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Abstract 

Def in i t ion: Let k be a n - a l g e b r a i c a l l y closed f i e l d . An algebraic  

monoid is a t r i p l e (E,m,l) such that E is an algebraic variety 

defined over k, m : ExE > E i s an associative morphism and 

1 € E is a two—sided unit for m. 

The object of this thesis is to expose several fundamental 

topics in the theory of algebraic monoids. My results may be 

divided into three types; general theory of i r r e d u c i b l e a f f i n e 

monoids, structure and c l a s s i f i c a t i o n of semi—simple rank one 

reductive monoids, and theory of general monoid v a r i e t i e s (not 

necessarily a f f i n e ) . 

I General Theory of Affine Monoids 

( 3.3.6 ) Existence of Affine Algebraic Monoids 

Let G be an irreducible a f f i n e algebraic group. Then the 

following are equivalent. 

(i) There exists an i r r e d u c i b l e algebraic monoid E such that 

G(E) = ( g £ E | g" 1 « E ] is isomorphic to G and E does not 

consist, e n t i r e l y of units. 

( i i ) There exists an irreducible algebraic monoid E such that 

G = G(E) and 0 e E (0 * 1 ) . 
( i i i ) X(G) = Hom(G,k*) is a n o n — t r i v i a l abelian group. 

(iv) rank R(G) > 0, where R(G) is the solvable r a d i c a l of G. 



( 4.2.6 ) Nilpotent Algebraic Monoids 

Let E be a nilpotent irreducible algebraic monoid. Then the 

following are equivalent. 

(i) For a l l x e E there exists an idempotent e e E and an 

element x* e E, such that xx* = e = x*x, ex = xe and ex* = x*e. 

( i i ) The morphism m : G(u)xE(s) > E, (u,s) —> us, is f i n i t e 

and dominant, where G(u) is the closed subgroup of unipotent 

elements and E(s) is the closed submonoid of semi—simple 

elements. 

In case E i s also a normal variety, m i s an isomorphism. 

( 4.4.14 ) Reductive and Regular Monoids 

(a) Let E be a reductive algebraic monoid. Then E i s regular, 

i . e . For . a l l x e E there exists g e G(E) such that gx = e is an 
idempotent. 
(b) Let E be an irreducible algebraic monoid with 0. Then the 

following are equivalent. 

(i) E i s regular. 

( i i ) E is reductive. 
( i i i ) E has no n o n — t r i v i a l nilpotent ideals. 

( 4.5.2 ) Connected Algebraic Monoids 

Let E be an algebraic monoid with 0. Then the following are 

equivalent. 

(i) E i s connected in the Zariski topology. 

( i i ) There exist idempotents 1, e ( l ) , e(2),..., .e(m) = 0 such 

that e (i) > e(i+l) for a l l i = 0,...,m-1 and e(i+l) e e(i)Ee(i)° 

(the irreducible component of 1) for a l l i . 

If , in case ( i i ) we require that each idempotent be 

minimal, then the number m i s uniquely determined and each 
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e ( i ) E e ( i ) is uniquely determined up to isomorphism. 

( 5.2.1 ) Structure of Prime Ideals 

Let E be irreducible and a f f i n e . A prime ideal P of E, is a 

non-empty subset of of E such that EPE is a subset of P and 

E - P i s m u l t i p l i c a t i v e l y closed. 

(i) Suppose P i s a prime ideal of E. Then there exists a 

morphism x : E > k such that P = x ~ 1 ( 0 ) . 

( i i ) Let T be a maximal torus of G(E), X i t s closure in E and W 

the Weyl group of T. Then there are canonical b i j e c t i o n s 

primes(E) <—> W-inv.primes(X) <—> W—inv.idempotents(X) 

II Reductive Monoids of Semi-simple Rank One 

(*) Let E be an i r r e d u c i b l e , reductive a f f i n e algebraic 

monoid with 0 such that dim ZG(E) = 1 and rkss G(E) = 1. The 

r e s t r i c t i o n on the center i s required to avoid the r e l a t i v e 

a r b i t r a r i n e s s of D—monoids. 

1. Geometric Structure 
( 7.2.3 ) The action GxGxE > E, (g,h,x) > gxh" 1 has 

three o r b i t s , G(E), ( E - G ) - { 0 } and { 0 }. 

( 7.4.4 ) If E i s also normal then E i s a Cohen—Macaulay 

algebraic variety. 

2. C l a s s i f i c a t i o n 

( 7.5.17 ) C l a s s i f i c a t i o n I 

Let E be as in (*)• above. Then G(E) is isomorphic with one 

of G l ( k 2 ) , S l ( k 2 ) x k * or PGl(k 2)xk*. Let G be one of these groups 

and l e t Q+ denote the set of positive ra t i o n a l numbers. Then 

there i s a canonical b i j e c t i o n 
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0/ <—> E(G) = { E | E as in (*), E normal, G(E) = G }. 

For G = Gl(k 2) the correspondence i s as follows. Given E, 

there i s a unique bicartesian diagram, 

E(nr 1 ) > End(k 2) 

a 

v v 
E > E(n) 

such that a l l morphisms are f i n i t e and dominant. If degree a = n 

is odd then degree(p) = m i s odd and (m,n) = 1. If degree(o) = 

2n is even then degree(£) = 2m is even and (m,n) = 1 (and one of 

m and n is even). In any case, the map E(G) > Q+ given by 

E > deg(o)/degU) 

is well defined and one—to—one. 
Conversely, i f r t Q+ then r = m/n, where m,n > 0 and (m,n) 

= 1. It i s then possible to construct a bicartesian diagram as 

above such that deg(a) = n and deg(p) = m i f mn i s odd, or 

deg(a) = 2n and deg(^) = 2m i f mn i s even. Thus we obtain the 

inverse map Q+ > E(G), 

r — > E ( r ) . 

A l l normal monoids with group Sl(k 2 ) x k * are constructed 

from the monoids with group Gl ( k 2 ) using integral closure and 

the morphism 

m : S l ( k 2 ) x k * > G l ( k 2 ) , m(x,t) = xt. 

A l l normal monoids with group PGl(k 2)xk* are constructed 



v i 

from the monoids with group G l ( k 2 ) using f i n i t e group scheme 

quotients and the morphism 
c : Gl ( k 2 ) > PGl(k 2)xk*, c(x) = ([x],det(x)). 

( 7.6.5 ) C l a s s i f i c a t i o n II 
Let E as in (*) above, be normal. Let T be a maximal torus 

and l e t * be the roots of the adjoint representation. Let Z 

denote the Zariski closure of T in E. From general p r i n c i p l e s 

(4.1.7 of the text) there exists F = { F(1), F(2) } contained in 

X(Z) such that <F(1),F(2)> > X(Z) is a f i n i t e , dominant 

morphism and each F ( i ) is non—zero modulo the square of the 

maximal ideal of functions that vanish at zero. F is ca l l e d the 

set of fundamental generators of X(Z) . 

(X(T),*(T),F(E)) i s the polyhedral root system of the pair 

(E, T) . 

E i s uniquely determined up to isomorphism by i t s polyhedral  

root system. 

The following is a l i s t of a l l possible polyhedral root 

systems (X,4>,F) for the various groups G ((u, v) denotes the 

free abelian group on u and v, written a d d i t i v e l y ) . 

(i) G = Gl ( k 2 ) 

X = (u, v) a, B e Z 

# = { u-v, v-u } a >|B|> 0 

F = { au+BV, OV + BU } {O.,B) - 1 
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( i i ) G = Sl(k 2 ) x k * 

X = (a, b) m,n e N 

* = { 2b, -2b } m,n > 0 

F = { ma+nb, ma-nb } (m,n) = 1 

( i i i ) G = PGl(k 2)xk* 

X = (x, y) m, n e N 

* = { y, -y } m,n > 0 

F = { mx+ny, mx-ny } (m,n) = 1 

III General Monoid V a r i e t i e s 

Let E be an irreducible monoid variety (not necessarily 

af f ine). 
( 8.1.4 ) If E is quasi—affine then E is a f f i n e . 

( 8.2.3 ) If E is projective then E i s an abelian variety. 
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INTRODUCTION 

An algebraic monoid E i s an algebraic variety which also 

has the structure of a monoid m : ExE >E, in such a way that 

m is a morphism of v a r i e t i e s . Well known examples include the 

monoids associated with f i n i t e dimensional associative algebras. 

The most familiar non—linear example i s surely the cusp, 

{ (x,y) e k 2 | x 2=y 3 }. 

Algebraic monoids also arise in many other contexts. For 

example, i f V i s a f i n i t e dimensional vector space over the 

f i e l d k and. f:V»V >V i s a linear map, then { t e End(k) | 

f(t(v)«t(w))=t(f(v»w)) for a l l v,w e k } is an algebraic 

submonoid of End(V)' ('•' denotes 'tensor product of vector 

spaces'). 

At t h i s time there i s no comprehensive theory of algebraic 

monoids nor is there an established paradigm as to what should 

be the aims of the theory. 

Toric monoids have been discussed in [ 1 2 ] and [14] mainly 

from the point of view of modern algebraic geometry. In [7] 

a f f i n e monoids are b r i e f l y encountered as part of the 

comprehensive introduction to algebraic group theory. Aside from 

the copious work of M. Putcha [18—26] very l i t t l e has been done 

from the point of view of modern semi—group theory. Truly there 

is no f u l l y developed ideal standard of structure in the theory 

of monoids. 

There are now available several books on algebraic group 
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theory which have properly d i s t i l l e d the necessary prerequisites 

so as to make the theory available to a wide audience. J. 

Humphreys' book [13] is a complete introduction to the linear 

theory over an a l g e b r a i c a l l y closed f i e l d and more recently W. 

Waterhouse [32] has written a coherent introductory text on the 

three basic approaches to this theory. It is always a source of 

c l a r i t y and depth to keep in mind the interplay (and 

equivalences) among, Hopf algebras, linear groups and group 

valued functors. 

For example, l e t G=k* be the m u l t i p l i c a t i v e group of units 

of k. 

As a linear group we have, 

G=G1(1). 
As a Hopf algebra we have, 

k[G]=k[T,T" 1] 

i(T)=T- 1 

d(T)=T»T 

e(T)=1. 

As a group valued functor we have, 

G(R)=U(R), 
the units of R, where R i s any k—algebra. 

Generally speaking the f i r s t two viewpoints are equivalent 

by Hilbert's zeros theorem and the l a s t two are equivalent by 

Yoneda's lemma. 

This correspondence c a r r i e s over to the case of monoids as 

well. For example, let E=End(k). 

As a linear monoid 

E=End(k) . 
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As a bigebra 

k[E]=k[T] 

d(T)=T»T 

e ( T ) = 1 . 

As a monoid valued functor we have 

E(R)=R, with the obvious m u l t i p l i c a t i o n . 

P l a i n l y the only l o g i c a l difference from li n e a r groups is 

the absence of inverses. 

There is a motif in the theory of algebraic groups which is 

of fundamental importance for monoids as well. Stated as a 

problem for monoids th i s i s as follows. 

(I) Let E be an irreducible algebraic monoid and let G be 

i t s group of units. Assume G i s reductive. Let X be the 

closure in E of a maximal torus T of G and. l e t W be the 

Weyl group associated with T. To what extent can the 

structure of E be determined by X and 

int : w > Aut(X) ? 

In p a r t i c u l a r s , 

(i) Can E be determined by (W,X)? 

( i i ) Are there axioms which characterize the class of D—monoids 

that are obtained from reductive monoids in this fashion? (One 

should keep in mind the overwhelming success of root systems in 

both modern and c l a s s i c a l Lie theory, and in algebraic group 

theory). 

The l i s t can be continued. Of course there are other 

important problems which are not completely encompassed by the 

above motif. The most important of these, in my opinion, i s the 

following. 
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(II) Find a complete l i s t of a l l algebraic monoids E such 

that E i s irreducible, reductive, normal, and 

rk(G)=rkss(G) + 1 . 

The condition, rk(G)=rkss(G) + 1, i s precisely what i s needed to 

avoid the r e l a t i v e a r b i t r a r i n e s s of central D—monoids. 

My thesis is guided almost e n t i r e l y by problems (I) and 

(II) above. The main results, which are f u l l y exposed in 

chapters 4 and 7, provide ample evidence that these problems are 

of fundamental importance in the theory of algebraic monoids. 

The most s i g n i f i c a n t result of chapter 4 asserts that a l l 

irreducible monoids are regular in the sense of von Neumann. As 

a dire c t consequence, problem (II) above i s solved completely in 

case rkss(G(E)) = 1. 

Chapter 1 contains prelimimary information from algebraic 

geometry and algebraic group theory. It i s offered p a r t l y to 

indicate the level of discourse and also to deduce some 

preliminary results concerning D—groups. 

Chapter 2 introduces the general theory and the basic 

notation. It i s proved that any n o n — t r i v i a l monoid possesses an 

abundance of idempotents. Thus, a m u l t i p l i c a t i v e Jordan 

decomposition i s possible for many non—units in the monoid E. In 

pa r t i c u l a r , the subset of semi—simple elements is well—defined 

and n o n — t r i v i a l . 

In chapter 3 irreducible monoids are discussed. The groups 

G which occur n o n - t r i v i a l l y as the group of units of an 

irreducible monoid are characterized (see Theorem 3 . 3 . 6 ) . The 

remainder of the chapter is more technical and mainly concerned 

with closure properties of irreducible monoids. Let E be 
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i r r e d u c i b l e , and T a maximal torus of G,the group of units of E. 

Let B be a Borel subgroup of G, B(G) = { B | B is a Borel 

subgroup of G }, and e € E an idempotent. The most important 

background result in t h i s regard (due to M. Putcha) asserts that 

eEe is in the closure of the c e n t r a l i z e r in G of e. From this i t 

follows that E(s) is equal to the union of the gXg~1 as g varies 

over G, where E(s) i s the set of semi-simple elements of E and X 

is the closure of T in E. Analagously, i t is proved that E is 

the union of the gZg~ 1 where Z i s the closure of B in E. Thus 

every element i s in the closure of a Borel subgroup. 

Furthermore, B(x) = { B e B(G) | x is contained in the closure 

of B } is closed in B(G). Thus Borel's fixed point theorem can 

be applied (to B(x)) to prove that i f G i s reductive then 

C(T)=X. 

Chapter 4 i s dedicated to the special properties of the 

five basic types of monoids. These are D—monoids, nilpotent 

monoids, solvable monoids regular monoids, and reductive 

monoids. 

Let E be an i r r e d u c i b l e D—monoid. Then k[E] = k[X(E)], the 

monoid algebra of X(E) = Hom(E,k) (this i s one standard 

d e f i n i t i o n of D—monoids). If E i s normal and 0 e E there exists 

{ F ( i ) | i=1,...,n } contained in X(E) such that <F(1),...,F(n)> 

> X(E) i s f i n i t e and dominant, n is the number of minimal 

non—zero idempotents, and { F ( i ) } i s a l i n e a r l y independent 

subset modulo m2, where m i s the maximal . ideal of functions 

which vanish at 0 . Furthermore { F ( i ) } is the only such subset. 

{ F ( i ) } i s c a l l e d the set of fundamental generators of X(E). In 

the discussion of semi—simple, rank one, monoids i t is seen that 
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the fundamental generators are precisely what is needed to 

synthesise with the root system, in order to c l a s s i f y these 

monoids in the s p i r i t of c l a s s i c a l Lie theory. 

Let E be an irreducible nilpotent monoid. It is interesting 

to know the conditions under which the well—known structure 

theorem for nilpotent groups can be generalized to monoids. If.G 

is an irreducible nilpotent algebraic group the theorem asserts 

that m : G(u)xG(s) > G is an isomorphism where G(u) is the 

subgroup of unipotent elements and G(s) is the subgroup of 

semi—simple elements. This theorem generalizes to the nilpotent 

monoid E i f and only i f E is a C l i f f o r d monoid (see Theorem 

4.2.6) . 

Solvable irreducible monoids are important generally 

because of their r e l a t i v e s i m p l i c i t y combined with the fact that 

every ir r e d u c i b l e monoid is the union of i t s solvable 

irreducible submonoids. The main result of this section is a 

characterization of solvable monoids among irreducible monoids 

with 0. Let E be an irreducible monoid with 0. Then E is 

solvable i f and only i f i t s subset of nilpotent elements i s a 

two—sided i d e a l . This result i s o r i g i n a l l y due to M. Putcha. My 

proof i s s l i g h t l y d i f f e r e n t , making use of the universal 

D—monoid associated with a given solvable monoid. 

Reductive algebraic monoids are perhaps the most, important 

of a l l monoids. An irreducible monoid E is reductive i f G, i t s 

group of units is a reductive group. My preliminary discussion 

of reductive monoids i s mainly concerned with class functions, 

semi—simple elements and conjugacy classes. Let E be reductive 

and suppose x i s an element of E. Then, 
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(i) x is semi—simple i f and only i f the conjugacy class of x is 

closed in E. 

( i i ) If T i s a maximal torus of G then the ce n t r a l i z e r of T in E 

is equal to the closure of T in E. 

( i i i ) There is a one—to—one correspondence between semi-simple  

conjugacy classes and orbits of the Weyl group action on the  

closure of a maximal torus. 

(iv) c l [ E ] > k[E] » k[X] i d e n t i f i e s c l [ E ] = { f € k[E] | 

f(xy) = f(yx) for a l l x,y € E } with the ring of invariant 

functions of k[X] under the induced action of the Weyl group (X 

is the closure of a maximal torus). 

(v) If E is any irreducible monoid then there exists a morphism 

p : E > E' such that 

(o) p is dominant. 

(p) The kernel of p is the unipotent radi c a l of G. 

(p) If X and X' are the closures of respective maximal 

t o r i of E and E' such that p(X) = X' then p : X —-> X' 

is an isomorphism. 

Thus every irreducible monoid E maps to a reductive monoid 

E' so as to preserve as much of the o r i g i n a l structure as one 

could possibly hope for. 

This construction has two consequences recorded in the 

thes i s. 

( 1 ) If E is a von Neumann regular monoid with 0 , then E is 

reductive. 

(2) If Q i s a prime ideal of E then Q i s the inverse image of 

some prime ideal of E' (p : E > E' as above). 
In my proof of the structure theorem for prime ideals 
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(Theorem 5.2.1), the most important step i s a synthesis of this 

second result and a result on class functions.' 

The f i n a l result of t h i s section i s the most s i g n i f i c a n t 

structure theorem of the thesis. Generalizing a theorem of M. 

Putcha we find that a l l reductive monoids are regular in the 

sense of von—Neumann (see Theorems 4.4.14 and 4.4.15). The 

structure theory of chapter 7 is a direct consequence. 

I have concluded chapter 4 with a short discusion of 

connected monoids with 0. A monoid is connected i f i t i s 

connected in the Zariski topology. Using the general theory of 

chapters 2 and 3, I have obtained the following result (Theorem 

4.5.2). A monoid E with 0 is connected i f and only i f there 

exists a chain of idempotents 1 = e(0) > e(l) > ... > e(k) = 0 

such that e(i+l) is an element of the irreducible component of 

e ( i ) E e ( i ) containing e ( i ) , for a l l i = 1,...,k—1. This i s 

reinterpreted in the context of rational homotopy theory in 

chapter 9. 

Chapter 5 i s exclusively devoted to finding the prime 

ideals of a given irreducible monoid E in terms of a maximal 

irreducible D—submonoid. Let E be an irreducible monoid and P be 

a prime ideal of E. Let T be a maximal torus and l e t X be i t s 

closure in E. Let P(T) be the intersection of P and X. P(T) is a 

prime ideal of X, invariant under the Weyl group W. Thus, we can 

construct a W—invariant character c of X such that c 1 ( 0 ) = 

P(T). Using the results on class functions there exists a 

character q on E such that P = q~ 1(0). Thus, the map P > 

P(T) induces a one—to—one correspondence between the prime 

ideals of ..E and the W—invariant prime ideals of X (see Theorem 
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5.2.1). 
Chapter 6 begins the descent towards the c l a s s i f i c a t i o n and 

structure theory of semi—simple rank one monoids. The structure 

theory requires a c l a s s i f i c a t i o n of two—dimensional 

non—commutative monoids without 0. There are two types. Let k* 

be a one—parameter muultiplicative subgroup of G. Then there 

exists either 

p : kxE > E extending 

k*xE > E, (t,x) > t x f 1 , or 

p : kxE > E extending 

k*xE > E, (t,x) > f ' x t , 

depending on whether gxh = gx or gxh = xh for a l l x in E and a l l 

g,h in G. 

Chapter 7 contains the main computations of my thesis. A l l 

reductive, normal semi—simple rank one monoids E, with 

one—dimensional center are c l a s s i f i e d in two ways. Using the 

results of chapter 4 and some representation theory, I construct 

an e s s e n t i a l l y unique bicartesian diagram, 

E ( 2 ) > E ( 1 ) 

v v 
E > E(3) 

such that a l l morphisms are f i n i t e and dominant, and have 

l i n e a r l y reductive kernels (possibly non—reduced). Since a l l the 

morphisms can be determined numerically, and E(1) i s the monoid 

of 2—by-2 matrices, the c l a s s i f i c a t i o n follows (see Theorem 

7.6.17) . 

The second c l a s s i f i c a t i o n theorem is established in the 

proof of the f i r s t one. This i s accomplished by following the 
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relevant data (roots and fundamental generators) around the 

diagram from E(1) to E. It i s my be l i e f that a c l a s s i f i c a t i o n in 

the s p i r i t of c l a s s i c a l Lie theory should be possible for 

reductive algebraic monoids with one—dimensional center. The 

second c l a s s i f i c a t i o n theorem is offered in accordance with this 

b e l i e f . If E is reductive normal and has a 0 and a 

one—dimensional center then E is uniquely determined by i t s 

poyhedral root system (X(E),#(E),F(E)) in case the semi—simple 

rank i s one. A statement of t h i s theorem and a l i s t of a l l the 

polyhedral root systems is recorded in 7.7.5. 

One c o r o l l a r y of the bicartesian diagram above is the 

following. If E is as above then E is Cohen—Macaulay. This proof 

also requires the generalization of a theorem of P. Roberts [28] 

that I. have established in the l a t t e r part of chapter 1. 

Hochster has proven that i f E is an irreducible normal D—monoid 

then E is Cohen—Macaulay. The extent to which th i s result can be 

generalized to irreducible monoids i s not known. 

Chapter 8 i s a short discussion dedicated to general monoid 

v a r i e t i e s (not necessarily a f f i n e ) . . A well known structure 

theorem of C. Chevalley asserts that i f G is a smooth algebraic 

group then there exists a unique a f f i n e algebraic subgroup N of 

G such that G/N is an abelian variety. It is not known whether 

thi s result extends to algebraic monoid v a r i e t i e s . For example, 

i f G(E) is a f f i n e , is E affine? 

I have considered two special cases, irreducible 

quasi-affine monoids and irreducible projective monoids. If E is 

quasi—affine i t is possible to imbed E as an open sub-monoid of 

some irreducible af fine monoid E' , E > E' . Thus E'•—E is a 
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prime ideal of E'. It follows from the results of chapter 5 that 

E'—E i s a p r i n c i p l e d i v i s o r . Thus, E i s actually a f f i n e (see 

Theorem 8.1.4). Using the completeness property of projective 

v a r i e t i e s we see that a l l projective irreducible monoids are 

abelian v a r i e t i e s (see Theorem 8.2.3). 

In chapter 9, the f i n a l chapter, I have discussed a problem 

which has i t s origins in rat i o n a l homotopy theory. A rational 

homotopy type may be regarded, by Sullivan's theory [30], as a 

d i f f e r e n t i a l graded algebra M, defined over Q, which is minimal, 

and free as a graded algebra. The problem I have considered i s a 

special case of, "To what extent is the structure of M 

influenced by i t s algebraic monoid of endomorphisms?". I have 

discussed t h i s problem in a more general context so as to 

abstract from the p e c u l i a r i t i e s of rational homotopy theory. Let 

V(k) be the category of vector spaces over k and l e t S be an 

'algebraic structure' on V(k). An algebraic structure a, i s a 

rule (or functor) which associates with the vector space V, a 

c o l l e c t i o n of linear transformations { a(s) | s t S } = a(S) in 

the union of the Hom(V(m),V(n)) (as m and n vary) s a t i s f y i n g 

various relations depending on S (V(m) denotes the tensor 

product of V with i t s e l f m times). The c o l l e c t i o n of pairs (V,a) 

are the objects of a category n(k,S). If V and W are objects of 

n(k,S) then Horn'(V,W) = { f e Hom(V,W) | a(s)of(m) = f(n)oa(s) 

for a l l s in S }. Assume n(k,S) has a zero object and each V in 

o(k,S) s a t i s f i e s suitable finiteness conditions. Then End'(V) i s 

an algebraic monoid and furthermore 0 c End'(V). 

D e f i n i t i o n : Let V be an object of n(k,S). Then V has positive  

weights i f 0 i s in the Zariski closure of Aut(V) in End(V). 
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Equivalently, there exists a 1—p.s.g. t : k* > Aut(V) such 

that t extends to a morphism t : k -—> End(V) with t(0) = 0. 

The importance of this d e f i n i t i o n was f i r s t noticed by R. 

Body, R. Douglas and D. Sullivan in the context of rat i o n a l 

homotopy theory. If X is a f i n i t e simply—connected C.W. space 

then M(X), the minimal model of X, has positive weights i f and 

only i f , for every prime p, there exist maps f ( i ) : X > X 

such that the homotopy direct l i m i t of { f ( i ) : X > X | i e 

N } i s homotopy equivalent to the p — l o c a l i z a t i o n of X. 

R. Body and R. Douglas [2] have proven that i f X i s a 

rational homotopy type with p o s i t i v e weights then X s a t i s f i e s 

uniqueness of product decompositions in the sense of 

Krull—Schmidt. This result has since been generalized and 

dualized by R. Douglas and myself [9]. In chapter 9 I have 

sketched the main points of this arguement in the more general 

context the category n(k,S). 

In the l a s t section of chapter 9 I have discussed connected 

algebraic monoids in the context of rational homotopy. The 

characterization of connected monoids with 0 in chapter 4 f i t s 

in neatly with the main theorem of my master's thesis 

[27;Theorem 3.6.2]. Let M be a minimal algebra. Then End(M) is 

connected in the Zariski topology i f and only i f there i s a 

chain 1 = e(0) > e(l) > ... > e(k) = 0 of idempotents in End(M) 

such that e(i+l) is in the closure of Aut(e(i)(M)) for i 
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I PRELIMINARIES 

The theory of algebraic monoids requires much background 

information from algebraic geometry and algebraic group theory. 

In t h i s chapter I have assembled many of the prerequisite 

concepts and results that are needed in subsequent chapters. 

Occasionaly I have proven a result that is only t a c i t l y 

available in the l i t e r a t u r e but more often the results are 

stated with e x p l i c i t references and no proofs. 

1.1 Algebraic Geometry And Commutative Algebra 

1.1.1 Dimension Theorem [I3;p.30]: Suppose f : X > Y i s a 

dominant morphism of irreducible v a r i e t i e s , r = dimX — dimY. 

Suppose W is a closed and irreducible subset of Y and Z is a 

maximal irreducible component of f~1(W) which dominates W. Then 

dimZ > dimW + r. 

1.1.2 Zariski's main theorem [I5;p.414]r Let f : X > Y be a 

dominant morphism of irreducible v a r i e t i e s . Suppose that every 

fi b r e of f i s f i n i t e . Then there exists a f a c t o r i z a t i o n of f, f 

= f ' o j , where j : X > Y' i s an open imbedding and 

f' : Y' > Y i s a f i n i t e morphism. 

Corollary: If f : X > Y, as in 1.1.2, i s b i r a t i o n a l and Y i s 

a normal variety then f i s an open imbedding. 

1.1.3 Separability [I3;p.44]: Let f : X > Y be a dominant 

morphism of irreducible v a r i e t i e s . For x e X l e t T(x,X) denote 

the tangent space of x to X. If there is a smooth point x of X 

such that y = f(x) is a smooth point of Y, and df : T(x,X) > 

T(y,Y) i s surje c t i v e , then f is separable. 

1.1.4 "Nakayama's lemma": Let A be a non—negatively graded ring 

such that A(0) i s a f i e l d . Let m be the unique graded maximal 
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ideal and suppose M i s a non—negatively graded A—module. Suppose 

further that { x(i) | i e I } are homogeneous elements of M 

which generate M/mM. Then { x(i) } generate M. 

Proof: Let x t M(i) be of minimal degree such that x i s not an 

element of <x(i)> (the submodule generated by { x(i) }). Now 

modulo m, x = E a ( i ) x ( i ) . So z = x - E a ( i ) x ( i ) c mM. Thus z = 

Zm(i)z(i), where m(i) e m and z ( i ) e M. But deg(z(i)) < deg(z) 

for a l l i . So z(j) e <x(i)> for a l l j . Thus z = x - Z a ( i ) x ( i ) € 

<x(i)> and so x = z + Za( i ) x ( i ) is also in <x(i)>. 

1.1.5 Codimension 2 Lemma [I0;p.239]: Suppose X i s a normal 

a f f i n e variety and V i s a closed subset of codimension larger 

than or equal to two. Then any morphism from X—V to an affine 

variety extends uniquely to X. 

1.2 Linear Algebraic Groups 

Throughout this section, G denotes a linear algebraic 

group. 

1.2.1 Orbits [I7;p.66]: Let GxX > X be an action of the 

algebraic group G on the variety X. For x e X, l e t 0(x) = 

{ gx I g 6 G } and G(x) = { g e G | gx = x }. Then 

(i) G(x) is a closed subgroup of G. 

( i i ) For a l l x e X, 0(x) is open in i t s closure. 

( i i i ) For a l l x e X, dimO(x) = dimG — dimG(x). 

(iv) For a l l n > 0, { x e X | dimO(x) > n } i s open in X. 

1.2.2 Borel subgroups. 

Let G be an irreducible algebraic group. A subgroup B, of G 

is a Borel subgroup i f B is solvable and G/B is a complete 

variety. 
(i) Suppose f and g : G > H are morphisms of irreducible 
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algebraic groups such that f|B = g|B for some Borel subgroup B 

of G. Then f = g. 

Proof: f g ~ 1 i s a morphism of v a r i e t i e s from G to H which factors 

through G/B. Thus, fg~ 1(G) is complete, irreducible and a f f i n e . 

Hence, f = g. 

( i i ) Normalizer theorem [13;p.143]: If B i s a Borel subgroup of 

G then N(B) = B (N(B) is the normalizer of B in G). 

( i i i ) Borel fixed point theorem [13;p.13 4]: Suppose X i s a 

complete algebraic variety • and G is a solvable irreducible 

algebraic group. If GxX > X is a group action then F(X,G) 

(the fixed point set of this action) i s non-empty. 

(iv) Construction [13;p.145]: Let B(G) = { B | B is a Borel 

subgroup of G } and G/B' = { gB' | g e G } where B' is some 

fixed Borel subgroup. Then by the normalizer theorem 

s : B(G) > G/B', B > gB' 

(where B = gB'g~1) is well—defined and b i j e c t i v e . 

Further, GxB(G) > B(G), (h,B) -—> hBh"1 

1 xs s 

GxG/B' > G/B', (h,gB') > hgB' 
commutes. 
Conclusion: The Borel fixed point theorem applies to the action 

GxB(G) > B(G) which is a p r i o r i only set—valued. 

1.2.3 Closure: 

(i) [29;p.68]. Let GxX > X, be a group action, V a closed 

subset of X and B a Borel subgroup of G such that BV i s 

contained in V. Then GV is closed in X. 

( i i ) [29;p.70]. Suppose GxX >X, X i s a f f i n e , and x € X 

s a t i s f i e s tx = x for a l l t e T a maximal torus of G. Then O(x), 
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the G—orbit of x, i s closed in X. 

1.2.4 Reductive and geometrically reductive groups: 

G is reductive i f every unipotent normal subgroup of G i s 

t r i v i a l . 
G i s geometrically reductive i f for every morphism p : G > 

G1(V) and every non—zero element v of V l e f t invariant by G, 

there i s a homogeneous polynomial function f : V > k, 

invariant under G such that f(v) is non—zero. 

(i) [11]. If G i s reductive then G i s geometrically reductive. 

( i i ) [I7;p.49]. Suppose G i s reductive and X is a f f i n e . If 

GxX > X then F(k[X],G) i s a f i n i t e l y generated k-algebra. Let 

p : X > Y be the morphism induced from F(k[X],G) > k[X] 

(so, k[Y] = F(k[X],G)). Then for a l l y in Y there is a unique 

closed G—orbit O(x) contained in p ~ 1 ( y ) . 

( i i i ) If GxX > X then the union of the set of closed o r b i t s 

of maximal dimension i s open in X. 

1.3 F i n i t e D-qroup Actions 

An a f f i n e group scheme is a generalized linear algebraic 

group. Technically, in the study of linear groups and monoids, 

one i s often led quite naturally to consider group schemes which 

are not necessarily reduced. For example, in c h a r a c t e r i s t i c p > 

0 the category of affin e commutative algebraic groups is not an 

abelian category, but i f the commutative non—reduced group 

schemes are allowed as well, the resulting category is abelian 

[32;p.127,ex.12]. 

In chapter 7 I have been led to consider certain morphisms 

f : G > H such that kernel(f) is a (not necessarily reduced) 

f i n i t e D—group scheme. This w i l l lead to an important structure 
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theorem about semi—simple, rank one monoids. 

Def i n i t i o n : An affine algebraic group scheme G is a 

representable functor from the categoryof k—algebras to the 

category of groups. 

By Yoneda's lemma, a l l the group structures G(R) (as R 

varies over k—algebras), are the result of morphisms 

e : A > k (unit) 
d : A > A»A (multiplication (where '•' denotes 'tensor 

product over k')) 

i : A > A (inverse) 

where A is the representing object for G: 

G(R) = Horn(A,R). 

The group axioms imply that 

(d«l)od = (1»d)od 

((noe)»l)od = 1 = O»(noe))od and 

( i * 1 ) od = noe = (1»i)od 
where n : k > A is the unit of the k—algebra structure on A. 

A i s thus a Hopf algebra. If G i s an affine group scheme we 

write A = k[G] i f A is the Hopf algebra representing G. 

Def i n i t ion: Let G be an a f f i n e group scheme over k, an 

al g e b r a i c a l l y closed f i e l d . Then G i s a f i n i t e D-group i f 

(i) dim k[G] i s f i n i t e . 

( i i ) X(G) = { a e k[G] | d(a) = a*a } i s a k—linear basis of A. 

( Note: X(G) i s always a group.) 

X(G) i s the group of characters of G. Thus k[G] = k[X(G)], the 

group algebra of X(G) over k. 

1.3.1 F i n i t e D-group actions: Let X be an af f i n e variety defined 

over k. Then there is a canonical b i j e c t i o n between actions of 
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the D—group G on X, GxX > X, and direct sum decompositions 

k[G] = Ik[G](c) such that a e X(G) and k[G](o).k[G](a) is 

contained in k[G](c+*). 

Proof; Let R = k[X]. Given R = ER(a) define f : R > R«k[G] as 

f(x) = x»a for x e R(c). Clearly this determines an action 

GxX > X. 

Conversely, given f : GxX > X we have f* : R —> R»k[G] 

such that R is k[G]—comodule ( i . e . f* is co—associative) and 

(1»e)of* = 1, where e i s the augmentation on k[G]. One checks, 

using these two facts, that i f f*(a) = Ea(a)»o then a = Ia(c) 

and ( a ( a ) ) ( £ ) = a ( a ) i f a = B and 0 otherwise. Thus R = IR(o) 

where R(c) = { a e R | a = a(a) }. 

The remainder of the .chapter is devoted to the task of 

sharpening some known results (see . [28]) about Cohen—Macaulay 

rings and f i n i t e D—group actions. I have assumed throughout that 

a l l rings are Noetherian k—algebras and that k is an 

alg e b r a i c a l l y closed f i e l d . 

Let X be an affine scheme over k and l e t G be a f i n i t e 

D—group scheme such that f : GxX > X is an action of G on X. 

For example, i f X is an algebraic group and G i s a closed f i n i t e 

D—subgroup scheme then GxX > X, (g,x) > gx, is an action 

of G on X. Note that such an action may be n o n — t r i v i a l even i f 

G(k) (the set of k—rational points) consists of only one point. 

Let A be the coordinate ring of X. 

1.3.2 Lemma: Let X, A, f be as above and let A(0) =•{ x € A | 

f(x) = x»1 }. Then 
(i) A(0) is a subalgebra of A. 

( i i ) The inclusion, A(0) -—> A i s an integral extension of 
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rings. 

( i i i ) A(a) i s an A(0)-module for a l l o e X(G). 

(iv) If A i s a normal domain then so is A ( 0 ) . 

Proof: (i) — ( i i i ) are straightforward. 

( i v ) . It su f f i c e s to prove that A ( 0 ) is the intersection M, of K 

and A since A i s normal (here, K is the quotient f i e l d of A ( 0 ) ) . 

Let L be the quotient f i e l d of A. Now M i s an X(G)—graded 

subspace of A. Since K = K ( 0 ) = L ( 0 ) , we must have A ( 0 ) = M. 

1.3.3 Lemma [6;ch.7,4.8]: Let A > B be a f i n i t e extension of 

normal in t e g r a l domains of the same dimension. Then B is a 

refle x i v e A—module. 

1.3.4 Lemma[6;ch.7,4.2]: Let A be a normal integral domain and M 

a f i n i t e l y generated r e f l e x i v e A—module, such that K«M is 

isomorphic to K (where K i s the quotient f i e l d of A). Then M ' is 

isomorphic to a d i v i s o r i a l ideal I of A ( i . e . I i s the 

intersection of height one primary i d e a l s ) . 

1.3.5 Lemma: Suppose A is an integral domain such that each 

l o c a l ring of A is a unique f a c t o r i z a t i o n domain. Let D be a 

d i v i s o r i a l ideal of A. Then D is a rank—one projective A—module. 

Proof: Well known. 

1.3.6 Lemma: Suppose A i s a f i n i t e l y generated k—algebra and 

A ( 0 ) > A is as in lemma 1.3.2. Then A ( 0 ) is f i n i t e l y 

generated over k and A ( 0 ) > A is a f i n i t e extension of rings. 

Proof: Assume A = k[ x ( l ) , . . . , x ( n ) ] , x (i) homogeneous. Then 

x ( i ) * * l e A ( 0 ) for a l l i=1,...,n where 1 = |X(G)| = dim(k[G]) 

('**' denotes exponentiation). Let B = k[x(1)**1,...,x(n)**l]. 

Then B—>A ( 0 )—>A. So B—>A ( 0 ) i s f i n i t e because B—>A i s so. 

Thus A ( 0 ) is f i n i t e l y generated and A ( 0 ) >A i s f i n i t e . 
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1.3.7 Lemma: Let G be a f i n i t e D—group, X a reduced and 

irreducible a f f i n e variety, and u : GxX > X an action of G on 

X. Then for a l l a c X(G), k[x](o)»K(0) and K(0) are isomorphic 

as A(0)—modules (where K(0) i s the quotient f i e l d of A(0)). 

Proof: Let A = k[X]. So A = IA(o) and without loss of generality 

A(a) is non—zero for a l l c. Consider the A(0)—bi1inear map 

A(a)«A(—a) > A(0). Since A i s a domain, i f x e A(—c) i s 

non—zero, then m : A(a) > A(0), m(z) = zx, is one—to—one and 

A(0)—linear. Thus A(a) is isomorphic with an ideal of A(0) and 

hence A(a)«K i s isomorphic to K. 

D e f i n i t i o n : Let X be an algebraic variety, dim(X) = n. X i s 

Cohen-Macaulay i f for a l l l o c a l rings 0(x), x e X, there exists 

a system of parameters {x(1),...,x(n)} of 0(x) which forms a 

regular sequence (see [12]). 
1.3.8 D-group coverings: Suppose GxX > X i s an action of the 

D—group G on the normal af f i n e variety X. If X/G is smooth then 

X is Cohen—Macaulay. 

Proof: A = k [ x ] i s normal and A(0) = k[x/G] i s regular. Consider 

the inclusion A(0) > ZA(a). A(a) is a re f l e x i v e A(0)—module 

by 1.3.3 and A(a) is a rank one A(0)—module by 1.3.7. Thus, A(a) 

is isomorphic to a d i v i s o r i a l ideal by 1.3.4. Hence, A(o) i s a 

rank—one projective A(0)—module by 1.3.5. Thus, A(0) > A is a 

f l a t morphism. So A is Cohen—Macaulay. 

1.3.9 D-group quotients: Suppose X is an irre d u c i b l e af f i n e 

Cohen—Macaulay variety and GxX > X i s an action of the f i n i t e 

D—group on X. Then X/G i s Cohen—Macaulay. 

Proof: Let A = k[X] and A(0) = k[X/G]. A is Cohen-Macaulay as an 

A—module, and thus as an A(0)-module. But A i s the dire c t sum of 
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A ( 0 ) and A(+) as an A-module (A(+) is the dire c t sum of the A(a) 

as o varies over a l l the n o n - t r i v i a l characters). Thus, A ( 0 ) is 

a Cohen-Macaulay A(0)-module. 
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II AFFINE ALGEBRAIC MONOIDS 

2.1 Preliminaries  

2.1.1 Def in i t ion: An af f i n e algebraic monoid E is an t r i p l e 

(E,m,1) such that 

(i) E is an a f f i n e algebraic variety over k. 

( i i ) 1 e E(k). 
( i i i ) m : ExE > E is a morphism of algebraic v a r i e t i e s such 

that mo(mxl) = mo(lxm) (associative). 

(iv) If p : E > E, p(x) = 1, then mo(p,l) = mo(l,p) = 1 

(two—sided u n i t ) . 
In categorical terminology, an af f i n e algebraic monoid is a 

representab-le functor from the category of a f f i n e v a r i e t i e s to 

the category of monoids. An af f i n e variety i s completely 

determined by i t s a f f i n e algebra. So we can reformulate the 

d e f i n i t i o n above in terms of commutative algebra. 

Let E be an algebraic monoid and l e t A = k[E] be i t s 

coordinate ring. It follows from ( i i i ) and (iv) above that i f d 

m*, e : {1} > E i s the inclusion, and n : k > k[E] i s 

the unit of the algebra structure, then 

(d»1)od = (1 »d)od -and 

1 = (noe,l)od = (1,noe)od. 

A is thus an augmented k—bigebra. 

A morphism f of algebraic monoids f : E > E' i s a 

morphism of algebraic v a r i e t i e s such that fom = m'o(fxf), where 

m and m' are the mult i p l i c a t i o n s on E and E' respectively, and 

f ( l ) = 1. Unlike the case for groups the la s t condition does not 

follow from the f i r s t unless f is dominant. 
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2.1.2 Translation of functions 

Def i n i t ion: Let E be an algebraic monoid. A ra t i o n a l E-module 

(V,p) is a morphism of monoids p : E > End(V) such that 

(i) For a l l v « V there exists a f i n i t e dimensional subspace 

V(v) of V such that v e V(v) and p(x)(V(v)) i s contained in V(v) 

for a l l x in E. 

( i i ) If W i s a finite—dimensional subspace of V which i s 

E—stable then p|W : E > End(W) i s a morphism of algebraic 

monoids. 

Def i n i t i o n : p* : E > End(k[E]). 
For x e E l e t p(x) : E > E be defined by />(x)(y) = yx. Let 

/>*(x) be the induced endomorphism on k[E]. 

2.1.3 Proposition: (k[E],p*) is a ra t i o n a l E—module. 

Proof: See [ I3;p.62]. The proposition is. there stated for groups 

but the proof i s v a l i d for monoids as well. 

2.1.4 Proposition: Suppose V is a subspace of k[E] which 

s a t i s f i e s 

(i) V is f i n i t e dimensional. 

( i i ) />*(x)(V) i s contained in V for a l l x in E. 

( i i i ) V generates k[E] as a k-algebra. 

Then p*|V : E > End(V) i s a closed imbedding. 
Proof: See [13,-p.63]. 

Remark: Putting 2.1.3 and 2.1.4 together we obtain that any 

af f i n e algebraic monoid E i s isomorphic to a closed submonoid of 

End(V) for some f i n i t e dimensional vector space V. 
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2.2 Elements 

2.2.1 Lemma: Suppose G is an algebraic group and X i s a Zariski 

- closed subset of G. Then 

N(X) = { g € G | Xg is contained in X } 

is a closed subgroup of G. 

Proof: One checks that 

N(X) = { g e G | p*(l(X)) i s contained in I(X) } where 

I(X) = { f c k[G] | f(x) = 0 for a l l x in X }. 

Thus i f g e N(X) we have 

fi*{q) 
I (X) > I (X) 

v 
G] 

v 
k[X] 

(g) 
-> k 

(g) 

G] 

V 
k[X] 

But p*(g) : k[G] > k[G] i s an isomorphism and />*(g) acts 

r a t i o n a l l y on k[G]. Thus, p*(g) acts r a t i o n a l l y on I(X), so 

P*(g) : I(X) > I(X) is an isomorphism. Hence ( p * ( g ) ) " 1 ( I ( X ) ) 

= I(X) and thus g £ N(X) , since p*(g)-} = />*(g"1). 

2.2.2 Corollary: Let G be an algebraic group, S a Zariski 

closed, m u l t i p l i c a t i v e l y closed subset of G. Then S i s a closed 

subgroup of G. 

Proof: S is a subset of N(S) by assumption so i f s e S then s _ 1 , 

s" 2 e N(S) by 2.2.1. Thus 1 = .ss' 1 t S and s s " 2 = s" 1 e S. Thus 

S i s a subgroup. 

2.2.3 Corollary: Let E be an algebraic monoid, p : E > End(V) 

a' closed imbedding. Then G(E), the set of elements of E in 
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G1(V), is precisely the set of in v e r t i b l e elements of E. 

Furthermore, G(E) is an algebraic group and there is a morphism 

o : E > k = End(k) such that G(E) = c " 1 ( k * ) . 

Proof: By 2.1.4 there exists a closed imbedding p : E > 

End(V) for some V. Consider, 

p det 
S > Aut(V) > k* 

V V V 

E > End(V) > k 

where S i s the intersection of E and Aut(V). S is a closed 

subset of Aut(V) since p(E) is closed in End(V). Thus, by 2.2.2 

S i s an algebraic subgroup of Aut(V). Clearly, S = G(E). 

Furthermore, i f c = deto/> then a" 1(k*) = G(E). 

2.2.4 Lemma: Let x £ End(V), where V is a f i n i t e dimensional 

vector space over k. Then there i s an idempotent e(x) € End(V) 

such that 
(i) e(x) i s in the Zariski closure of { x, x 2, x 3,... } 

( i i ) For a l l idempotents f in the Zar i s k i closure of { x, x 2, 

x 3,... }, fe(x) = e(x)f = f. 

Clearly, e(x) i s unique. 

Proof: For any endomorphism x, there exists a decomposition x = 

A .+ N, where A is in v e r t i b l e when r e s t r i c t e d to i t s image W, and 

N i s nilpotent (N and A commute to zero). Let e(x) be the 

idempotent with kernel = kernel(A) and image = image(A) and l e t 

X be the Zariski closure of { x, x 2,..., } in End(V). By 2.2.2 

the intersection S of X and Aut(W) i s an algebraic subgroup of 

Aut(W). Thus e(x) £ Aut(W). (i) above i s s a t i s f i e d by d e f i n i t i o n 

and ( i i ) i s s a t i s f i e d because e(x) i s the identity element of 



26 

Aut(W). 

Remark: Lemma 2.2.4 may be regarded as a generalization of 

F i t t i n g ' s lemma. 

2.2.5 Corollary: Let E be an algebraic monoid and l e t x e E. 

Then there exists e(x) e E such that 

(i) e ( x ) 2 = e(x) 

( i i ) e(x) i s in the closure of { x, x 2,..., } 

( i i i ) e(x)f = fe(x) for a l l other idempotents s a t i s f y i n g ( i i ) . 

Proof: By 2.1.4 there exists a closed imbedding 

p : E > End(V). If x e E then the closure of { x, x 2,..., } 

in End(V) i s contained in E. Thus apply 2.2.4. 

2.2.6 Corollary: Suppose g : E > E' i s a morphism of 

algebraic monoids. If e 2 = e e g(E) then there exists f 2 = f e E 

such that g(f) =' e. 
Proof: g(x) = e so g(e(x)) = e. 
Note: Let E be an algebraic monoid. Then there exists k > 0 such 

that for a l l x in E, ye(x) = e(x)y = y, where y i s the k—th 

power of x. This i s true for End(V), with k = dim(V), by the 

proof of 2.2.4, and in general by 2.1.4. 

Notation: Let E be an algebraic monoid. 

I (E) = { e e E | e = e 2 } . 

2.2.7 Corollary: Suppose E i s an algebraic monoid. Then the 

following are equivalent. 

(i) G(E) = E. 

( i i ) 1(E) = { 1 }. 

Proof: If x e E-G then e(x) e E-G. 

Notat ion: Let E be an algebraic monoid, e e E an idempotent. 

Then eEe i s a closed submonoid of E with identity element e. Let 
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G(e) be the group of units of eEe. 

2.2.8 Proposition: 

G(e) = { x e eEe | e(x) = e } 

= { x e E | xe(x) = x = e(x)x and e(x) = e }. 

Proof: Clear. 

2.2.9 Corollary: Some power of every element of E i s in G(e) for 

some e e I ( E ) . 

Proof: Apply 2.2.8 to the note preceding 2.2.7. 

2.2.10 Jordan Decomposition: Suppose x e G(e). Then there are 

unique elements x(u) and x(s) in G(e) such that 

(i) x = x(u)x(s) = x(s)x(u). 

( i i ) x(u) is unipotent and x(s) is semi—simple in the group 

G(e). 
( i i i ) For any morphism f : E > E', f(x(s)) = f(x)(s) and 

f(x(u)) = f ( x ) ( u ) . 
Proof: (i) and ( i i ) are clear; for ( i i i ) , i t s u f f i c e s to prove 

that f(e(x)) = e ( f ( x ) ) . But f(x)f(e(x)) = f ( e ( x ) ) f ( x ) = f ( x ) . So 

by 2.2.8, f(e(x ) ) = e ( f ( x ) ) . 

2.3 Examples 

2.3.1 Algebras: Let E be a f i n i t e dimensional associative 

algebra. Then E i s a linear algebraic variety and the 

mu l t i p l i c a t i o n map is b i l i n e a r . Thus E i s an algebraic monoid. 

2.3.2 F i n i t e monoids: Let E be a f i n i t e (set valued) monoid, 1 e 

E and m : ExE > E the m u l t i p l i c a t i o n map. Let k[E] = Hom(E,k) 

('Horn' in the category of sets). Then e : k[E] > k, e(f) 

f ( l ) , and d :k[E] >k[E]»k[E], d(f) = fom induce on E the 

structure of an algebraic monoid. 

Corollary: Let E be a f i n i t e monoid, x e E. Then there is an 
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integer n such that the n—th power of x is an idempotent. 

Proof: By 2.2.9 the k—th power of x is in G(e(x)) for some k. 

But G(e(x)) i s a f i n i t e group. 

2.3.3 D-monoids: Let S be a f i n i t e l y generated submonoid of 

Z(n), the free abelian group of rank n and let k[S] be the 

monoid algebra of S over k. Then E(S) = Hom(S,k) (as monoids) i s 

a D—monoid (diagonalizable). D—monoids are characterized by the 

property of being isomorphic with a closed submonoid of some 

monoid of diagonal matrices. 

2.3.4 Algebraic structures: Let V be a f i n i t e dimensional vector 

space over k and l e t V(m) denote the m—th tensor product of V 

over k. Suppose S is a subset of the union of the Hom(V(n),V(m)) 

as m and n vary. Define End'(V) = { f « End(V) | f(m)os = sof(n) 

for a l l s t S }. Then End'(V) i s an algebraic monoid. This 

example w i l l be discussed in chapter 9 ( see also [8]). 

2.3.5 Let V be any af f i n e variety defined over k. Let E be the 

d i s j o i n t union of V and a point 1 . For x, y e E define xy = x i f 

x and y are elements of V or y = 1 , and xy = y i f x = 1 . Then E, 

with t h i s m u l t i p l i c a t i o n , is an a f f i n e algebraic monoid. 
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III IRREDUCIBLE ALGEBRAIC MONOIDS 

3 . 1 F i r s t P r i n c i p l e s  

Def in i t ion: An algebraic monoid E is i rreduc ible i f i t is so as 

an algebraic variety. 

Unlike the case of algebraic groups, arbitrary algebraic 

monoids are vastly more general than irreducible algebraic 

monoids. Example 2.3.5 suggests that algebraic monoids in 

complete generality are not suitable for axiomatic study. 

3.1.1 Proposition: Let E be an algebraic monoid. Then there 

exists a unique maximal irreducible component E(0) of E such 

that 1 « E(0). 

Proof: Let (E(i)} be the set of maximal irreducible components 

of E. Suppose 1 i s an element of both E(0) and E(1). Then 

E(0)E(1) i s irreducible and contains both E(0) and E(1). Thus, 

by maximality, E(0) = E(1). 

Let E° = E(0). 

3.1.2 Proposition: Let E be an algebraic monoid, and l e t G be 

the group of units of E. Then E° i s the Zariski closure of G° in 

E. 

Proof: 1 e G° and G° is i r r e d u c i b l e . Thus, G° is a subset of E°. 

But G° is open in E°. Thus, G° is dense in E°. 

3.1.3 Proposition: E° i s an algebraic submonoid of E. 

Proof: E°E° i s an irreducible subset of E which contains 1. Thus 

E°E° = E° by 3.1 . 1. 

3.1.4 Proposition: Let E be an algebraic monoid and l e t e be an 

idempotent of E which is in the Zariski closure of G(E). Then 

-e e E°. 
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Proof: Let f : E > E be the morphism of v a r i e t i e s which maps 

each element to i t s n—th power. Then for some n, f maps G(E) to 

G(E)° (since the later group has f i n i t e index in""the former). 

But every idempotent i s a fixed point of such a morphism. 

3.2 Integral Closure And Normalization 

3.2.1 Proposition: Suppose we have the following commutative 

diagram where A and B are integral domains. 
j 

A > B 

v v 
A»A > B*B 

If x € B ,is integral over A then d(x) e B»B is integral over A»A 

('•' denotes tensor product of vector spaces). 

Proof: Clear. 

3.2.2 Proposition: Suppose we have morphisms A — > A [ l / f ] —> B 

where B i s a normal k—domain and the second morphism is f i n i t e 

and dominant. Then A'«A' > B»B i s i n t e g r a l l y closed, where A' 

is the integral closure of A in B. 
Proof: A ' [ l / f ] = B since l o c a l i z a t i o n commutes with integral 

closure. Further, A'»A' i s normal because A' i s . Thus, 

A'»A' > B»B i s i n t e g r a l l y closed because B»B = A'»A'[1/f•f]. 

3.2.3 Theorem: Suppose E is a normal irreducible algebraic 

monoid and p : G > G(E) i s a f i n i t e dominant morphism of 

algebraic groups. Then the following diagram can be f i l l e d in 

uniquely 
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j ' 
G > E' 

I 
I 

v v 
G(E) > E 

j 
in such a way that 

(i) E' i s normal and i r r e d u c i b l e . 

( i i ) />' i s a f i n i t e morphism of algebraic monoids. 

( i i i ) j ' is an open imbedding. 

Proof: Let R be the integral closure of k[E] in k[G]. Then R i s 

normal, />'* i s f i n i t e and j ' * is an open imbedding (p' * : k[E] 

> R and j ' * : R > k[G(E)]). By 3.2.1 and 3.2.2 the 

comultiplication d, of k[G] r e s t r i c t e d to R is a 

comultiplication on R. Further, the augmentation of k[G] 

r e s t r i c t e d to R i s an augmentation on R. Thus, (R,d|R,e|R) is a 

normal bigebra, f i n i t e l y generated over k. Hence, the diagram of 

algebras dualizes to y i e l d the diagram of monoids advertised in 

the assertion of the theorem with R = k[E']. This diagram i s 

already uniquely determined by the underlying geometry. 

Remarks: Let E be an irreducible algebraic monoid. Then there i s 

a unique ir r e d u c i b l e monoid E' and a morphism n : E' > E such 

that 

(i) n is f i n i t e , dominant and b i r a t i o n a l . 

( i i ) E' i s a normal algebraic variety. 

The d e t a i l s w i l l be l e f t to the reader. 

The construction in Theorem 3.2.3 is an important 

ingredient in the existence results of the next section. 
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3.3 E x i s t e n c e Of A l g e b r a i c Monoids 

The purpose of t h i s s e c t i o n i s t o c h a r a c t e r i z e the 

i r r e d u c i b l e a l g e b r a i c groups G f o r which t h e r e i s an a l g e b r a i c 

monoid E w i t h G(E) = G ( n o n — t r i v i a l l y ) . I t t u r n s out t h a t i n 

case t h i s i s p o s s i b l e , E may be chosen w i t h 0. 

O b s e r v a t i o n : L e t G be an i r r e d u c i b l e a l g e b r a i c group and suppose 

X(G) = Hom(G,k*) i s t r i v i a l . 

I f G = G(E) f o r some i r r e d u c i b l e monoid E, then G = E. 

P r o o f : There e x i s t s p : E > End(V) a c l o s e d imbedding. 

F u r t h e r , p(G(E)) i s c o n t a i n e d i n G1(V). By assumsion, the 

composite G(E) > G1(V) > k* i s t r i v i a l f o r any c h a r a c t e r 

of G1(V). Thus G(E) i s c o n t a i n e d i n S l ( V ) . T h i s f o r c e s G(E) = E 

because S1(V) i s c l o s e d i n End(V). 

The remainder of t h i s s e c t i o n i s devoted t o a pro o f of the 

c o n v e r s e . 

5 Lemmas 
3.3.1 Lemma; L e t S be a f i n i t e l y g e n e r a t e d submonoid of some 

f r e e a b e l i a n group and suppose p : S > N i s a monoid map such 

t h a t p - 1 d ) = { 1 } (where N = { 0, 1, 2,.. } ) . Then S* = { 0 } 

where S* = { s e S | -s e S }. 

P r o o f : p " 1 ( 0 ) c o n t a i n s S*. 

3.3.2 Lemma: L e t Z(n) be a f r e e a b e l i a n group of rank n and l e t 

<a(1),...,a(n)> be the submonoid of Z(n) ge n e r a t e d by { a ( i ) }. 

Le t u e Z(n) be non-zero. Then 

< mu+a(1),...,mu+a(n) >* = { 1 } 

f o r a l l s u f f i c i e n t l y l a r g e m. 

P r o o f : Choose p : Z(n) > Z such t h a t />(u) > 0. Then 

m p ( u ) + p ( a ( i ) ) > 0 f o r a l l i i f m i s s u f f i c i e n t l y l a r g e . Thus 
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Lemma 3.3.1 applies. 

3.3.3 Lemma: Suppose E i s a D—monoid and j : E > End(V) is a 

morphism such that 

(i) V = EV(a) (a € X(E)) 

( i i ) V(0) = { v £ V | j ( t ) ( v ) = v for a l l t £ E } = (0) 

( i i i ) 0 £ E. 

Then j(0) = 0 (the zero endomorphism of V). 

Proof: One checks that V(0) = { v e V | j(0)(v) = v }. 

3.3.4 Lemma: Suppose T is a D-group and p : T > G1(V) is a 

morphism. Let i : G1(V) > End(V) be the canonical inclusion 

and suppose V = IV(a), a e X(T). Then the image of k[End(V)] 

under p*o\* in k[T] is k[o;V(c) is non—zero]. Furthermore, 

k[c; V(c) i s non—zero] i s thereby i d e n t i f i e d with the coordinate 

ring of the closure of io/>(T) in End(V). 

Proof: Straight forward. 

3.3.5 Lemma: Suppose there exist morphisms u : G > k* 

ZG1(V) and j : G > Sl(V) (viewed as morphisms to G1(V)). Let 

T be a maximal torus of G and suppose V = EV(a) (direct sum 

decomposition) via j . Consider g(m) : G > G1(V), the morphism 

obtained by multiplying j and mu. Then, via g(m), V = EV'(c+mu) 

where V(o+mu) = V i a ) . 

Proof: Via) = { v € V | j ( t ) ( v ) = a(t)v for a l l t e T }. So i f v 

£ V(c) then g(m)(t)(v) = (c+mu)(t)v for a l l t £ T . 

Note: Thus, by 3.3.2 and 3.3.3, i f m i s s u f f i c i e n t l y large and u 

is n o n — t r i v i a l then 0 i s an element of the closure of g(m)(T) in 

End(V) . 

Conclusion: (putting 3.3.1 — 3.3.5 together) 

Assume X(G) is n o n - t r i v i a l . Let j : G > Sl(V) be an imbedding 
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and l e t u : G > k* be a n o n — t r i v i a l character. Then for a l l 

1 > 0, g(m) : G > G l ( V ) i s f i n i t e . 

Furthermore, by 3.3.2, 3.3.4 and 3.3.5, i f 1 is large 

enough then the closure of g(m) has a zero of i t s own for T a 

maximal torus of G. By 3.3.3 we can choose 1 large enough so 

that the zero of End(V) i s in the closure of g(m). Hence, 

l e t t i n g p = g(m), we have 

G >G'—>G1(V)—>End(V) 
p 

such that /> is a f i n i t e and dominant and 0 i s an element of the 

closure of G' in End(V). 

Let E' be the normalization of the closure of G in End(V). 

Then we have, 0 e E' and E' is irreducible and normal. Consider 

the following.diagram. 

G 

v 
G' > E' 

By Theorem 3.2.3 the diagram can be f i l l e d in uniquely to 

y i e l d 

j 
G > E 
v v 
G' > E ' 

such that j i s an open imbedding and p' i s f i n i t e and dominant. 

It follows that E also has a zero. In summary, we have 

established the following r e s u l t . 

3.3.6 Theorem: Let G be an irreducible 'algebraic group. Then the 

following are equivalent. 
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(i) There exists an irreducible algebraic monoid E such that 

G(E) = G and E i s not a group. 

( i i ) There exists an irreducible monoid E such that G(E) = G and 

0 e E (with 0 not equal to 1). 

( i i i ) X(G) i s a n o n — t r i v i a l group. 

(iv) rank(R(G)) > 0. 

3.4 Closure 

A useful strategy in the theory of algebraic monoids is to 

apply the structure theory of algebraic groups and v a r i e t i e s in 

studying closure properties of various subgroups T of G in E. 

The purpose of t h i s section i s to assemble some of these 

techniques. I s h a l l assume throughout that E i s an irreducible  

a f f i n e algebraic monoid. 

3.4.1 Proposition: Let E be an irreducible algebraic monoid with 

group of units G and l e t B be a Borel subgroup of G = G(E). Then 

(i) E i s the union of gZg" 1 as g varies over G, where Z i s the 

closure of B in E. 

( i i ) E i s the union of gZ as g varies over G. 

Proof: G/B i s complete and B»Z is contained in Z, where '•' 

denotes either conjugation or l e f t t r a n s l a t i o n . Thus, by 1.2.3 

( i ) , G«Z i s closed in E. 

Recall from 1.2.2 (iv) that i f B(G) is the set of Borel 

subgroups of G, then we may regard B(G) as a complete algebraic 

variety in such a way that GxB(G) > B(G), (g,B) — > gBg~ 1, i s 

a morphic group action. 

The purpose of the next two lemmas is to prove that i f x € 

E then B(x) = { B € B(G) | x i s an element of the closure of B } 

is a closed non-empty subset of B(G). 
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3.4.2 Lemma: Suppose p : X > Y is an surjective open map of 

topological spaces and further, that V i s a closed and saturated 

subset of X ( i . e . V = p - 1 ( p ( V ) ) ) . Then p(V) is a closed subset 

of Y. 

Proof: />(X-V) is open in Y and />(X-V) = piX)-p(v) = Y-p(V) since 

p is saturated. Thus p i V ) i s closed in Y. 

3.4.3 Lemma: Let x e E and suppose x e Z, the closure of B(0) 6 

B(G). Let V = { g € G | g" 1xg e Z }. Then p { V ) i s a closed 

subset of G/B(0), where p : G > G/B(0) i s defined by p i g ) = 

gB(0). 
Proof: V i s closed since i t is a transporter with closed target. 

So i f g e V then x e gZg" 1. Hence x e gbZ(gb)" 1 and thus, gb « V 

for a l l b e B(0). Thus, V is saturated with respect to p. By 

Lemma 3.4.2, />(V) i s closed in G/B(0) . 

3.4.4 Proposition: Let x e E. Then B(x) = { B c B(G) | x i s in 

the closure of B } is closed in B(G). 

Proof: B(G) may be regarded as a complete variety under the 

i d e n t i f i c a t i o n given in 1.2.2 ( i v ) . Under this i d e n t i f i c a t i o n 

{ gB(0) | g" 1xg € Z(0), the closure of B(0) } corresponds to 

{ B e B(G) | x i s in the closure of B }. 

3.4.5 Proposition: Let E be an irreducible algebraic monoid and 

le t T be a maximal torus of G(E). Suppose x e. E and xt = tx for 

a l l t € T. Then there i s a Borel subgroup B e B(G) such that T 

is contained in B and x i s in the closure of B. 

Proof: B(x) is closed in B(G) and B(x) is stable under 

conjugation by T since T centralizes x. By 1.2.2 ( i i i ) T has a 

fixed point in B(x). Thus there exists B e B(x) such that T 

normalizes B. Hence, by 1.2.2 ( i i ) , T i s contained in B. 
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3.4.6 Proposition: Suppose x € E i s semi—simple and T is a 

maximal torus such that xt = tx for a l l t e T. Then x e X, the 

closure of T. 

Proof: By 3.4.5 there exists a Borel subgroup B of G such that x 

is in the closure Z, of B and T i s contained in B. Now there 

exists a representation Z > T(V) (upper t r i a n g u l a r ) . From 

linear algebra we can assume that both T and x are contained in 

D(V) the diagonal matrices of T(V). So we have 

{ x, X } —> Z > T(V) > D(V) where the la s t map i s the 

quotient of T(V) modulo i t s ideal of nilpotent elements. The 

composite of a l l these maps is one—to—one since both X and { x } 

are contained in D(V). But the image of x is in the image of X 

because X is the closure of a maximal torus. Thus x 6 X. 

The following fundamental result i s due to M. Putcha 

[21;Theorem 1]. 

3.4.7 Proposition: Let E be an irreducible algebraic monoid and 

le t e e 1(E) (idempotents). Then 

(i) There exists a closed irreducible submonoid E' of E such 

that Ee i s contained in E' and eE' = eEe. 

( i i ) There exists a closed irreducible submonoid E" of E such 

that eEe is contained in E" and E" is contained in the 

ce n t r a l i z e r of e in E. 

3.4.8 Corollary[21 ] : Let E be an irr e d u c i b l e algebraic monoid 

and l e t e t 1(E). Let C(e) = { x e E | xe = ex }. Then eEe i s 

contained in C(e)°, the identit y component of C(e). 

Proof: eEe is contained in E" as in 3.4.7, and E" is contained 

in C(e). Thus E" i s contained in C(e)° since E" is i r r e d u c i b l e . 

3.4.9 Proposition[21]: Let E be an irreducible algebraic monoid 
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and l e t e « 1(E). Let CG(e) = { g e G(E) | ge = eg }. Then 

CG(e) > G(e), g — > ge = eg, i s a surjective morphism of 

algebraic groups. 

Proof: Consider C(e) > eEe, x — > ex = xe. By 3.4.8, this i s 

a dominant morphism when r e s t r i c t e d to C(e)°. Thus 

CG(e)) > G(e) i s dominant. But a dominant morphism of 

algebraic groups i s surjective. 

3.4.10 Proposition: Let x € E be semi—simple. Then x e X, the 

closure of some maximal torus T of G(E). 

Proof: Let e = e(x). Then x e G(e). By 3.4.9 CG(e) > G(e), g 

— > ge, is surjective. Thus there exists a maximal torus T in 

CG(e) such that x £ eT. By 3.4.6 e € X, the closure of T. Thus 

x t eT, which i s contained in the closure of T. 

3.4.11 Proposition: Let x e E be semi—simple. Then Cl(x), the 

conjugacy class of x, is closed in E. 

Proof: By 3.4.10 there exists a maximal torus T of G(E) such 

that x £ X, the closure of T. So t x t " 1 = x for a l l t £ T since X 

is a commutative monoid. Thus by 1.2.3 ( i i ) Cl(x) i s closed in 

E. 

3.4.12 Proposition: Let E be an irre d u c i b l e algebraic monoid. 

Then there are a f i n i t e number of conjugacy classes of 

idempotents in E. 

Proof: Let e e 1(E) and let T be a maximal torus of G(E). By 

Proposition 3.4.10 there exists g £ G(E) such that geg" 1 e X, 

the closure of T in E. But the number of idempotents in X i s 

f i n i t e since X is isomorphic to a closed submonoid of the 

diagonal matrices, D(V) for some V. 

In subsequent chapters i t w i l l be necessary to know .that 
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under certain conditions the image of an algebraic monoid i s a 

closed subset of the target monoid. It is easy to construct 

examples which demonstrate that f a i r l y s t r i c t conditions are 

required. 

3.4.13 Proposition: Suppose E and E' are irreducible algebraic 

monoids with zeros 0 and 0' respectively. If p : E > E' is a 

morphism such that /o~1(0') = { 0 } then p i s a f i n i t e morphism. 

In p a r t i c u l a r , p(E) i s a closed submonoid of E'. 

Proof: Choose a 1—p.s.g. a : k* — > G(E) such that a extends to 

a : k —> E with a(0) = 0. This y i e l d s an action of k on E by 

l e f t t r a n slation and s i m i l a r i l y on E' via p. 

On the l e v e l of coordinate algebras t h i s translates to: 

p : k[E'] > k[E] is a morphism of N—graded algebras (where N 

= {0,1,2,...}). Since a converges to zero we obtain k[E'](0) = k 

= k[E](0). Since p'MO') = { 0 } we have that k[E] is f i n i t e 

dimensional modulo k [ E ' ] + . Thus, by 1.1.4, k[E] i s a f i n i t e 

k[E']-module. 
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IV TYPES OF MONOIDS 

In this chapter I discuss some of the special properties 

associated with the five most important types of monoids. These 

are D—monoids, nilpotent monoids, solvable monoids regular 

monoids, and reductive monoids. 

4.1 D-monoids 

Def i n i t i o n : An irreducible D-monoid E is an irreducible 

algebraic monoid such that G(E) i s a torus. 

D—monoids are quite varied and have been studied 

extensively from a geometric point of view in [14]. M. Hochster 

[12] has proven that normal D—monoids are Cohen—Macaulay. 

D—monoids have also been studied as algebraic monoids by M. 

Putcha in [19] and [20]. It i s - hoped that ultimately the 

c l a s s i f i c a t i o n of reductive monoids can be reduced to problems 

concerned with D—monoids. 

This section i s mostly summary. Pertinent d e t a i l s not 

mentioned here are well recorded in [14], [19] and [20]. 

4.1.1 Proposition: There i s a categorical equivalence between 

the category D of irreducible D—monoids and the category M of 

f i n i t e l y .generated commutative monoids which can be imbedded in 

a free abelian group. The equivalence i s given by functors, 

E > X(E) = Hom(E,k) (D—monoid morphisms) 

S > E(S) = Hom(S,k) (monoid morphisms) 

X(E) i s the character monoid associated with E. 

4.1.2 Proposition: Let E be an irr e d u c i b l e D—monoid and l e t 1(E) 

= { e e E | e 2 = e } . Then 

(i) 1(E) is f i n i t e . 

( i i ) If 0 € E and i f 0 < e d ) < ... < e(k) = 1 is a saturated 
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chain in 1(E), then dim(E) = k. 

( i i i ) If dim(E) = 2 and 0 e E then 1(E) = { 1 , e, f, ef = 0 }. 

(iv) If e e 1(E) then e is the product a l l the maximal 

idempotents which are larger than or equal to e. 

4 . 1 . 3 Proposition[14;p.12]: There are canonical one—to—one 

correspondences among { U | U is an open affine G(E)—equivariant 

subset of E }, 1(E) and { X | X i s a G(E)-orbit in E }. If U i s 

open a f f i n e and G(E)—equivariant then there i s a unique minimal 

idempotent e(U) e U. 

4 .1.4 Proposition[193: For a l l maximal idempotents e e 1(E)— {1} 

there i s a unique one—dimensional subgroup G(e) of G(E) such 

that e is an element of the closure of G(e) in E. 

4 . 1 . 5 Proposition[1 4]: Let E be a D—monoid. Then E i s a normal 

variety i f and only i f for a l l x € X(G(E)), nx e X(E) implies 

that x e X(E). 

4 . 1 . 6 Proposi t ion: Let E and E' be irreducible D—monoids with 

zeros 0 and 0'. Suppose p : E > E' i s a morphism such that 

p{0) = 0'. Then the following are equivalent. 

(i) p is a f i n i t e morphism. 

( i i ) p\l(E) : 1(E) > I(E') i s one-to-one. 

( i i i ) There exists n e N such that nX(E) i s contained in 

P*(X(E')). 

Proof: (i) => ( i i ) . If /.(e) = pit) then />(ef) = p(e) = pit). If 

e i s not f then ef < e and thus efE i s a proper subset of eE, 

whereas p(efE) = pieE) . Thus dim(eE) > dim(/>(eE) ) . So p is not 

f i n i t e . 
( i i ) => ( i ) . If p : 1(E) > I(E') i s one-to-one then p'MO1') 

is the union of the G(E) orbits of the idempotents that i t 
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contains. Thus by 3.4.13 p i s f i n i t e . 

(i) => ( i i i ) ; With an irrelevant loss of generality we may 

assume that p is dominant. Thus we have 
p* 

X (E ' ) > X (E ) 

v p* v 
X(G') > X(G) 

If p is f i n i t e then mX(G) is contained in />*(X(G')) for some m e 

N. But by assumption, each element of mX(E) is integral over 

k[X(E')]. So, by 4.1.5, there exists n e N such that nX(E) is 

contained in p*(X(E')). ( i i i ) => (i) i s cl e a r . 

4.1.7 Proposition: Let E a normal D—monoid with 0. Then there 

exists F(1),...,F(m) e X(E) such that 

(i) m i s the number of minimal non—zero idempotents of E. 

( i i ) <F(1),...,F(m)> > X(E) i s a f i n i t e morphism (where 

< ... > denotes "the monoid generated by"). 

( i i i ) { F ( i ) } is a l i n e a r l y independent set modulo m2, the 

square of the ideal of functions that vanish at 0. 

Furthermore, { F ( i ) } i s the only such subset of characters 

s a t i s f y i n g a l l these properties. F = { F ( i ) } i s the set of 

fundamental generators of X(E). 

Proof: Let e e 1(E) be a minimal non—zero idempotent. Then by 

4.1.2 ( i i ) , dim eE = 1. Since E i s normal, eE is normal, because 

i t i s a retract of E. Thus eE i s isomorphic to k. So k[eE] = 

k[F(e)], where F(e) i s the unique character which generates 

k[eE]. E — > eE, x —> ex is a morphism of D—monoids so X(eE) 

— > X(E) i s a morphism of monoids. Consider, p : E > Z, />(x) 

(ex),, e minimal, where Z is the direct product of a l l the eE 
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as e ranges over the minimal idempotents of E. Then p is a 

morphism of D—monoids such that p(e) i s non—zero for every 

minimal idempotent e in E. Thus, 1(0) = { 0 }, because 

otherwise i t contains a minimal idempotent. Hence p is f i n i t e by 

3^4.13. On the l e v e l of characters we have <F(1),...,F(m)> > 

X(E) (where the F(e) have been relabled). This proves (i) and 

( i i ) . Each F ( i ) i s non-zero modulo m2 because eE is a retract of 

E. Thus { F ( i ) } i s a l i n e a r l y independent subset of m/m2. This 

proves ( i i i ) . 

If { x ( i ) } is a subset of X(E) such that 

<x(1),...,x(m)> > X(E) i s f i n i t e then i t follows that each 

x(i) i s some power of one of the F ( i ) . Thus { x(i) } s a t i s f i e s 

( i i i ) i f and only i f { x(i) } = { F ( i ) }. 

4.2 Nilpotent Monoids  

D e f i n i t i o n : Let E be an irreducible algebraic monoid. E is 

nilpotent i f G(E) i s a nilpotent algebraic group. 

A well known structure theorem asserts that i f G i s a 

nilpotent algebraic group then G(u) = { u e G | u i s unipotent } 

and G(s) = { s e G | s is semi—simple } are closed subgroups of 

G and G is isomorphic to the dire c t product of G(u) and G(s). 

The purpose of this section i s to characterize the class of 

nilpotent monoids for which a generalization of this theorem is 

possible. M. Putcha has obtained similar results for commutative 

monoids in [19]. 

4.2.1 Lemma: Suppose E i s an irre d u c i b l e nilpotent monoid. Let T 

be the maximal torus of G(E). Then every semi—simple element of 

E i s in the closure of T. 

Proof: By 3.4.10 every semi—simple element of E is in the 
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closure of a torus. 

Def in i t ion; Let E be an algebraic monoid. If E i s the union of 

the G(e) as e varies over a l l idempotents, then E i s a C l i f f o r d  

monoid (see 2.2.7 — 2.2.10 for a discussion of G(e)). 

4.2.2 Lemma: Suppose E i s a nilpotent C l i f f o r d monoid. Let 

e t 1(E) be a maximal idempotent. Then E(e) = { x £ E | xe = ex 

= e }° is a one—dimensional D—submonoid of E. 

Proof: l(E(e)) = { 1, e } and e i s the zero element of E(e). 

Suppose x £ E(e) and x i s not e. Then e(x) is not equal to e 

either, because i f e = e(x) then x £ G(e) since E i s C l i f f o r d . 

But then e is the only element common to both G(e) and E(e). 

Thus, e(x) = 1, since 1(E) = { 1, e }. Hence, x £ G(E(e)). So 

E(e) i s the union of G(E(e)) and { e }. Thus, dimE(e) = 1, since 

by 2.2.3, dim(E-G(E)) = dim(G)-1. Furthermore, G(E(e)) is a 

D—group, because irreducible unipotent monoids are groups. 

4.2.3 Lemma: Let E and e be as in 4.2.2. Then G(u) > eG(u), u 

— > eu, is a f i n i t e morphism. 

Proof: Let K = { v e G(u) | ev = e }. By 4.2.2, K° i s 

irred u c i b l e , and semi—simple. Thus, K° = { 1 } and so K i s 

f i n i t e . 

4.2.4 Lemma: Let E be as in 4.2.2 and suppose e £ 1(E) i s any 

idempotent. Then G(u) > eG(u) is f i n i t e . 

Proof: Let 1 > e(l) > ... > e(k) = e be a saturated chain of 

idempotents. Then e(i)G(u) —> e(i+l)G(u) i s f i n i t e for each i 

by 4.2.3 applied to the C l i f f o r d monoid e ( i ) E e ( i ) . Since ex 

e ( k) . . . e (1 ) x , G(u) —> eG(u) i s the composite of f i n i t e 

morphisms. Thus G(u) —> eG(u) is f i n i t e . 

4.2.5 Lemma: Let E be as in 4.2.2. Then m : E(s)xG(u) > E, 
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(x,u) > xu is a f i n i t e b i r a t i o n a l morphism of algebraic 

monoids. 

Proof: m is b i r a t i o n a l by the well known result for algebraic 

groups. Suppose (x,u) s a t i s f i e s xu = e (so e(x) = e). Then eu = 

x*xu =x*e = x* (for some x* e G(e)). But then x* is a 

semi—simple element of eG(u). Hence, x* = e and thus x = e. It 

follows that m i s one—to—one and b i r a t i o n a l . m is onto because 

image(m) contains G(E) and a l l idempotents. The same i s true for 

the normalization of E. Thus, by 1.1.2, m i s f i n i t e . 

4.2.6 Theorem: Suppose E i s irreducible and nilpotent. Then the 

following are equivalent. 

(i ) E is C l i f f o r d . 

( i i ) The morphism m : E(s)xG(u) > E, (x,u) > xu is f i n i t e 

and dominant. 
If, in addition, E is normal, then m is an isomorphism. 

Proof: (i) => ( i i ) . Lemma 4.2.5. 

( i i ) => ( i ) . Both groups and D—monoids are C l i f f o r d monoids. It 

follows that E(s)xG(u) i s C l i f f o r d . Thus E i s C l i f f o r d as i t i s 

the image of a C l i f f o r d monoid. 

If E i s normal then i t follows from 4.2.5 and 1.1.2 that m 

is an isomorphism. 

4.3 Solvable Monoids  

Def i n i t i o n : Let E be an irreducible algebraic monoid. Then E i s 

solvable i f G(E) is a solvable algebraic group. 

In t h i s section I prove two general results about solvable 

algebraic monoids. 

4.3.1 Theorem: Let E be a solvable irreducible algebraic monoid. 

Then there exists an irreducible D-monoid X and a morphism 
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p : E > X 

such that for any morphism f : E > Y where Y i s a D—monoid 

there is a unique morphism f* : X > Y, such that t*op = f. 

Furthermore, for a l l maximal t o r i T of G(E) the composite Z > 

E > X is an isomorphism, where Z i s the closure of T in E. 

4.3.2 Theorem: Let E be an ir r e d u c i b l e algebraic monoid with 

zero. Then the following are equivalent. 

(i) E is solvable. 

( i i ) N = { x e E | x i s nilpotent } i s a two sided ideal of E. 

Proof of 4.3.1: Let X(E) be the characters of E. Then X(E) i s a 

l i n e a r l y independent m u l t i p l i c a t i v e subset of k[E]. Let R = 

k[X(E)], the monoid algebra of X(E) over k, and let T be a 

maximal torus of G(E). Let Z be the closure of T in E. Thus, the 

composite R — > k[E] —> k[Z] is one—to—one, since the same is 

true when r e s t r i c t e d to G(E), and G(E) is dense in E. 

Claim: R > k[Z] i s an isomorphism. 

Proof of claim: There exists a closed imbedding E > T(V) 

(upper triangular matrices) for some V. We may assume also that 

Z i s contained in D(V), the diagonal matrices. Suppose we have a 

character p : Z > k. Then p can be l i f t e d to a character 

o : D(V) > k since Z > D(V) i s a closed imbedding. But o 

l i f t s to T(V) because the inclusion D(V) > T(V) s p l i t s . 

R e s t r i c t i n g t h i s l i f t i n g to E y i e l d s : Every character on Z l i f t s 

to E. This proves the claim. 
Now suppose f : E > Y i s a morphism, where Y i s a 

D—monoid. On the l e v e l of characters t h i s y i e l d s f* : X(Y) > 

X(E). But X(E) is contained in R. So f factors through X 

Spec(R). 
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Proof of 4.3.2: (i) => ( i i ) . By 4.3.1 there i s a morphism 

p : E > X such that for every maximal torus T in G(E) the 

composite Z > E > X is an isomorphism. Thus, since every 

semi—simple element is in the closure of a torus, 0 is the only 

semi—simple element of p~ 1(0). Now />~1(0) is a closed ideal of 

E; so i f x e />"1(0), then e(x) e />"1(0). Thus / T 1 ( 0 ) is the set 

of nilpotent elements of E. 

( i i ) => ( i ) . Suppose E is not solvable. Then C(T) i s a proper 

subset of N(T) ( i ^ e . the Weyl group i s n o n - t r i v i a l ) . Let a e W = 

N(T)/C(T) be a n o n - t r i v i a l element. So int(o) : l(Z) > l(Z) 

i s n o n — t r i v i a l , since by 4.1.7, the automorphisms of a D—monoid 

with 0 are f a i t h f u l l y represented on the idempotents. It follows 

that int(c) acts n o n — t r i v i a l l y on the minimal idempotents of Z. 

So l e t e, f € I(Z) be minimal non—zero idempotents such that ae 

= fo. Thus (ae)2 = aefo = aOa = 0 since e and f are d i s t i n c t 

minimal idempotents of Z. But then ae i s nilpotent, yet oeo*' is 

not. Hence the nilpotent elements do not form an i d e a l . 

Much more can be said about the structure of solvable 

algebraic monoids. In [24;Theorem 23] M. Putcha gives numerical 

and semigroup characterizations of solvable algebraic monoids. 

4.3.3 Proposition: Let E be a solvable i r r e d u c i b l e algebraic 

monoid and l e t x, y e E(s). Suppose xy = yx and p(x) = />(y) 

where p is the universal morphism to a D—monoid. Then x = y. 

Proof: By 4.3.1, i t s u f f i c e s to prove this for E = T(V) (upper 

triangular matrices). Let C(x) be the c e n t r a l i z e r of x in E. 

Then C(x) and ZC(x) are both i r r e d u c i b l e , since they are both 

lin e a r subspaces of T(V). Let T be a maximal torus of'C(x) such 

that y e X, the closure of T in C(x). But we also have x € X 
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since x i s a central semi—simple element. Thus x = y since />|X 

is one—to—one. 

4.4 Reductive And Regular Algebraic Monoids  

De f i n i t i o n : Let E be an irre d u c i b l e algebraic monoid. E is 

reductive i f G(E) is a reductive algebraic group. 

D e f i n i t i o n : (a) A monoid E is regular i f for a l l x e E there 

exists g € G(E) and e e 1(E) such that gx = e. 

(b) A monoid E is von Neumann regular i f for a l l x e E there 

exists a e E such that xax = x. 

Let E be an irreducible algebraic monoid. It i s then a 

consequence of [21/Theorem 13] that E i s regular i f and only i f 

E is von Neumann regular. Thus, I have often taken the l i b e r t y 

of using the d e f i n i t i o n that i s most convenient. 

The main result of this section (see Theorems 4.4.14 and 

4.4.15) asserts that a l l reductive monoids are regular. 

Let us r e c a l l some properties concerning conjugacy classes 

in semi—simple algebraic groups. 

4.4.1 Proposition[29;p.87-92]: Let G be a semi—simple algebraic 

group. 

(i) If x € G then Cl(x) i s closed in G i f and only i f x is 

semi—simple. 

( i i ) Let cl[G] = f f e k[G] | f(xy) = f(yx) for a l l x, y e G }. 

Then cl[G] is the ring of invariant functions under the induced 

action of conjugation. 

( i i i ) Let T be a maximal torus of G, W the Weyl group. Then 
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cl[G] •> k[G] 

v v 
k[T] ' > k[T] 

commutes, where k[T]' is the the ring of invariant functions in 

k[T] under the induced action of W. 

Remark: If G i s an irreducible reductive group then (G,G) = G' 

is semi—simple and G i s commensurable with the product of G' and 

Z(G)°. It follows from th i s and 4.4.1 above, that 4.4.1 is also 

v a l i d for reductive groups. 

Let c l f E ] = { f c k[E] | f(xy) = f(yx) for a l l x,y e E }. 

4.4.2 Proposition: Let E be an irreducible algebraic monoid, T a 

maximal torus. Suppose for x, y t X, the closure of T, there 

exists g e G such that gxg" 1 = y. Then there exists w e N(T) 

(normalizer) such that wxw" ' = y. 

Proof: g~ 1Tg and T are contained in CG(x)°, the identity 

component of the c e n t r a l i z e r of x in G(E). Thus there exists 

z e CG(x)° such that zg" 1Tgz" 1 = T. But then zg" 1 £ N(T), yet 

(zg" 1)~ 1x(zg~ 1 ) = gxg" 1 = y. 

If x e E is semi—simple then by 3.4.10, x is in the closure 

of some maximal torus. Thus, by 4.4.2 the semi—simple conjugacy 

classes are canonically parametrized by X/W. 

4.4.3 Theorem: Let E be a reductive algebraic monoid and l e t T 

be a maximal torus of G. Let X be the closure of T in E. Then 

the inclusion c l [ E ] > k[E] followed by the projection 

k[E] >> k[X] induces an isomorphism of c l [ E ] onto k [ X ] ' , the 

ring of invariant functions under the induced action of W on 

k [ X ] . 

Proof: c l [ E ] i s the intersection in k[G] of k[E] and c l [ G ] . It 
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follows from this that (when r e s t r i c t e d to T) c l [ E ] is the 

intersection in k[T] of k[X]' and c l [ G ] . Thus, by the remark 

following 4.4.1," cl [ E ] is i d e n t i f i e d with k[X]'. 

Remark: From general p r i n c i p l e s (1.2.4) we have, 

(i) c l [ E ] i s a f i n i t e l y generated k—algebra since G i s reductive 

and c l [ E ] is a ring of invariants of G. 

( i i ) The morphism c l : E > E(cl) = Spec(cl[E]), induced from 

the inclusion c l [ E ] > k[E] s a t i s f i e s : each f i b r e of the 

morphism c l contains precisely one closed conjugacy c l a s s . 

4.4.4 Theorem: Let E be a reductive algebraic monoid and l e t 

x 6 E. Then 

(i) x i s semi—simple i f and only i f Cl(x) (the conjugacy class 

of x in E) is closed in E. 

( i i ) If T is a maximal torus of G then the c e n t r a l i z e r of T in E 

is equal to the closure of T in E. 

Proof: Let X be the closure of T in E. From 4.4.3 we have X/W is 

canonically isomorphic with E ( c l ) . 

If x e E is semi—simple then by 3.4.11 Cl(x) i s closed in 

E. Conversely, i f Cl(x) i s closed in E then by the remark above 

Cl(x) i s the only closed conjugacy class in c l ~ 1 ( c l ( x ) ) . But 

from our i d e n t i f i c a t i o n of X/W with E(cl) we obtain that X 

intersects every closed conjugacy c l a s s . This proves ( i ) . 

If x e C(T) then Cl(x) is closed by 1.2.3 ( i i ) . Thus by (i) 

above x i s semi—simple. Hence, x i s in the closure of T by 

3.4.6. 

4.4.5 Proposition: l e t E be reductive and l e t U(E) = { x e E | 

dim Cl(x) = dim G - rk G }. Then U(E) is a non-empty open subset 

of E. 
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Proof: By 1.2.1 (iv) U'(E) = { x 6 E | dimCl(x) > dimG - rkG } 

is open in E. Since E is i r r e d u c i b l e , and U(G) = { x e G | 

dimCl(x) = dimG - rkG } is non-empty and open (see [29]), i t 

follows that U(E) = U'(E). 

4.4.6 Proposition: { x € U(E) | x is semi—simple } is open in E. 

Proof: This follows from 1.2.4 ( i i i ) and 4.4.4 ( i ) . 

Remark: By 4.4.5 we have 

dim Cl(x) < dim G - rk G 

for a l l x e E. 

4.4.7 Lemma: Suppose G i s an algebraic group and 

p : G > G1(V) i s a rat i o n a l representation such that V i s 

completely reducible. Then the unipotent r a d i c a l of G i s 

contained in the kernel of />. 

Proof: Without loss of generality assume V is a simple G—module. 

Let UR(G) be the unipotent r a d i c a l of G and l e t W be the 

invariants of UR(G) in V. Since UR(G) is unipotent, W i s 

non—zero and since UR(G) i s normal, W i s a G—submodule of V. 

Thus W = V. 

4.4.8 Theorem: Suppose E is an irreducible algebraic monoid. 

Then there exists an irreducible reductive algebraic monoid E' 

and a morphism p : E > E' such that 

(i) p is dominant 

( i i ) kernel(p) = UR(G), the unipotent r a d i c a l of G. 

( i i i ) If T i s a maximal torus of G(E) such that p(T) = T' then 

p : X > X' i s an isomorphism, where X and X' are the closures 

of T and T' respectively. 

Proof: There exists a representation c : E > End(V) such that 

c i s a closed imbedding. Let F be a composition series of the 
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E—module V. Thus, F i s a l i n e a r l y ordered c o l l e c t i o n of 

subspaces { V(i) } of V such that V(i+1)/V(i) is a simple 

E-module for a l l i . Let End(V,F) = { f e End(V) | f ( V ( i ) ) i s 

contained in V(i) for a l l i }. Thus, by d e f i n i t i o n of F, o 

factors through the inclusion End(V,F) > End(V). There i s a 

canonical morphism q : End(V,F) > End(Gr(V)), where Gr(v) is 

the graded object associated with the f i l t r a t i o n F of V. By 

4.4.7 UR(G) i s in the kernel of q o a . Thus UR(G) = ker ( q o a ) since 

k e r ( q o a ) is unipotent. Since q is a morphism of algebras with 

nilpotent kernel, q r e s t r i c t s to an isomorphism on the le v e l of 

maximal D—submonoids. Thus, i t follows that the closure of 

q o c(E) in End(Gr(V),F) s a t i s f i e s conclusions ( i ) - ( i i i ) of the 

theorem. 

Remark: Theorem 4.4.8. is useful in the discussion of prime 

ideals in Chapter 5 and in the proof that reductive monoids are 

regular. 

The following application is inspired by close analogy with 

a well—known result from c l a s s i c a l ring theory. Let R be a 

f i n i t e dimensional associative algebra over an a l g e b r a i c a l l y 

closed f i e l d k. If R i s von Neumann regular then R i s a 

semi—simple ring. 

4.4.9 Corollary: Suppose E i s a regular algebraic monoid with 0. 

Then E is reductive. 

Proof: If E i s not reductive, l e t />: E > E' be as in 4.4.8. 

Then by 1.1.1 dim p _ 1(0') > 0. So l e t x fc p- 1(0') be non-zero. 

If E i s regular then there exists a c E such that xax = x. But 

then xa = (xa) 2 i s non—zero. So p" 1(0') contains non—zero 

idempotents. This is impossible by 4.4.8 ( i i i ) since by 3.4.10 
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every idempotent is in the closure of a maximal torus. This 

contradiction implies that E is not regular. 

The remainder of thi s section is devoted to the proof that 

a l l reductive irreducible monoids are regular. This result has 

been proved by M. Putcha in c h a r a c t e r i s t i c zero using Weyl's 

theorem on the complete r e d u c i b i l i t y of rational 

representations. The main ideas of Putcha's proof have survived 

in my treatment, even though Weyl's theorem i s not true in 

general. It i s curious that Haboush's theorem (1.2.4 (i ) ) is not 

required in the proof. The proof requires the following result 

of M. Putcha. 

4.4.10 Proposition[23;Theorem 1.4]: Let E be an irreducible 

algebraic monoid with group of units G. Let e e 1(E) and l e t 

E(e) = { x e E | xe = ex = e ]°. Then GE(e)G 

{ a e E | e € EaE }. 

4.4.11 Lemma: Let E be a reductive monoid and l e t E(e) be as 

above. Then E(e) is reductive. 

Proof: CG(e) = { g e G | ge = eg } is reductive since the 

conjugacy class of e i s closed. By 3.4.9 CG(e) > G(e), g —> 

eg, is a morphism of algebraic groups. Thus G(E(e)) i s reductive 

since i t i s the identity component of the kernel of thi s map. 

4.4.12 Lemma: Suppose E i s a regular irreducible algebraic 

monoid with 0. Let N = { x € E | x i s nilpotent }. Then N is a 

closed subset of codimension larger than or equal to two. 

Proof: Clearly, N is closed. Since E i s regular i t has no ideals 

consisting e n t i r e l y of nilpotent elements. But every closed 

irreducible subset of E—G of codimension one in E i s a maximal 

irreducible component of E—G. Furthermore, each maximal 
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irreducible component of E—G i s an ideal because E is 

i r r e d u c i b l e . 

4.4.13 Lemma: Suppose p : E > E' i s a f i n i t e dominant 

morphism of irreducible monoids with 0. If E' has no non-zero 

nilpotent ideals then E has no non—zero nilpotent ideals. 

Proof: If V is a nilpotent ideal of E then X, the closure of 

p(V) in E', i s a nilpotent ideal (since p i s dominant),. Thus, by 

assumption, V i s contained in p _ 1 ( 0 ) , which i s f i n i t e . It 

follows that V = { 0 }. 

4.4.14 Theorem: Suppose that E i s an irreducible reductive 

algebraic monoid. Then E is regular. 

Proof: We may assume that E is a normal variety since the image 

of a regular monoid is regular. Assume also, for the moment, 

that E has a zero, and inductively that a l l reductive monoids of 

dimension less than dim(E) are regular. Now, as in the proof of 

4.4.8, there exists a morphism p : E > E" such that p is 

generically finite—to—one and dominant, and E" has a f a i t h f u l 

completely reducible representation. Further, i f X and X" are 

the closures of respective maximal t o r i , then p : X > X" i s 

an isomorphism. Let E' be the monoid associated with the 

integral closure of k[E"] in k[E] (see 3.2.3). Thus we have 

a : E > E' b i r a t i o n a l and B : E' > E" f i n i t e and dominant 

with Boa = p. 

Let f : E" > End(V) be a f a i t h f u l completely reducible 

representation. Assume that there exists a nilpotent ideal N of 

E" and l e t t > 0 be i t s index of nilpotency. Let W be the 

subspace of'V spanned by NV. Clearly the index of nilpotency of 

N r e s t r i c t e d to W is t - 1. Thus W is a proper subspace of V. 
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Further, W i s E"—invariant since EN i s contained in N. Since V 

is completely reducible, there exists a subspace U of V such 

that V i s the direct sum of U and W, and U is E"—stable. But by 

d e f i n i t i o n of W, NU i s contained in W. Thus NU = { 0 } since U 

and W are complementary. Thus N has index of nilpotency t - 1. 

This contradiction proves that E" has no non—zero nilpotent 

ideals. It follows e a s i l y that E" can have no ideals consisting 

e n t i r e l y of nilpotent elements. Let z t E" be an ar b i t r a r y 

element. Then E"zE" contains non—nilpotent elements. Thus there 

exists a non—zero idempotent e € E"zE". By 4.4.10 there exists 

g,h e G such that gzh e E"(e). But E"(e) is reductive (by 

4.4.11) and of dimension s t r i c t l y less than dim E". Hence 

inductively E"(e) is regular, so there exists u,v e G(E(e)) such 

that ugzhv = f = f 2 . Thus E" is regular. Now p : E' > E" i s 

f i n i t e and dominant so by 4.4.13 E' has no non—zero nilpotent 

ideals. Thus E' i s regular as well by the same arguement. 

Consider the morphism c : E ——> E'. Recall that a i s 

b i r a t i o n a l and induces an isomorphism a : X > X' on maximal 

irreducible D—submonoids. Clearly, i f N and N' are the 

respective sets of nilpotent elements of E and E', then o" 1(N') 

= N. Thus, o : E — N > E' - N'. Let e e E - N be an 

idempotent. Then e is in the closure of C(e)° = C(e). Now o 

r e s t r i c t s to a morphism a : CG(e) —r—> CG ' ( a(e)). Restri c t i n g a 

to the closure of respective maximal t o r i y i e l d s an isomorphism. 

Thus, o also induces an isomorphism on Weyl groups (of CG(e) and 

CG'(c(e))). It follows that a : CG(e) > CG'(o(e)) i s 

b i j e c t i v e and hence, a : Cl(e) > Cl(c(e)) is b i j e c t i v e as 

well (since Cl(e) = G/CG(e)). Thus, a is one-to-one when 
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r e s t r i c t e d to idempotents, since by 4.4.2, a preserves the 

conjugacy classes. 

Now suppose that aix) = o(e) for some x e E—N. Thus, 

c(e(x)) = e(c(x)) = o(e). So, e(x) = e, since a is one—to—one 

when r e s t r i c t e d to idempotents. By 4.4.10, and the induction 

hypothesis, x e E is a regular element. So, there exists 

g,h e G(E) such that gxh f is an idempotent. But then, 

c(g)o(e)a(h) = a(g)a(x)a(h) = ait). Hence, by [21] c(e) and o(f) 

are conjugate. Thus, e and f are conjugate, since a preserves 

conjugacy. Thus, we may assume that gxh = e = e(x). It follows 

that x c G(e) because in any representation of E, rank(x) = 

rank(e ) . 

By the proof of 4.4.11., eEe is reductive. Thus we have 

a : eEe >.o(e)E'c(e) such that 

(i) a is dominant. 

( i i ) a is one—to—one when r e s t r i c t e d to the closure of a maximal 

torus. 
( i i i ) eEe i s reductive. 

It follows from the induction hypothesis that a|eEe is 

finite—to—one. Thus, since a" 1(o(e)) is contained in G(e), 

a _ 1 ( o ( e ) ) is f i n i t e . Since every element of E'—N' is a unit 

times an idempotent, i t follows that a : E—N > E'—N' i s 

finite—to—one. Hence, a : E — N —> E' — N' is onto and 

finite—to—one because E' is regular. By 1.1.2, a induces an 

isomorphism of E - N onto E' - N'. Let U' = E' - N'. Identifying 

U' with E — N via a we have a morphism U' — > E. Thus by 1.1.5 

there i s a unique morphism f : E' > E extending U' > E 

( r e c a l l that the codimension of N' in E' is larger than one). 
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Thus o i s an isomorphism because oof = 1. So E i s regular. 

Now assume that E i s reductive but does not necessarily 

have a zero. Let e e 1(E) be a minimal idempotent and l e t x e E. 

Then without loss of generality xe = ex = ke for some k € G(E). 

But then by 4.4.10 there exists g, h e G(E) such that gxh e 

E(e). By d e f i n i t i o n , e e E(e) i s the zero of E(e). Further, by 

4.4.11 E(e) i s reductive. Thus, by the above arguement, E(e) i s 

regular. Hence, there exist u,v e G(E(e)) such that ugxhv i s an 

idempotent of E(e). But then E i s regular. 

We thus have a s i g n i f i c a n t generalization of a fundamental 

theorem of modern algebra. 

4.4.15 Theorem: Let E be an irreducible algebraic monoid with 

zero. Then the following are equivalent. 

(i) E is regular. 

( i i ) E is reductive. 

( i i i ) E has no n o n — t r i v i a l nilpotent ideals. 

Proof: 4.4.9 and 4.4.14. 

4.5 Connected Monoids With Zero  

D e f i n i t i o n : Let E be an algebraic monoid with 0. Then E i s 

connected i f E i s connected in the Zariski topology 

(equivalently, i f k[E] has no n o n — t r i v i a l idempotents, since any 

n o n - t r i v i a l idempotent yi e l d s a di r e c t product decomposition). 

Let E be a connected monoid with 0 and l e t E° be the 

irreducible component of 1. Let T be a maximal torus of G° and 

le t e e X be a minimal idempotent of X, the closure of T in E°. 

e i s not the identity element of E since t h i s would imply that 

G° i s closed in E, thereby contradicting the connectedness of E. 

Let e(l) = e, and E(1) = eEe. Then E(1) i s an algebraic monoid 
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w i t h 0 a n d i d e n t i t y e l e m e n t e . I f e ' i s a n o t h e r m i n i m a l 

i d e m p o t e n t t h e n E ' ( 1 ) i s i s o m o r p h i c w i t h E ( 1 ) s i n c e , i n a n y 

i r r e d u c i b l e m o n o i d a l l m i n i m a l i d e m p o t e n t s a r e c o n j u g a t e . 

A s s u m i n g e ( l ) i s n o n — z e r o t h e p r o c e d u r e c a n be a p p l i e d t o 

E ( l ) . T h u s , we o b t a i n a s e q u e n c e o f i d e m p o t e n t s 

1 = e ( 0 ) > e ( 1 ) > . . . > e ( k ) = 0 a n d m o n o i d s 

E ( l ) = e ( l ) E ( l - 1 ) e ( l ) , 1 = 1 , . . . , k , s u c h t h a t , f o r a l l 1 , e ( l ) 

i s a m i n i m a l i d e m p o t e n t o f E ( l — 1 ) ° . 

I f a n o t h e r s u c h s e q u e n c e 

1 = f ( 0 ) > f ( 1 ) > . . . > f ( m ) = 0 i s c h o s e n , t h e n k = m a n d E ( l ) 

i s i s o m o r p h i c w i t h E ' ( l ) f o r a l l 1 . 

T h e r e i s a c o n v e r s e t o t h i s r e s u l t . F o r t h i s we n e e d a 

l e m m a . 

4 . 5 . 1 Lemma: S u p p o s e k* a c t s on t h e a f f i n e v a r i e t y X i n s u c h a 

way t h a t t h e a c t i o n e x t e n d s t o k . S u p p o s e t h a t F ( X , k ) , t h e f i x e d 

p o i n t s e t o f t h i s a c t i o n , i s c o n n e c t e d . T h e n X i s c o n n e c t e d . 

P r o o f : The a c t i o n o f k on X i n d u c e s a d i r e c t sum d e c o m p o s i t i o n 

k [ E ] = I k [ E ] ( o ) w h e r e a r a n g e s o v e r N = X ( k ) . T h u s , t h e 

c o m p o s i t e , k [ E ] ( 0 ) > k[X] > k [ F ( X , k ) ] i s a n i s o m o r p h i s m 

( F ( X , k ) i s t h e f i x e d p o i n t s e t o f t h e a c t i o n ) . Now I , t h e s e t o f 

i d e m p o t e n t s o f k [ X ] , i s f i n i t e . So I i s c o n t a i n e d i n k [ X ] ( 0 ) . 

T h u s , t h e c o - o r d i n a t e r i n g o f X h a s no n o n — t r i v i a l i d e m p o t e n t s 

a n d X i s t h u s c o n n e c t e d . 

4 . 5 . 2 T h e o r e m : L e t E be a n a l g e b r a i c m o n o i d w i t h z e r o . T h e n t h e 

f o l l o w i n g a r e e q u i v a l e n t . 

( i ) E i s c o n n e c t e d i n t h e Z a r i s k i t o p o l o g y . 

( i i ) T h e r e i s a c h a i n o f i d e m p o t e n t s 1 = e ( 0 ) > e ( l ) > . . . > 

e ( k ) = 0 s u c h t h a t e ( i + 1 ) e e ( i ) E e ( i ) ° f o r i = 0 , . . . , k - 1 . 



59 

( i i i ) For a l l non-zero idempotents e € 1(E), G(eEe),the group of 

units of eEe, i s not closed in eEe. 

Proof; (i) => ( i i ) . Already given, ( i i ) => ( i ) . Inductively we 

may assume that e ( l)Ee(1) i s connected. Since e ( l ) t E° there 

exists a 1—p.s.g. p : k* > G° such that p extends to 

p : k > E° with p(0) = e ( l ) . Thus, e ( l ) E is connected since 

the fixed point set of the action f(t,x) = xpit) on e(1)E is 

e(1)Ee ( l ) (so 4.5.1 app l i e s ) . But then E is connected (again by 

4.5.1) since e ( l ) E is the fixed point set of the action g(t,x) = 

/>(t)x on E. (i) => ( i i i ) . This follows from the fact i f E is 

connected then eEe is connected. ( i i i ) => ( i i ) . If G is not 

closed in E then by 2.2.7 there exists a n o n - t r i v i a l idempotent 

e e E°. Thus inductively we can construct a chain of idempotents 

a s i n ( i i ) . 
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V IDEALS 

The purpose of t h i s c h a p t e r i s t o r e c o r d some of the 

g e n e r a l p r o p e r t i e s of i d e a l s . The main r e s u l t i s a s t r u c t u r e 

theorem f o r prime i d e a l s ( 5 . 2 . 1 ) . I have assumed throughout t h a t 

E i s an i r r e d u c i b l e a l g e b r a i c monoid. An i d e a l of E i s a subset 

J , of E such t h a t EJE i s c o n t a i n e d i n J . 

5.1 P r e l i m i n a r y R e s u l t s 

5.1.1 P r o p o s i t i o n : L et E be s o l v a b l e and l e t I be an i d e a l of E. 

Then the f o l l o w i n g are e q u i v a l e n t . 

( i ) I f some power of x i s i n I then x i s i n I (I i s r a d i c a l ). 

( i i ) I = />" 1(/o(I)) where p : E > X i s the u n i v e r s a l morphism 

t o a D—monoid ( 4 . 3 . 1 ) . 

P r o o f : ( i i ) => ( i ) . Any i d e a l i n a D—monoid i s r a d i c a l as i s any 

p u l l b a c k of a r a d i c a l i d e a l . 

( i ) => ( i i ) . p i s onto, so p(I) i s an i d e a l of X. Thus p(I) i s 

the union of a f i n i t e number of o r b i t s of idempotents (under the 

a c t i o n of r i g h t t r a n s l a t i o n ) . L e t eG(X) be an o r b i t of p{I) . Now 

/>" 1(eG(X)) = { x e E | some power of x i s i n G ( e ( x ) ) , />(e(x)) = 

e }. So p " 1 ( p ( l ) ) = { x 6 E | some power of x i s i n I }, s i n c e , 

i f x e I then e ( x ) t I . 

5.1.2 C o r o l l a r y : L e t E be i r r e d u c i b l e and s o l v a b l e . Then t h e r e 

i s a c a n o n i c a l one—to—one c o r r e s p o n d e n c e between r a d i c a l i d e a l s 

of E and r a d i c a l i d e a l s of X, where p : 'E > X i s the 

u n i v e r s a l D—monoid a s s o c i a t e d w i t h E. 

5.1.3 P r o p o s i t i o n : L et E be i r r e d u c i b l e and suppose t h a t I i s an 

i d e a l of E. L e t Z be the c l o s u r e i n E of some B o r e l subgroup B 

of G ( E ) . I f the i n t e r s e c t i o n 1(B) of I w i t h Z i s a r a d i c a l i d e a l 

then I i s c l o s e d i n E. 
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Proof: If 1(B) is rad i c a l i t is closed by 5.1.2. But I i s the 

union of a l l the conjugates of 1(B). Thus I is closed by 1.2.3 

( i ) . 

5.1.4 Corollary: Suppose P is a prime ideal of E ( i . e . P i s an 

ideal such that E — P i s m u l t i p l i c a t i v e l y closed). Then P i s a 

closed subset of E. 

Proof: Any prime ideal i s r a d i c a l . 

5.1.5 Corollary: Suppose P and Q are prime ideals of E such that 

P(s) = Q(s) (they contain the same semi—simple elements). Then P 

= Q. 

Proof: If P(s) = Q(s) then the same i s true of P(B) and Q(B) 

(the intersections of the closure of B with P and Q 

respectively), where B i s a Borel subgroup. Thus />(P(B)) 

p(Q(B)) where p is the universal morphism from the closure of B 

to a D-monoid. Thus, by 5.1.1 P(B) = Q(B). So P = Q. 

5.1.6 Proposition: Let E be i r r e d u c i b l e , T a maximal torus of 

G(E), and W i t s Weyl group. Suppose I is a W—invariant prime 

ideal of Z, the closure of T in E. Then there exists a 

W—invariant character z e X(Z) such that I = z"'(0). 

Proof: Assume Z i s normal. Then Z — I i s a normal algebraic 

monoid variety. Let e e Z — I be the minimal idempotent. By 

Sumihiro's theorem [31;Corollary 2] there exists a T—invariant 

a f f i n e open subset U of Z — I with e e U. Thus U = Z — I since 

any open subset of Z — I with e e U intersects every other 

T-orbit. So Z - I is a f f i n e and Z - I > Z is an open 

imbedding. Consider k[Z] > k[Z - I ] . If A = { f € k[Z] | f ( l ) 

= 0 } then Ak[Z - I] = k[Z - I ] . Since A = ( x ( i ) ) , for some 

x(i) e X(Z), we have E a ( i ) x ( i ) •= 1 for some { a ( i ) } in 



62 

k[Z - I ] . Let a(i) = E b ( i , j ) y ( i , j ) , b ( i , j ) e k[Z - I ] , y ( i , j ) e 

X(Z - I ) . Then E b ( i , j ) x ( i ) y ( i , j ) = 1. After c o l l e c t i n g terms we 

have 1 = E n ( i , j ) x ( i ) y ( i , j ) where a l l the x ( i ) y ( i , j ) are 

d i s t i n c t . Thus x ( i ) y ( i , j ) = 1 for some i and j because 

characters are l i n e a r l y independent. Let x = x(i) and y = 

y ( i , j ) . Then x e k[Z - I] is a unit. Thus, k[Z - I] = k[Z.][l/x] 

and consequently A = r((x)) (r((x)) denotes the radi c a l of (x)). 

Let w e W. Then A = r(w*(x)) since A i s W—invariant. Thus A = 

r((z)) where z is the product of a l l w*(x) as w ranges over W. 

Further, z i s W—invariant and I = z ~ 1 ( 0 ) . Hence, i t remains to 

find z in case Z is not necessarily normal. Let n : Z' > Z be 

the normalization of Z. The Weyl group acts on Z' as well; thus, 

choose z e k[Z] as above, so that z _ 1 ( 0 ) = I' = n _ 1 ( l ) and z is 

W—invariant. By 4.5.1 some power, say y, of z is an element of 

X(Z). But z - ' ( 0 ) = v ' ( 0 ) in Z'. Hence the inverse image in Z' 

of v - 1 ( 0 ) i s equal to n ~ 1 ( I ) . Thus v ~ 1 ( 0 ) = I since n i s onto. 

5.2 The Structure Of Prime Ideals  

5.2.1 Theorem: Let E be an ir r e d u c i b l e algebraic monoid, T a 

maximal torus of G(E) , W the Weyl group of T. Then 

(i) If P i s a prime ideal of E there exists a character x e X(E) 

such that P = x" 1 ( 0 ) . 

( i i ) There are canonical b i j e c t i o n s among the set of primes of 

E, the set of W—invariant primes of X (the closure of T in E) 

and the set of W—invariant idempotents of X. 

Proof: Assume E i s reductive. Let P be a prime ideal of E and 

le t X be the closure of a maximal torus T of G(E). Consider 

P(T), the intersection of P and X. P(T) is a W-invariant prime 

ideal of X. Thus, by 5.1.6 there exists a W-invariant character 
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x on X such that P(T) = x ~ 1 ( 0 ) . By 4.4.3, x l i f t s uniquely from 

kfX] to x e c l [ E ] . I f S i s another maximal torus then S = gTg~ 1 

so i t follows that x is a character on E and that x~ 1(0) has the 

same semi-simple elements as P. Thus, by 5,1.5 P = x ~ 1 ( 0 ) . 

Now assume that E is not necessarily reductive. By 4.4.8 

there exists a morphism p : E > E' such that E' is reductive, 

p : X > X' is an isomorphism, and p~ 1(1) •= UR(G), the 

unipotent r a d i c a l of G. Then p(P(T)) = p{P)(T), since i f x e 

p(P)(T) then there exists s e P semi—simple such that pis) = x. 

But then there exists u € UR(G) such that usu" 1 e P(T). Thus, 

/o(usu" ' ) = pis) = x. Hence, by the remark following 4.4.1, there 

exists v e c l [ E ] such that v~ 1(0) intersected with X is equal to 

P(T) (since c l [ E ' ] is contained in k[E]). Hence, by 5.1.5, P = 

v _ 1 ( 0 ) . This proves ( i ) . 

Proof of ( i i ) . If P is a prime ideal of E then P(T) is 

W-invariant. If P(T) = Q_(T) then P = Q by 5.1.5. Conversely, i f 

I is a W—invariant prime then by 5.1.6 there exists a 

W-invariant character v e X(T) such that I = v " 1 ( 0 ) . If E — > E 1 

is the morphism of 4.4.8 to the reductive monoid E', then v can 

be l i f t e d to a class function on E' which i s a p r i o r i a class 

function on E. It follows that v i s actually a character on E' 

and thus, on E. Since v~ 1(0)(T) = I(T) we see that every 

W—invariant prime of X occurs in t h i s fashion. 

If I i s a W-invariant prime then e ( l ) , the minimal 

idempotent of X — I, i s a W—invariant idempotent. Conversely, i f 

e e X i s a W-invariant idempotent then i t follows from 4.1.2 

( i v ) , that 1(e), the union of a l l f x as f ranges over a l l 

maximal idempotents not s t r i c t l y larger than e, i s a W—invariant 
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p r i m e i d e a l o f X s u c h t h a t e e X — I i s t h e m i n i m a l i d e m p o t e n t . 

R e m a r k : T h e o r e m 5 . 2 . 1 d e m o n s t r a t e s an i m p o r t a n t m o t i f i n t h e 

t h e o r y o f a l g e b r a i c m o n o i d s . One h o p e s t h a t u l t i m a t e l y much o f 

t h e t h e o r y o f r e d u c t i v e m o n o i d s c a n be r e d u c e d t o p r o b l e m s 

c o n c e r n i n g D — m o n o i d s a n d t h e i r s y m m e t r i e s . 
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VI TWO-DIMENSIONAL REGULAR MONOIDS 

The c l a s s i f i c a t i o n and structure theory of semi—simple rank 

one monoids, according to the next chapter, requires a deeper 

understanding of lower—dimensional monoids. The purpose of this 

chapter is to expose the properties of two—dimensional monoids 

which are relevant to these developments. For completeness I 

have also included the case (case 2 below) which i s not needed 

in subsequent chapters. 

6.1 Structural Properties  

Def i n i t i o n : A monoid E is regular i f for a l l x e E there i s an 

idempotent e and a unit g such that gx = e. 

Note that any two—dimensional irreducible monoid is 

solvable. 

6.1.1 Proposition: Let E be a two—dimensional ir r e d u c i b l e 

(non—trivial) algebraic monoid. Then the following are 

equivalent. 
(i) E i s regular. 
( i i ) Either E i s a D—monoid or i t does not have a zero. 

( i i i ) E is C l i f f o r d (see 4.2). 
Proof: Let p : E > X be the universal D—monoid associated 

with E (as discussed in 4.3). 

(i) => ( i i ) . P l a i n l y , a D—monoid i s regular. So assume p i s not 

an isomorphism. Since E i s n o n — t r i v i a l , X is not 0—dimensional. 

Thus dim X = 1. If 0 e E then 1(E) ={ 0, 1 } since I(X) = { 0, 

1 }. Thus p'HO) = { x e E | x i s nilpotent }. Further, by 

1.1.1, dim(/>"1(0)) > dim(p). Thus E cannot be regular since the 

set of nilpotent elements is a two—sided ideal of E. Hence, i f E 

is regular E cannot have a zero. 
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(i) => ( i i i ) . D—monoids are C l i f f o r d so again we may assume that 

E does not have a zero and that dim X = 1 . 

(a) Assume E is commutative. Then 1(E) = { 1, e } and e i s 

non—zero. Since by 4.2.1 es = se = e for a l l semi-simple 

elements s, we must have that eG(u) = G(u)e is one dimensional. 

Hence, the morphism G(u)xE(s) —-> E i s finite—to—one. The image 

is open and m u l t i p l i c a t i v e l y closed and contains a l l semi—simple 

elements. Thus, by 5.1.5, i t is onto. Hence, E is C l i f f o r d . 

(b) Assume E i s non—commutative. Then i f e € E is an idempotent 

dim Cl(e) = 1, since otherwise, Cl(e) = { e }. So, e would be an 

element of the closure of every 1—p.s.g. of G. This i s absurd 

since the union of the 1—p.s.g.'s is dense in G (this would 

force e to be the zero of E). Let V be a component of E. — G. 

Then V is a two—sided ideal of E since i t s codimension is one. 

Thus, V contains an idempotent by 2.2.5. Thus, Cl(e) is a subset 

of V. But the dimensions are the same so Cl(e) = V. Hence E — G 

= V is irreducible of dimension one and E — G = C l ( e ) . Clearly E 

is thus C l i f f o r d . 

( i i i ) => ( i ) . Any C l i f f o r d monoid i s regular. 

Remark: From the proof of 6.1.1 we have the following r e s u l t . 

Suppose E i s non—commutative, dim E = 2 and e e E — G i s an 

idempotent. Then E is the union of G(E) and C l ( e ) . 

Case 1: E non—commutative, dim E = 2. 

Then either 

(a) eE = Cl(e) and 

Ee = { e } or 

(b) Ee = Cl(e) and 

eE = { e }. 
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Proof: If e, f c Cl(e), then ef = fe implies e = f by 4.3.3. 

Thus, eEe = { e }. Since e i s not the zero of E, either eE = 

Cl(e) or Ee = C l ( e ) . Thus the conclusion follows. 

For the remainder of case 1 I s h a l l assume that eE = Cl(e) 

and Ee = { e } (the other case is s i m i l a r ) . The example to keep 

in mind i s the set of two—by—two upper—triangular matrices 

(a(i , j ) ) such that a(1,1) = 1. 

Note that for a l l x, y e E, xey = ey. 

6.1.3 Theorem: Let E be as above and l e t e e E be a n o n — t r i v i a l 

idempotent. Let p : k* —> G be a 1—p.s.g. such that e is in the 

closure of p(k*). Then the action (g,x) > g _ 1xg of k* on E 

extends to an action of k on E. 

Proof: g _ 1xg = xg. So the action c l e a r l y extends. 

Case 2: E i s commutative. 
As in the proof of 6.1.1 the morphism m : G(u)xE(s) > E, 

m(u,s) = us, i s f i n i t e and b i r a t i o n a l . 
The remainder of t h i s section i s pre—occupied with several 

results concerning low—dimensional monoids. They are a l l 

ingredients in the structure theory of the next chapter. 

6.1.5 Proposition: Let E be a reductive monoid with 0, 

one—dimensional center and semi—simple rank one. Let e be an 

idempotent not equal to 0 or 1. Let R(e) = { g e G | eg = ege } 

and L(e) = { g e G | ge = ege }. Then R(e) and L(e) are opposite 

Borel subgroups. 

Proof: The intersection of R(e) and L(e) i s the c e n t r a l i z e r of e 

in G which i s a maximal torus. Thus R(e) and L(e) are 

'opposite'. We prove R(e) i s Borel. 

There exists g t G unipotent, such that eg i s not equal to 
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e . T h i s f o l l o w s f r o m t h e f o r m u l a i m m e d i a t e l y p r e c e d i n g 6.1.3 

a p p l i e d t o e i t h e r t h e c l o s u r e o f k * B ( u ) o r k * B ( u ) ~ , w h e r e B a n d 

B" a r e t h e B o r e l s u b g r o u p s c o n t a i n i n g t h e c e n t f a l i z e r o f e i n G , 

a n d k* i s t h e 1 — p . s . g . whose c l o s u r e c o n t a i n s e . S i m i l a r i l y , 

t h e r e e x i s t s m e G u n i p o t e n t s u c h t h a t me i s n o t e q u a l t o e . 

By 3 . 4 . 7 Ee i s c o n t a i n e d i n t h e c l o s u r e o f R ( e ) . B e c a u s e o f 

m a b o v e d i m Ee > 2 , a n d b e c a u s e o f g , d i m R ( e ) < 3 . T h u s d i m 

R ( e ) = 3 a n d d i m Ee = 2 i s t h e o n l y p o s s i b i l i t y . T h u s R ( e ) i s 

B o r e l . 

6.1.6 C o r o l l a r y : L e t E be a s i n 6.1.5. T h e n d i m E e = d i m eE = 2 . 
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VII SEMI-SIMPLE RANK ONE, REDUCTIVE MONOIDS 

This chapter i s an exposition of the main computations of 

the thesis. These results include a c l a s s i f i c a t i o n of a l l normal 

reductive monoids with zero and one—dimensional center, in case 

the semi—simple rank is one. 

7.1 is a discussion of the possible groups and the possible 

monoid types which a r i s e in thi s way. 

7.2 is a record of some of the immediate c o r o l l a r i e s that 

result from the von Neumann regularity of the underlying monoid. 

In 7.3 a procedure is devised whereby f i n i t e morphisms 

between certain monoids can be replaced by morphisms with 

D—group kernels. 

7.4 contains more technical preliminaries and a proof that 

normal, reductive monoids with zero and one—dimensional center 

are Cohen—Macaulay as algebraic v a r i e t i e s in case the 

semi—simple rank i s one. 

In 7.5 and 7.6 two c l a s s i f i c a t i o n theorems are established. 

The f i r s t makes use of certain bicartesian squares associated 

with the monoids in question and the second i s based on a 

computation of the characters of a maximal irreducible 

D—submonoid. 

7.1 Rank Two, Semi-simple Rank One, Reductive Groups  

7.1.1 Proposition: Suppose G is a non—abelian reductive group, 

rk G = 2, and rkss G = 1. Then G is isomorphic to one of G l ( k 2 ) , 

Sl(k 2)xk*, or PGl(k 2)xk*. 

Proof: Case 1. (G,G) = S l ( k 2 ) . Consider the morphism 

m : Sl(k 2)xk* > G, m(x,t) = xt (here k* i s the identity 

component of the center of G). If the kernel of m is n o n — t r i v i a l 
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(scheme th e o r e t i c a l l y ) i t follows that ker(m) = { ([a,a],a) e 

Sl(k 2 ) x k * | a 2 = 1 }, where [x,y] denotes the diagonal matrix 

with given entries. Hence, G = SI(k 2)xk*/ker(m) = G l ( k 2 ) . 

Case 2. (G,G) = PGl(k 2). In this case the kernel of m has to be 

t r i v i a l , since PGl(k 2) has no n o n — t r i v i a l f i n i t e normal 

D—subgroups. Thus G is isomorphic with PGl(k 2)xk*. 

7.1.2 Proposition: Suppose E is an irreducible algebraic monoid 

such that G = G(E) i s as in 7.1.1 and l e t T be a maximal torus 

of G(E). Then there are three p o s s i b i l i t i e s for the closure X, 

of T in E. 

(i) I(X) = { 1 }, in which case G(E) = E. 

( i i ) I(X) = { 1, e }, in which case there exists a morphism 

G'xk > E which i s f i n i t e and dominant (G' = (G,G)). 

( i i i ) I(X) = { 1, e, f, 0 }, in which case 0 i s the zero of E as 

well. 

Proof: (i) follows from 2.2.7. 

( i i ) Suppose I(X) = { 1, e }. Then i f w is an element of the 

normalizer of T, wew~1 = e. Hence, e i s contained in the closure 

of a W—invariant irreducible torus, S. But then S is ce n t r a l , 

because G i s reductive. Thus, e i s central and hence, e i s in 

the closure of every maximal torus. Therefore, I(E) = { 1, e }. 

Consider E > eE, x —> ex. Since e is not the zero, eg is not 

equal to e for some g e G'. Thus G' > eE is f i n i t e to one and 

dominant since G has no n o n — t r i v i a l normal subgroups of positive 

dimension. Hence m : G'xk > E, (x,y) > xy, is 

finite—to—one and dominant. Thus i t i s also onto because the 

complement of the image is an ideal with no semi—simple 

elements. Thus m is f i n i t e by 1.1.2. 
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( i i i ) I(T) = { 1 , e, f, 0 }. I f w i s a n o n - t r i v i a l element of 

the normalizer of T, then the fixed idempotents of w are 0 and 

1. Thus 0 i s a central idempotent of E and by the conjugacy of 

maximal t o r i , 0 i s the 0 of every maximal torus. Thus 0 i s the 0 

of E since the semi—simple elements of G are dense in E. 

7.2 Properties Of Semi-simple Rank One Monoids 

The purpose of this section is to record some of the 

geometric properties of semi—simple rank one monoids. Throughout 

I have assumed without further mention that E is i r r e d u c i b l e , 

0 e E, dim Z(G(E)) = 1, and rkss G(E) = 1.-Let G = G(E). 

7.2.1 Proposition: N, the set of nilpotent elements of E, is 

irreducible of dimension two. 

Proof: It follows e a s i l y , since E is regular, that the set of 

nilpotent elements of the closure of a Borel subgroup, is 

irreducible of dimension one. Thus, since Borel subgroups are 

a l l conjugate and of codimension one, N i s irreducible of 

dimension two. 

7.2.2 Proposition: dim(E — G) = 3 and E — G is i r r e d u c i b l e . 

Proof: E — G = x" 1(0) for some character x : E > k by 5.2.1. 

So dim(E — G) 3 by K r u l l ' s p r i n c i p a l ideal theorem. Let 

z c E — G. Since E is regular, there exists g e G such that 

gz = e, a non—zero idempotent. Since a l l idempotents not equal 

to 0 or 1 are conjugate, GzG = (E - G) - { 0 }. Thus E - G i s 

equal to the closure of GzG, which is i r r e d u c i b l e . 

7.2.3 Corollary: The action GxGxE > E, given by (g,h,x) > 

gxh" 1 has three o r b i t s , { 0 }, (E - G) - { 0 } and G. 

7.2.4 Corollary: E — G i s the only n o n — t r i v i a l two—sided i d e a l . 

7.2.5 Proposition: Let T be a maximal torus and l e t X be i t s 
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closure in E. Then E — { 0 } and X — { 0 } are smooth algebraic 

v a r i e t i e s , assuming E i s normal. 

Proof: Let Sing(E) be the singular locus of E. By Rrull's 

characterization of normality, codim(Sing(E)) > 2. Thus, by 

7.2.4, Sing(E) i s contained in { 0 } because Sing(E) is a 

two—sided ideal of E. 

By 4.4.4 ( i i ) X - { 0 } is the fixed point set of the 

action of T on E - { 0 } by inner automorphisms. Thus, X — { 0 } 

is smooth since E — { 0 } is smooth and T is l i n e a r l y reductive. 

In the next section we s h a l l see that i f E is normal then 

both E and T are Cohen—Macaulay. 

7.2.6 Construction: Big C e l l . 

Let B and B" be opposite Borel subgroups and l e t 

e 2 = e e X, the closure of the maximal torus associated with B 

and B". Now T(e) = X — fx is the unique open submonoid of X such 

that I(T(e)) = { 1, e } (where f i s the other n o n — t r i v i a l 

idempotent of X). Further, T(e) is a f f i n e and T(e)-T = ZG°e. Let 

Z and Z" be the closures of B and B" in E and l e t k* be the 

1—p.s.g of T which converges to e. Notice that e i s in the 

closure of k*B(u) which is a two—dimensional regular monoid. 

Thus, the results of chapter 6 may be applied. 

Assume that 

Ze = Ee and 

eZ" = eE 

(as in 3.4.7 and 6.1.6). 

Consider the morphism of v a r i e t i e s m : B(u)xT(e)xB"(u) > E, 

m(x,y,z) = xyz. m is b i r a t i o n a l by the well known construction 

from group theory. To show that m is finite—to—one i t su f f i c e s 
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to show that m~ 1(e) i s a f i n i t e set since B(u)x(Te)xB~(u) i s an 

orbit under the action 

B(u)x(ZG)°xB-(u)x(B(u)x(T(e))xB"(u)) > (B (u)x(T(e ) )xB" (u)) 

(u,t,v)*(x,y,z) = (ux,ty,zv~ 1). 

Suppose that xyz = e, x e B(u), y = te, t e Z(G)° and 

z e B~(u). So, etz = x" 1e and thus, x" 1e commutes with e. By the 

remark following 6.1.1 (applied to the closure of B(u)k*), 

x"'e = e. S i m i l a r i l y , ez = e. Thus, te = e as well. But, 

{ (x,t,z) t B(u)x(ZG)°xB"(u) | xe = te = ez =e } is f i n i t e 

since, by assumption, dim(B(u)e) = dim(ZG°e) = dim(eB~(u)) = 1. 

7.2.7 Proposition: Assume E is normal. Then m : BxT(e)xB~ > E 

is an open imbedding. 

Proof: m i s finite—to—one and b i r a t i o n a l . Since E i s normal, m 

is an open imbedding by 1.1.2. 

7.2.8 Corollary: Suppose E is normal and E' is another algebraic 

monoid. Let T be a maximal torus of G(E). Suppose we have 

morphisms p : G(E) > E' and o : T(e) > E' such that p \T = 

a|T. Then there exists a unique morphism p : E > E' such that 

fi|G(E) = p and fi|T(e) = c. 

Proof: Let U = B(u)T(e)B"(u) be as in 7.2.7. Define 

fi' : U > E*, £'(x,y,z) = p(x)o(y)p(z). Thus fi1 agrees with p 

on G(E) and with a on T(e). Thus there exists fi" : V > E' 

extending both p and p (where V is the union of U and G(E)). But 

the codimension of E — V is greater than or equal to two since V 

intersects E — G and E — G i s ir r e d u c i b l e . Thus, by 1.1.5 there 

exists a unique morphism p : E > E' extending fi". 
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7.3 Constructing Morphisms And Applications 

Let k be an a l g e b r a i c a l l y closed f i e l d of c h a r a c t e r i s t i c 

p > 0. If E i s an algebraic monoid defined over k, with group of 

units G, then there exist n o n — t r i v i a l purely inseparable 

morphisms p : E > E. The purpose of this section is to 

c l a s s i f y these morphism in case the group G is isomorphic to 

S l ( k 2 ) x k * . Since the results recorded here are elementary in 

nature, proofs w i l l often be omitted or sketched. 

7.3.1 Proposition: Let B be the subgroup of upper—triangular 

matrices of S l ( k 2 ) and l e t p : B > B be a b i j e c t i v e morphism. 

Then there exists n e N and g e B such that qp(a(i,j))g"1 = 

( F ( n ) ( a ( i , j ) ) ) for a l l ( a ( i , j ) ) e B, where F(n) : k > k is 

the Frobenius morphism composed with i t s e l f n times. 

7.3.2 Proposition: Let p : S l ( k 2 ) > S l ( k 2 ) be a b i j e c t i v e 

algebraic group homomorphism. Then there exists g e S l ( k 2 ) and 

n c N such that qp((a(i,j)))g"1 = ( F ( n ) ( a ( i , j ) ) ) for a l l 

( a ( i , j ) ) t S l ( k 2 ) . 

Proof: There exists g £ S l ( k 2 ) such that p' = qpq' 1 s a t i s f i e s 

p'(B) = B (B as above). Thus, by 7.3.1, p'|B = F(n)|B for some n 

£ N. Thus, by 1.2.2 ( i ) , />' = F(n). 

7.3.3 Proposition: Let p : G(1) > G(2) be a morphism of 

algebraic groups, where G(1) and G(2) are each isomorphic to one 

of G l ( k 2 ) , S l ( k 2 ) or P G l ( k 2 ) . Let o(i) : Sl(k 2)xk* > G ( i ) , i 

= 1,2, be given by a(g,t) = U ( i ) ( g ) ) t , where e (i) : S l ( k 2 ) -> 

(G(i),G(i)) i s the universal covering map and k* > G(i) i s 

the identity component of the center of G ( i ) . Then there exists 

a unique morphism p' : S l ( k 2 ) > S l ( k 2 ) such that poa(.) -

a(2)cV . 
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Proof: p l i f t s to />'. on the l e v e l of Borel subgroups. The 

morphism p' is as in Proposition 7.3.1. This morphism extends to 

a l l of S l ( k 2 ) x k * . Thus, by 1.2.2 ( i ) , pood) = o(2)o/>*. 

7.3.4 Proposition: Suppose we have the following s o l i d arrow 

diagram in the category of algebraic monoids, where G ( i ) , i=1,2, 

i s the group of units of E ( i ) , i = 1,2 and E d ) * , i = 1,2, i s 

constructed in accordance with 3.2.3 applied to the f i n i t e 

morphisms a and fi. Assume that a l l horizontal morphisms are 

f i n i t e and dominant. Assume further, that E d ) i s normal. Then 

the dotted arrow can be f i l l e d in uniquely. 

E d ) > E(2) 

Sl(k 

G(1 ) -> G(2) 

a fi 

)xk* > Sl( )xk* 

v 
E( 1 )*-

v 
-> E(2)* 

Proof: n*(k[E(2)]) is contained in the intersection (in 

k[Sl(k 2)xk*]) of k[Gd)] and k [ E ( l ) * ] . But k [ E ( 1 ) ] i s equal to 

the intersection of k[G(l)] and k [ E ( l ) * ] , since E(1) i s normal. 

Thus the arrow exists. 

7.3.5 Proposition: Suppose p : E(1) > E(2) is a f i n i t e 

dominant morphism of normal algebraic monoids (G(i) = G(E(i)) as 

in 7.3.3). Then either 

(i) There exists a f i n i t e dominant morphism a : E(1) > E(2) 

such that kernel(o) is a f i n i t e D-group; or 

( i i ) There exists a commutative diagram 
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E(3) -> E ( 1 ) 

v 
E(2) 

— v 
-> E' 

such that every morphism i s f i n i t e and dominant and every kernel 

i s a f i n i t e D—group. 

Proof: By 7.3.3 and 7.3.4 i t s u f f i c e s to prove th i s i f G(1) 

G(2) = S l ( k 2 ) . So we have p : S l ( k 2 ) x k * > Sl(k 2)xk*. Since p 

is b i j e c t i v e , we may assume, by 7.3.2, that p = (F(n),sF(m)), 

where F(n) i s as in 7.3.1 and (s,p) = 1. 

Case 1: n < m. 
Consider the diagram, 

(F(n),sF(m)) 

S l ( k 2 ) x k * -> Sl( k 2 ) x k * -> Sl( k 2 ) x k * 
(F(n),F(n) ) (1,sF(m-n)) 

V B V V 
E( 1 ) > E(1) > E(2) > 

B exists by 7.2.8 since on the l e v e l of characters 

F(n) : X —-> X, F(n) as in 7.3.1, 

is the desired extension. 

Thus, on the l e v e l of characters, we have 

X(1) <- X(1) <- X(2) 

X( 1 ) '<-
<-

X( 1 ) '< X(2) ' 

The dotted arrow exists because the diagram A is a pullback. 

Hence, again, by 7.2.8, we can f i l l in the dotted arrow (of case 

1) to a morphism E(1) > E(2). 
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Case 2: n > m. 

Let E' = E(2)/K, where K = { x e G(2) | (F(n-m))(x) = 1 }. Then 

we have 

(F(n),sF(m)) (1,F(n-m)) 
E ( 1 ) > E ( 2 ) > E' 

f = (l,F(n-m)) is the desired morphism E(2) > E'. 

Composing (l,F(n—m)) and (F(n),sF(m)) we obtain 

g = (F(n),sF(n)). Noting that E' = E ( l ) / k e r ( g ) , we also obtain 

the following diagram, 

(F(n),sF(n)) 
> 

Sl(k 2)xk* > Sl(k 2)xk* > Sl(k 2)xk* 
( 1 ,s) (F(n),F(n) ) 

v 
E(2) 

v 
> E' 

v 
-> E' 

e exists (by 7.2.8) just as in case 1 above, 

On the l e v e l of characters we have 

X ( 1 ) < X' < X' 

X( 1 )*< X' *<-
< 

X' * 

where * denotes the characters of the closure of the torus in 

question. The dotted arrow exists because the image of X'* in 

X ( 1 ) i s f i n i t e over the image of X'* in X ( 1 ) * . Applying 7.2.8 

again we obtain, in t h i s case 

E ( 1 ) > E' . 

From above, we also have a morphism f : E(2) > E'. Thus, 

taking the pullback of these two morphisms and r e s t r i c t i n g the 

resulting diagram to (normalized) identity components, we obtain 
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the diagram advertised in ( i i ) above. 

7.4 Cohen-Macaulay Monoids 

Let E be a reductive algebraic monoid such that dim Z(G(E)) 

= 1 , rkss G(E) = 1 and 0 € E. 

7.4.1 Lemma: There exists a representation p : E > End(V) 

such that 

(i) p i s an irreducible representation. 

( i i ) p is a f i n i t e morphism. 

Proof: By the proof of 4.4.8 there exists an irreducible 

representation p : E > End(W) of E such that p{0) = 0 and no 

idempotent of E is sent to 0. Let V be an E—simple summand of W 

such that some idempotent e of E i s non—zero on V. By 7.2.3, p\V 

: E > End(V) has a t r i v i a l kernel. It follows from 3.4.13 

that p\V i s a f i n i t e morphism. 

Let p : E > End(V) be f i n i t e and irreducible as in 

7.4.1. Then we have the following commutative diagram: 

F(n) 
S l ( k 2 ) > End(k 2) 

m 

v v 
E > End(V) = End(m(K 2)) 

p 

where m denotes the m—th symmetric power and F(n) i s as in 

7.3.1. This follows from the fact that every irreducible 

representation of (G(E),G(E)) is isogenous to a symmetric power 

of the canonical two—dimensional representation of S l ( k 2 ) . 

Clearly, 

(i) m : End(k 2) > End(m(k 2)) i s f i n i t e . 

( i i ) p(Z(E)°) = Z(End(m(k 2)) = m(Z(End(k 2))). 
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Thus, fi(E) = m(End(k 2)). 

Hence, i f we let E(1) = image(m), then we obtain, 

m : End(k 2) > E(1) and p : E > E(1) such that 

(i) both m and p are f i n i t e morphisms. 

( i i ) kernel(m) i s a f i n i t e D—group (X(kernel(m)) = Z/mZ). 

By 7.3.5 applied to p above, we have; 

7.4.2 Proposition: Let E be a reductive, normal algebraic monoid 

with 0, such that dim ZG(E) = 1 and rkss G(E) = 1. Then there 

exists either 

(i) a morphism p : E > m(End(k 2)) such that p i s f i n i t e and 

dominant ('m' denotes m—th symmetric power) and kernel(/>) is a 

f i n i t e D—group, or 

( i i ) morphisms e : E > E' and a : m(End(k 2)) > E' such 

that both B and a are f i n i t e and dominant and have f i n i t e 

D—group kernels. 

7.4.3 Note: In case ( i i ) we may assume that E' is normal. Then 

there exists an isomorphism E' > ml(End(k 2) such that with 

th i s i d e n t i f i c a t i o n , com = ml (the ml—th symmetric power), where 

1 = degree(o). Thus in either case (7.4.2 (i) or ( i i ) ) we have 

morphisms m : End(k 2) > m(End(k 2)) and p : E > m(End(k 2)) 

such that both m and p are f i n i t e and dominant and have f i n i t e 

D—group kernels. 

7.4.4 Theorem: Let E be as in 7.4.2. Then E is Cohen—Macaulay. 

Proof: We have from 7.4.3, the following diagram, where R = 

End(k 2). 
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X -> R 

v 
E 

m 

v 
-> m(R) 

Here X is the normalization of the identity component of the 

pull—back of m and p. A l l morphisms have f i n i t e D—group kernels 

and R is a smooth variety. By 1 . 3 . 8 , X is Cohen—Macaulay and 

thus, by 1 . 3 . 9 , E is Cohen—Macaulay. 

7 . 4 . 5 Theorem: Let E be as in 7 . 4 . 2 and l e t T be a maximal torus 

of G(E). Then the closure of T in E is a normal algebraic 

variety. 

Proof: Again from 7 . 4 . 3 we have 
o 

X > R 

v 
E 

m 

v 
-> m(R) 

where a l l morphisms are f i n i t e and dominant and R i s a regular 

variety. It s u f f i c e s to prove that i f T is a maximal torus of X 

then Z , i t s closure in X , is normal. This follows from the fact 

that B ( Z ) is isomorphic to Z / p ~ 1 ( 1 ) , so, by 1 . 3 . 2 ( i v ) , p ( Z ) is 

normal i f Z i s . 

Now let W be a maximal irreducible D—submonoid of R and l e t 

Z = a'1(W) (a p r i o r i non—reduced). Let n = degc = d i m k [ p ~ 1 ( 1 ) ] . 

Since R i s regular and X is Cohen—Macaulay, a i s a f l a t 

morphism. Thus, o | Z : Z > W i s f l a t of degree n. We have 

inclusions Z*(red) > Z(red) and j : Z(red) > Z , where 

Z(red) is the reduced variety associated with Z and Z*(red) = 

/>~1(T) (T is the group of units of W) . Now Z*(red) is -a 
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commutative subgroup of G(X) consisting e n t i r e l y of semi—simple 

elements. Thus Z*(red) i s actually a maximal torus. Since p " 1 ( l ) 

is contained on Z*(red), p|T is f l a t of degree = h = dim 

k [ p " 1 ( l ) ] . Thus j is an isomorphism because otherwise deg p|T = 

deg p < deg a = n. P l a i n l y , Z is then equal to the closure of 

Z*. Hence, a|Z : Z > W is f l a t and thus Z is Cohen-Macaulay. 

But then Z i s normal because by 7.2.5 the singular locus has 

codimension larger than or equal to two (by 7.2.5). 

7.5 C l a s s i f i c a t i o n I 

By 7.4.3 and the proof of 7.4.4 we have, for E normal, 

reductive with 0 e E, rk G(E) = 2 and rkss G(E) = 1, the 

following commutative diagram in the category of algebraic 

monoids; 

7.5.1 Diagram 

f • 
E' > End(k 2) 

v v 
E > E" 

such that a l l morphisms are f i n i t e and dominant and a l l kernels 

are f i n i t e D—groups. 

We would l i k e to have as r i g i d a diagram as i s possible, so 

as to maximize i t s technical e f f i c i e n c y in further developments. 

To this end, we may assume that K, the Intersection of ker(f) 

and ker(g), is scheme t h e o r e t i c a l l y t r i v i a l because both f and g 

factor uniquely through E' > E'/K. Thus, the composite, 

ker(g) > E' > End(k 2), is a closed imbedding. Further, 

f(ker(g)) is contained in ker(a) since diagram 7.5.1 commutes. 

Letting H = f(ker(g)) we see that s factors through 
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-> E" since g is the universal morphism vanishing on End(k 2)/H • 

ker(g) . 

Thus, summing up, we may assume that, diagram 7.5.1 

s a t i s f i e s the following properties. 

(i) Every kernel i s c e n t r a l . 

( i i ) ker(f) and ker(g) have t r i v i a l scheme theoretic 

intersect ion. 

( i i i ) f : ker(g) > ker(a) is an isomorphism. 

(iv) g : ker(f) > ker(fl) i s an isomorphism. 

(v) The diagram i s bicartesian. 

If Z' i s the closure of some maximal torus in E' and Z = 

g(Z'), Z* = f(Z') and Z" = a(Z*) = *(Z) then we have the 

following commutative diagram in the category of algebraic 

monoids. 

7.5.2 Diagram: 

v 
Z 

-> z* 

v 
-> Z" 

such that every morphism is f i n i t e and dominant and the diagram 

is bicartesian on the group l e v e l ( i . e . It is both a pull—back 

and a push—out). 

G(E) = G l ( k 2 ) 

Re s t r i c t i n g the diagram 7.5.2 to the centers of each group 

we have the following commutative diagram in the category of 

algebraic groups. 
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7.5.3 Diagram: 

ZG' 

v 
k* 

-> k* 

v 
-> k* 

Further, 7.5.3 is bicartesian because a l l the kernels in 

diagram 7.5.1 are c e n t r a l . Since G' = G l ( k 2 ) or Sl(k 2)xk*, ZG' = 

k* or (Z/2Z)xk*. 

If G' = G l ( k 2 ) then 7.5.3 becomes, 

f 
k* > k* 

v 
k* 

v 
-> k* 

(9 

Thus, degrees and degrees are both odd, since i f degreec is even 

then G(E") (in 7.5.1) is isomorphic to PGl(k 2)xk* and thus, 

degree? is even as well. But then the pull—back (k* at upper 

l e f t ) could not be irreducible (the number of irreducible 

components of the pull—back is equal to the greatest common 

div i s o r of deg(c) and deg(>s)). S i m i l a r i l y , degrees is odd. 

Furthermore, degreec and degrees are r e l a t i v e l y prime for the 

same reason. 

If G' = Sl(k 2)xk* then 7.5.3 becomes 

f 
(Z/2)xk* 

9 
v 
k* 

-> k* 

v 
-> k* 

Since f and g are the r e s t r i c t i o n s of morphisms Sl(k 2 ) x k * 
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Gl(k 2 ) with f i n i t e D—group kernels, f ( i , x ) = i+mx and g(i,x) = 

i+nx for some m and n (where i e Z/2 is the n o n — t r i v i a l element 

viewed as an element of k*. Here, I have written k* a d d i t i v e l y ) . 

Thus, (m,n) = 1 because by assumption the intersection of ker(f) 

and ker(g) is t r i v i a l . But m and n cannot both be odd because 

i+mi = i+ni = 0 for m and n odd (and by assumption, ker(f) and 

ker(g) have t r i v i a l i n t e r s e c t i o n ) . Thus, (m,n) = 1 and one of m 

and n is even. 

Conversely, i f (m,n) = 1 and one of m and n i s odd then 

i+mx = i+nx has no solution for x (because t h i s implies that x 

has order 2 and no element of order 2 s a t i s f i e s the equation). 

Let us summarize these results as follows: 

7.5.4 Proposition: Let 

f 
ZG' 

g 
v 
k* 

-> k* 

v 
-> k* 

fi 

be the diagram of 7.5.3. 

(a) Then there are two p o s s i b i l i t i e s . 

(i) G' = G l ( k 2 ) 

Then ZG' •= k*, o(x) = nx, fi(x) = mx, (m,n) = 1 and mn i s 

odd. 

( i i ) G' = Sl(k 2 ) x k * 

Then ZG' = (Z/2Z)xk*, a(x) = 2nx, p(x) = 2mx, (m,n) = 1 

and mn is even. 

(b) Furthermore, a l l diagrams defined in (a) occur as the 

r e s t r i c t i o n of the appropriate diagram 7.5.1 to the centers of 

the various groups. 
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Proof: It remains to v e r i f y (b). 

Case ( i ) . Define a : G l ( k 2 ) > G l ( k 2 ) , c(x) 

[det(x)**m,det(x)**m]x and <s : G l ( k 2 ) > G l ( k 2 ) , *(x) = 

[det(x)**n,det(x)**n]x. On the l e v e l of the center, o(x) 

x**(2m+l) and s(x) = x**(2n+l). So choose m and n such that 

(2m+1,2n+l) = 1 (here '**' denotes exponentiation and [u,v] 

denotes the diagonal matrix with given e n t r i e s ) . 

Case ( i i ) . Define o : G l ( k 2 ) > PGl(k 2)xk*, o(x) = 

([x],det(x)**m) and p : G l ( k 2 ) > PGl(k 2)xk*, p(x) = 

([x],det(x)**n). Then on the l e v e l of the center .a(x) = x**2m 

and B ( X ) = x**2n. So choose m and n so that (m,n) = 1 and mn i s 

even. 

The procedure I have adopted in the c l a s s i f i c a t i o n i s to 

follow the diagram 7.5.2 from Z* to Z" to Z, keeping track of 

the induced map on the level of characters. 

7.5.5 X(Z"). Z" as in 7.5.2; degree a odd. 

Notation; The diagonal two—by—two matrix ( a ( i , j ) ) , w i l l be 

written as [ a (1 , 1 ) , a ( 2 , 2 ) ] and the characters of a D—monoid w i l l 

always be written a d d i t i v e l y . 

Z* = { [a,b] | a,b e k } and ker(a) = { [x,x] | x**n = 0 } 

for some odd value of n ('**' denotes exponentiation). Thus, i f 

u : [a,b] > a, and v : [a,b] > b are the generators of 

X(Z*), we have a short exact sequence 

X(Z") > X(Z*) > Z/nZ 

a* j 

where j(u)=j(v) i s the generator of Z/nZ. Thus, by observation, 

X(Z") = ((n-1)u/2+(n+1)v/2,(n+1)u/2+(n-1)v/2) = (z,w). 

Since Z" is normal (see '7.4.5 and 4.1.5), X(Z") is equal to the 

intersection in X(T*) of X(Z*) and X(T"). Thus, i t follows that 
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X(Z") = { x € (z,w) | lx c <(n+1)z/2+(1-n)w/2,(n+1)w/2+(1-n)z/2> 

for some 1 }. 

(n+1)z/2+(1-n)w/2 and (n+1)w/2+(1-n)z/2 e X(Z") are c a l l e d the 

fundamental generators of X(Z") (see 4.1.7). 

7.5.6 Summing up, we have a* : X(Z") > X(Z*) with 

c*(z) = (n-1)u/2+(n+1)v/2 

a*(w) = (n+1)u/2+(n-1)v/2 

The fundamental generators of X(Z") are (n+1)z/2+(1—n)w/2 and 

(n+1)w/2+(1-n)z/2. 

7.5.7 X(Z"); Z" as in 7.5.2; degree o even. 

Z* = { [a,b] | a,b e k } and ker(o) = { [a,a] | a**k = 1 }. 

Here, k = 2n. From the proof of 7.5.4 (or d i r e c t l y ) , we have 

a : T* > T", o([a,b]) = (ab~ 1,(ab)**n). 

Hence, i f X(T") = (z,w), where z and w are the projections onto 

the f i r s t and second factors,'we have, 

a* : X(Z") > X(Z*) 

c*(z) = U—V 

a* (w ) = n (u+v) . 

In t h i s case the fundamental generators are w+nz and w—nz. 

Hence, 

X(Z") = { x e (z,w) | lx € <w+nz,w—nz> for some 1 } 

Note that we could compute a presentation of X(Z") d i r e c t l y from 

thi s. 

7.5.8 Summing up, we have a* : X(Z") > X(Z*), with 

a*(z) = u—v 

o*(w) = n(u+v). 

The fundamental generators of X(Z") are w+nz and w—nz. 

7.5.9 X(Z) ; degr.eeg odd. 
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From the proof of 7.5.4, B : Gl ( k 2 ) > Gl( k 2 ) is given by 

[a,b] > [a**((m+1)/2),b**((m-1)/2)] when r e s t r i c t e d to T, the 

set of diagonal matrices (here,'**' denotes exponentiation). 

Thus, i f T = { [a,b] | a,b e k* }, and u and v denote the 

characters u : [a,b] > a, v : [a,b] > b, then 

a*(z) = (m+1)u/2+(m-1)v/2 and 

B * ( W ) = (m-1)u/2+(m+1)/2. 

So i f X(T") = (z,w) and X(Z") i s as in 7.5.5 we have 

7.5.10 

B*((n+1)z/2+(1-n)w/2) = (m+n)u/2+(m-n)v/2 

B*((n+1)w/2+(1-n)z/2) = (m+n)v/2+(m-n)u/2 

Since B * is f i n i t e and Z is normal, we obtain 

X(Z) = { x e (u,v) | lx e <(m+n)u/2+(m-n)v/2,(m+n)v/2+(m-n)u/2> 

for some 1 }, and F = { (m+n)u/2+(m-n)v/2, (m+n)v/2+(m-n)u/2 } 

is the set of fundamental generators of X(Z). 

7.5.11 X( Z) ; degree B even. 

From the proof of 7.5.4 B : G l ( k 2 ) > PGl(k 2)xk* is given 

by a([a,b]) = (ab" 1,(ab)**m) for some m, when r e s t r i c t e d to the 

diagonal group T of G l ( k 2 ) . Thus i f u([a,b]) = a and v([a,b]) 

b then we have 

B *(z) = u—v 

B*(w) = m(u+v). 

So i f X(T) = (z,w) and X(Z") i s as in 7.5.7 we have 

7.5.12 

«*(w+nz) = (m+n)u/2+(m-n)v/2 

s*(w-nz) = (m+n)v/2+(m-n)u/2 

Since B * is f i n i t e and Z is normal, we obtain 

X(Z) = { x € (u,v) | lx £ <(m+n)u+(m—n)v,(m+n)v+(m—n)u> for some 
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1 } and F = { (m+n)u+(m-n)v, (m+n)v+(m-n)u } i s the set of 

fundamental generators of X(Z) because (m+n,m—n) = 1 whenever 

(m,n) = 1 and mn is even. 

7.5.13 Construction of X(Z), G(E) = G l ( k 2 ) . Summary. 

Given. E, there is a bicartesian diagram in the category of 

algebraic monoids. 

f 
E' > End(k 2) 

c 

V 
E 

v 
-> E" 

Let Z be the closure in E of some maximal torus T of G(E) and 

let X(T) = (u,v). 

Case ( i ) : degreeo = n is odd. 

Then degreep = m is odd and (n,m) = 1. Further, 

X(Z) = { x e (u,v) | lx e <(m+n)u/2+(m-n)v/2,(m-n)u/2+(m+n)/2> 

for some 1 } 

Case ( i i) : degreeo = 2n i s even. 

Then degreeo = 2m is even, (m,n) = 1 and mn i s even. 

Further, 

X(Z) = { x t (u,v) | lx e <(m+n)u+(m—n)v,(m+n)v+(m—n)u> some 1 } 

In both cases, 

w(u) = v 

w (v) = u 

for the n o n — t r i v i a l element w e W, the Weyl group of T. Thus, 

0 1 

1 0 

re l a t i v e to the basis { u, v } of X(T). 

To construct a l l possible character monoids (4.1.1), that 

w = 
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o c c u r i n t h i s f a s h i o n , l e t 

a , B e Z 

a > \B\ 

(O,B)=1 

I f a+B i s o d d t h e n 

X.(O,B) = { x e ( u , v ) | l x e < a u + £ v , av + au> some 1 }. 

T h e s e a r e t h e c h a r a c t e r m o n o i d s o f c a s e ( i ) w h e r e m = a+B a n d 

n = a—B. 

I f a+B i s e v e n t h e n 

X ( c , p ) = { x c ( u , v ) | l x e < c u + i 3 v , av+Bu> some 1 }. 

T h e s e a r e t h e c h a r a c t e r m o n o i d s o f c a s e ( i i ) , w h e r e m = (O+B)/2 

a n d n = (a—B)/2. 

G ( E ) = S l ( k 2 ) x k * 

To c l a s s i f y t h e m o n o i d s w i t h , g r o u p S l ( k 2 ) x k * I h a v e u s e d 

t h e r e s u l t s c o n c e r n i n g G l ( k 2 ) a n d some g e n e r a l r e s u l t s a b o u t 

D — g r o u p a c t i o n s . 

L e t E be a s i n 7.5.1 a n d s u p p o s e G ( E ) = S l ( k 2 ) x k * . T h e r e i s 

a c a n o n i c a l m o r p h i s m , 

m : S l ( k 2 ) x k * > G l ( k 2 ) , m{x,B) = x [B , B ] . 

On t h e t o r i c l e v e l , m ( [ o , a ' 1 ] , B ) = [ o p , c ~ 1 p ] . 

m i s i s o m o r p h i c t o t h e q u o t i e n t m o r p h i s m o f S l ( k 2 ) x k * by 

t h e s u b g r o u p K = { {[a,a],a) | c 2 = 1 }. 

T h u s we h a v e 
m 

S l ( k 2 ) x k * > G l ( k 2 ) 

j 
v v 
E > E/K 

H e r e , k [ E / K ] = k [ E](0)- ( w h e r e 0 i s t h e t r i v i a l c h a r a c t e r on K ) , 

a s i n 1.3.1 a p p l i e d t o t h e a c t i o n K x E > E , ' ( x , y ) > x y . By 
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1.3.2 ( i v ) , E/K i s a normal algebraic monoid, and further, 

j : Gl(k 2) > G(E/K) is an isomorphism. Hence, E/K = E' is a 

monoid of the type just c l a s s i f i e d . It follows from the 

d e f i n i t i o n of m, that (on the le v e l of maximal t o r i ) 

m|T : T > T' induces 

m* : X(T') > X(T), 

m*(u) = a+b 

m*(v) = a—b 

where X(T) = (a,b) and X(T') = (u,v). 

So i f Z' i s the closure of T' in E', then 

X(Z') = { x e (u,v) | kx e <OU+BV,OV+BU> for some k } 

as summarized in 7.5.13. Thus, since m*(u) = a+b and m*(v) 

a—b, we have 

m*(au+0v) = (a+p)a+(a—p)b 

m*{cv+0u) = (a+p)a+(p—a)b. 

Case ( i ) : a+p i s odd. 

Then as in 7.5.13 ( i ) , (a+p,a—p) = 1 and hence 

F = { (a+p)a+(a—p)b, (a+p)a+(p—a)b } i s the set of fundamental 

generators. 

Thus, to construct the possible character monoids (4.1.1) 

that occur in t h i s fashion, l e t m,n > 0 , (m,n) = 1, mn odd 

(here, m=a+p and n=a—p). Then 

X(T(m,n)) = { x e (a,b) | kx e <ma+nb,ma—nb> for some k }. 

If w c W is the n o n — t r i v i a l element of the Weyl group of T, then 

w(a) = a and w(b) = —b, so 

1 0 

0 -1 

r e l a t i v e to the basis { a, b } of X(T). 

w = 
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w = 

Case (i i ) : a+B i s even. 

Then as in 7.5.13 ( i ) , ((a+B)/2,(O-B)/2) = 1 and hence, F = 

{ (a+B)a/2+(a-B)b/2, (a+B)a/2+(s-a)b/2 } i s the set of 

fundamental generators. 

Thus to construct the possible character monoids that occur 

in this fashion, l e t m,n > 0, (m,n) = 1, mn even (here 

m=(c+*)/2, n=(a - e)/2). Then 

X(Z(m,n)) = { x e (a,b) | kx c < ma+nb, ma-nb > for some k }. 

If w e W i s the n o n — t r i v i a l element of the Weyl group of T, then 

w(a) =- a and w(b) = —b, so 

1 0 

0 -1 

re l a t i v e to the basis { a, b } of X(T). 

7.5.14 X(Z); G(E) = S l ( k 2 ) x k * . Summary. 

Given E, there exists 

m : E > E' 

such that G(E') = Gl(k 2) and m : Sl(k 2 ) x k * > Gl(k 2) i s given 

by mix,B) = x [ B , B] . 

Let T be a maximal torus of G(E) and l e t Z be the closure 

in E. Using the morphism m, and our c l a s s i f i c a t i o n of the 

monoids E', we obtain: Z = Z(m,n) for some m,n > 0, (m,n) = 1, 

where 

X(Z(m,n)) = { x e (a,b) | kx e < ma+nb, ma-nb > for some k }. 

If w e Aut(Z) is the n o n — t r i v i a l element, then 

1 0 

0 -1 

re l a t i v e to the basis { a, b } of X(T) = X(T(m,n)) 

G(E) = PGl(k 2)xk* 

w = 
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Let E be as in 7.5.1 and suppose G(E) = PGl(k 2)xk*. There 

is a canonical morphism, 

c : G l ( k 2 ) > PGl(k 2)xk*, c(x) = ([x],det(x)). 

If T' = { [a,b] | ab e k* } and T = c(T'), then the sequence 

u(2) > T' > T is exact, where u(2) = { [a,a] | a 2 = 1 }. 

Thus on the l e v e l of characters, we have 

c* : X(T) > X(T'), 

c*(x) = u+v 

c * (x ) = u—v 

where X(T). = (x,y) and X(T') = (u,v). 

By Theorem 3.2.3, the diagram Gl(k 2) > PGl(k 2)xk* > E 

can be completed uniquely to a diagram, 

c 
Gl(k 2) > PGl(k 2)xk* 
j 
v v 
E ' > E 

f 

such that f is f i n i t e and dominant, j : G l ( k 2 ) > G(E') i s an 

isomorphism, and E' is normal. Thus, we have c* : X(Z) > 

X(Z'), where Z' and Z are the closures of respective maximal 

t o r i . 

By the results of 7.5.13, 

X(Z') = { x e (u,v) | kx 6 <ou+i?v, av + 0U> for some k }. Thus, 

since c*(x) = u+v and c*(y) = u—v, we have 

c*(ax + 0y) = (a+p)u+(a-js)v 

c*(ay + i 3 x ) = ( a+B ) u+ ( B — a ) v. 

Note: The image of X(T) in X(T') is the subset of a l l elements 

ru+sv such that r+s is even. 

Case ( i ) : a+B is odd. 
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By the note, ou+pv and ov + pu are not elements of X(Z). By 

4.1.7 the fundamental generators of X(Z) are multiples of ou+pv 

and ov + pu since c* : X(Z) > X(Z') is a f i n i t e morphism. Thus, 

again by the note, F = { 2(ou+pv), 2(ov+pu) } is the set of 

fundamental generators. 

Since a+p i s odd we may write (uniquely) 

a = (m+n)/2, 

p = (m-n)/2 

where m,n > 0, (m,n) = 1 and mn i s odd. 

Thus, to construct the possible character monoids that 

occur in this fashion, let m,n > 0, (m,n) = 1, mn odd. Then 

X(T(m,n)) = { v e (x,y) | kv € <mx+ny,mx—ny> for some k }. 

If w is the .non—trivial element of W, the Weyl group of T, then 

w(x) = x and w(y) = —y. So 

1 0 

0 -1 

r e l a t i v e to the basis { x, y } of X(T). 

Case ( i i ) ; a+p i s even. 

In t h i s case (by the note preceding case ( i ) ) we have 

ou+pv, ov+pu e X(Z). Since these are the fundamental generators 

for X(Z'), F = { au+pv, ov+pu } is the set of fundamental 

generators of X(Z). Since a+p i s even, we can write o=m+n and 

p=m—n, where m,n > 0 (m,n)=1 and mn is even. Thus, 

F(1) = (m+n)u+(m—n)v = mx+ny and 

F(2) = (m+n)v+(m—n)u = mx—ny 

•Thus to construct the possible character monoids that occur 

in t h i s fashion, l e t m,n > 0, (m,n) = 1, mn even (here o=m+n, 

p=m—n). Then 

w = 
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w = 

X(Z(m,n)) = { v e (a,b) | kv e < mx+ny, mx-ny > for some k }. 

If w i s the n o n - t r i v i a l element of W, the Weyl group of T, then 

w(x) = x and w(y) = —y. So 

1 0 

0 -1 

rel a t i v e to the basis { x, y } of X(T). 

7.5.15 X(Z); G(E) = PGl(k 2)xk*. Summary. 

Given E, there exists 

c : E' > E 

such that G(E') = Gl ( k 2 ) and c : Gl ( k 2 ) > PGl(k 2)xk* is given 

by c(x) = ([x] ,det(x)). 

Let T be a maximal torus of G(E) and let Z be the closure 

of T in E. Using the morphism c, and our c l a s s i f i c a t i o n of the 

monoids E', we obtain; Z = Z(m,n) for some m,n > 0, (m,n) = 1, 

where 

X(Z(m,n)) = { v e (x,y) | kv e < mx+ny, mx-ny > for some k }. 

If w e Aut(Z) is the n o n — t r i v i a l element, then 

1 0 

0 -1 

rel a t i v e to the basis { x, y } of X(T) = X(T(m,n)). 

7.5.16 Remark: A comparison of 7.5.14 and 7.5.15 demonstrates 

that the data c o l l e c t e d from the monoids with group Sl( k 2 ) x k * is 

ide n t i c a l to the data col l e c t e d from the monoids with group 

PGl(k 2)xk*. Thus our description i s only c h a r a c t e r i s t i c i f we 

know the unit groups. However, when we embellish this 

description by f i t t i n g in the root systems, the resulting 

numerical data w i l l completely d i s t i n g u i s h the monoids from one 

another. 

w = 
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The following theorem i s a summary of the results obtained 

from 7.5.1 to 7.5.15. 

7.5.17 C l a s s i f i c a t i o n I; Le't G be one of the groups Sl(k 2)xk*, 

G l ( k 2 ) or PGl(k 2)xk* and let Q+ denote the set of posi t i v e 

r a t i o n a l numbers. Then there is a canonical one—to—one 

correspondence. 

Q* <—> E(G) = { E | E as in (*), E normal, G(E) = G }. 

For G = Gl{k 2) the correspondence is as follows. Given E 

there i s a unique bicartesian diagram, 

E(m"1) > End(k 2) 

a 

v v 
E > E(n) 

P 

such that a l l morphisms are f i n i t e and dominant and each kernel 

is a f i n i t e D—group. If degree a = n is odd then degree A = m i s 

odd and (m,n) = 1. If degree a = 2n is even then degree p = 2m 

is even, (m,n) = 1 and one of m and n is even. In any case, the 

map E(G) > Q+ given by 

E > deg(o)/deg(p) 

is well defined and one—to—one. 

Conversely, given r e Q+, r = m/n, where m,n > 0 and 

(m,n) =1. It i s then possible to construct a bicartesian 

diagram as above such that deg c = n and deg e = m i f mn is odd, 

or deg a = 2n and deg fi = 2m i f mn i s even. Thus we obtain the 

inverse map Q+ > E(G), 

r > E ( r ) . 

A l l normal monoids with group. SI ( k 2) xk* are constructed 
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from the monoids with group Gl( k 2 ) using integral closure and 

the morphism 

m : Sl(k 2)xk* > G l ( k 2 ) , m(x,t) = xt. 

A l l normal monoids with group PGl(k 2)xk* are constructed 

from the monoids with group Gl( k 2 ) using f i n i t e D—group scheme 

quotients and the morphism 

c : Gl(k 2) > PGl(k 2)xk*, c(x) = ([x],det(x)). 

7.6 Polyhedral Root Systems And C l a s s i f i c a t i o n II 

In 7.5.16 we observed that the correspondence E > X(Z) 

is not a complete invariant unless G(E) = G l ( k 2 ) . The purpose of 

this section is to find the root system *, amidst the characters 

X(T), and to see how i t relates to the set of fundamental 

generators F of X(Z). This w i l l lead to a complete numerical 

invariant, E > (X(T),*(T),F), the polyhedral root system. 

7.6.1 Lemma: Suppose f : G > G' i s an epimorphism of 

reductive algebraic groups such that ker(f) is contained in the 

center of G. Let T and T' be maximal t o r i of G and G', 

respectively, such that f(T) = T'. Let * and #' be the roots 

(weights of the adjoint representation). Then (f|T)*(#') = 4>. 

Proof; Let B + and B" be opposite Borel subgroups containing T, 

so that T i s the intersection of B + and B". Let g = T(G), the 

tangent space of G at 1. Then g = g++t+g~ (direct sum) where g + 

= T(B +(u)), g~ = T(B _(u)) and t = T(T) (the tangent spaces at 

the i d e n t i t y ) . Further, df : g > g' preserves these direct 

summands since f(B +(u)) = B' +(u) and f(B'(u)) = B'"(u). Now, df 

: g + > g' + and df : g~ > g'~ are isomorphisms since ker(f) 

is c e n t r a l . Thus, i t follows that f*(#') = *. 
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7.6.2 Polyhedral Root System for E; G(E) = G l ( k 2 ) . 

From 7.5.1 we have 

E' > End(k 2) 

a 

v v 
E > E" 

fi 

Since ker(o) and ker(fl) are cen t r a l , we apply 7.6.1 to follow 

the roots around the diagram from End(k 2) to E. 

Let Z* and Z" be the closures of maximal t o r i in End(k 2) 

and E", respectively, such that o(Z*) = Z". c induces o* : X(Z") 

> X(Z*). 

Case ( i ) : degreeo odd. 

From 7.5.5, we have 

o*(z) = (n-1)a/2+(n+1)a/2 

c*(w) = (n+1)a/2+(n-1)b/2 

(where X(Z") = (z,w) and X(Z*) = (a,b)). 

By 7.6.1, o*U") = ** = ( a-b, b-a }. Thus *" = { a-b, b-a } = 

{ w—z , z—w } . 

If Z is the closure of the maximal torus T such that B ( T ) = 

T", we have fi : X(Z") > X(Z) = (u,v). From 7.5.9 we obtain, 

p*(z) = (m+1)u/2+(m-1)v/2 and 

fi*(w) = (m+1)v/2+(m-1)u/2. 

Thus 

fi*(z—w) = u—v and 

B*(W—z) = v—u. 

Hence, # - { u-v, v-u }, so, gathering a l l the relevant 

data, 
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X = (u, v) a, p e Z 

* = { u-v, v-u } o > | p | > 0 

F = { cu+pv, OV+BU } (c,p) = 1 

Here, o=(m+n)/2 and p=(m—n)/2. 

Case ( i i ) : degreeo even. 

From 7.5.7 we have a* : X(Z") > X(Z*) and thus, 

o*(z) = a-b 

c*(w) = n(a+b). 

Thus <*>" = { z, -z }. 

If Z is the closure of the maximal torus T such that p(T) = 

T", we have p* : X(Z") > X(Z) = (u,v). 

From 7.5.11 we obtain, 

p*(z) - u—v and 

p*(w) = m(u+v). 

Hence, $ = { u—v, v—u }. So in this case again we obtain, 

X = ( u , v ) a,B e Z 

* = { u-v, v-u } o >|B|> 0 

F = { au+pv, cv+pu } (a,p) = 1 

Here a=m+n and p=m—n. 

7.6.3 Polyhedral Root System for E, G(E) = Sl(k 2 ) x k * . 

The morphism m : Sl(k 2 ) x k * > G l ( k 2 ) , m(x,p) = x[p,p], 

induces m* : X(T') > X(T), m*(u) = a+b, m*(v) = a-b, where T' 

and T are maximal t o r i of Gl(k 2 ) and S l ( k 2 ) , respectively, and 

X(Z") = (u,v), X(Z) = (a,b). Thus, since m*($') = *, we have 

* = { 2b, -2b }. 

; So, gathering a l l the relevant data (see 7.5.14) we have, 
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X = (a, b) m, n € N 

# = { 2b, -2b } m,n > 0 

F = { ma+nb, ma—nb } (m,n) = 1 

7.6.4 Polyhedral Root System for E; G(E) = PGl(k 2)xk*. 

The morphism c : Gl(k 2) > PGl(k 2)xk*, x > 

([x],det(x)), induces c* : X(T) > X(T'), c*(x) = u+v and 

c*(y) = u—v, where T' and T are maximal t o r i of Gl(k 2 ) and 

PGl(k 2)xk*, respectively, X(T') = (u,v), andX(T) = (x,y). Thus, 

since c*($) = we have 

* = .{ y > -y }• 
So, gathering a l l the relevant data (see 7.5.15) we have, 

X = (x, y) m,n e N 

* = { y, -y } m,n>0 
F = { mx+ny, mx—ny } (m,n) = 1 

Def i n i t i o n ; Let E be an irreducible algebraic monoid with 0 and 

l e t T be a maximal torus of G(E). Let X denote the characters of 

T, * the roots, and F the fundamental generators (see 4.1.7). 

Then (X,*,F) i s the polyhedral root system of (E,T). 

7.6.5 C l a s s i f i c a t i o n I I : Let G be one of the groups G l ( k 2 ) , 

S l ( k 2 ) x k * or PGl(k 2)xk*. Then any normal algebraic monoid E with 

0 and group of units G i s uniquely determined by i t s polyhedral 

root system (X(T),#(E),F(E)). The following i s a l i s t of a l l 

possible polyhedral root systems for each group G ((u,v) denotes 

the free abelian group on the generators u and v). 



1 00 

(i) G = Gl ( k 2 ) 

X = (u,v) a, s e Z 

* = { u-v, v-u } a > | fi | > 0 

F = { au+fiv, av + fiu } =' 1 

( i i ) G = Sl( k 2 ) x k * 

X = (a,b) m, n e N 

* = { 2b, -2b } m,n > 0 

F = { ma+nb, ma—nb } (m,n) = 1 

( i i i ) G = PGl(k 2)xk* 

X = (x,y) m,n e N 

* = { y r -y-} m,n>0 
F = { mx+ny, mx—ny } (m,n) = 1 

7.6.6 Remark: It is interesting to note that ( i ) , ( i i ) and ( i i i ) 

above exhaust a l l the reasonable p o s s i b i l i t i e s among 

two—dimensional normal D—monoids. Precisely, l e t X be a 

two—dimensional i r r e d u c i b l e normal D—monoid with 0. Then X i s 

isomorphic to the maximal irreducible D—submonoid of some E as 

in 7.6.5 i f and only i f X has a n o n — t r i v i a l automorphism. 
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VIII IRREDUCIBLE MONOID VARIETIES 

The purpose of this chapter i s to i n i t i a t e the study of 

more general monoid v a r i e t i e s . 

D e f i n i t i o n ; An algebraic monoid variety is an irreducible (not 

necessarily affine) algebraic variety E, defined over the 

a l g e b r a i c a l l y closed f i e l d k, such that 

( i ) 1 e E 

( i i ) m : ExE > E is an associative morphism of algebraic 

v a r i e t i e s with 1 as two—sided unit. 

On the two extremes we have the quasi—affine monoids and 

the projective monoids. This chapter is devoted to the proofs of 

the following r e s u l t s . 

(1) If E is irreducible and quasi—affine then E i s a f f i n e . 

(2) If E is irreducible and projective then E is an abelian 

va r i e t y . 

8.1 Quasi-affine Monoids 

Let U be a quasi—affine variety defined over k and let k [u] 

denote the set of global sections of the structure sheaf O(U). U 

is not determined by k[U], For example, i f U = k 2 — { 0 }, then 

U is quasi—affine and k[U] = k[k 2] (see also 1.1.5). 

Let j : U > X be an open imbedding, where X is a f f i n e 

and l e t J = (f(1 ),...,f(n)) be the ideal of regular functions on 

X which vanish on X — j(U). The induced morphism s a t i s f i e s 

(i) k [ X ] [ l / f ( i ) ] > k'[U] [ 1/f (i) ] is an isomorphism for 

a l l i = 1,...,n. 

( i i ) k[U] is the intersection of the k [ U ] [ l / f ( i ) ] as i 

varies from 1 to n. 

( i i i ) U is isomorphic to the union of the X(i) in X, where 
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X(i) = { x t X | f ( i ) ( x ) is non-zero }. 

The a f f i n e variety X i s somewhat a r b i t r a r y . Any k—algebra 

R, contained in k [u] such that 

(i) R i s f i n i t e l y generated over k. 

( i i ) { f ( i ) } i s contained in R. 

( i i i ) R [ 1 / f ( i ) ] = k [ U ] [ l / f ( i ) ] , i = l,...,n. 

induces an isomorphism of U onto the union of the Y ( i ) , i = 

1,...,n, where Y is the a f f i n e variety associated with R. 

8.1.1: U is uniquely determined up to isomorphism by 

(k[U],{ f ( i ) }). 

Remarks: U i s a f f i n e i f and only i f { f ( i ) } generates the unit 

ideal of k[U] (see [1], chapter 3, exercise 24). 

Any f i n i t e subset { g(i) } of k [u] such that r ( ( f ( i ) ) ) = 

r ( ( g ( i ) ) ) (radical) works equally well. 

Suppose now that E is a quasi—affine irreducible algebraic 

monoid and l e t (k[E],{ f ( i ) }) be as above. 

The morphism m : ExE > E induces d : k[E] > k[E]»k[E] 

= k[ExE] in such a way that 

n : k > k[E] (k—algebra structure) 

e : k[E] > k (unit) 

d : k[E] > k[E]»k[E] (multiplication) 

induces on k[E] the structure of a bigebra. 

By a well—known result, 

8.1.2: k[E] = c o l i m i t ( k [ E ] ( a ) ) , where each k[E](o) is a 

f i n i t e l y generated' sub-bigebra of k[E] (see [32] p.24. The proof 

there is stated for Hopf algebras, but works equally well for 

bigebras). 

8.1.3 Proposition: Suppose E is an irreducible quasi—affine 
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algebraic monoid. Then there exists an irreducible a f f i n e 

algebraic monoid E' and a morphism g : E > E' such that g is 

an open imbedding. 

Proof: Let (k[E],{ f ( i ) }) be as . in 8.1.1. By 8.1.2 there exists 

a bigebra R, contained in k[E] such that { f ( i ) } i s a subset of 

R and R [ l / f ( i ) ] = k [ E ] [ l / f ( i ) ] for a l l i . But this is the same 

as being given an open imbedding g : E > E' of algebraic 

monoids where E' i s the af f i n e monoid associated with R. 

8.1.4 Theorem: Suppose E is an irreducible quasi—affine 

algebraic monoid. Then E is a f f i n e . 

Proof: By 8.1.3 there exists g : E > E' an open imbedding, 

where E' is a f f i n e . Thus, g induces an isomorphism on unit 

groups. Hence, E' - g(E) is a prime ideal of E', because g(E) is 

m u l t i p l i c a t i v e l y closed. Thus by 5.2.1 (i) there exists a 

character x e k[E'] such that E' - E = x" 1 ( 0 ) . Thus, 

E = E' - x" 1(0) i s a f f i n e . 

8.2 Projective Monoids 

Let E be an irreducible projective monoid variety, and l e t 

m : ExE > E be the mu l t i p l i c a t i o n morphism. Consider m~1(1) = 

{ (x,y) c ExE | xy = 1 }. Suppose (x,y) c nr 1 (1 ) and l e t 

x : E > E, x(z) = xz. Thus xoy = 1. Hence yE is dense in E, 

because they have the same dimension. But yE = {z.« E | yxz -

z}. So yE is closed in E and thus yE = E. But then there exists 

z e E such that yz = 1. So, x = x(yz) = (xy)z = z. Thus xy = 1 

i f and only i f yx = 1. Therefore, the morphism g : nr 1 (1 ) > 

E, g(x,y) = x, i s one—to—one. Since the dimension of every 

component of nr 1(1) is larger than or equal to dim E (see 

1.1.1), g is dominant. It follows that m"1(1) is irred u c i b l e . 
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Furthermore, g is b i j e c t i v e since g(m " 1 ( 0 ) is closed in E 

( n r 1 ( l ) i s a complete v a r i e t y ) . Thus, 

8.2.1: If E is projective then every element x e E i s 

invert i b l e . 

Remark: It does not follow automatically from 8.2.1 that E i s a 

group scheme. Even though i : E > E, i(x) = x" 1, is well 

defined as a set map, we have no a p r i o r i guarantee that i is a 

morphism of v a r i e t i e s . 

Now, i t follows easily that m : ExE > E i s separable and 

since E is homogeneous, m is smooth. Thus m"1(1) is irreducible 

and smooth. Define 

i : nr 1 ( 1 ) > m" 1(1), i(x,y) = (y,x) and 

u : n r 1 ( 1 ) x n r 1 ( 1 ) > m" 1(1), u((x,y),(u,v)) = (xu,vy). 

P l a i n l y , ( n r 1 (1 ) , u, i , (1 , 1 )) defines on n r 1('1) the structure of 

ah algebraic group, with m u l t i p l i c a t i o n u, inverse i , and unit 

(1,1). Furthermore, g : n r 1 (1 ) > E, g(x,y) = x, is a 

b i j e c t i v e morphism of algebraic monoids. Thus, to complete the 

discussion, i t s u f f i c e s to demonstrate that g i s separable. 

8.2.2 Lemma: Let Z = n r 1 ( 1 ) and l e t g be as above. Then g i s 

separable. 

Proof: Let j : Z > ExE be the inclusion and l e t p(i) : ExE 

> E, i = 1,2, be the projection morphisms. Let m : ExE > E 

be the m u l t i p l i c a t i o n morphism. Using the projections p(1) and 

p(2), the tangent space of ExE at (1,1) is i d e n t i f i e d with the 

d i r e c t sum, TE+TE of the tangent space at 1 of E with i t s e l f . 

Further, i f TZ is the tangent space of Z at (1 , 1 ) , 
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TZ > TE+TE > TE 
d j dm 

is exact, because m is a smooth morphism. Using the bigebra 

structure of the l o c a l ring 0(1,E), i t follows that dm(x,y) = x 

+ y. Thus dj(TZ) = { (x,-x) | x e TX }. Hence, dg : TZ > TE 

is an isomorphism since g = p ( l ) o j . Thus, by 1.1.3, g is 

separable. 

Def i n i t i o n : An abelian variety i s an irreducible projective 

algebraic group. 

8.2.3 Theorem:1 Suppose E i s an i r r e d u c i b l e projective algebraic 

monoid. Then E = G(E) is an abelian variety. 

Proof: nr 1(1) i s a projective algebraic group and thus an 

abelian variety. g : nr 1 ( 1 ) > E, g(x,y) = x, i s a b i j e c t i v e 

separable morphism of smooth algebraic monoids and thus an 

isomorphism. 

Remark: Abelian v a r i e t i e s are much studied in algebraic 

geometry. It i s a remarkable fact that every projective 

algebraic group i s commutative. 

D. Mumford has obtained similar, more general results (see Abelian Varieties, 
Tata, Bombay, page 44); accordingly, our associativity assumption on E is 
superfluous. 
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IX APPLICATIONS TO RATIONAL HOMOTOPY THEORY 

There have been some recent applications involving 

algebraic monoids to problems in topology and algebra. Although 

such matters may be considered digressive from the themes of 

this thesis, they have been, at least for myself, ingressive to 

many of the problems in the theory of algebraic monoids. The 

purpose of t h i s chapter i s to describe, in general terms how 

algebraic monoids are related to several n o n — t r i v i a l problems in 

rat i o n a l homotopy theory. 

9.1 Algebraic Categories And Positive Weights Spaces 

In [30] Sullivan establishes a complete and algebraic 

description of uniquely d i v i s i b l e homotopy invariants. He then 

observes that i f X is a simply—connected C.W.—space then 

Aut(X(0)) i s an algebraic group defined over Q, where X(0) i s 

the 0 — l o c a l i z a t i o n of X. Furthermore, there i s a d i f f e r e n t i a l 

graded algebra, M(X) such that End(X(0)) is isomorphic to 

End(M(X)) modulo d.g.a. homotopy. 

In [3] R. Body and D. Sullivan consider the following class 

of ' s u f f i c i e n t l y d i v i s i b l e ' simply—connected C.W.—spaces. Let 

Z(p) = { r e Q | r=m/n, (n,p)='1 }. 

X is s u f f i c i e n t l y p - d i v i s i b l e i f for any map f : X > Y 

such that f* : H*(Y;Z(p)) > H*(X;Z(p)) i s an 

isomorphism there exists a map g : Y > X such that 

g* : H*(X;Z(p)) > H*(Y;Z(p)) is an isomorphism. 

They es t a b l i s h the following fundamental results about t h i s 

class of spaces. 

9.1.1 Theorem[3]: Let X be a simply—connected C.W.—space. Then 

the following are equivalent. 
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( i ) X i s s u f f i c i e n t l y p — d i v i s i b l e f o r some p . 

( i i ) X i s s u f f i c i e n t l y p — d i v i s i b l e f o r a l l p . 

( i i i ) X i s s u f f i c i e n t l y 0 - d i v i s i b l e ( Z ( 0 ) = Q). 

( i v ) 0 , t h e b a s e p o i n t m o r p h i s m o f M ( X ) , i s i n t h e Z a r i s k i 

c l o s u r e o f A u t ( M ( X ) ) i n E n d ( m ( X ) ) . 

( v ) M ( X ) = M h a s p o s i t i v e w e i g h t s , i . e . T h e r e e x i s t s a d i r e c t 

sum d e c o m p o s i t i o n ( c o m p a t i b l e w i t h t h e u s u a l g r a d i n g on M ) , M 

IM(c) s u c h t h a t d(M(o)) i s c o n t a i n e d i n M(o) f o r a l l a, M ( O ) M ( B ) 

i s c o n t a i n e d i n M ( a + f i ) f o r a l l a a n d p a n d , a n d M(o) = 0 f o r a l l 

a < 0 . 

The i m p o r t a n t o b s e r v a t i o n h e r e i s t h a t we now h a v e a 

c o m p l e t e l y a l g e b r a i c d e f i n i t i o n o f ' s u f f i c i e n t l y d i v i s i b l e ' . 

I n [ 2 ] , [ 8 ] a n d [ 9 ] t h e f o l l o w i n g q u e s t i o n i s c o n s i d e r e d 

f o r X a s i m p l y — c o n n e c t e d C . W . — s p a c e ( w i t h some m i l d f i n i t e n e s s 

c o n d i t i o n s ) . 

D o e s X ( 0 ) s a t i s f y u n i q u e f a c t o r i z a t i o n i n t h e h o m o t o p y 

c a t e g o r y , w i t h r e s p e c t t o t h e f o r m a t i o n o f p r o d u c t s ? 

B e c a u s e o f S u l l i v a n ' s r a t i o n a l h o m o t o p y t h e o r y , t h i s i s now a 

q u e s t i o n o f p u r e a l g e b r a . 

D o e s M ( X ) s a t i s f y u n i q u e f a c t o r i z a t i o n w i t h r e s p e c t t o 

t h e f o r m a t i o n o f g r a d e d t e n s o r p r o d u c t ? 

I n [ 9 ] t h i s q u e s t i o n i s a n s w e r e d a f f i r m a t i v e l y i n c a s e X i s 

s u f f i c i e n t l y d i v i s i b l e i n t h e a b o v e s e n s e ( t h e d u a l q u e s t i o n 

r e g a r d i n g c o p r o d u c t s i s a l s o c o n s i d e r e d ) . S i n c e we a r e h e r e 

c o n c e r n e d w i t h how a l g e b r a i c m o n o i d s a r e i n v o l v e d , I w i l l 

g e n e r a l i z e a n d m o d i f y t h e c o n t e x t a c c o r d i n g l y . So l e t u s 

c o n s i d e r t h e f o l l o w i n g c a t e g o r i e s , c a l l e d a l g e b r a i c c a t e g o r i e s 

( s e e [ 8 ] ) . 
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Let V(k) be the category of vector spaces over the f i e l d k 

and let S be a category whose objects are in one—to—one 

correspondence with the non—negative integers, N = 

{ 0, 1, 2,.... }. Associated with S is the category n(S). 

If C i s a category l e t |C| denote the class of objects of 

C 

The objects of n(S) are pairs (V , c(V)) (or just (V,a)) 

where V e |V(k)| and c(V) i s a functor from S to V(k) such that 

c(0) = k, O(1) = V and aim) = V(m) for a l l m, where V(m) i s the 

the tensor product of V with i t s e l f m times. So, in p a r t i c u l a r , 

i f x e hom(m,n) and y e hom(n,p) then o(y ) o o(x) = o(yox). 

The morphisms of n(S) are the linear maps in V(k) which 

preserve the S—structure. Horn'(V,W) = { f c Hom(V,W) | 

f(n)oo(V)(x) = a(W)(x)of(m), for a l l x e hom(m,n), and a l l m,n e 

|S| }. Here f(n) denotes the tensor product of f with i t s e l f n 

times. Assume further, that 0 e S i s the zero object. For each 

m 6 |S|, there are unique morphisms n : 0 —> m and e : m — > 0. 

We s h a l l also, assume that the morphisms of fi(S) preserve t h i s 

structure. It follows that k i s the zero object of n(S). ' 

Remark: The d e f i n i t i o n above i s easiest to apply in practice, i f 

S can be realized as a subcategory of SETS. The purpose of the 

d e f i n i t i o n i s to provide a context for abstracting from the 

idiosyncracies of various algebraic categories in order to 

display the essence of how an object may be influenced by i t s 

algebraic monoid of endomorphisms. 

Let n(S) be an algebraic category and l e t (V,a) be an 

object, of n(S).- Assume that V s a t i s f i e s some s u f f i c i e n t l y s t r i c t 

finiteness conditions ( s t i l l very general in p r a c t i c e ) . Then 
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G = Aut(V,a) i s the a l g e b r a i c group of u n i t s of the a l g e b r a i c 

monoid E = End(V,a). 

P r o o f : f c End(V) i s i n End(V,a) i f and o n l y i f c ( x ) o f ( k ) = 

f ( l ) o o ( x ) f o r a l l k , l e |S| and a l l x t h o m ( k , l ) . Thus, by our 

f i n i t e n e s s a s s u m p t i o n , End(V,o) i s an a l g e b r a i c subset of 

End.(V) . C l e a r l y , Aut(V,o) i s the a s s o c i a t e d a l g e b r a i c group of 

u n i t s . 

D e f i n i t i o n : L e t (V,o) be an o b j e c t of n(S). Then (V,o) has 

p o s i t i v e w e i g h t s i f 0(V) i s an element of the c l o s u r e of 

Aut(V,a) i n End(V,a). 

Thus, c o n d i t i o n ( i v ) of 9 . 1 . 1 can be f o r m u l a t e d i n t h i s 

v e r y g e n e r a l s e t t i n g . 

9.1.2 Theorem: Suppose (V,o) has p o s i t i v e w e i g h t s . Then 

V = • V ( i ) , i = 1,...,m, i n such a way t h a t each V ( i ) i s 

• - i r r e d u c i b l e i n n(S). Fu r t h e r m o r e , i f V = «W(j) j = 1,...,n, 

where each W(j) i s »-irreducible i n n(S), then m = n and t h e r e 

e x i s t s p : {l,...,m} > { l , . . . , n } , b i j e c t i v e , such t h a t V ( i ) 

and W ( p ( i ) ) a re i s o m o r p h i c . 

S k e t c h of p r o o f : I f V = »V(j) l e t e ( i ) : V > V be g i v e n by 

the composite of 

e» . . . • 1 • . . . •m : V( 1 ) • . ..•V(m) > k»...«V(i)•...»k and 

n » . . . . » n : k»...»V(i)•...»k > V(1)•...•V(m) = V 

where e : W > k and n : k > W are the unique morphisms t o 

and from the z e r o o b j e c t , k. 

Then e ( i ) 2 = e ( i ) , i = 1,...,m and e ( i ) o e ( j ) = e ( j ) o e ( i ) = 0(V) 

i f i i s not e q u a l t o j . 

Because V has p o s i t i v e w e i g h t s , we can c o n s t r u c t a maximal 

k — s p l i t t o r u s T of Aut'(V) such t h a t { e ( i ) | i = 1,...,m } i s 
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contained in the closure of T in End'(V). If { f ( j ) | j 

1,...,n } i s another set of s p l i t t i n g idempotents, then we can 

assume that { f ( j ) } is in the closure of T as well because 

maximal k — s p l i t t o r i are a l l conjugate [5]. But then { e(i) } = 

{ f ( j ) }, because by the results of [9], { e ( i ) o f ( j ) | j = 

1,...,n } determines a •—product decomposition of V(i) for 

each i . Since V(i) is •— i r r e d u c i b l e by assumption, e ( i ) o f ( j ) = 

e(i ) for some j . S i m i l a r i l y , f(j)oe(k) = f ( j ) for some k. But 

then e(i) = e ( i ) o f ( j ) = e ( i ) o ( f ( j ) o e ( k ) ) = e(i) o e ( k ) . Thus, 

e(i)oe(k) i s non—zero. So, e(i) = e(k). Thus, i t follows that 

any two irreducible •—product decompositions are equivalent in 

the sense advertised. 

9.1.3 Examples: Theorem 9.1.2 (applied to the . relevant 

•—product) applies to any of the following categories. 

(i) simply—connected minimal d i f f e r e n t i a l algebras and 

morphisms. 

( i i ) simply—connected minimal d i f f e r e n t i a l graded 

coalgebras and morphisms. 

( i i i ) connected minimal d i f f e r e n t i a l graded Lie algebras 

and morphisms. 

(iv) connected minimal Lie coalgebras and morphisms. 

(v) any of (i) — (iv) without the d i f f e r e n t i a l and 

minimality r e s t r i c t i o n s . 

Categories (i) — (iv) a l l give r i s e to the same homotopy 

theory i f the c h a r a c t e r i s t i c of the ground f i e l d i s 0 [16]. Each 

of the categories defined in (v) may be considered a subcategory 

of one of the categories defined in (i) — ( i v ) . Furthermore, a l l 

objects defined in (v) have positive weights. One question, 
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however, is l e f t open by Theorem 9.1.2. How does one generalize 

the result to the situation of objects without positive weights? 

No counterexamples are known. 

9.2 Homotopy Types With Connected Endomorphism Monoid 

The main result of [27] is a structure theorem of 

Sullivan's minimal algebras based on a synthesis of algebraic 

f i b r a t i o n s and idempotents that adhere to Q—split t o r i . 

Assuming, for s i m p l i c i t y , that M is a f i n i t e l y generated minimal 

algebra defined over an a l g e b r a i c a l l y closed f i e l d k, of 

c h a r a c t e r i s t i c 0, the result i s as follows. 

9.2.1 Theorem: There exists a sequence 1 = e(0) > e ( l ) > . . . > 

e(m) of idempotents in End(M) such that e ( i + l ) is an element of 

the closure of Aut(e(M)) in End(e(M)) and e ( i + l ) i s a minimal 

such idempotent. Futhermore, i f F ( i ) i s the quotient d.g.a. of 

e(i—1 )(M) by the ideal generated e ( i ) ( M ) + , then F ( i ) i s a 

minimal algebra with positive weights. The series terminates at 

e(m)(M) because Aut(e(m)(M)) i s closed in End(e(m)(M)). 

The integer m is uniquely determined and each e(i)(M) i s 

uniquely determined up to isomorphism. 

Theorem 9.2.1 f i t s in neatly with the characterization of 

connected monoids given in Theorem 4.5.2. 

9.2.2 Corollary: Let M be as in 9.2.1. Then the following are 

equivalent. 

(i) End(M) i s connected in the Zariski topology. 

( i i ) The sequence 1 > e ( l ) > ... > e(m) terminates with 

e(m) = 0(M). 

( i i i ) For a l l non—zero idempotents e € End(M), Aut(e(M)) i s 

not closed in End(e(M)). 
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The same result may be applied to any of the categories 

n(S) considered in 9.1. 

It is not known, however, whether the unique f a c t o r i z a t i o n 

results for positive weight spaces can be extended to rational 

homotopy types with connected endomorphism monoid. 
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