofs are omitted. They are similar in

spirit to the proof of the torus theorem.

Partial Annulus Theorem 5.6

Let M be an irreducible 3-manifold with involution .
Let A, be an essential annulus with 8A, t8A,=@. Then:
1) there 1is an essential annulus A with A (A=¢ and
A |, t3A=3A, | t3A,
or 2) there are two disjoint essential annuli A,;, A, with
tA,=A,, LAz;Az, and 0(A, | JA2)=0RA,, t3A, and Fix is

transversal to A, and A,.

Example 5.7

The involution kxid on D?x I induces an involution ¢ on
RP?x1=D?x1/d where d=axid 1is an identification defined on
3D?xI=S'xI. Fix=(Re  {i})xI. No essential annulus or Mdbius
band satisfies A (A= or (A=A and A and Fix transversal.
There is an annulus, however, with (A=A but it 1is not

transversal to Fix.
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Example 5.8

Consider the nonorientable twisted I-bundle 1IxIxI/d
over a torus, where d=(7|28I)xidx7r ;idx(7|8I)xr. The
involution (=idxrx7/d has Mdbius bands but no annuli A with

AR tA=¢ or (A=A and A and Fix transversal.

Annulus Theorem 5.9

Let M be an irreducible 3-manifold with involution .
Suppose A, is an essential annulus or Mobius band in M with
0Ao=So1 S0, where, if A, is a Mbbius band, S,,=So,. Let Ry,
respectively R,, be the component of ©8M with S5, [ Ry,
respectively Sg,  R;. Assume R; is incompressible. and if
R,#R, assume also that R; is not a projective space.

Then there is an essential annulus or Mdébius band A
with either AerA=¢: or tA=A and A.and Fix transversal
and in both cases 3A ;(0A [ Ry Rz tRyjtR;.

If M is orientable A may be taken to be an annulus.
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§6. Equivariant Torus Theorem

Lemma 6.1

Let M be an irreducible 3-manifold containing an
incompressible torus. Let F be a 1-sided Klein bottle in the
interior of M and W a regular neighborhood of F in M with oW

a torus. Then 8W is an incompressible torus.

Proof: If not then M=W, ,U with U a solid torus. Necessarily
W 1is an orientable twisted I-bundle over T and M is
orientable. The inclusion of U in M determines an index two
subgroup of w,(M). Consider p:M—>M, the 2-sheeted covering
corresponding to that subgroup. Then p_1(w)=Tx[*1,1] where T
is a torus with p(Tx0)=F. p-1(U)=V1L_,V2 is two disjoint
solid tori. M is a lens space. But M and hence M contains a
2-sided incompressible torus.

QED

Equivariant Torus Theorem 6.2
| Let M be an irreducible 3-manifold with involution «.
Suppose M contains an incompressible torus. Then one of the
following holds: |

(I) There is a 2-sided incompressible torus or Klein

bottle T in int(M) transversal to Fix with T (T=¢ or (T=T.
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(I1) M=V_,,V,,U., U, where Vv, and U, are solid tori
and V.=V, and (U.=U,.
There are annuli Ai’ i=+1, with
A,nA_, = A;mtA; = BA, = QA = V,qV., = U;qU.,
and V., qU,=A;, V.qU_;=tA;, 3V,=A,  j(A;, 0U;=A,  tA_;. See
Figure 7.
A, ,A., is a 2-sided incompressible torus or Klein
bottle transversal to Fix. L|Vi is orientation preserving.
(I11) M=V, ,V, ,V where V,, V, and V are solid tori
each invariant under : such that ¢ is orientation preserving
when restricted to any of V,, V, and V. There is a 1-sided
Klein bottle T with T (T = S [ int(V) a generator of =,(V).
VipVz = (T ¢T) - int(V) are two annuli. T, (T and Fix
are pairwise transversal and Fixrqévz=¢ and Fixrqs¥¢. V is a
standard neighborhood of S. See Figure 7.
.(IV) M=W ,V where W is a twisted I-bundle over a torus
T r Wand V. is a solid torus with 8W=9V=WV and (W=W, L T=T
and (V=V. Fix 1is transversal to dW and T except for a

possible 1-sphere component S of Fix1 contained in T.

Proof: Let T, be an incompressible torus 1in int(M). By
Theorem 2.12 assume T,, (T, and Fix are almost pairwise
transversal and that no i1-spheres in Ty tTy, bound 2-cells

in To.
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(11)

'~ Fix

tA_, T tT
Figure 7.

As a. first step we handle the cases where saddle
components arise. Only Type III and Type I1 components are
possibie. In both cases since S and S, intersect
transversally at one point, there can be only one component
in Tom tTo.

Suppose To tTo is a Type III component S, ;S ;S.. Then
S; and S, bound an annulus A in T, since $;~S.=@ and both
intersect S transversaily once. Let T=A ,tA. Then T=T and T
and Fix are transversal. T 1is 1-sided since a regular
neiéhborhood of S, is a solid Klein bottle. Let N be a
regular neighborhood of T 1invariant wunder N. 1If 9N is
incompressible then it is a 2-sided torus satisfying (I). If
aN is compressible we arrive at (IV).

Suppose Tom tTo is a Type II component S, ;S,. First we
construct a torus T' isotopic to T=T, with (T'=T', Let N(S)
and N(S,) be regular neighborhoods of S and S, respectively,
both invariant under ¢ such that N=N(S) | N(S,) is a regular

neighborhood of S,,S; and such that TN(S) and Tqu(S,) are



annuli, N(S)~Fix is a Mdbius band, N(S,)mFix2 is a proper
2-cell and N(S,),—-,Fix1 is a proper 1-cell. Both N(S) and
N(S;) are Klein bottles. By transversality there are two
disjoint open 2-~cell components K, and K, of N(S)-(T ,(T)

1

that meet Fix and there are two disjoint open 2-cell

components L, and L, of N(S;)-(T ,(T) that do not meet Fixz.
By <considering the effect of ¢ near saddle points we see
A=(K, K, Ly 4Lz) 9N is an annulus with 03A=C,:(C where
C=aNr{T. The closure of A, (T-N) ;¢(T-N) is a 2-sphere which
by the'irreducibilify of M bounds a 3-cell E. E cannot
contain the proper punctured torus TpQHN so Enint(N)=g.
Si’nce'Fix1 is transversal to 8E and 19E=0E it follows (E=E,
“In particular ¢|E 1is conjugate to Jj,, the standard

involution of a 3-cell with fixed set one 1-cell. A is

. . . .1 .
invariant and contains Fix" — dE. Hence one shows there is a

proper 2-cell D with 3D a generator of H,;(A) such that

Fix1r1E is a proper 1-cell of D and (D=D. Since ¢3D=38D, by

taking N sufficiently ;mall we can construct a - proper
punctured torus P in N with 3P=D and (P=P (namely isotope
THN). Consider the torus T'=P ,D. Fix? intersects T'
transversally at S, and Fix! is contained in T'. T' is
1-sided. Let W be a regular neighborhood of T' invariant
under . If 9W is incompressible then it is a 2-sided torus

satisfying (I). If oW is compressible we arrive at case

(1v).
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We may now assume T, tTo has no saddle components. Ty,

(T, and Fix are pairwise transversal and To~ tT, consists of

disjoint 1-spheres bounding annuli in T, and (T,. We

successively construct incompressible tori or Klein bottles

T with fewer 1-spheres in TR (T, but always keep T (T

consisting of 1-spheres bounding annuli in T and (T.
Therefore any 1-~sphere of T (T will always have a standard
neighborhood. See Definitions 2.9-.10. It also follows then
that any 1-sided Klein bottle arising from such "~ a
construction has a regular neighborhood W with aW a torus.
So Lemma 6.1 is applicable.

Note: Suppose T satisfies all the conditions of (I)
except that T is 1-sided instead of 2-sided. Let W be a
regular neighborhood of T. We can take W so that aW and Fix
are transversal and (W=W or W (W=@. 3W is 2-sided. If 3W is
incompressible, 3W satisfies (I). If 9W is compressible, by
Lemma 6.1 T is a torus. Now V=M-W is a solid torus. If (T=T
we have (IV). If (T T=@ then the solid torus V contains an
embedded 1-sided torus (T, a contradiction.

There are four main cases now depending on the number
of 1-spheres of T (T and the compressibility of certain
surfaces.

Assume qucT consists of at least two 1-spheres. Let
A [ (T be an innermost annulus: A T=3A. 0A decomposes T

into two annuli A’ and A" with  T=A' A" and
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Figure 8.

0A=0A'=03A"=A' qA". T'=A' A and T"=A" | |A are tori or Klein

bottles. See Figure 8.

Case 1) T' is incompressible.

Case 1.1) (dA=3A and (A=A",

Then (T'=T'. One sees Fix |is transQersal to T' by
considering the standard neighborﬁoods of 9A. We arrive at
case (I) or (IV).

Case 1.2) Either (3A=3A and (A=A" or tdA3A is a
single 1-sphere S and (A A",

In the latter case (S=S, Let V, and V, be distinct

standard neighborhoods of ©9A and let ¥, and y, be the two

distinct standard annuli that meet both A and A'. Let T, =

(A' A v gv2) - int(v,V,). Then Ty Ty ¢ (T T) -
dA because (v, ,7v2) ety yv2)=@#. T' and T, are ambient
isotopic so T, is incompressible. Fix (v, ,72)=@ and A is
innermost so T,, Ty and Fix are pairwise transversal.

Proceed with T,.
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Case 1.3) Either 1dAdA is a single i1-sphere S and (A
r A or (3A [ doA=Q.

Let 0A=S,;S'. Let V be a standard neighborhood of S and
‘let v be the standard annulus that meets both A and A'. Let
Ax[0,e] be a sufficiently thin collar of A=Ax0 in M such
that

S'x[0,e] A", Sx[0,e] [ T énd
(AR aV)x[0,el=(ax[0,e)) qaV.

The collar exists since V is a solid torus. In the first
case, 15=S and (y=y. By Lemma 5.3 if (Axe) R vy#@ we may
assume (Axe) qV and (((Axe) V) intersect transversally in a
i-sphere S, and that both are transversal to Fix. In all

other cases set S$,=S. Define

T‘ = (Axe) uA'—((S‘uS)X[O,G]) L (SX[O,C'])"A'
Then Ty Ty ¢ ({TH¢T)-3A) [, S;. T, 1is incompressible
,since it 1is ambient isotopic to T'. T,, (T, and Fix are

pairwise transversal. Proceed with T,.

By case 1) we may now assume T' and T" are
compressible.

Case 2) For every annulus A (T with AR T=3A, both
corresp;nding surfaces T' and T" are compressible and T (T
contains more than two 1-spheres.,

Then let A, and A; in (T be annuli with A, T=3A, and

with aAi = SOL_,Si where S, S, and S, are 1-spheres with
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$,#S5,. Let A, A,' and A,' be the three annuli of T that
these 1-spheres decompose T into: 2A=S, S, andAaAi'=SoLJSi,

i=1,2., See Figure 9.

Define T,=A A, A;. T, is incompressible. Otherwise T,

bounds a solid torus or a Klein bottle U. Say A,’ r U. Ay’
is trivial in U by Lemma 5.5. If A,' A, bounds the
trivializing torus then the incompressible T=A;' A" ;A is
ambient isotopic to A, A" A which was compressible by
hypothesis. If A,' A, A bounds the trivializing torus
then, since A;' and A, meet on S,, A, must also be trivial
in A;' A, A. SO T is ambient isotopic to AZ'LJA2 whiéh was
assumed compressible.
We have five cases: _
Case 2.1) (S, ;S;)=S, S, and S,  A. Then (A, ,A;)=A.
Case 2.2) (S, ,S,)=S, S, and S,  A'.
Then (A, A;)=A,'  A.;' and (S,=S,.
Case 2.3) (S5,=S, and (Sy,=S,. Then tA,=A,' and (S,  A,;".

Case 2.4) L(S1LJSZ)F'|(S1L_]SZ) = ¢.

Ay
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Case 2.5) «(S,;S2) (S, ,S;) is a one 1-sphere.
These cases cover all possibilities. In each case we find a
T, with fewer 1-spheres.

In case 2.5) this follows from the other cases. After
relabelling assume S, is the 1-sphere in the intersection.
Then 1S,=S,. By case 2.3) we assume (S,#S,. Let A; be the
innermost annulus adjacent to A, A, C (T, with
A;T,=0A;3=5,,S; where S3¢S;. By case_2.3) again we may
assume (S;#S;. By case 2.1) and 2.2) we may assume (S,#S,.
So we have (So,S3)(So;S3)=@ and case 2.4) gives the

reduction.

In case 2.1) use T,=(T,. Fix is transversal to T, since

the standard annulus meeting A, and A is invariant.
in case 2.2) and case 2.3): For i=1,2 let Vi be the
standard neighborhoods of S with v; the standard annuli
that meet both A and A;. In all cases (v, y72) m t(riyg72)
= ¢. Define T, to be the incompressible surface ambient
isotopic to T, given by ‘
T, = TyYigYz - int(v,  V,).
Then T,, T, and Fix are pairwise transversal and
T Tz Ty Ty -~ (S1l_|Sz).
In case 2.4): First assume (S,#S,. By symmetry assume
tSo#S,. Let (A, ,A;)x[0,¢] be a sufficiently thin collar of
A, yAz=(A, A,)x0 in M such that (S, S,)x[0,e] T and

Sox[0,e¢]  A,. Define T, as
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(A, Az)xe | A-T(S,S.)x[0,e]) [, ((S,,S:)x[0,¢e]-A).
Then T, T, ¢ (T ¢T)-S,. T, is ambient isotopic to
incompressible T,. T,, (T, and Fix are pairwise transversal.

If tS4=S,, proceed as above but replace the condition
Sox[0,e] A, by S,x[0,¢]  A. Use Lemma 5.3 on a standard
neighborhood of S, to adjust the collar so that (A, jA;)xe
and 'L(A,LJAz)xe intersect transversally in one 1-sphere S,.

Then szLTz C ("(THLT)—(SOUS1))L_|SB'

Case 3) For each annulus A (T with AT=3A, both
corresponding surfaces T' and T" are not incompressible and
T (T is exactly two 1-spheres.

Set (T=A_, A, with A.;A;=0A;=0A_ =T (T=S,;S;. Then
T=tA_, tA,. There are solid tori or Klein bottles Ui and Vi
(i=#1) pairwise disjoint on their interiors with 3V,=A., (A,

and an=Ai l_l LA_-

i None of Ui or V.1 are solid Klein bottles.

‘Otherwise, if say V, is a solid Klein bottle, then since S,
'decomposes 9V, into two annuli it follows that S, bounds a
disc in V,. This contradicts the incompressibility of T. By
considering the standard annuli of a standard neighborhood
of S, we see LV, =V, and U, =U_,.

Next we show |V, and (|V., are orientation preserving.
If not then by Section 4, L|Vi is conjugate to j,, Jons Iy
jM or ij, the standard involutions on a solid torus. j2D

and are not possible since S, or S, would bound a disc

jDP
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contradicting the incompressibility of T.

" If |V, 1is conjugate to then say S, p Fix and

jM
S, Fix=@. Then (|V, has a 2-dimensional fixed set component
that has only one boundary component. It follows (|V, is
also conjugate to jM. So Fix contains a Klein bottle K.
There 1is a regular neighborhood W of K with (3W=0W and
W Fix=@g. Since Vi are solid tori and Krjvi is a Modbius
band, oW is a torus. By Lemma 6.1, 3W is incompressible. We
arrive at (I).

1f |V, 1is conjugate to then [S;,] represents a

iy
generator of H,(V,) and hence there is an ambient isotopy
taking (T to 3aU., (move A, to tA,;). This contradicts that (T
is incompressible.

Finally suppose |V, 1is conjugate to the involution
jN=kxa on D?xS'., If (S,=S, then S,'=1xS' and S,'=-1xS’
determine annuli A' and (A' of 3D?xS'. It is possible to
construct a conjugation 3aV,——>3D?xS' taking A, to A'. This
conjugation extends to a conjugation V,——>D2?xS'. But [S,']
is a generator of H,(D?xS') and we get a confradiction as

for the case above. If (S,=S, then use S,'=8D?x1 and

jA
S,'=08D?x-1 and proceed as above but this time obtaining a

contradiction as for j2D above.
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Case 4) T (T is a single 1-sphere S. '

‘Then (S=S. Let V be a standard neighborhood of § and
let a,, a,, B, and f, be the standard annuli with
a;a=g, B1imB2=9, taq=a,, taz=a; and tf1=82.

Define T, = (T T, ;a, a;) - int(V)
and T, = (T T B, B2) - int(V).

If T is 2-sided then T, is 2-sided. Also (T,=T,. Since
T is 2-sided it follows that a sufficiently thin collar
Tx[0,e] of T=Tx0 can intersect only one of int(a,) and
int(a,). Hence T, cannot separate and therefore T, is
incompressible. We arrive at (1). |

From now on assume T is 1-sided. T, and T, are tori.
This follows since V is a solid torus and either both of the
annuli T-int(V) and (T-int(V) are "twisted" relative to V
(if T is a Klein bottle) or neither is (if T is a torus).

I1f either of Ty or T, is incompressible we arrive at
(1). Assume then that T, and T, are compressible. Then T,
bounds a solid torus v, . If § ¢ v, then v, contains a
1-sided torus or Klein bottle, a contradiction. So
M=V |V, V,; with int(V), int(V,) and int(Vv,) pairwise
disjoint.

By choice of a, and a,, ¢ interchanges the components
of da;. Therefore L|ai is conjugate to one of idxr, kxr or
ax7, the standard igvolutions of S'xI. Let Si be a 1-sphere

of a; that is the image of S'x0 under some éonjugation.
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Note that Si does not bound a disc D in V,, otherwise T
would be compressible.

Note also that if there is an annulus A [ V,; with
3A=S,,S, and (A=A then we arrive at property (I) and (IV)
as follows. Torus V, is separated by A. Since ¢ interchanges
the components of 38a,, ¢« 1interchanges the components of
A-V,. A is trivial in V, so it follows V, can be given a
trivial I-bundle structure over A. There is an annulus B [ V
with 8B=S, S, and (B=B. V is an I-bundle over B. Consider
T,=A B. It follows V_ V, 1is an 1I-bundle over T; with
a(VLJV,)=T2 a torus. Moreover T, does not separate T so T,
is 1-sided. If T, is a torus we arrive at (IV). If T, is a
Klein bottle, Lemma 6.1 gives (I).

Since V is a standard neighborhood, Fixpna,=@ if and
only if Fixpa,=@. Therefore :|a, and (|a, are conjugate.

Case 4.1) t|la, 1is conjugate to idxr. Then ¢|V, has a
2-dimensional fixed set that meets 8V, in two fixed
1-spheres. By Section 4 it follows that S, bounds a disc or
Sy S, bound an annulus A fixed by |V,. By the above
comments, we arrive at (I) or (1IV).

Case 4.2) t¢]a, 1is conjugate to axr. Then LIVQ is
orientation reversing. t|3V, is conjugate to axkx on S'xS' by
a conjugation taking S, to S‘x(—1)i. By Section 4 |V, is
conjugate to axk or axk by a conjugation extending the one

given on the boundaries. In the first case S, bounds a disc
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and in the second case S, ;S, bound an annulus with (A=A,
Again by the above comments we arrive at (I) or (IV).

Case 4.3) ]a, is conjugate to kxr. Then ¢|V, and |V
are orientation preserving. Now LV, is orientation
reversing if and only if T 1is a torus. To see this let
Sy=a; B8, and without loss say S;  T. Orient S,. S; and S,
bound two annuli A; and A, of 9V, with (A,;=A,. Consider the
ways of inducing an orientation on (S,. The orientation
induced by A, and the orientation induced by a, are the same
if and only if T is a torus. Since (}a, 1is orientation
reversing the orientation induced by a, and the orientation
induced by ¢ are opposite. So ¢ and A,; 1induce opposite
orientations on (¢S, 1if and only if T is a torus. Since
tA,=A, the claim follows.

If T 1is a torus then |V, is orientation reversing so
¢|dV, is conjugate to the involution axk on S'xS' by a
conjugation taking S,; to ixS'. As in case 4.2) we arrive at
(1) or (1V).

If T 1is a Klein bottle then we arrive at (III). ¢|aV,

is fixed point free so |V, is conjugate to jS or while

jO
t|V, is conjugate to jZC‘

QED

61



IV. INVOLUTIONS ON ORIENTABLE I-BUNDLES OVER TORI AND KLEIN

BOTTLES

§7. Involutions on the Trivial I-Bundle QOver a Torus

As an application of the annulus theorem we classify

the involutions on various I-bundles.

Definition 7.1

Let W=S'xS'x1 be the trivial I-bundle over the torus
T=S'xS'.
Define the following involutions on W (see Figure 10):
kT=idxidxr having fixed set the torus S'xS'x0

k,,=idxkxid having fixed set two annuli S'x*1xI

2A
k25=idxxkr having fixed set two 1—spherés S'xx1x0

kA=(p.(idxx))xid having fixed set the annulus S'x1xI
ks=(p=(idxx))xr having fixed set the 1-sphere S'x1x0
k4c=nxxxid having fixed set four 1-cells t1xrt1xI

k4p=xxxxr having fixed set four points #1x+1x0

kOF=ax1dx1d

kNI=ax1dx7

kNF=axxx1d

kOI=axer |
Here p.(idxk)(z,w)=(zw,w). The last four involutions are
fixed point free. The subscript O means the involution is

orientation preserving, N means it is orientation reversing,

F means it keeps the boundary components fixed (as sets),

62



2A

28

63

Figure 10.
Fixed point sets for the standard involutions,
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and I means it interchanges the two boundary components. The
orientation type of the other involutions is determined by
the dimensions of their fixed point sets. These eleven
involutions are not conjugate, because fixed point sets,
orientability type and F/I. properties are conjugacy class
invariants.

ky and kg are conjugate to the following. On S'xIxXI

define the identification d=ax1|aIxid. Then W = S'xIxI/4.

Let kA'=(idX1xid)/d with fix set (S'x0x1)/4d and
ks'=(idxrxr)/d with fix set (s'x0x0) /4. The other
involutions can be given similar alternate conjugate

representations using d=ax7t|xid or d=idxr|xid.

Lemma 7.2
Let A be an essential annulus in Tx[-1,1]}. Then

(Tx[-1,1],a) = ($'xS'x[-1,1],S'x1x[-1,11]).

Proof: By an isomorphism take one of the boundary components
of A as S'xix[-1,1].

First show A meets both boundary components of
Tx[-1,1]. If not then let A' be the annulus S'xJIx[-1,1]
where J is an interval chosen sufficiently close to 1eS' and
small enough so that A' 3A=@ and A' is in the éomponent of
Tx{-1,1] - A that meets Tx-1. Then, in the solid torus

T™x[-1,1]/(z,w,-1)~(2z,w',-1), the disc 1xS'x[-1,1]/~ 1is a
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nonseparating 2-cell meeting A' in one nonseparating 1-cell
of C. By Lemma 5.5 there is a solid torus V that trivializes
A and does not meet A'. Necessarily V does not meet Tx-1 so
A is also trivial in Tx[-1,1). This is a contradiction.

Next adjust by an isomorphism so that A and 1xS'x[-1,1]
meet in a single proper 1-cell. Then the isomorphism can be
constructed.

QED

Theorem 7.3

Let ¢ and ' be involutions on W=S'xS'xI with
isomorphic fixed point sets. If ¢ and (' are fixed point
free ° assume, in addition, that both have the same
orientation type and that ¢ interchanges boundary components
of 9w if and only if (' interchanges boundary components of
ow.

Then ¢ and (' are conjugate. An involution on W is

conjugate to one of the eleven involutions listed above.

Proof: Let (¢ be an involution on W=S'xS'xI. We show it is
conjugate to a standard involufion. By the Annulus Theorem
5.9 there is an essential annulus A with either (AA=@ or
tA=A and A and Fix transversal. In the latter case, by Lemma
3.5 assume the collar of A is not interchanged. By the

previous lemma take A of form S'xix[-1,1]. With further
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adjustment take tA=S'x-1x{-1,1] if tA#A, Let
W,=S'x{x+y-i:y20}x[-1,1] and W.=S'x{x+y-i:y<0}x[-1,1].
There are three cases:
Case 1) (A=A, A and Fix are transversal and the collar of
A is not interchanged. |
Case 2) (AR A=@ and (W,=W,.

Case 3) (tAA=@ and (W,=W_.

We show that ¢ is conjugate to:

in case 1) kOF' kNI’ kT' kZA’ kzs, kA or ks

in case 2) kNF' kOI’ k2A' kZS’ kA, ks, k4C or k

oF’ Kn1r Knp O kor-

Several of the standard involutions are listed in more

4P°
in case 3) k

than one case. Each standard involution (or at least a
conjugate of one) can in fact arise in the case it has been
listed under. To see this it suffices to display an annulus
A' in W, not necessarily of form S'x1xI, with properties
analogous to those of A. Consider A' as follows: in case 3)
take 1xS'xI; in case 2) take S'xixI; in case 1) take S'xixI
for kOF' kNI’ kT, take 1xS'xI for Kk
{(z,z2,t):2,t} for kA' k

oA’ kZS and take

S.

Call two involutions on W of same type if they have
isomorphic fixed sets and, in addition, when they are fixed
point free, if they have the same orientation type and

simultaneously interchange or do not interchange boundary
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components. It suffices to show, first, that ¢ has the same

type as a standard involution listed under a corresponding.

case, and second, 1if ¢ and (' have the same type and fall

into the same case 1) - 3) then they are conjugate.

Constant wuse is made of Section 4. Reserve j to denote
standard involutions on the solid torus. All constructions
done for ¢ are to be performed for (', even 1if not
explicitly stated.

Case 1) (A=A, A and Fix are transversal and the collar
of A is not interchanged.

Then w=s'xIx[-1,11/48 where d=idx(r|03l)xid. The
involution ¢ induces an involution‘ A on the solid torus
v=8'xIx[-1,1] with the property A.d=d.\ when restricted to
S'xaIx[-1,1]. Fix(\) is proper since Fix is transversal to
A, Let A also deriote the copy S'xIx1 in V. Since the collar
is not interchanged A(A)=A. See Remark 3.6. By adjusting
in a collar of A we may assume t|A and A|A are one of the
five standard involutions on an annulus (Lemma 3.2).

Let S be a fixed component of 3A. [S]eH,(V)=Z is a
generator. Write V=D2xS', Let M=S'x! and L=1xS'. Then [M]
and [L] generate H,(3V)=26Z and with a proper choice of
orientations [S];[L]+a[M] where ae2.

A is not conjugate to js; jM, jDP or jZP: If N\ were
conjugate to jS then, since jS is orientation preserving and

dFix(j's)=@, A|A=axid. Therefore S is kept setwise fixed by
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A. So [S/A] represents twice the generator of H,(V/)\)=Z.
However [Fix(A)] also represents a generator of H,(V) and
[Fix(A)/t] is a generator of H,(V/A). If A were conjugate to
jy  then 1, [S1 = o [L)+a, IM] = [L}+[M]l-alM] = =[S]
contradicting (A=A, If XA were conjugate to jDP then ¢, [S] =
-[L)-[M)+a[Mm])] # 2[S] contradicting (A=A. If X were conjugate
to j2p then since j2P is orientation reversing and aFix(jzp)
= @, X|A=axr. Therefore [S]=¢,[S]. This implies [L]+a[M] =
-[L}+al[M], a contradiction.

Hence A 1s conjugate to jA' Let B

Jopr J2¢r o °F Iy

be a component of V-int(A ;d(a)) that meets S. We

investigate the five possibilities for A|A. Since we will
see these give rise to involutions of differept types,
select a conjugation h:A——>A' between A|A and A'|A' and
choose S'=h(S). This conjugation extends to a conjugation
h:a ,d(A)——>A" | d"(A").

Case 1.1) X|A=kx7. Let Fix(X|A)={x,y}. Necessarily A is
conjugate to j2C‘ I1f x and d(x) are in the same component of
Fix()\) then Fix is two 1-spheres. Otherwise Fix is one
Now x' and 4'(x"')

t-sphere. So ¢ has the type of k. or k

S 28°
are in the same component of Fix(A') iff x and d(x) are in
the same component of Fix(A). The conjugation extends over

Fix so extend it to a conjugation h:V——>V' between A and

A'. A conjugation h:W—-—>W' between ¢ and (' is induced.
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Case 1.2) A|A=kxid. Proceed as in case 1.1) except now
Fix(X|A) is two 2-cells, so Fix is either two or one annuli.

Thus ¢ has type of k2A or k Now ¢B=B., h extends over B

Al
since Fix separates B into two components. Extend similarly
over the annulus 3V-(B A A).

Case 1.3) A|A=idxr. Then A is conjugate to j, so Fix is
a torus and ¢ has the type of k.. Proceed as in 1.1).

Case 1.4) A|A=ax7r. It follows ABB=@. So A |is
conjugate to jy and ¢ is of type ky,;. Proceed as in 1.1).

Case 1.5) A|A=axid. Then X is conjugate to Joc O Jg-

j,c is not possible since [S] = A,[S] = ([L]+a[M]) =

Jocx
-[L]-a[M] = -[S]. So A is conjugate to jo and ¢ is of type

kop+ Let B,;=B and B,=9V - (A, d(A)B). Let J be a
nonseparating '1-ce11 of A with JAJ=@ and let I. be any
path in B, from 3aJ to d(aJd). Bi/; is an annulus so by
lifting an embedded path that is path homotopic to I1,/¢ we
may also assume that Iir1c1i=¢. By making proper choices, we
arrange that I,,I,,,J,,d(J) bounds a 2-cell in V. A similar
property holds for A' for J'=h(J). Use I, and I."' to extend
h to a conjugation 3V——>23V' and complete the argument as
before.

Case 2) (AA=g and (W,=W,. Let S be a fixed component
of 8A. Let B be a component of W, 9W that meets §S. Let
A=(|W,. There are two possibilities:

2a) AB=B
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2b) )\B,-,S=¢.
In 2a) ¢ interchanges boundary components of ©08W, while in
2b) it does not. W, is a solid torus, so A is conjugate to
one of the standard involution of the solid torus.
This splits the present case into four subcases. In
fact
in case 2a) if ¢ is orientation preserving
then X\ is conjugate to j2C'
if ¢ is orientation reversing
then XA is conjugate to jA or jN.
in case 2b) if ¢ is orientation preserving
| then A is conjugate to jS or jO'
if ¢« is orientation reversing '
then A is conjugate to jzp‘
To show this note that in H,(W,)=2, [S] is a generator.

Since S [ 9W,-Fix, X cannot be conjugate to j2D’ or

jM jDP'
In case 2a) A, [S}=-u(A)[S], while in case 2b) A, [S]=u(N)[S],
where u(A) is +1 if A is orientation preserving and -1 if A
is orientation reversing. If A is conjugate to j2c or j2P
then A[S]=-[S]. 1In all other cases Alsl=[s]. This
establishes the claim.

N.=¢|W. must satisfy the (similar) case 2a) - 2b).
Combining X and A. in all the different possible ways gives

involutions of types as listed previously. For example,

combining a jA with a jN=gives an involution of type kA'
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Let (' be of same type as t. It remains to show they
are conjugate. Find an isomorphism h:A——>A' and extend by
equivariance to h:A  tA—>A"' | 'A'. It suffices to show
that h extends to W, when A=(|W+ and A'=:'|W, are conjugate.
Take B and B' as above.

Case 2.1) A 1is conjugate to jA' Fix—B i1s a 1-sphere
and the components of B-Fix are interchanged. Extend h over
one of these components and then extend over all of B by
equivariance. Similarly for the other annulus of W, 0W. By
the conjugation extendable property of jA this conjugation
extends to all of w,.

Case 2.2) A 1is conjugate to jN. Then B/t is a Mo&bius
band. The isomorphism h extends to B/:. Lift to B and
proceed as in 2.1,

Case 2.3) A is conjugate to j2C' B/t is a 2-cell with

FixB/¢ being two points. There is an isomorphism which

extends the given induced one on 3B/t and takes the two

points of FixQ(B/t to Fix'B'/:' in either of fhe two
possible ways. This isomorphism 1lifts and with correct
choices h extends as in 2.1,

Case 2.4) X is conjugate to jZP‘ Extend h in any way to
B and then extend by equivariance to aW,.

Case 2.5) N is conjugate to jo or js. Then B AB=@. Let
J be a proper 1-cell of A and let J'=h(J). Select a proper

1-cell I of B with 9I=3(J ;M)A and consider
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C=I A ,J4NJ. C cannot be used to extend h since even if C
boundsva disc in W,, C' may not bound a disc in W',. As
before let W, = D?xS', M=S'x1 and L=1xS'. Then [M] and [L]
generate H,(3W,)=26Z and with corfect choices [S]=[L}+al[M]
as classes in H,(9W,), for some aeZ. By changing I assume
[Cl=ulL]+b[M] where u is 0 or 1 and beZ. Achieve this by
altering the path class of I by concatenating with S§ and by
using the fact that A, [S]=[S]. Now W,/A 1is a torus. Let
p:H, (oW, )——>H,;(3W,/\) be the obvious homomorphism. Let [M,]
and [L,] be generators for H,(3dW,/\) defined as for OoW,.
Without loss for jo,

plm)l={M,] and plL])=2[L,]
and for jS’ |

plm)}=2[M;] and plL])=[L,].

For jS' plCl=ulL,]+2b[M,]. Since C/\ is double covered
by C it follows u is even. So u=0. Let c,=C.

For j,, suppose u is 0. Then p[Cl=b[M;] so b is even
since again C/\ is double covered by C. Then
[(1,,3)/A]=(b/2)[M;] and it follows (I ;J)/N 1lifts to a
1-sphere. This is a contradiction since 3(I,;J)#@. So u=1.
Then let I, be a proper 1-cell in B with I;1=0381,=31 such
that C,=I, NI ,JANJ has class [C,]=d[M] for some deZ.

In any event we obtain a curve C,Iwith [C,]=0€eH,(W,).
Since js and jO determine different u it‘follows that for '

we can define C,' in the same way as C; (i.e.) using I,' if
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C, uses I,. Extend h over I (and I, for jo case). This h
then extends to a conjugation by construction.

Case 3) tAA=g and (W,=W.. Then ¢ is fixed point free.
Suppose ' is of same type. Let h:A——>A' be any isomorphism
and extend by equivariance to a conjugation
h:A jtA—>A' ,«'A'. Fix a component S of 5A and let
S'=h(S). Let B be the component of W+ 3W that meets S. B is
an annulus. Similarly define B'. Since ¢ and (' have the
same interchange type (F/I property) we have h(9dB-S)=3B'-S"',
Since they have the same orientation type h|3B extends to
h:B—>B'. The isomorphism determined on the annulus
A B, tA necessarily extends to an isomorphism of the solid
tori W,—>W,'. Extend to W=W, ,W. by equivariance.

QED

Corollary 7.4

Let W and W' be trivial 1I-bundles over a torus.
Involutions conjugate to kT are conjugation extendable. If
on W is conjugate to kA or k2A and ' on W' is conjugate to
t then a conjugation h:3dW——>03W' is conjugation extendable
if it satisfieé the following condition: Let Fix, be a
component of Fix=Fix(:) and let Fix,x[-1,1] be a bicollar of
Fix,=Fixx0 such that 98Fix;x[-1,1] bicollars 9Fix,. Similarly

for Fix,', where Fix,' 1is a component of Fix'=Fix(.')

meeting h(dFix,). Then require that h extends to an

73



isomorphism
h:oW Fix,x[-1,1]—>3W' | Fix,"'x[-1,1].

There are conjugations of 3W that are not extendable!

Proof:

For kT’ the fixed set separates.‘ Let ¢ on W be
conjugate to kT. Let W, be the closure of one of the
components., Then W, 1is isomorphic to Tx[0,1] by an
isomorphism taking ©8W,-Fix to Tx0 and Fix to Tx1 where
T=S'xS'. Clearly the isomorphism h:Tx0——>T'x0 extends to an
isomorphism on W, taking Tx1 to T'xi. Extend by
eguivariance.

For k,, let ., "¢' and h be as in statement of
corollary. It follows ‘h extends to a conjugation
h:oW Fix—>03W' | Fix'. Cutting W open along Fix gives a
solid torus V having two copies of Fix in its boundary. The
involution ¢ on W is induced by an involution A on V which
interchanges these copies of Fix. Similarly for W'. By the
condition on the bicollar, . h|(3W ,Fix) is induced from a
conjugation h,:3V—>8V', Now A is conjugate to jN so by the
conjugation extendable property for jN, h, extends over V
and hence induces a conjugation on W extending h.

For kZA' let ., t' and h be as in statement of

corollary. It follows h extends to a conjugation

h:ow Fix,—>9W  Fix,'. Since all components of Fix and



dW-Fix are annuli h extends to a conjugation
h:9W Fix—>3W Fix'. Let C and (C be the two 3-cells that
Fix decomposes W into. By the bicollar condition h(3C) is
contained in one of the two 3-cells that Fix' decomposes W'
into. Say h(aC)  aC'. Then extend h to an isomorphism
h:W ,C——>W' | C' by coning to a vertex and extend by
eguivariance to the desired conjugation.

QED

Corollary 7.5

If ¢ is an orientation preserving involution on
W=S'xS'xI then W/¢ 1is 1isomorphic to one of the following
spaces:

w/k2S = D2xS' a solid torus with Fix/k2S two uﬁknotted
1-spheres (x1/2)xS?,

w/kS = D?xS' a solid torus with Fix/kS one unknotted
1-sphere {(e”it/z,eZ”it):—1$ts1} representing twice a

generator of H,(D?xS'),

w/kOI an orientable twisted I-bundle over a Klein bottle,
: 2 . . ) — .
w/k4C = S82xI with le/k4C = {four points}xI.

Proof: ¢ is conjugate to a standard involution k. Use the

representations for the standard involutions. In all cases

~

except for kg, W/k = S'x{x+y-i:0<y}xI/(g ,g') where g is an

75



identification of S'k1xI and g' 1is an identification of
S'x-1x1I depending on k. For kg note that
S'x{x+y-i:0<y}x0/(g,,g9') 1is a Mobius band with boundary
Fix/ks. ,

QED

§8. Involutions on the Orientable I-Bundle Over a Klein

Bottle

Definition 8.1

Let W=S'xIxI/d be the orientable twisted I-bundle over

the Klein bottle S'x1x0/d, where d=xx(7|3I)x7r. More
explicitly, W=S's[-1,1]x[-1,1]1/(2,-1,t)~(Z,1,-t). z=£i is a
separating annulus, whereas 2z=1 is a nonseparating Mobius
band. See Figure 11, The I-fibers are zxsxI. An involution A
on S'xIxI with A|.d=d.A| where A| denotes A|(S'x3IxI)
induces an involution k=x/d on W. Fix=Fix(k) =
(Fix(\) L Fix(a '.a]))/4d.
Define the following involutions on W (see Figure 11):
ky=idxidxr/d having fixed set a Klein bottle S'xIx0/d
kK., =kxidxid/d having fixed set two Mobius bands

2M
+1xIxI/4
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kzs=xxidxr/d having fixed set two 1-spheres *1xIx0/d
A=(-x)xidxid/d having fixed set an annulus #ixIxI/d
ks=(—x)xidx1/d having fixed set a 1-sphere #ixIx0/4
kA2p=idxrxid/d having fixed set an annulus and
two points (S'x0xI ,+1x-1x0)/d
kszc=idX7x7/d having fixed set a 1-sphere and
two 1-cells (S'x0x0,,+1x-1xI)/d
k2C=(-x)xrxid/d having fixed set two 1-cells *ix0xI/d
k2P=(-K)xrxr/d having fixed set two points +ix0x0/d
o=axidxid/d fixed point free and
orientation preserving
kN=axidxr/d fixed point free and
- orientation reversing
These - eleven involutions are not conjugate because their
fixed point sets or orientability types are different.
Recall that the 1involutions with even dimensional fixed
point sets are orientation reversing and that the énes with
odd dimensional fixed sets are orientation preserving since

W is orientable,

Lemma 8.2

Let W=S'xIxI/d be the orientable I-bundle over a Klein
bottle. Then if A is an essential annulus there 1is an
ambient isotopy moving A so that A is of form S‘x-1xI/d‘if A

is nonseparating or of form +ixIxI/d if A is separating.
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Proof: Remove components of A (S'xix0)/d. For details see
[11].

QED

Theorem 8.3

Let ¢ and (' be involutions on the orientable I-bundle
over a Klein bottle, W=S'xIxI/d where déxx(rlaI)XT. Suppose
¢« and ' have 1isomorphic fixed sets and if ¢ and (' are
fixed point free assume, in addition, that they have the
same orientation type.

Then ¢ and (' are conjugate. An involution on W is

conjugate to one of the eleven involutions listed above.’

Proof: The proof is similar to the proof of Theorem 7.3. Let
¢t be an involution on W=S'xIxI/d. We show it is conjugate to
a standard involution., By the Annulus Theorem 5.9 there is
an essential annulus A with either (A A=@ or (A=A and A and
Fix transversal. In the latter case by Lemma 3.5, assume the
collar of A is not interchanged. By the previous lemma téke
A to be nonseparating of form S'x-1xI/d or separating of
form *ixIxI/d. In the case where A 1is nonseparating and
LA A=g make (tA=S'x0xI. Let W,=S"x{0,1]xI and

W.=S'x[-1,0])xI.
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There are five cases:
Case 1) (A=A, A is nonseparating, A and Fix are
transversal and the collar of A is not interchanged.
Case 2) (A A=¢g, A is nonseparating and (W,=W,.
Case 3) (AA=@, A is nonseparating and (W,=W._.
Case 4) (A=A, A is separating, A and Fix are transversal
and the collar of A is not interchanged.

Case 5) (AA=@ and A is separating.

We show that ¢ is conjugate to:

k' Komr Kagr Kpr kgr kg or Kk

kgocr kac OF kyp

k

in case 1) k k

in case 2) kAZP'

in case 4) ky, koy, Kogr Kpop s2cC

s kKoo kopr kg or ky

and that case 3) does not arise.

or k

in case 5) kA, k

Several of the standard involutions are listed in more
than one case. Each standard involution (or at least a
conjugate of one) can in fact arise in the case it has been
listed under. To see this it suffices to display an annulus
A' in W with broperties analogous to those of A. Consider A’
as follows: in <case 1) take S'x-1xI/d; in case 2) take
S'w(-1/2)x1/d; in case 4)wtake +ixIxI/d; 1in case 5) take
et/ 4 15174,

1t suffices to show, first, that ¢ has the same (fixed

set) type as a standard 1involution listed under a



corresponding case, and second, if ¢ and ¢' have the same
type and fall into the same case 1) - 5) then they are
conjugate.

Constant use is made of Section 4. Reserve j to denote
standard involutions on the solid torus. All constructions
done for «+ are to be performed for (', even 1if not
explicitly stated.

Case 1) Proceed as for Case 1) of Theorem 7.3. The
identification is now d=«kx(7|)xr 1instead of d=idx(7|)xid.
Thus two of the five possibilitieé for A|A give different
fixed sets. When A|A=kxid we have Fix(A) 1is two 2-cells.
Then Fix 1is either two Mobius bands or one annulus. When
A|A=idx7 we have Fix(A) is an annulus. Then Fix is a Klein
bottle.

Case 2) (A A=¢, A nonseparating and (W,=W,. Select the
component S=S'x-1x-1 of ©0dA. Let B, be the component of
W, oW that meets S. Let A=W, . There are two
possibilities:

2a) A,B,=B,

2b) A,B, B.=0@.
Similarly for B. and A.=¢|W.. Suppose A, satisfies case 2a).
Then \,(S)=S'x0x-1. Since (A.|A).d=X,|A -evaluating at S
gives A.(S'x1x1)=S'x0x-1. Therefore \. satisfies case 2b).
Similarly if A, satisfies case 2b) then A. satisfies case

2a). The conjugacy class of A 1is also restricted by the
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orientation type of .
Up to symmetry there are four cases:

Case 2.1) A, is conjugate to j2C and

A. is conjugate to js.
Case 2.2) A, is conjugate to j2C and
A. is conjugate to jo.
Case 2.3) A, is conjugate to j, and
A. 1is conjugate to jzp'
Case 2.4) A\, is conjugate to jN and
N .

is conjugate to jzp'
These give rise to involutions with fixed sets as élaimed
for this case. The case is completed as case 2) in Theorem
7.3.

Cage 3) (AR A=g, .A nonseparating and W,=W._.. Take
S=S'xIx0 with some choice of orientation. Then S is a
generator of H,(W,) and H,(W.). Now (|(W.qS)=d.¢[(W,S)
but d,[S)=-[S]. This is a contradiction so this case cannot
arise.

Case 5) (A A=¢ and A separates. It follows that (A
also separates and that (A is contained in one of the two
components that A decomposes W into. By a suitable

. . tiw
isomorphism, we may assume A=e /4

+i3n/4

xIxI/d and
tA=e xIxI/d. A and (A decompose W into three solid tori
components U,, U,, U, with U, qU,=@, UyU,=A, Uy U,=¢A and

tU,=U, and tUy=U,. Moreover, if S is a component of 3A then
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[S]eH,(Uy) is a generator and [S]eH,(U,) is twice a
generator. A=t|U, 1is an involution on a solid torus that
interchanges the disjoint annuli A and (A and both annuli
have Dboundaries representing a generator of H,(U,). This is
the same situation as for A in case 2) of Theorem 7.3. That
argument showed A is conjugate to j2C' Ipo I jS' jo or
jzp' Since ¢ has the same fixed set as (|U, we obtain fixed
sets as listed above. Suppose (' also falls into this case.
Then select an isomorphism h:A—>A' which we extend by
equivariance to a conjugation h:A, tA—>A" ;(A'. The

arguments for case 2) in Theorem 7.3 show h extends to a

conjugation h:U, >Up'. The following claim shows h|A
exteﬁds to an isomorphism h:U,—>U,’'. Extend to  U2 by
equivariance obtaining a conjugation h:W——-—>W' between ¢ and
¢' and concluding this case.

Claim: Let U be a solid torus and A an annulus in 3U.
Suppose a component S of 8A represents twice the generator
of H,(U). Similarly for A' in U'. Then an isomorphism
h:A——>A' extends to an isomorphism h:U—->U".

To prove this, choose 1-spheres M and L in 3U so that
[M] and [L] generate H,(3U) and [M] is trivial in H,(U). The

choice can be made so that [S]=a[M]+2[L] where "a" is an odd

integer. Let I be a proper 1-cell in A meeting both boundary

components of A, Similarly for U', using I'=h(I). B=3V-A is

an annulus. There is a proper 1-cell J of B with 3J=38I. Let
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Sy=1,,J. Then [S,]=b[M]+c[L] where "c" is an odd integer
since S S, is a point. There is an isomorphism of 38U to
itself 1leaving A £fixed which <changes [S;] by a given
multiple of [S]. So we may choose J so that [S,]=d[M]+[L]
for some deZ. Choose J' similarly. Extend h|A to an
isomorphism h:A  ;J—>A | J'. Since int(B-J) is an open
2-cell, h can be extended by coning to an isomorphism
h:3U0—>3U'. Then (2d-a)h,[M] = h,(2[S,]-[s]) = 2[s,']-[s"']
= (2d'-a')[M']. Since a and a' are odd and [M] and [M'] are
generators we get h,[M}=+[M']. Hence h extends to h:U——>U".

Case 4) (A=A, A is separating, A and Fix are transversal
and the collar of A is not interchanged.

Let W,={z:z=x+y+i,x20}xIxI/d4
and W.={z:z=x+y-i,x<0}xIxI/4.

Then (W,=W, and W, and W. are solid tori. Let S be a
component of B8A. A,=¢|W, is cohjugate to a standard
involution j of a torus D?xS'. Let M= S'x1 and L=1xS'. Then
on choosing correct orientations [s)=al[M]+2[L] €
H,(2(D?xS"')) where a 1is odd. Since (A=A it follows
N.x[S]=ul[s] where u=t1 and u depends only on |A. Checking
these conditions for the standard involutions on a solid
torus gives:

u=1 and A, is conjugate to jo, js or jM.

u=-1 and A, is conjugate to j2C or ij.

Similarly for A.=¢|W.. The collar is not interchanged so
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and (|A have the same orientability type. We obtain four
cases:
Case 4.1) A\, and A. are conjugate to jy and
t]|A is conjugate to idxr or a3;.
Case 4.2) A, and A. are conjugate to jDP and
t|A is conjugate to «kxid.
Case 4.3) A, and A. are conjugate to jg or jo and
t|A is conjugate to axid. |
Case 4.4) A, and A. are conjugate to j2C and
t]A is conjugate to kxr7.

For caée 4.1) we will show the isomorphism class of the
fixed set determines ¢|A. We will also show the different
cases 4.1) - 4.4) have nonisomorphic fixed sets. Theréfore
‘given ' with fixed set isomorphic to that of ¢, there is a
conjugation h:A——>A"', We show h extends to a conjugation
h:w,——->w;'. Similarly h extends over W. and the proof will
be complete. Let B=dW,-A. B is an annulus.

In case 4.1) «|A is conjugate to idxr or axr. In the
first case FixA=S' so Fix is a Klein bottle while in the
second case Fix A= so Fix 1is two Mobius bands. In the
first case B/t is a Mdbius band. It follows h:A—->A"
extends to a conjugation h:dW,——>08W,'. In the second case
B/t is an annulus with 3(B/¢)=(3A/¢) (3FixW,)/¢. Extend
h/. and 1lift to a conjugation h:dW,——>08W,'. In both cases

the conjugation extendable property of shows this

In
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conjugation extends to h:W, >W,'.

In case 4;2) let Fix, denote the fixed 2~-disc component
of A,. Let Fix,x[-1,1] be a bicollar of Fix,. Since a
component of 9A has intersection number 2 with Fix, it
follows Fix,x1 meets both components of A-Fix. Similarly for
Fix x1. Hence Fix, | Fix_  is bicollared so it must be an
annulus. Thus the fixed set of  is an annulus and two
points. Extend the conjugation to A ,d8Fix,—>A" ;0Fix,"'.
Since 3w, - (dFix, ,A) 1is two open 2-cells that are
interchanged under ¢ we can extend to a conjugation
dW,—>3W,' and so by the conjugation extendable property of
jDP to W,.

In case 4.3) let S be a fixed component of A. W,/ is a
solid torus. Let p:H,(W,)—>H,(W,/¢) be the obvious
homomorphism. [S]=a[M]+2[L] where a is an odd integer. First
we show jo is not possible. Compare with case 2.5) of
Theorem f.3. plSl=alM,;]+4[L,]. However, S double covers S/«
so it follows a is even, a contradiction.

.So only jS occurs and Fix 1is two 1-spheres. Then
p(s)=2alMm,]}+2[L,] and [S/¢)=alM,]+[L,]. Let I be a proper
t-cell in A that meets both boundary components of A such
that I ¢I=¢g. Similarly for 1I'=h(I). There 1is a proper
1-cell Jy in W,/¢ with 8J,=8(I/¢) and [J,I]=%[M,]. Let
So=J ,tJ I, I where J is a 1lift of J, by p '. Then

[Sol=x[M]. Similarly for AN Extend  h:A—>A' to
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h:A | J—>A 0" and ‘then by equivariance to
h:A J ¢ J—>A' | J' ,¢'3". Now aW,-(A ,J ,;¢J) consists of
two 2-cells that are interchanged under (. So h extends to
h:3W——>0W'. The condition on [S,] and the conjugation
extendable property of jS show h extends to a conjugation on
W.

In case 4.4) X\, has fixed set Fix,, ,Fix,, where Fix,,
and Fix,, are proper 1-cells of W,. Arguments similar to
those given already show that Fixi,rjA cannot be exactly one
point, i=1,2. Say then that oFix,, p A. Similarly for A..
Then the fixed set of ¢ is two 1-cells Fix,, , Fix,. ana one

1-sphere Fix,,  Fix,. . - (0W,-A)/t is a 2-cell and h/¢ is
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given on the boundary. Clearly h/t¢ can be extended over 'the .

2-cell. On lifting obtain a conjugation h:9wW,—>03W,'. Since

FixA are two points in the same component of FixW, and.

since also h(FixA)=Fix' qA' are in the same component of

Fix' qW,' the conjugation extendable property of j2c gives a

conjugation h:W,—>W,"'.
QED
Corollary 8.4
On the orientable 1I-bundle over a Klein bottle

involutions with 2-dimensional fixed sets are conjugation

extendable.



Proof: For kAZP the conjugation extends over the fixed set.
Then cut open on the fixed set and use the conjugation
extendable property of the solid torus involution j2P' The
other cases are similar to those for the trivial 1I-bundle

over a torus.

QED

Corollary 8.5

1f ¢+ is an orientation preserving involution on an

orientable twisted I-bundle W=S'xIxI/d over a Klein bottle
then W/t is isomorphic to one of the following spaces:

w/kzs = D%xS' a solid torus with Fix/k25 two unknotted
1-spheres 11/2xs‘,

w/kS = D?xS' a solid torus with Fix/kS one unknotted
1-sphere {(e”it/2,e2ﬂit):-1sts1} representing twice a
generator of H,(D?xS'),

W/k = D?xI a 3-cell with Fix/k

s2C s2C
((3/4)(z/|z]|))x0 two 1-cells and one linked t-sphere,

Wkye = D?x1/(a|3D?)xr an orientable 1I-bundle over a

projective plane with Fix/k2C=(i1/2)xI two 1-cell fibers,
Proof: ¢ 1is conjugate to a standard involution k. Use the
representations for the standard involutions. W/k arises

from the following subspaces of W by identifications on
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their boundaries: {x+y-i:0<y}xIxI for kog and kg, S'xix[0,1]

for k and S'x[0,1]xI for k and k2C'

S’ s2C

QED
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V. INVOLUTIONS ON ORIENTABLE TORUS BUNDLES OVER A 1-SPHERE

AND ON UNIONS OF ORIENTABLE TWISTED I-BUNDLES OVER KLEIN

BOTTLES

§9. Involutions With 1-Dimensional Fixed Sets

Let g:T?——>T? be an isomorphism where T?=S'xS! and let

d:T?x-1—>T?x1 be defined by d(x,-1)=(g(x),1). Define the

g
T2x1 is a nonseparating incompressible 2-sided torus. Up to

torus bundle M_ by Mg=T2xI/d.‘Then Mg is irreducible and

isotopy g:T?—>T% is uniquely determined by
g;:H1(T2)———>H1(T2). Let S;=S'x1 and S,=1xS'. Then with
respect to the basis [S,], [S,] of H,(T?), g, is given by a
matrix M(g) of GL,(Z). The matrix with respect to a
different basis of H,(T2?) is a conjugate Q—1 M(g) Q of M(qg),
where QeGL,(2Z). Mg is orientable if and only if g is
orientation preserving. g is orientation preserving when and

only when the det(M(g))=t1.

80



of interest are the orientable flat space forms
M;,+++ ,M;. See [15]. These are determined by g as follows:

M;=S'xS'x%S': g=id. Then M(g)= [ 8 ?].

M,: g=«kxk (i.e.) g(x,y)=(X,y). Then M(g)= I:"é —(1)]'

My: g=w.(xxid).p (i.e.) g(x,y)=(y,%y). Then M(g)= [-? —1]'

My: geo. (kxid) (i.e.) glx,y)=(y,). Then M(g)= [} ¢l

-1 i
Each of these spaces has 1involutions with 1-dimensional

Ms: g=w.p.(kxid) (i.e.) g(x,y)=(y,Xy). Then M(g)= [0 1].

fixed sets.

Let W, and W, be two orientable twisted I-bundles over
a Klein bottle. An isomorphism d:3W,——>3W, determines a
union along the boundaries of two orientable twisted
I-bundles over a Klein bottle Md=(w1LJW2)/d' My is double
covered by an orientable torus bundle over S'. Md is
irreducible. Let T2=9W,. The nonseparating annuli of W,
determine a canonical generator (1,0) of H,(T?)=26Z up to
sign. Separating (nontrivial) annuli or Mdbius bands of ﬁ1
determine a generator (0,1) up to sign. Note that the
involutions k2M and kA2P on W, are isomorphisms of W1'that

reverse the signs of these generators. As before, the

isomorphism d determines a matrix of GL,(2).
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An alternate description for these spaces is
M = T2x1/ (d_(x),=-1)~(x,-1), (4,(x),1)~(x,1)
where d. and d, are fixed point free orientation reversing
isomorphisms. Then T?x0 decomposes M into two orientable
twisted I-bundles over a Klein bottle,

Note that M, is a union of orientable twisted I-bundles
over a Klein bottle: S'x+1xI are two Klein bottles.

The orientable flat 3-dimensional space forms have been
classified (see Wolf [15]). Up to affine equivalence there
are only six such space forms M1;--?,M5 and M. Define M, by

Mg = S'x8'x1/ (x,y,-1)~(-x,-y,-1), (x,y,1)~(-X,-y,1)
Mg 1is a union of orientable twisted I-bundles over a Klein

bottle but is not a torus bundle since H,(M¢)=2,8Z, is

finite. Mg 1is also known as the Hantzsche-Wendt manifold

(see [4]).
We need two lemmas which describe the position of

incompressible tori in M. For details see [11].

Lemma S.1

Let M be an orientable torus bundle over S' and let T
be an incompressible torus in M,

If T is nonseparating then M = T2x{-1,1]1/d where
d:T?x-1—>T?x1 is an isomorphism.

If T is separating then T decomposes M into W; and W,,

two orientable twisted 1I-bundles over a Klein bottle.
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M=W<| qu and T=aW1=aW2=W1 ,—IWZ.

Lemma 9.2

Let M be the union of orientable twisted I-bundles over
a Klein bottle and let T be an incompressible torus in M.

If T is nonseparating then M 1is an orientable torus
bundle over S'.

If T is separating then T decomposés M into W, and W,,
two orientable twisted 1I-bundles over a Klein bottle.

M=W~1 qu and T=3W1=8W2=W1 r‘Wz.

Proof: Two fold cover M by a torus bundle M. Argue by cases
depending on whether p_1(T) is one or two tori. Note the
deck transformation of M is a fixed point free involution.
For details see [11].

QED

Lemma 8.3

Let M be an orientable torus bundle over S'. Suppose M
is also a union of orientable twisted I-bundles over a Klein
bottle. Then M has a basis as an orientable torus bundle
over S' so that its matrix is [—g _?] and a (canonical)
basis as a orientable twisﬁed I-bundle over a Klein bottle

so that its matrix is [ é ?}.
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Proof: M=T'xI/d for some identification d:T'x-1—>Txt. Let
p:T'xI—>M be the induced projection. M contains a Klein
bottle K. Isotope K so that p_1(K) consists of annuli Ai
meeting both components of 3(T'xI). Since K is a Klein
bottle one of the Ai must have boundary components
representing opposite elements vy and -y of H,(T'). Since M
is orientable it follows M has a matrix of the form [_é _?].

On the other hand, M is a union of orientable twisted
I-bundles W; and W, over a Klein bottle. W;W,=T. T'
determines a nonseparating annulus 1in each of W, and W,.
Hence by choosing appropriate generators we may assume the
matrix of M, as a union of orientable twisted I-bundles over
a Klein bo;tle,.is [ 8 ?]. ‘M has a two fold covering
q:M—>M by a orientable torus bundle over é', M=U,LJU2 such
that U, = T2x] double covers W.. The deck transformation
restricted to U is a fixed point free involution ki on U,
that interchanges boundary components of W.. Hence ki is
conjugate to kOI=aXKXT. Using this involution one sees that

c 1
The torus T' which determines nonseparating annuli of

the matrix for the torus bundle M is [ ! Zb].

W, and W, must lift to two tori and therefore a matrix for M

- [

Abelianizing the fundamental group of a torus bundle M,

is also

S4
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with matrix [ é f}, one sees that H,(MC)=Z®Z®(Z/cZ). Also

. 1 0 . 1 ¢ i -c
the matrix [ 0 _1] conjugates [ 0 1} to [ 0 1] and Mc and

M__ are isomorphic. .
It follows b=xa and so b=a for a suitable choice of

generators.

QED

Proposition 9.4

Let M be an orientable torus bundle over S' or a union
of orientable twisted I-bundles over a Klein bottle. Let ¢
be an involution on M and let T be a separating
incompressible torus with T (T=@. Then there is ;
nonseparating ‘incompressible torus with (T=T and Fix and T

transversal.

Proof: By Lemmas 9.1 and 9.2, M=W, ;W,' with W, W,'=T where
W, and W,' are orientable twisted I-bundles over a Klein
bottle. Without 1loss say (T 1is in W;'. Using the lemmas
again we see M=W, ,(T'x[-1,1]) W, with (for i=1,2)
Wom (T'x[=1,11) = aw, = T'x(-1)

(W,=W,, «(T'x[-1,1])=T"x[-1,1] and with W, orientable
twisted I-bundles over a Klein bottle.

Let A be a nonseparating proper annulus in W,., Write
3A=S, ,S,. There is an essential annulus A, in T'x[0,1] with

d0Ao=S,,,tS2. Then 3A,m (dA,=@. By the Partial Annulus



Theorem 5.6 there are disjoint essential annuli A, and A,
transversal to Fix with 8A, t3A, = 9A,0A, and with either
(A=A, (i=1,2) or (A,=A,.

Let T.=A (A A, A,. Essential annuli of T'x[-1,1]
must meet both boundary components so T, is connected. T, is
a torus. This follows since A is nonseparating in W, so A is
"twisted" relative to T'x[-1,1] as is (A.

tT,=Ty and T, 1is transversal to Fix. T, . is
nonseparating hence incompressible.

QED

Recall that up to conjugacy there are three orientation
preserving involutions j2C' jS and jO on a solid torus V,

five orientation preserving involutions k k

k k

28’7 s’ 4Cc’ OF
and kOI on a trivial 1I-bundle W over a torus and five
orientation preserving involutions k2s', ks', kszc', kzc‘
and ko' on an orientable twisted I-bundle over a Klein

bottle.

By applying the Torus Theorem 6.2 to M we obtain the

- following theorem.
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Theorem 9.5

Let M be an orientable torus bundle over S' or a union
of orientable twisted I-bundles over a Klein bottle. Let
be an involution with a 1-dimensional fixed set component.
Then one of the following holds:

1) There is a nonseparating (incompressible) torus T with
(T T=@. T and (T decompose M into two trivial I-bundles W,
and W, over a torus with (|W. conjugate to k,o, kg or kg, .

2) There is a nonseparating (incompressible) torus T with
(T=T and its collar is not interchanged. M = W/d where W is
a trivial I-bundle over a torus and d is an isomorphism
between the boundary components of W. ¢ is induced from an
involution on W that is conjugate to k4C’
3) There is a separating incompressible torus T with (T=T.

M 1is the wunion of orientable I-bundles W,' and W,' over a

Klein bottle with W,'W,;'=T. ¢|W,' and |W,' are both
conjugate to kS2C' or kZC' or are both conjugate to kzs',
ks or ko .

4) M satisfies case (III1) of Torus Theorem 6.2 and Fix()
is exactly one i-sphere. ¢|V, is conjugate to j2C and |V,

is conjugate to jo. M is M.

Proof: Apply the Torus Theorem 6.2. Assume for the moment
that case (III) does not occur. Then since M is orientable

there is a torus T satisfying case (I) or (II) of that
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theorem. By Proposition 9.4, if (T=T then T separates. 1If
tT=T and the collar is interchanged then we arrive at case
(1) by considering the boundary of a coliar of T. We show
that case (II) can be eliminated. Then to comblete the
proof, case (III) is handled.

Suppose case (II) occurs and suppose tS,=S5,. Since
Ay A., is a separating incompressible torus it follows by
Lemmas 9.1 and 9.2 that U.,,V, is an orientable twisted
I-bundle over a Klein bottle. (A, is a separating annulus so
S' bounds a proper Mébius‘band A of U ;. K=sA ;A is a Klein
bottle with (K=K. Then by Lemma 6.1 the boundary of a
regular neighborhood of K 1is an 1incompressible torus
invariant under ( giving case (I).

Suppose (¢S5,=S,. Since ¢ has a 1-dimensional fixed set
and FixS,=¢, assume ¢|V; is conjugate to jg- As above (A,
is a separating annulus in the orientable twisted I-bundle
over a Klein bottle U., ,V,. So S, represents twice a
generatof of H,(V,). Selecting appropriate generators [M]
and [L] of H,(3V,)=286Z where [M] is trivial in H,(V,), we
may assume [s,)=alMm]+2[L] for some integer a. Let
p:H,(dV,;)—>H,(8V,/t) be the obvious homomorphism. Then
plMml=2[M,] and p(L]l=[L,] for suitable generators [M,] and
{L,] of H,(dV,/¢). Then plS,)1=2alMm,]+2[L,] but this

contradicts that S,—>S,/¢ is an isomorphism.
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Now consider case (III). Let V;" be the closure of the.

component of M-(T ,(T) that contains V,. Let V,' be the
solid torus obtained from V," by replacing S by two copies
S, and S,. Then V,' T vVv,"/(S,~5,). Similarly for V,' and
Vz". Let W, be a regular neighborhood of T. W, 1is an
incompressible torus. By Lemmas 9.1 and 9.2, W,=M-W, is an
orientable twisted I-bundle over a Klein bottle. (T-int(wW,)
is a separating annulus. Let B(LT—w;)=C1LJC2. See Figure 12.
It follows C,, C,, Sy and S, represent twice a generator in
both H,(Vv,') and H,(V,'). Let ¢, be the involution on V,'
induced by ¢. Similarly for ¢,. From the Torus Theorem 6.2,
t; 1s conjugate to j2C and ¢, is conjugate to jS or jo. The
argument given abbve for case (I1) shows ¢, is not conjugate
to js since ¢, interchanges components of 3V,-(S4y,S;). Also
the 1-cell S,/¢, in V,'/¢, cannot meet both components of
Fix(¢,) because otherwise 1its 1lift S, would be a 1-sphere
representing an odd multiple of a generator of H,(V,"').

Hence S, meets only one component of Fix(¢,). Therefore

Figure 12.
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Fix(¢) is one 1-sphere.

Since C, is a boundary component of the nonseparating
annulus (TW, of W, and of the separating annulus (TW, of
W, we see that a (1,0)-generator of W, and a (0,1)-generator
of W, correspond.

Let C, be a 1-sphere in T meeting S transversally in
one point. Let A be the annulus of V,' determined by T.

Since (¢, is conjugate to and 0A represents twice . a

jO
generator of H,(V,'), there is a proper 2-cell D of V,' with
1, D D=¢g. Also arrange that D meets A 1in two proper
nonseparating 1-cells of A, one of which is C,, apd that D
meets (,A in two proper nonseparating\ i-cells. Then
t,(3D ¢t2A) and 3D A are four disjoint.nonseparating proper
1-cells of A. Now consider A as an annulus in V,'. Since ,
is conjugate to“j2C and (jZC)* on H;(V) is multiplication by
-1, it follows that ¢,¢,(3D~ ¢,A),,(3D ,A) bounds a disc in

Vz. But (ty:;)|¢T = id so 8D bounds a disc Dy in V,'. By

choice of C,, (D D;)pW, 1is two Mobius bands so its
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boundary is a (0,1)-generator of W,. On the other hand
(D,4Dy) W, 1is a nonseparating annulus of W, since it has
twc boundary components and does not separate V,'. This
gives Mg.

To show how M¢ arises in this manner we give the

following construction. See Figure 13. Let Vj'=D2xS‘ and

{(e2ni(t+v),e4ﬂit)

Aj= : teR, 0sv<i1/4}

=xxk. Let d be the identification

Let L1;jo=idxa and ‘2=
(e2w1(1-t)'e4ﬂi((3/4)—t))

. . J2c
(e2w1t,e4w1t)

~

on aAj. Let V."=Vj'/d. Define h:A, >A, to be induced from

]
the identity and define

hl(tzAz) = l1eholz|A2 = RX(—K)

(ie) h:av,' >9V,' is h(x) = x if xeA, and h(x) = (&kx-«k)(x)
otherwise. Then Mg = V,' ;V,' / h|;d and involution ¢, ¢,
has fixed set one 1-sphere. (In the previous construction

one can take D, ,D'={t=-1/81})

QED

Corollary 9.6

Let ¢+ be an involution on an orientable torus bundle
over S' or a union of orientable twisted I-bundles over a
Klein bottle with a 1-dimensional fixed set. Then the fixed

set is one, two, three or four 1-spheres.



Corollary 9.7

Let M an orientable torus bundle over S' or a union of
orientable twisted I-bundles over a Kleih bottle. Let ¢ be
.an involution on M with a 1-dimensional fixed set.

Then M/¢ is a lens space, P3, P®#$P3®, or the Dboundary
union of a solid torus with an orientable twisted I-bundle

over a Klein bottle.

Proof: Use.Corollary 7.5 and Corollary 8.5. Consider the

cases of Theorem 9.5.

In 1) when each of (|W, is conjugate to k,o or k M/

S S’

is a union along the boundaries of two solid tori. When one
of ¢|wi is conjugate to kOI then M/: is the boundary union
of a solid torus with an orientable twisted I-bundle- over a
Klein bottle.

In 2) w/k2C is S2xI. The identification of S%x-1 with
S2x1 gives the lens space S?xS'.

In 3) for kzs', ks' and ko' we get the same spaces as
in 1). For kgoe' and kye'y capping w/kszc' gives a 3-sphere
and capping w/kzc' gives P3,

In 4) V/i¢ is a 3-cell and VV,/t is two 2-cells. V,/.

is a 3-cell so V| V,/¢ is a solid torus. Since V, is also a

solid torus M/. is a lens space.

QED
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Note that torus bundles may also be unions of twisted
I-bundles over a Klein bottle. (See Lemma 9.3)

In the following let QeGL,(Z). Let EeGL,(Z) be +1in the

0 1 2 1
Note Z—>2,=2/2Z induces an exact sequence:

subgroup K of GL,(Z) generated by [ 1 2] and [ ! 0].

1——>K—>GL,(2)——>GL,(2,) >1

Theorem 9.8

Let M be an orientable torus bundle over S' or a union
of orientable twisted I-bundles over a Klein bottle. Then M
has an involution (¢ with fixed set exactly n 1-spheres (n>0)

if and only if one of a), b) or c) below holds.

a) M is a torus bundle with matrix conjugate to one of

the following for some Q or E:

'(1) Q_1 [ é _?j Q : 8 _?: n=2or 4
(2) Q—1[é_?jQ:8::: ~ n=1or3
(3) Qﬂ[é:l:QLé::: n o= 2
(4) EP where P = 8 1: n =4
(5) EP where P = [ é 1- n=1or 3

-
(6) EP where P 10 or [ ! 1] n=2
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b) M is a union of orientable twisted I-bundles over a
Klein bottle with matrix (with respect to some set of
canonical generators) one of the following for some Q or E:
In (7) - (9) the inverses of matrices are to be taken over
the field of rationals but the product matrix is required to

be integral.

_ - -1 _ -

(7) i 8 g_ Q i 8 g- n=2, 3o0r 4
(8) : g ?j-1 Q : 8 g: n=1or 2
(9) 527—1Q§° h=1 or 2
(10) EP where P = i 8 ?j or [ 8 :] n =2 or 4

(11) EP where P

it
r 1
—
—
1 ]
-
~
-—
N —
| WSS
-
| m—
- N
—_—
| W—
O
La}
| peaman |
- N
N W
| I—

n=1o0r3
_ 107 11 _
(12) EP where P = RERl or [ . 2] n =3
_ 1 0] 1 2 1 0 1
(13) EP where P = ] 0 1- ’ [ 0 1], [ 3 2] or [_1 _1]
n =2
c) M is Mg and n = 1
Remark 9.9
The proof shows how in each case (1) - (13) the

involution on M arises from involutions on orientable torus
bundles over S' or orientable twisted I-bundles over a Klein

bottle.



Proof: Apply Theorem 9.5.
Suppose case (1) of Theorem 9.5 occurs: There is a
nonseparating torus with (T T=¢.

Let W,; and W, be the two components of M determined by

T and (T. Let h,:W,—>T2x1I and h,:W, >T?xI be
conjugations between Llwi and the standard involutions '25,
ks or koI with hi(T)=T2x1. ‘Let d:T2x1——>T2x1 be the

identification induced by T. Then the involutions induce an
identification (,.d.t,:T2%x~-1—>T?x~1, Consider the effect
of these isomorphisms in H,(T?) = H,(s'xS') = Z6Z with
respect to basis [S'x1] and [1xS'] where orientations are
induced from S' [ C. Then M ¥ T2xI/q where the matrix of q
is M(d)"'M(¢;)M(d)M(¢,). The matrix of k,. and kg is
[ 8 _?] and of ks is [ 8 :1}. We obtain (1) - (3) above.
Suppose case (2) of Theorem 9.5 occurs: There 1is a
nonseparating torus with (T=T and the collar of T is not

interchanged.

Cut M open on T. Then M T TxI/4d' where d':Tx-1—>Tx]1

is an isomorphism. ¢ is induced from an involution A on TxI
that satisfies d'.(A|Tx-1)=(X\|Tx1).d'. Let h:TRI—>T?xI be
a conjugation between A and Kac (with h(Tx-1)=T2%-1). Define
d=h|,d'.(h|T2x-1)—1. Then M = T2xI/d and ¢ is conjugate to
the 1involution on T2xI/d induced from the involution

k4c=xxxxid on T?2?xI. The matrix of M is conjugate to the

matrix of d:T2=T2x-1—>T?x1=T2, Note d satisfies
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d.{kxk)=(kxx).d.

Now T?/kxx is a 2-sphere. The class of all isomorphisms
of T2/kxk, up to isotopy, that keep the four points #1xt1
fixed is generated by two Dehn twists: a twist on S'xi/kx«k
aﬁd a twist on ixS'/kxk, see [2]. A twist on S'xi/kxk lifts
to a twist on S'xi together with a twist on S'x-i in the
"same" direction. With respect to the basis [S'x1], [1xS']
of H,(T2) the lifted twist has matrix [ é ?] (or [ 8 -f]).
Hence if d keeps all four points fixed (and therefore Fix is
four 1-spheres) then the matrix of d is in the subgroup K of
GL,(2).

In general d induces a permutation on the four points
+1x+1, Label these points as 1=1x1, 2=-1x1, 3=1x-1 and
4=-1%x-1. The number of 1-sphere fixed components of ¢ is the

number of orbits of the permutation induced by d on
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{1,2,3,4}. Note that p,(z,w)=(zw,w) commutes with KEK,

0 1
in fact a Dehn twist. p,(z,w)=(-zw,w) has the same matrix

induces the permutation (34) and has matrix [ ! 1]. p: 1is

and induces the permutation (12). py(z,w)=(z,zw) commutes
with kxk, induces the permutation (24) and has matrix
[ : ?J. py(z,w)=(z,-2zw) has the same matrix andvinduces the
permutation (13). Also note that the follow;ng isomorphisms
commute with kxk and have matrix the identity: axid inducing
permutation (12)(34), 1idxa inducing (13)(24) and axa

inducing (14)(23).



There is a composition r of' these isomorphisms such
that d=d'.r and such that d' induces the identity
permutation: Use axid, idxa and axa to reduce the
possibilities to permutations (34), (24), (14), (12)(34),
(243), (234), (1423), (1234) and (1243). Then use the p's to

generate these permutations. So the matrix of d is of form
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EP where E is the matrix of d4' and hence is in K and P is of

form listed in (4) - (6).
Suppose case (3) of Theorem 9.5 occurs: There 1is a
separating torus with (T=T.

Then M is a union of two orientable twisted I-bundles

W, and W, over Klein bottles. Let d:9W,—>0W, be the .

identification. As above, by changing L|Wi by a conjugation
on W., we may assume that ¢,=¢|W, and (,=t|W, are standard
involutions. Then (,d=d.,. Select representatives of
H,(d9W,)=280Z in the canonical way: (1,0) arising from a
nonseparating annulus of W; and (0,1) from a separating

annulus.

Suppose (|dW, is fixed point free. T,=03W,/t¢, 1is a

torus. We can select a basis for T; such that p,:oW;,—>T,
: 107 . : : . .
has matrix M(p,)=_[ 0 2] if ¢, is conjugate to k,o' or kg

and matrix [ g ?] if ¢, is conjugate to ko'. Similarly for

T,. d:9W,——>3W, induces an isomorphism q:T,—>T, with
p,-d=g.p;. Then the matrix of 4 is (as a product in GL,(Q) )

the matrix M(pz)_lQM(p‘) where Q 1is the matrix of gq.



Conversely, up to 1isotopy a matrix QeGL,(Z) determines an
isomorphism q:T,—>T, and this isomorphism lifts if
M(p,) 'OM(p,) eGL,(2). This gives (7) - (9).

Suppose (|dW, is not fixed point free. Then (|dW, is
conjugate to kxk. ty and ¢, are conjugate to k2C'=(-K)XTXT/d
or to kszc'=idxrx1/d. For convenience use the representation

kxtxid/4d for kSZC' instead.

' 1, = PR ;
For both k2C and ks2C : §,=8'x%0x1 1s invariant, meets

both fixed 1-cells and represents (1,0)eH,(dW,), that is, is

a boundary component of a nonseparating annulus. For kzc':

S,=1x1xI,,1x-1xI is invariant, meets both fixed 1-cells and
represents (0,1). For kSZC': Sz=ix1xILJ—ik—1xI is invariant,

meets only one fixed 1-cell and represents (0,1). The curves
S, and S, give a way to assign labels 1, 2, 3 and 4 to the
four points of Fixr oW, (e.g. 1 to S;S,). The fixed sets
of k2C and ks2C match these labels in a different way. The
matching can be arranged to occur in the same way if a twist
on S, is performed in the kSZC' case. The matching and d
determine the number of components of Fix.

Proceed as in the case above where T was a
nonseparating torus with (T=T. In the above listing (12) and
(13) arise from combining a k,.' and a kg,.". (11) and (12)
arise from combining a kZC' and a k2C' or from combining a
kSZC and a kS2C .

QED
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Let M be an orientable torus bundle over S§' with
involution ¢. Call ¢ fiber preserving 1if there 1is a
fibration p:M—->S' such that L(p-1(x))=p_1(c(x)) for all
xeS' and if Fix=Fix(¢) is transversal to each fiber p—1(x).

Note the involution t¢(x,y,z)=(y,x,-z) on S'xS'kS' |is
nét fiber preserving, 1in this sense, with respect to

fibration obtained by projection to the last coordinate.

Corollary 9.10

Let M be an orientable torus bundle over S'. Then M has
a fiber preserving involution with fixed set exactly n
1-spheres (n>0) if and only if the matrix of M is conjugate

to one of (4), (5) or (6) of Theorem 9.8.

Proof: Let xeS' be such that the fiber T=p-1(x) meeﬁs the
fixed set. Then (T=T. Since T and Fix are transversal the
collar of T is not interchanged. So T satisfies case (2) of
Theorem 9.5. Now follow the proof of Theorem 9.8.

QED
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§10. Involutions With 2-Dimensional Fixed Sets

In the previous section the space forms M,, M, and Mg
were defined. Recall also Definition 3.1. Define the

following involutions on these spaces.

On M,:
»a2T=idxxxid/d having fixed set two tori S'x*ixI/d
aT=wxid/d having fixed set the nonseparating- torus
{(z,2)|zeC}x1/a
On M,:
ﬁ2K=idxxxid/d having fixed set two Klein bottles S'xt1xI/d
6K=wxid/d having fixed set the Klein bottle {(z,z)]|zeC}xI/d4
6T=idx(4x)xid/d having fixed set separating torus S'xtixI/d
6T4p=xxxxr/d having fixed set a torus and four points
(S'xS'x-1,+1x+1x0) /8
Oon Mg:
7K2P=(-x)xaxid/d having fixed set a Klein bottle and
‘ two points (S'xS'x1,,1x+1x-1)/d
Here d denotes the 1identification for the corresponding

space form M. .
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Lemma 10.1

Let M be an orientable torus bundle over S' or a union
of orientable twisted I-bundles over a Klein bottle. Let
be an involution with fixed set containing a Klein bottle.
Then there is a separating incompressible torus T with (T=T

and TFix=dg.

ﬁroof: By Lemma 6.1 the boundary of a regular neighborhood
of the Klein bottle K is an incompressible torus. Since K is
fixed under , arrange that the regular neighborhood is
invariant under ¢ and that is meets Fix only at K. Then let
T be the boundary of this regular neighborhood.

QED

Theorem 10.2

Let M be an orientable torus bundle over S' or a union
of orientable twisted I-bundles over a Klein bottle. Let
be an involution on M with a 2-dimensional fixed set
component. Then M is isomorphic to My, M, or Mg and ¢ |is

conjugate to one of the seven involutions defined above.

Proof: We apply the Torus Theorem 6.2.
Some economy could be acheived by showing that the
fixed set contains an incompressible torus or Klein bottle

F. When F is a torus, F could then be used to construct a



torus T with (T T=@. The present approach has the advantage
that it generalized to the case of orientation reversing
involutions. It also parallels the proof of Theorem 7.3.

M is orientable so case (IV) of the Torus Theorem 6.2
does not arise and 2-sided Klein bottles do not occur. Cases
(11) and (III) do not arise since ¢ 1is orientation
reversing. So there is an incompressible torus T with either
T tT=@ or (T=T and T and Fix transversal.

By Proposition 9.4 there are three cases:

Case 1) (T T=¢ and T does not separate.
Case 2) (T=T, T does not separate and the bicollar of T is
not interchanged.
Case 3) (T=T and T separates.
By the last lemma we may assume T does not meet any

Klein bottle components of Fix.

We show ( is conjugate to:

in case 1) Qpqpr Gqs OF 5T4P'

in case 2) a, if THFix is one 1-sphere,

T
Aypr @py OF BT otherwise.
in case 3) By, By, Bps Prgp OF Ygop-

Several of the standard involutions are listed in more
than one <case. Each standard involution can arise in the
case it 1is listed under. Namely consider =: S'xixI,

{(x,ix,t):x,t}, S'xS'x(1/2), S'xS'x0, S'xS'x0,



{(x,x,t):x,t}, S'®5'x0, S'x+ixI, {(x,zix,t);x,t}, =+ixS'xI,
S'x+ixl and S'xS'x0, respectively.

It suffices to show ¢« has the same fixed set as a
standard involution listed under the corresponding case, and
that if ¢ and ' have~isomorphic fixed sets and fall into
the same case 1)- 3) then they are conjugate.

We make use of Lemmas 9.1 and 9.2, Corollary 7.4 and
Corollary 8.4.

Case 1) (T T=¢ and T does not separate.

(T, T decomposes M into two components W, = T?xI with
dW.=T ,; «T. Since there is a fixed set, (W,=W.. The boundary
components of W, are interchanged so c[(wi) is conjugate to
k k or k

T’ “4P NI® |
t|(W,) 1is conjugate to kp. Fixed sets of the same type as

Since ¢ has a 2-dimensional fixed set assume

for the standard involutions Qypr @qe OF B are .obtained.

T4P
Given ' with isomorphic fixed set, let h:W,

>WZ' be a

conjugation between L] (W3) and (W), Then

(h|):3W,=3W, >0W,'=3dW,' 1is a conjugation which by the

conjugation extendable property for kT extends to a
conjugation h:W;,—>W,;'., Hence ¢ and (' are conjugate.

Case 2) (T=T, T does not separate and ¢ does not
interchange the collar.

Then M 1is 1isomorphic to W/d where W=T2xI and

d:T?x1—>T?x-1 is an isomorphism. ¢ 1is induced by an

involution A on W that does not interchange the components
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of ©OW. Since A has a two dimensional fixed component, A is
conjugate to k, or k2A;

Case 2.1) X is conjugate to k,. Then aFix(k)=S,LJSZ has
two components so T Fix has one component. Orient S,. Then
annulus Fix(\A) induces an orientation on S,. If 4,[S,1=-[S.]
then Fix is a Klein bottle meeting T. So 4,[S,]=[S,] and Fix
is a torus. Let ' be conjugate to ¢ and assume (' falls
into this case also. Construct W'/d' = M' as above.
Construct a conjugation T2x1——>(T2x1)' between A|(T?x1) and
N | (T2x1)'. Extend to a conjugation h:3W—>3W' by defining
h(T2x-1)=d'.h.(d"'). Since Fix is a torus in an orientable
manifold, h extends over a bicollar of Fix. Then the
conjugation extendable property of kA shows h extends to a
conjugation h:W—->W' between A and A'. h induces a
conjugation between ¢ and '

Case 2.2) X is conjugate to k,,. Then Fix(X) has two
annular components A; and A, and Fix meets T in two
1-spheres. Let Sij=T2x(-1)ir1Aj. Pick orientations so that
each represents the same element of H,(W). d:T?x1—>T%x-1
is orientation preserving and must take S,, to S;; or S,,.
There are four subcases:

1) d(S;,)=S,, and d,[S,,]=[S,,]. Then Fix is two tori.
2) d(S,,)=S,, and 4,[S;,]=-[S;;]. Then Fix is two Klein
bottles. These meet T so this case does not occur,

3) d(S11)=Szz and d*[S11]=[522]. Then Fix is a



nonseparating torus since d must interchange the components
of W-Fix.

4) 8(s,,)=S,, and 4,[S,,]1=-[S;.]. Then Fix is one
separating torus.

If ' is also given then it will fall into the same one
of these subcasés. So a conjugation can be constructed
between X and A' as in Case 2.1.

Case 3) (T=T, T separates. Then M=W,  ;W, with T=w;rjwz
where W. are orientable twisted I-bundles over a Klein
bottle. We have (W,=W; and LI(Wi) is orientation reversing.

So )\i=L|wi is conjugate to kK' k2 k k k or k

M" TA’ A2P’ 2P N°

Since (|3dW,=t|dW, it follows:

Case 3.1) Both X, and A, are conjugate to kg, kzé or ky

Case 3.2) Both A, and A, are conjugate to Komr Ka OF kKpope

In case 3.1) by symmetry assume A, is conjugate to kK'
Fix 1is two Klein bottles, a Klein bottle and two pointé, or
just one Klein bottle. If ' 1is also given construct a
conjugation by taking any conjugation between A, and A,;' and
extending to W, using the conjugation extendable property of
kK.

In case 3.2) the fixed set always intersects T. By
construction we avoided Klein bottles meeting T. Therefore
ki is not conjugate to k2M'

Next, it is possible that.k1 is conjugate to kA and A,

is conjugate to kAZP' Let FixHT = S, ,S,. Torus T induces

115



an orientation on S, once an orientation on S, is fixed. In
kA the annular fixed set induces the same orientation on S,
as T does. 1In kA2P the annular fixed set induces an
orientation on S, opposite to the one T induces. Therefore T

would be a Klein bottle.

Hence we have XA, and A, are conjugate to kA and the

fixed set is a torus or A, and X, are conjugate to kA2 and

P
the fixed set is a torus and four points. If (' is given it

is easy to construct a conjugation between ¢' and ¢ since kA
and kAzp have the conjugation extendable property.

QED

116



117

Bibliography

(1]

[2]

[3]

[4]

(5]

[6]

(7]

[9]

[10]

[11]

(12]

[13]

[14]

R. H. Bing, A4 homeomorphism between 1 he 3-sphefe and
the sum of two solid horned spheres, Ann. of Math. 56
(1952), 354-362.

M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math.
69 (1938), 135-206.

A. C. Gordon and R. A. Litherland, Incompressible
surfaces in branched coverings, preprint.

W. Hantzsche and H. Wendt, Dreidimensionale
eukl! idi sche Raumformen, Math, Ann. 110 (1935),
593-611.

J. Hempel, 3-manifolds, Ann. of Math. Studies 86,
Princeton Univ. Press, 1976

P. K. Kim and D. E. Sanderson, Orientation-reversing
PL involutions on orientable torus bundles over S',
Michigan Math. J., 29 (1982}, 101-110.

P. K., Kim and J. Tollefson, PL involutions of fibered
3-mani folds, Trans. Amer. Math. Soc. 232 (1977),
221-237.

K. Kwun and J. Tollefson, PL involutions of S'xS'xS‘',
Trans. Amer. Math. Soc. 203 (1975), 97-106

G. R. Livesay, Involuiions with two fixed points on
the three-sphere, Ann. of Math. 78 (1963), 582-593,

E. Luft, Equivariant surgery on incompressible annuli
and tori with respect to involutions, to appear.

E. Luft and D. Sjerve, Involutions with isolated fixed
points on orientable flat 3~dimensional space forms,
to appear in Trans. Amer. Math. Soc.

P. Orlik, Seifert manifolds, Lecture Notes in Math.
291, Springer Verlag, 1972.

C. Rourke and B. Sanderson, Introduction to
Piecewise-Linear Topology, Erg. der Math, u. ihrer
Grenz, 69, Springer Verlag, 1972,

J. Tollefson, Involutions of sufficiently large
3-mani folds, Topology 20 (1981), 323-352,



118

[15] J. Wolf, Spaces of constant curvature, McGraw-Hill,
1967.

[16] F. wWaldhausen, Uber Involutionen der 3-Sphiare,
Topology 8 (1969), 81-91.,



