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ABSTRACT

In this thesis we look at the applications of Choquet's integral
representation to probability theory.

Applications of Choquet's theorem are given to obtain a
representation of superharmonic functions on the Martin Boundary, a
representation theorem for invariant measures with respect to a family
of transformations T and finally to symmetric measures on a product
space.

In order to obtain the desired representation theorem in the above
mentioned. applications we -need to consider an appropriate topology on the
spaces. In the case of the Martin boundary our underlying space is R”
‘equippedxyith the product topology. The set of all superharmonic
functions is shown to be a compact convex metrizable subset of R”.
Furthermore the extreme points are isolated and they turn out to be the

minimal harmonic functions.

With regards to the other two applications we consider the space of
measures on an appropriate topological space. The probability measures
invariant with respect to a family of transformations T form a compact
convex set in the weak-star topology and the extreme points are the
ergodic measures.

In the case of the symmetric measures on the product space the
symmetric probability measures form a compact convex set in the weak-star

topology and the extreme points are the product probability measures.
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INTRODUCTION

The aim of this thesis is to apply Choquet's integral representa-
tion theorem to some areas of probability. We consider the following
applications:

i. The Martin Boundary provides for the represent-
ation of superharmonic functions as integrals

of "Martin Kernels"”. Here the Martin-Doob-Hunt
representation is obtained via Choquet's
theorem.

ii. The set of all probability measures invariant
with respect to a family of measurable trans-—
formations T.

iii. The set of all symmetric measures on a product
space.

In the seﬁuel we compare the theorems of Choquet and Krein—Milman
and make clear how the Choquet theorem generalizes the Krein-Milman
theorem. First wé need some definitions:

(0.1) Definition: Suppose X is a locaily convex space (l.c.s.)
and K€ X a compact convex subset and that u is a probability measure on
K (i.e. a non-negative regular Borel measure with u(K) = 1).

A point xex'is called the barycentre of p (or is represented by
W) if f(x) = ffdu V continuous linear function f on K.

(0.2) Definition: If p is a non-negative regular Borel measure
on the compact Hausdorff space K and S is a Borel subset of K we say u
is supported by S if u(RK\S) = 0.

We may now consider the following questions:

If K is a compact convex subset of a l.c.s. X, and x£K, does
there exist a probablity measure b on K supported by the extreme points

of K which has x as its barycentre? If u exists is it unique?
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Under the hypothesis that X is metrizable Choquet has shown that
the answer to the first question is yes. A positive answer to the
second question depends on a geometrical property of K.

The following proposition gives us a characterization of the
closed convex hull of a compact set in terms of measures and their bary
centres. The proposition also allows us to reformulate the Krein—Milman
theorem as an integral representation theorem.

(0.3) Proposition: Suppose that Y is a compact subset of a
l.c.s. X. A point xeX is in the closed convex hull Z of Y iff. 9 a
probability measure p on Y which is the barycentre of x.

Proof: If u is a probability measure on Y which represents X,
then for each f in X* (dual of X), f(x) = u(f) < sup £(Y) £ sup £(Z).
Since Z is closed and convex, it follows that x € Z (by the Hahn-Banach
separation theorem).

Conversely if xe€Z, there exists a net in the convex hull of Y
which converges to X.

Equivalently A points yy of the form

[ 3 [0 2 [0 ]
120 EA =1, x ey

litmp

A, X (A

_ o .a o
Ya i1 M40 %y
and o in some directed set.)

which converge to x. We may represent each Yo by the probability

a
measure Ug = I Af €0 (exa Dirac measure)
i i

By the Riesz theorem and the Banach-Alaoglu theorem the set of prob~
ability measures on Y may be identified with a w*-compact convex subset

of C(Y)*, and hence there exists a subset (uB) of (u,) converging



-3 -

(in the weak* topology of C(Y)*) to a probability measure u on Y.

In particular; each f in X* is (when restricted to Y) in C(Y), so

lin f(yg) = lim [fdu, = [£d,.

Since y, converges to x, so does the subnet yB; and

hence f(x) = fyfdu for V £eX*, which completes the proof. ®
The above proposition makes it easy to reformulate the Krein-Milman
theorem. Recall the statement: If K is a compact convex subset of a
l.c.s., then K is the closed convex hull of its extreme points. (0.4)

The reformulation is the following: Every point of a compact
convex subset K of a l.c.s. is the barycentre of a probability measure
on K which is supported by the closure of the extreme points of K (0.5)
An easy use of proposition (0.3) shows the equivalence of these two
assertions.

Now it is clear that any representation by means of measures
supported by the extreme points (rather than their closures) is a
sharpening of the Krein-Milman theorem.

We now discuss some preliminaries which will lead up to the ver-
sion of Choquet's theorem that will be used.

Suppose K & X (l.c.s.) and K is compact convex, the question of
the uniqueness of the representing measure is most naturally studied
when K is the base of a convex conme C, with vertex at the origin. This
entails assuming that K is contained in a closed hyperplane missing the
origin.

We embed X as the hyperplane X x {1} in X x R (with the product
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topology. Thus K is mapped to K x {1} which is affinely homeomorphic to
K, (recall K is convex).

When K is contained in a hyperplane which misses the origin we
may always define a convex cone (with vertex at the origin) for which X
is a base.

Take C = K where K = {ax'a >0, x¢ K} is the cone generated by
K.

A cone C is proper if CA(-C) = {0}. Certainly ﬁr\(-ﬁ) = {0}.

Since K - K is a vector space and K is a proper pointed cone we
have that there exists a unique partial order on i - K making it into an
ordered vector space for which K is the positive cone, viz.,

x>y iff. x-y € K (the proof is a straightforward check -
reference Choquet Vol. 1 Ch. 10, p. 1713

(0.6) Definition: If a compact convex set K is a base of a cone
R we call K a simplex iff the space K - K is a lattice in the ordering
induced by K.

We note K - K is a vector lattice iff.K is a lattice.

Proof - (Phelps Sec. 9, p. 60).

We now state Choquet's theorem, the proof of which may be found
in Phelps or Choquet, Lectures on Analysis, Volume II.

(0.7) Theorem - Suppose K is a compact convex subset of a
locally convex space X. Furtheremore if K is metrizable or the extreme
points of K (ext(K)) is closed in X thanV x, € K
d a reéular Borel measure | representing x,.

If K is a simplex the representing measure u is unique.

(0.8) We will also have occasion to use the following:
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let X be a t.v.s. then X* with the weak-star topology 1is a l.c.s.
(Rudin, Theorem 3.10)

(0.9) Milman's "converse"” to -the Krein-Milman theorem.
Suppose that K is a comi)act convex subset of a locally convex space and
Z < K and further

K = Co(Z). Then ext(K) c cl(Z).



CHAPTER 1

The Martin Boundary and the representation of superharmonic

functions on the Martin Boundary in the Markov Chain case

Before we begin with the representation of superharmonic func-
tions on the Martin Boundary we give some preliminaries.

Consider the discrete parameter stochastic process
(Q,F,F.,X,,Pr).

Here (9,F,Pr) is probability triple and (Fn) is an increasing
sequence of 0-algebras contained in the o—algebra .

'V m X2 > S is Fn - measurable. Here S consists of a count—

able nﬁmber of elements with each element being measurable.

We say (Q,F,Fn,Xn,Pr) is a Markov Chain if
Pr[Xn+l = jn%1|X0 = J0se+esXp = jn] = Pr[Xn+1 = jn+1|Xn = jn]
If further Pr[Xpt1 = Jnt1|Xn = dn) = Pr(X1=jm1|Xo = ial
process is called a time homogeneous Markov Chain. We will only be
concerned with time homogeneous Markov Chains. Henceforth we will
denote the Markov Chain by (X,).
Let P be the transition probability matrix: i.e. P = (pij?
where p, . = P [X; = jlxo = 1], V 1, jes.
We assume that P is substochastic i.e. P1 < 1.
Here we are supposing the existence of a coffin state A appended to S

such that P =1- I .. (V i€8).
iA jes le ( )

A Markov Chain is said to be transient if Pr[Ti = 4o IXO =i]>0

Vi where T{ is the first time the chain hits i. In the ensuing
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discussion we will be dealing with transient Markov Chains.

+® n
Let G = n§1 P , G is called the Green's kermel.

The probabilistic interpretation of G is as folows: Gij is the
expected number of times the Markov Chain starting from i is ih je
Since (X,) is transient G = [gij] <+ =,

Let m = [ﬂ(i)] be the initial distribution i.e. w(i) = Pr[X0=1]. We
choose T so that G > O.

This assumption will be used in obtaining the Aesired representa-
tion theorem for superharmonic functions defined on the state space S of
the Markov Chain (Xp).

To summarize (?,F,F,,X,,Pr) is a transient Markov Chain with
substochastic transition matrix P. G is the Green's kernel such that G

<+ ® and 7 an initial distribution such that G > O.

Martin Boundary Theory for Markov Chains

1. Introduction

To motivate the introduction of the Martin Boundary for Markov
Chains with only transient states, we consider an open unit disc of
2-dimensional Euclidean space.

In R? the boundary of the disc i.e. the circle s! has the
property that there 1is a 1-1 correspondence between the non-negative

harmonic functions h(reie) on the disc and the non—negative Borel

h
measures U on the circle. The correspondence is

h(rei®) = fsl P(relf t)uh(e) (1.1)
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where P(rel® t) is the Poisson kernel,

1 - r2

1-2rcos(6-t) + r

2

The purpose of the transient Markov Chain boundary theory is to seek an
analogous representation of non-negative harmonic functions defined on
the state space of the Markov Chain.

Now in the case of the disc in RZ, a calculation using Green's
identities shows that any kernel P(reie,t) giving rise to the

1 2w .
correspondence and satisfying E; f P(rei® t)dt = 1, must be the

0

normal derivative at t of the Green's function for the disc relative to
the point reif,

i0 16
That is P(re ,t) = [z 6(+,re )1,

(The Green's function G is defined as follows

i6 i6
G(z,re ) = H(z,re ) + log
Iz - re

16’
where the function H satisfies

2 2
9 1 9 9
— + = — + —

1 i0
—= H(z,rel%)= 0
ar? r or rZ 36 ) (z,re )

and
H(z,reib) = 1og|z-reie, on Sl)
An application of 1'Hopital's rule yields

lim G(z,reie)

3 io 4
z*t G(z,p) = [5;—G(-’re )/EE-G(.’P)J

P(rel® t)/p(p,t).
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Here p is the fixed reference point in the unit disc. Hence except for
a positive factor P(p;t) which depends on t but not on reie, the

Poisson kernel is equal to

lim G(z,reie)
zrt G(z,p) (1.2)

Therefore the above function may be used in place of the Poisson kernel,
the distinction between the kernels is just the normalizing factor
(depending on t) which may be absorbed by changing the measures.

Now the above considerations apply equally well to any domain in
n-dimensional space with sufficiently smooth boundary.- Although the
explicit form of the kernmel will vary from region to region it will
always be connected to the Green's function in the same way we have
described above.

R.S. Martin (1941) made use of these observations to describe an
ideal boundary for an arbitrary domain in Euclidean space.

.If the Green's function for the region is denoted G(z,y) he noted
that points t on the boundary of the region did not necessarily have the
property that

1lim G(z,y)
2t E?;:;Y exists.
He suggested that distinct ideal boundary points u should be associated

to subseqﬁences {zn} which yield distinct values for the limits

lim G(z,,¥)
k] =
zp*t G(z,,P) K(y,u)

He went on to show that the desired representation theorem is indeed

obtained in terms of this boundary and the kernel K(y,u).
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Doob (1959) taking advantage of the fact that the G matrix for a
transient Markov Chain is the analog of the Green's function showed that
Martin's approach could be used to obtain a boundary for Markov Chains.
This enables us to obtain a representation of non—negative superharmonic
functions defined on the state space of a Markov Chain.

As the analog of Martin's kernel he used limits on j of
expressions of the form Gij/Goj’ assuming Goj >0V j.

In this respect we shall not follow him, we simply use limits of

Gij/igsﬂiGij when T is a probability vector such that ™ G > O,

Now the introduction of m in place of O itself leads to a
problem. The representation will have to be restricted to m—integrable
superharmonic functions.

We now give a brief sketch of the Martin-Doob—Hunt theory to
which Choquet's theory will be applied.
First we require the following:-'
Definition A function f or S (the state space of (X,)) is
P-superharmonic if Pf < f i.e. Pfy < f; V ieS
P-harmonic if Pf = f

We say f is a (pure) potential if f is superharmonic and

P = 1im P £ =0
n

All measures M on S and all functions on S are finite and non-negative.

The value of the function f at the state ieS is denoted by fy or £(i)

ij fj and uiP = I uj Pji’
jes jes
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If f and g are column vectors than f < g iff. f; < g; V ieS
Similarly for matrices over the same index‘set we have

A < B iff. Aj5 < Bjy V i,jeS
The Riesz decomposition of a non-negative superharmonic function f is
given by
f = Gc + PY°f
where ¢ is the charge of f and Pt®f is the harmonic function. The
above decomposition is unique i.e. Gc and PY™f are unique (See Kemeny,
Snell and Knapp). Furthermore since we are dealing with a transient
Markov Chain we have G < +° and thus it is easy to see that the charge c

associated to f is unique.

Define for arbitrary jeS, K(e.j) = gij/g1T

]

her =Im, (>0 mnG > 0
where g1Tj Zy 1giJ( ) ( )

N o d 3 _
Note K(*,3j) = Ge~ where c; = Sij/g1TJ

_ 1 if i=j
where 51,3 {o elsewhere

Thus v jeS K(+*,j) is a potential with a point charge ..

The Martin-Doob-Hunt Theory

The details of the following results may be found in Kemeny,
Snell and Knapp.
a. We may define a finite metric dp on S such that a sequence of states
{jn} is do-Cauchy iff.V ieS  the sequence {K(i,jn)} is a Cauchy

sequence of real numbers. The metric dz is defined as follows:

43103y =2 wigg [K(1,3)) - K, 53
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where

Lw,g £+ (Wj'positive reals).
jes 37T

Let S* be the completion of S under the metric dp. Here we note that
the characterization of Cauchy sequences in S given above shows that the
nature of the space S* does not depend on the choiée of the weights
(wg). S* turns out to be a compact metric space and S is a dense
subset of S*. The Martin Boundary is the set B = §*\S. Note that the
definition of S* does depend on the starting distribution .

For different starting distributions we may obtain a different
Martin Boundary.
(). v d

2
K(*,x) be the function defined by K(i,x) = lim K(i,jn) V ieS.
n

~Cauchy sequence {jn} S, such that jn +* x €B, let

K(*,x) exists by the definition of d2-
The above definition of the Martin boundary apart from enabling us to
obtain’a representation theorem for superharmonic functions on S also
gives information about the long range behaviour of the Markov Chain.
We state the following theorem, the proof is found in Kemeney, Snell and
Knapp, (p.339).
(1.4) Theorem: Let (X,) be a transient Markov Chain with initial
distribution such that m G > O.
For each w £ 2 let v(w) be the supremum of the n such that X (w) € 8.

Then a.e. either v(w) < +* and X(w) € § or v(w) = +* and X, (w)

v(w)

coniverges to a point X(w) € S* as n > +«,

v(w)
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(1.5) Theorem
To each superharmonic function f on S with 7mf < +=
a unique Borel measure uf on S =35 ¥ B & S* where

Be = ext(S*\S) such that

£(1) = [ X(i,x) auf(x) (i€S) with
S

uf(s) = wf, and this representation corresponds to the Riesz
decomposition f(i) = u(i) + r(i) on S where the integral over S yields

the potential.

(i) = I g e(d) (1¢8)
jes
with chafge c(j) = uf(j)/g“j (ies)
and the integral over B, yields the harmonic function:
r; = [ K(i,x) duf(x) (1eS)
Be

If nf = i,uf is a Borel probability measure. Our aim is to obtain the
above representation using Choquet's integral representation theorem.

We now develop the machinery which will enable us to obtain the
Doob-Martin—-Hunt representation via the Choquet'integral representation
theorem.

Recall we are dealing with a transient Markov Chain (Xn) taking
values in the countable state space S, with probability transition
matrix P, Green's kernel G and initial distribution 7 such that ©m G >
0. |

We consider as our underlying space the space RS which in the
product topology is a locally convex metrizable space.

Let K = {f € R} |p£ < £ ana 7 < 1)
Ke RS and we show that K is a compact convex metrizable subset of

RS,
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Furthermore consider K = {feRi'Pf £ f and 7f < +W}

K is the cone generated by the base K. We show that K is a

lattice in the cone order and therefore K is a simplex.

Lastly we isolate the extreme points of K.
Since the space RS is equipped with the product topology (topology
of pointwise convergence) we have that the projection maps ry(f) =
f(1i) are continuous linear functionals. We have a sequence {fn} in
RS converges to a point f in RS iff. T(f,) +‘Fi(f) (V ieS).
(1.6) Proposition: The set K is a compact convex metrizabie subset of

RS,

Proof: K = {feRi Pf < f and =f S_l}. Clearly K is convex. Since

K< RS and RS is metrizable, K is metrizable. Thus we need only
show that K is compact.

Suppose {fp}CK and £, > f ¢ Rﬁ.

(i.e. T'3(fn) > T3(f) V ieS).
Then by Fatou's lemma and the fact that each fn, in superharmonic we
have
Pf = P(lim inf £,) < lim inf Pf, < lim inf £, = f.
Also mf < 1lim inf nfﬁ <1 (Fatou's lemma).
So f € K. Therefore K is closed. If.we show that K is contained in a
compact subset of RS then the proof will be complete.
It is here that we use the assumption that wG > O.
So if we show thatVkeS I Mg > 0 such that 7f <1

implies £(k)< M (VkeS) then K< T [0,My]
Tk keS
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which is a compact subset of RS (Tychonov's theorem).

Since mG > O we have m, G = L mygyr > O V keS.
ies

Thus V keS Tk'eS such that mr, Bt K > 0 and since
b

[g..] = ¢ = I P4 m> 0 such th P(m)>0
gij = = a=0 - >4 m such that k'K .
Now if f is superharmonic, then me < f so
(m) (m) .
Ptk f(k) £ jgs Pyt £(3) < £(k") (1.7)
and if mf < 1 then in particular m +f(k') <1 (1.8)

Using (1.7) and (1.8) above we need only choose

= (m) -1 K
M [ﬂk, Pk',k] . Thusv fek we haye
f(k) € [O,Mk] Vk. Therefore, since K is closed, K is compact. |

Now we examine the lattice structure of k, the cone generated by
K. We prove that K:is a lattice in the cone order. The cone order is
defined as follows:

v f.ge K £ £g iff g—f € K.

The key to proving that K is a lattice is provided by the Riesz decompo-
sition of a superharmonic function. We recall that if f is a super-—
harmonic function then

f = Ge(f) + P*™F where c(f) is the unique charge of £ and
P*®f is the harmonic part of f.
(1.9) Lemma: Let f,g 8_k. Then £ € g iff.
c(£) < e(g) and.P+wf <Pt i.e. c(fy) < e(gy)
and P*f; < Pt%g; V ies,

Proof: Suppose c(f) < c(g) and P+°f < P+%g
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Note: P(Pt%g - Pt%g) = P p+®g - p P+ = pt®g - P+
(-~ P g and P *°f are harmonic).
So P*®g - P*®f is harmonic and is in K.

.~ P(g-f) = Pg - Pf

P(Ge(g) + P*g) - P(Ge(£) + P+™f)

Ge(g) - Ge(f) + P*°g - PH¢ - 1(c(g) - c(£))

Ge(g) + Pt — (Ge(f) + PY¥f) = g-f

I

- 8 f € K.
C.opverselz: Suppose g-f ¢ ’2 Since the Riesz decomposition is unique
we have 0 < PF°(g-f) = P**g - Pt™f and G(c(g~£)) = Ge(g) - Ge(f).
By the uniqueness of the charge v'de have
c(g=f) = c(g) - c(f).
(1.10) Proposition: V£, g ¢ K we have
fng = G(e(E) A c(g)) + PHo(B+oE A PHog) (1.11)

Here c(f) A c(g)(1) = c(f1) A c(gi) and

(PtE A P+°°g)i PY f; A P+°°gi.

Proof: The r.h.s. of (1.11) makes sense since it is clear that
c(£) A c(g)

is a charge and (P+°°f/\P+°°g) is a superharmonic function

(since both P*®f and P*®g are harmonic).

Let ¢ = G(c(£) A c(g)) + PHo(t s APt™p)

Note: ¢ € K, c(£) A c(g) < c(g)

and PY*f A P+%g < P+%g,

Hence by Lemma (1.9) it follows that ¢ <€ g.

Similarly ¢ € £ so ¢ is a lower bound in l~< for £ and g.

Let ¥ be any other K-lower bound for' f and g.



It follows easily that
c(¥) < c(£) A c(g) and Pty < PH2f A Pty
AR A YN
Thus ¢ = fA g. |
The above proposition implies that E is a lattice in the cone order so
we have that K is a simplex.
We isolate now the extreme points of the set K.
Recall K = {stf/Pf < f and ©f 5_1}.
Definition: A non-negative superharmonic function f is said to be
minimal if for any non-negative superharmonic function g such that f-g

is non—negative superharmonic we have that g = af for O <a<fl.

L] 3 = j j= —1
Recall that K(+*,j) = Ge~ where ] g“j Gij'

Thus v jeS, K(+,j) is a potential with a point charge denote the extreme
points of K by ext(K).

(1.12) Progositioﬁ: A function f € ext(K)\{0} iff. £ is minimal and

7f = 1. )

Proof: Suppose fe ext(K)\{O}.

Now if fe ext (K)\{O} we must have nf = 1 since if nf < 1,

)+ a - ) -t

Suppose that we have a non—negative superharmonic function g such that
f-g is superharmonic.

If £ is not minimal we have that

) 2f8 L lwgse .
T(2f-g) T (2E-g) + 5 3 = (1.13)

+h
1]
N =
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But (1.13) contradicts the fact that f is extreme so f must be minimal.
Conversely suppose f is minimal and ©f = 1.
1 1
Suppose f = 7 8% >h ghe K. (1.14)

Since f was assumed to be minimal

1
%-g =of , 7 hs= Bf 0 <o B<1.
1 1
By (1.6) £ =7 g +5h = (e+B)f so otB = 1.
1 1 1 1
723 m™=orf =aandy25m=8 (ghek

1
But atB =1, -, a =8 =3

°° h=g=f. So f is extreme. ]

Proposition: If f is minimal then f is either a potential or is
harmonic.

Proof: By the Riesz decomposition we have f = Ge + h and since Ge, h
are superharmonic, f-Gc and f-h are superharmonic and we have by the
definition of minimality Gec = of, h = Bf. Now if o« B # 0 we have

Gec = h/B. But this cannot be by the uniqueness of the Riesz

a
decomposition, so we have that either a or B = 0. Thus f is either
harmonic or a potential.

Proposition (1.15): Furthermore a non-zero potential is an extreme

point of K iff it is of the form K(-,j) for some j.

Proof: Suppose that Ge(c > 0) is an extreme point of K (Ge § 0)
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Ge = [ ) g..C.].
jes ij 3 1§S

Note ¢, . K(.fl) = 8.1 (K(+,3) = g-,j/gnj)

and Gc - clg"1 K(+,1) is superharmonic because

P[Gc—clgﬂlK(o,l)] = P[Gc—c GcJ] = (G—I)c—clgﬂl(G—I)cJ

lgnl

= [Gc-c g“lG cJ] -I[c+c cJ]‘S Gc—clgﬂlK(-,l)

1 18m;
Since Gec is minimal and mGe = 1 (%.* Gec is assumed to be extreme)

g K(+,1) = obc 0<a<l

“1 1

. -
implies Ge = = g K(-,1) (r16)

L

1
mK(+,1) =8 - Therefore g = a/cl.

€1
1 = wGe =5 B8
1 1 1

m

So in (1.16), Ge = K(-,1).

Conversely consider K(°;j) vV j=1,2,...

Suppose there exists a superharmonic f such that K(e, j)-f is
‘superharmonic.

Let £ = Gec + h; ¢ > 0 (charge); h is harmonic.

Since K(*,j) is a finite potential and h ié bounded above by K(-+,j), we
claim h = 0.

[Proof: Let Gg be a finite potential and h 5 Gg

h > 0 and harmonic with respect to P.

n n +o k
h=Ph<PGg = (kgn P lg >0

(Strictly decreasing sequence of finite functions bounded below by 0),

L h so.]
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So f = Gec and K(*,j) = Gc > 0
= G(cI-c) > 0

3 3 S s
Soc-c2>0 i.e. ci-c(i) >0 i.e. —él- - c(i) >0Vi
m,
]

implies ¢ is a const. multiple of el

Thus from the above it follows that ext(K)\{0} = set of all
minimal potentials K(°*,j); jeS and minimal harmonic functions h such
that 7h = 1.

Let F; = {K(',j)leS} and let ﬁn be the set of all minimal

harmonic functions such that 7h = 1°

The Martin Boundary via Choquet's Theorem

Recall that the non—-zero members of ex(K) are the minimal
potentials K(*,j); j€S which are called Pm and the minimal harmonic
functions H .

m

Since amC: K, the set Pg = cl.(Pm)_(closure of Pm in K) is a compact
set. The mapping S * P; defined by j * K(+,j) V jeS, identifies S
% with the dense subset'Pm of P;. (The mapping is 1-1 by the

uniqueness of charge).

We define the Martin Boundary to be the set B = P;'\ Pmand

and later show that this definition of the Martin boundary coincides
within that given by the Martin—-Doob—Hunt theory. With this definition

we have to show Hmcz P;. This is a corollary to the next proposition.
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1.17 Proposition: K = éa(PmL}{o})
Proof: Let sets J denote subsets of S and let A(j) denote the jth.

column (jeS) of the matrix A over S.

The proof is in two parts: we first show ueK, u a potential, implies

u€ EB(PmL){O}, and then we show that every superharmonic ¢ function
is the limit of an increasing net of potentials. If ueK is a potential

with charge c, then

u=06c= 1% G(J)Cj =L K(+,3)er, C3ys
jes jes j

and 1 > mu = I 7K(- j)gTr c.= I g ¢
jes 33 3es T3

Set a; = gr cs (jES) then I a;<1Vy,
J “j J jed J =

SoU. = I aR(*.59 + (1 -ZI a,)0 is in co(P L){O} (vJe s; J
J . 3 . m
jed jed

finite)

Hence u = lim Uy € Go(P U {oh
J m.

Now, let f be a superharmonic function. Note f A u is a potential, for
any potential u (fA u < u, .. P (fAu) < Pt®y = 0).

Let 'J' be the cardinality of the finite set J.

. oo
Since g.. > 1 V jes (G = I PD)
: JJ — n=0

we have K(j,j) > 0 V jeS. The function

¢J = 'J| z K(*,j) is a potential V J & S (J finite)
jes

’,{f’A ¢J : J'CIS} is an increasing sequence of potentials such that
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£fA °'39f (weakly) since ¢3(j) becomes unbounded for every jES.
Finally it follows from Milman's "converse" to the Krein-Milman theorem
that ex(K)e cl ( PmU {0}]

But the P U H = ex(K\ [0} cl(P) = P

(1.18) Theorem: To each superharmonic function f on S with nf < 4+«

there corresponds a unique Borel measure uf on P; with support

P U H such that
m m

£(i) = Lduf(g) ie9) 1.19
(1) meU nglu g (i ( )

with uf(PmL) Hm) = 7mf and this representation corresponds to
the Riesz decomposition f(i) = u(i) + r(i) on S where the integral over
Pm yields the potential
u(i) = I giics (i€s) (1.20)
jes RN

ey = wE(i)/g, (ie8) (1.21)
3

where uf(j) = uf(K(.,j)), and the integral over Hj, yields the

harmonic function

r(i) = IH giduf(g)  (ies) (1.22)
m

Proof By Choquet's theorem V superharmonic finite feK 3 a unique Borel

measure uf on K with support in ext(K) such that

L(f) éx(K) L(g)dw (g) fex<K>\{o}L‘g)d“ (8)

. : . S
for every continuous linear functional L on R°. In particular,

R . . S . .
since the projections on R are continuous linear functions and

since a ex(K)\{O} =P UH,
m m
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i) = = f = f
£ = T = [p gy Ty(edauile) = [p g dutle)

To show that the representation holds for any superharmonic f with mf<{+=
note that ¢ = f/nfeK (may assume mf > O if nf = O then f = O result
trivial.)

Thus o) = fp s atie) = B2
m m

Setting uf = 7P defines a representing measure for f which is
unique since if Vv also represents f, the v/7mf represents ¢ so

v o= wf.u¢ = uf

Let {Jn} be a strictly increasing sequence of finite subsets of S

Then 7f = 1im I w,T (f) = lim I m, giduf(g)
n jeJp J 1 n jwanmuHml

1lim N duf(g)
n meFJ Hn 33, jéi (g

£ f
fme){{m g du (g) = fme)f{mdu (g) (Monotone Convergence
Theorem).
= uf(7] ¥
u(%Ufp
Thus (1.19) is proved.

Let f(i) = u(i) + r(i) ='ES gijc(j) + r(i) be the Riesz decompo-—
je

sition of f on S. The function

f f
v(i) = du =L RE,PDuw () =2 g..
Tp sav (@ = 2 KL DV(D = Iy =

is a potential, and the function

h(i) = IH g(i)duf(g) is harmonic since
M
Ph, = 1im I_ [ Pijg(Ddu(g) = | Pg.du'(g)
1 n jEJn Hm Hm 1
= [, eiduf(g) = ny V ies

oy
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By the uniqueness of the Riesz decomposition u(i) = v(i) and

r(i)

]

h(i) Vv ieS. By the uniqueness of charge we have

c(j) = nf(3) g,.- This proves (1.20), (1.21) and (1.22). n

We conclude this section by showing that the Martin boundary as
described by the Martin-Doob~Hunt theory is equivalent to the-definition
that was given using the Choquet theory.

Recall that S* was defined to be the completion of S under the metric
d2.

(1.23) Proposition The mapping x * K(.,x) is a uniform isomorphism of

*
S* onto P .
m

Proof: Since K(.,j) = ch, we have by the uniqueness of charge that

the mapping ¢:S =+ Pm; $(j) = K(.,j) is one-to-one. From (a) of the
sketch of the Martin-Doob—Hunt theory, the mapping ¢ induces a bijection
between Cauchy sequences in S and Cauchy sequences in P,. Now we

recall a theorem which states that if Yy:A > Y is a mapping from a dense
subset of a metric space X into a complete metric space Y which carries
Cauchy sequences to Cauchy sequences (and hence is continous) then V¥
extends to a continuous function on X. [Royden, Ch. 7, Sec. 6]. Since
¢ and ¢‘1 have this property ¢ and ¢'1 extend to continuous function §S%*

and P; respectively.

The extension is given as follows xeS*\§ {jn} € S such that j, » x

then ¢(x) = ¢(lim j,) = K(+,lim j,)
n
and ¢_1(K(',1im 3j )) = lim jn.
n n

. % - X .
Since S* and F; are compact; ¢, ¢ 1 are uniformly continuous.

1]
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CHAPTER 2

Application of Choquet's theorem to invariant

and ergodic measures

Our aim in this section is to obtain a representation theorem for
the set of all invariant probability measures with respect to a family
of transformations defined on (S,4) when S is an appropriate topological
space and 4 a g-algebra of subsets of S.

When we say invariant probability measures we will always mean
invariant probability meas;res with respect to a family of measurable
transformations 7.

If X is the set of invariant probability measures we show that
under appropriate conditionsV ueX 4 a unique Borel probability measure m
supported on the extreme points of X such that

- 2.0
u(£f) fext(x) f dm,V feC(S) (2.0)

Here the ext(X) turn out to be the ergodic measures. As to the topology
considered on the space S we consider S to be a compact Hausdorff space
and 4 the Borel o-algebra of subsets of S. We show that the set X is a
w¥*-compact convex set. |

Let P be the cone generated by the set of invariant probability
measures X, i.e.

P = {au|uex,a Z_O}, in proposition (2.7) we show that P is a
lattice in the cone order. This implies that X is a simplex.

Proposition (2.14) shows that the extreme points of X are ergodic

measures.
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Theorem (2.16) gives us the desired representation (2.0)
Let S be a set, 4 a o-ring of subsets of S and T a family of measurable
functions from S into S. Then

V TeT we have T:S + S and T—l(A)sé whenever Ag4.

Definition (1)

A non-negative finite measure u on 4 is said to be invariant
(T invariant) 1f w(T"%A) = W(A) V Aes and T € T.

Definition (2)

Suppose W is a measure on 4. An element A of 4 is said to be
invariant (modu) if u(AAT'lA) = 0VrTel.

(AAB = A\B U B\A). Denote the family of all such seté by éu(T) or Au.

A little computation shows that u is a sub—o-ring of 4.

Lemma 2.1 Let u and v be measures on 4. Suppose u is invariant and v
is absolutely continuous with respect to u (with dv/du = f a.e.).

Then V is invariant iff. f = foT [u] a.e. for all T in T.

Proof: If f = foT [u] a.e. u for all T in T, and if Aes, then V TeT

|
—

vw(r-1a) = , fdu = [ foT du=[ f duor™!

T™°A T A A

[ fdu = v(a)
A

(*>u is invariant)

To prove the converse

Suppose \)oT'1 = v for some T in T (2.2)

V r real let A = {x: f(s) < r}, let B = T"!A\ A and let ¢ = A\ T-la.

Then on B, f-r > O.

ru(B) = [ (f-r) du > O (2.3)
B

So Vv(B)

with equality iff. uB = O.



_27_.

Now W(C) = [ fdu £ ruC (2.4)
C

Also v(B) = w(T-!A) - w(T-!aANn A) (N.B. B =T !A\ A).

v(A) - W(T"'A N A) by assumption (2.2)

v(C).
Similarly uw(B) = u(C)
Combining (2.3), (2.4), we have

V(B) > ru(B) = ru(c) > v(C) = v(B).
So equality holds throughout. It follows that u(B) = 0 and nw(C) = 0 (by
2.3).
Thus, for any r, {x:f(x) S_r} and T‘l{x:f(x) S_r} differ by a set of 1
measure zero. (2.5)
Suppose now that g and h are real-valued functions then we have

[xig(x > h} = U [xigx) > r > n(x)}
reQ

= (_) [{x:r > h(x)}]\\ [{x:r Z_g(x)}]

reQ
(Q is the set of rationals in R).
Let g = f and h = foT in the above identity and using (l1.4) we see that
f < foT [u] a.e.
Interchanging £ and foT i.e. let g = foT and h = £

we have f > foT, [u] a.e.

So £ = foT, [u] a.e.

Corollary 2.6

If w and v are invariant measures and g = V on éu+v then 4y = v on A.

Proof: Let f = du/d(u+v), g = dv/d(ut+v)

(Since u € yt+v etc.)
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LI(u+v). We will have u(A) = v(A) for all A in 4 if

m

Here £, g

f f d(ut+v) = f g d(utv) = VA i.e. f =g [u+\)] a.e.
A A

HA

Now f and g are 4 measurable functions on S and in fact they are Au+v

measurable. To see this, choose arbitrary TeT, then since u,v and utv
are invariant, lemma (2.1) implies that foT = f and goT = g a.e. [u+v].

This implies immediately that f and g are 6u+v measurable.

Since
[ fd(utv) = [ g d(utv) V Ae 4
A j A ptv
(by assumption u(A) = v(A),V Ac Su+\))
We have f = g, [u+v] a.e. |

Let P = {aula > 0, HEX} where X is the set of invariant probability

measures. P is a cone with base X.

Proposition 2.7

The cone P of all finite non—negative measures is a lattice (in
its own ordering).
Proof: 1In order to show P is a lattice it suffices to produce a
greatest lower bound in P for any two non—negative invariant measures u
and v.
Note: W L pt+v and v € ptv

£ d(u+v), dv = g d(u+v); £, ge Li(u+v) (2.8)

So du
Let h=f A g ¢ Ll(u+v).

Note: Yi(A) Z'fA h d(u+v) where v; = u; Yo, = v.

Define d(uAv) = h d(u+v); uAvV is a measure and uAV & ptv.
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inf{foT(x), goT(x)}

SinceV TeT, (fAg)oT(x)

foT A goT(x)

fag(x) = h(x) a.e. [u+v]

[U,V are invariant].

By lemma (2.1) uwAv is invariant.
We now show that MAV defined above is indeed the infimum.
Suppose 0 > HAV i.e. 0(A) > uAv(A) V Aeb

and 6 { u; 0 < Vv (2.9)

By the Radon-Nikodym theorem X fu, fv such that do = fudu = fvdv (2.10)

and by (2.9) o(A) = | £,du < u(a)  Aes.
A

=>0<f <1 [u] a.e.; similarly 0 < £ <1 [v] a.e.
Also H fo such that dpAv = fcdd (since uAv < o). (2.11)

and 0 < £ <1 [o] a.e. (by 2.9).
But duAv = h d(p+v) (by definition).
By (2.11) £_do = h d(utv).

So h d(Wv) = £ f £ d(wv) = £ £ g d(wHv) by (2.8), (2.10) (2.11)

h=ff £f=£Ff g [utv] a.e. (2.12)

implies fuf = fvglz h (0 S.fc.ﬁ 1).

£ =
But fuf fvg S,{g and since h = fAg

fuf = fvg

h so in (2.12) we conclude that fo =1 [u+v] a.e. and
hence [0] a.e. (v u € utv).
Now we have dpAv = fodc and since f0 =1 [c] a.e.

AV = 0 on 4.

Now we verify that uAv is indeed the infimum in the cone order. Let P
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be the cone of non-negative measures generated by the invariant
probability measures.
Define the order u < v iff. p-v € P,
If we suppose that ¥ ©eP such that
0> pAv and o < p; o < v
Then 0—-uAv, u-o, v-o € P.
i.e. o(A) > uAv(A); o(A) < u(A); o(A) < v(A),V A€es .
By the discussion above one has o = uAv. n
Thus the above implies that P — P is a vector lattice and so X is a
simplex.

Definition (2.13)

We call an invariant measure u ergodic if u(A) equals O or 1
VA€EALU.
Recall éu consists of all Aed such that

u(AAT-1A) = 0 V TeT.

Proposition (2.14)

Suppose that u is a member of the set X of all invariant probability
measures on 4.

Then p is an extreme point of X if and only if u is ergodic.
Proof: Suppose that u is an invariant probability measure and that
0 < u(A) <1 for some A in Au
Define ui(B) = u(BN A)/u(A) and up(B) = u(B\ A)/[1-u(a)]:
then u; X u, u = u(A) uy + (1-u(A)) u, each uy is a probability
measure, and moreover, each pj; is invariant.
[This uses the facts that p is invariant and that AAT'I(A) has U measure
zero, "together with the identity

C1N(C2AC3) = (C1MN Cy) A (C1 N C3)].
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To prove the converse suppose H(A) = 0 or u(A) = 1 for each

Aeéu, and suppose 2p = p} + py where u; and up are invariant probability

measures.

It follows easily that u = Ui on A i=1,2.

Thus by corollary (2.6) W = Ui on éu i=1,2.
So 4 is extreme. 4 a

To use the above results to obtain a representation theorem we
must define a locally convex topology on P - P (the subspace generated
by the cone P) under which the convex set X of invariant probability
measures is compact.

Let S be é compact Hansdorff space. 4 the o-algebra of Borel
subsets of S.
Let T. be any family of continuous maps T:S > S.
Thus Tyis measurable with respect to 4. Via the Riesz Representation
Theorem the space of all regular Borel measures on 4 can be indentified
with the dual space C(S)* of C(S).

We consider the w* topology on C(S)*. Now V TeT the map
[T uoT‘1 is a continuous linear transformation which carries the w*
compact convext set K of probability measures into itself.
The mapping u *> uoT"l is linear.
To show the map is continuous let (Hg) be any net converging in the w*
topology to B. (B in some directed set).
Then V fe C(S) foT & C(S). So foT(ug) > foT(u).

i.e. fS foT duB > fs foT du V fe C(S).

/

of dug = fs £ duor"! » fs fduor™ !, v f£ec(s)

f
1(s) B

i.e. uBoT'1 + WoT™?! in the w* topology.

’
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So the map is w* continuous for each TET. It is easy to see that the
map induced by each TeT maps K into itself.

The set X of invariant probability measures is precisely the set of
common fixed poiﬁts for the family of transformations of K into itself
induced by T.

To see this, note U an invariant probability measure,

poT=1(£) = [ £ duor-! = | foTdu = | f£du

S T1(s) 1(s)

[}

[ £ du = w(f).
S

Since f = foT [u] (a.e.) TeT by lemma (2.1) (uoT™! < ).

Since the induced maps u 110T_1 are w* continuous for each TeT
we have that X is closed in the w* topology and hence is a w* compact
set since X < K.

If we suppose that X is non—empty then X has extreme points.
(Krein Milman theorem). Further on assuming that X is metrizable we may
apply Choquet's theorem to obtain the following result:

(2.16) Theorem: If S is a compact Hansdorff spaég, T a faﬁily of
continuous functions from S into S; then to each element p of the set
X of T—invariant probability Borel measures. There exists a unique
probability.measure m supported on the ergodic probability measures
(extreme points)of X such that

u(g) = f £ dm V fe C(S).
ext(X)

Remark:
If the set X is empty the above theorem holds vacuously.
However, to ensure that X is non-empty we impose additional

constraints on the family T.
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1f T is a commutinggfamily of continuous transformations we have
by the Markov-Kakutani fixed point theorem that X will be non—empty.
We state the Markov-Kakutani theATem.
Theorem: (Markov-Kakutani)

Let Y be a locally convex space, K € Y a compact convex subset
and T = {TlT:K *+ K; T affine continuous}
We assume T is a commuting family
(i.e. T To= TpT; T, T €T)

Then k0 €K such that T ko = ko V TeT.



- 34 -
CHAPTER 3
PART 1

Symmetric Measures on a Product Space

The Problem: Let (S,F) be a measure space

oo oo

+o0
(s, F )= oX1 (8,F) the usual product space.

Let S* denote the blass of all probabilities 6 on (S,F).
Consider the following o-algebra on S* i.e. the o-algebra generated by
all sets of the form

{ees*|e(F)'< t} where F e Fand 0 < t <1
We call this the "weak-star"” o-algebra F*,
For each 8eS* let 61® be the product probability on (St®, Ft®).
The correspondence 6 + ot ig clearly 1-1.

A permutation m on the positive integers N is finite if w(n) = n
for all but a finite number of the n i.e. m is a 1-1 map from N + N
having all but a finite number of the n, unchanged.
Let ™ be the induced transformation defined as follows:

T:8+® > gt

ﬁ(xl,xz,...)‘= (Xnu) , Xnuf yeve)e

It is clear that ¥ is a measurable transformation with respect to the
o-algebra ™.

A probability Pe(St®)#* ig exchangeable if P is invariant under all m,

o +o ~
i.e. P(F"1(A)) = P(A) VA € F  and all 7.
Suppose W is a probability on F* and define

P, as follows P (A) = [ 6t°(A) du(e), vV A e (3.1)
S*
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Pu is a probability.

Since each 6%% ig exchangeable we have that Pu is
exchangeable. Using the terminology of Hewitt and Savage we say that
Pu is presentable.

Formula (3.1) indicates that a presentable probability is in a
certain sense a mixture of elements of S*.

‘The question may be posed: if P is exchangeable on S$t® what
sort of topological structure is necessary on (S,F) so that ¥ pef* with
P = Pu satisfying (3.1)?

Hewitt and Savage have shown that it is enough to assume that S
is compact Hausdorff and F is the Baire o-field.

Our aim here is to obtain the representation (3.l1) together with
the uniqueness of the representing measure p via Choquet's integral
representation theorem.

The topology on S will be discussed later.

(3.2) Theorem

The set of all product probabilities on (ST°, r*®) forms the
extreme points of M, the space of exchangeable probability measures on
s+, ).

To prove the theorem we need two lemmas.

(3.3) Lemma

Let n be a positive_integer, El,.., Ey elements of ¥, and let
oeM. |
Then {G(El x Ep Xx.o. xEn xS x 8 x ...)}2

o(E} xEpee. xEn xE} xEy) x oo xEn xS XS X ...)
If we let the cylinder set E] x Ep X... x En x S x S... = C(El,..,En)

and Ej x Ep x... X En x E; %x... xEn xS x S... = C(Ey,.., En, Ey,..,En)
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Then the above result reduces to

olc(Ey,.., En, Ey,.., En)]

>{o[c(E],.., En)]}? (3.4)

Proof: Let C(E;,.., En, Ey,.., En) = A and C(E;,.., En) = B.
Let Xy (r = 1,2,...) be the characteristic function of the cylinder
{alai+(r-l)n €Ei, 1 = 1,.., n}

Then IS+w Xr(a) do(a) = 0(B) by exchangeability.
b

SoVm fs+°° (L, xr(a) do(a) = mo(B)

Furthermore f

o 2
oo (rgl xr) a(a)

m m
[t eE1 X (@) = ) X (&) doCa)

m m
rEI 521 fS*“ Xr(a) xs(a) do(a)

B[ e X (8) d0(a) +mno1) [ % (a) xy(a) doCa)

mo(B) + m(m-1) o(A).

Using the Cauchy-Schwartz inequality with

| ¥, and g = 15 (Jg) 2 < (JEH)([gD).

i.e. (£+w % X, dc(a)JZ < £+w (rgl Xr(a))2 do(a)

r=1
ice. m?{o(B)}? < mo(B) + m(m-1) o(A) < mo(B) + mZo(A)

o(a) > [o(8)]2 - LBy

cLoo(a) > [a(B)].
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(3.5) Lemma: Let 0 be an element of M such that equality holds in (3.4)
for any positive integer n and arbitrary. El,..; En €F. Then ¢ is an
extreme point of M.

Proof:

If oeM and is not an extreme point there exists ¢', ¢” € M and a,
0 < a< 1l such that ¢' # ¢" and 0 = o ¢'+ (l-a)o. Since all measures
on (s*%, F**) are determined by their measures on cylinders, I a

cylinder B = C(E1l,.., En) such that ¢'B # o"B.

Let A= C(Ey,.., En, E;,.., En).

Then 0A acg'(A) + (1-a) o"(A)
> a(a"())? +(1-o) ((o7B) )2.
Applying the Cauchy Schwartz inequality
[ao'(B) + (1-a) 0"(B)]? < (o' (B))? + (1-a)(o"(B))?
6'B (0,a) 1 1
(Let X = { (f xat)? <[ x? dat)
¢"B (a,l) 0 0
We have strict inequality above since X # const..
We obtain
oA > [a0'(B) + (1-a) ¢"B]? = (oB)2.
Thus strict inequality holds in (3.4). |

Proof of Theorem 3.2: Let 6% be a product probability on

(S+”’F+“). We clearly have equality in (3.4) so 6+ is extreme by

lemma (3.5). To show that the product probabilities are the only
extreme points we consider 0eM, 0 is exchangeable and not a product
probability.

So d sets Ej, Fi,.., Fn €F such that

o[C(El,Fl,..,Fn] # oC(E1) oC(Fy,..,F ) (3.6)
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Consider m:N + N; m(n) = ntl Vn. The induced transformation T is a
measurable transformation from (S*¥®, F™™) to (s*®, r “).
N.B. V¥ Aept®
1) = {a'(az, asz,...) €A, a€ sT=}.
Also we claim of-1(a) = o(A),Y Ae . F*
(This is proved later).
Condition (3.6) may be rephrased in terms of T as follows:

4B = C(Fll"°’Fn) such that

sleEn N 7-1®)] # oC(E]) o(B) (3.7)
In view of (3.7) it is impossible that either

O(C(El)) or G(C(S‘\ El')) vanish.
Define the conditional probabilities
o C(S\ E1"))

o[C(E})] o' + [1-0 C(S\ E;")]o”

o' C(E1)) and o" = of-

o}
It is clear from (3.7) above that ¢,0',0" are all distinct and since ©
is exchangeable ¢' and ¢" € M.
Proof of the claim in the above proof:
(3.8) Theorem:

Consider the transformation m:N + N, w is 1-1.
Here m is any 1l-1 transformation not necessarily a finite permutation.
Let ™ be the induced transformation defined on St* by

T(a) = (an(1) ,am(2),---)-
Then V 0€M 6E‘I(A) = o(A) where A € .pt™.
Proof:

Note that 7 is (S**, ft®) measurable, since if C is a

cylinder in r*%,
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400
i.e. C = ngl En where En = § for all but a finite number of n, then

ﬂ'l(C) is also a cylinder
Sty e
Consider the probability oeM confined to the semi-algebra of cylinders
C, by exchangeability we have
6 =0 # ! on C.
The set function defined on F*° by o T 1(A) VAeFt™ is an extension
of 6 and ¢ 7! on Ft®. Since Ft® is the smallest c-algebra
containing C we have by the uniqueness of the Caratheodory extension
that
o(A) = oi—l(A) V AeF+™.
We now consider the topology on S. Let S be a compact Hausdorff space:
and F the Borel o-algebra on S. (Later we extend the result to a
locally compact Hausdorff space.) Then st is a compact Hausdorff
space in the product topology (Tychonov's theorem and the direct product
of Hausdorff spaces is Hausdorff). |
F** is the Borel o-algebra on St°.
Consider Y = C(S*™) the space of all continuous real-valued
functions on St~.
Let Y* = C*(St*) be the dual space endowed with the weak*
topology. Y* is a l.c.s. in the w* topology (see 0.7).
Via the Riesz representation theorem we have a 1-1 correspondence
between Y* and the set of all non-negative regular Borel measures on

s+
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Thus the set of exchangeable probabilities M is a subset of
{y*eY*IHy*H+°° 5_1} which is w* compact.
(A consequence of the Banach—Alaoglu Theorem).

Clearly M is convex, we need to show that M is w* closed. Let
(og) be a net in M such that og * ¢ in the w* topology where ¢ is a
probability measure. We need to show ¢ is exchangeable.
Since the Op are all exchangeable,
og(a) = og(#~1(A)) V A € Ft°, where m:N > N is a finite
permutation and w:St® » St® the induced transformation.

Note also T is continuous with respect to the product topology on

s+ ‘ (3.9)
(3.9) implies og = og(7~!) (3.10)
vie ¢(st™) og(f) > o(f) (3.11)

+oo f ‘ﬁ(x) do

~_1 L
Thus £+w £ dog T (x) = fﬁ_l ) 8

(s
= w.fﬁ(x) do. *> - fi(x) do = . £ doﬁ_l
é*‘ B £+ £+

1 1

So og T™° > on”" in the w* topology. (3.12)

Using (3.10), (3.11), and (3.12) we have
o=l =g
.. 0 is exchangeable.
So M is w* closed and hence w* compact convex. [ ]
We now show that the extreme points of M form a w* closed set provided
we restrict all the measures in M to the Baire sets in F+* (the Borel

g-field).

Let (6g ) be a net of product probabilities such that 6g =+ o, oeM.
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Consider arbitrary § €C(S) and define f*:8t® » R
by f*(x1, %x2,...) = £(x1) V xeSt®, x = (x1, %x2,...)
It is‘easily seen that f* is well defined and continuous with respect to

the product topology of S**.

+oo +oo
Also 8, (£%) = £+m £5(x) 48y (x) = é £(x1) d0,(x)) = 8,(£); V 8.

4o
Now 68 (£%) > o(f*).

We define a map 9:C(S) *+ R as follows:

8(f) o(£f*)V £eC(S); O is a bounded linear functional on C(S) and

6(1)

1. So 6 corresponds to a unique probability measure defined on
the Borel sets of S.
SimilarlyV fe C(Sz) define f*(x;, xp,...) = f(x], x5)

+00 o0

e 2
So f* € C(S ), then © (£f*) = OB(f) and 66

8 (£*%) » o(£f*)

Then we have O(f*) = 1%m GZ(f) V fec(s?).

Fubini's theorem gives us O(f*) = ez(f) v fSC(SZ).

By induction we obtain o(f*) = O1(f) V feC(SD).

4o
We claim that for every set of the form A x o) S, A a Baire set

+oo '
oA x 7, ) = 6"(A) V n (see below)

Therefore we have that
o = 6t on all Baire sets in e,
(See Halmos Sec. 38, Theorem B) so it follows that ext(M) are weak—-star
closed. .
n
We now prove the claim referred to above,

viz., Suppose 6] and 8; are two measures on the measure space (S,F),
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[For our purposes S is compact Hausdorff, F a Borel c—algebra] such that
81(£) = 82(£) V fec(s).
Then 8; = 8, on the Baire sets in F.

Proof of Claim:

\4 BeF, B a compact GG 4 a sequence of continuous functions
(fn) in C(S) such that
fn ¥+ 1 (Royden p. 304)

. 61(B) = lim | £ d6; = lim [ fnd6y = 0,(B)
n n

(by Lebesgue's convergence theorem).
Then by thé monotone class theorem we have

01 = 62 on all Baire sets in F. : n
Since the restriction of all the measures in M to the Baire sets in
#Hégivesus that the ext (M) are weak-* closed, we have by Choquet's
theorem V 0eM H a regular Borel probability measure u on M, supported
on the extreme points of M such that p represents o.

.S f(o) = £(07) du(e) V fe ¢(S).

fext(M)

Also we have G(A) = féxt(M) 6t (a) dau(e)
V A a Baire set in F*” (Just use the same argument in the proof of the
claim-above.) So if we restrict our Borel measure to the Baire sets we
have that o is presentable.

To see whether our. representing measure is unique we have to show
that M is a simplex. To this end let C be the positive cone generated

by the exchangeable (symmetric) measures

i.e. C = {aclaz ogosm}
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We need to show C~C is a vector lattice in the cone order or
equivalently that C is a lattice in the cone order.

Since the set M of symmetric probability measures is invariant
with respect to the transformations {ﬂln:N + N, 7 is 1—1} we have by
proposition (2.7) that C is a lattice in the cone order. Therefore M is
a simplex and the representing measure is unique.

In the above we have proved the presentability of every symmetric
(exchangeable) probability on (S*®, Ft®) where S is a compact
Hausdorff space and F is the Baire o-algebra. We consider now the case
where S is a locally compact Hausdorff space.

First we have a definition.
(3.9 Definition: Consider the space (S, Fj. We say the o-algebra F
is presentable if all the exchangeable probabilities on (St®, F+*)
are presengable.
(3.10) Egggg} Let H be a presentable o-algebra of the set G.
Let S be any non—empty set in H and define
F =‘{HnS|H€H} i.e. F is a sub o-algebra of H. .
Then F is a presentable o-algebra.
Proof: Let MS.denote the set of all exchangeable probabilities on
(st, F)
V oeM extend ¢ to a probability on G+, H)
as followé:

define 0(A) = 0 V A e H®, Accte\ st=,

It is easy to check th;t o is indeed a probability on (Gt® H+®),
Furthermore, ¢ is an exchangeable probability on (Gt® H+®).

Suppose T is any finite permutation on N and A & Ht®.
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. oo + oo +oo
We need only show that O(N(A ne Cb °°)) = O(Alj (G\S ))

Since AN $** &€ Ft® and o is exchangeable on F+™.
(gggg; Use of the monotone class theorem gives
F** = (BN S+w’(Be 1.
But 7-1(AN sty ooty st
by definition of the extension of ¢,(3.11) holds.
Since 0 is exchangeable on (G+w, H+w) we have that o is

presentable. Therefore F is presentable.

=0 (3.11)

(3.12) Theorem: Let S be a locally compact Hausdorff space, F the

o-algebra of Baire, subsets of S then F is presentable.

Proof: Let G be the one point compactification of S. Let q be the

"point at infinity” of G. Now the open sets of G consist of open sets

in S and complements of compact sets in S. G is a compact Hausdorff

space.

Let H be the Baire o-algebra on G. We distinguish two cases:

(i) Suppose S is o-compact (e.g. R).

<00

Then S = ngl 5n where Sn is compact in S and hence closed in G.

Since G is compact Hausdorff d continuous functions (fn) on G such that

£ (S) =0 and fn({q}) = 1.

oo
So S = U {f <1} which is Baire.

n=l""n
Since S G it follows that F is presentable.

(ii) 1If S is not O-compact then {q} is not a GG'
set by definition of the topology on G.

Hence is not a Baire set (see Halmos p. 221 Thm. D).

Hence S is not Baire.



_45_

However there does exist an intimate connection between the Baire
sets of S and those of G.
Let F‘be any compact GG of G.
Then 4 fe C(G) such that
f=0onF and 0 < f <1 onGN\ F.
(See Royden proposition 9.20)
So F = {yEGIf(y) = 0}

Let & = {xes|£(x) * f(9)}

Now {xeS|£(x) > £(q)} g{f<x) > £(q) +_%}

{xes|£(x) < ()} = vleeo) < £(@) - 1}
n n

and for each n, {f(x) > f(q) + l} and {f(x) < f(q) - l}
- i

are compact Gg's.
A is a union of compact (%'s and hence is a Baire set of S.(a)
If £f(q) # O then FC A and F is a Baire set of S. ,
(b) If £f(q) =0 fhen GNF =A and S\ A = S\ F which is Baire since A
is Baire.
The above shows that for any compact G , F of G either FeF or
FNSe F
We claim that for any Baire set B of G, i.e. Be , B S is Baire
in 8, i.e. BN s eF. (3.12)
To prove the above claim we use the monotone class theorem. Let
M be the collection of all BeH that have the property (3.12). It is
trivial that M is a monotone class.
Since all compact Gg's in G have property (3.12) it follows

by the monotone class theorem that H C M, proving the claim.
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We thus have a map ¢:H + F given by

$(B) = BN S,V Be H.

We claim that ¢ is 1—1; onto and preserves the operations of countable
unions and intersections and ¢$(B]\Bjy) = ¢(B1)\¢(B2);

Since {q} is not Baire it follows easily that ¢ is 1-1.

V DeF either D or Du{q} (but not both) is a Baire set in H. Thus
¢ is onto. The rest of the claim is easy.

Let G* and S* denote all the Baire measureson G and S
respectively. Thus ¢ induces a 1-1, onto map & from G* onto S*, defined
by

@uG(F) = 1o b(F); uGeG* & FefF.

Since H is a presentable o-algebra we have that F is presentable.

Thus if S is a locally compact Hansdorff space the Baire
o-algebra F is presentable. ' n

As an illustration we have that on R the Borel o-algebra is
presentable. (In R the Borel c-algebra = Baire o-algebra.) This is de
Finetti's result.

Let Xn:(2,F) * (R,B) and (Xn) a sequence of exchangeable random
variables i.e. V 7 a finite permutation on N
dist (X ,...,Xn) = dist(Xq1,-.«,Xqp)

Then V n,

Lo~ ]
r
>
m
==
i
A

=}
e
1

n
I. 8(H 6); H B

[ 8(H) dr(8); H, e

where 6 = dist(Yi) and (Yi) is a sequence of i.i.d. random variables.

F is the unique Borel measure supported on all such 6.

Example: Suppose (Xn) is an infinite sequence of exchangeable random

variables taking only the values O and 1.
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Then P[X; =1 ,.., X =1, X1 = 0,.., Xn = 0]

1
= fo rk(1-r)n-k dr(r)

where r = e[Yi = 1], (Yi) are i.i.d. and F is the unique Borel measure
supported on [0,1].

This shows that the distribution of exchangeable random variables
taking values 0 and 1 is obtained as a mixture of the i.i.d Bernouilli

random variables.

(Reference: Feller Volume II, Chapter vii, Section 4).
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CHAPTER 3

PART II

Example to show that exchangeable processes need not be

mixtures of i.i.d. random variables.

Hewitt and Savage raised the question whether in the absence of

topology on the space S the exchangeable probability on (S*, F®) is

presentable.

Dubins and Friedman in .1979 gave a counterexample answering this

question in the negative. There exists a separable metric space

equipped with a Borel o-field which is not presentable. We give the

construction of such a space in detail.

The Construction

Let I = [0,1], equip I with the usual Borel o-field.
For tEI,"let tj be the j-th digit in the binary expansion of t,

b h|
t=2I_,_ t,/27, t,=0or1l
=l 7] h|

For 0 < p <1 let ep be the probability on (I,B) which makes the
tj's independent with common distribution:

p{tj } = p and p{tj } p
Let
= fl 6 A(dp)
Q Op Pa

A represents Lebesgue measure on (I,B).

Thus Q is clearly an exchangeable probability on (I%,B™).

(3.13)

(3.14)
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lim 1

Let 2(t) = iwq 1

tj on the subset L of I

where the limit exists

1
N.B. Let Z (t) =—2I" t,
TeDe n n j1 "j, since

lim inf Z; and lim sup Z, are Borel measurable on I,

{t'lim in £ Zn(t) - lim sup Zn(t) = 0} = L is Borel measurable.

Thus Z defined on L is a Borel measurable fuﬁction. Furthermore by the
strong law of large numbers we have

GP(Z=p) =1Vpel (3.16)
Let x = (xl, xz,...) be a typical point in I”.
(3.17) Lemma: For CeB, Q{x'Z(xl) e C} = A(C).
Proof: Note {X|Z(x1) £ C} € B® since Z is a Borel measurable

function.

1 ©
olx|z(xy) € ¢} = [ o {x|z(x) € ¢} Aap)

1
= o 9,{x|2(xp) & ¢l Aap)

g Mdp) by (3.16) »

(3.18) Lemma: Let Tel and Card(T) < c.

(c being the cardinality of the reals).

[~}

Let T = Uj=1 Tj, where Tj is the set of all x in I® with x4€L

and Z(Xj) € T, then T has Q-measure O.
Proof: Since card (T) < ¢ we have T is countable. Thus A(T) = O.
Since L and T are Borel sets we have Tj € B”, Therefore

F=0" 1 ¢35
SR
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Now Q(Tj) = Q{x|Z(xj)€T}
= A(T) = 0 by lemma (3.17)
%
Therefore Q(T ) 5_2_=1Q(Tj) = 0. Since Q is a nonnegative measure we
have Q(T) = O. |

Henceforth the symbol Q* will denote the outer measure of Q.
(3.19) Proposition Define Q and Z as in (3.14) and (3.15). Then there
is a subset S of the unit interval I with the following two properties:
Q*(s™) =1 (3.20)
sN {Z=p} is countable for each p € I (3.21)
Proof Let K be the set of ordinals of cardinality strictly less than
c. Lep K be the collection of all A € B” of positive Q-measure.
Now card (K) = c¢ (This follows from 3.17(b)). Both K and K are
well ordered sets and are isomorphic. Hence there is a one-to-one map
o * Ay of K onto K.
For each @ € K , choose a point yo € Ag as follows:
fix B € K, and suppose by induction that the yq have been chosen for
all a < B .
Consider for @ < B, yq € I® and let yaj‘be its j—th
coordinate. Define Tg as follows:
Tg = {tEIIt = Z(yoy) for some o < 8, j = 1,2... with Yaj ¢ L}
Claim: Card (Tg) < c.

Since B < ¢ and Card (N) =)(0, Card (Tg) < c.
Define TB = Uj=1(T3)j where as in lemma 3.18

(Tg)j = {x € 1%, x5 ¢ 1, z (x,) e (Tp)}
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By that result Tg has Q-measure zero.
So Ag - TB is non—empty. WNow choose Vg € AB—TB

Having chosen the yg for all o € K let

[}

Uj=1 {yaj}

Then y, € SN Ay so S* intersects each A € B® of positive
Q-measure. Therefore Q*(s®) = 1.
Also ;¢ [0,1] Z(Yaj) = p for at most one a because by
construction we chose Ya € Aa—fa
So SN {z = p} is countable.. n
The next two lemmas will be useful in obtaining the contradiction.
(3.22) Lemma Let (X,I) be an abstract measurable space- Yc X; Y not
necessarily in Z. Let IZy= Y I be the 0-field of subsets of Y of the
form Y B, with B e L
(a). Let ¢ be a probability on (Y,Zy). Then ¢ induces a probability
n¢ on (X,Z) by the rule

n¢ (B) = ¢(YN B) for B e I.
And (n¢)*(Y);= 1.
(b) Let 6 be a probability on (X,Z) with 6*(Y) = 1. Then 6 has a
trace probability p8(Y M B) = 6(B) for B € &
(¢) The map n, defined in (a) is one-to-one, its range is the set of
probabilities assigning outer measure 1 to Y and its inverse is p as
defined in (b).
(d) Consider n as acting only on the set Y* of probabilities on
(Y,Zy) and p as acting only on

Y={6: 6ecxX* and 6%(y) =1}
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where 6 € X* is a probability on (X,ZI).

* % *

*
Then n is (ZY,Z ) - measurable, and p is (YN L ,ZY) - measurable.

Proof :-
(a) n¢ as defined in (a) is clearly a probability on (X,I).
VBeB, YoB,n(B) = ¢(YN B) =1

So ome*(Y) =1

(b) First p6 is well defined. 1If Bg, By € L and Y Bg=Y( B) then
BoAB1eZ and (BgMB) N Y =&. |

So since 6*(Y) =1

)

To see whether p6 is countably additive

8(BgAB;) = 0, this implies 6(Bg) = 6(B;).

Consider (Y N B:)l; disjoint.
Then Y{) B] and Y () By are disjoint. So since Bjf) B2 € I and is
disjoint from Y,
6(B1N Bp) =0 o e*(Y) = 1).
Therefore PO(Y N (B1 U B2))=p0(YN B1)+p0(YN B2)-p8(YN B1f) B2)
=0(B1)-68(By) ~ 8(B;"N By).

It follows by induction that

n n
= I .
pB(Y N kgl Bk) k=1e(Bk) for any n

40

400
Therefore 9( U B ) = I

8(B,)
k=1 k k=1 k

\

The rest of the axioms to check whether p® is a probability follow
easily.

(c) Suppose ¢ is a probability on (Y,Zy).

Then n¢ is ‘a probability on (X,Z) by (a) and p(n$) is a probability on

(Y,ZY) .
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We claim p(n8) = ¢ because V B € Z, pn¢(Y N B) = n¢(B) = ¢(YN B) which

n‘l.

implies that p
To check whether n is one-~to-one is easy. The rest follows from (a).
(d) To show n is measurable, fix B € L and 0 < t < 1

Then n-1{6: 6 ¢ X* and 6(B) < t}
| ) )
={¢: ¢ ¥ and 9(¥N B) <t} eI,

(Using (a), (b) and (c)).
Also p=1{¢: ¢ e Y* and S(YN B) < t}
={6: 6¢e¥, 0(B) <t}e¥Nizx
(3.23) Lemma (a) S*M B” = (SN B)®
(b) n*$™ = (n$)® for ¢ € S*
(¢) If A e B®, then ¢ » (n"$™) (A) is F* measurable
Let v be a probability on (S*,F*) and let

P =/, o7v(d®) (3.24)

.be an exchangeable probability on (8%, F*). Then P induces an

exchangeable probability n®P on (I®,B*) and
NP = [ () v(de)

where n¢ is the probability induced by ¢ on (I,B).
Proof
(a) Clearly (SN B)*c SN B™.

B e B°, SN B is generated by sets of the form

[« -}

oo
S rlngl Ak where all but a finite number of the

A = I, for those A # I; Ay € B.
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Now these sets S N M1 Ak belong to (SN B) .

Therefore  STHB™ = (SN B)®.

(b) Fix n, and B,,...,B, € B.

1
Let A={x: x¢&1I®and x; € By, i=1,...,n}
Then nN2¢*(A) = ¢%(5%() A)

n
=i£1¢(8‘w Bi)

= (n$)*(A)
Note that n®¢(B) = ¢*(S°N B),V B ¢ B™.
Also n®¢® is a probability measure on (I®,B*®). Thus since
n®¢* and (n$)* agree on the algebra of sets generating B® we

have n®$® = (n$)®, by the Monotone Class theorem.

(¢) We first show that ¢™* n$*(A) is (F°)* measurable (3.26)
Consider {¢w'nw¢w(A)l< t}

= {¢7[¢°s™n &) < ¢}

e(8”N B)* = {(5N B™}* = (F)* by (a).
Now consider the mapping ¢ + ¢ which is F* measurable
To see this consider arbitrary A¢ F and S x $ x...x SxA XS ... =7F
(A in the n-th position.) =-——(* *)

{o|o=@) < e} = {o]o) <} e

Since all sets of the form (**) generate F*

¢ > ¢m.iS (F*, (Fm)*) measurable (3.27)
Combining (3.26) and (3.27) we have that

¢ > n®9*(A) is F* measurable.
First we verify that n®™P is exchangeable.
(n®P) is a probability on (I®.B®), P an exchangeable probability

on (S”.F°).
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n®P(7~1A)

P(i~1A N 5°) = P(i~l(a N s*))

P(AN s%) = n*P(A)
To establish (3.25) fix A € B®

Then n®P(A) = P(S” A)

[ 977N A v (@) by (3.24)

[go (MOI=@IVE) by () ™

The next theorem shows that there is a separable metric space S whose
Borel o-field is not presentable

Indeed let- S bé the subset of I = [0,1] constructed in
proposition (3.19).

S is separable in the relative metric since every subspace of a
separable metric space is separable.

F =8N B is the Borel o-field of S.

Define the exchangeable probability Q on (I®,B®) by (3.13) and
(3.14).
Let P be the trace of Q on (S*,F*): this is possible since
Q*(S®) =1 by (3.20) and 3.22(b).
(3.28) Theorem: The probability P on (S”,F”) is exchangeable but

cannot be presented in the form (3.1).

Proof Suppose P were presentable

P fs* $*v(d$) (3.29)

By (3.23)

Yol
Il

npP = fs*(n¢)mv(d¢) (3.30)
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Let R be the range of the mapping

I > I* defined by p* ep

Claim (1) R e B*

To see this we endow I* with the weak star topology.

Note I*C C(I)* and I* is a closed subset of {ulﬂuﬂ <1, ne C(I)*},

I* is a weak-star compact set. Since C(I) is a separable topological

vector space and I* is weak-star compact we have that I* is metrizable

in the weak-star topology. So I* is compact

metric and B* is the Borel o-field in I*. If we show the map p * ep

is continuous (0 < p < 1) then the range R is a compact subset of I*.
To verify that that p ep is continuous we consider py > p

as r * +° (r an integer) and consider open intervals of the form

m

(ap,ap) = @ n

k k
ty /2 T . /27), n > m
=1 k k=1 k ’

(ap,ap) € I (3.31)

Calculation using (3.13) shows that

epr(am,an) > O,(ap,aq) -
Now it is easy to show for any open interval AC I that epr(A) >
ep, therefore by the montone class theorem

épr(B) > 0,(B) VB € B.
Hence the map is continuous.
Since we are assuming that P is presentable we have that u
is unique. (3.32)
Comparing (3.14) and (3.30)

1 )
i.e. Q = f 8 A(dp)
0 p
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and Q =n"P = IS* (n$)™v(d¢)

We note that the Vv distribution of ¢ + (n$) coincides with the M-
distribution of p * ep by (3.32).

In particular v(n“lR) = 1. Therefore there exists at least one
¢ € S8* and p € (0,1) such that n¢ = ep.

This is a contradiction since (n¢)*(S) =1 by (3.223)

and 0,(S) = 0 by (3.21) and (3.16). ®
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