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Abstract

Definition: Let k be an-algebraically closed field. An algebraic

monoid is a triple (E,m,1) such that E is an algebraic variety
defined over k, m : ExE —> E is an associative morphism and
1 ¢ E is a two—sided unit for m.

The objéct of this thesis is to expose several fundamental
topics in the theory of algebraic monoids. My results may be
divided into three types; general theory of irreducible affine
monoids, structure and classification of semi-simple rank one
reductive monoids, and theory of general monoid varieties (not

necessarily affine).

I General Theory of Affine Monoids

( 3.3.6 ) Existence of Affine Algebraic Monoids

Let G be an irreducible affine algebraic group; Then the
following are egquivalent.

(i) There exists an irreducible algebraic monoid E éuch that
G(E) = { g e E| go' ¢ E } is isomorphic to G and E does not
consist. entirely of units. |

(ii) There exists an irreducible algebraic monoid E such that
G = G(E) and 0 ¢ E (0 # 1).

(iii) X(G) = Hom(G,k*) is a non-trivial abelian group.

(iv) rank R(G) > 0, where R(G) is the solvable radical of G.
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( 4.2.6 ) Nilpotent Algebraic Monoids

Let E be a nilpotent irreducible algebraic monoid. Then the
following are equivalent.
(i) For all x ¢ E there exists an idempotent e ¢ E and an
element x* ¢ E, such that xx* = e = x*x, ex = xe and ex* = x*e,
(ii) The morphism m : G(u)xE(s) —> E, (u,s) —> us, is finite
and dominant, where G(u) is the closed subgroup of unipotent
elements and E(s) 1is the closed submonoid of semi-simple
elements.

In case E is also a normal variety, m is an isomorphism.

( 4.4.14 ) Reductive and Regular Monoids

(a) Let E be a reductive algebraic monoid. Then E 1is regular.
i.e. For .all x ¢ E there exists g e G(E) such that gx = e is an
idempotent. -

(b) Let E be an irreducible algébraic monoid with 0. Then the

following are eguivalent.

(i) E is regular.

(ii) E is reductive.

(iii) E has no non—trivial nilpotent ideals.

( 4.5.2 ) Connected Algebraic Monoids

Let E be an algebraic monoid with 0. Then the following are
equivalent.
(1) E is connected in the Zariski topology.
(ii) There exist idempotents 1, e(1), e(2),;.., e(m) = 0 such
that e(i) > e(i+1) for all i=20,...,m1 and e(i+1) e e(i)Ee(i)®
(the irreducible component of 1) for all i.

1f, in case (ii) we require that each idempotent be

minimal, then the number m is uniquely determined -and each
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e(i)Ee(i) is uniquely determined up to isomorphism.

( 5.2.1 ) Structure of Prime Ideals

Let E be irreducible and affine. A prime ideal P of E, is a

non—empty subset of of E such that EPE is a subset of P and
E — P is multiplicatively closed.

(i) Suppose P is a prime ideal of E. Then there exists a
morphism x : E —> k such that P = x~'(0).

(ii) Let T be a maximal.torus of G(E), X its closure in E and W
the Weyl group of T. Then there are canonical bijections

primes(E) <—> W-inv.primes(X) <—> W—inv.idempotents(X)

II Reductive Monoids of Semi-simple Rank One

(*) Let E be an irreducible, reductive affine algebraic
monoid with O such that dim ZG(E) = 1 and rkss G(E) = 1. The
restriction on the center is required to avoid the relative
arbitrariness of D—monoids.

1. Geometric Structure

( 7.2.3 ) The action GxGxE —> E, (g,h,x) —> gxh~' has
three orbits, G(E), ( E-G ) —{ 0} and { 0 }.

( 7.4.4 ) If E is also normal then E 1is a Cohen-Macaulay
algebraic variety.

2. Classification

( 7.5.17 ) Classification I

Let E be as in (*) above. Then G(E) is isomorphic with one
of G1(k?), S1(k2?)xk* or PGl(k?)xk*. Let G be one of these groups
and let QO* denote the set of positive rational numbers. Then

there is a canonical bijection



Q* <—> E(G) = { E | E as in (¥), E normal, G(E) = G }.

For G = Gl(k?) the correspondence is as follows. Given E,

there is a unique bicartesian diagram,

P
E(m-') —> End(k?)

such that all morphisms are finite and dominant. If degree e = n
is odd then degree(g) = m is odd and (m,n) = 1. If degree(s) =
2n is even then degree(sg) = 2m is even and (m,n) = 1 (and one of

m and n is even). In any case, the map E(G) —> Q* given by
E —> deg(a)/deg(s)
is well defined and one-—to-one.

Convérsely, if r ¢ Q* then r = m/n, where m,n > 0 and (m,n)

= 1. It is then possible to construct a bicartesian diagram as

above such that deg(e) = n and deg(g) = m if mn 1is odd, or
deg(s) = 2n and deg(g) = 2m if mn is even. Thus we obtain the
inverse map Q* ——> E(G),

r —> E(r).

All normal monoids with group Sl1(k2?)xk* are constructed
from the monoids with group Gl1(k?) using integral closure and
the morphism

m : S1(k?)xk*

> Gl(k?), m(x,t) = xt.

All normal monoids with group PGl(k?)xk* are constructed



from the monoids with group Gl(k?) using finite group scheme
quotients and the morphism
c : Gl(k?) —> PGl(k2)xk*, c(x) = ([x],det(x)).

( 7.6.5 ) Classification II

Let E as in (*) above, be normal. Let T be a maximal torus
and let & be the roots of the adjoint representation. Let 2
denote the Zariski closure of T in E. From general principles
(4.1.7 of the text) there exists F = { F(1), F(2) } contained in
X(z) such that <F(1),F(2)> —> X(Z) 1is a finite, dominant
morphism and each F(i) is non-zero modulo the square of the
maximal ideal of functions that vanish at zero. F is called the

set of fundamental generators of X(Z)

(2(T),#(T),F(E)) 1is the polyhedral root syétem of the pair

(E,T).

E is uniquely determined up to isomorphism by its polyhedral

root system.

The following is a list of all possible polyhedral root
systems (X,¢,F) for the various groups G ((u, v) denotes the

free abelian group on u and v, written additively).

(i) G = Gl(k?)

X = (u, v) a,p € L
¢ = { u—v, v-u } a >|gl2 0
F = { eu+sgv, av+gu } (a,g) =1
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(ii) G = S1(k?)xk*
X = (a, b))~ . m,n e N
$ = { 2b, —2b } m,n > 0
F - { ma+nb, ma-nb } (m,n) = 1

(ii1) G = PGl(kz)xk*

X = (x, y) . m,n € N
$ = {y, -y} m,n > 0
F = { mx+ny, mx-ny } (m,n) =1

111 General Monoid Varieties

Let E be. an 1irreducible monoid variety (not necessarily-
affine).
( 8.1.4 ) If E is quasi—affine then E is affine.

( 8.2.3 ) If E is projective then E 1s an abelian variety.



TABLE OF CONTENTS

INTRODUCTION ...ccovescesvocns cs it s e e e se s oo e
I PRELIMINARIES ...t ceecovesesosssansssoscas cenees .
1.1 Algebraic Geometry And Commutative Algebra .
1.2 Linear Algebraic GrOUPS ....eocesvcccnnans ..
1.3 Finite D—group ACtIiONS ....eoveecerocnns cens
11 AFFINE ALGEBRAIC MONOIDS .....civcvevesnncncncs
2.1 Prelimiﬁaries I ceeees
2.2 Elements ..v.veereccescocnsssvosannsssssnsos
2.3 Examples ...ciiiciierennns cersenaceas e
1II IRREDUCIBLE ALGEBRAIC MONOIDS ......... ces e
_3.1 First Principles ....civieeenenns N
3.2 Integral Closure And Normalization ......7.;
3.3 Existence Of Algebraic Monoids .....coeeuee.
3.4 CloSUTre ...ceiacnnnnn. ceterecenne et enae e
IV TYPES CF MONOIDS ....... cee e cee s esess s e
4,1 D—mONO1IAS +eviessnoossocoscsoosssssssnssnsas
4.2 Nilpotent MONoOidsS ..u.eeeecrcocnsscsnencnces
4.3 Solvable Monoids R
4.4 Reductive And Regular Algebraic Monoids ....
4,5 Connected Monoids With Zero ....cceeveeeasee
V IDEALS it tceeceooscoccsosrassosossas e e e s das e e
5.1 Preliminary ResuUltS ....cveeeernnocesconcnns
5.2 The §trﬁcture Of Prime Ideals .....coo. cesee
VI TWO-DIMENSIONAL REGULAR MONOIDS ........;......
6.1 Structural Properties ....ieeeeeesecncecssnns

VI1 SEMI-SIMPLE RANK ONE, REDUCTIVE MONOIDS ......

. LN ) LY
. * o 0 o s
s o 0 0 s 0 0 .
. s .. LI
. s o 8 0 0 0 0
ooooooooo
s o 0 0 00 0 0
o s o 0 s 8 0 e .
ooooooooo
ooooooooo
s o s 0 .
* o o 0 0 0 0 o ¢
.. . .
s e 0 0 ..

o o 9 o o o .o

. e o o & .o
. LI 4 L
oooooooooo
. . » L)
® o o 0 0 0 0 s 0
® o 0 0 0 s 0 e .
. LR .o

. L L)

viii

13
13
14
16
22
22
24
27
29
29
30
32
35
40
40
43
45
48
57.
60
60
62
65
65
69



7.1 Rank Two, Semi—simple Rank One, Reductive Groups
7.2 Properties Of Semi—simple Rank One Monoids ......
7.3 Constructing Morphisms And Applications .........

7.4 Cohen-Macaulay Monoids ........ e

© s 5 % 0 0 0 00 0 s s 0 s

7.5 Classification I ...cieieievovnsasoces

" 8 0 0 0008 00

7.6 Polyhedral Root Systems And Classification II .
VIII IRREDUCIBLE MONOID VARIETIES

ooooooooooooooooooooo

8.1 Quasi—affine Monoids ..... e e et
8.2 Projective Monoids .....ececeeevenes

I1X APPLICATIONS TO RATIONAL HOMOTOPY THEORY
9.1 Algebraic Categories And Positive Weights Spaces
9.2 Homotopy Types With Connected Endomorphism Monoid

REFERENCES ..

ix



Acknowledgements

I would like to thank my advisor, Dr. Roy Douglas for his
encouragement and boundless enthusiasm, especially 1in the
formative stages of this thesis when there was a scarcity of
relevant literature. Dr. Klaus Hoechsmann is to be‘thanked for
suggesting several problems that I have considered in chapter 8.
Also; I would like to thank Dr. Larry Roberts for sharing with
me, on several occasions, his superior knowledge of the
available literature on algebraic geometry. Finally, I would
like té thank Dr. Mohan Putcha of -North Carolina State
University. Over the past two years he has given me access to

much of his unpublished work on algebraic monoids.



INTRODUCTION

An algebraic monoid E is an algebraic variety which also

has the structure of a monoid m : ExE

>E, in such a way that
m is a morphism of varieties. Well known examples include the
monoids associated with finite dimensional associative algebras.

The most familiar non-linear example is surely the cusp,

{ (x,y) € k? | x%=y? }.

Algebraic monoids also arise-in many other contexts. For

example, if V is a finite dimensional vector space over the

field k and f:VeV >V is a linear map, then { t e End(k) |
f(t(v)itkw))=t(f(vow)) for all v;w e k A} is an algebraic
submonoid of End(v) ('e!' denotes 'tensor product of vector
spaces').

At this time there is no comprehensive theory of algebraic
monoids nor is there an established paradigm as to what should
be the aims of the theory.

iToric monoids have been discussed in [12] and [14] mainly
from the point of view of modern algebraic geometry. In (7]
affine monoids are briefly encountered as part of the
comprehensive introduction to algebraic group theory. Aside from
the copious work of M. Putcha [18-26] very little has been done
from the point of view of modern semi—group theory. Truly there
is no fully developed ideal standard of structure in the théory

of monoids.

There are now available several books on algebraic group



theory which have properly distilled the necessary prerequisites
so as to make the theory available to a wide audience. J.
Humphreys' book [13] is a complete introduction to the linear
theory over .an algebraically closed field and more recently W.
Waterhouse [32] has written a coherent introductory text on the
three basic approaches to this theory. It is always a source of
clarity and depth to keep in mind the interplay (and
equivalences) among, Hopf algebras, linear groups and group
valued functors.

For example, let G=k* be the multiplicative group of units
of k.

As a linear group we have,

G=G1(1).
As a Hopf algebra we have,
k[GI=k(T,T- ']
i(r)=T""
d(T)=TeT
e(T)=1.
As a group valued functor we have,
G(R)=U(R),
the units of R, where R is any k—algebra.

Generally speaking the first two viewpoints are equivalent
by Hilbert's zeros theorem and the last two are equivalent by
Yoneda's lemma.

This correspondence carries over to the case of monoids as
well, For example, let E=End(k).

As a linear monoid

E=End (k).



As a bigebra
k[El=k[T]
d(T)=TeT
e(T)=1.
As a monoid valued functor we have
E(R)=R, with the obvious multiplication.
Plainly the only logical difference from linear groups is
the absence of inverses.
There is a motif in the theory of algebraic groups which is
of fundamental importance for monoids as well. Stated as a
problem for monoids this is as follows;
(I) Let E be aﬁ irreducible algebraic monoid and let G be
its group of units. Assume G is reductive. Let X be the
closure in E of a maximal torus T of G and let W be the
Weyl group associated with T. To what extent can the
structure of E be determined by X and

> Aut(X) ?

int : W
In particulars, '
(i) Can E be determined by (W,X)?
(ii) Are there axioms which characterize the class of D-monoids
that are obtained from reductive monoids in this fashion? (One

should keep in mind the overwhelming success of root systems in

both modern and classical Lie theory, and 1in algebraic group
theory).

The 1list can be continued. Of course there are other
important problems which are not completely encompassed by the
above motif. The most important of these, in my opinion, is the

following.



(I1) Find a complete list of all algebraic monoids E such

that E is irreducible, reductive, normal, and

rk(G)=rkss(G) + 1. -

The condition, rk(G)=rkss(G) + 1, is precisely what is needed to
avoid the relative arbitrariness of central D-monoids.

My thesis 1is guided almost entirely by problems (I) and
(I1) above. The main results, which are fully exposed in
chapters 4 and 7, provide ample evidence that these problems are
of fundamental importance in the theory of algebraic monoids.
The most significant result of chapter 4 asserts that all
irreducible monoids are regular in the sense of von Neumann. As
a difect'consequence, problem (I1) above is solved completely in
case rkss(G(E)) = 1.

Chapter 1 contains pfelimimary information from .algebraic
geometry and algebraic group theory. It is offered partly to
indicate the 1level of discourse and also to deduce some
preliminary results concerning D—groups.

Chapter 2 introduces the general theory and the basic
notation. It is proved that any non-trivial monoid possesses an
abundance of idempotents. Thus, a multiplicative Jordan
decomposition is possible for many non—units in the mbnoid E. In
particular, the subset of semi-simple elements is well-defined
and non—trivial.

In chapter 3 irreducible monoids are discussed. The groups
G which occur non—-trivially as the group of wunits of an
irreducible monoid are characterized (see Theorem 3.3.6). The
remainder of the chapter is more technical and mainly concerned

with closure properties of .irreducible monoids. Let E be



irreducible, and T a maximal torus of G,the group of units of E.
Let B be a Borel subgroup of G, B(G) = { B | B is a Borel
subgroup of G }, and e ¢ E an idempotent. The most important
background result in this regard (due to M. Putcha) asserts that
eEe is in the closure of the centralizer in G of e. From this it
follows that E(s) is equal to the unibn of the gXg-' as g varies
over G, where E(s) is the set of semi—simple elements of E and X
is the closure of T in E. Analagously, it is proved that E 1is
the union of the gZg-' where Z is the closure of B in E. Thus
every element 1is in the <closure of a Borel subgroup.
Furthermore, B(x) = { B e B(G) | x is contained in the closure
of B} is closed in B(G). Thus Borel's fixed point theorem can
be applied (to B(x)) to prove that if G is reductive then
c(T)=x. o

Chapter -4 is dedicated to the special broperties of the
five basic types of monoids. These are D-monoids, nilpotent
monoids, solvable- monoids regular monoids, and feductiveA
monoids. |

Let E be an irreducible D-monoid. Then k[E] = k[X(E)], the
monoid algebra of X(E) = Hom(E,k) (this 1is one standard
definition of D-monoids). If E is normal and 0 ¢ E there exists

{ F(i) | i=1,...,n } contained in X(E) such that <F(1),...,F(n)>

> X(E) is finite and dominant, n is the number of minimal
non—zero idempotents, and { F(i) } is a linearly iﬁdependent
subset modulo m?, where m is the maximal . ideal of functions
which vanish at 0. Furthermore { F(i) } is the only such subset.

{ F(i) } is called the set of fundamental generators of X(E). In

the discussion of semi—simple, rank one, monoids it is seen that



the fundamental generators are precisely what is needed to
synthesise with the root system, in order to classify these
monoids in the spirit of classical Lie theory. |

Let E be an irreducible nilpotent monoid. It is interesting
to know the conditions under ‘which the well—-known strucfure'
theorem for nilpotent groups can be generalized to monoids. If.G
is an irreducible nilpotent algebraic group the theorem asserts

that m : G(u)xG(s)

> G is an isomorphism where G(u) is the
subgroup of unipotent elements and G(s) 1is the subgroup of
semi—simple elements. This theorem generalizes to the nilpotent
monoid E if and only if E is a Clifford monoid (see Theorem
4.2.6).

Solvable irreducible monoids are important generally
because of their relative simplicity combined with the fact that
every irreducible monoid is the wunion of iﬁs solvable
irreducible submonoids. The ﬁain result of this section is a
characterization of solvable monoids amoné‘ irreducible monoids
with 0. Let E be an irreducible monoid with 0. Then E is
solvable if and only if its subset of nilpotent elements 1is a.
two—-sided 1ideal. This result is originally due to M. Putcha. My
proof is slightly different, making wuse of the wuniversal
D-monoid associated with a given solvable monoid.

Reductive algebraic monoids are perhaps the most, important
of all monoids. An irreducible monoid E is reductive if G, its
group of units is a reductive groﬁp. My preliminary discussion
of reductive monoids is mainly concerned with class functions,
semi—simple elements and conjugacy classes. Let E be reductive

and suppose x is an element of E. Then,



(i) x is semi—simple if and only if the conjugacy class of x 1is
closed in E.

(ii) 1£ T is a maximal torus of G then the centralizer of T in E
is equal to the closure of T in E.

(iii) There 1is a one—to—one correspondence between semi-simple

conjugacy classes and orbits of the Weyl group action on the

closure of a maximal torus.

(iv) cl[E] —> k[E)} —>> k[X] identifies cl[E] = { f ¢ k[E] |
f(xy) = f(yx) for all x,y e E } with the ring of invariant
functions of k[X] under the induced action of the Weyl group (X
is the closure of a maximal torus).
(v) If E is any irreducible monoid then there exists a morphism
p : E——> E' such that

(a) p is dominant.

() The kernel of p is the unipotent radical of G.

(p) If X and X' are the closures of respective maximal

tori of E and E' such that p(X) = X' then p : X —> X'

is an isomorphism.

Thus every irreducible monoid E maps to a reductive monoid
E' so as to preserve as much of the original structure as one
could possibly hope for.
This construction has two consequences recorded 1in the

thesis.
(1) I1f E 1is a wvon Neuméﬁn regular monoid with 0, then E is
reductive.
(2) 1f O is a prime ideal of E then Q is the inverse image of
some prime ideal of E' (p : E —> E' as above).

In my proof of the structure theorem for prime ideals



(Theorem 5.2.1), the most important step is a synthesis of this
second result and a result on class functions.’

The final result of this section is the most significant
structure theorem of the thesis. Generalizing a theorem of M.
Putcha we find that all reductive monoids are regular in the
sense of von-Neumann (see Theorems 4.4.14 and 4.4.15). The
structure theory of chapter 7 is a direct consequence.

1 have concluded chapter 4 with a short discusion of
connected monoids with 0. A monoid 1is connected if it 1is
connected in the Zariski topology. Using the general theory of
chapters 2 and 3, I have obtained the following result (Theorem
4.5.2). A monoid E with O is connected if and only if there
exists a chain of idempotents 1 = e(0) > e(1) > ... > e(k) = 0
such that e(i+1) is an element of the irreducible component of
e(i)Ee(i) containing e(i), for all i - 1,...,k=1. This is
reinterpreted in the context of rational homotopy theory in
chapterv9.~ |

Chapter 5 is exclusively devoted to finding the prime.
ideals of a given irreducible monoia E in terms of a maximal
irreducible D—submonoid. Let E be an irreducible monoid and P be
a prime ideal of E. Let T be a maximal torus and let X be its
closure in E. Let P(T) be the intersection of P and X. P(T) is a
prime ideal of X, invariant under the Weyl group W. Thus, we can
construct a W—invariant character c¢ of X such that c~'(0) -
P(T). Using the results on class functions there exists a

character g on E such that P = g-'(0). Thus, the map P >

P(T) induces a one—to—one correspondence between the prime

ideals of .E and the W—invariant prime ideals of X (see Theorem



5.2.1).

Chapter 6 begins the descent towards the classification and
structure theory of semi—simple rank one monoids. The structure
theory requires a classification of two—dimensional
non-commutative monoids without 0. There are two types. Let k¥
be a one—parameter muultiplicative subgroup of G; Then there
exists either
p : kxE —> E extending
k*xE —> E, (t,x) —> txt~', or
p : kxE —> E extending
k*xE —> E, (t,x) —> t~'xt,
depending on whether gxh =‘gx or gxh = xh for all x in E and all
g,h in G. |

Chapter 7 contains the main computations of my thesis. All
reductive, normal semi—simple rank one monoids E, with
one—dimensional center are classified in two ways. Using the
results of chapter 4 and some representation theory, I construct

an essentially unigue bicartesian diagram,

E(2) —> E(1)
v v
E ——> E(3)

such that all morphisms are finite and dominant, and have
linearly reductive kernels (possibly non-reduced). Since-all the
morphisms can be determined numerically, and E(1) is the monoid
of 2-by—2 matrices, the classification follows (see Theorem
7.6.17). |
‘'The second classification theérem is established 1in the

proof of the first one. This is accomplished by following the



10

relevént data (roots and fundamental generators) around the
diagram from E(1) to E. It is my belief that a classification in
the spirit of classical Lie theory should be possible for
reductive algebraic monoids with one—dimensional center. The
second classification theorem is offered in accordance with this
belief. If E is reductive normal and has a 0 and a
one—dimensional center then E 1s uniquely determined by its

poyhedral root system (X(E),&(E),F(E)) 1in case the semi-simple

rank is one. A statement of this theorem and a list of all the
polyhedral root systems is recorded in 7.7.5.

One corollary of the bicartesién diagram above is the
following. If E is as above then E is Cohen—-Macaulay. This proof
also requires the generalization of a theorem of P. Roberts [28]
that I have established in the latter part of chapter 1.
Hochster has proven that if E is an irreducible normal D-monoid
then E is Cohen-Macaulay. The extent to which this result can be
generalized to irreducible monoids 1s not known.

Chapter 8 is a short discussion dedicated to general monoid
varieﬁies (hot necessarily affine).. A well known structure
theorem of C. Chevalley asserts that if G is a smooth algebraic
group then there exists a unique affine algebraic subgroup N of
G such that G/N is an abelian variety. It is not known whether
this result extends to algebraic monoid varieties. For example,
if G(E) is affine, is E affine?

I have considered two special cases, 1irreducible
- guasi—affine monoids and irreducible projective monoids. If E is
quasi—affine it is possible to imbed E as an open sub-monoid of

some irreducible .affine monoid E', E.—> E'. Thus E'-E is a
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prime ideal of E'. It follows from the results of chapter 5 that
E'-E is a principle divisor. Thus, E‘ is actualiy affine (see
Theorem 8.1.4). Using the completeness property of projective
varieties we see that all projective irreducible monoids are
abelian varieties (see Theorem 8.2.3).

In chapter 9, the final chapter, I have discussed a problem
which has 1its origins in rational homotopy theory. A rational
homotopy type may be regarded, by Sullivan's theory [30], as a
differential graded algebra M, defined over Q, which is minimal,
and free as a graded algebra. The problem I have considered is a
special case of, "To what extent 1is the structure of M
influenced by its algebraic monoid of endomorphisms?". I have
discussed this problem 1in a more general context so as to
abstract from the peculiarities of rational homotopy theory. Let
V(k) be the category of vector spaces over k and let S be an

'algebraic structure' on V(k). An algebraic structure a, is a

rule (or functor) which associates with the vector space V, a
collection of linear transformations { a(s) | s ¢ S } = a(S) in
the union of the Hom(Vv(m),V(n)) (as m and n vary) satisfying
various relations depending on S (V{(m) denotes the tensor
product of V with itself m times). The collection of pairs (v,a)
are the objects of a category 2(k,S). If V and W are objects of
2(k,S) then Hom'(V,W) = { f ¢ Hom(V,W) | a(s)of(m) = f(n)oal(s)
for all s in S }. Assume 0(k,S) has a zero object and each V- in
0(k,S) satisfies suitable finiteness conditions. Then End'(V) is
an algebraic monoid and furthermore 0 e End'(V).

Definition: Let V be an object of (k,S). Then V has positive

weights if 0 is in the Zariski closure of Aut(V) in End(V).



Equivalently, there exists a 1-p.s.g. t : k*

> Aut (V) such
that t extends to a morphism t : k —> End(V) with t(0) = O.

The importance of this definition was first noticed by R.
Body, R. Douglas 'and D. Sullivan in the context of rational
homotopy theory. If X is a finite simply-connected C.W. space
then M(X), the minimal model of X, has positive weights if and
only if, for every prime p, there exist maps £(i) : X —> X
such that the homotopy direct limit of { f(i) : X —> X | 1 e
N } is homotopy equivalent to the p-localization of X.

R. Body and R. Douglas [2] have proven that if X 1is a
rational homotopy type with positive weights then X satisfies
uniquéness of product decompositions in the sense of
Krull—-Schmidt. This result has since been generalized and
dualizea b& R. Douglas and myself [9]. In chapter A9 I have
éketched the main points of this arguement in the more general
context the category 0(k,S).

In the last seétion of chapter 9 I have discussed connected
algebraic monoids in the context of rational Homotopy. The
characterization of connected monoids with 0 in chapter 4 fits
in neatly with the main theorem of my master's = thesis
[27;Theorem 3.6.2]. Let M be a minimal algebra. Then End(M) is
connected in the Zariski topology if and only 1if there 1is a
chain 1 - e(0) > e(1) > ... > e(k) = 0 of idempotents ‘in End(M)
such that'e(i+1) is in the closure of Aut(e(i)(M)) for 1 =

1,00Q,k—1t
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I PRELIMINARIES

The theory of algebraic monoids reguires much background
information from algebraic geometry and algebraic group theory.
In this chapter I have assembled many of the prerequisite
concepts and results that are needed in subsequent chapters.
Occasionaly I have proven a result that is only tacitly
available in the literature but more often the resulfs are
stated with explicit references and no proofs.

1.1 Algebraic Geometry And Commutative Algebra

1.1.1 Dimension Theorem [13;p.30]}: Suppose f : X —> Y is a

dominant morphism of irreducible varieties, r. = dimX - dim¥,
Suppose W is a closed and irreducible subset of Y and Z is a
maxima; irreducible component of f"iw) which dominates W. Then
dimZ > dimW + r. |

1.1.2 Zariski's main theorem [15;p.414]: Let f : X —> Y be a

dominant morphism of irreducible varieties. Suppose that -every

fibre of f is finite. Then there exists a factorization of f, £

= f'oj, where j : X —> Y' is an open imbedding and
f' : Y' —> Y is a finite morphism.
Corollary: If f : X —> Y, as in 1.1.2, is birational and Y is

a normal variety then f is an open imbedding.

1.1.3 Separability [13;p.44]: Let f : X-—> Y be a dominant

morphism of irreducible varieties. For x e X let T(x,X) denote
the tangent space of x to X. If there is a smooth point x of X
such that y = f(x) is a smooth point of Y, and df : T(x,X) —>
T(y,Y) is surjective, then f is separable.

1.1.4 "Nakayama's lemma": Let A be a non—-negatively graded ring

such that A(0) 1is a field. Let m be the unique graded maximal
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ideal and suppose M is a non—negatively graded A-module. Suppose
further that { x(i) | i ¢ I } are homogeneous elements of M
which generate M/mM. Then { x(i) } generate M.

Proof: Let x € M(i) be of minimal degree such that x is not an
element of <x(i)> (the submodule generated by { =x(i) }). Now
modulo m, x = rfa(i)x(i). So z = x — ra(i)x(i) e mM. Thus z =
tm(i)z(i), where m(i) ¢ m and z(i) e M. But deg(z(i)) < deg(z)
for all i. So z(j) e <x(i)> for all j. Thus z = x — ra(i)x(i) e
<x(i)> and so x = z + fa(i)x(i) is also in <x{(i)>.

1.1.5 Codimension 2 Lemma [10;p.239]: Suppose X 1is a normal

affine variety and V is a closed subset of codimension larger
than or equal to two. Then any morphism from X-V to an affine
variety extends uniquely to X.

1.2 Linear Algebraic Groups

Throughout this section, G denotes a linear algebraic
group.

1.2.1 Orbits [17;p.66): Let GxX —> X 'be an action .of the -

algebraic group G on the variety X. For x e¢ X, let 0(x) =
{ gx | geG}andG(x) = {geG | gx=x1}. Then

(i) G(x) is a closed subgroup of G.

(ii) For all x € X, O(x) is open in its closure.

(iii) For all x e X, dimO(x) = dimG — dimG(x).

(iv) For all n > O, {}x ¢ X | dimOo(x) > n } is open in X.

1.2.2 Borel subgroups.

Let G be an irreducible algebraic group. A subgroup B, of G.

is a Borel subgqroup if B is solvable and G/B is a complete

variety.

(i) Suppose f and  g : G —> H are morphisms of irreducible
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algebraic groups such that f|B = g|B for some Borel subgroup B
of G. Then £ = g.

Proof: fg-' is a morphism of varieties from G to H which factors
through G/B. Thus, fg '(G) is complete, irreducible and affine.
Hence, f = g.

(ii) Normalizer theorem [13;p.143): If B is a Borel subgroup of

G then N(B) = B (N(B) is the normalizer of B in G).

(i1i) Borel fixed point theorem [13;p.134]: Suppose X 1is a

complete algebraic variety - and G is a solvable irreducible
algebraic group. If GxX ——> X is a group action then F(X,G)
(the fixed point set of this action) is non—empty.

(iv) Construction [13;p.145]): Let B(G) = { B | B 1is a Borel

subgroup of G } and G/B' = { gB' | g ¢ G } where B'-is some
fixed Borel subgroup. Then by the normalizer theofem
s : B(G) —> G/B', B —> gB'

(where B = gB'g~"') is well-defined and bijective.

Further,
GxB(G) —> B(G), (h,B) ——> hBh-'
1Xxs S
v v
GxG/B' —> G/B', (h,gB') —> hgB’

commutes.

Conclusion: The Borel fixed point theorem applies to the action

GxB(G) —> B(G) which is a priori only set—valued.

1.2.3 Closure:

(i) [29;p.68}, Let GxX ——> X, be a group action, V a closed
subset of X and B a Borel subgroup of G such that BV 1is
contained in V. Then GV is closed in X.

(ii) [29;p.70]. Suppose GxX —>X, X 1is affine, and x-e¢ X

satisfies tx = x for all t € T a maximal torus of G. Then O(x),
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the G—orbit of x, is closed in X.

1.2.4 Reductive and geometrically reductive groups:

G is reductive if every unipotent normal subgroup of G is

trivial.

G is geometrically reductive if for every morphismp : G -—>

G1l(V) .and every non-zero element v of V left invariant by G,
there is a homogeneous polynomial function £ : V —> Kk,
invariant under G such that f(v) is non-zero.

(i) [11]. If G is reductive then G is geometrically reductive.

(ii) [17;p.49]1. Suppose G 1is reductive and X is affine. If

GxX —> X then F(k[X],G) is a finitely generated k—algebra. Let
p : X —> Y be the morphism induced from F(k[X],6) —> k[X]
(so, k[Y] = F(k[X],G)). Then for all y in Y there is a unique

closed G—orbit O(x) contained in p~'(y).
(iii) If GxX —> X then the union of the set of closed orbits
of maximal dimension is open in X.

1.3 Finite D-group Actions

An affine group scheme is é generalized linear algebraic
group. Technically, in the study of linear groups and monoids,
one is often led quite naturally to consider group schemes which
are not necessarily reduced. For example, in characteristic p >
0 the category of affine commutative algebraic groups is not an
abelian category, but if the commutative non-reduced group
schemes are allowed as well, the resulting category 1is abelian
[32;p.127,ex.12].

In chapter 7 I have been led to consider certain morphisms
f : G —> H such that kernel(f) is a (not necessarily reduced)

finite D—group scheme. This will lead to an important structure
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theorem about semi-simple, rank one monoids.

Definition: An affine algebraic group scheme G is a

representable functor from the category of k—algebras to the
category of groups.

By Yoneda's lemma, all the group structures G(R) (as R
varies over k-algebras), are the result of morphisms
e : A —> k (unit)
d : A —> »aeA (multiplication (where 'e' denotes 'tensor
product over k'))
i: A —> A (inverse)
where A is the representing objeét for Gﬁ
' G(R) = Hom(A,R).
The group axioms imply that
(de1)od = (1ed)od
((noe)et)od = 1t = (1e(noe))od and
(i®1)od = noe = (1ei)od
where n : k —> A is the unit of the k—algebra structure on A.
A is thus a Hopf algebra. If G is an affine group scheme we
write A = k[G] if A is the Hopf algebra representing G.

Definition: Let G be an affine group scheme over k, an

algebraically closed field. Then G is a finite D-group if

(i) dim k[G] is finite.
(ii) X(G) = { a € k[G] | d(a) = aea } is a k—linear basis of A.
( Note: X(G) is always a group.)

- X(G) is the group of characters of G. Thus k[G] = k[X(G)], the

group algébra of X(G) over k.

1.3.1 Finite D-group actions: Let X be an affine variety defined

over k. Then there is a canonical bijection between actions of
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the D-group G on X, GxX —> X, and direct sum decompositions
k[G] = tk[(G](a) such that o e X(G) and k[G]l(a).k[G](g) is

contained in k[(G](a+pg).

Proof: Let R = k[X]. Given R = IR(a) define f : R —> Rek[G] as
f(x) = xeg for x e R(g). Clearly this determines an action
GxX —> X.

Conversely, given f : GXxX —> X we have f* : R —> Rek[G]

such that R is k[Gl—comodule (i.e. f* is co—associative) and

(1ee)of* = 1, where e is the augmentation on k[G]. One checks,
using these two facts, that if f*(a) = fa(e)e®c then a = ra(o)

and (a(a))(g) = a(e) if ¢ = g and 0 otherwise. Thus R = IR(a)
where R(a) = { a e R | a = a(a) }. | |

The remainder of the .chapter 1is devoted to the task of
sharpening some known results (see ~[281) about CohenéMacauiaj
rings and finite D-group actions. I have assumed throuéhout that
all rings are Noetherian k—algebras and that Kk is an
algebraically closed field.

Let X be an affine scheme over k and let G be a finite
D—group scheme such that f : GxX —> X is an action of G on X.
For example, if X is an algebraic group and G is a closed finite
D-subgroup scheme then GxX —> X, (g,x) —> gx, is an action
of G on X. Note that such an action may be non-trivial even if
G(k) (the set of k-rational points) consists of only one point.
Let A be the coordinate ring of X. |

1.3.2 Lemma: Let X, A, f be as above and let A(0) =.{ x ¢ A |

f(x) = x®1 }. Then
(i) A(0) is a subalgebra of A.

(ii) The 1inclusion, A(0) -—> A is an integral extension of
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rings.

(iii) A(g¢) is an A(0)-module for all o ¢ X(G).

(iv) If A is a normal domain then so is A(0).

Proof: (i) — (iii) are straightforward.

(iv). It suffices to prove that A(0) is the intersection M, of K
and A since A is normal (here, K is the quotient field of A(0)).
Let L be the quotient field of A. Now M is an X(G)—graded
subspace of A. Since K = K(0) = L(0), we must have A(0) = M.

1.3.3 Lemma [6;ch.7,4.8]: Let A —> B be a finite extension of

normal integral domains of the same dimension. Then B is a
reflexive A—module.

1.3.4 Lemma[6;ch.7,4.2): Let A be a normal integral domain and M

a finitely generated reflexive A-module, such that KeM is
isomorphic to K (where K is the quotient field oﬁ>A). Then M " is
isomorphic to a divisorial ideal I of A (i.e. I is'the
intersection of height one primary idealé).

1.3.5 Lemma: Suppose A is an integral domain such that each

local ring of A 1is a unique factorization domain. Let D be a
divisorial ideal of A. Then D is a rank—one projective A-module.
Proof: Well known.

1.3.6 Lemma: Suppose A is a finitely generated k—algebra and

A(0) —> A is as in lemma 1.3.2. Then A(0) is finitely
generated over k and A(0) —> A is a finite extension of rings.
Proof: Assume A = k[x(1),...,x(n)], x(i) homogeneous. Then

x(i)**1 ¢ A(0) for all i=1,...,n where 1 = 1X(G)] = dim(k[G])
('**' Jdenotes exponentiation). Let B = k[x(1)**1,...,x(n)**1].
Then B—>A(0)—>A. So B—>A(0) is finite because B—>A is so.

Thus A(0) is finitely generated and A(0)—>A is finite.



20

1.3.7 Lemma: Let G be a finite D-group, X a reduced and

irreducible affine variety, and u : GxX —> X an action of G on
X. Then for all ¢ e‘X(G), k[X]1(a)®K(0) and K(0) are isomorphic
as A(0)-modules (where K(0) is the quotient field of A(0)).
Proof: Let A = k[X]. So A = IA(a) and without loss of generality
A(g) is non—zero for all «. Consider the A(0)-bilinear map
A(c)eA(—g) —> A(0). Since A is a domain, if x e A(—g) is
non—zero, then m : A(s¢) —> A(0), m(z) = zx, is one—to—one and
A(0)=linear. Thus A(a) is isomorphic with an ideal of A(0) and
hence A(ag)®K is isomorphic to K.

Definition: Let X be an algebraic variety, dim(X) = n. X 1is

Cohen-Macaulay if for all local rings O(x), x ¢ X, there exists

a system of parameters {x(1),...,x(n)} of 0(x) which forms a
regular sequence (see [12]).

1.3.8 D-group coverings: Suppose GxX —> X is an action of the

D—group G on the normal affine variety X. If X/G is smooth then
X is Cohen—Macaulay.

Proof: A = k[X] is normal and A(0) = k[X/G] is regular. Consider
the inclusion A(0) —> fA(e). A(a) is a reflexive A(0)-module
by 1.3.3 and A(e) is a rank one A(0)-module by 1.3.7. Thus, A(a)
is isomorphic to a divisorial ideal by 1.3.4. Hence, A(sc) 1is a
rank—one projective A(0)-module by 1.3.5. Thus, A(O) —> A is a
flat morphism. So A is Cohen-Macaulay. '

1.3.9 D-group quotients: Suppose X 1is an irreducible affine

Cohen-Macaulay variety and GxX —> X is an action of the finite
D—group on X. Then X/G is Cohen-Macaulay.
Proof: Let A = k[X] and A(0) = k[X/G]. A is Cohen-Macaulay as an

A-module, and thus as an A(0)-module. But A is the direct .sum of
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A(0) and A(+) as an A-module (A(+) is the direct sum of the A(aq)
as o varies over all the non—trivial characters). Thus, A(G) is

a Cohen—Macaulay A(0)—module.
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II AFFINE ALGEBRAIC MONOIDS

2.1 Preliminaries

2.1.1 Definition: aAn affine algebraic monoid E is an triple

(E,m,1) such that
(i) E is an affine algebraic variety over k.

(ii) 1 e E(k).

(iii) m : EXE —> E is a morphism of algebraic varieties such
that mo(mx1) = mo(1xm) (associative).
(iv) 1f p : E —> E, p(x) =1, then mo(p,1) = mo(1,p) =1

(two—sided unit).

In categorical terminology, an affine algebraic monoid is a
representable functor from the category of affine varieties to
the category of monoids. An affine variety is completely
determined by its affine algebra. So we can reformulate the
definition above in terms of commutative algebra.

Let E be an algebraic monoid and let A = k[E] be its
coordinate ring. It follows from (iii) and (iv) above that if d
= m*, e : {1} —> E is the inclusion, and n : k —> k[E] is
the unit of the algebra structure, then

(de1)od = (1ed)od :and
1 = (noe,1)od = (1,noe)od.
A is thus an augmented k—bigebra.

A morphism f of algebraic.monoids f : E —> E' 1is a
morphism of algebraic varieties such that fom = m'o(fxf),‘where
m and m' are the multiplications on E and E' respectively, and
£(1) = 1. Unlike the case for groups the last condition does not

follow from the first unless f is dominant.
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2.1.2 Translation of functions

Definition: Let E be an algebraic monoid. A rational E-module

(V,p) is a morphism of monoids p : E —> End(V) such that

(i) For all v ¢ V there exists a finite dimensional subspace
V(v) of V such that v e V(v) and p(x)(V(v)) is contained in V(v)
for all x in E.

(ii) I1f W is a finite—dimensional subspace of V which is

E-stable then p|W : E —> End(W) is a morphism of algebraic
monoids.

Definition: ﬁ* : E —> End(k[E]).

For x e E let p(x) : E —> E be defined by »(x)(y) = yx. Let

p*(x) be the induced endomorphism on k[E].

2.1.3 Proposition: (k[E},p*) is a rational E-module.

Proof: See [13;p.62]. The proposition is there stated for groups
but the proof is valid for monoids as well.

2.1.4 Proposition: Suppose V is a subspace of k[E] which

satisfies

(i) Vv is finite dimensional.

(ii) p*(x)(V) is contained in V for all x in E.

(iii) V generates k[E] as a k—algebra.

Then ,*|V : E —> End(V) is a closed imbedding.

Proof: See [13;p.63].

Remark: Putting 2.1.3 and 2.1.4 together we obtain that any
affine algebraic monoid E is isomorphic to a closed submonoid of

End(V) for some finite dimensional vector space V.
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2.2.1 Lemma: Suppose G is an algebraic group and X is a Zariski

closed subset of G. Then

N(X) =

is a closed subgroup of G.

Proof: One checks that
N(X) =
I(X) = { £ ¢ k[G]

| £(x) =

Thus if g ¢ N(X) we have

But p*(g) : kI[G]

rationally on k[G].

p*(g) : I(X)

I(X)

—_—

Thus, p*(g)

{ g e G| Xg is contained in X }

{ g e G| p*(I(X)) is contained in I(X) } where

0 for all x in X }.

p*(g)
>

I(X)

k[G] is an isomorphism and ,*(g) acts

acts

rationally on

1(x), so

— > 1(X) is an isomorphism. Hence (p*(g)) '(I(X))

= I(X) and thus g e N(X), since p*(g) ' = p*(g ).

2.2.2 Corollary:

closed,

subgroup of G.

Let G Dbe

an algebraic

group, S a ‘Zariski

multiplicatively closed subset of G. Then S is a closed

Proof: S is a subset of N(S) by assumption so if s ¢ S then s°',

s-2 ¢ N(S) by 2.2.1. Thus 1

S is a subgroup.

2.2.3 Corollary: Let E be an algebraic monoid, »

a closed 1imbedding.

Then

= g5 !

G(E), the

¢ S and ss~ 2?2 =

s-' ¢ S. Thus

E. ——> End(V)

set of elements of E in
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G1(V), is precisely the set of invertible elements of E.
Furthermore, G(E) is an algebraic group and there is a morphism
¢ : E—> k = End(k) such that G(E) = o™ '(k*).

Proof: By 2.1.4 there exists a closed imbedding ) : B —>
End(Vv) for some V. Consider,

det

p
S —> Aut(V) —> k*
v v v
E —> End(V) —> k

where S 1is the intersection of E and Aut(V). S is a closed
subset of Aut(V) since »(E) is closed in End(V). Thus, by 2.2.2
S is an algebraic subgroup of Aut(V). Clearly, S = G(E).
Furthermore, if ¢ = detop then o '(k*) = G(E).

2.2.4 Lemma: Let x ¢ End(V), where V is a finite dimensional

vector space over k. Then there is an idempotent e(x) e End(V)
such that

(i) e(x) is in the zariski closure of { x, x2?, x3,... }

(ii) For all idempotents f in the Zariski closure of { x, x2,
x3,... }, fe(x) = e(x)f = f.

Clearly, e(x) is unique.

Proof: For any endomorphism x, there exists a decomposition x =
A+ N, where A is invertible when restricted to its image W, and
N is nilpotent (N and A commute to zero). Let e(x) be the
idempotent with kérnel = kernel(A) and image = image(A) and let
X be the Zariski closure of { x, x2?,..., } in End(V). By 2.2.2
the intersection S of X and Aut(W) is an algebraic subgroup of
Aut (W). Thus e(x) e Aut(W). (i) above is satisfied by definition

and (ii) is satisfied because e(x) is the 1identity element of
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Aut (W),
Remark: Lemma 2.2.4 may be regarded as a generalization of
Fitting's lemma.

2.2.5 Corollary: Let E be an algebraic monoid and 1let x e E.

Then there exists e(x) ; E such that

(1) e(x)? = e(x)

(ii) e(x) is in the closure of { x, x2%,..., 1}

(iii) e(x)f = fe(x) for all other idempotents satisfying (ii).
Proof: By 2.1.4 there exists a closed imbedding
p + E —> End(V). If x ¢ E then the closure of { x, x?,..., }
in End(V) is contained in E. Thus apply 2.2.4.

2.2.6 Corollary: Suppose g : E ——> E' 1is a morphism of

algebraic monoids. If e? = e ¢ g(E) then there exists £ = f ¢ E

such that g(f) = e.

Proof: g(x) = e so g(e(x)) e.

Note: Let E be an algebraic monoid. Then there exists k > 0 such
that.for all x in E, ye(x) = e(x)y = vy, ﬁhere- y 1is the k—th
power of x. This 1is true for End(V), with k = dim(V), by the
proof of 2.2.4, and in general by 2.1.4.

Notation: Let E be an algebraic monoid.

I(E) = { e ¢ E | e = e? }.

2.2.7 Corollary: Suppose E is an algebraic monoid. Then the

following are equivalent.

(i) G(E) = E.

C(i1) 1(B) = {1 }.

Proof: If x ¢ E—G then e(x) ¢ E-G.

Notation: Let E be an algebraic monoid, e ¢ E an idempotent.

Then eEe is a closed submonoid of E with identity element e. Let
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G(e) be the group of units of eEe.

2.2.8 Proposition:

G(e) { x ¢ eEe | e(x) = e }

"

{ x ¢ E | xe(x) = x = e(x)x and e(x) = e }.
Proof: Clear.

2.2.9 Corollary: Some power of every element of E is in G(e) for

some e e I(E).
Proof: Apply 2.2.8 to the note preceding 2.2.7.

2.2.10 Jordan Decomposition: Suppose x ¢ G(e). Then -there are

unique elements x(u) and x(s) in G(e) such that

(i) x = x(u)x(s) = x(s)x(u).

(ii) x(u) is unipotent and x(s) is semi—simple in the group
G(e).

(iii) For any morphism f ; E —> E', f(x(s)) = f(x)(55 and
E(x(uw) = £(x)(v). |

Proof: (i) and (ii) are clear; for (iii), it suffices to prove

that f(e(x)) = e(f(x)). But f(x)f(e(x)) f(e(x))f(x) = £(x). So

by 2.2.8, f(e(x)) = e(f(x)).

2.3 Examples

2.3.1 Algebras: Let E be a finite dimensional associative

algebra. Then E is a linear algebraic variety and the

multiplication map is bilinear. Thus E is an algebraic monoid.

2.3.2 Finite monoids: Let E be a finite (set valued) monoid, 1 e

E and m : EXE —> E the multiplication map. Let k[E] = Hom(E, k)
('Hom' in the category of sets). Then e : k[E] —> k, e(f) =

£(1), and d :k[E]—>k[E]ek[E], 4a(f) = fom 1induce on E the
structure of an algebraic monoid.

Corollary: Let E be a finite monoid, x ¢ E. Then there 1s .an
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integer n such that the n—th power of x is an idempotent.
Proof: By 2.2.9 the k—th power of x is in G(e(x)) for some k.
But G(e(x)) is a finite group.

2.3.3 D-monoids: Let S be a finitely generated submonoid of

7(n), the free abelian group of rank n and let k[S] be the
monoid algebra of S over k. Then E(S) = Hom(S,k) (as monoids) is
a D-monoid (diagonalizable). D-monoids are characterized by the
propefty of being isomorphic with a closed submonoid of some
monoid of diagonal matrices.

2.3.4 Algebraic structures: Let V be a finite dimensional vector

space over k and let V(m) denote the m—th tensor product of V
over k. Suppose S is a subset of the union of the Hom(V(n),V(m))
as m and n vary. Define End' (V) = { f e End(V) | f(ﬁ)os = sof(n)
for all s e S }. Then End'(V) is an algebraic monoid. This
examéle will be discussed in cﬁapter 9 ( see also [8]).

2.3.5 Let V be any affine variety defined over k. Let E be the
disjoint union of V and a point 1. For x, y ¢ E define xy = x if
x and y are elements of Vor y = 1, and xy =y if x = 1. Then E,

with this multiplication, is an affine algebraic monoid.
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II1 IRREDUCIBLE ALGEBRAIC MONOIDS

3.1 First Principles

Definition: An algebraic monoid E is irreducible if it is so as

an algebraic variety.

Unlike the'case of algebraic groups, arbitrary algebraic
monoids are vastly more general than irreducible algebraic
monoids. Example 2.3.5 suggests that algebraic monoids in
complete generality are not suitable for axiomatic study.

3.1.1 Proposition: Let E be an algebraic monoid. Then there

exists a unique maximal irreducible component E(0) of E such
that 1 ¢ E(0). “
Proof: Let {E(i)} be the set of maximal irreducible components
of E. Suppose 1 is an element of both E(0) and E(1). Then
E(Q0)E(1) 1is 1irreducible and contains both E(0) and E(1). Thus,
by maximality, E(0) = E(1).

| Let E° = E(0).

3.1.2 Proposition: Let E be an algebraic monoid, and 1let G be

the group of units of E. Then E® is the Zariski closure of G° in
E.

Proof: 1 € G° and G° is irreducible. Thus, G° is a subset of E°.
But G° is open in E°. Thus, G° is dense in E°;

3.1.3 Proposition: E° is an algebraic submonoid of E.

Proof: E°E® is an irreducible subset of E which contains 1. Thus
E°E® = E® by 3.1.1.

3.1.4 Proposition: Let E be an algebraic monoid and let e be an

idempotent of E which is in the Zariski closure of G(E). Then

e € Eo .
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Proof: Let f : E —> E be the morphism of varieties which maps
each element to its n—th power. Then for some n, f maps G(E) to
"G(E)® (since the later group has finite index inthe former).
But every idempotent is a fixed point of such a morphism.

3.2 Integral Closure And Normalization

3.2.1 Proposition: Suppose we have the following commutative

diagram where A and B are integral domains.

J
A —> B
d d
v v
AeA > BeB
Je3]

If x ¢ B is integral over A then d(x) ¢ BeB is integral over A®A
('e' denotes tensor product of vector spaces).
Proof: Clear.

3.2.2 Proposition: Suppose we have morphisms A —> A[1/f] —> B

where B is a normal k—domain and the second morphism 1is finite
and dominant. Then A'eA' —> BeB is integrally closed, where A'

is the integral closure of A in B.

Proof: A'[1/f] = B since localization commutes with integral
closure. Further, A'eA' is normal because A’ is. Thus,
A'eA' — > BeB is integrally closed because BeB = A'eA'[1/fef],

3.2.3 Theorem: Suppose E 1s a normal irreducible algebraic

monoid and o : G —> G(E) is a finite dominant morphism of
algebraic groups. Then the following diagram can be filled in

uniquely
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in such a way that

(i) E' is normal and irreducible.

(ii) »' is a finite morphism of algebraic monoids.

(iii) §' is an open imbedding.

Proof: Let R be the integral closure of k[E] in k[G]. Then R 1is

normal, »'* 1is finite and j'* is an open imbedding (p'* : k[E]

—> R and j'* ¢+ R —> k[G(E)]). By 3.2.1 and 3.2.2 the
comultiplication 4, of k[G] restricted to R is a
comultiplication on R. Further, the augmentation of k[{G]

restricted to R is an augmentation on R. Thus, (R,d|R,e|R) is a
normal bigebra, finitely generated over k. Hence, the diagram of
algebras dualizes to yield the diagram of monoids advertised in
the assertion of the theorem with R = k[E']. This diagram is
already uniquely determined by the underlyihg geometry.
Remarks: Let E be an irreducible algebraic monoid. Then there is
a unique irreducible monoid E' and a morphism n : E' —> E such
that
(i) n is finite, dominant and birational.
(ii) E' is a normal algebraic variety.
The details will be left to the reader.

The construction in Theorem 3.2.3 1s . an important

."ingredient in the existence results of the next section.
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3.3 Existence Of Algebraic Monoids

The purpose of this section 1is to characterize the
irreducible algebraic groups G for which there is an algebraic
monoid E with G(E) = G (non-trivially). It turns out that in
case this is possible, E may be chosen with 0.

Observation: Let G be an irreducible algebraic group and suppose

X(G) = Hom(G,k*) is trivial.

If G = G(E) for some irreducible monoid E, then G = E.
Proof: There exists » : E —> End(V) a closed imbedding.
Further, p(G(Ef) is contained in Gl1l(V). By assumsion, the
composite G(E) —> Gl(V) —> k* is trivial for any character
of Gl(V). Thus G(E) is contained in S1(V). This forces G(E) = E
because S1(V) is closed in End(V).

The remainder of this section is devoted to a proof of the
converse.
5 Lemmas

3.3.1 Lemma: Let S be a finitely generated submonoid of some

free abelian group and suppose p : S —> N is a monoid map such .
that p-'(1) = { 1} (where N = { 0, 1, 2,.. }). Then $* = { 0}
where S* = { s ¢ S | —s ¢ S }.

Proof: - '(0) contains S¥*.

3.3.2 Lemma: Let Z(n) be a free abelian group of rank n and let

<a(1),...,a(n)> be the submonoid of z(n) generated by { a(i) }.
Let u ¢ Z(n) be non-zero. Then
< mu+a(1),...,mu+a(n) > = { 1 }
for all sufficiently large m.
Proof: Choose , : 72{n) ——> Z such that ,(u) > 0. Then

me(u)+p(a(i)) > 0 for all i if m 1is sufficiently large. Thus
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Lemma 3.3.1 applies.

3.3.3 Lemma: Suppose E is a D-monoid and j : E > End(V) is a

morphism such that

(i) v = tV(a) (o e X(E))

(1i) V(0) = { v e V | 5(t)(v) = v for all t ¢ E } = (0)

(111) 0 e E.

Then j(0) 0 (the zero endomorphism of V).
Proof: One checks that V(0) = { v e V | j(0)(v) = v }.

3.3.4 Lemma: Suppose T is a D—group and p : T —> Gl(V) 1is a

morphism. Let i : Gl(V) —> End(V) be the canonical inclusion
and suppose V = IV(s), o e X(T). Then the image of k[End(V)]
under p*oi* in k[T] is k[e;V(ae) 1is non-zero]. Furthermore,
k[a; V(a) is non-zero] is thereby identified with the coordinate
ring of the closure of i0p(T) in End(V). |

Proof:'Straight forward.

3.3.5 Lemma: Suppose there exist morphisms u : G ——> k* =

ZG1l(Vv) and j : G > 81(V) (viewed as morphisms to Gl(V)). Let
T be a maximal torus of G and suppose V = 1IV(e) (direct sum
decomposition) via j. Consider g(m) : G —> G1(V), the morphism
obtained by multiplying j and mu. Then, via g(m), V = IV'(a+mu)
where V' (o+mu) = V(a). |

Proof: V(a) = { v e V | j(t)(v) = al(t)v for all t ¢ T }. So if v
¢ V(a) then g(m)(t)(v) = (e*+mu)(t)v for all t e T .

Note: Thus, by 3.3.2 and 3.3.3, if m is sufficiently large and u
is non—-trivial then 0 is an element of the closure of g(m)(T) in

End(V).

Conclusion: (putting 3.3.1 — 3.3.5 together)

Assume X(G) is non—trivial. Let j :+ G —> S1(V) be .an imbedding



34

and let u : G —> k* be a non—trivial character. Then for all
1 >0, g{m) : G —> Gl(V) is finite.

Furthermore, by 3.3.2, 3.3.4 and 3.3.5, if 1 is large
enough then the closure of g(m) has a zero of its own for T a
maximal torus of G. By 3.3.3 we can choose 1 large enough so
that the zero of End(V) 1is in the <closure of g{(m). Hence,
letting p = g(m), we have

G —>G'—>Gl(V)—>End (V)
) .

such thét p is a finite and dominant and 0 is an element of the
closure of G' in End(V).

Let‘E' be the normalization of the closure of G in End(V).
Then we have, 0 ¢ E' and E' is irreducible and normal. Consider

the following.diagram.

v
G' —> E'

By Theorem 3.2.3 the diagram can be filled in wuniquely to

yield
3
G —> E
pv
v v
G' ——> E‘

such that j is an open imbedding and ,' is finite and dominant.
It follows that E also has a =zero. In summary, we have
established the following result.

3.3.6 Theorem: Let G be an irreducible '‘algebraic group. Then the

following are equivalent.
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(i) There exists an irreducible algebraic monoid E such that
G(E) = G and E is not a group. -
(ii) There exists an irreducible monoid E such that G(E) = G and
0 ¢ E (with 0 not equal to 1).
(iii) X(G) is a non-trivial group.
(iv) rank(R(G)) > 0.
3.4 Closure

A useful strategy in the theory of algebraic monoids is to
apply the structure theory of algebraic groups and varieties in
studying closure properties of various subgroups T of G in E.
The purpose of this section 1is to assemble some of these

techniques. I shall assume throughout that ‘E is an irreducible

affine algebraic monoid.

3.4.1 Proposition: Let E be an irreducible algebraic monoid with

group of units G and let B be a Borel subgroup of G = G(E). Then
(i) E 1is the union of g2g-' as g varies over G, where Z is the
closure of B in E.

(ii) E is the union of gZ as g varies over G.

Proof: G/B is complete and BeZ is contained 1in Z, where 'e!
denotes  either conjugation or left translation. Thus, by 1.2.3
(i), GeZ is closed in E.-

Recall from 1.2.2 (iv) that if B(G) is the set of Borel
subgroups of G, then we may regard B(G) as a complete algebraic'
variety in such a way that GxB(G) —> B(G), (g,B) —> gBg™', is
a morphic group action.

The purpose of the next two lemmas is to prove that ifox e
E then B(x) = { B ¢ B(G) | x is an element of the closure of B }

is a closed non—empty subset of B(G).
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3.4.2 Lemma: Suppose p : X —> Y is an surjective open map of

topological spaces and further, that V is a closed and saturated
subset of X (i.e. V = p - '(p(V))). Then p(V) is a closed subset
of Y.

Proof: p(X—V) is open in Y and p(X-V) = p(X)—p(V) = Y—p(V) since
p is saturated. Thus ,(V) is closed in Y.

3.4.3 Lemma: Let x ¢ E and suppose x e¢ Z, the closure of B(0) e

B(G). Let V={geG | g'xge2 }. Then p(V) is a closed
subset of G/B(0), where p» : G —> G/B(0) is defined by »(g) =
gB(0).

Proof: V is closed since it is a transporter with closed target.

So if g € V then x e gZg-'. Hence x ¢ gbZ(gb)~' and thus, gb ¢ V

for all b € B(0). Thus, V is saturated with respect to ,. By

Lemma 3.4.2, p(V) is closed in G/B(0)

3.4.4 Proposition: Let x e E. Then B(x) = { B ¢ B(G) | x is in

the closure of B } is closed in B(G).

Proof: B(G) may be regarded as a complete variety under the
identification given in 1.2.2 (iv). Under this identification
{ gB(O) | g-'xg ¢ 2(0), the closure of B(0) } corresponds to
{ B e B(G) | x is in the closure of B }.

3.4.5 Proposition: Let E be an irreducible algebraic monoid and

let T be a maximal torus of G(E). Suppose x e¢ E and xt = tx for
all t e T. Then there is a Borel subgroup B ¢ B(G) such thaf T
is containéd in B and x is in the closure of B.

Proof: B(x) 1is <closed in B(G) and B(x) is stable under
conjugation by T since T centralizes x. By 1.2.2 (iii) T has a
fixed point in B(x). Thus there exists B e B(x) such that T

normalizes B. Hence, by 1.2.2 (ii), T is contained in B.
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3.4.6 Proposition: Suppose x ¢ E is semi-simple and T is a
maximal torus such that xt = tx for all t e¢ T. Then x‘e X, the
closure of T.
Proof: By 3.4.5 there exists a Borel subgroup B of G such that x
is in the <closure 2Z, of B and T is contained in B. Now there
exists a representation z —> T(V) (upper triangular). From
linear algebra we can assume that both T and x are contained in
D(V) the diagonal matrices of T(V). So we have
{ x, X} —> z —> T(V) —> D(V) where the last map 1is the
quotient of T(V) modulo its ideal of nilpotent elements. The
composite of all these maps is one-to—one since both X and { x }
are contained in D(V). But the image of x is in the image of X
because X 1is ﬁhe closure of a maximal torus. Thus x e X.

_ The following fundamental result is due to M. Putcha
[21;Theorem 1].

3.4.7 Proposition: Let E be an irreducible algebraic monoid and

let e ¢ I(E) (idempotents). Then

(i) There exists a closed irreducible submonoid E' of E such
that Ee is contained in E' and eE' = eEe.

(1i) There exists a closed irreducible submonoid E" of E such
that eEe 1is contained in E" and E" 1is contained 1in the
centralizer of e in E.

3.4.8 Corollary[21): Let E be an irreducible algebraic monoid

and let e € I(E). Let C(e) = { x ¢ E | xe = ex }. Then eEe 1is
contained in C(e)®, the identity component of C(e).
Proof: eEe is contained in E" as in 3.4.7, and E" is contained

in C(e). Thus E" is contained in C(e)° since E" is irreducible.

3.4.9 Proppsition[21]: Let E be an irreducible algebraic monoid
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and let e ¢ I(E). Let CG(e) = { g ¢ G(E) | ge = eg }. Then
CG(e) —> G(e), g —> ge = eg, 1is a surjective morphism of

algebraic groups.

Proof: Consider C(e) —> eEe, x —> ex = xe. By 3.4.8, this 1is
a dominant morphism  when restricted to C(e)°. Thus
CG(e)) —> G(e) 1is dominant. But a dominant morphism  of

algebraic groups is surjective.

3.4.10 Proposition: Let x ¢ E be semi-simple. Then x e¢ X, the

closure of some maximal torus T of G(E).

Proof: Let e = e(x). Then x ¢ G(e). By 3.4.9 CG(e) —> G(e), g
—> ge, 1is surjective. Thus there exists a maximal torus T in
'CG(e) such that x e eT. By 3.4.6 e ¢ X, the closure of T. Thus
X ¢ eT, which is contained in the closure of T.

3.4.11 Proposition: Let x € E be semi-simple. Then Cl(x), the

conjugacy class of.x, is closed in E.

Proof: By 3.4.10 there exists a maximal torus T of G(E) such
that x ¢ X, the closure of T.‘So txt-' = x for all t € T since X
is a commutative monoid. Thus by 1.2.3 (ii) Cl(x) is closed in
E.

3.4.12 Proposition: Let E be an irreducible algebraic monoid.

Then there are a finite number of conjugacy classes of
idempotents in E.

Proof: Let e ¢ I(E) and let T be a maximai torus of G(E). By
Proposition 3.4.10 there -exists g ¢ G(E) such that geg™' ¢ X,
‘the closure of T in E. But the number of idempotents in X 1is
finite since X 1is iéomorphic to a closed submonoid of the
diagonal matrices, D(V) for some V.

In subsequent chapters it will be necessary to know .that
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under certain conditions the image of an algebraic moncid is a
closed subset of the target monoid. It 1s easy to construct
examples which demonstrate that fairly strict conditions are

required.

3.4.13 Proposition: Suppose E and E' are irreducible algebraic
monoids with zeros 0 and 0' respectively. If p : E —> E' is a
morphism such that - '(0') = { 0 } then » is a finite morphism.
In particular, p(E) is a closed submonoid of E'.

Proof: Choose a 1-p.s.g. o : k* —> G(E) such that ¢ extends to
6 : k —> E with ¢(0) = 0. This yields an action of k on E by
left translation and similarily on E' via ».

On the level of coordinate algebras this translates to:

p : k[E'] —> k[E] is a morphism of N-—graded algebras (where N
= {0,1,2,...}). Since o converges to zero we obtain k[E'](0) = k

k[E](0). Since »-'(0') = { 0 } we have that k[E] 1is finite

dimensional modulo k[E']*. Thus, by 1.1.4, k[E] is a finite

k[E' ]J-module.
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IV TYPES OF MONOIDS

In this chapter I discuss some of the special properties
associated with the five most important types of monoids. These
are D-monoids, nilpotent monoids, solvable monoids regular
monoids, and reductive monoids.

4.1 D-monoids

Definition: An irreducible D-monoid E 1s an 1irreducible

algebraic monoid such that G(E) is a torus.

D-monoids are gquite varied and have been studiéd
extensively from a geometric point of view in [14]. M. Hochster
[12] has proven that normal D-monoids are Cohen—Macaulay;
D—monoids have also been studied as algebraic monoids by M.
Putcha in [19] and [20]. It is- hopéd that wultimately the
classification of reductive.monoids can be reduced to .problems
concerned with D-monoids.

.This section is mostly summary. Pertinent details not
mentioned here are wéll recorded in [14], [19] and [20].

4.1.1 Proposition: There 1is a categorical equivalence between

the category D of irreducible D—-monoids and the category M of
finitely .generated commutative monoids which can be imbedded in

a free abelian group. The equivalence is given by functors,

E —> X(E) Hom(E, k) (D-moncid morphisms)

S —> E(S)

n

Hom(S,k) (monoid morphisms)

X(E) is the character monoid associated with E.

4.1.2 Proposition: Let E be an irreducible D-monoid and let I1(E)
={ e eE | e* =e }. Then
(1) I(E) is finite.

(ii) If 0 ¢ E and if 0 < e(1) < ... < e(k) =t is a saturated
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chain in I(E), then dim(E) = k.

(iii) If dim(E) = 2 and 0 ¢ E then I(E) = { 1, e, £, ef = 0 }.
(iv) 1f e e I(E) then e 1is the product all the maximal
idempotents which are larger than or equal to e.

4.1.3 Proposition[14;p.12]: There are canonical one—to—one

correspondences among { U | U is an open affine G(E)—equivariant
subset of E }, I(E) and { X | X is a G(E)-orbit in E }. If U is
open affine and G(E)-equivariant then there is a unique minimal
idempotent e(U) e U.

4.1.4 Proposition[19]: For all maximal idempotents e e I(E)—{1}

there is a unique one—dimensional subgroup G(e) of G(E) such

that e is an element of the closure of G(e) in E.

4.1.5 Proposition[14]: Let E be a D-monoid. Then E is a normal
‘variety if and only if for all x ¢ X(G(E)), nx e X(E) implies
that x ¢ X(E).

4.1.6 Proposition: Let E and E' be irreducible D-monoids with

zeros 0 and 0'. Suppose p : E —> E' is a morphism such that
p(0) = 0'. Then thé following are equivalent.

(i) p is a finite morphism.

(ii) p|I(E) : I(E) —> I(E') is one-to—one.

(iii) There exists n e N such that nX(E) is contained in
p*(X(E')).

Proof: (i) => (ii). If p(e) = p(f) then p(ef) = ple) = p(f). If
e 1is not f then ef < e and thus efE is a proper subset of eE,
whereas p(efE) = p(eE). Thus dim(eE) > dim(p(eE)). So p is not
finite.

(i1) => (i). If o : I(E) —> I(E') is one—to—one then , '(0")

is the union of the G(E) orbits of the idempotents that it
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contains. Thus by 3.4.13 p is finite.
‘(i) => (iii): With an irrelevant loss of generality we may

" assume that p is dominant. Thus we have

p*

X(E") > X(E)
v p* v

X(G') > X(G)

If 5 is finite then mX(G) is contained in ,*(X(G')) for some m e
N. But by assumption, each element of mX(E) 'is integral over
k(X(E')]. So, by 4.1.5, there exists n e¢ N such that nX(E) is
contained in p*(X(E')). (iii) => (i) is clear.

"4.1.7 Proposition: Let E a normal D-monoid with 0. Then there

exists F(1),...,F(m) e X(E) such that

(i) m is the number of minimal non-zero idempotents of E.

(ii) <F(1),...,F(m)> —> X(E) 1is a finite morphism (where

< ... > denotes "the monoid generated by").

(iii) { F(i) } is a linearly independent set modulo m?, the

square of the ideal of functions that vanish at 0. .
Furthermore, { F(i) } is the only such subset of characters

satisfying all these properties. F = { F(i) } is the set of

fundamental generators of X(E).

Proof: Let e ¢ I(E) be a minimal non—zero idempotent. Then by
4.1.2 (ii), dim eE = 1. Since E is normal, eE is normal, because
it is a retract of E. Thus eE is isomorphic to k. So k[eE] =
k[F(e)], where F(e) is the unique character which generates

k[eE]. E —> eE, x —> ex is a morphism of D-monoids so X(eE)

—> X(E) is a morphism of monoids. Consider, p : E > 7, p(x)

= (ex),. e minimal, where 2 is the direct product of all the eE
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as e ranges over the minimal idempotents of E. Then , 1is a
morphism of D-monoids such that ,(e) is non;zero for every
minimal idempotent e in E. Thus, ,"'(0) = { 0 }, because
otherwise it contains a minimal idempotent. Hence b is finite by
3.4.13. On the level of characters we have <F(1),...,F(m)> —>
X(E) (where the F(e) have been relabled). This proves (i) and
(ii). Each F(i) is non—-zero modulo m? because eE is a retract of
E. Thus { F(i) } is a linearly independent subset of m/m?. This
proves (iii). |

1f { x(i) } is a subset of X(E) such  that
<x(1),...,x(m)> —> X(E) is finite then it follows that each
x(i) is some power of one of the F(i). Thus { x(i) } satisfies
(iii) if and only if { x(i) } = { F(i) }.

4.2 Nilpotent Monoids

Definition: Let E be an irreducible algebraic monoid. E is

nilpotent if G(E) is a nilpotent algebraic group.

A well known structure theorem asserts that if G 1is a
nilpotent algebraic group then G(u) = { u e G | u is unipotent }
and G(s) = { s ¢ G | s is semi-simple } are closed subgroups of
G and G is isomorphic to the direct product of G(u) and G(s).
The purpose of this section 1is to characterize the class of
nilpotent monoids for which a generalization of this theorem is
possible. M. Putcha has obtained similar results for commutative
monoids in [19].

4.2.1 Lemma: Suppose E is an irreducible nilpotent monoid. Let T

be the maximal torus of G(E). Then every semi-simple element of
E is in the closure of T.

Proof: By 3.4.10 every semi—simple element of E 1is in the
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closure of a torus.

Definition: Let E be an algebraic monoid. If E is the union of

the G(e) as e varies over all idempotents, then E is a Clifford
monoid (see 2.2.7 — 2.2.10 for a discussion of G(e)).

4.2.2 Lemma: Suppose E 1is a nilpotent Clifford monoid. Let

e ¢ I(E) be a maximal idempotent. Then E(e) = { x ¢ E | xe = ex
= e }° is a one—dimensional D-submonoid of E.

Proof: 1I(E(e)) = { 1, e } and e is the zero element of E(e).
Suppose x ¢ E(e) and x is not e. Then e(x) is not equal to e
either, because 1if e = e(x) then x ¢ G(e) since E is Clifford.
But then e is the only element common to both G(e) and E(e).
Thus, e(x) = 1, since I(E) = { 1, e }. Hence, x ¢ G(E(e)). So
E(e) is the union of G(E(e)) and { e }. Thus, -dimE(e) = 1, since
by 2.2.3, dim(E-G(E)) = dim(G)—1. Furthermore, G(E(e)) is a
D—group, because irreducible unipotent monoids are groups.

4.2.3 Lemma: Let E and e be as in 4.2.2. Then G(u) —> eG(u), u

—> eu, is a finite morphism.

Proof: Let K = { v e G(u) | ev = e }. By 4.2.2, K® is
irreducible, and semi—simple. Thus, K = { t } and so K 1is
finite.

4.2.4 Lemma: Let E be as in 4.2.2 and suppose e ¢ I(E) is any

idempotent. Then G(u) —> eG(u) is finite,

Proof: Let 1 > e(1) > ... > e(k) = e be a saturated chain of
idempotents. Then e(i)G(u) —> e(i+1)G(u) is finite for each i
by 4.2.3 applied to the Clifford monoid e(i)Ee(i). Since ex =
e(k)...e(1)x, G(u) —> eG(u) 1is the composite of finite
morphisms. Thus G(u) —> eG(u) is finite.

4.2.5 Lemma: Let E be .as in 4.2.2. Then m : E(s)xG(u) —> E,
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(x,u) —> xu 1is a finite birational morphism of algebraic
monoids.

Proof: m is birational by the well known result for algebraic

groups. Suppose (x,u) satisfies xu = e (so e(x) = e). Then eu =
x*xu =x*e = x* (for some =x* ¢ G(e)). But then x* is a
semi—simple element of eG(u). Hence, x* = e and thus x = e. It

follows that m is one—to—one and birational. m is onto because
image(m) contains G(E) and all idempotents. The same 1is true for
the normalization of E. Thus, by 1.1.2, m is finite.

4,2.6 Theorem: Suppose E is irreducible and nilpotent. Then the

following are eguivalent.
(i) E is Clifford.
(ii) The morphism m : E(s)xG(u) —> E, (x,u) —> xu is finite
and dominant. |

If, in addition, E is normal, then m is an isomorphism.
Proof: (i) => (ii). Lemma 4.2.5. |
(ii) => (i). Both groups and D—monoids are Clifford monoids. It
follows that E(s)xG(u) is Clifford. Thus E is Clifford as it 1is
the image of a Clifford monoid.

If E is normal then it follows from 4.2.5 and 1.1.2 that m
is an isomorphism.

4.3 Solvable Monoids

Definition: Let E be an irreducible algebraic monoid. Then E 1is

solvable if G(E) is a solvable algebraic group.
In this section I prove two general results about solvable
algebraic monoids.

4.3.1 Theorem: Let E be a solvable irreducible algebraic monoid.

Then there exists an irreducible D-monoid X and a morphism



46

p ¢+ E —> X
such that for any morphism f : E —> Y where Y is a D-monoid
there is a unique morphism f* : X _ Y, such that f*op = f.
Furthermore, for all maximal tori T of G(E) the composite Z —>
FE —> X is an isomorphism, where Z is the closure of T in E.

4.3.2 Theorem: Let E be an 1irreducible algebraic monoid with

zero. Then the following are equivalent.
(i) E is solvable.
(ii) N = { x ¢ E | x is nilpotent } is a two sided ideal of E.

Proof of 4.3.1: Let X(E) be the characters of E. Then X(E) is a

linearly independent multiplicative subset of k[E]. Let R
k[X(E)], the monoid algebra of X(E) over k, and let T be a
maximal torus of G(E). Let Z be‘the closure of T in E. Thus, the
composite R —> k[E] —> k[Z] is one-to-—one, since thel same is
true when restricted to G(E), and G(E) is dense in E,.

Claim: R —> k[Z] is an isomorphism.

Proof of claim: There exists a closed imbedding E —> T(V)

(upper triangular matrices) for some V. We may assume also that

7 is contained in D(V), the diagonal matrices. Suppose we have a

character p : Z ——> k. Then p can be lifted to a character
¢ : D(V) —> k since Z ——> D(V) is a closed imbedding. But o
1ifts to T(V) because the inclusion D(V) —> T(V) splits.

Restricting this lifting to E yields: Every character on Z lifts
to E. This proves the claim.

Now suppose f : E —> Y is a morphism, where Y 1is a
D—monoid. On the level of characters this yields f* : X(Y) —>
X(E). But X(E) is contained in R. So f factors through X =

Spec (R).
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Proof of 4.3.2: (i) => (ii). By 4.3.1 there 1is a morphism

p + E —> X such that for every maximal torus T in G(E) the
composite Z —> E —> X is an isomorphism. Thus, since every
semi—simple element is in the closure of a torus, 0 is the only
semi—simple element of - '(0). Now p~'(0) is a closed ideal of
E; so if x € p-'(0), then e(x) e p '(0). Thus p~'(0) is the set
of nilpotent elements of E.
(ii) => (i). Suppose E is not solvable. Then C(T) is a proper
subset of N(T) (i.e. the Weyl group is non-trivial). Let o € W =
N(T)/C(T) be a non—trivial element. So int(e) : I(2) —> I(2Z)
is non—trivial, since by 4.1.7, the automorphisms of a D-monoid
with 0 are faithfully represented on the idempotents. It follows
that int(e) acts non—trivially on the minimal idempotents of Z.
So let e, f é 1(2) be“minimallnon—zero idempotenté such that oe ’
- fo. Thus (ge)? = sefs = ols = 0 since e and f are distinct
minimal idempotents of Z. But then se is nilpotent, yet cee™ ' is
not. Hence the nilpotent elements do not form an ideal.

Much more can be said about the structure of solvable
algebraic monoids. In [24;Theorem 23] M. Putcha gives numerical
and semigroup characterizations of solvable algebraic monoids.

4.3.3 Proposition: Let E be a solvable irreducible algebraic

monoid and let x, y € E(s). Suppose xy = yx and »p(x) = ,(y)
where p» is the universal morphism to a D-monoid. Then x = y.

Proof: By 4.3.1, it suffices to prove this for E = T(V) (upper
triangular matrices). Let C(x) be the centralizer of x 1in E;
Then C(x) and 2ZC(x) are both irreducible, since they are both
linear subspaces of T(V’. Let T be a maximal torus of 'C(x) such

that y e X, the closure of T in C(x). But we also have x ¢ X
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since x is a central semi—simple element. Thus x = y since plX
is one—to—one.

4.4 Reductive And Reqular Algebraic Monoids

Definition: Let E 'be an irreducible algebraic monoid. E is

reductive if G(E) is a reductive algebraic group.

Definition: (a) A monoid E is regular if for all x e E _there

exists g ¢ G(E) and e ¢ I(E) such that gx = e.

(b) A monoid E 1is von Neumann regular if for all x e E there

exists a ¢ E such that xax = Xx.

Let E be an irreducible algebraic monoid. It is then a
consequence of [21;Theorem 13] that E is regular if and only if
E is von Neumann regular. Thus, I have often taken the liberty
of using the definition that -is most convenient.

The main result of this section (see Theorems 4.4.14 and
4,4.15) asserts that all reductive monoids are regular.

Let us recall some properties concerning conjugacy classes
in semi-simple algebraic groups.

4.4.1 Proposition[29;p.87-92]: Let G be a semi-simple algebraic

group.

(i) If x ¢ G then Cl(x) is closed in G if and only if x 1is
semi—simple.

(i1) Let cl[G] = { f e k[G] | f(xy) = f(yx) for all x, y ¢ G }.
Then cl[G] is the ring of invariant functions under the induced
action of conjugation.

(iii) Let T be a maximal torus of G, W the Weyl group. Then
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cl[G] —> kI[G]

v

v
k[T]" > k[T]

commutes, where k[T]' is the the ring of invariant functions in
k[T] under the induced action of W.

Remark: If G is an irreducible reductive group then (G,G) = G'
is semi—simple and G is commensurable with the product of G' and
7(G)°. It follows from this and 4.4.1 above, that 4.4.1 is also
valid for reductive groups.

Let cl[E] = { f e k[E] | f(xy) = f£(yx) for all x,y ¢ E }.

4,4.2 Proposition: Let E be an irreducible algebraic monoid, T a

maximal torus. Suppose for x, y € X, the closure of T, there

exists g e G such that gxg-' = y. Then there exists w e N(T)

(normalizer) such that wxw™' y.
Proof: g-'Tg and T are contained 1in CG(x)°, the 1identity
component of the centralizer of x in G(E). Thus there exists
z ¢ CG(x)° such that zg-'Tgz-' = T. But then zg~' e N(T), yet
(zg=')"'"x(zg"') = gxg~ ' = y.

If x ¢ E is semi—simple then by 3.4.10, x is in the closuré
of some maximal torus. Thus, by 4.4.2 the semi—-simple conjugacy

classes are canonically parametrized by X/W.

4.4.3 Theorem: Let E be a reductive algebraic monoid and 1let T

be a maximal torus of G. Let X be the closure of T in E. Then
the inclusion cl[E] ——> k[E] followed by the projection
k[E] —>> k[X] induces an isomorphism of cl[E] onto k[X]', the
ring of invariant functions under the induced éction of W on
Ck[X].

Proof: cl[E] 1is the intersection in k[G] of k[E] and cl[G]. It
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follows from this that (when restricted to T) cl[E] 1is the
intersection in k[{T] of k[X]' and cl[G]. Thus, by the remafk
following 4.4.1; cl[E] is identified with k[x]'.

Remark: From general principles (1.2.4) we have,

(i) cl[E] is a finitely generated k—algebra since G is reductive
~and cl[E] is a ring of invariants of G.

(ii) The morphism cl : E —> E(cl) = Spec(cl[E]), induced from
the inclusion <cl[E] ———> k[E] satisfies: each fibre of the
morphism cl contains precisely one closed conjugacy class.

4.4.4 Theorem: Let E be a reductive algebraic monoid and let

x ¢ E. Then
(i) x 1is semi—simple if and only if Cl(x) (the conjugacy class
of x in E) 1is closed in E.
(ii) If T is a maximal torus of G then the centralizer of T in E
is equal to the closure of T in E.
Proof: Let X be the closure of T in E. From 4.4.3 we have X/W is
canonically isomorphic with E(cl).

If x ¢ E is semi—simple then by 3.4.11 Cl(x) is closed in
E. Conversely, if Cl(x) is closed in E then by the remark above
Cl(x) is the only closed conjugacy class in c¢l-'(cl(x)). But
from our - identification of X/W with E(cl) we obtain that X
intersects every closed conjugacy class. This proves (i).

If x ¢ C(T) then Cl(x) is closed'by 1.2.3 (ii). Thus by (i)
above x is semi-simple. Hence; X is in the <closure of T by
3.4.6.

4.4.5 Proposition: let E be reductive and let U(E) = { x ¢ E |

dim Cl(x) = dim G — rk G }. Then U(E) is a non—empty open subset

of E.
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Proof: By 1.2.1 (iv) U'(E) = { x ¢ E | dimCl(x) > dimG — rkG }
is open in E. Since E 1is irreducible, and U(G) = { x ¢ G |
dimCl(x) = dimG — rkG } is non—empty and open (see [29]), it
follows that U(E) = U'(E).

4.4.6 Proposition: { x ¢ U(E) | x is semi-simple } is open in E,

Proof: This follows from 1.2.4 (iii) and 4.4.4 (i).
Remark: By 4.4.5 we have

dim Cl(x) < dim G — rk G
for all x e E.

4.4.7 Lemma: Suppose G is an algebraic group and

p ¢+ G —> Gl(V) is a rational representation such that V 1is
_completeiy reducible. Then the wunipotent radical of G is
contained in the kernel of »,.

Proof: Without loss of generality.aséume V is a simple G-module.
Let UR(G) be the unipotent’ radical of G and 1let W be the
invariants of UR(G) in V. Since UR(G) 1is wunipotent, W is
non—zero and since UR(G) is normal, W is a G-submodule of V.
Thus W‘= V.

4.4.8 Theorem: Suppose E is an irreducible algebraic monoid.

Then there exists an irreducible reductive algebraic monoid E'
and a morphism p : E —> E' such that

(i) p is dominant

(ii) kernel(p) = UR(G), the unipotent radical Qf G.

(11i) If T is a maximal torus of G(E) such that ,(T) ='T‘ then
p + X —> X' is an isomorphism, where X and X' are the closures
of T and T' respectively.

Proof: There exists a representation ¢ : E —> End(V) such that

o is a closed imbedding. Let F be a composition series of the
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E-module V. Thus, F 1is a linearly ordered collection of
subspaces { V(i) } of V such that V(i+1)/v(i) is a simple
E-module for all i. Let End(V,F) = { f ¢ End(V) | £(V(i)) is
contained in V(i) for all i }. Thus, by definition of F, @
factors through the inclusion End(V,F) — End(V). There is a
canonical morphism q : End(V,F) —> End(Gr(V)), where Gr(V) is
the graded object associated with the filtration F of V. By
4.4.7 UR(G) is in the kernel of goa. Thus UR(G) = ker(goa) since
ker (qos) is unipotent. Since g is a morphism of algebras with
nilpotent kernel, g restricts to an isomorphism on the level of
maximal D—submonoids. Thus, it follows that the closure of
goa(E) in End(Gr(Vv),F) satisfies conclusions (i)-(iii) of the
theorem.
Remark: Theorem 4.4.8. is useful "in the discussion of prime
ideals in Chapter 5 and in the proof that reductive monoids’are
regular.

The following appiication is inspired by close analogy‘witﬁ
a well—known result from classical ring theory. Let R be a
finite dimensional associative algebra over an algebraically
closed field k. If R is von Neumann regular then R 1is a

semi—simple ring.

4.4.9 Corollary: Suppose E is a regular algebraic monoid with 0.
Then E is reductive. |

Proof: If E is not reductive, let p: E —> E' be as in 4.4.8.
Then by 1.1.1 diﬁ p-'(0') > 0. So let x ¢ p~'(0') be non-zero.
If E 1is regular then there exists a e E such that xax = x. But
then xa = (xa)? 1is non-zero. So , '(0') contains non-zero

idempotents. This 1is impossible by 4.4.8 (iii) since by 3.4.10
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every idempotent is in the closure of a maximal torus. This
. contradiction implies that E is not regular. |

The remainder of this section is devoted to the proof that
all reductive irreducible monoids are regular. This result has
been proved by M. Putcha in characteristic zero using Weyl's
theorem on the complete reducibility of rational
representations. The main ideas of Putcha's proof have survived
in my treatment, even though Weyl's theorem 1is not true in
general. It is curious that Haboush's theorem (1.2.4 (i)) is not
required in the proof. The proof reqguires the following result
of M. Putcha.

4.4.10 Proposition[23;Theorem 1.4]: Let E be an 1irreducible

algebraic monoid with group of units G. Let e ¢ I(E) and let
E(e) = { x ¢ E | xe = ex = e 1}°  Then GE(e)G =
{aeE | e e EaE }.

4.4.11 Lemma: Let E be a reductive monoid and let E(e) be as

above. Then E(e) is reductive.

Proof: CG(e) = { g e G| ge = eg } |is reductive since the
conjugacy class of e is closed. By.3.4.9 CG(e) —> G(e), g —>
eg, is a morphism of algebraic groups. Thus G(E(e)) is reductive
since it is the identity component of the kernel of'this map.

4.4.12 Lemma: Suppose E 1is a regular irreducible <algebraic

monoid with O. Let N = { x ¢ E | x is nilpotent }. Then N is a
closed subset of codimension larger than or equal to two.

Proof: Clearly, N is closed. Since E is regular it has no ideals
consisting entirely of nilpotent elements. But every closed
irreducible subset of E-G of codimension one in E is.a maximal

irreducible component of E-G. Furthermore, each maximal
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irreducible  component of E-G 1is an 1ideal because E is
irreducible.

4.4.13 Lemma: Suppose p : E ——> E' 1is a finite dominant

morphism of 1irreducible monoids with 0. If E' has no non-—zero
nilpotent ideals then E has no non—zero nilpotent ideals.

Proof: If V is a nilpotent ideal of E then X, the closure of
p(V) in E', is a nilpotent ideal (since » is dominant). Thus, by
assumption, V is contained in ,~'(0), which 1is finite. It
follows that V. = { 0 }.

4.4.14 Theorem: Suppose that E 1is an irreducible reductive

algebraic monoid. Then E is regular.

Proof: We may assume that E is a normal variety since the image
of a regular monoid is regular. Assume also, for the moment,
that E has a zero, and inductively that all reductive monoids of
dimension less than dim(E) are regular. Now, as-in the proof of
4.4.8, there gxists a morphism p : E —> E" such that , is
generically finite—to—one and dominant, and E" has a faithful
completely reducible representation. Further, if X and X" are
the closures of resbective maximal tori, then p : X ———>‘X" is
an isomorphism. Let E' be the monoid associated with the
integral closure of k[E"] 1in k[E] (see 3.2.3). Thus we have
¢ : E —> E' birational and g : E' —> E" finite and dominant
with goag = »p.

Let f : E" —> End(V) be a faithful completely reducible
representation. Assume that there exists a nilpotent ideal N of
E" and let t > 0 be its index of nilpotency. Let W be the
subspace of 'V spanned by NV. Clearly the index of nilpotency of

N restricted to W is t — 1. Thus W is a proper subspace of V.
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Further, W is E"—invariant since EN is contained in N. Since V
is completely reducible, there -exists a subspace U of V such
that V is the direct sum of U and W, and U is E"—stable. But by
definition of W, NU is contained in W. Thus NU = { 0 } since U
and W are complementary. Thus N has index of nilpotency t -— 1.
This contradiction proves that E" has no non—-zero nilpotent
ideals. It follows easily that E" can have no ideals consisting
entirely of nilpotent elements. Let 2 ¢ E" be an arbitrary
element. Then E"zE" contains non-nilpotent elements. Thus there
exists a non-—-zero idempotent e ¢ E"zE". By 4.4.10 there exists
g,h ¢ G such that gzh ¢ E"(e). But E"(e) 1is reductive (by
4.4.11)  and of dimension strictly less than dim Eﬁ; Hence
inductively E"(e) is regular, so there exists u,v ¢ G(E(e)) such
that ugzhv = f = f2, Thus E" is regular. Now g : E' —> E" s
finite and -dominant so by 4.4.13 E' has no non-—zero nilpotent

ideals. Thus E' is regular as well by the same arguement.

Consider the morphism ¢ : E ——> E'. Recall that ¢ 1is
birational and induces an isomorphism ¢ : X —> X' on maximal
irreducible D-submonoids. Clearly, if N and N' are the

respective sets of nilpotent elements of E and E', then o "(N")
= N, Thus, ¢« t: E— N —>E' - N'. Let e € E — N be an
idempotent. Then e is in the closure of C(e)°® = C(e). Now ¢
restricts to a morphism o : CG(e) —> CG'(a(e)). Restricting
to the closure of respective maximal tori yields an isomorphism,
Thus, ¢ also induces an isomorphism on Weyl groups (of CG(e) and
CG'(ale))). It follows that o : CG(e) —> CG'(a(e)) is
bijective and hence, a : Cl(e) —> Cl(a(e)) 1is bijective as

well (since Cl(e) = G/CG(e)). Thus, o 1is one-to—one when
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restricted to idempotents, since by 4.4.2, ¢ preserves the
.conjugacy classes.

Now suppose that a(x) = ofe) for some x ¢ E-N. Thus,
ale(x)) = e(a(x)) = a(e). So, e(x) = e, since ¢ 1is one—to—one
when restricted to idempotents. By 4.4.10, and the induction
hypothesis, x ¢ E 1is a regular element. So, there exists
g,h ¢ G(E) such that gxh = f is an idempotent. But then,
a(g)ale)a(h) = al(gla(x)a(h) = a(f). Hence, by [21] a(e) and a(f)
are conjugate. Thus, e and f are conjugate, since e preserves
conjugacy. Thus, we may assume that gxh =.e = e(x). It follows

that x ¢ G(e) because in any representation of E, rank(x) =

rank(e).
By the proof of 4.4.11, eEe is reductive. Thus we have
s : eEe —> a(e)E'a(e) such that

(i) ¢ is dominant.
(ii) o is one-to—one when restricted to the closure of a maximal
torus.
"(iii) eEe is reductive.
It follows from the 1induction hypothesis that q|eEe is

finite—to—one. Thus, since a-'(al(e)) 1is contained 1in G(e),

o~ '"(a(e)) is finite. Since every element of E'-N' is a unit
times an idempotent, it follows that ¢ : E-N —> E'-N' is
finite—to—one. Hence, ¢ : E-—N—>E' — N' is onto and

finite—to—one because E' 1is regular. By 1.1.2, ¢ induces an

isomorphism of E — N onto E' — N'. Let U' = E' — N'. Identifying
U' with E — N via ¢ we have a morphiém U' —> E. Thus by 1.1.5
there is a unique morphism f : E' —> E extending U' —> E

(recall that the codimension of N' in E' is larger than .one).
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Thus ¢ is an isomorphism because ogof = 1., So E is regular.

Now assume ‘that E isvreductive but does not necessarily
have a zero. Let e ¢ I(E) be a minimal idempotent and let x ¢ E.
Then without loss of generality xe = ex = ke for some k ¢ G(E).
But then by 4.4.10 there exists g, h ¢ G(E) such that gxh e
E(e). By definition, e ¢ E(e) is the zero of E(e). Further, by
4.4.11 E(e) is reductive. Thus, by the above arguement, E(e) is
reqular. Hence, there exist u,v ¢ G(E(e)) such that ugxhv is an
idempotent of E(e). But then E is regular.

We thus have a significant generalization of a fundamental
theorem of modern algebra.

4.4.15 Theorem: Let E be an irreducible algebraic monoid with

zero. Then the following are equivalent.

(i) E is regular.

(ii) E is reductive.

(iii) E has no non-—trivial nilpotent ideals.
Proof: 4.4.9 and 4.4.14.

4.5 Connected Monoids With Zero

Definition: Let E be an algebraic monoid with 0. Then E is

connected 1if E is connected in the Zariski  topology
(equivalently, if k[E] has no non-—trivial idempotents, since any
non—trivial idempotent yields a direct product decomposition)..
Let E be a connected monoid with 0 and let E° be the
irreducible component of 1. Let T be a maximal torus of CO and
let e € X be a minimal idempotent of X, the closure of T in E°,
e is not the identity element of E since this would imply that
G® is closed in E, thereby contradicting the connectedness of E.

Let e(1) = e, and E(1) = eEe. Then E(1) is an algebraic monoid
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with 0 and 1identity element e. If e' is another minimal
idempotent then E'(1) is isomorphic with E(1) since, in any
irreducible monoid all minimal idempotents are conjugate.
Assuming e(1) is non-zero the procedure can be applied to
E(1). Thus, we obtain a seqguence of idempotenis
1 = e(0) > e(1) > ... > e(k) = 0 and monoids
E(1) = e(l)E(1-1)e(l), 1 = 1,...,k, such that, for all 1, e(l)
is a minimal idempotent of E(1-1)°,
1f another such sequence
1 = £(0) > f(1) > ... > f(m) = 0 is chosen, then k = m and E(1)
is isomorphic with E'(1l) for all 1.
There 1is a converse to this result. For this we need a
lemma.

4.5.1 Lemma: Suppose k* acts on the affine variety X in such a

way that the action extends to k. Suppose that F(X,k), the fixed
point set of this action, is connected. Then X is connected.
Proof: The action of k on X induces a diréct sum decomposition’
k[E] = tk[E](¢) where o ranges over N = X(k). - Thus, the
composite, k[E]J(0) ——> k[X] —> k[F(X,k)] is an isomorphism
(F(X,k) is the fixed point set of the action). Now I, the set of-
idempotents of k[X], is finite. So I is contained in k[x]1(0).
Thus, the co—ordinate ring of X has no non-—trivial idempotents
and X is thus connected.

4.5.2 Theorem: Let E be an algebraic monoid with zero. Then the

following are equivalent.
(i) E is connected in the Zariski topology.
(ii) There 1is a chain of idempotents 1 = e(0) > e(1) > ... >

e(k) = 0 -such that e(i+1) ¢ e(i)Ee(i)® for i = 0,...,k=1.
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(iii) For all non-zero idempotents e ¢ I(E), G(eEe),the group of
units of eEe, is not closed in eEe.
Proof: (i) => (ii). Already given. (ii) => (i). Inductively we

may assume that e(1)Ee(1) is connected. Since e(1) e E° there

exists a 1-p.s.g. » : k* —> G° such that » extends to
p ¢+ k —> E°® with ,(0) = e(1). Thus, e(1)E is connected since
the fixed point set of the action f(t(x) = xp(t) "on e(1)E is

e(1)Ee(1) (so 4.5.1 applies). But then E is connected (again by
4.5.1) since e(1)E is the fixed point set of the action g(t,x) =
p(t)x on E. (i) => (iii). This follows from the fact if E 1is
connected then éEe is connected. (iii) => (ii). If G is not
closed in E then by 2.2.7 there exists a non—trivial idempotent

e ¢ E°. Thus inductively we can construct a chain of idempotents

as in (ii).
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V IDEALS

The purpose of this chapter 1is to record some of the
general properties of ideals. The main result 1s a structure
theorem for prime ideals (5.2.1). I have assumed throughout that
E 1is an irreducible algebraic monoid. An ideal of E is a subset
J, of E such that EJE is contained in J.

5.1 Preliminary Results

5.1.1 Proposition: Let E be solvable and let I be an ideal of E.

Then the following are equivalent.

(i) If some power of x is in I then x is in I (I is radical ).
(ii) I = p~"(p(1)) where pV: E —> X is the universal morphism
to a D-monoid (4.3.1).

Proof : (ii) => (i). Any ideal in a D-monoid is radical as is any
pullback of a radical ideal.

(i) => (ii). p is onto, so p(I) is an ideal of X. Thus ,(I) is
the union of a finite number of orbits of idempotents (under the
action of right translation). Let eG(X) be an brbit of p(I). Now
p-'(eG(X)) = { x ¢ E | some power of x is in G(e(x)), »(e(x)) =

e }. So p ' (p(I))

{ x ¢ E | some power of x is in I }, since,
if x € I then e(x) € I.

5.1.2 Corollary: Let E be irreducible and solvable. Then there

is a canonical one-to—one correspondence between radical ideals
of E and radical ideals of X, .where ,» : E —> X 1is the
universal D-monoid associated with E.

5.1.3 Proposition: Let E be irreducible and suppose that I is an

ideal of E. Let Z be the closure in E of some Borel subgroup B
of G(E). If the intersection I(B) of I with Z is a radical ideal

then I is closed in E.
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Proof: If I(B) is radical it is closed by 5.1.2. But I 1s the
union of all the conjugates of I(B). Thus I is closed by 1.2.3
(i).

5.1.4 Corollary: Suppose P is a prime ideal of E (i.e. P is an

ideal such that E — P is multiplicatively closed). Then P is a
closed subset of E.
Proof: Any prime ideal is radical.

5.1.5 Corollary: Suppose P and Q are prime ideals of E such that

P(s) = Q(s) (they contain the same semi—simple elements). Then P
=Q.
Proof: If P(s) = Q(s) then the same is true of P(B) and Q(B)

(the intersections of the closure of B with P and ¢

respectively), where B is a Borel subgroup. Thus »(P(B))
2(Q(B)) where p is the universal morphism from the closure of B
to a D-monoid. Thus, by 5.1.1 P(B) = Q(B). So P = Q.

5.1.6 Proposition: Let E be irreducible, T a maximal torus of

G(E), and W 1its Weyl group. Suppose I is a W—invariant prime
ideal of Z, the closure of T in E. Then there exists a
W-invariant character z ¢ X(2Z) such that I = z-'(0).

Proof: Assume 2 is normal. Then 2 — I is a normal algebraic
monoid variety. Let e ¢ Z — I be the minimal idempotent. By
Sumihiro's theorem [31;Corollary 2] there exists a T—invariant
affine open subset U of 2 — I with e ¢ U, Thus U = 2Z — I since

any open subset of 2 - I with e ¢ U intersects every other

T—orbit. So Z — I is affine and Z -1 —> Z 1is an open
imbedding. Consider k[Z] —> k[z — 1]. If A = { f ¢ k(2] | £(I)

= 0 } then Ak[Z ~-1) = k[Z — 1I). Since A = (x(i)), for some

x(i) ¢ X(z), we have <fa(i)x(i) = 1 for some { a(i) } in
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k[z — I]. Let a(i) = Tb(i,j)y(i,3), b(i,j) e kiz — 1], y(i,J) e

X(Z — I). Then tb(i,j)x(i)y(i,j) = 1. After collecting terms we

have 1 = :n(i,j)x(i)y(i,j) where all the x(i)y(i,j) are
distinct. Thus x(i)y(i,j) = 1 for some i and j because
characters are linearly independent. Let x = x(i) and y =
y(i,j). Then x ¢ k{2 — I] is a unit. Thus, k[2Z2 - I] = k{zl[1/x]

and consequently A = r((x)) (r((x)) denotes the radical of (x)).
Let w e W. Then A = r(w*(x)) since A is W—invariant. Thus A =
r((z)) where z is the product of all w*(x) as w ranges over W.
Further, z is W—invariant and I = z~'(0). Hence, it remains to
find z in case Z is not necessarily normal. Let n : 2' ——> Z be
the normaliéation of Z. The Weyl group acts on Z' as well; thus,
choose z ¢ k[Z] as above, so that z-'(0) = I' = n-'(1) and z is
W—invariant. By 4.5.1 somé power, say v, of z is an element of
X(z). But z-'(0) = v-'(0) in Z'. Hence the inverse image in Z'

of v-'(0) is equal to n-'(I). Thus v-'(0) = I since n is onto.

5.2 The Structure Of Prime Ideals

5.2.1 Theorem: Let E be an irreducible algebraic monoid, T a

maximal torus of G(E) , W the Weyl group of T. Then

(i) If P is a prime ideal of E there exists a charactef x ¢ X(E)
such that P = x~'(0).

(ii) There are canonical bijections among the set of primes of
E, the set of W—invariant primes of X (the closure of T in E)
and the set of W—invariant idempotents of X.

Proof: Assume E is reductive. Let P be a prime ideal of E -énd
let. X be the closure of a maximal torus T of G(E). Consider
P(T), the intersection of P and X. P(T) is a W-invariant prime

ideal of X. Thus, by 5.1.6 there exists a W—invariant character
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x on X such that P(T) = x-'(0). By 4.4.3, x lifts uniquely from
k[X] to x e cl[E]. If S is another maximal torus then S = gTg~'
so it follows that x is-a character on E and that x~'(0) has the
same semi-simple elements as P. Thus, by 5.1.5 P = x~'(0).

Now assume that E is not necessarily reductive. By 4.4.8
there exists a morphism p : E —> E' such that E' is reductive,
p : X —> X' is an 1isomorphism, and p '(1) = UR(G), the
unipotent radical of G. Then »(P(T)) = »(P)(T), since 1f Xx e
p(P)(T) then there exists s ¢ P semi—simple such that p(s) = x.
But then there exists u ¢ UR(G) such that usu~' e P(T). Thus,
p{usu-') = p(s) = x. Hence, by the remark following 4.4.1, there
exists v ¢ cl[E] such that v-'(0) intersected with X is equal to
P(T) (since cl[E'] is contained in k[E]). Hence, by 5.1.5, P =
v-'(0). This prdves (i).

Proof of (ii). If P is a prime ideal of E then P(T) is
W—invariant. If P(T) = Q(T) then P = Q by 5.1.5. Conversely, if
I 1is a W-invariant prime then by 5.1;6 there exists a
W—-invariant character v e X(T) such that I = v-'(0). If E —> E'
is the morphism of 4.4.8 to the reductive monoid E', then v can
be lifted to a class/function on E' which 1is apriori a class
function on E. It follows that v is actually a character on E'
and thus, on E. Since v-'(0)(T) = 1I(T) we see that every
W—invariant prime of X occurs in this fashion.

1If I 1is a W-invariant prime then e(I), the minimal
idempotent of X — I, is a W—invariant idempotent. Conversely, if
e ¢ X is a W—invariant idempotent then it follows -from 4.1.2
(iv), that 1I(e), the wunion of all fX as f ranges over all

maximal idempotents not strictly larger than e, is a W—invariant
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prime ideal of X such that e ¢ X — I is the minimal idempotent.

Remark: Theorem 5.2.1 demonstrates an important motif in ‘the
theory of algebraic monoids. One hopes that ultimately much of
the theory of reductive monoids can be reduced to problems

concerning D-monoids and their symmetries.



65

VI TWO-DIMENSIONAL REGULAR MONOIDS

The classification and structure theory of semi-simple rank
one monoids, according to the next chapter, requires a deeper
understanding of lower—dimensional monoids. The purpose of this
'chapter is to expose the properties of two—dimenéional monoids
which are relevant to these developments. For completeness I
have also included the case (case 2 below) which is not needed
in subsequent chapters.

6.1 Structural Properties

Definition: A monoid E is reqular if for all x ¢ E there 1s an

idempotent e and a unit g such that gx = e.
Note that any two—dimensional irreducible monoid 1is

solvable.

6.1.1 Proposition: Let E be a two—diménsional irreducible
(non—trivial) algebraic monoid. Theﬁ the following are
equivalent. |

(i) E is regular.

(ii) Either E is a D-monoid or it does not have a zero.

(iii) E is Clifford (see 4.2).

Proof: Let p : E —> X be the wuniversal D-monoid associated
with E (as discussed in 4.3).

(i) => (ii). Plainly, a D-monoid is regular. So assume p is not
an isomorphism. Since E is non—trivial, X is not O-—dimensional.
Thus dim X = 1. If 0 ¢ E then I(E) = { 0, 1 } since I(X) = { 0,
1 }. Thus o~ '(0) = { 'x e E | x 1is nilpotent }. Further, by
1.1.1, dim(p-'(0)) > dim(,). Thus E cannot be regular since the
set of nilpotent elements is a two—sided ideal of E. Hence, if E

is regular E cannot have a zero.
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(i) => (iii). D—monoids are Clifford so again we may assume that
E does .not have a zero and that dim X = 1.

(é) Assume E is commutative. Then I(E) = { 1, e } and e 1is
non—zero. Since by 4.2.1 es = se = e for all semi-simple
elements s, we must have that eG(u) = G(u)e is one dimensional.
Hence, the morphism G(u)xE(s) —> E is finite—to—one. The image
is open and multiplicatively closed and contains all semi-simple
elements. Thus, by 5.1.5, it is onto. Hence, E is Clifford.

(b) Assume E is non—commutative. Then if e ¢ E is an idempoteﬁt
dim Cl(e) = 1, since otherwise, Cl(e) = { e }. So, e would be an
element of the closure of every i1—p.s.g. of G. This 1is absurd
since the union of the 1-p.s.g.'s is dense in G (this would
force e to be the zero of E). Let V be a component of E. - G.
Then .V 1is a two;sided ideal of E since its codiméngion is one.
Thus, V contains an idempotent by 2.2.5. Thus, Cl(e) is a subset
of V. But the dimensions are the same so Cl(e) = V. Hence E — G
= V is irreducible of dimension one and E — G = Cl(e). Clearly E
is thus Clifford.

(iii) => (i). Any Clifford monoid is regulér.

Remark: From the proof of 6.1.1 we have the following result.
Suppose E is non-commutative, dim E = 2 and e ¢ E — G is an
idempotent. Then E is the union of G(E) and Cl(e).

Case 1: E non-commutative, dim E = 2.

Then either

(a) eE = Cl(e) and
Ee = { e } or

(b) Ee = Cl(e) and
eE = { e }.
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Proof: If e, f ¢ Cl(e), then ef = fe implies e = f by 4.3.3.
Thus, eEBe = { e }. Since e is not the zero of E, either eE =

Cl(e) or Ee

Cl(e). Thus the conclusion follows.

For the remainder of case 1 I shall assume that eE = Cl(e)
and Ee = { e } (the other case is similar). The example to keep
in mind is the set of two-by-two upper—triangular matrices
(a(i,j)) such that a(t1,1) = 1,

Note that for all x, vy € E, xey = ey.

6.1.3 Theorem: Let E be as above and let e ¢ E be a non—trivial

idempotent. Let p : k¥ —> G be a 1-p.s.g. such that e is in the
closure of p(k*). Then the action (g,x) —> g 'xg of k* on E
extends to an action of k on E.
Proof: g~ 'xg = xg. So the action clearly extends.
Case 2: E is commutative. '

As in the proof of 6.1.1 tﬁe morphism m : G(u)xE(s) N E,
m(u,s) = us, is finite and birational.

The remainder of this section is pre-—occupied with severai
results concerning low—dimensional monoids. They are all
ingredients in the structure theory of the next chapter.

6.1.5 Proposition: Let E be a reductive monoid with O,

one—dimensional center and semi—simple rank .one. Let e be an
idempotent not equal to 0 or 1. Let R(e) = { g ¢ G | eg = ege }
and L(e) = { g ¢ G | ge = ege }. Then R(e) and L(e) are opposite
Borel subgroups.

Proof: The intersection of R(e) and L(e) is the centralizer of e
in G which is a maximal torus. Thus R(e) and L(e) are
'opposite'. We prove R(e) is Borel.

There exists g ¢ G unipotent, such that eg is not equal to
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e. This follows from the formula immediately’ preceding 6.1.3
applied to either the closure of k*B(u) or k*B(u)-, where B and
B- are the Borel subgroups containing the centfalizer of e in G,
and k* is the 1—p.s.g. whose closure contains e. Similarily,
there exists m ¢ G unipotent such that me is not equal to e.

By 3.4.7 Ee is contained in the closure of R(e). Because of
m above dim Ee > 2, and because of g, dim R(e) < 3. Thus dim
R(e) = 3 and dim Ee = 2 is the only possibility. Thus R(e) is
Borel.

6.1.6 Corollary: Let E be as in 6.1.5. Then dim Ee = dim eE = 2.
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VII SEMI-SIMPLE RANK ONE, REDUCTIVE MONOIDS

This chapter is an exposition of the main computations of
the thesis. These results include a classification of all normal
reductive monoids with zero and one—dimensional center, in case
the semi—simple rank is one.

7.1 is a discussion of the possible groups and the possible
monoid types which arise in this way.

7.2 is a record of some of the immediate corollaries that
result from the von Neumann regularity of the underlying monoid.

In 7.3 a procedure is devised whereby . finite morphisms
between certain monoids can be replaced by morphisms with
D—group.kernels.

7.4 contains more technical preliminaries and a proof that
normal, reductive monoids with zero and one—dimensional center
are Cohen-Macaulay as algebraic varieties in case the
semi—simple rank is one.

In 7.5 and 7.6 two classification.theorems are established.
The first makes use of certain bicartesian squares associated
with the monoids in question and the second 1is based on a
computation of the characters of a maximal irreducible
D—submonoid. |

7.1 Rank Two, Semi-simple Rank One, Reductive Groups

7.1.1 Proposition: Suppose G is a non—abelian reductive group,

rk G = 2, and rkss G = 1. Then G is isomorphic to one of Gl(k?),
S1(k?)xk*, or PGl(k?)xk¥*,

Proof: Case 1. (G,G)

S1(k?). Consider the morphism

m : S1(k?)xk* —> G, m(x,t) xt (here k* 1is the identity

component of the center of G). If the kernel of m is non-trivial
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(scheme theoretically) it follows that ker(m) = { ([a,al],a) e
Si(k2)xk* | a2 =11}, wheré [x,y] denofes the diagonal matrix
with given entries. Hence, G = S1(k?)xk*/ker(m) = Gl(k?).

Case 2. (G,6) = PG1(k?). In this case the kernel of m has to be
trivial, since PGl(k?) has no non-trivial finite normal
D—subgroups. Thus G is isomorphic with PGl (k?)xk*.

7.1.2 Proposition: Suppose E is an irreducible algebraic monoid

such that G = G(E) is as in 7.1.1 and let T be a maximal torus
of G(E). Then there are three possibilities for the closure X,
of T in E.

(i) 1(X) = { 1}, in which case G(E) = E.

(ii) 1(X) = { 1, e }, in which case there exists a morphism
G'xk —> E which is finite and dominant (G' = (G,G)).

(1ii) 1(X) = {1, e, £, 0 }, in which case 0 is the zero of E as
well,

Proof: (i) follows from 2.2.7.

(ii) Suppose I(X) = { 1, e }. Then if w is an element of the
normalizer of T, wew ' = e. Hence, e is contained in the closure
of a W—invariant irreducible torus, S. But then S is central,

because G is reductive. Thus, e is central and hence, e is in

the closure of every maximal torus. Therefore, I(E) = { 1, e }.
Consider E —> eE, x —> ex. Since e is not the zero, eg is not
equal to e for some g € G'. Thus G' —> eE is finite to one and

dominant since G has no non-trivial normal subgroups of positive
dimension. Hence m : G'xk —> E, (x,y) —> =xy, 1is
finite—to—one and dominant. Thus it is also onto because the
complement of the 1image 1is an ideal with no semi-simple

elements. Thus m is finite by 1.1.2.
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(i1i) 1(T7) = { 1, e, £, 0 }. If w is a non-trivial element of
the normalizer of T, then the fixed idempotents of w are 0 and
1. Thus 0 is a central idempotent of E and by the conjugacy of
maximal tori, 0 is the 0 of every maximal torus. Thus 0 is the 0
of E since the semi—simple elements of G are dense iniE.

7.2 Properties Of Semi-simple Rank One Monoids

The purpose of this section 1is to record some of the
geometric properties of semi—simple rank one monoids. Throughout
1 have assumed without further mention that E 1is irreducible,
0 ¢ E, dim 2(G(E)) = 1, and rkss G(E) = 1.-Let G = G(E).

7.2.1 Proposition: N, the set of nilpotent elements of E, 1is

irreducible of dimension two.

Proof: It follows easily; since E is regular, that the set of
‘nilpotent elements of the ciosure of a Borel subgroup, .is
irreducible of dimension one. Thus, since Borel subgroubs are
all conjugate and of codimension one, N 1is irreducible of
dimension two.

7.2.2 Proposition: dim(E — G) = 3 and E — G is irreducible.

Proof: E —~ G = x~'(0) for some character x : E —> k by 5.2.1.
So dim(E - G) = 3 by Krull's principal ideal theorem. Let
z ¢ E— G. Since E is regular, there exists g ¢ G such that
gz = e, a non-zero idempotent. Since all idempotents not equal
to 0 or 1 are conjugate, GzG = (E -~ G) — { 0 }. Thus E — G 1is
Aequal to the closure of GzG, which is irreducible.

7.2.3 Corollary: The action GxGxE —> E, given by (g,h,x) —>

gxh-' has three orbits, { 0 }, (E-G) — { 0 } and G.

7.2.4 Corollary: E — G is the only non—-trivial two-sided ideal.

7.2.5 Proposition: Let T be a maximal torus and let X be its
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closure in E. Then E - { 0 } and X — { 0 } are smooth algebraic
Va:ieties, assuming E is normal.

Proof: Let Sing(E) be the singular 1locus of E. By Krull's
characterization of normality, codim(Sing(E)) > 2. Thus, by
7.2.4) Sing(E) is contained in { 0 } because Sing(E) 1is a
two—sided ideal of E.

By 4.4.4 (ii) X - { 0} is the fixed point set of the
action of Ton E - { 0 } by inner automorphisms. Thus, X — { 0 }
is smooth since E — { 0 } is smooth and T is linearly reductive.

In the next section we shall see that if E is normal then
both E and T are Cohen-Macaulay.

7.2.6 Construction: Big Cell,.

Let B and B~ be opposite Borel subgroups and let

_ e? = e ¢ X, the closure of the maximal torus associated with B
and B-. Now T(e) = X — fX is the ﬁnique open submonoid of X such
that 1(T(e)) = { 1, e } (where f 1is the other non-trivial
idempotent of X). Further, T(e) is affine and T(e)-T = 2G%e. Let"
Z and Z- be the closures of B and B~ in E and 1let k* be the
1-p.s.g of T which converges to e. Notice that e is in'the
closure of k*B(u) which is a two—dimensional regular monoid.
Thus, the results of chapter 6 may be applied.
Assume that

Ze = Ee and

el” = eE
(as in 3.4.7 and 6.1.6).
Consider the morphism of varieties m : B(u)xT(e)xB~(u) —> E,

m(x,y,z) = xyz. m is birational by the well known construction

from group theory. To show that m is finite-to—one it suffices
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to show that m~'(e) is a finite set since B(u)x(Te)xB-(u) is an
orbit under the action
B(u)x(2G)°xB~(u)x(B(u)x(T(e))xB-(u)) —> (B(u)x(T(e))xB (u))
(u,t,v)*(x,y,z) = (ux,ty,zv-').
Suppose that xyz = e, x e B(u), y = te, t e 2(G)° and
z ¢ B (u). So, etz = x~'e and thus, x~'e commutes with e. By the

remark following 6.1.1 (applied to the closure of B(u)k¥),

x"'e = e. Similarily, ez = e. Thus, te = e as well. But,
{ (x,t,2) ¢ B(Wx(2G)°xB~(u) | =xe = te = ez =e } is finite
since, by assumption, dim(B(u)e) = dim(2G%) = dim(eB (u)) = 1.

7.2.7 Proposition: Assume E is normal. Then m : BxT(e)xB~ —> E

is an open imbedding.
Proof: m is finite-to—one and birational. Since E is normal, m
is an open imbedding by 1.1.2.

7.2.8 Corollary: Suppose E is normal and E' is another algebraic

monoid. Let T be a maximal torus of G(E). Suppose we have
morphisms p : G(E) —> E' and ¢ : T(e) —> E' such that p|T =
o|T. Then there exists a unique morphism g : E —> E' such that

B|G(E) = p and g|T(e) = a.

Proof: Let U = B(u)T(e)B-(u) be as in 7.2.7. Define
g' : U —> E', 8'(x,y,2) = p(x)a(y)p(z). Thus g' agrees with »
on G(E) and with o« on T(e). Thus there exists g" : V —> E'

extending both g and p (where V is the union of U and G(E)). But
the codimension of E — V is greater than or equal to two since V
intersects E — G and E — G is irreducible. Thus, by 1.1.5 there

exists-a unique morphism g : E —> E' extending g".
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7.3 Constructing Morphisms And Applications

Let k be an algebraically closed field of characteristic
p > 0. If E is an algebraic monoid defined over k, with group of
units G, then there exist non-trivial purely inseparable
morphisms p : E —> E. The purpose of this section 1is to
‘classify these morphism in case the group G is isomorphic to
S1(k2?)xk*, Since the results recorded here are elementary 1in
nature, proofs will often be omitted or sketched.

7.3.1 Proposition: Let B be the subgroup of upper—triangular

matrices of S1(k?) and let p : B —> B be a bijective morphism.
Then there exists n ¢ N and g ¢ B such that gp(a(i,j))g ' =
(F(n)(a(i,j))) for all (a(i,j)) e B, where F(n) : k —> k is

the Frobenius morphism composed with itself n times.

7.3.2 Proposition: Letvp : S1(k?) > S1(k%?) be a bijective

algebraic group homomorphism. Then there exists g e S1(k?) and
n e N such that gp((a(i,j)))g ' = (F(n)(a(i,j))) for all
(a(i,3)) e S1(k?), |

Proof: There exists g e S1(k2?) such that ' = gpg~' satisfies
p'(B) = B (B as above). Thus, by 7.3.1, »'|B = F(n)iB for some n
¢ N. Thus, by 1.2.2 (i), »' = F(n).

7.3.3 Proposition: Let p : G(1) ——> G(2) be a morphism of

algebraic groups, where G(1) and G(2) are each isomorphic to one

of Gl(k?), S1(k?) or PGl(k?). Let a(i) : S1(k?)xk* > G(i), i
= 1,2, be given by a(g,t) = (g(i)(g))t, where p(i) : S1(k?) —>
(G(i),G(i)) is the universal covering map and k* ——> G(i) |is

. the identity component of the center of G(i). Then there exists
a unigue morphiSm p' ¢ S1(k?) —> S1(k?) such that poa(1) =

a(2)op'.
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Proof: , 1lifts to »' on the level of Borel subgroups. The
morphism ' is as in Proposition 7.3.1. This morphism extends to
all of S1(k?)xk*., Thus, by 1.2.2 (i), poa(1) = a(2)op'.

7.3.4 Proposition: Suppose we have the following solid arrow

diagram in the category of algebraic monoids, where G(i), i=1,2,
is the group of wunits of E(i), i=1,2 and E(i)*, i=1,2, 1s
constructed in accordance with 3.2.3 applied to the finite
morphisms ¢ and g. Assume that all horizontal morphisms are
finite and dominant. Assume further, that E(1) is normal. Then

the dotted arrow can be filled in uniquely.

E(1) -—-=> E(2)
n
G(1) > G(2
(] 8
S1(k*4)xk* > S1(k?)xk¥*

v v

E(1)*——> E(2)*

Proof: n*(k[E(2)]) is contained 1in the intersection (in

k[S1(k2)xk*]) of k[G(1)] and k[E(1)*]. But k[E(1)] is egual to
the 1intersection of k[G(1)] and k[E(1)*], since E(1) is normal.
Thus the arrow exists.

7.3.5 Proposition: Suppose p : E(1) —> E(2) 1is a finite

dominant morphism of normal algebraic monoids (G(i) = G(E(i)) as
in 7.3;3). Then either

(i) AThere exists a finite dominant morphism o : E(1) —> E(2)
such that kernel(a) is a finite D-group; or

(ii) There exists a commutative diagram
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E(3) —> E(1)

|
|

v

v .
E(2) > E'

such that every morphism is finite and dominant and:every kernel

is a finite D—group.

Proof: By 7.3.3 and 7.3.4 it suffices to prove this if G(1)

G(2) = S1(k?). So we have p : S1(k?)xk* > S1(k?)xk*. Since »
is bijective, we may assume, by 7.3.2, that , = (F(n),sF(m)),
where F(n) is as in 7.3.1 and (s,p) = 1.

Case 1: n < m.

Consider the diagram,
(F(n),sF(m))

>
S1(k?)xk* - > S1(k?)xk* > S1(k?)xk*
(F(n),F(n)) (1,sF(m—-n))
v 8 v v
E(1) ———> E(1) — = = — - - > E(2)

p exists by 7.2.8 since on the level of characters
F(n) : X —> X, F(n) as in 7.3.1,
is the desired extension.

Thus, on the level of characters, we have

<
X(1) < X(1) < X(2)
) |
X(1)'< X(1)'< = — = X(2)"
< .

‘The dotted arrow exists because the diagram A is a pullback.
Hence, again, by 7.2.8, we can fill'in the dotted arrow (of case

1) “to a morphism E(1) —> E(2).
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Case 2: n > m,
Let E' = E(2)/K, where K = { x ¢ G(2) | (F(n-m))(x) = 1 }. Then
we have

(F(n),sF(m)) (1,F(n-m))

E(1) ———> E(2) ——> E'
f = (1,F(n-m)) 1is the desired morphism E(2) —> E'.
Composing | (1,F(n-m)) and (F(n),sF(m)) we obtain
g = (F(n),sF(n)). Noting that E' = E(1)/ker(g), we also obtain

the following diagram,

(F(n),sF(n))

>
S1(k?)xk* — ———> S1(k?)xk* > S1(k?)xk*
(1,s) (F(n),F(n))
v v 8 v
E(2) — — — = — — > E' > E'
>
g9

p exists (by 7.2.8) just as in case 1 above.

On the level of characters we have

X(1) <——m — X' < X'
X(1)*< — — — X'*< X'*
<

where * denotes the characters of the closure of the torus in
question. The dotted arrow exists because the image of X'* in
X(1) is finite over the image of X'* in X(1)*. Applying 7.2.8
again we obtain, in this case |

E(1) —> E'.
From above, we also have a morphism f : E(2) —> E'. Thus,
taking the pullback of these two morphisms and restricting the

resulting diagram to (normalized) identity components, we .obtain
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the diagram advertised in (ii) above.

7.4 Cohen-Macaulay Monoids

Let E be a reductive algebraic monoid such that dim Z(G(E))
= 1, rkss G(E) = 1 and 0 ¢ E.

7.4.1 Lemma: There exists a representation p : E —> End(V)

such that
(i) p is an irreducible representation.
(ii) p is a finite morphism.
Proof: By the proof of 4.4.8 there exists an irreducible
representation p : E —> End(W) of E such that ,(0) = 0 and no
idempotent of E is sent to 0. Let V be an E—simple summand of W
such that some idempotent e of E is non—zero on V. By 7.2.3, »|V

E —> End(V) has a trivial kernel. It follows from 3.4.13
that |V is a finite morphism.

Let p : E ——> End(V) be finite and irredﬁcible as in

7.4.1. Then we have the following commutative diagram:

F(n)
S1(k?) > End(k?)
m
v v
E > End(V) = End(m(K?))

p
where m denotes the m—th symmetric power and F(n) is as in
7.3.1. This follows from the .fact that every irreducible
representation of (G(E),G(E)) is isogenous to a symmetric power
of the canonical two—dimensionai representation of S1(k?).
Clearly,
(i) m : End(k?) —> End(m(k?)) is finite.

(ii) p(2(E)®) = 2(End(m(k?)) = m(z(End(k?))).
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Thus, p(E) = m(End(k?)).

Hence, if we . let E(1) = image(m), then we obtain,
m : End(kz) —> E(1) and p : E —> E(1) such that

(i) both m and p are finite morphisms.

(ii) kernel(m) is a finite D—group (X(kernel(m)) = Z/mZ).

By 7.3.5 applied to » above, we have;

7.4.2 Proposition: Let E be a reductive, normal algebraic monoid
with 0, such that dim 2G(E) = 1 and rkss G(E) = 1. Then there
exists either

(i) a morphism p : E ——> m(End(k?)) such that » is finite and
dominant ('m' denotes m—th symmetric power) and kernel(p) 1is a
finite D—group, or

(ii) morphisms g : E —> E' and ¢ : m(End(k?)) —> E' such
-that both g and ¢ are fiﬁite and dominant and have fingte
D—group kernels.

7.4.3 Note: In case (ii) we may assume that E' is normal. Then.

there exists an isomorphism E' ——> ml(End(k?) such that with
this identification, gom = ml (the ml—th symmetric power), where
1 = degree(s). Thus in either case (7.4.2 (i) or (ii)) we have
morphisms m : End(k?) ——> m(End(k?)) and » : E —> m(End(k?))
such that both m and p are finite and dominant and have finite
D—group kernels.

7.4.4 Theorem: Let E be as in 7.4.2. Then E is Cohen—Macaulay.

Proof: We have from 7.4.3, the following diagram, where R =

End(k?).
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X > R
m

v \Y

E —> m(R)

p
Here X 1is the normalization of the identity component of the
pull-back of m and p. All morphisms have finite D—group kernels
and R is a smooth variety. By 1.3.8, X is Cohen—Macaulay and
thus, by 1.3.9, E is Cohen—Macaulay.

7.4.5 Theorem: Let E be as in 7.4.2 and let T be a maximal torus

of G(E). Then the closure of T in E is a normal algebraic
variety.

Proof: Again from 7.4.3 we have

[+9
X > R
8 m’
v v
E —> m(R)

P

where all morphisms are finite and dominant and R is a regular
variety. It suffices to prove that if T is a maximal torus of X
then Z, its closure in X, is normal. fhis follows from the fact
that g(2) is isomorphic to 2/ '(1), so, by 1.3.2 (iv), g(2) is
normal if Z is.

Now let W be a maximal irreducible D—submonoid of R and let
Z = o '(W) (a priori non-reduced). Let n = dege = dimk[g~'(1)].
Since R is regular and X 1is Cohen-Macaulay, o« is a flat
morphism. Thus, «¢|Z : Z ——> W is flat of degree n. We have
inclusions Z*(red) —> Z(red) and j : 2Z(red) —> 2, where
Z(red) 1is the reduced variety associated with Z and Z*(red) =

p~'(T) (T is the group of wunits of W). Now Z*(red) 1is .a
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commutative subgroup of G(X) consisting entirely of semi-—simple
elements. Thus Z*(red) is ‘actually a maximal torus. Since g~ '(1)
is contained on Z*(red), ﬁIT is flat of degree = n = dim
k[g~'(1)]. Thus j is an isomorphism because otherwise deg »|T =
deg p < deg o = n. Plainly, Z is then eqgual to the closure of
Z*, Hence, a|Z : Z —> W is flat and thus Z is Cbhen—Macaulay.
But then Z is normal because by 7.2.5 the singular locus has
codimension larger than or equal to two (by 7.2.5).

7.5 Classification 1

By 7.4.3 and the proof of 7.4.4 we have, for E normal,
reductive with 0 ¢ E, rk G(E) = 2 and rkss G(E) = 1, the
following commutative diagram in the category of algebraic
monoids;

7.5.1 Diagram

f .
E' —> End(k?)
g o
v v
E > E"
8

such that all morphisms are finite and dominant and all kernels
are finite D-groups.

We would like to have as rigid a diagram as is possible, so
as to maximize its technical efficiency in further developments.
To this end, we may assume that K, the intersection of ker(f)
and ker(g), is scheme theoretically trivial because both f and g
factor uniquely through E' ——> E'/K. Thus, the composite,
ker(g) ——> E' ——> End(k?), is a closed imbedding. Fufther,
f(ker{(g)) is contained in ker(s) since diagram 7.5.1 commutes.

Letting H = f(ker(g)) we see that s factors through
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End(k?)/H —> E" since g is the universal morphism vanishing on
ker(g).
Thus, summing up, we may -assume that, diagram 7.5.1

satisfies the following properties.
(i) Every kernel is central.

(ii) ker (f) and ker(g) have trivial scheme theoretic
intersection.

(iii) f : ker(g) —> ker(a) is an isomorphism.

(iv) g : ker(f) —> ker(g) is an isomorphism.

(v) The diagram is bicartesian.

If 2' is the closure of some maximal torus in E' and 2z =
g(z'), 2z* = f(2') and 2" = a(2Z*) = g(Z) then we have the
following commutative diagram in the category of algebraic
monoids.

7.5.2 Diagram:

£
7' —> %
g c
v v
A > z"

8

such that every morphism is finite and dominant and the diagram
is bicartesian on the group level (i.e. It is both a pull-back
and a push—out).

G(E) = Gl(k?)

Restricting the diagram 7.5.2 to the centers of each group
we have the following commutative diagram in the category of

algebraic groups.
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7.5.3 Diagram:

f
ZG' ——> k*
g a
\ v
k* > k*
8
Further, 7.5.3 1is bicartesian because all the kernels in
diagram 7.5.1 are central. Since G' = Gl(k?) or S1(k?)xk*, ZG' =
k* or (Z2/2Z)xk*.
If G' = G1(k?) then 7.5.3 becomes,
f
k* > k*
g a
v v
k* > k*
8

Thus, degreeas and'degreep are both odd, since if degrees is even
then G(E") (in 7.5.1) is isomorphic to PGl(k?)xk* and thus,
degreepg 1is even as well. But then the pull-back (k* at upper
left) could not be irreducible (the number of irreducible
components of the pull-back 1s equal to the greatest common
divisor of deg(e) and deg(s)). Similarily, degreeg 1is odd.
Furthermore, dégreea and ‘degreeg are relatively prime for the

same reason.

If G' = S1(k?)xk* then 7.5.3 becomes
f
(z/2)xk* > k*
g a
v v
K% e—— > k*
B

Since f and g are the restrictions of morphisms S1(k?)xk* ——>
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Gl(k?) with finite D—group kernels, f(i,x) = i+mx and g(i,x) =
i+nx for some m.and n (where i € Z/2 is the non—-trivial element
viewed as an element of k*. Here, I have written k* additively).
Thus, (m,n) = 1 because by assumption the intersection of ker(f)
and ker(g) is trivial. But m and n cannot both be odd because
i+mi = i+ni = 0 for m and n odd (and by assumption, ker(f) and
ker(g) have trivial intersection). Thus, (m,n) = 1 and one of m
and n is even.

Conversely, if (m,n) = 1 and one of mand n 1is odd then
i+mx = 1i+nx has no solution for x (because this implies that x
has order 2 and no element of order 2 satisfies the equation).

Let us summarize these results as follows:

7.5.4 Proposition: Let

£
Z2G' —> k¥*
g a
v v
k* > k¥*
8

be the diagram of 7.5.3.
(a) Then there are two possibilities.

(i) G' = Gl(k?)

Then ZG' = k*, a(x) = nx, g(x) = mx, (m,n) = 1 and mn 1is
odd.

(i1) G' = S1(k?)xk*

Then 2G' = (2/2Z)xk*, a(x) = 2nx, g(x) = 2mx, (m,n) = 1
and mn is even.
(b) Furthermore, all diagrams defined 1in (a) occur as the
restriction of the appropriate diagram 7.5.1 to the centers of

the various groups.
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Proof: It remains to verify (b).

Case (1i). Define o : Gl(k?) —_— Gl(k?), a(x)

[det(x)**m,det(x)**m]x and s : Gl(k?2) —> Gl(k?2), p(x)

[det(x)**n,det(x)**n]x. On the level of the center, oa(x)
x**(2m+1) and p(x) = x**(2n+1). So choose m and n such that
(2m+1,2n+1) = 1 (here '**' denotes exponentiation and [u,v]
denotes the diagonal matrix with given entries).

Case (ii). Define e : Gl(k?) —> PGl(k?2)xk*, af(x)

([x],det(x)**m) and g : Gl(k?) —> PGl(k?)xk*, p(x) =
([x],det(x)**n), Then on the level of the center .a(x) = x**2m
and g(x) = x**2n. So choose m and n so that (m,n) = 1 and mn 1is
even,

The procedure I have adopted in the classification is to
follow the diagram 7.5.2 from z* to 2" to Z, keeping track of
the induced map on the level of characters.

7.5.5 X(2"). Z" as in 7.5.2; degrée o odd.

Notation: The diagonal two—bY—two- matrix (a(i,j)), will be
written as [a(1,1),a(2,2)] and the characters of a D-monoid will
always be written additively.

zx = { [a,b] | a,b ¢ k } and ker(o) = { [x,x] | x**n = 0 }
for some odd value of n ('**' denotes exponentiation). Thus, if
u: [a,b] =—> a, and v : [a,b] —> b are the generators of

X(z*), we have a short exact sequence

X(2") —> X(2%) —> 2/nZ

a* j
where j(u)=j(v) is the generator of Z/nZ. Thus, by observation,
X(2") = ((n=1)u/2+(n+1)v/2, (n+1)u/2+(n=1)v/2) = (z,w).
Since Z" is normal (see 7.4.5 and 4.1.5), X(Z") is equal to the

intersection in X(T*) of X(z*) and X(T"). Thus, it follows that
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X(z") = { x e (z,w) | 1x e <(n+1)z/2+(1-n)w/2,(n+1)w/2+(1-n)z/2>
for some 1 }. |
(n+1)z/2%(1—n)w/2 and (n+1)w/2+(1-n)z/2 e X(Z") are called the

fundamental generators of X(2Z") (see 4.1.7).

7.5.6 Summing up, we have o* : X(Z") —> X(2Z%*) with

a*(z) (n=1)u/2+(n+1)v/2

a*(w) (n+1)u/2+(n=-1)v/2
The fundamental generators of X(Z") are (n+t1)z/2+(1-n)w/2 and
(n+1)w/2+(1-n)z/2.

7.5.7 X(2"); 2" as in 7.5.2; degree o even.

z*¥ = { [a,b] | a,b ¢ k } and ker(a)

{ [a,a] | a**k = 1 }.
Here, k = 2n. From the proof of 7.5.4 (or directly), we have

a : T*

> T", ofla,b]) = (ab~',(ab)**n).
Hence, if X(T") = (z,w), where z and w are the projections onto

" the first and second factors, we have,

q* : X(2") —> X(2%*)
e*(z) = u—v
a*(w) = n(u+v).

In this case the fundamental generators are w+nz and w-nz.
Hence,
X(z") = { x ¢ (z,w) | 1lx e <w+nz,w-nz> for some 1 }

Note that we could compute a presentation of X(Z") directly from

this.

7.5.8 Summing up, we have o* : X(2") —> X(2Z*), with
o*(z) = u-v
o*(w) = n{u+v).

The fundamental generators of X(Z") are w+nz and w-nz.

7.5.9 X(Z);.degneeé odd.
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From the proof of 7.5.4, g : Gl(k?) —> G1l(k?) is given by
la,b] —> [a**((m+1)/2),b**((m—1)/2)] when restricted to T, the
set of diagonal matrices (here,'**' denotes exponentiation).
Thus, if T = { [a,b] | a,b ¢ k* '}, and u and v denote the

characters v : [a,b] —> a, v : [a,b] —> b, then

]

g*(z) (m+1)u/2+(m—1)v/2 and

g*(w) (m—=1)u/2+(m+1)/2.

So if X(T") = (z,w) and X(2") is as in 7.5.5 we have
7.5.10

g*((n+1)z/2+(1-n)w/2)

(m+n)u/2+(m-n)v/2

g*((n+1)w/2+(1-n)z/2) (m+n)v/2+(m-n)u/2

Since g* ié finite and Z is normal, we obtain

X(z) = { x e (u,v) | 1x ¢ <(m+n)u/2+(m-n)v/2, (m+n)v/2+(m—n)u/2>
for some 1 }, and F =.{ (m+n)u/2+(m—n)v/2, (m+n)v/2+(m-n)u/2 1}

is the set of fundamental generators of X(Z).

7.5.11 X(Z); degree s even. ,

From the proof of 7.5.4 g : Gl(k?) —> PGl(k?)xk* is given
by s([a,b]) = (ab-',(ab)**m) for some m, when restricted to the
diagonal group T of Gl(k2?). Thus if u([a,b]) = a and v([a,b]) =
b then we have

g*(z)

u—v

m{u+v).

g*(w)
So if X(T) = (z,w) and X(2") is as in 7.5.7 we have

7.5.12

p* (w+nz) (m+n)u/2+(m-n)v/2

g*(w-nz) (m+n)v/2+(m—-n)u/2
Since g* is finite and Z is normal, we obtain

X(z) = { x ¢ (u,v) | 1x e <(m+n)u+(m-n)v, (m+n)v+(m—n)u> for.some
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1 } and F = { (m+n)u+{(m-n)v, (m+n)v+{(m-n)u } is the set of
fundamental generators of X(Z) because (m+n,m-n)=1 whenever
(m,n)=1 and mn is even.

7.5.13 Construction of X(Z), G(E) = Gl{(k?). Summary.

Given. E, there 1is a bicartesian diagram in the category of

algebraic monoids.

f
E' —> End(k?)
g .a
v v
E > EH
B

Let Z be the closure in E of .some maximal torus T of G(E) and
let X(T) = (u,v).

n is odd.

Case (i): degrees =
Then degreeg = m is odd and (n,m) = 1. Further,
X(z) = { x e (u,v) | 1x e <(m+n)u/2+(m-n)v/2, (m—n)u/2+(m+n)/2>

for some 1 }

Case (ii): degrees = 2n is even. -

Then degrees = 2m is even, (m,n) = 1 and mn 1is even.
Further,
X(z) = { x € (u,v) | 1x e <(m+n)ut(m-n)v, (m+n)v+(m—n)u> some 1 }

In both cases,

w(u) v
w(v) = u

for the non—trivial element w ¢ W, the Weyl group of T. Thus,

relative to the basis { u, v } of X(T).

To construct all possible character monoids (4.1.1), that
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occur in this fashion, let
6,8 € Z
s > |8] -
(a,8)=1
If g+p is odd then
X(a,8) = { x € (u,v) | 1x e <gutgv,avtgu> some 1 }.
These are the character monoids of case (i) where m = «a+g and
n = o—g.
If g+ is even then
X(a,8) = { x € (u,v) | 1x e <gutgv,av+gu> some 1 }.
These aré the character monoids of case (ii), where m = (a+g)/2
and n = (o—g)/2.

G(E) = S1(k?)xk*

To classify the monoids with group S1(k%?)xk* I have wused
the results concerning Gl(k?) and some general results ‘about
D—group actions.

Let E be as in 7.5.1 and suppose G(E) = S1(k?)xk*. There is

a canonical morphism,

m : S1(k2?)xk* > Gl(k?), m(x,8) = x[g,8].
On the toric level, m([a,6"'],8) = [ap,0" '8].

m is isomorphic to the guotient morphism of S1(k?)xk* by

the subgroup K = { ([g,0]l,a) | a2 = 1 }.
Thus we have
m
S1(k?)xk* > Gl(k?)
3
v v
E — > E/K

Here, k[E/K] = k[E](0). (where 0 is the trivial character on K),

as in 1.3.1 applied to the action KxE —> E, (x,y) —> xy. By
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1.3.2 (iv), E/K 1is a normal algebraic monoid, and further,
j : Gl(k?) —> G(E/K) is an isomorphism. Hence, E/K = E' is a
monoid of the type Jjust <classified. It follows from the
definition of m, that (on the level of maximal tori)
m|T : T —> T' induces
m* : X(T') —> X(T),

m*(u) = a+b

m*(v) = a-b
where X(T) = (a,b) and X(T') = (u,v).

So if Z' is the closure of T' in E', then

X(2') = { x € (u,v) | kx e <ou+gv,av+gu> for some k }
as summarized in 7.5.13. Thus, since m¥(u) = a+b and m*(v) =

a-b, we have

m* (gu+gv) (a+p)a+(a—g)b

(a+gla+(p—a)b.

",

m*{gv+gu)
Case (i): e+g is odd.

Then as in 7.5.13 (i), (o*g,o—8) = 1 and hencé
F = { (a+g)at+(a—g)b, (a+a)a+(p—a)b }'is the set of fundamental
generators.

Thus, to -construct the possible character monoids (4.1.1)
that occur in this fashion, let m,n > 0, (m,n) = 1, mn odd
(here, m=g¢+g and n=g—g). Then |
X(T(m,n)) = { x ¢ (a,b) | kx e <ma+nb,ma—-nb> for some k }.
If w ¢ W is the non—trivial element of the Weyl group of T, thén
w(a) = a and w(b) = —b, so

1 0

0 —1

relative to the basis { a, b } of X(T).
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Case (ii): a+g is even.

Then as in 7.5.13 (i), ((a+g)/2,(e—g)/2) = 1 and hence, F =
{ (a+gla/2+(e—8)b/2, (a+pla/2+(p—a)b/2 } is the set of
fundamental generators.

Thus to consfruct the possible character monoids that occur
in this fashion, 1let m,n > 0, (m,n) = 1, mn even f(here
m=(g+g)/2, n=(a—p)/2). Then
X(z(m,n)) = { x ¢ (a,b) | kx ? < ma+nb, ma-nb > for some k }.

If w ¢ W is the non~trivial element of the Weyl group of T, then
w(a) = a and w(b) = -b, so

1 0

0 —1
relative to the basis { a, b } of X(T).

7.5.14 X(2); G(E) = S1(k®*)xk*. Summary.

Given E, there exists

m: E——>E'

such that G(E') = Gl1(k?) and m : S1(k?)xk¥* > Gl(k?) is given
by m(x,s) = x[s,8].
Let T be a maximal torus of G(E) and let Z be the <closure

in E. Using the morphism m, and our classification of the

monoids E', we obtain: Z = Z{(m,n) for some m,n > 0, (m,n) = 1,
where
X(z(m,n)) = { x € (a,b) | kx € < matnb, ma-nb > for some k }.

If w e Aut(2) is the non-trivial element, then

1 0

W =

0 —1
relative to the basis { a, b } of X(T) = X(T(m,n))."

G(E) = PGl(k?)xk*
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Let E be as in 7.5.1 and suppose G(E) = PGl(k?)xk*. There
is a canonicai_morphism,
c : Gl(k?) —> PG1l(k?)xk*, c(x) = ([x],det(x)).
If 7" = { [a,b] | ab ¢ k* } and T = c(T'), then the sequence
u(2) —> T' —> T is exact, where u(2) = { [a,a] | a2 = 1 1}.

Thus on the level of characters, we have

c* : X(T) —> X(T"),
c*(x) = utv
c*(x) = u—v

where X(T) = (x,y) and X(T') = (u,v).

> E

By Theorem 3.2.3, the diagram Gl(k?) —> PG1l(k?)xk*
can be completed uniquely to a diagram, 4
c
Gl(k?) —> PGl(k?)xk*

3

v v

E' —————> E

f

such that f is finite and dominant, j : Gl(k?) —> G(E') is an
isomorphism, and E' is normal. Thus, we have c¢c* : X(z2) —>

X(2'), where Z' and Z are the closures of respective maximal
tori.
By the results of 7.5.13,

X(2') = { x ¢ (u,v) | kx ¢ <outgv,ov+tpu> for some k }. Thus,

ft

since c*(x) = u+tv and c*(y) u—-v, we have

c*(ax+py) (a+glu+(ao—p)Vv

c*(ay+gx) (a+plut(p—a)v.
Note: The 1image of X(T) in X(T') is the subset of all elements
ru+sv such that r+s is even.

Case (i): a+pg is odd.
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By the note, §u+av and gv+gu are not elements of X(Z). By
4.1.7 the fundamental generators of X(Z) are multiples of au+tgv
and ov+pgu since c* : X(2) —> X(2') is a finite morphism. Thus,
again by the note, F = { 2(ou+gv), 2(av+gu) } is the set of
fundamental generators.

Since o+g is odd we may write (uniquely)

¢ = (m+n)/2,
g = (m—n)/2
where m,n > 0, (m,n) = 1 and mn is odd.

Thus, to construct the possible character monoids that
occur in this fashion, let m,n > 0, (m,n) = 1, mn odd. Then
X(T(m,n)) = { v ¢ (x,y) | kv e <mx+ny,mx-ny> for some k }.

If w is the .non—trivial element of W, the Weyl group of T, then
w(x) = x and w(y) = —y. So

1 0
w =

0 —1
relative to the basis { x, y } of X(T).

Case (ii): a+pg is even.

In this case (by the note preceding case (i)) we have
gu+gv, av+pu e X(Z). Since these are the fundamental generators
for X(z'), F = { gu+gv, av+tgu } is the set of fundamental
generators of X(Z). Since a+g is even, we can write e=m+n and

g=m-n, where m,n > 0 (m,n)=1 and mn is even. Thus,

]

F(1) (m+n)u+(m-n)v

mx+ny and

F(2) (m+n)v+{(m—n)u = mx—ny
Thus to construct the possible character monoids that occur
in this fashion, 1let m,n > 0, (m,n) = 1, mn even (here g=m+n,

p=m—n). Then



94

X(Z(m,n)) = { v ¢ (a,b) | kv ¢ < mx+ny, mx-ny > for some k }.

1f w is the non—-trivial element of W, the Weyl group of T, then
w(x) = x and w(y) = —-y. So

1 0

0 —1
relative to the basis { x, y } of X(T).

7.5.15 X(2); G(E) = PG1l(k?)xk*., Summary.

Given E, there exists
c : E' —> E
such that G(E') = Gl1(k?) and ¢ : Gl(k?) —> PGl(k?)xk* is given
by c(x) = ([x],det(x)).
Let T be a maximal torus of G(E) and let Z be the closure

of T in E. Using the morphism ¢, and our classification of the

monoids E', we obtain; 2 = Z{(m,n) for some m,n > 0, (m,n) = 1,
where
X(Z(m,n)) = { v € (x,y) | kv ¢ < mx+ny, mx-ny > for some k }.

If w ¢ Aut(Z) is the non—-trivial element, then
i 0

0 —1

relative to the basis { x, y } of X(T) = X(T(m,n)).

7.5.16 Remark: A comparison of 7.5.14 and 7.5.15 demonstrates

that the data collected from the monoids with group S1(k?)xk* is
identical to the data collected from the monoids with group
PGl(k?)xk*, Thus our descriptibn is only characteristic if we
know the unit groups. However, when we embellish this
description by fitting 1in the root systems, the resulting
numerical data will completely distinguish the monoids from one

another.
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The following theorem is a summary of the results obtained
from 7.5.1 to 7.5.15.

7.5.17 Classification I: Let G be one of the groups S1(k?)xk¥*,

Gl(k?) or PGl(k?)xk* and let Q' denote the set of positive
‘rational numbers. Then there is a canonical one—to-one

correspondence.

Q* <—> E(G) = { E | E as in (*), E normal, G(E) = G }.

For G = Gl(k?) the correspondence is as follows. Given E

there is a unique bicartesian diagram,

E(m-') —> End(k?)
ag
v v
E ———> E(n)
8

such that all morphisms are finite and dominant and each kernel
is a finite D—group. If degree o = n is odd then degree g = m is

odd and (m,n) = 1. If degree ¢

= 2n is even then degree g = 2m
is even, (m,n) = 1 and one of m and n is even. In any'case, the
map E(G) —> Q* given by
E —> deg(a)/deg(s)
bis well defined and one—to-one.
Conversely, given r ¢ Q*, r = m/n, where m;n > 0 and
(m,n) = 1. It 1is then possible to construct a bicartesian

diagram as above such that deg ¢ = n and deg g = m if mn is odd,
or deg ¢ = 2n and deg g = 2m if mn is even. Thus we obtain the
inverse map Q* ———>‘E(G),

r —> E(r).

All normal monoids with group S1(k?)xk* are constructed
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from the monoids with group Gl(k?) using integral closure and

the morphism

m : S1(k?)xk* > Gl(k?), m(x,t) = xt. -

All normal monoids with group PGl(k?)xk* are constructed
from the monoids with group Gl(k?) using finite D-group scheme
guotients and the morphism

c : Gl(k?) —> PGl(k?)xk*, c(x) = ([x],det(x)).

7.6 Polyhedral Root Systems And Classification II

In 7.5.16 we observed that the correspondence E —> X(Z)
is not a complete invariant unless G(E) = Gl(k?). The purpose of
this section is to find the root system &, amidst the characters
X(T), and to see how it relates to the set of fundamental
generators F of X(z). This will lead to a complete numerical
invariant, E —> (X(T),#(T),F), the polyhedral root system.

7.6.1 Lemma: Suppose f : G ——> G' 1is an epimorphism of

reductive algebraic groups such that ker(f) is contained in the
center of G. Let T and T' be maximal tori of G and G',
respectively, such that f£(T) = T'. Let ¢ and ¢' be the roots
(weights .of the adjoint representation). Then (f£|T)*(&') = &.

Proof: Let B* and B~ be opposite Borel subgroups containing T,
so that T 1is the intersection of B* and B-. Let g = T(G), the.
tangent space of G at 1. Then g = g*+t+g- (direct sum) where g*
= T(B*(u)), g~ = T(B (u)) and t = T(T) (the tangent spaces at
the identity). Further, df : g —> g' ©preserves these direct
summands since f(B*(u)) = B'*(u) and f(B (u)) = B' (u). Now, df
: g* —> g'* and df : g- —_ g'- are isomorphisms since ker(f)

is central. Thus, it follows that f*(¢') = ¢.
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7.6.2 Polyhedral Root System for E; G(E) = Gl(k?).

From 7.5.1 we have

E' —> End(k?)
[e3
v v
E > EH
'] .

Since ker(as) and ker(pg) are central, we apply 7.6.1 to follow
the roots around the diagram from End(k?) to E.

Let Z* and 2" be the closures of maximal tori in End(k?)
and E", respectively, such that e(Z*) = Z". o induces ao* : X(Z")
—> X(2%),.
Case (i): degreeas odd.

From 7.5.5, we have

a*(z)

(n—=1)a/2+(n+1)a/2

a*(w) (n+1)a/2+(n=1)b/2

(where X(2z") = (z,w) and X(zZ*) = (a,b)).

By 7.6.1, o*(¢") = ¢* = { a~b, b—a }. Thus &" " { a~b, b-a }

{ w—z, z—w }.

If Z is the closure of the maximal torus T such that g(T)

T", we have g : X(2") —> X(2) = (u,v). From 7.5.9 we obtain,
o p*(z) =-(m+1)u/2+(m—1)v/2 and
g (w) = (m+1)v/2+(m=1)u/2.
Thus
’ g*(z—w) = u-v and
p*(w—z) = v-—u.
Hence, ¢ = { u-v, v-u }, so, gathering all the relevant

data,
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X = (u, v) 6,8 € L
$ = { u—v, v-u } s >8]z 0
F = { agu+gv, av+gu } (a,8) =1

Here, o=(m+n)/2 and g=(m-n)/2.

Case (ii): degreecs even.

From 7.5.7 we have a* : X(Z") —> X(2Z*) and thus,
o*(z) = a-b
a*(w) = n(a+b).
Thus ¢" = { z, —z }.

If 2 is the closure of the maximal torus T such that g(T) =
T", we have g* : X(2") —> X(2) = (u,v).

From 7.5.11 we obtain,

g*(z) = u-v and
g*¥(w) = m(u+v).
Hence, ¢ = { u=v, v—=u }. So in this case again we obtain,
X = (u, v) 6,8 € 2 |
¢ = { u—v, v-u } o >|pg|2 O
F = { gu+gv, av+gu } (a,8) =1

Here g=m+n and g=m—-n.

7.6.3 Polyhedral Root System for E, G(E) S1(k?)xk*,

The morphism m : S1(k?)xk*

> Gl(k?), m(x,s) = =x[g,8],
inducés m* : X(T') —> X(T), m*(u) = a+b, m*(v) = a—b, where T'
and T are maximal tori of Gl(k?) and S1(k?), respectively, and
X(z") = (u,v), X(2) = (a,b). Thus, since m*(¢') = ¢, we have

$ = { 2b, —-2b }.

.S0, gathering all the relevant data (see 7.5.14) we have,
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X = (a, b) m,n e¢ N
$ = { 2b, —2b }  m,n > 0
F = { ma+nb, ma—-nb } (m,n) = 1

7.6.4 Polyhedral Root System for E; G(E) = PGl(k?)xk*.

The morphism ¢ : Gl(k?) —>  PGl(k?)xk¥*, x @ —>
([x),det(x)), induces c* : X(T) —> X(T'), c*(x) = u+v and
c*(y) = u-v, where T' and T are maximal ‘tori of Gl(k?) and

PGl(k2?)xk*, respectively, X(T') = (u,v), and X(T) = (x,y). Thus,
since c*(¢) = &', we have
<I>=.{ Y, 7Y }'

So, gathering all the relevant data (see 7.5.15) we have,

X = (x, y) m,n € N
¢ =1{y, -y} m,n > 0
F = { mx+ny, mx-ny } - (m,n) =1

Definition: Let E be an irreducible algebraic monoid with 0 and

let T be a maximal torus of G(E). Let X denote the characters of

T, ¢ the roots, and F the fundamental generators (see 4.1.7).

Then (X,¢,F) is the polvhedral root system of (E,T).

7.6.5 Classification II: Let G be one of the groups Gl(k?),

S1(k?2)xk* or PGl(k?)xk*. Then any normal algebraic monoid E.with
0 and group of units G is uniquely determined by its polyhedral
~root system (X(T),¢(E),F(E)). The following is a list of all
possible polyhedral root systems for each group G ((u,v) denotes

the free abelian group on the generators u and v).
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(i) G = G1(k?)

X = (u,v) 6,8 € Z

¢ = { u-v, v—u } : a >|g|2 0

F = { aqu+pv, av+pu } (a,g) =1
(ii) G = S1(k?)xk*

X = (a,b) m,n e N

¢ = { 2b, —-2b } m,n > 0

F = { ma+nb, ma—-nb } (m,n) = 1

(iii) G = PGl(k?)xk*

X = (x,y) m,n ¢ N
4>={Y, —Y} m,n > 0
F = { mx+ny, mx-ny } (m,n) =1

7.6.6 Remark: It is interesting to note that (i), (ii) and (iii)
"above exhaust all. the reasonable possibilities among
tWo—dimenéional normal D-monoids. Precisely, let X be a
two—dimensional irreducible normal D-monoid with 0. Then X 1is
isomorphic to the maximal irreducible D-submonoid of some E as

in 7.6.5 if and only if X has a non-trivial automorphism.
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VIII IRREDUCIBLE MONOID VARIETIES

The purpose of this chapter is to initiate the study of
more general monoid varieties.

Definition: An algebraic monoid variety is an irreducible (not

necessarily affine) algebraic variety ‘E, defined over the
algebraically closed field k, such that

(i) 1 ¢ E

(ii) m : EXE —> E 1is an .associative morphism of algebraic
varieties with 1 as two—sided unit.

On the two extremes we have the quasi—affine monoids and
the projective monoids. This chapter is devoted to the proofs of
the following results.

(1) I1f E is irreducible and quasi—-affine then E is affine.

(2) I1f E is irreducible and projective then E is an abelian
variety.

8.1 Quasi-affine Monoids

Let U be a quasi-affine variety defined over k and let k[U]
denote the set of global sections of the structure sheaf o(u). U
is not determined by k[U]. For example, if U = k? — { 0}, then
U is quasi—affine and k[U] = k[k?] (see also 1.1.5).

Let j : U —> X be an open imbedding, wheré X is affine
and let J = (f(1),...,f(n)) be the ideal of regular functions on
X which vanish on X — j(U). The induced morphism satisfies

(i) k[(XI[1/£(1)] —> k[U][1/f(i)] is an isomorphism fof
all i = 1,...,n.

(ii) k[U] 1is the intersection of the k[UJ[1/£(i)] as i
varies from 1 to n.

(iii) U is isomorphic to the union of the X(i) in X, where
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X(i) = { x € X | £(1)(x) is non-zero }.

The affine variety X is somewhat arbitrary. Any k—algebra
R, contained in k[U] such that

(i) R is finitely generated over k.

(ii) { £(i) } is contained in R.

(iii) RI{1/£(1)] = k[UI[1/£(1)), i = 1,...,n.
induces an isomorphism of U onto the wunion of the Y(i), i =
1,...,n, where Y is the affine variety associated with R.
8.1.1: U is uniquely determined up to 1isomorphism by
(k[ul,{ £(1) 1).
Remarks: U is affine if and only if { £(i) } generates the unit
iéeal of k[U] (see [1], chapter 3, exercise 24).

any finite subset { g(i) } of k[U] such that r((f(i))) =
r((g(i))) (radical) works equally well.

Suppose now that E is a quasi-affine irreducible algebraic
monoid and let (k[E],{ f(i) }) be as above.

The morphism m : EXE —> E induces d : k[E] —> k[E]ek[E]

= k[ExE] in such a way that

n : k —> k[E) (k—algebra structure)
e : k[E] —> k (unit)
d : k[E] —> k[E]ek[E] (multiplication)

induces on k[E] the structure of a bigebra.

By a well—known result,
8.1.2: k[E] = colimit(k[E)(e)), where each k[E](a) isva
finitely generated sub-bigebra of k[E] (see [32] p;24. The proof
there is stated for Hopf algebras, but works equally well for
bigebras).

8.1.3 Proposition: Suppose E 1is an irreducible quasi-affine
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algebraic monoid. Then there exists an Iirreducible affine
algebraic monoid E' and a morphism g : E ——> E' such that g.is
an open imbedding.

Proof: Let (k[EJ,{ f(i) }) be as in 8.1.1. By 8.1.2 there exists
a bigebra R, contained in k[E] such that { f£(i) } is a subset of
R and R[1/£(1)] = k[E]J[1/£f(i)] for all i. But this is the same
as being given an open 1imbedding g : E —> E' of algebraic
monoids where E' is the affine monoid associated with R.

8.1.4 Theorem: Suppose E is an irreducible quasi—affine

algebraic monoid. Then E is affine.

Proof: By 8.1.3 there exists g : E —> E' an open imbedding,
where E' is affine. Thug, g induces anl isomorphism on unit
groups. Hence, E' — g(E) is a prime ideal of E', because g(E) is
multiplicatively closed. Thus by 5.2.1 (i) there exists a
character x e k[E'] such thati E' — E = x-'(0). Thus,
E =E' — x ' (0) is affine.

8.2 Projective Monoids

Let E be an irreducible projective monoid variety, and let

m : ExE —> E be the multiplication morphism. Consider m~'(1) =
{ (x,y) ¢ ExE | xy = 1 }. Suppose (x,y) e m '(1) and let
x + E—> E, x(z) = xz. Thus xoy = 1. Hence yE is dense in E,

because they have the same dimension. But yE

{z e E | yxz =

z}. So yE is closed in E and thus yE E. But then there exists

z ¢ E such that yz = 1. So, x = x(yz) = (xy)z = z. Thus xy = 1
if and only if yx = 1. Therefore, the morphism g : m~'(1) —>
E, g(x,y) = x, is one-to—one., Since the dimension of every

component of m~'(1) is larger than or equal to dim E (see

1.1.1), g is dominant. It follows that m~'(1) is 1irreducible.
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Furfhermore, g is bijective since g(m'(1)) 1is closed in E
(m-'(1) is a complete variety). Thus,

'8.2.1: If E is projective then every element x ¢ E 1s
invertible.

Remark: It does not follow automatically from 8.2.1 that E is a
group scheme. Even though i : E —> E, 1i(x) = x°', 1is well
defined as a set map, we have no a priori guarantee that 1 is a
morphism of varieties.

Now, it follows easily that m : EXE —> E 1is separable and
since E is homogeneous, m is smooth. Thus m~'(1) is irreducible
and smooth. Define

s m (1) —> m-' (1), i(x,y) = (y,x) and
urom  (Dxm (1) —> w7 (1), ul(x,y),(u,v)) = (xu,vy).
Plainly, (m-'(1),u,i,(1,1)) defiﬁes.on m-'(1) the structure of
an algebraic group, witﬁ multiplication u, inverse i, and unit
(1,1). Furthermore, g : m '(1) —> E, gqglx,y) = x, 1is a
bijective morphism of algebraic monoids. Thus, to complete the
discuésion, it suffices to demonstrate that g is separable.

8.2.2 Lemma: Let Z = m~'(1) and let g be as above. Then g 1is

separable.

Proof: Let j : 2 —> ExE be the inclusion and let p(i) : ExE
—>E, 1 = 1,2, be the projection morphisms. Let m : ExE —> E
be the multiplication morphism. Using the projections p(1) and
p(2), the tangent space of EXE af (1,1) is identified with the
direct sum, TE+TE of the tangent space at 1 of E with itself.

. Further, if TZ is the tangent space of Z at (1,1),
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TZ > TE+TE

dj dm

> TE

is exact, because m 1is a smooth morphism. Using the bigebra

structure of the local ring O(1,E), it follows that dm(x,y) = X
+ y. Thus dj(Tz) = { (x,—x) | x ¢ TX }. Hence, dg : TZ —> TE
is an isomorphism since g = p(1)oj. Thus, by 1.1.3, g 1is

separable,

Definition: An abelian variety 1is an 1irreducible projective

algebraic group.

8.2.3 Theorem:lSuppose E is an irreducible projective algebraic.

monoid. Then E = G(E) is an abelian variety.
Proof: m-'(1) 1is a projective algebraic group and thus an
abelian variety. g : m '(1) —> E, g(x,y) = x, is a bijective

separable morphism of smooth algebraic monoids and thus an

isomorphism,
Remark: Abelian varieties are much studied in algebraic
geometry. It is a remarkable fact that every projective:

algebraic group is commutative.

1D. Mumford has obtained similar, more general results (seé Abelian Varieties,

Tata, Bombay, page 44); accordingly, our asso¢iativity assumption on E is
superfluols. )
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IX APPLICATIONS TO RATIONAL HOMOTOPY THEORY

There have been some recent applications ‘ involving
algebraic monoids to problems in topology and algebra. Although
such matters may be considered digressive from the themes of
this thesis, they have been, at least for myself, ingressive to
many of the problems in the theory of algebraic monoids. The
purpose of this chapter 1is to describe, in general terms how
algebraic monoids are related to several non-—-trivial problems in
rational homotopy theory.

9.1 Algebraic Categories And Positive Weights Spaces

In [30] Sullivan establishes a complete and algebraic
description of uniquely divisible homotopy invariants. He then
observes that if X 1is a simply-connected .C.W.—space then
Aut (X(0)) 1is an algebraic group definéd.over Q, where X(0) is
the O-localization of X. Furthermore, there 1is a differentiai
graded algebra, M(X) such that End(X(0)) 1is isomorphic to
End(M(X)) modulo d.g.a. homotopy.

In [3] R. Body and D. Sullivan consider the following class
of 'sufficiently divisible' simply—connected C.W.—spaces. Let’
Zz(p) = {r e Q| r=m/n, (n,p)=1 }.

X is sufficiently p-divisible if for any map £ : X —> Y

such  that £* . H*(Y;Z(p)) -—> H*(X;Z(p)) 1is an

isomorphism there exists a map g : Y

> X such that
g* : H*(X;Z(p)) —> H*(Y;Z(p)) is an isomorphism.
They establish the following fundamental results about this

class of spaces.

9.1.1 Theorem[3]: Let X be a simply-connected C.W.—space. Then

the following are equivalent.
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(i) X is sufficiently p—divisible for some p.

(ii) X is sufficiently p-divisible for all p.

(iii) X is sufficiently 0—divisible (z(0) = Q).

(iv) 0, the basepoint morphism of M(X), 1is in the Zariski
closure of Aut(M(X)) in End(m(X)).

(v) M(X) = M has positive weights. i.e. There exists a direct
sum decomposition (compatible with the usual grading on M), M =
IM{a) such that d(M(a)) is contained in M(g) for all o, M(a)M(g)
is contained in M(g+g) for all ¢ and g and, and M(a) = 0 for all
e < 0.

The important observation here 1is that we now have a
completely algebraic definition of 'éufficiently divisible'.

In [2], [8] and [9] the following question 1is considered
for X a simply-connected C.W.—space (with some mila finiteness
conditions). | |

Does X(0) satisfy unique factorization in the homotopy

category, with respect to the formation of products?
Because of Sullivan's rational homotopy theory, this is now a
guestion of pure aléebra.

Does M(X) satisfy unique factorization with respect to

the formation of graded tensor product?

In [9] this question is answered affirmatively in case X is
sufficiently divisible 1in the above sense (the duél guestion
regarding coproducts is also considered). Since we are here
concerned with how algebraic monoids are 1involved, I will
generalize and modify the context  accordingly. So 1let us

consider the following categories, called algebraic categories

(see [8]).
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Let V(k) be the category of vector spaces over the field k
and let S be a category whose objects are 1in one—to—one
correspondence with the non-nedative integers, N =
{0, 1, 2,... }. Associated with S is the category 9(S).

If C 1is a category let |C| denote the class of objects of

The objects of 0(S) are pairs (V,a(V)) (or Jjust (V,a))
where V e |V(k)| and o(V) is a functor from S to V(k) such that
a(0) = k, a(1) = V and o(m) = V(m) for all m, where V(m) is the
the tensor product of V with itself m times. So, in particular,
if x ¢ hom(m,n) and y € hom(n,p) then a(yloa(x) = a(yox).

The morphisms of Q(S) are the linear maps in V(k) which

preserve the S—structure. Hom'(V,W) = { f e Hom(V,W) |
f(n)oa(V)(x) = a(W)(x)of(m), for all x e hom(m,n), and all m,n e
|S| }. Here f(n) denotes the tensor product of £ with itself n
times. Assume further, that 0 ¢ S is the zero object. For each
m e |S|, there are unigue morphisms n : 0 —> m and e : m —> 0.
We shall also, assume that the morphisms of Q(S) preserve .this
structure. It follows that k is the zero object of a(S).
Remark: The definition above is easiest to apply in practi;e, if
S can be realized as a subcategory of SETS. The purpose of the
definition is to provide a context for abstracting from the
idiosyncracies of wvarious' algebraic categories in order to
display the essence of how an object may be influenced by its
algebraic monoid of endomorphisms.

Let 0(S) be an algebraic category and let (V,o) be an

object of Q(S). Assume that V satisfies some sufficiently strict

finiteness conditions (still very general in practice). Then
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G = Aut(V,ae) is the algebraic group of units of the algebraic
monoid E = End(V,aqa).

Proof: f ¢ End(V) 1is in End(V,e) if and only if a(x)of(k) =
£(1)oa(x) for all k,1 e |S| and all x e hom(k,1). Thus, by our
finiteness assumption, End(V,e) 1is an algebraic subset of
End(V). Clearly, Aut(V,s) is the associated algebraic gqgroup of
units.

Definition: Let (V,a) be an object of 9(S). Then (V,a) has

positive weights if 0(V) 1is an element of the closure of

Aut(V,e) in End(V,aqa).
Thus, condition (iv) of 9.1.1 can be formulated in this
very general setting.

9.1.2 Theorem: Suppose (V,a) has positive weights.  Then

V=oeV(i), i=1,...,m, in such a way that each V(i) is

e—irreducible in Q(S). Furthermore, if V = eW(j) j

]
—
~
.

., n,
where each W(j) is e—irreducible in 2(s), then m = n and there
exists p :+ {1,...,m} —> {1,...,n}, bijectivé, such that V(i)
and W(p(i)) are isomorphic.

Sketch of proof: .If V = eV(j) let e(i) : V —> V be given by

the composite of

ee.,,.010, . . om : V(1)e,,.eV(m) —> ke.,.eV(i)e.,.ek and
ne...ete . .en : ke,  eV(i)e, ek —> V(1)e,  ,oV(m) =V

where e : W —> k and n : k —> W are the unigque morphisms to
and from the zero object, k.
Then e(i)2 = e(i), i = 1,...,m and e(i)oe(j) = e(§)oe(i) = 0(V)
if i is not equél to- 3. .

Because V has positive weights, we can construct a maximal

k—split torus T of Aut'(V) such that { e(i) | 1 =1,...,m } is



110

contained in the closure of T in End'(v). I1f { £(3) | J =
1,+..,n } 1is another set of splitting idempotents, then we can

assume that { £(j) } is in the closure of T as well because

maximal k-split tori are all conjugate [5]. But then { e(i) }
{ £(j) 1}, because by the results of [9], { e(i)of(3) | J =
1,...,n } determines a e—product decomposition of V(i) for
each i. Since V(i) is e—irreducible by assumption, e(i)of(j) =
e(i) for some Jj. Similarily, f(j)oe(k) = f£(j) for some k. But
then e(i) = e(i)of(j) = e(i)o(f(jloe(k)) = e(i)oe(k). Thus,
e(i)oe(k) 1is non-zero. So, e(i) = e(k). Thus, it follows that
any two irreducible-O—product decompositions are equivalent in

the sense advertised.

9.1.3 Examples: Theorem 9.1.2 (applied to the . relevant
e—product) applies to any of the following categories.

| (i) simply-connected minimal differential algebras and
morphisms.

(i1) simply—connected minimal differential ~ graded
coalgebras and morphisms.

(iii) connected minimal differential graded Lie algebras
and morphisms.

(iv) connected minimal Lie coalgebras and morphisms.

(v) any of (i) - (iv) without the differential and
minimality restrictions.

Categories (i) — (iv) all give rise to the same homotopy
theory if the characteristic of the ground field is 0 [16]. Each
of the categories defined in (v) may be considered a subcategory
of one of the categories defined in (i) — (iv). Furthermore, all

objects defined .in (v) have positive weights. One question,



however, is left open by Theorem 9.1.2. How does one gdeneralize
the result to the situation of objects without positive weights?
No counterexamples are known.

9.2 Homotopy Types With Connected Endomorphism Monoid

The main result of [27] is a structure theorem of
Sullivan's minimal algebras based on a synthesis of algebraic
fibrations and idempotents that adhere to Q-split tori.
Assuming, for simplicity, that M is a finitely generated minimal
algebra defined over an algebraically closed field k, of
characteristic 0, the result is as follows.

9.2.1 Theorem: There exists a sequence 1 = e(0) > e(1) > ... >

e(m) of idempotents in End(M) such that e(i+1) is an element of
the closure of Aut(e(M)) in End(e(M)) and e(i+1) is a minimal
such idempotent. Futhérmore, if F(i) is the duotient d.g.a. of
e(i-1)(M) by the ideal generated e(i){(M)*, then F(i) is a
minimal algebra with positive weights. The series terminates at
‘e(m) (M) because Aut(e(m)(M)) is closed in End(e(m)(M)).

The 1integer m is uniquely determined and each e(i)(M) is
uniquely determined up to isomorphism.

Theorem 9.2.1 fits in neatly with the characterization of
connected monoids given in Theorem 4.5.2.

9.2.2 Corollary: Let M be as in 9.2.1. Then the following are

equivalent.

(i) End(M) is connected in the Zariski topology.

(ii) The sequence 1 > e(1) > ... > e(m) terminates with
e(m) = 0(M).

(iii) Fof all non-zero idempotents e ¢ End(M), Aut(e(M)) is

not closed in End(e(M)).



The same result may be applied to any of the categories
Q(S) considered in 9.1. |

It is not kndwn, however, whether the unique factorization
results for ©positive weight spaces can be extended to rational

homotopy types with connected endomorphism monoid.
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