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ABSTRACT:

The effective potential V(h,a) for the Euclidean P(¢)2 quantum
field theory is defined to be the Fenchel transform (convex conjugate) of
the pressure in an external field, and is shown to be finite. The parameter
h is Planck's constant divided by 2w . The classical limit (hV0) of
the effective potential is shown to be the convex hull of the classical

potential P{(a) + %mza2 . For values of a for which the classical

potential is equal to its convex hull and has a nonvanishing second
derivative, the usual one-particle irreducible loop expansion for the
effective potential is shown to be asymptotic as B + 0 , using a uniformly
convergent (as Th + 0) high temperature cluster expansion and
irreducibility properties of the Legendre transform. For the same values
of a , V is shown té be analytic”in a for sufficiently small h .
Finally an example is given for a double well classical potential where

the one-particle irreducible loop expansion fails to be asymptotic, and

the true asymptotics are obtained.
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Chapter 1: INTRODUCTION AND MAIN RESULTS

§1, The P(cb)2 Quantum Field Theory

The subjects of axiomatic and constructive gquantum field theory arose
as an attempt to put quantum field theory on a sound mathematical
foundation. The idea, which took shape in the 1950's, was to write down
a physically motivated list of properties or axioms that a mathematically
well-defined quantum field theory would be expected to satisfy, and then
look for examples satisfying the properties. One of the first sets of
axioms [WG 64], the Garding-Wightman axioms, involves operator-valued
tempered distributions (the fields) acting on a Hilbert space, which
transform in aﬁ appropriate way under Lorentz transformations. An
equivalent set of axioms is formulated in texrms of vacuum expectation
values of the field [sw 78].

When the axioms were first introduced the only models known to satisfy
tﬁem were free fields. It was realized that the techniCAI problems involved
in the construction of interacting models were less imposing when the
dimension of space-Fime was reduced from four to three or two. Work began
on the construction of two-dimensional models, with the hope that a
technology could be developed that would be useful in attacking the physically
relevant case of four dimensions. A brief account of early progress in the
construction of interacting two-dimensional models can be found in the
Appendix to [sw 787,

In the early 1970's a new strategy began to emerge, that of analytically
continuing the vacuum expectation values from real to imaginary time. This
new strategy was called the Euclidean strategy because the replacement of

t by it changes the Minkowski metric to the Euclidean metric. In [0S 73]



conditions were given on the Schwinger functions (the analytic continuations
of the vacuum expectation values) which are equivalent to the Garding-
Wightman axioms, in the sense that existence of a family of distributions
satisfying the Osterwalder-Schrader axioms guarantees the existence of a
unique field théory satisfying the Garding-Wightman axioms, and vice-versa.
Motivated by ideas of Feynman [Fe?n H 65] the attempt since this time to
construct d-dimensional scalar boson field theories has been centred on
obtaining Schwinger functions satisfying the Osterwalder-Schrader axioms

as the moments of a measure-on the space S'( Rd) of tempered distributions.
In [F 74] a set of axioms (the POS, or probabilistic Osterwalder-Schrader
axioms) was introduced for probability measures on S'( RY)  which guarantées
fhat the moments of such a measure satisfy the Osterwalder-Schrader axioms.
The converse need not be frue: the Osterwalder-Schrader axioms do not imply
that the Schwinger functions are the moments of a measure. A theory whose
Schwinger functions are the moments of a measure is said to be Nelson-Symanzik
positive. So far each of the several models constructed in two and three
dimensions satisfy the stronger axioms. No interacting models have been
constructed yet in four dimensions.

To state the POS axioms we introduce some definitions and notation. '
Denote the Schwartz space of real-valued test functions on Rd by S¢{ Rd) ’
the space of continuous linear functionals on S{ Rd) by S'( Rd) , and the
action of ¢ € S'(-Rd) on f e S¢ Rg) by ¢(f) . Although not every
b e S'( Rd) is a function, we follow common usage and occasionally write
d(f) = fe(x)f(x)dx . Let z denote the o-algebra of subsets of S'( Rd)

generated by the Borel cylinder sets, i.e., sets of the form

{6 ¢ S"(RY : ($(£1),...,4(£)) € A} where £, € S( 2y (G=1,...,n ,



A is a Borel subset of rR" , and n can be any positive integer. Denote

by z+ the o-algebra generated by sets of the same form but with the fi
supported in {x ¢ Rd : xd > 0} , and let E denote the Euclidean group

of translations, rotations and reflections of Rd . E actson S' as

follows. For Yy € E and f e S 1let (yf)(x) = f(y-lx)’ and

- -1 : = -
(vy¢) (£) = ¢(y "f) . Define 6 € E by e(xl,...,xd) = (xl,...,xd_l, xd) .
Following [FS 77] the POS Axioms for probability measures v on (S ( Rg), 2)

are the following:

POS 1: v is invariant under E .
POS 2: J Fob F dv > 0 for all. Z-—measureable functions F on S'( Rd) .
“+

POS 3: There is a norm "I-"l continuous on S'( Rd) such that

J e¢(f)dv is uniformly bounded and continuous in the norm on

{£eS(rhH : mf <1}

POS 4: The action of the time-translation subgroup T 1is ergodic on

(S'( Rd), 2, dv) . That is, for all A e L'(dv) and ¢ € S'( Rd) '

t
lim %J A(T_d)ds = J Aav .
oo 0

POS 1 embodies the requirement that the real time field theory be Lorentz
covariant. POS 2 gives a positive definite inner product on the Hilbert
space of states of the theory. The third axiom is a regularity condition and
guarantees that the moments of dv exist. Finally, POS 4 is equivalént to
uniqueness of the vacuum. The question of whether or not POS 4 is satisfied
is closely connected with thé study of phase transitions.

The simplest example of a measure satisfying all the POS axioms is the

. . . 2,71
Gaussian measure with mean zero and covariance C = (-A + m%) , where A



is the Laplacian on Rd and m > 0 . We shall denote this measure by duc

or Adu 5 depending on the context. It is the unique measure on (S'( Rd), 2)
m

1
—E(fICf)

B g . 2

whose Fourier transform is J c L (Rd) ; the existence of

this measure in guaranteed by Minlos' Theorem [GV IV 64, p. 350].
The Gaussian measure duc is the starting point for the construction

of measures corresponding to two-dimensional interacting scalar boson fields,
namely the P(¢)2 models. These models describe a scalar boson field in
two dimensions with mass m and a polynomial self-interaction, and give

the quantization of the classical field theory with (Euclidean) Lagrangian

density L($(x), Vé(x)) = %«v¢(x))2 + %-m2¢(x)2 + P(¢(x)) . Suppose P is

a polynomial on R which is semibounded (bounded below) and let A be a

square centred at the origin with sides parallel to the coordinate axes. Set

_| P(p(x)): _dx
JA CB

du B
B e
av, o = c (1.1)

-1 P(¢p(x)): _dx
JA ¢ CB

e dyp
CB

-1 )
where cB = (—AB + mz) and AB is the Laplacian with B-boundary
conditions on 9A . B may be periodic, free, or Dirichlet for example;
a particular choice is often preferred for technical reasons. The Wick

dots : : B indicate that P has been normal ordered with respect to CB
C

B

A,Papproaches a

and are defined in §2.2. One then attempts to show that dv

limit as A ¢ R2

and that the limiting measure satisfies POS 1-4.
To state the result of [FS 77] concerning the existence of these limits

it is necessary to introduce the pressure in an external field u , defined by



. 1 C
a(u) = lim TKT n J e - du (1.2)
AMR2

Here |A| is the volume of A and we have dropped the dummy variable x
from the interaction. It is shown in [GRS 76] that the limit in equation
(1.2) exists and is independent of the choice of B for a wide class of
boundary conditions. It is an easy consequence of Holder's inequality that
@ is convex. In [FS 77] it is shown that o is in fact sfrictly convex.
From convexity it follows that the derivative Da(p) exists for all but
countably many u , and the right and left derivatives Dia(u) exist for
all uy . Let Pu(x) = P(x) - ux . Frohlich and Simon prove the following

theorem in [FS 777 .

+ - ' B
Theorem 1.1: If D a(u) = D a(u) then the measures dvA P given by
r
u

egn. (1.1) converge to the same limit va as A 4+ R? (B = free, periodic,
u

Dirichlet) in the sense of convergence of Fourier transforms, and the

measure va satisfies POS 1-4. O
i

+
More generally, for any u they construct two measures dv;
u

corresponding to the interaction Pu which satisfy POS 1-4,and are equal if

. + - . . * .
and only if D a(u) = D a(u) , in which case va = va . The existence of

M H

+ -
a p for which va # va corresponds to the existence of a phase
H H

transition for the theory. Phase transitions are discussed in the following

section.



§2. Phase Transitions

In [FS 771 it is shown that

Dia(u) = I ¢(O)dv§ for all u € R (2.1)
u

+
where the one-point I ¢(0)dV; is the number satisfying
u

’ ¢(f)dv§ = [ ¢(O)dv§ J f(x)dx for all f e S¢ R2) . Such a number
u H

+
exists by translation invariance of dv; . When o 1is differentiable at
U

U egn. (2.1) is what is obtained by formally differentiating egn (1.1).
If o is not differentiable at a point LS then [ ¢(O)dv; # J ¢(O)dv;
J
H H
0 0

and so J ¢(0)dvP is discontinuous at wu When this happens it is said

"

0 -
that there is a phase transition at My because a continuous change in the
parameter | results in a discontinuous change in the theory.

A number of results have been obtained in the last ten years concerning
the existence of phase transitions for various polynomials. In [SG 73] it
was shown that for P(x) = ax4 - bx2 with a >0 and b € é , a(u) has
an analytic extension to the complement of the imaginary axis and hence a
phase transition can only occur for u = 0 . It was shown in [GJS 75]
that for some values of a and b a phase transition does occur at u = 0 ,
and the individual phases were studied in [GJS 76] using a low temperature
cluster expansion. Low temperature expansions were used in [I 81] to
obtain detailed information about multi-phase theories, where different

phases are obtained by varying not only the external field but also the

other coefficients of P .



There is a classical intuition at work in [GJS 761 and [I 811 which we

now describe. Let Uo(x) = P(x) + :—2L-m2x2 be the classical potential, and

1
consider Uo(h,x) = h-lUO(hzx) , for h small and positive. Here h is

Planck's constant divided by 2m , and h ¥+ 0 is the classical limit. If
UO attains its global minimum more than once, decreasing h has the effect
of separating the minima and raising the barrier(s) between them. For deep
and widely separated minima of positive curvature (small h ) the existence
of more than one phase is expected, because of the contribution of each
minimum to the exponent in the functional integral defining the pressure.

If one the other hand UO has a uniquely attained global minimum of
positive curvature then Uo(h;') .will have that minimum magnified with
respect to the others so that for small enough h a unique phase is expected -
only the global minimum contributes significantly to the functional integral.
Positive curvature is required to ensure a positive mass for eéch phase.

The work of [GJS 76j and [I 81] provides some justification for this
intuition in the case where U0 attains its global miﬁimum more than once.
In Lemma 4.4.1 we show that the intuition is justified in the case of a
uniquely attained global minimum.

While the classical potential U0 provides a rule of thumb test for the
occurrence of phase transitions, a rigorous test is provided by the effective
potential (which as we shall see is a quantum analogue of UO). The
effective potential was first introduced in [GSW 62]. Based on ideas of
Jona-Lasinio [J-L 64], it is defined in [CW 73] essentially to be the
Legendre transform of the pressure in an external field. Since the Legendre
‘transform does not always exist we find it convenient to use instead the

unique convex extension of the Legendre transform, i.e., the convex



conjugate or Fenchel transform [Fen 49] of the pressure. We define the

effective potential V for the P(q))2 model by

V(a) = sup [pa-oa(u)], aceR. (2.2)
HE R
As we shall see in Theorem 4.1, V(a) is always finite. By definition V
is convex and thus cannot have a double well structure. The variable a is

known as the classical field, since the supremum in egn. (2.2) is attained

at a value of uy satisfying

a = Da(u) = J ¢(0)va ’
u

provided such a u exists.

The importance of V for the study of phase transitions is a
consequence of the fact that points of nondifferentiability of a convex
function are in a one-one correspondence with linear portions of.its convex
conjugate. (See §2.1 for a brief review of convex function theory). That
is, linear portions of V are in a one-one correspondence with the occurrence
of phase transitions. Two examples of the relationship between the one-point
function, the pressure, and the effective potential are shown in Figure 1.

The most common method for the calculation of the effective potential
is the loop'expansion [CW 731, [Jack 741, which provides a power series '
expansion in N .| Until now the dependence of V on T has been
suppressed. Putting the h's 1in explicitly, the pressure is given by

-1 . _ .
Iy J. P(¢) u¢hc

ath,u) = lim  — Q,nJe A du (2.3)

A
A Rz I ! hC

and the effective potential by



Figure 1l: The effective potential and phase transitions

(a) No phase transition Jd)(O)d\)P
va) @ (u) H
u
<~ a h
(b) Phase transition
‘ [¢(O)d\)P
V(a) a(u) H
1
M
-1 1 -1
— T a H

Figure 1 depicts the relationship between the effective potential, the pressure
and the one-point function in two examples of an even classical potential.

In (a) the absence of a linear portion in V implies that o is differentiablé
everywhere and hence the one point function

Do (u) = th(o)d\)P is continuous.
H

In (b) the interval [-1, 1] on which V is linear with slope zero corresponds
to the fact that the pressure o is not differentiable at u = 0 with left and
right derivatives -1 and +1 respectively, and hence the one point function
jumps from -1 at u =0" to +1 at u = 0%t .



V(h,a) = sup [pa - ao(h,u)] . (2.4)
He R '

V 1is then approximated by expanding in a power series in T and keeping
N .

the first few terms: Vv(h,a) = z vn(a)'hn . Typically N is one or two.
: i n=0

In four dimensions, the approximation with N = 1 has been used in
cosmoloéy [Bran 82]. As we shall see in Theorem 4.2, vo(a) = Uo(a) for
most values of a , so Uo(a) is the classical limit of v(h,a) .

In the pﬁysics literature it is argued that vn(a) is given by a
certain sum of one-particle irreducible n-loop Feynman graphs. (We
describe the graph notation in the next section). The main result of this
thesis is a proof that for most values of a the expansion of V as a
power series in N  is asymptotic in the P(¢)2 theory, with a proof that
the coefficients of the expansion are given by the appropriate sum of graphs.
We also give an example (in Theorem 4.5) where the one-particle irreducible

loop expansion fails for certain values of a .

§3. Graph Notation

Feyman graphs provide a convenient notation for representing integrals
of a form that arises frequently in quantum field theory. In this section

the graph notation used in this thesis is explained. To begin with an

example and a fixed translation invariant covariance C(x,y) = C(x-y), the
Al
graph é; is by definition equal to
: A
AZ 3
AN ;
= dx C .
\ , A1A2X3 J 1 dx2C(01xl) (le2)C(xlx2) (3.1)
2 3

The right side of eqn. (3.1) is obtained from the left side by identifying

10



any one vertex as the origin in R2 and associating with the remaining
vertices the variables X, and X, - To every line there corresponds a
factor of C evaluated at the endpoints of the line. These factors are
multiplied together, integrated over R2 with respect to xi , and the
result is multiplied by the vertex factors Ai . This procedure is
followed to obtain the value of any graph. Usualiy the vertex factors
depend only on the number of lines emanating from a vertex and are ﬁnder—
stood to be part of the graph without writing them explicitly.

These graphs arise via Wick's Theorem [GJ 81] , which gives the
expectation with respect to the Gaussian measure of covariance C

(denoted <:':>c) of a product of Wick-ordered monomials as a sum of graphs.

In particular, introducing the semi-colon notation defined by

CROCENC) PR CHOENT) S <F1‘¢’> L0 ¢

(3.2)
<F (0)5...:F_(¢) -’Z (~1)|"!+1 |m|-1)! I?II II<F (4)
1277ty >c Gri=1)% . i>c
meP j=1 iem,
n J
where Pn is the set of partitions of {1,2,...,n} and 7w = {n,...,ﬂlﬂ]} R
it is a standard fact that for any translation invariant covariance CA
2,1 p, 2.1 .
that approaches (-A+m”) as A+ R, (for example Cp = (-AA+m ) with
Ai the Laplacian with periodic boundary conditions on 34},
1 k) X |
1im — (::¢ M :;..05:9 m(A){> is given by the sum of all connected
ar r2 | p

graphs with no self-lines, that can be made up of m vertices with ki

-1
legs (i=1,...,m) and lines of covariance (-A+m2) . Here a self-line

is a line that connects a vertex to itself and a connected graph is one

11



12

for which any two vertices are path-connected by lines in the graph. Graphs
are usually taken to include certain combinatorial factors; we explain our
convention for combinatorial factors in the next section.

Expectations of the form (3.2) occur most often as derivatives, as
n

follows. Let S(A,9) = z ak(k):¢k(A): - Then using induction it can be
' k=1

shown that for certain positive integers CTT

k | | Ly
a -S40, _ o 1 — |l
— in J e ang = 1o, Kooy Psoueris o THs00e)

C
ax ﬂstv

(3.3)
J . e‘s(>\l¢éuc

where <:.:>S}C = .

J e-S (Al¢)duc

If ak(k) - 0 as ) > 0 , then

l . - ITTI
) c <3D S(0,¢)i...; D s(o,¢t>c

1
ﬂePk

Note that a graph with a self-line is infinite because (—A+m2)—l(x,x)
is infinite. 1In fact a graph with (-A+m2)-l lines is finite if and only
if it is connected and has no self-lines.

A graph is said to be 1-PI (one-particle irreducible) if it is
connected and if the removal of any one line leaves a connected graph. A
graph is said to be 1-PR (one-particle reducible) if it is not 1-PI .

Fo; example,O——O and @ @ aLre 1-PR, while @ and O are
1-PI.

A graph G with L lines and V vertices is said to be an n-loop



graph, where n =L - V + 1 . For example, (:XI) has n = 3, (:K:) has

We close this section with another definition.

Definition 3.1l: Given a graph G and d € R, the d-renormalized graph

Gd is the graph obtained by removing all self-lines from G , introducing
\ .
a vertex factor 4 for each removed self-line, and introducing a factor

Ck 3 for every k-legged vertex of G having j self-lines, where
, .
k! . . . .
Ck , = ————— 1is the number of ways of choosing j pairs from
I 25 (k-29)

k objects. 0O

For example, G =

OO
6= D =>’Gd=Gl
PN

As we will see in Theorem 4.3, the O(hP) contribution to V((f,a) is

given by a sum of d-renormalized graphs, for a certain 4 = d(a) . The

d-renormalized graphs arise from a Wick re-ordering procedure that introduces

the combinational factors Cn 3 in a natural way (see egn. (5.5.8)).

’

§4. Main Results

Before stating the main results, we introduce some notation. For a
. real function f we denote its convex hull (i.e., the greatest convex

function majorized by £f) by conv £ . Recall the definition of the

1 22
= . t
5 X Le

élassical potential: Uo(x) = P(x) + m

13



B. = {ae R : Uo(a) # (conv UO) (a} , B

1 ={aeR: Uo(a) = 0} ,

2

d B=B_ U
an 1 B2'

The remainder of the thesis is devoted to the proof of the following
theorems for the P(q>)2 model.
The first theorem states that the supremum in the definition of

V(h,a) is finite.
Theorem 4.1: v(h,a) <o for all >0, ae R.

The second theorem gives the result for the classical limit of the
effective potential that was anticipated in §1.2.

Theorem 4.2: lim v(R,a) = (conv UO) (a) for every a € R .
' T 0

For a % B , the following theorem provides a rigorous proof for the
P(d>)2 model of a standard (non-rigorous) result in gquantum field theory
[1z 80] [Ram 811, namely that V(h,a) can be approximated by the first

terms of the one-particle irreducible loop expansion.

Theorem 4.3: (a) Let a 4 B . Then there exists a Y > 0 such that
vih,a) is analytic in 4 for h e (0,y) . Moreover, V{h,a) is Cm

at h = ot (i.e., all right-hand derivates exist at h = 0) , and so

x
the expansion V(h,a) ~ 2 vn(a)-hn is asymptotic, where
: n=0

n,,, + .
vn(a) = DlV(O ,a)/n!
(b) Let a & B . Then vo(a) = Uo(a) and

- . 1
v,(a) = -y(a) = - lim n J e du
1 5 | A C
AR

14



For n>2, —vn(a) is the (finite) sum of all d(a)-renormalized
1-PTI n-loop diagrams with k-legged vertices taking factors
- P(k)(a)/k! (3 <k < deg P) and lines corresponding to the free

u (a)

covariance of mass VU_(A) , where d(a) = - =— log 0

0 an —;5—— . A combinatorial

factor is associated with each graph - see Remark 1 below.

Remark 1l: The renormalized graphs in -vn(a) are to be understood to

include combinatorial factors. Given a renormalized graph, let ij be

the number of vertices that originally had k legs and have been renormal-
ized with the removal of 3j self-lines. The combinatorial factor for the

graph is the factor associated with the graph by Wick's theorem divided by

5,k K

Note that since each vertex has at least 3 lines, the number of graphs

contributing to —vn(a) is finite‘because the number of loops

n=L-V+li%V—V+l=%V+l.

As an example of Theorem 4.3 we obtain a renormalized (and rigorous)

version of a result of [Jack 74]. Let Uo(x) = x4 + %»xz and P(x) = x3 .
Since UO is convex and Ua(a) = 12a2 +1 >0 for all a , B is the
empty set. Then Theorem 4.3 implies that with d(a) = - Z%—log(l+12a2) '

D + 3a@ %« ,
@ + OO0 144

~v @ =L+ 8 112y
[QD%}D+QD+6}

(H) + 6d(a) AP +@ +@+ @+ 6%d(a)2 xOx

Lines are (,—A+l)_l lines and 3- and 4-legged vertices take factors 4a

+

and —V3(a)

1
I v. ! . For example, the combinatorial factor of QZED is 3 1728 = 288.

15
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and 1 respectively. Amputated legs have been partly drawn to keep clear
what the vertex factors should be.

After this research was completed work of Eckmann [E 77] was brought
to the author's attention, in which the loop expansion for the Schwinger
functions of the P(¢)2 model is shown to be asymptotic. Theorem 4.3,
which gives an asymptotic loop expansion for the effective potential, is a
natural follow-up to Eckmann's work. We comment in Chapter 3 where some of
our estimates mirror those of Eckmann.

In [F 761, it is shown that for ¢4 models V is analytic in certain
a , with h fixed. The next theorem gives sufficient conditions for

analyticity of V in a for general polynomials.

Theorem 4.4: Let K c B be compact. There exists a ¥y > 0 and an
open set 0 > K such that V(h,*) has an énalytic extension to 0 for
every ’ e (0,vy) .

There are three main ingredients to the proofs of these theorems.
The first step is to reduce analyticity properties of Vp,a) to
analyticity properties of Tha(h,u) by some elementary convex analysis.
This is done in 82.1. The proof that the pressure has the required
analyticity is via a high temperature cluster expansion [GJS 73], and
appears in Chapter 3. The proof of Theorem 4.3(b) uses the third
ingredient: an irreducibility analysis in the gpirit of [CFR 81], which
is the subject of Chapter 5.

Finally, in Chapter 6 we prove the following result which gives an
asymptotic expansion for V(n,a) when -a is the bad set, for the

2
classical potential Uo(a) = (a2 - %0 .

Theorem 4.5: Let V(Nh,a) denote the effective potential for m =1 and
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Px) = (x% -3 - %—x . Then for |a| < 1, D,v(0,a) = & =0
/8 /8

’

and for n> 2, - ;%-D?V(O,al is given by the sum of all n-loop

connected graphs with no self-lines; with three- and four-legged vertices

. - 1 -
taking factors E%P(B)(T_ﬂ = -¥/2 and Z%P(4)(—ld = =1 respectively,
T Y |

and lines corresponding to the free covariance of mass 1 . Graphs take

combinatorial factors as per Remark 1.

A number of authors [FOR 831, [BC 83], [CF 83] have recently
calculated the O(R) contribution to the effective potential corresponding
to the classical potential considered in Theorem 4.5. They find that the
correct O(R) approximation to the effective potential is the straight

line interpolation of the O(h) approximation given for |al > L by

V8
\
Theorem 4.3. Theorem 4.5 gives a rigorous justification of this fact;
the proof is an easy consequence of using the Fenchel transform to define
V(h,a) and the known fact that there is a phase transition in this model
th

if B is sufficiently small [GJS 76]. The observation that the n ~ order

contribution for |a| <-7% is the connected graphs rather than the 1-PI
8 .

graphs appears to be new.

Chapter 2: PRELIMINARIES

§1. Convex Functions

\

We begin this section by stating some well-known properties of convex
functions. Proofs can be found in [Rock 70] or [RvV 73]. Theorems 1.1 and

1.2 below will be used in the proofs of Theorems 1.4.2 and 1.4.3 respectively.
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Given a convex function f : R+ R , its convex conjugate is defined

to be

f*(a) =sup [ua - f(u)l , ae€R. (1.1)
e R

Since f 1is convex it is continuous and the right and left derivatives

x - . +
D f exist everywhere and are nondecreasing. ILet M = sup D f£(p) and
u

m = inf D_f(u) . Then for a € (m,M) the supremum in equation (1l.1) is
U

finite and is attained at any u for which D_f(u) < a i_D+f(u) . If
f 1is 'strictly convex then there is one and only one such u , which we denote
p(a) . If a<m or a > M then the supremum is +~ . In Figure 2
the relationship between Df and u(a) is dépicted graphically.
We denote by C(CS) the class of convex (strictly convex) functions

. + *
f on R for which lim D f(u) = *2» , For f e C , f (a) < » for all a .
Yt

A property of the convex conjugate we have already mentioned in §1.2
is that points of nondifferentiability of £ are in a one-one correspondence
with linear portions of f* (see Figure 2). The precise correspondence is
that D f(u) # D+f(u) if and only if £* is linear with slope u on the
interval [D f(u), D+f(u)ﬂ .
* %

For any convex function £ , £ = f . It is possible to define the

conjugate of an arbitrary function f by the formula (1.1) but in general

* *

* *
f # £ . Something can be said however about the relationship of £
to f ; to avoid subtleties associated with infinite-valued functions we

* %
only mention that for Q a semi-bounded polynomial, @ = convQ) . Here

convQ is the convex hull of Q ,'i.e., the greatest convex function

majorized by Q .
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Figure 2: The relationship between Df(u) and u(a) for f € Cs

(1) £ () : (ii) Df (u)

u(a2§

*
(iii) f (a)

D f(u(a,))

\g/ §+ a
. D f(u(al))

(i) Given a convex function £ € Cs , (ii) the point wu(a) at which

- +
suplpya - £(u)] is attained is the unique u for which a e [D £f(u), D f) ]
u .
(iii) If Df has a jump discontinuity at uo , then for

ae [D_f(uo), D+f(u0)] £ (a) = Ho2 - f(uo) , so f is linear on

- + .
D f(uo), D f(uo)] with slope Yo
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Convex functions are well-behaved with respect to convergence properties.
For example, if £f¢,*) is convex for all H > 0 and £(u) = lim £¢h,u)
hio
exists for all u in a dense subset of R , then f£(u) = lim £¢h,n)
' hyo
for all u € R , the convergence is uniform on compact subsets of R , and

the limit function £ is convex. It also follows that

+

2f(h,p) __<_D+f(u) , for all 4 € R . 1In

Df() < lim D f£(h,u) < lim D
hv0 140

particular, if £ is differentiable at u then

lim D_f®,u) = lim D;f(‘h,u) = DE(n) . (1.2)
10 R0

We now give conditions on a family £f(,*) of convex functions

which imply smoothness of f*('h,a) , beginning with the following theorem.

Theorem 1.1: Suppose f(h,*) and £ are in Cs for all h > 0 , and

suppose lim £f(,u) = £(u) for all uy in a dense subset of R . Denote
hi0

by u(,a) and u(a) the unique values of u where ua - f£(h,u) and

va - f(u) attain their suprema. Then 1lim p(M,a) = p(a) and

Ti0
* *
lim £ (h,a) = £ (a) .
hio :
Proof: We first prove that 1lim p(h,a) = p(a) . Fix a € R and € > 0 .

n+o

Choose p € (0,e) such that Df(u(a) = p) exist. Let

%min{Df(u (a)+p) - D+f(u (a)), D f(u(a)) - Df(u(a) - p)} . Since £ is

o
+
strictly convex, o > 0 . Then Df(u(a)+p) > D f(u(a)) + o > a + a and

similarly Df(u(a)-p) < a - a . By egn. (1.2) there is a ¢ > 0 such that

|D* e, u(a)tp) - DE(u(a)2p) | <& for allh < § .

N R
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Therefore D;f(h,u(a) - p) <acx< D;f(h,u(a) + p) for all h < § and so

u(h,a) € [p(a) - p, p(a) + pJ] for all "h < 3§ , and hence 1lim p(h,a) = u(a) .
hyo

Now If*(n,a) - f*(a)[ = |sup [ya - £m,u)] - sup [pa - £() 31 .
H H

But if sup a(x) and sup b(x) are attained at xa and X respectively,
X X

then

|sup a(x) - sup b(x) ] j_max{la(xa) - b(xa)l , Ia(xb) - b(xb)l}

X x
Al sup la(x) - b(x)| , assuming x L3R N
[x_,x ] a
XeLX 1%y
. * *
Therefore for any h < § , |f (h,a) ~ £ (a)l < sup |fCh.u) - £ .

pelu(a)-p,u(a)+p]
Since £f£(h,y) » £(u) uniformly on compact intervals, the right side goes to

zexro as h ¢ 0 . il

Theorem 1.2: Suppose £f(h,*) and f belong to the set CS , with

lim f£(h,u) = f(u) for all p e R. Let A ={a € R : there is no
ht0

+ -
with D £(u) =D f(p) = a} . Fix a ¢ A and suppose that for some Yy > 0O
there is an open interval I containing u(a) , such that f is analytic in

2

(h;l—l) € (OIY) X I ¢ C and

D2, | > c> 0 for every (mm) € (0,¥) X I . (1.3)

*
Then for some y' >0 , £ t4,a) is analytic in h € (0,v")
If in addition the mixed partial derivatives of £ are uniformly

bounded in (h,p) , i.e., there are constants Mm n such that

r

IDTD;f(“'“)I =MoL for every (h,u) ¢ (0,y) x I; myn=0,1,2,... (1.4)

14



* . o + *
then f (M,a) is C.  at 1, =0 with D.(0 ,a) = lim D f (h,a),
1 . 1
Y0
n=0,1,2,... .

[+
Remark: If it is assumed that f is C rather than analytic in

(0,v) x I , the same proof gives that f*(‘,a) is Cw in [0O,vy") .

Proof: By Theorem 1.1 we can choose vY' <y such that u(h,a) ¢ T if
N < vy' . Also, it follows from analyticity of £ and the bound (1.3)

that there is a neighbourhood OY > (0,Y) * I on which |D§f(h,u1| > % .

]
Let g(h,u) = 3~ [va - £(h,w)] = a - D EM,u) for (M,u) € vy, where we

2. 0<R n< Y'} . Then u(h,a) is uniquely

set V., =0_n {Nhu) €cC
Y Y W
defined by g(h,u(h,a)) = 0 , for < y' . By the fact that

[D‘;f(h,u)l _>_£2:- on OY and the implicit function theorem [HOrm 73] it

follows that wu(h,a) 1is analytic in h in an open neighbourhood

Uy, > (0,y') , with (h,p(h,a)) € VYl for all % € UY' . Therefore

* .
f (h,a) = p(h,a) a - £(h,u(h,a)) is analytic in he Uy'
Suppose now that the bounds (1.4) hold. We show this gives upper

bounds on the absolute values of derivatives Drllu (ti,a) uniform in

he (0, vy') . In fact u(h,a) is defined by the equation
g(h,u(m,a)) = a - D,f(h,u(h,a)) =0 . (1.5)

Differentiating eqn. (1.5) with respect to h gives

- Dlsz(h,U(h,a)) - szm;u(h,.a))DlU(h,a) =0 ’

= DlD f(h,U (hla))

D

(1.6)

i.e.’ Dlll(h,a) =

N NN

fh,uMm,a))

22



It follows from the bounds (1.3) and (1.4) that lDlu(h,a)[ is

uniformly bounded in h € (0,Y') . Repeated differentiation of egn. (1.6)
together with (1.3) and (1.4) gives uniform bounds on the higher order
derivatives.

These bounds on ID?u(h,a)| and the bound (1.4) imply that

*
|D?f (h,a)l j_Mn < ® uniformly in h e (0,y') . But this implies that

* o
f (h,a) is C at h = 0+ To see this, note that
D" (x,a) - DUE (y,a)| = | oLt (g a)as| <M _(ly| + |x]) for an1
1 [ 1 Y 1 ’ = h+l Y

X

* .
x, vy € (0,¥'") . Therefore {Dgf (h,a)}h>o is Cauchy and so

* .
d = lim D?f (h,a) exists, n >0 . But for n>1,
oo
n-1 _*
h -
Dl f ( Ia) dn—l _ d _ -1_- (an*(S'a) _ d )ds
h n hj, 1 n

| A

n*
sup |le (s,a) - dnl
O<s<h

«

: ; n_x .+ :
Since the right side goes to zero as hyo, le (0" ,a) exists and

*
equals 1lim D°f (h,a) , n > 1 . 0
1 —
hio

§2. Some Useful Transformations

This section contains some staﬁdard facts about Wick ordering and
functional integrals that will be needed later. We begin by defining Wick
[+]
order. Let C be a covariance operator, and let h € CO( R2) be positive

with Jh(x)dx = 1 . Define the approximate & function at x € R2 by

Gr x(y) = r2h(r(x—y)) , ¥ >1 . The ultraviolet cutoff field ¢r is

23
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given by ¢r(x) = ¢(6r,x) and the cutoff Wick powers by

[n/2] 3 3 n-23
- n. = - -
LICOREN .Z (-1)7c o, (x) 79 (x) (2.1)
J=0
L}
where ¢ . = ————= and 0 (x) = j §_  )cly,2)8_ _(2)dydz .
T (m-29) 15127 ' '
F Vv cl >0 and C = (—AP+m2 + 2 )_1 it is easy to see that
or » m, m , an = 1 Xy XA\V y
there is an M such that Ior(x)l < Mlog r for large r . (2.2)

If f has compact support and is an element of Lp(‘Rz) for some

p>1 then :9"(f):, = lim : ¢§(f): exists in Lz(duc) , where
r-oo

:¢2(f): = J:¢:(x):f(x)dx. This defines the Wick monomials.

The following lemma provides a Wick re-ordering formula.
‘Lemma 2.1. [GRs 751, [sp 74].

For V a finite union of lattice squares in A and m, ml >0, let
C = (-A+n12)—l and C. = (-A+m2 +m2 ).-l with riodic boundar
1 lXV XA\V pe Y

A B
conditions on 3A . Then for any h > 0 and x e A ,

[n/2]

n _ k. n-2k
:¢ (x) e k-z‘ ana’ld(V,A,X)) 19 (%) %We ’
=0 5 1
_L ml 2

where d(A,A,x) = ye log ~ + K(A) with KAy >0 as A4+ R , and
m

law,A,x)| < |ah,A,x) ]| .

Proof: By a standard result [GJ 81, p. 168],
[n/2]
n-2k

o7 (x) y Mo, (x)) +6 (x)
H X): = C C X : X))
hC X=0 nk . V hCl

where



ch(x) = 1lim [Cl(x,y) - C(x,y)] .
y*x

Denote by AF the Laplacian with free boundary conditions and by AP the

Laplacian with periodic boundary conditions on 9A . Then for a > 0

-1 _ ip (x~y)
(—AF+a2) (x,y) = (2m) 2 J e % . (2.3)
2 2+a2
R p
Writing nL = (nlL,nzL) for n € 22 and L the side length of A ,
-1 -1
P
(-0 +a%) T (x,y) = , (-0F+a?) " (x-y+n1) .

nez

. P -1 -1
GCA(X) = 1im [ (-A +mi) (x,y) - (-AP+m2) (x,y)]
y?X
-1 -1
= lim [ (-a%md) “(x-y) - (-a%m?) (x-y) +
yX
| F,2 "1 F,2 "1
2 ((-A +ml) (x-y+nL) - (A" +m“) (x-y+nL))]
nez2\{0}
m2‘
-1 -1 -1 1
By egqn. (2.3), 1lim [(-AF+mi) (x-y) - (—AF+m2) (x-y) = e log —5 -
y>X T m
. F,_2 "1 -a|z| .
Since (-A"+a”) (z) < const-e for any |z| > 1, it follows that
-1 m 2
d(AA,x) = Z;-log —3-+ K(A) with K(A) >0 as A 4+ R™ .
m

To handle the case when V # A we use the following Wiener integral

representation for Cl [eT 811:

t
2 2
- . -J ds[mlxv(w(s)) +m xA\V(w(s))]
C.(x,y) = J dat J aw (w) e
1 0 X,y

t s ' .
where dwX is Wiener measure on the torus A for paths starting at x
14

25



and ending at y at time t . Since the exponential factor of the

2
mt -m%t
integrand always lies between e and e ’ Cl(x,y) always lies

-1

-1
between (—AP+mi) (x,y) and (—AP+m2) (x,y) , and hence

p 2 -1 p,2-1
oy Gy = clxy) | < [ (074D T (x,y) = (=T4m%) T(x,y) |
Therefore Iécv(x)l i_iGCA(x)| .0
The following four lemmas can all be seen on a formal level by writing

- %—J [(V¢(x))2 + m2¢(x)2]dx
A

e I dé(x)
@ = —— — xel
( 5{ [(Vo(x))2 + m%4 (x) 2lax
E A T d¢(x)
xe

Lemma 2.2: [Sp 741, [GRs 76].
2, .2 n
Let w, € L°( R®) have compact support and A(¢) = | :¢

-1
Let ae¢ R, P be a semibounded polynomial and C = (—AP+m2) with

periodic boundary conditions on oA . Then for Uo(x) = P(x) + %m2x2 ‘
n
v @) x 12 2
- P(¢d): - 2 —9—————:w T Em A
A ( : A k=0 k!
JA(¢> e du, () = JA<w+a) e ‘ du, (¥)
Proof: The lemma follows by translation by a . 0
2 P27 . . .
Lemma 2.3: For VcA,b+m“>0, and C = (-A +m%) with periodic

BC on 9dA ,



- bJ :¢2:
e v au
. = du '
: C
2
- b J td s 1
v
d
J e uc
where C. = (—A+(m2+b) + m2 )-.l with periodic BC on 23A
1 Xy Xp\v :

Proof: See [GJT 81, §9.3].

Lemma 2.4: For A, Pand C as in Lemma 2.2, and for any h > 0 ,

1
- J :P(¢): 1 - J ‘EP(TI2¢):

J A(d) e v duhc = J A(h2¢) e duc .

The Wick dots in each integrand match the corresponding measure.
Proof: This lemma follows by scaling the field [GRs 761. [

Lemma 2.5: For A and P as in Lemma 2.2 and ¢ > O ,

- J P () : - —%-J :P (¢) :

JA(M e A du , =JAO(¢)e o ‘oA au

C(A,m") C(oA,o

where C(A,m%) = (-AF+m%) = with periodic BC on A , and

m .
Ay ($) = T :o l(wi(O))z , with in)(x) = w (ox) .

Proof: See [GJ 81]. [

2 2

m )

r

27
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§3. The Classical Potential

In Chapter 1 we defined the classical potential Uo(x) = P(x) + %mzx2

and the bad set B = BV B2 , where B, = {aeRrR: Ua(a) = 0} and

B, = {a e R: Uo(a) # (conv UO)(a)} . It is clear from their definitions

that B consists of at most n-2 points, where n = deg P , while B

2 1

. . n
consists of a union of at most 5 - 1l finite closed intervals.

Let U = - .
e u(x) Uo(x) ux Let

Gl = {ueR: Uu has a uniquely attained global minimum} ,
and for u ¢ Gl denote the location of the minimum by §&(p) . Define
F={y e Gl : US(E(u)) = 0} and G = Gl\F . It is clear that & is strictly

increasing on Gl . and hence F is finite. Let

m{(py) = min U (x) .
% M

Then for u € G, , m(u) = Uu(E(u))

1
In this section we prove the following facts about B, G, £ and W
The set G° is finite. The sets B and G are related by £ : BC = £(G)

The functions & and m are analyticon G , with m'(y) = -£(y) and

E'(u) = —TrJL———— for y© € G . It is not hard to see from the definition
UO(E(U))

of & that £ 1is strictly increasing and continuous on Gl , and

discontinuous on Gi . We show that 1lim £(u) = *= ., This, together with

>t
the facts that -m'(p) = £(p) and £ is strictly increasing, implies that
-me C .
s

Finally we prove a technical lemma that will be needed in proving

analyticity of the pressure in §3.4.
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In preparation for proving that G¢ is finite we prové the following

lemma.

k L '
th attains its global minimum at x = 0

It~ 3

Lemma 3.1: Suppose T(x) =
k=2m

only, where m, tn' t2m > 0 . Then there is a 6 > 0 such that

2m

T(x) > §(x™+x“™) for all x € R .

Proof: Since T 1is bounded below, n is even. Therefore

n-1
T(x)-—ltxn= —nxn+Z txk—>°° as |x|->°°,
2 n 2 k
k=2m
and there is a K > 1 such that
>}-txn>£t x2mf ||> 1
T(x) > 5 t, 25 “om or |x| >K (3.1)

To deal with small [xl , Observe that

: n n , I
2m 2m k k-2m
T(x) > t, x° - ) Itkllxk| = £, x (1 - ] |x| ]
k=2m+1 k=2m+1 2m
n e | o
Let ¢ = min{1l, %( ) tk ) "} . Then for |x| < e,
k=2m+1 "2m
2m o Itn| 2m 1 1 2m 1 n
T(x) > £, x7[1-¢ ] —1 > t, xT1 - 51 =2e, xT > ot X .  (3.2)
k=2m+1 ~“2m
Finally, let a = min T(x) > 0 . For € < |x]| <K,
e<|x|<x
a
T(x) > a > xn + a2 x2m z_j-—(x2m+ n) (3.3)
2k 2™ 2kD
Let & = min{X¢ , %t , ==} . By equations (3.1)-(3.3),
4°n’ 4"2m n



T (x) 3_5(xn+x2m) for evexry xe¢ R . [

Lemma 3.2: G is finite.

[

1 VY F , it suffices to show

Proof: First, since F 1is finite and ¢t =¢
that Gi is finite. Note that Ui(x) = 0 if and only if Up(x) = u .
For |u| sufficiently large Ué(x) = 3y has a unique root and hence Uu
has a uniquely attained global minimum. It follows that there is an N > O

such that Gi c [-N, N] . We claim that for all u e [-N, NJ] , there is a

deleted neighbourhood Ou of u such that Ou n Gi = ¢ . Given the claim,

let OL = Ou u {u} . There is a finite subcover {OL ,...,0& } of [-N, N],
1 m

and therefore G° < {u ,Uu } . We now prove the claim, considering
1 u

greee

€ [-N, N] and 1y € Gl n [-N, N] separately.

the cases U € Gl

Suppose u € G, , and let W(x) = Uu(x+€(u)) - Uu(g(u)) . By Lemma 3.1

1
there is a 6§ > 0 such that

W(x) z_Gxn for all x € R . (3.4)

The claim is proveéd in this case provided it can be shown that there is a

p > 0 such that

Z (x) =U (x+g(u)) - U
€ €

(E(u) = W(x) - €x (3.5)
u+ €

u+

has a uniquely attained global minimum for all € with |e| <p . By

egn. (3.4)

ze(x) z_éxn - ex for all x € R . (3.6)

We consider € > 0 ; the case of € < 0 is similar. Clearly for € > 0

the global minimum of Z_ is negative, and occurs in {x e R: x>0} .

-l)l/n—l

Now Ze(x) < 0 only if x ¢ (O,(ed-l)l/n—l) c (0, (pS } . Thus it

30



suffices to show that there exists a p > 0 such that Zé(x) = 0 has
only one root in (O, (pG_l)l/n-l) for all € € (0,p) . Note that
Z;(x) = 0 if and only if W'(X) =€ .

Let a = min{l, min{x > 0: W'(x) = 0}} . Then a >0 and W' is

1 —l)l/n-l

one-one on (0,a) . Let p = sa™” . Then (0, (p§ ) = (0,a)

Since W' is 1-1 on (0,a) , W'(x) = € has at mést one root in

(0, (ps~1y1/n"1

) .

To prove the claim for u e Gi , again consider the case € > 0 .
Let £ = max{x € R: Uu attains its global minimum at x} , and let
W(x) = UU(£+x) - Uu(é) . The proof here follows the previous case, using
the fact that there is a 6 > 0 such that W(x) z_éxn , for every x > 0 ,
whichyis clear from the proof of Lemma 3.1. For the € < 0 case, shift

Uu by & = min{x € R: UU attains its global minimum at x} . d

Lemma 3.3: The functions m and & are analytic on G , with

m'(y) = -E(u) and E'(u) = Furthermore, § 1is strictly

1
UO(E(u))

. . . . . le]
increasing on Gl , contlinuous on Gl , and discontinuous on Gl H

lim £E(u) = 22 ; and -me C .
> s

Proof: The derivative Ué is an entire function, and for u € G ,
Ué(E(u)) =y and US(E(U)) > 0 . By the Inverse Function Theorem [Rudin

74, p. 231], there are open neighbourhoods 0 containing u and V

containing £(u) such that U! is invertible and the inverse is
! v

analytic on 0 . This inverse is an extension of £ . Since for u € G,
m(p) = UU(E(U)) = UO(E(u)) -ugy) , m is also analytic on G , with
m' (p) = U g (EMIE ) - uE* (w) = E(n) = -E() . To calculate g'(w)

differentiate the equation Ué(é(u)) = u with respect to u to obtain
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The fact that £ is strictly increasing and discontinuous on Gl

is clear from the definition of £ . It is also easy to see that £ is
continuous on F , and hence on 'Gl . For large u , &(u) is the unique
root of Ué(x) =4 . As U > * o that root diverges to *x , so

lim &(g) = £ » ., This last fact, together with the strict monotonicity
U+t

of £ and the equation -m'(u) = £(u) , implies that -m ¢ Cs . 0

The following lemma shows how & relates B and G .

Lemma 3.4: BS = £(G) .

Proof: Suppose a € £(G) . Then there is a ua ¢ G such that E(ua) = a
Since Uo(a) = UO(E(ua)) >0, at¢ B, . We now show a ¢ Bl . Now

* %
(conv UO)(a) = U, (a) = sup [na - U;(u)] . Since

u
*
Uo(u) = suplux - Uo(x)] = -min Uu(X) = -m(u) , (3.7)
x X

(conv Uy) (a) = suplua + m(u) J .
i

But -m is differentiable at ua and D(-m)(ua) = &(ua) = a . Since
-m € CS , this implies that

{conv UO)(a) = Uaa’+ m(Ua) = Uaa + Uua(é(ua)) = UO(E(ua)) = Uo(a)

(3.8)
Since G 1is a union of open intervals and & 1is strictly increasing
and continuous on G , £(G) is a union of open intervals. Together with
egn. (3.8), this implies that a ¢ Bl . Hence E(G) c BC .
On the other hand, let a € B¢ . Suppose, contrary to the statement

of the lemma, that a ¢ £§(G) . Then a € £(F) or a € E(Gl)c . If
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a € £(F) then Ua(a) =0 so ace€ B2 . Therefore a € E(Gl)c . By

Lemma 3.3 there must be a uo € Gi for which a € [E(ua),i(u;)] c g(Gl)c .

- +
The interval [S(UO), £ uo)] is nontrivial since My € Gi is a point
+ +
where £ undergoes a jump discontinuity. Since E(ua) = D—(—m)(uo)
by Lemma 3.3, a € [D_(-m)(uo), D+(-m)(u0)] c g(Gl)c . It follows from the

fact that a e B , egqn. (3.7), and the correspondence depicted in

Figure 2 that

* % *
Uo(a) =U, (a) = (-m) (a) = u

0 a + m(uO) for all a € [D_(-m)(uo),

0

D" (-m) (uy) ] .

But this is impossible because U0 cannot have a linear segment. . [

We close this section with a lemma that will be used in the proof of

analyticity of the pressure in §3.4.

Definition 3.5: For §,L > O denote by TG L the set of all polynomials
’

n
Tx) = J £ x" with |t <L (k=2,...,n) and T(x) > §(x"x?)

for all x

For T ¢ T6,L , small perturbations of the coefficients of T and a
small linear perturbation T(x) - T(x) - ux do not change the fact that
the polynomial has a unique global minimum, located say at & . Transla-
tion of the perturbed polynomial so that its global minimum sits at the

origin will give a polynomial in TG' , for some &' > 0 slightly

L
smaller than § and L' slightly larger than L . If the perturbations

are smooth then £ will also be smooth. These elementary facts are proved

in the following lemma.



Lemma 3.6: Let ay be analytic in (O,Yl) and C at O+ , and let

n
Th,x) = ) ak(‘h)xk . Suppose T(0,*) €T . Then there exist
k=2 8.L

§',L',y,p > 0 such that Tu(h,x) = T(M,x) - ux has a uniquely attained

‘ global minimum at say £th,u) for all (h,u) € [0,y) X (-p,p) , with

sth,u;x) = Tu(h,é'(‘h,u)+x) - Tu(‘h,E(h,u)) € TG for all

1] ,L'
(hrU) € EOIY) X (-D:p) .
Moreover, £ is analytic on (0,y) x (-p,p) and c” on [0,y) X (-p,p) .

Proof: The proof that £(h,u) exists is much like part of the proof of
Lemma 3.2. First, note that by choosing h sufficiently small we can

arrange that To(h,-) € T6 5 for all b € [0,Y) , and hence
= 14=
2'72

x° - ux for all (h,u,x) € [0,y) X R X R . (3.9)

N o

T (h,x) >
u z

Consider the case u > 0 , for which the minimum of Tu(h,-) is strictly

negative and occurs when x > 0 . It suffices to show that D2Tu(h,x) = 0

2
<R, by

has at most one root when Tu(h,x) <0, i.e., when x ¢ (0O, 5

egqn. (3.9). Por h e [0,y) , let a(h) = min{1, min{x>0:D2T (h,x) = 0}} .

270
Then D_T _(h,*) is one-one on {0,a(h)) . Let a = 'inf a(h) . To
2°0 0<h<y n
arrange that a > 0 note that D2T (h,x) = D2T (0,x) + z k(k-1) (a, th) ~
270 2°0 k=2 k

ak(onxk'2 and that a(0) > 0 (since T(0,) ¢ T, ) and let

c = min DgTO(O,x) , SO ¢ > 0 . Choose Yy smaller if necessary
<X< _—a(O)
—= 2
s k-2, _ ¢
to arrange | ) ki(k-1) (ak(h) - ak(o)x | <5 forall h e Lo,y) and

k=2

- 34
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n
0 <x< a(0) . Then DgTo(h,x) = DgTO(O,x) + kzzk(k—l) (ak(h)—ak(o))xk'2

for all h ¢ [0:Y)r 0 < x < aéO) ’

C C
> ~£_c
2" 373

(0) .

NQH

and hence a >

Since D2To(h,x) is one-one on (0,a) for all ™ ¢ [0,y) , there is
at most one root of DzTo(h,x) = 34 in the interval (O,Zus_l) provided

2u6_l <a,i.e., u < %—aé . Thus we take p = %-aé .

Now the location §&(h,u) of the global minimum of Tu(h,') lies
1

in the interval (0,a) , where a = 2p8 ~ . By taking p and Yy smaller,
1k k .
we can make o |D2T0(h,€(h,u)) - D2T0(0,0)| as small as desired,

uniformly in h ¢ [0,Y), |u| <p and k= 2,...,n . Therefore, since

D];T (h,€(h,u))

n
Sth,uix) = ) = x*
k=2 -
we can arrange that SM,u;+) € Td 38 for all h e [0,v) , |u[ <p .
2y

It remains to prove that £ is analytic on (0,y) X (-p,p) and C°°
on [0,y) x (-p,p) . Let £f(M,u;x) = D2To(h,x) -4y . Then £ is
analytic on OY x C X C , for some complex ?pen set 0Y > (0,y) . Since
fM,p;EM,n)) = 0, and

DLEM,uEM,) = DT (M, EM) > 25> 0 for (L) € (0,7) X (-p,0)

the Implicit Function Theorem [H&rm 73] implies that there is a
neighbourhood U > (0,Yy) X (-p,p) on which & is analytic. By
differentiating the equation f(h,u;&(h,ﬂ)) = 0 with respect to B or

# and using the uniform lower bound on D3f it is easy to see that
derivatives of £ are uniformly bounded in h ¢ (0,v) , and hence & is

smooth at h = 0 . g



CHAPTER 3: THE MAIN ESTIMATES

§1. .The Translation

To prove analyticity in h for the effective pétential and obtain the
desired form for the derivatives at h = 0 it is convenient to perform a
change of variable, so as to explicitly isolate the leading term. Lét
C = (—A+m2)—l with periodic B.C. on 3A .and recall that UU(X) = Uo(x) - ux

where Uo(x) = P(x) + % m2x2 . By Lemma 2.2.2, for any fixed a € R

nu
1| [poo)- 1 _ 1 H (a) k1.2 .2
2| ceponug 3 nlo, @ TJ [ ] ek dn2iy2
A a - e A k=1 4
e uhC . e “‘hc
(1.1)
By definition of the pressure in egn. (1.2.3), egqn. (1.1) implies
Na(h,u) = -U + N0 (h,u-U" ' 1.2
a(h,u) 'u(a) él( u Uo(a)) (1.2)
(k)
1 o k :
"ﬁJ[Z'k—.(‘a‘)"‘i’:‘J#)]
A k=2 :
where Ol(h,J) = lim n &n J e : duhc (1.3)
AR2
Inserting eqn. (1.2) in the definition of V in egn. (1.2.4) gives
V(h,a) = suplua - ha(h,n)]
u
= suplpa + u, (a) - ho, (h,u-U,(a))]
HeR
= Uo(a) + sup[‘h01Ch,u)] (1.4)

HeER
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Next, we perform a mass shift so as to explicitly isolate the 0(h)

contribution to the effective potential. Let mi = U;(a) = P"(a) + m2 .
For a ¢ B , mi > 0 . For the remainder of this section we assume a ¢ B .
Let C1 = (-A+m%) with periodic BC on 3A . By using Lemma 2.2.3 it

follows from egn. (1.3) that

(1.5)

Here and throughout this thesis the Wick dots appearing in an integrand are

with respect to the covariance of the measure unless otherwise indicated.

J1{ P2,
1 h A 2 :
0 &n J e dy (1.6)

Introduci = 11
ntroducing ¥y (a) 1lim b

A

it is clear from Lemma 2.2.4 that Yy 1is independent of h > 0 .

nop) gy g |
JA[ ] Bfahghe - el

1
n '
Let o, (h,u) = lim 7= &n | e k=3 " du (1.7
2 X [A ne,
Then by egns. (1.4) and (1.5),
V(h,a) = U @) - hy(a) + sup [-ho ()] . - (1.8)

HeER

The next step is to Wick re-order the interaction in 02 to match the
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covariance Cl . Writing a. = P(k) (a)/k! (k=3,...,n) and using Lemma 2.2.1,

k

the interaction in Oz(h,O) can be rewritten as

k
a, (h):¢ = (1.9)
0 k hCl

D oa .- )
o =
=3 ak hC k=

2
m

n-1-k . _ -1 Y
] in hd = nl( e log m2)

where each qk is a polynomial of degree [

plus an ‘h-independent term that goes to zero as A 4 R2] . To simplify the

notation we drop the A-dependent term (which is insignificant for large A

2

and disappears in the A 4 R limit). In view of Lemma 2.2.1 (see egn. (5.5.8)),

a, ) = om?), q, M) =0Mm), q,m) =0M), q (h) =a + 0M) (3k<n).

k
(1.10)
[n/2] K
Explicitly, q_(m) = ) S S (1.11)
k=2
Inserting eqn; (1.9) in egn. (1.7) gives
n-
- il-J L) a6 - (u-q;)0]
in T J A k=2 a (1.12)
ho, (h,y) = -g . (h) + N lim &n e U . i
2 0 A Al hCl
n
k .
-%J [qu=¢:-3¢]
N 1, A k=2 a (1.13)
Let o(n,3) = lxm TKT— n e uhCl ’ .
so that noz(h,u) = -qo(h) + ho (h, u—ql(h)) . (1.14)
Inserting egn. (1.14) into egn. (1.8) gives
V(h,a) = Uo(a) - ny(a) + qo(h) + sup[-no(h,u)] , a4 B |, (1.15)

u
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k
D qO(O)

Observe that ——— =

X
X! Cox, k22

d gives the value of the 4

renormalized k 1loop graph with a single 2k legged vertex a2k and legs

joined up in pairs. To show that the translated effective potential

E(h) = sup[-ho(h,n)] (1.16)
H

is analytic in h with derivatives at h = 0 given by the appropriate
sum of graphs, we will use Theorem 2.1.2 to reduce the problem to the
study of nho(h,u) . This pressure is studied using a high temperature

cluster expansion.

§2. The Cluster Expansion

The main difficulty in proving analyticity of the pressure Tho (h,u)
and the potential Eth) is the infinite volume limit. The high temperature
cluster expansion [GJS 73] is often a useful tool in dealing with the
infinite volume limit in a weakly coupled theory. (The terminology
"high temperature" comes from the fact that weak coupling in quantum field
theory is analogous to high temperature in statistical mechanics). By

Lemma 2.2.4 we can write o0 as

-1
n =
k/2-1 k 2
—JEth/ :6°: - uh 4]
1 A k=2 F
o(h,u) = lim in | e du . (2.1)
A C
A 1
1
By egn. (1.10), for k > 2 the coefficient of :¢k: is at least 0(h2)
1 -1

2 . . .
so for small h” and small uh 2 we are in a weak coupling situation.
However the situation is more complicated than the weak coupling case
treated in [GJIS 73] since h% occurs to different powers in the different

terms of the interaction.
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In this section we write down the cluster expansion and give
conditions for and consequences of its convergence. In the next section we
prove bounds on the partition function in eqn. (2.1) (for u = 0) that
guarantee convergence uniform in 1 .

To begin, we introduce some notation. Since we are using periodic
BC , we identify opposite sides of A to obtain a torus. Let BA denote
the set of all lattice bonds joining nearest neighbour sites in the

2

periodic lattice A n Z2° . For each b € BA we introduce a parameter

sb e [0, 11 . Let

C(s) = z T.c S i (l1-s,)C
FCBAbET b beTC b TC
r¢ 2.- r¢
where C c = (-AA +m ) with AA the Laplacian with periodic BC on 3dA
T
c Pc
and Dirichlet BC on T7 , (i.e., AA is the Friedrich's extension
[Kato 66] of A restricted to C:(A\Fc)) . When Sy, = 0 each nonzero

term in C(s) has Dirichlet BC on the bond b , whereas for s = 1
each term does not have Dirichlet BC on b but is fully coupled across
b . The parameter Sy gives a measure of the amount of coupling in C(s)

across the bond b . For T c BA , let Br =T ag— and
bel %%p

sb if beT

s(T'), =
b
0 if b 4 T

Let dup(s) be Gaussian measure on S'(Rz) with covariance C(s) , and let

_V(AIAIS)

n
Z(AA,s) = J e du(s) where V(A,A,s) = z ak(A)J:¢k:C(s)
k=0



and the ak are functions of A € 0 ¢ Cm . We sometimes write ZF(A,X)

for Z(A,A,x C) , the partition function with Dirichlet BC on T . Let
T

. _ -1 -VAL,e)
© hs = EOGAs) uJ e du(s) .

Then the following expansion holds

..k k k

k. .
1 r - 1 N
S, (% 1eeerx ) = <:¢ (%)) eens ¢ T(x) :> n1
1 r k. 2, (A\X,2)
- A r
= 7 I o’ J oo Tx) e VRSN G cirnasy X (2.2
x,T /0o i=1 1 2,2,
Kook
= VT FX T A A%, e eerX )
X,T 1l r
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where in the summation X ranges over all unions of closed lattice squares in

A containing {xl,...,xr} while T ranges over subsets of BA n int X

such that each component of X\I‘c has nonempty intersection with
{xl,...,xr} . The formal derivation of egn. (2.2) is relatively straight-
forward involving little more than the fundamental theorem of calculus.
The hard work goes into bounding the right side of egn. (2.2) with bounds

independent of A and A . The proof of the following theorem is implicit

in [GJs 73].
Theorem 2.1: Suppose Iak(A)l <L forall Xe o0, k¢ {0,1,2,...,n} ,
and that the following bounds hold: For some p > 1 ,

IJ J"BV(A,A,s) K|A]

au(s)| < e

, for all X € 0, A, s (2.

3)
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and

[ZaA(ﬂflﬂ 2_%': for all X € 0 , and for any unit lattice square A . (2.4)

Then for any C > O there is an M > 0 depending only on K and L (and C)

such that for m > M{X,L) and w € L2(Ar) , and for all A and XA € O ,

k,...k
1 r -C(D-r)
IJ T (X,F,A,A;xl,...,xr)w(xl,...,xr)dxl < |wle (2.5)

{x,r:%xlin}

is a translation invariant norm on L2(Ar) . 0

where
There are three main ideas in the proof of Theorem 2.1. The first is

that the number of terms in the sum over X and T in egn. (2.2) having a
c, |x|
1

fixed value of IXI can be bounded above by e where Cl is a

constant depending only on the geometry. The second key result is that

for any constant C > 0 there is a constant C_, > 0 , depending on the

2
K of egn. (2.3), such that for m sufficiently large (depending on C) ,

-C|F|+C2IX|

i Xl) :e-v(xlkl S(r)) wl.

du(s(F))ds(F)w(xl,...,xr)dxij_e

-c|r|

produced by applying the derivatives BP to the Wick dots or the measure

The decay factor e comes from estimating the derivatives of C(s)

du(s(T)) on the left side. See [GJIS 73] for details. The bound (2.3) is
used with HSlder's inequality to control the exponential of the interaction.
Finally, using ;he lower bound (2.4) it can be shown using ideas from
statistical mechanics and the two estimates just stated that for m
sufficiently large (again depending on K) there is a constant C3 such

that



2y (X, 1)
Z(A,2,1)

C_IX
e 51X .

o . . 1.
Combining the above three estimates with the fact that |F| 3_51|X|—r)

because of the constraints on I , the factor e—CIFI gives convergence
for C (hence m) sufficiently large.
ki 2
Now let ¢, = :¢ " (w,): where w, ¢ L°(\) , and let WV, be the
1 h i 1 1:X

translation of wi by x € R2 . In [GJs 73] it is shown how to use

Theorem 2.1 to prove that there are positive constants K, and m' such that

: ~n' [x-y|
|<U)llx'w21y>)‘,[\'l I iKle !

with Kl depending on wl,wz . The most important consequence of
Theorem 2.1 for our purposes is the following generalization of the above

bound to higher order truncated expectation values, which is due to

Dimock [Dim 74]. (See [EMS 75] for related estimates).

Theorem 2.2: Suppose the hypotheses of Theorem 2.1 hold. Then there are

positive constants K2 and m; such that

-m*é(xl,...,xN)/N

sup Sup I <3p Peei¥ | <K, e ,
A AeO Lixy NeXg Ao 2
where 6(xl,...,xN) = sup Ixi - x.l P K2 depends on the V¥, , and sup
1<i<j<N J . A

ranges over squares A . [
An immediate Corollary of Theorem 2.2 is the following result, which is

the main result we need from this section.

Corollary 2.3: Suppose the hypothesis of Theorem 2.1 hold. Then there is

a positive constant Mr such that

43
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k k -
1 1 r
sup sup <¢ (M) zioan5:0 ~(A) :> | <™ (2.6)
N reo 1A | A T

where sup ranges over squares /A of integer side-length.
A

Proof: Denoting the unit lattice square centred at j ¢ 22 by Aj , we have

. . 2
m L3,-5, [+ 413,73, 1 1/x

1
<TiT ) K, e (2.8)

. . 2
jl,...,jrez nA

' _ 2
K . m*[|22|+...+|2r|]/r

2
<l )
LA B 2
jlez nA 22""’2rez_

< *Cco .
__K2 nst

where (2.7) follows from translation invariance of the periodic theory and

(2.8) follows by Theorem 2.2. [

§3. Convergence of the Cluster Expansion

To prove analyticity of “Hho(h,u) in h and u , the first step is to

perform a translation in the functional integral defining ¢ to remove the



linear term from the interaction. For a = E(ua) 4 B , the classical

potential occurring in o(h,u) in egn. (1.13) satisfies (for h = u = 0)

n n _(k)
k 2 P 1
a0 + 3mix® = ]I f w20l o g @ - v, €0) e T
k=2 k=2 . Ma a !
for some 6,L > 0 , by Lemmas 2.3.4 and 2.3.1. For small B and u the
translation will replace the qk(O) by h and u dependent coefficients
that are close to the qk(O) , SO by Lemma 2.3.6 the classical potential
will remain in some Td' Lo We prove convergence of the cluster
expansion in just this context.
The idea for the proof of TLemma - 3.1 below originated in work of
Spencer [Sp 74]. After this research was completed the author learned of
a paper by Eckmann [E 77] where an estimate basically the same as egn. (3.1)
is proved by essentially the same method and used to prove convergence of
a cluster expansion uniform in small real h .
Let S, v ={zeC:0<Rez<y, 0< |Arg z| < 8}
’
1
n K >
Lemma 3.1: Let T(h,x) = Zak(‘h)x and al(h) = 0(h“) where the ak are
k=2
continuous in some 56, ¥ Suppose ReT(0,*) € TG L for some 6,L > O .
r 1
Then there exist 6,y > O such that
1
- 2 1 2
- |mTira,n%e) ra, ) o= = m2ie®e]
v 1 2 K|V|
j e du 2(s) < e (3.1)

m

for every M € se y and for every s , and for every finite union V of
r

lattice squares in A . The constant K depends on ¢ and L .

Before proving Lemma 3.1 we outline the proof. First we reduce the

problem to real h wusing an elementary argument and use conditioning

45
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[GRS 761 to reduce to the case s = 1 . We then shift mass from the

measure to the interaction, leaving a mass term %-6¢2 in the volume V
in the measure. The resulting new interaction (Wick re-ordered to match
the measure) evaluated at the ultraviolet cutoff field ¢r is bounded
below by -const(log r’n/2 , uniformly in h , using the fact that for h
sufficiently small T(h,x) z_%—&(xn+x2) . An appeal to a result of

[DG 74] completes the proof.

Proof of Lemma 3.1: The first step is to reduce the problem to the case of

real h and a . Note that

1

-J [Eirh,0%6) s+a, ()= = m2:92:] »
h 1 2
v
Je au 2(5)‘
m
1
_J (:Re[Zr (h 1) J:4Rea, () ¢- = m2:6%1)
< Je v dau ,(s)
< 2
m
1 1
For small 6 and vy , Real(h) = O(Reh2) . Let t = h2 = p +iq , and

- k-2
for 2 <k <n, let bk(t) = p2 kRe(ak(tz)t ) for t # 0 and

bk(O) = Reak(O) . Then

1
— n n
Re[h'lT(h,h2¢)] = ) Rela (tz)tk'2]q>k =) b (t)pk—2¢k (3.2)
k k
k=2 k=2
But
Re (a (tz)tk-z) Re(ak(o)tk'z) Re (a (o)tk"z)
b, (£) - Rea (0)] < |—= - |+ |—= - Rea_ (0) |
by 2 = k-2 k-2 X-2 X
p p p



m
- ‘o 2
@ " gt = PP+ ) ) (i%) 1, it follows that
0 =1 .

. m
Since t =

o~

2

m :
EE-— 1| can be made arbitrarily small by taking 6 (and hence l%|)

p

small. Therefore
tk-2

k-2
2 t
b, (£) - Rea (0)] < |a (¢ )—ak<0)||pk_2l + lak(0>IIF- 1

can be made as small as desired by taking 6 4 y sufficiently small, so

there exist 6,y such that E bk(t)¢k e T for all t2 € S .

k=2 %,L 8y

nfon

In view of egn. (3.2), it suffices to consider h real and replace ay by

bk € R .,

The second step is to use conditioning to reduce the estimate (3.1)

2 2

c=-A 4+ m

. T
to the case s Z 1 . To see this, note that as forms —AA + m A

-1
[Kato 66, Thm. 2.10, p. 326] and hence (-Ai+m2) < (=4 +m2) [Kato 66,

A
Thm. 2.2.1, p. 330]. Since C(s) is a convex combination of covariances

-1 -1
of the form (—A£+m2) , C(s) j_(—AA+m2) and hence by the Conditioning

Comparison Theorem [GRS 76, Thm. III.1, p. 256] it follows that

1
- 2
-J [%:T(h,hzdw) t+a) (h) §- m—2:¢2:]
J eV au _(s)
2
m
1
—{ [%1T(h,h2)¢):+al(h)¢- %‘m2:¢2:]
i e v du 2 ’
m
where du 2 = du 2(l) .
m m

The third step is to perform a mass shift in the covariance. By
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Lemma 2.2.3

1
-J [l:T(h,h2¢):+a (h) $- }-m2:¢2:]
v ‘h 1 2
e du 2
m
1
1 2 l 2 2
- [=:Th,h $): +ta.(h)¢ - = m 4" ] -J (
J jv h m? 1 2 n? v $
e e du

ngw

§ 2
where du is Gaussian measure with periodic covariance (—A+6xv+m XA\V)

2 2

8
The two quadratic terms %-m =¢2: essentially cancel; the term - 5¢

1 po}

. -1 2 8 .
will be cancelled using h T(h,h ¢) 3_%-h2 ¢n + 5-¢2. Wick order with

, 8 ,
respect to duG is denoted : : . Applying Jensen's inequality to the

denominator of the right side of egn. (3.3) we obtain

1
1
—J [—1TCh,h2¢):+a (h)¢-lm2:¢2:] - J :A(¢):6
o 1 2
\" v 8
J € au ] e du
m
1
5 _ a~liohnZe) : 122 1 2 8 .28
where :A(¢): ="h :T(h,h ¢).2 +al(h)¢ m K 5 + (2 m 2).¢ .
m m
By Lemma 2.2.1 A has the form
1 k
= n-2 —_
- ~ 2
Ax) = h et - —g— x4 ] a (3.4)

k=0



where the ;k are bounded in absolute value by a constant depending only

on 6 and L .

The fourth step is to provide a lower bound on :A(¢r):5 , where ¢r

is the ultraviolet cutoff field defined in §2.2. By egns. (3.4), (2.2.1)

and (2.2.2)

8 - 2 8 2 . 2 k '
:A(¢r) : = h l:T(‘h,h ¢r) s - % :(i)r:(S + z ak(‘h)‘h :d)r:‘S
’ k=0
' l n-2 k nk
-1 2 § 2 2 2 k
=h T ) - S ¢+ kzo e, o o 6

with Ick(h,r)l uniformly bounded in small h and large r . The key to

n
obtaining the lower bound is that since Th,x) = 2 bkxk € T6 5 ! it
k=2 E'L+§
follows that
1 o4
-1 2 § .2 n § 2
> = 2
h T, ¢r) >25h d>r 2¢r
and so
n k n-k
5-1 n-2 = =
8 § .2 n 2 2 k
:A : - h +
(¢r) > 2 ¢r z ckh cr ¢r
k=0
n
= n-2
2.8 - k
= or[§h Loy ) c, X ]
k=0
11
where x = h2 or2¢r . For 0<h <1, it follows that
n .
= n-2
8 2 . §n k
. o > -
A ) >0 [5x7 + Y c X ]

k=0



Since the ck are bounded uniformly in h and r , this implies

KNS

:A(¢r):6 > -const*o

(3.5)
n

2
> —conste* (log xr) ,

by egn. (2.2.2), where the constant is independent of h and r .

The final step is to appeal to Proposition 2.9 of [DG 74], which uses a
decomposition of 3'(R2) to show that a bound of the form (3.5), together
with standard estimates for Gaussian expectations of Wick ordered products,

imply the upper bound

- J :A(d) :6
e v du(S < eK|V| and hence (3.1). 0

Lemma 3.1 corresponds to the bound (2.3) needed for convergence of
the cluster expansion. However it must be improved for the following
reason. In general the mass ml will not be large, and a scaling trans-
formation must be performed to increase it. However this scaling affects
K . Since the size of the required mass depends on K , there is a problem.

The bound (3.7) below is an adequate modification of (3.1); see Corollary

3.3.
T :
Theorem 3.2: Let T(,x) = Eak(‘h)x and al(h) = 0(h~) where the ak
k=2
A
are continuous in some Eé v Suppose Re T(0,x) € TG L for some §,L > 0 ,
-7 I

and fix m,e > O . Then there exist 6,y,b > 0 such that if

1l 2
-— — <
‘az(O) 5 m b then
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1

- J [%—: T(h,h2¢):+al(h)¢—lm2:¢2:] |
>
v e|v|
J e dap ,(s)| < e
. m

(3.7)

for every h € Se v’ for every s , and for every finite union V ' of unit
, :

lattice squares in ‘A . Moreover,

1
- J = : T(‘h,h2¢):+al(‘h)¢-lm2=¢2=]
A 2

j e du 2(s) bl
. m

’ (3.8)

NI=

for every h € S for every s , and for every unit lattice square A .

6,y '

Proof: The proof follows [Sp 74] .

For A c V we define _ \

1 R 12 .2
-jA[.h T(h,h¢) ++a, (h)o-3m :¢:]

v = e -1 . (3.9)
1
- J [:%I‘(h,‘hzcb):+al(h)¢—%m2:¢:2:|
Then J e VI au _(s) = J T (¥,+1)du _(s)
2 A 2
m Acv m
(3.10)
= z J I ¢y, dan _(s) .
Xcv AcX A m2

We claim that there is a Yy = y(¢,8,L) such that for h < vy ,

| I Ty, an ,(s)| §_e|x| . (3.11)

Acx m
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We will show how (3.11) implies the theorem and then prove (3.11).

Given (3.11), it follows from eqn. (3.10) that

_J [:l'T(h,h2¢):+a1(h)¢-%m2:¢2:] ,'
v

' » | x|
J e du 2(s) < Z €
m Xcv
Yl vl m vl . el
z ( m e < (1l+4e) < eEIVI

which proves (3.7). The bound (3.8) follows from (3.11) with X = A .
It remains only to prove the inequality (3.11). To simplify the

1
nctation, let :8(V): = J E%wT(h,h2¢):+al(h)¢—%m2:¢2:] . By the
v

Fundamental Theorem of Calculus,

1 -A.:S(N.):
- J dr :S(b4) e 1 ol (3.12)

By egn. (3.12) and Holder's inequality

-] A S(8)):

. sup ” e 3 ', (3.13)
. p

I I I ¢ du (S)I < M:8(A.):
I | )

AcX

where p > 1 will be chosen below to be near one. The norm ”- ”p is the

norm in LY (du ,(8))
m 1

2
By assumption the coefficients of S are 0(Mh ) or O0O(p) . For
h <y , it follows from standard estimates on Gaussian integrals [GJ 81]

that for given fixed p' ,

1

“An :S(Ai):||p. 5-(maX{Y§,b}'M)
i<X

x| (3.14)



for some constant M independent of h and s .
To bound the other factor on the right side of egn. (3.13), we
cannot use Lemma 3.1 directly, because when Ai = 0 the classical

potential will not be in any T However the proof of Lemma 3.1

§,L °
can be modified to overcome this difficulty, as we will now show. As

in the proof of Lemma 3.1 we assume that h and T are real and that

s =1 . Note that for p > 1 and v € (O,mz) ’

i
—pki.S(V): 5 E(m Y) V-¢ :
e moe qu

by Lemma 2.2.3 and Jensen's inequality. But by Lemma 2.2.1

1

-1 2 12 .2
pr;[h TTh,Te ): ta (h)é - SmTed s ] 4

m m

2
%(m2—Y)=¢r=Y

1 -~
-1 2 12 .2, 1,2 .2 _
z_pki[h :T(h,h d)r):m2 +al(h)¢>r 5m ,¢r_m2] + 2(m Y)'¢r'm2 c
1
-1 2 § 2
= Xi[ph :T(%,h ¢r): 5 +pa1(h)¢r it ¢r: 2]
m T m
& _ 22y 4 Laepy1ess . -
+ [Xi(i - om Yy + 2(rn Y)]-¢r- , = C (3.15)

m
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If T(0,¢) € TG,L then for p e (1,2) , pT(0,°) € TG,ZL , so the
estimates of the fourth step of the proof of Lemma 3.1 show that

1 n

-1 2 § 2 2
ph T:T(h,n ¢r).m2 +pal(h)¢r 3 :¢r:m2 > - Ml(log r) (3.16)

(Compare the left side of the above inequality with the expression for

§
:A{g): given above egn. (3.4)). As for the second term on the right side

of egqn. (3.15), we choose p and Yy such that

0 < min [Ai(6-§m2) + %{mz-y)] = min [A,(G-gmz) +'%(m2—y)]
0<A. <1 A.efo,1} *
— i . 1l
12 p-1. 2 1
mln{z(m -y), &8 - (—E—ﬂm > v} (3.17)
8 m? § :
Clearly p =1+ — and Yy = min{—;ugi satisfy (3.17). By egns. (3.15),

m

(3.16) and (3.17), we have

1
-1 2 12 2 1 2 2y
. R . -+ - H e - - s .
pki[h Th,hT al(h)(br sm”:d 2] + SmT-y)é

(}=}

n

> - Ml(log r)2 - c.logr -c Z_Mz(log r)2 .

1

It now follows as in the last step of the proof of Lemma 3.1 that

- z Ai:S(Ai):
i K
sup Ile . " <e %] . (3.18)
0<A.<1 P
A
Using the bounds (3.18) and (3.14), egn. (3.11l) follows from egn. (3.13)

by taking b and vy sufficiently small. [
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The main consequence of Theorem 3.2 is the following.
1

Corollary 3.3: For an interaction T and a function al(h) = 0(h2) as in

Theorem 3.2 there exist 6,y,b > 0 such that the cluster expansion for
1

. . 2 .
the interaction %—T(h,h2¢)+al(h)¢ - %m2¢ and mass m converges with

bounds depending only on m,8 and L , independent of A and of h ¢ Se y "
14

In particular, egn. (2.6) holds for this interaction, with Mr independent

of he Se

14

Proof: Theorem 2.1 and Corollary 2.3 cannot be immediately applied because
the mass may not be large. To overcome this problem we consider the theory
obtained by replacing the given theory, abbreviated (T,al,m) . by a theory

(O-ZT,O‘zal,o_lm) where 0 > 0 is chosen sufficiently small that

-1 i
0 m > M(,1) , where M(X,L) is the lower bound on the mass for convergence
of the cluster expansion given in Theorem 2.1. For ReT(0,*) € T6 L with

14

2 - - -2 -
|a2(0) - %m <b we have ¢ 2ReT(O,-) eT 2 -2 and |o 2a2(0)-0 m2 <0 2b.

By Theorem 3.2 applied to the theory (0—2T,0_2a ,o_lm) there are b,6,y > 0

1
such that
l

| --l—z—J T Lora,nle): +a, (n)<1>—1m2 $2:1]

J e © A du 2(s) j_e|A| (3.19)
| =
and

1
I - %J (v 2, 1%) va ) o-3m: 621
J e © A du 2(s) Z_% (3.20)

‘ )
o]



for me s, ~ and lo'2a2(0) - % 6 %n?| < 0™% . By taking y and b
] r

\

v 1
. -1 2 12,2
to be smaller the coefficients of h "7T(h,h"¢) + al(h)¢ - om ¢ can be

made less than one in absolute value.
The bounds (3.19) and (3.20) correspond to the bounds (2.3) and

(2.4) of Theorem 2.1. (Clearly the 1 multiplying the integral J on

02 A

the left side of egn. (3.19) can be replaced by —%- for p sufficiently
o]

close to one by further decreasing Yy and b ). By Theorem 2.1 we

obtain a uniformly convergent cluster expansion for the theory

-2 2 -1

(6 “T,0 a. m) . But by Lemma 2.2.5, a generalized Schwinger function

' -2 -2 .
for the theory (o "T,0 a,,0 m) is equal to the corresponding generalized

l'

Schwinger function for the theory (T,al,m) provided we also replace A
-1

-1 o] . -1 .
by ¢ A and w by w( ) . Since o is just a constant the Corollary

is proved. [
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8§4. Analyticity of the Pressure

We are now in a position to prove that for some €,y > 0 and open set
OY > (0,y) the pressure ho(h,u) of egn. (1.13) is jointly analytic in

h,n) € OY x D_ , where D_ = {zecC: |z| < e}, and is C  at h =0V .

n
The strategy of the proof is the following. Given T(h,x) = z ak(h)xk
k=2

with a, analytic in (0,y) and T(0,*) € TG,L , let

- }'J [:T(h,¢):-%m2:¢2:—u¢]
A

h
1
ht(h,u) = lim n J e d . (4.1)
. A [ “ne

By Lemma 2.3.6, if h and |u| are sufficiently small then T¢h,x) - ux
has a uniquely attained global minimum, at say &(h,u) , with & analytic
in (,u ) € (0,y') X (-e',e') and c at h =o0% . By Lemmas 2.3.6 and

2.2.4, translating the field in egn. (4.1) by £&Ch,u) gives rise to a new

pressure whose classical potential lies in some TG‘ L uniformly in small
14
m2
h and |u| . For |a2(o) iy sufficiently small we can appeal to

Corollary 3.3 to conclude that ht(h,u) is analytic in
1 1

(hz,u) e (0,y") x (-e",e") and c  at h2 =o" . To improve this tol c”

at h = 0t we will show that odd order derivatives with respect to h2
1

vanish at h2 =0 . In Lemma 4.2 below it is shown that the vanishing of
the odd order derivatives implies the required smoothness at h = 0 .

The following Lemma will be used to show that the above-mentioned odd

1

order derivatives at h2 = 0 vanish. For the analyticity of the pressure

we only need f = 0 in Lemma 4.1. However we prove the more general result
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because it will be needed in Theorem 5.1.3. The parameter t corresponds

1

2
to h .

Lemma 4.1: Let Bt(x) = t_ZT(tZ,tX) - %mzx2 - f(t)x ,

n
where T(tz,x) = z a (t2)xk with a, analytic in (0,y) and c in

k=2 k

[0,v) , Re T(0,*) € T, _ ,|a,(0) - %m2| <b where b is specified by
: ’

Corollary 3.3, and where f£f(t) = tg(tz) with g analytic is (0,y) and

(o)
C in [0,y) . Let

dau

—J:P((t)):
A
|- z

O o

Then

k

1 ky ke 1 1 k.
Lim T (6 (M sia.nie (A)>BtA=W CHOERRE (A)>B0'A

t+0

(4.2)

uniformly in A . In particular, if kl+...+kr is odd the limit in (4.2)

is zero, since BO is quadratic.

Proof: It follows from Corollary 3.3 and the Fundamental Theory of

Calculus that

k k k k
1 : 1 r 1 1 r
T oo T DS N CGRURRRR <A>>BO,A|

t 'k

k
1 d 1 r
= IAI' | {0 s <:¢ (Myz;...5:0 (D) :>B ds

s, A



_ L
4]

< Mt uniformly in A . [

Lemma 4.2:

f is analytic. Suppose f is C°° at 0+
k=0,1,2,... . Let fl(x) = f(x%) , X €U
Then fl is analytic on U and c” at ot
Proof: The only thing to check is that f1

obvious since

Let O be an open neighbourhood of

59

| Jt kl kr a
RN 010 I I IR Y (A):;J —:B_(¢) ;> ds|
O< Ads s Bs,A

(0,%y)

on which a function

(2k+1)

with f oY =0,

= 0% n(c\x e R : x <oh .

© +

is C at 0 . But this is

— 1
£,60 = £050 < £0) + 51 £ @x + 7 £ 0 + 2 £ P
0
o k
Theorem 4.3: Let T(h,x) = z ak(h)x where the a are analytic in
k=2
an interval (0,p) and ¢’ at ot , and T(0,*) € T6 L " Then for
|a2(0) - %mzl sufficiently small there exist 7y > 0 and complex open
neighbourhoods 0Y > (0,y) and D containing 0 such that
1 2
- % J[=T(h,¢):~ §m2:¢ :-Uo)
hth,u) =N lim 7, (h,u) = h lim 1 &n e A dy,
A A holel
A A
is jointly analytic in (h,u) € OY x D and C.  at h = O+ , with uniformly
bounded derivatives. Moreover, there is a ¢ > 0 such that
Ipnthoa) | > ¢ for all ) e 0, % D. (4.3)

- Proof: By Lemma 2.3.6 there exist vy',e' >

and h e [0; v") Tu(h,x) = T(R,x) - ux has

0 such that for u € (-e',e")

a uniquely attained global minimum,



at say &£(M,u), with

Sth,u;x) = Tu(‘h,x'*-E(h,u)) - Tu(h,E(h,Ll)
(hlU) € [01

Moreover § is analytic in VY' X Ds'
and V_, is an open neighbourhood of
Y

Using Lemma 2.2.2, translating in

) € TG',L' for all

Y') x (-e',e') . (4.4)
» where D_, = {zec: |z|] <e}
(0,y'), and c at n=o0".

Ta by & and using Lemma 2.2.3

gives
1
- % J [:S(h,u;¢):--2-m2:¢2:]
= ! A
hTA(h,U) = TU (hrg(hlu)) + Tﬂ' an J e duhC
1 (4.5)
1 2 1 2
_J Lﬁ:S(h,u;h $):- §m2:¢ ]
+Hh A
= = ’ , + T 2 ’
TU(T\ E{h,u)) lAI n Je duC,
for all (h,u) e Vv. XD Since l'D2S(0 ;0) = } D2T(0 EO,1)) w an
’u .Y €l hd 2 3 ’ul - 2 2 r Iu e C .
1 2 . 1l 2 .
make 3 Dzs(O,u;O) as close as desired to >m by taking €' and
a2(0) - %mzl sufficiently small. Then by Corollary 3.3 and egn. (4.4)

k N
expectations of the form T%T- <?¢ l(A):

in absolute value independent of A, h,

1 1
~ 2 - 2
Sth?,uix) = h tsh,um x)

The first term on the right side o

(h,u) € VY X D and C at ‘n = 0"

[} € 1]

Its derivatives are uniformly bounded.

k
PR ) r(A)::> ~ are bounded
S, A

¥ , where

Smox”,

f egn. (4.5) is analytic in
, and does not depend on A

To see that h1(h,u) is analytic,

60



© + . .. ..
and C at h =0 , we show that the infinite volume limit of the second
' 1

. . . . . 2 . .
term on the right side of egn. (4.5) is analytic in (h ,u) wusing Vitali's

theorem, then use Lemma 4.1 to show that odd derivatives with respect
1

2
to t="nh vanish at t = 0 and appeal to Lemma 4.2.

- J : S(t,ui¢):
1 A
, tr = ’ t \Y ’
Let ;A( H) TKT'Zn J e duc (t,u) e ( Y,n STT ) X De
EI‘Y ’
where 0 <y <y' and 0 < e < e¢' are such that the logarithm is well

defined. ' Since

IchA(t,u)l

1 -~
= | J :D_S(t,u;¢):> | and
i 1<), >S,A

1 ~ . . .
|D C,(t,W) | = <:[ :D_S(t u;¢)::> I are uniformly bounded in A,t,u ,
2°A l A I jA 2 ' é,A

the same is true of |CA(t,u)| so by Vitali's theorem & (t,u) = lim T (t,w)

A A
is analytic in (t,u) € (v_,n STT ) X De . Moreover all derivatives of (T
Y EIY
R . ' 2k+1_4
are bounded uniformly in (t,u) . We now show that D1 D2CA(t,u) > 0

as t + 0 , uniformly in A , for %k,2 =0,1,2,... . 1In fact, by

egn. (1.3.3),

2k+1 1 7y [ﬂl”||~

D g, (£, W)= : D S(t,uid)tseens J :D S(t,u; )::)

1 " [A] "6;2k 1°1r <[A 1 | A ¢ 3,1
+ .

(4.6)

where Pn is the set of partitions of {i,...,n} , . are the elements
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of a partition m , and c, are positive integers. Differentiation of

egn. (4.6) with respect to u gives

m | IG |
2k+1_4 1 1z
D DT, (t,u) = Z Z<5 Stieee;
1 2 A Al neP2k+1 oeP

R L R U T
S;Dl D2 S:;J;\D2 S:;...,JA >S'A

where we allow !o I,...,Io | to be zero.
1 ||

(4.7)

ot (2, £(t%,u))

n
. =~ 2 k-2 .k 1 2
Since S(t,u;¢) = z o t ¢ - —m2¢ , the t =20
k=2 :
contribution to DiDzé is a linear combination of terms of the form

c(u)¢r(A) where r is odd if 3j 1is odd and r 1is even if j 1is even.

By ean. (4.4) and Lemma 4.1 (with £ = 0), as t > 0 the right side of

egqn. (4.7) approaches uniformly in A a sum of terms of the form

ol 5 lol
) <E¢ (A):s. (A):> (4.8)
' S(0,u;-
where rl,...,rlﬂl have the same parity as |ﬁll,...,|n‘ﬂ|| , and
r|ﬂl+l' "r‘cl are all even (in fact equal 2). Since
‘ﬂli+...+|ﬂ|ﬂl| = 2k+1 is odd, rl+...+r|0| is also odd. The expectation

in ean. (4.8) 1s invariant under ¢ > -¢ since §(O,u;') is quadratic,
L .

and hence equals zero. It now follows from Lemma 4.2 that thr(h,u) is

00

C at h = O+

It remains to prove the lower bound (4.3). Using the notation
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(
J (F1(¢);F2(¢))dV =J Fl(¢)F2(¢)dv - J Fl(¢)dv J F2(¢)dv , we have

1
1 . -% A[:T(hltb): - §m2:¢? - ud ]
| RTAT | o) e au
-3 | renor - 33 - we 3
A
Je e
1
1 - % [ [=S(h,U7¢)=-§m2:¢2:]
—_ A
CRIAL | (G IE®) s G (+E M) e an,
1 12 2
“n JAfzs(h,u;¢)=-§m 202 ]
Je e
1 -% C:sm,ui¢k —%m2:¢2:]
1 A _
_R[AL et e an,
-%J [:S(h, ;) - %mzzd)z:]
A
Je e

1 v
—|T|— <¢(A) ;¢(A)> Sa

where we used Lemmas 2.2.3 and 2.2.4. By Lemma 4.1,

lim hDéT(‘h,u) = lim ﬁ <¢(A);¢>(A)> i (4.9)
140 A 7 S0,z ) A

The right side of egn. (4.9) is continuous in u and equals
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J (—A+2a2(0))-l(x)dx> 0 for y =0 . Therefore, taking € and vy
2
R

b

smaller if necessary, the lower bound (4.3) holds. [

CHAPTER 4: SMOOTHNESS OF THE EFFECTIVE POTENTIAL

§1. Proof of Theorem 1.4.1

Theorem 1.4.1: V(h,a) <~ for all h >0, ae R.

Proof: To show that V(h,a) = sup [pa - ha(h,u)] is finite, it suffices to
u

+
show that lim n D;oc (h,u) = 22 (recall Figure 2(ii)). Since h plays no
p—)ioo

important role in this discussion we drop it from the notation. We write

~ JAtP('i)):
D , = J . e_[ :P(m:d”c
-

a
He

right

+

and < >_ 5 for the left continuous infinite volume expectation [FS 77].
P,m

+ * Note that it suffices
. (1.2, = o> 2
Then by egn. (1.2.1) D a(u) <¢( ) P (x)-px,m

to prove that 1lim D+0L(u) = o for all semibounded P because this implies
u0

that

[l

lim D a(u) = lim < ¢(0)>_

p->—o p>—co P (x)-ux ,m2

1im (=40 *
un Good

2
P (-x)+ux,m

-lim <¢ © )> +
o

P(-X)-ux,m
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Also since a is differentiable except on a countable set it
suffices to show that D+a(u) is unbounded on the set of positive u's
for which Do(u) exists. For such u ,

lim <¢(O> T <1>(0>+ 5= Q(o>- ,
AfRz P(x)-ux,A,m P (x)-ux,m

P (x)-ux,u

For large u , let E{(u) denote the unique point at which

Up(x) = P(x) + %m2x2 - ux attains its global minimum. By Lemma 2.3.3

£ is increasing and 1lim £(u) = » ., Therefore it suffices to show that
Yoo

’ Q(0> 5 E(u)l is bounded above uniformly in A and large
P(x)-ux,A,m

¥ . This upper bound is a consequence of the cluster expansion of [sp 74].
We spell out the details.

By Lemma 2.2.2, writing PU(X) = P(x) - ux ,

@(09 5 = E(u) + <¢(0> 5
PU,A,m S(Ul')lArm
122 _ ¢ k _ 122
where S(M,x) = U (x+§(»)) - U (EW)) - Sm"x" = 2 a, (W)x" - =m“x" , with
H U 2 k=2 k 2
ak(u) = Uﬁk)(é(u))/k! . Therefore it suffices to show that
I <é(0i> - 2| is bounded uniformly in A and large u .

S(#,*),A,m

Applying scaling (Lemma 2.2.5) and mass-~shift (Lemma 2.2.3) transform-

ations, we obtain

<¢(o> =<b(0)> =<b<o>
S, A,m? ) LY L L
3 m 0,&

- 3 - -
DS, .85 A,E2 n

Arg a2

(1.1)
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Here Q is defined by

n
. . = 2—n . k. = - - b
R0 5o L a5 = Lo BETeN
13 a, k=3 £ m m

k

where we have introduced bk(u) = g _nak(u) . Note that 1lim bk(u)

U

exists and is finite.

2~
& naz n-2
By Lemma 2.2.1 and the fact that |log _E:H—El = 0(log & ),
' m
n-k
n n-2 2
2-k.k -k n-2 k
o(x) = } B E "x + ] O0( (logt ) )x .
k=3 k=0

The constant term in Q can be cancelled in egqn. (1.1), so the classical

potential occurring on the right side of eqn. (1.1) is

n-k
n n-2 2
2-k k -k =2 k 1 -
W(x) = z -bkE x + z 0(¢& (logF,n ) yx + 5 €2 na2x2
k=3 k=1
T 2-k k
= ) (b +A JET " + Ajx
k=2
n-k n-1
2 2
. - - - -2
where Ak = 0(& 2(1095n 2) ) s k> 2 ; Al = 0(& 1(log&n ) ) .
o k -n e k
Since z b, x =§ z a. (£x)° = £ ™[u (Ex+£) - U (§)] has a uniquely
k k it H
k=2 k=2
attained global minimum at zero, for large u W will have a uniquely

attained global minimum, at say n(y) , with n(u) -0 as up + « , Transla-

tion by n (Lemma 2.2.2) gives

<:§(0£> = n(u) + <§(OZ>
n
0,&

n_; (1.2)
? he T, 0,8 ME¥"a
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lgz—n x2
2 axx -

where Ql(x) = W(x+tn) - W(n) -
~ The expectation on the right side of egn. (1.2) has the classical
potential

] 1,2-n_ 2 _
Wl(X) = Ql(x) + 25 ax =

n
2 W (n) .k
2T L T

Let T = £ oW (Ex) (1.3)

1

- 2
Then Wl(x) = £2T(£ lx) . Here § plays the role of h™ .

n (k) _
Now T(x) = Z W k'(n) gk 2xk . and
k=2 <
1. (k), k-2 _1 k-2 ¢ 2-3 -k
WO mMET T = T L byt E 35 (5-1) ... (3-k+1)n’
! ' LT
J=k
n . .
= 1 eI
v by for large w , k > 2 . (1.4)

Recall Lemma 4.1 from [Sp 74]:
v k
Lemma 1l.1: Let Uo(x) = Z t. X~ be bounded below, UM(X) = Uo(x) - ux ,

and for large u let £(u) be the location of the uniquely attained

global minimum of Uu . Then there exist M,c > 0 such that for all
u>M
e n-k k
U (x+E(W) - U (W) > ¢ L e |x|® forall xer. 0O
H Y - k=2
n L
. k -n
By this lemma, ) b x =& [u (Ex+E) - U (£)]
£ ! H
k=2
n n
- - k
> & RS z gt k|£x| =c ) |xlk . (1.5)
k=2 k=2
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By egns. (1.4) and (1.5) it follows that for u sufficiently large
c n
T(x) 23 )} |x

Since the coefficients of T are uniformly bounded for large u by

eqn. (1.4), T ¢ Tc for some L > 0 . It follows from egn. (1.3) and
=,L
2'

n I is bounded uniformly in

Corollary 3.3.3 that |<&(Oi>

2 2~n
erg A,E a2

A and large u . Since n(u) >0 as u =+ = it follows from egns. (1.2)

and (1.1) that |<¢(o)>

large u . [0

2| is bounded uniformly in A "and
S,*),Am

§2. Proof of Theorem 1.4.2.

Theorem 1.4.2: For every a € R, lim V(h,a) = (coano)(a) .
nio

Proof: Because of the fact that ha(h,*) is strictly convex [Fs 77]
+
and hDEa(h,u) > *o» agg Y > to (as shown in §4.1), it follows that

ha(h,*) € Cs . In Theorem 2.1 below we will show that 1lim ho(h,u) = -m(u)
h'0

for all u . Using this, and the fact that =-m € CS by Lemma 2.3.3, it
follows from Theorem 2.1.1 and egn. (2.3.7) that

* * %k
lim V(h,a) = -m (a) = U. (a) = (convU,)(a) , for all a ¢ R .
h+0 0 0

We now prove the promised Theorem, which is a Laplace's method type result
for functional integrals on S'(Rz) . For related results in the context of

Gaussian integrals on C[0,1] , see [Sim 79], [ER 82] .
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Theorem 2.1: " 1lim hg(h,u) = -m(y) , for all u € R .
hio

)
-= [:P(¢)~ud
n ), )

1 .
p f: Let = ’ .
roor GA(h,u) TKT n J e duhc and fix U € G
Let T(x) = Uu(x+€(u)) - Uu(g(u)) . By Lemma 2.3.1, T € TG L for some

14
§,L > 0 . By Lemma 2.2.2,
1
Y I[:T(d)): - %mzzdsz:]

1 A

h = - + £ .
GA(h,u) Uu(g(u)) h TKT» n I e duhc (2.1)

By Jensen's inequality the argument of the logarithm on the right side of
egn. (2.1) is bounded below by one, and by Lemma 2.2.4 and Lemma 3.3.1 it

K|[A
is bounded above by e I l if h is sufficiently small. These bounds and

egn. (2.1) show that IhaA(h,u) + m(u)l -+ 0 uniformly in A, as h ¥+ 0 ,

for 41 € G . But by Lemma 2.3.2 G is dense in R and hence
lim ha(h,p) = -m(u) for all u € R by convexity. [
Avo

§3. Proof of Theorem 1.4.3(a):

Theorem 1.4.3(a): Let a ¢ B. There exists a Y > 0 such that V(h,a) i%

analytic in B for h e (0,y) . Moreover V(h,a) is c at h = 0+, and so the
o DTlIV(0+,a)
expansion V(h,a) v z vn(a)“hn is asymptotic, where vn(a) = -
n=0 :

Proof: Recall egn. (3.1.15):

V(hra)- = Uo(a) - hY(a) + qo(-h) + Sup[_ho(hIU)] r a é B,
' u

‘where q. and o are functions of a . Fix a ¢ B . Since d, is a

0



polynomial we need only show that E(h) = sup [-ho(h,u)] is analytic on
. H
(0,y) and C at h = o7 . We show this using Theorem 2.1.2 .

Note that it suffices to show that
1im ho(h,py) = -mo(u) , for all u € R, (3.1)
nio

2

n
2 s .
where mo(u) = min[ z qk(O)xk + % mlx - ux] . In fact, writing (as in

X k=3

Theorem 2.l.l) u(0) for the location of the supremum in sup [+m0(u)] ’

u
it follows from Lemma 2.3.3 that p(0) is the unique root of —mé(x) =0 .
v k 122
By Lemma 2.3.3 this root is the unique u for which z qk(O)x +SmoxT - ux
k=3

attains its global minimum at zero. Since a ¢ B , there are §,L > 0 such

that

n
k 122
Z g (0)x + Zm.x" e T , (3.2)
k=3 k 21 §,L

and so u(0) = 0 . Now given egn. (3.1), it follows from (3.2) and

Theorem 3.4.3 that ho(h,u) satisfies the analyticity requirements of
Theorem 2.1.2, as well as the necessary bounds on the derivatives, and
hence E is analytic in (0,y) and ¢’ at h = 0+ . It remains to prove

egqn. (3.1).

We show that (3.1) holds for u € G(0), where for A > 0O

n

k 12
G(A) ={u € R: 2 qk(X)x + §m1X2 - ux has a uniquely attained global
k=3 N
minimum and has positive curvature at that minimum} . The set G(0) is

dense in R by Lemma 2.3.2, so (3.1) holds for all u if it holds for

U € G(0) , by convexity.

70



n
—}1 J ) qkm:cbk: - u¢l
1 A k=2
Let OA(‘h,X,u) = Tﬂ' in J e duhc ’

and let oA(h,u) = cA(h,h,u) , so g(h,u) = lim cA(h,u) . By the Fundamental
A

Theorem of Calculus,

n
Ino, ) + m )| < |hoy @m0 + mp) |+ m J0|020A(n,x,u)|dx i (3.3)

By Theorem 2.1, the infinite volume limit of the first term on the right
side of (3.2) goes to zero as h ¥ O . As for the second term, fix

U e G(0O) and Y > 0 sufficiently small that u € G(A) for X € (0,v) .

In the expectation thcA(h,A,u) , translate the field by the location
° k 1202
E(A,u) of the global minimum of ) q (M¢" + 5m¢” - up , scale the field

1 k=3

¢ - h2¢ , shift the quadratic term of the interaction over to the measure,
and Wick re-order the interaction to match the new measure. Then by
Corollary 3.3.3, h[DzoA(h,A,u)I is bounded uniformly in A and‘in small
N and A , and therefore the second term on the right side of (3.3) is
0(h) uniformly in A . 0O

Note that it was also proven in Theorem 2.1.2 that the point u(h)

at which sup [-ho(h,u)] is attained is analytic and bounded on (0,y) and
u

hence C°° at h = 0+ . In particular

lim u(h) = u(0) =0 (3.4)
hi0

84, Proof of Theorem 1.4.4.

Theorem 1.4.4: Let K < B be compact. Then there is a Y > 0 and an

71
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open set 0 2 K such that V(h,*) has an analytic extension to 0 for
every h < vy .
Proof: Fix a ¢ B. Since ho(h,*) is strictly convex, it follows from

§4.1 that ha(h,*) € Cs , and hence there is a unique u(h,a) for which

\

V(h,a) = u(h,a)a - ha(h,u(h,a)) .

\

Similarly by Lemma 2.3.3 -m € Cs so there is a unique u(a) at which
SEP fua + m(u)] 4is attained. It follows from Theorems 2.1 and 2.1.1
that lu(h,a) - u(a)l can be made arbitrarily small by taking h
sufficiently close to zero.

Let K c B be compact. We show V(,a) = u(h,a)a - ha(h,un(h,a))

is analytic in a neighbourhood of K by showing the following.

Lemma 4.1: For a € K there is a neighbourhood Oa. containing wu(a)

N

and Ya > 0 such that ha(h,*) has an analytic extension to Oa for
every h < Y, - That is, for all h <y_ there is no phase transition in

the neighbourhood 0a of u(a) .

Lemma 4.2: There is an open disk Va containing a to which u(h,*) has

an analytic extension for every h < Ya , with u(h,va) c oa .

Since K 1is compact, U Va has an open subcover {Va reessV 1,

ack 1
N
and V(h,*) 1is analyticon U V for all h < min Yy . It remains
. a, . a,
i=1 i 1<i<N i

to prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1: Fix U € G . Making the a dependence of o explicit

1
by writing ol(h,u;a) for Ul(h,u) , it follows from egn. (3.1.2) that

ha(h,u) = —Uu(E(u)) +hoy (h,0:8 (M) . (4.1)



By Lemma 2.3.3 and the above equation, it suffices to show that for fixed

a0 ¢ B there is a fixed neighbourhood 0 of a and a YO > 0 such

0
that hol(h,o;a) is analytic in a € 0 for all % < YO

k
) J ? P(k)(a) hi-l.¢k.
A ke k! U

Let o© duc r so that

l,A(h'O;a) = TXT n J e

o.(M,0;a) = 1lim © (h,0;a) . We will give bounds on Io (h,O;a)l
1 A 1,A 1,A

uniform in a, h and A for h < Yo and Ia—ao| <e ,with €,y >0

The Lemma will then follow by Vitali's Theorem.

Now P"(ao) + m2 > 0 since a0 ¢ B, so by Lemma 2.2.3

_ 1
O'l’A(Tl,O,a) = -I—A—l- Ln J e _ duc

1 .
d .
+ W &n J e ]JC ’ (4 2)

where C, is the periodic covariance of mass n’ + P"(ao) . The second
term on the right side of egn. (4.2) is bounded uniformly in A . The
first term will be bounded by using Corollary 3.3.3 to give a unifqrm

bound on its derivative with respect to a . To apply Corollary 3.3.3

the Wick order of the interaction must match the measure. Using Lemma 2.2.1

to Wick re-reorder we obtain a new interaction
’ k

n x P(k)(a) 5*1
:Sth,a;¢):, = ) s (h,a):¢ :_  , where s = [——2140(h)In , 3<k<n,
C k c k k! -
0 k=0 0
1
s, = %(P"(a) - P"(ay)) + 0(M) , 5, = 0% and s, = 0(1) . Now
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®) (4 )
2
z Ok lm x2 e T (for some &, L) since a_ e B , so for
k! 2 §,L 0
k=2
n 1-%
.. 2 k 1, 2 ., 2
|la-a_ | and h sufficiently small, Re ) s _+h x5+ S(m“+P"(a)x" e T
0 k 2 0 § .6
k=2 51L+5

and Corollary 3.3.3 can be applied. O
Note that the convergence of the cluster expansion obtained in the

proof of Lemma 4.1 shows that for some Yy > 0 and open disk U containing

u(a) ,

2
!Dgha(‘h,uﬂ = | ——d—2U (E(u)) + Oth) |
U
du
1
—IUB(E(U))+O(‘h)I‘ic>O for <y, ueo0 (4.3)

by egn. (4.1) and Lemma 2.3.3.

Lemma 4.2 is a consequence of the following generalization of the

inverse function theorem [Rudin 74], [Rudin 76].

Lemma 4.3: Suppose f£(h,*) , h > 0 are analytic functions in a neighbourhood

0 of a point uo , and that

b, | > c>0 forall n<y,neo (4.4)
and I‘Dgf(‘h,u)] <M forall h<y, nueoO. (4.5)
Suppose also that there exist My with 1lim Hy = Hy v and f(h,uh) =a,

hvo

independent of h . Then there is a ¥y > 0 and an open neighbourhocod
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vV of a, such that for all 0 <h <y £(h,*) has an analytic inverse

function on V , with f_l(h,V) <0 .

Proof: Denote the open disk of radius r centred at u by D(u,r) , and

choose r 5_55- such that D(uor) € 0 . Choose Y > 0 such that
r r .
4 € D(uo, 5) for all h < vy . Then Bh = D(uh , =) < D(uo,r) if h<vy.
c2
Fix a ¢ D(ao, EFP and let

gh,p) =y + [sz(h,uon’l(a-f(n,u)) i

Note that for any given h , g(h,*) has a fixed point in B if and

by
only if a = f£(h,y) has a solution U € Bh . We will show that for h
sufficiently small g(h,*) has a unique fixed point in Bh , and therefore
2
f(M,*) has an inverse on V = D(ao, gﬁ) . The inverse function must be

analytic in view of (4.4) and the analytic Inverse Function Theorem.

Note that
IDygma | = 1 - o eI prmm | <2 [oemu - pyrmug | < dur < 3
for w € D(uo,r) ; by ean. (4.5) and the fact that «r f_Eﬁ-. Therefore
1 (
lgmu) ~gmu] <35 - w | 4f h<y . u, e By

Moreover if u ¢ Bh then

lama -l < lammw - g |+ [amu) - ul

| A
1
=
I
-

| A
N~
[ SR 1a]

+
Qi+
IO
N
'—l
Hh
o
A
=<
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so g(h,u) € Bh if h <y . But since g(h,*) 1is a contraction from Bh

to itself, it has a unique fixed point, for all +h < y [Rudin 76]. [

Proof of Lemma 4.2: Let £(h,u) = tha(h,u) . Then f(h,*) is analytic

in 0a by Lemma 4.1. By eqn. (4.3), |D2f(h,u)| >c >0 for h<y,
H e Oa . By the uniform convergence of the cluster expansion obtained in

the proof of Lemma 4.1 it also follows that

D2Em,w | <M if h<y,ueo0, .
By Theorems 2.1 and 2.1.1 1lim H(h,a) = u(a) . Since £(h,n(h,a)) =a ,
h+0

all hypotheses of Lemma 4.1 are satisfied, and the result follows. O

CHAPTER 5: THE LOOP EXPANSION

§1. -DTV(O,a) is a sum of Graphs

In this section we fix a ¢ B and prove that for N > 2, —DTV(O,a) is
equal to a finite sum of graphs with lines corresponding to the free
covarijiance of mass ml(a) , where mi(a) = P"(a) + m2 = U;(a) . The proof
of Theorem 1.4.3(b) will then be completed by identifying the graﬁhs
topologically.

Recall egn. (3.1.15):
V(h,a) = Uo(a) - ho(a) + qo(h) + supl-n (h,W)] , a4 B (1.1)
u

where v , 9y and o are given by egns. (3.1.6), (3.1.11) and (3.1.13)

respectively. By egn. (3.1.11) ,
a dk k=2 2
J €2k, k" 2k T freeeny

0 otherwise.

1k _
ET-D qO(O) = (1.2)



1l
i.e., in the notation of Definition 1.3.1 5D2q0(0) = a4 %E% ,

d
3 -1 m
;D qo(0)=aé{¥] and so on, where d = e log -
d

Let

NJH N
.

E(h) = supl-ho(h,p)] = ~ho(h,u(n)) .
'u -
, . ‘
In section 4.3 it was shown that E is analytic in (0,y) and C at o0
By Leibnitz' Rule
N N-1

p'E(0) = 1in pNEM) = - Linlh = ohum)) + v S
o 740 dh dh

om,ut))] .

N
We will show that E(0) = DE(0) = O and that LN oth,0(M)) is a finite
an

sum of graphs with lines of mass ml . Recalling the notation

1
N!

vy =g

D?V(O,a) from Theorem 1.4.3, this shows that Vo(a) = Uo(a) .

vl(a) .~y (a) , and that -D?V(O,a) is a sum of graphs. The topological
structure of the graphs contributing to —vN(a) for N > 2 will be shown

in the remainder of Chapter 5 to be as stated in Theorem 1.4.3(b).

The first step is the following lemma.

Lemma 1.1: For some ¥ > 0 , o(h,uth)) is C°° in h e [0,y) , with

g(0,u(0)) =0

<0
Proof: As was just mentioned, E is C in [0,Y) , and therefore the

same is true of Ho(h,u(h)) = -E(h) . We now show that 1lim o(h,uth)) =0
hvO

which will prove the lemma.

-+

77

(1.3)

14
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By egn. (3.1.13),

n
1 k
_ﬁJ [qu(h).qs s = ué]

. 1 A k=2
o(h = lim &n e .
(th,u) . -l—l—A J au, -
1
n 1 5
Let Qu(h,x) = z qk(h)xk + 5 mlx2 - §X . By Lemma 2.3.6, Qu(h,') has

k=2
a uniquely attained global minimum, at say £(h,u) 'with & smooth, provided

N and u are sufficiently small. By Lemma 2.2.2,

-1 J[=T(¢)z-}m2:¢2=]
- -1 i 1 ha 2 a (1.4
o(th,u) = - ﬁQu(‘h.E(h,u) + lim I—AI- n| e uhcl .4)

where T(x) = Qu(h,E(h,u)+x) - Qu(h,E(h,u)) € Td L uniformly in small h

and 1 . Evaluating eqn. (1.4) at u = u(h) and using Lemma 2.2.4 gives
1
1 2 1 2
_J[—:T(‘h ¢) :-—m2:¢ :]
1 . 1 Ah 21
-=0Q ,Eh,uMm)) + lim TIT'QH e du .

h7u(h) A cl

gh,u(h)) =

(1.5)

But since u(0) = £(0,u(0)) = 0 , regularity of p and & imply that

ph) =0M) and EM,u(h)) = 0() . It follows by substituting into

Q) MEMUM)) that O o) (B EMUM)) = 0(m?) , and therefore

l .

To show that the second term on the right side of egn. (1.5) goes to

zero as B + 0 , we call it B(h) = lim BA(h) and note that the cluster
A

expansion converges for BA(h) uniformly in small h , by Corollary 3.3.3.



In particular, there is a constant M such that

—EI-B(h) < M for all small h ; and therefore
2

ah

1
2 1

h
|gpm) - 8 0] = [8, ) - o] 5_J0 |5%-BA(x2)|dx <m? . 0

Corollary 1.2: E(0) = DE(0) = 0 .

Proof: Since E(h) = -ho(h,u(h)) , E(0) = 0 is an immediate consequence
of Lemma 1.1. Also, DE(h) = -o(h,u(h)) + h ag-cfh,u(h)) goes to zero as

h+0 by Lemma 1.1. [

Before stating the main result of this section, we introduce some

notation. Let

% - ;%-quk<0) (G =0,0reuuid) (1.6)
n
‘2
so that qk(h) = z quhJ
3=0

Recall from Theorem 1.4.3 the notation VN(a) = DTV(O,a)/N!

Theorem 1.3: For a ¢ B , vo(a) = Uo(a) and vl(a) = -y(a) . For N > 2,

—DTV(O,a) is equal to -DNqO(O) plus - DNE(O) . The derivative —DNE(O)

is given by a linear combination of graphs with no self lines, with positive
or negative coefficients, made up of lines of mass ml and vertices

k=2, 3,...,n; =0, 1,...,2

5 - The graph corresponding to -DNqO(O)

-qkj 14

is given under egn. (1.2).

Proof: By egns. (1.1) and (1.3) and Corollary 1.2 the only thing to check
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dN-l

dh

is that for N > 2 , —DNE(O) =N o(,u(h)) is a sum of -graphs

N-ll
0

with vertices -qkj r K #0 .

By definition of ¢ and Lemma 2.2.4, og(h,u) = lim OA(h,u) ., where
A
T %‘1 k -3
- I z [qk(h)h ¢ - uh T ¢]
A k=2

_ 1
oA(h,u) = T]T-Qn J e ‘ ducl .

1 1
2
Let f(Hh°)

o]

2
u(h)h . By egn. (4.3.4) there is a function g , C on
1 1
2 2
[0, ¥) , such that £(h") =h g(h) . (1.7)

n k_ 1 1
2 k 2
- J Z[qk(n)n 265 - £(R%) 4]
1 A k=2
Also oA(h,u(h)) = 7T &n J e du .
| A c,

For x € R, let z(t,x) = lim CA(t,x) . where
A

n
- J ) [qk<t2>tk'2=¢k= - x4)
A k=2

_ 1
CA(t'X) = TXT—Qn J e ducl

Then 7 (t,f(t)) = c(tz,u(tz))

2

We see by substituting t for h in the asymptotic expansion for

a n d2n
ocm,u(M)) that —| o{,u(n)) = —/— r(t,f(t)) , so it suffices
n (2n)! 2n
dah g dt
0
2n l
to show that _ n| z(t,f(t)) 4is given by a linear combination of appropriate
dat 0

graphs. To show this, we begin by introducing some notation. Let
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n
s(t,6,A) = ) qk(tz)tk'2=¢k(A)= - £(t)¢(A) . Then by eqn. (1.3.3),
k=2
—d]ic (£,£(6)) = ] ¢ Tr <-Dlﬂl|S(t O A Vions -Dlwlﬂlls(t 6,0 D
dtk A ﬂepk m TKT 1 e , ' 1 o t,A
(1.8)

where <:.:> £ A is the expectation with respect to the interaction S(t,¢,A )
’

and the notation Pk’ T, c is as in egn. (1.3.3). The expectations on the
right side of egn. (1.8) are finite sums of positive integers times positive

powers of t times expressions of the form (recall egn. (1.6))

kl kr (21) (ls)
¢ (1\):;...;-qk .10 T (A) ;£ (B)o(N);...;f
rjr

1
W<'qk ¢ ©6 U
171
(1.9) !
with k. e {2,...,n} , 3, « {0,1,...,12 }

We denote the infinite volume limit of the expression (1.9) graphically by

(1.10)

(2.)
We now show that the vertex factors £ * (0) are actually graphs which

hood onto the corresponding legs. To simplify the notation we use g[:I: to

denote a linear combination of terms of the form (1.10) with vertex factors 1

(£.)
instead of £ (t) ; which linear combination will be apparent from the

context. The coefficients of the linear combination will include combinatorial

factors and powers of t .
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Derivatives of f are calculated as follows. Since D20(h,u(h)) =0
by definition of u(h) , it follows from the fact that ch(t,f(t)) =

tD20(t2,u(t2)) that

DZC(t,f(t)) =0 . . (1.11)

o0

By eqn. (1.7), £ is C in t . Differentiating egn. (1.11) with respect

to t gives

=D, D, L (t, £(t))

DE(t) = — . (1.12)

D c(t,£(t))

Using the graph notation described in the last paragraph, eqn. (1.12) can be

written

=
O~

Df(t) = (-1) (1.13)
As explained below, differentiation of egn. (1.13) gives
p2e(t) = (-1 = 4 &, O c1r0-
- O (— }—)2
O 5 + —(5—(-1) - (1.14)
+(-1) ~——=2 '
(~O-) —-O-

The terms on the right side of egn. (1.14) arise as follows. The first
three terms come from differentiating the numerator —C)» of egn. (1.13):
the first term comes from differentiating t's appearing as coefficients of

n
. . -2 k
—-—()> ; the second term from differentiating the z qk(tz)tk :$ : part

k=2
of the interaction; the third term from differentiating the £(t)¢ part of

the interaction and using eqn. (1.13). The last term on the right side of



83

egn. (1.14) comes from differentiating the factor 1 . Since there is

no t dependent coefficient as a factor in —()— , there are only two terms

in the derivative of —)~ . Dropping minus signs we can rewrite egn. (1.14)

as

Ve
2. o . F .60, b, o

-O- (-0~ 2 (-0-)? (=03

. (1.15)

In the last three numerators of (1.15) note how all but one of the single

legged vertices can be matched in pairs, and that the power of (- in

the denominator exceeds the number of matched pairs by one.
We will now show how egn. (1.15) generalizes to higher order derivatives.

By the same reasoning used to differentiate -~()» above,

L+ .
d )ﬁ( >
— {» = + ﬂ + ﬂ—&-ll——— . (1.16)
2 % K K -O-

k
Using the formula (1.16) it follows from egn. (1.13) and induction that

Dkf(t) is a linear combination of quotlents of the form

(1.17)

g;m

(—O-)"

where the diagram eventually terminates; M - 1 is the total number of

matched pairs of legs, i.e., M = ml+m2+m3+...+l ; and there is only one

unmatched leg. To see this, suppose Dk_lf(t) is of the form (1.17) and

note that differentiation of any factor of the numerator (using (1.16))
produces a sum of terms of the form (1.17). Also, using the quotient rule
to differentiate the denominator gives terms of the form (1.17) by matching

one leg of E%-{)— to the unmatched leg of the numerator. (There will still



be one unmatched leg left over).

In the limit t =+ 0 the measure in (1.9) becomes duc by Lemma 3.4.1.
1

Hence by Wick's Theorem Dkf(O) is a linear combination of products of
connected graphs without.self—lines, with vertices and lines as in the
statement of the Theorem as well as one-legged vertices which match up in

M - 1 pairs as depicted in (1.17), divided by (’____‘)M . Thus there is
one power of e——— for each matched pair of legs, with one power left over.
The unmatched leg in (1.17) should be thought of as being matched to the
corresponding leg of (1.10), and the extra power of & in the denominator

as corresponding to these legs. As we will now show, at t = 0 each factor

of in the denominator serves to link together one matched pair of
legs to create a connected graph.

We will now show that at t = 0

L L
gy
kl
5 - (1.18)
—_—

where each circle denotes a connected graph with no vertices other than

those explicitly drawn. In fact, each of the lines L., and L. must be

1 2

connected to a multi-legged vertex; choose these to be the vertices fixed

at zero when evaluating the graphs. Then the numerator can be written

L.-1 L L2
l 2_1 \ 2 by g/ —l
- ¢ -1 [decl(o,x)] mz (1.19)
1
k
1 ks k

1 2

where the dashed lines indicate the absence of Ll and L2 . One of the

factors J dxCl(O,x) on the right side of eqn. (1.19) cancels the

denominator on the left side of egn. (1.18). The remaining factor serves

84
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to link up the two graphs on the right side of egqn. (1.19). To see this,

take one of the graphs under the integral J dxcl(o,x) and use translation

invariance to fix the fixed vertex of that graph at x instead of at the
origin. Since the remaining graph has one vertgx fixed at zero, Cl(O,x)
links the two graphs together. This proves egn. (1.18).

Theorem 1.3 now follows by repeated application of egqn. (1.18) to see
that at t =0 the M - 1 matched pairs of legs in (1.17) can be joined by
cancelling M - 1 factors of e , in the denominator, and that the single
unmatched leg of (l.i?) can be joined to the appropriate unmatched leg
of (1.10) by cancelling the remaining factor of «~— in the denominator,

resulting in a connected graph. [

§2. The Test for Irreducibility

Irreducibility properties of a graph depend only on the topological
structure of the graph and not on the rules for evaluating the graph. In
this section we define the notion of a topological graph and show how a
function can be assigned to a topological graph in such a way as to provide

a test for whether or not the graph is 1-PI

Definition 2.1: A topological graph is a collection of finitely many vertices,

each having a finite number of legs (half-lines joined at one end to the
vertex), such that every leg of every vertex is paired with some other leg

to form a line.

Examples : O , O__Ql Q O/ :D

As in §1.3, a topological graph is said to be connected if its vertices

are path connected by its lines. A topological graph is 1-PI if the removal
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of any one line from the graph leaves a connected graph.

Thgre are many ways to assign a function to a topological graph in such
a way as to be able to use the function to test the graph for irreducibility
properties. The choice we make is guided by our strategy for identifying
the topological structure of the graphs contributing to —DTV(0,0) . That
strategy is to introduce a lattice theory and an "effective potential" for
the lattice theory which generates exactly the same topological graphs as

the continuum effective potential, but with different rules of evaluation.

These rules of evaluation make the irreducibility test straightforward.

We now explain the method of [Sp 751 for testing a graph for one-
particle irreducibility in the context we need. For a fixed positive integer

m , we consider the lattice L2m of 2m points '{xl,...,xzm} , thought of

as consisting of the two sublattices {x_,...,x } and {x _,...,x_ 1} .
1 m m+l 2m

Write mi = Ug(a) as usual and let

R AR
_4 1
C(A) = m , A e [o, 11 , (2.1)
Sl PV R
2
2 2
where (R,),. = ' (R).. = , and
1°1ij . i#3 2713 r i#3
ij ! m+i,m+3
Rij = r for all i, j . The matrices R, Rl' and R2 are all m X m ’
the r.,. are strictly positive with r.. <r , r,. =r.,, for all i and
i3 1] — 1] Ji .

jJ ,and r > 0 1is chosen sufficienfly small that C()) 1is positive
definite for all A ¢ [0, 1] and all rij e (0,r) . (It is possible to

so choose r since for r =0 , C()) = m121. See Lemma 4.1). The fact

that C()A) is positive definite is not relevant for the irreducibility

test; positive definiteness is regquired because C(A) will be the covariance
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. 2m . .
of a Gaussian measure on R in the next section. The variable A

measures the coupling between the sets {x_ ,x_,...,x_} and {x _,Xx . _,...,x,_}.
2 o m _

1 +1 m+2 2m
4 0] R
Observe that DC(0) = m has nonnegative entries.

1 R 0

Definition 2.1: Let L2m (the lattice of 2m points) consist of the 2m

points labeled {xl,...,x } . A topological graph G is imposed on L

2m 2m

by assigning each vertex of G to a different point in L Such an

2m °

assignment is called an imposition of G on L An admissible

2m

imposition (AI) is an imposition for which at least one vertex is assigned

to each of the sublattices {xl,...,xm} and {xm+l"“’x2m} .0
Now consider a graph with 2m vertices or less that has been imposed
X, X,
1 1
on L2m . For example, G = z[:ﬁ , where the ij are different elements
i x
27
of {1,...,2m} . The rule for evafuating such a graph is to form the product
with one factor of C(A),_i for each line joining x, to xi, . The
1j X 1_j 5
2
graph G depicted above has the value G(A) = C(k)i i C(l)i i C(>\)i i C(X)i i
172 173 24 34

The test for irreducibility is the following [Sp 751.

Lemma 2.2: A topological graph G with V vertices is 1-PI if and only

if DG(0) = G(0) = 0 for every AI of G on L2m , for some m > V .

Proof: Note that C(O)ij >0 for all i and Jj with C(O)ij =0 if and

only if i e {1,2,...,m} and j € {m+l,...,2m} or vice-versa. Also,

DC(O)ij >0 for all i and 3J .
We first consider connectedness. Since G(X) is a product of

C(A)i i G(0) = 0 for every AI if and only if at least one C(O)i i =0
37k 3Tk
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for every AI . This happens if and only if at least one line joins
{1,...,m} to {m+l,...,2m} for every AI , i.e., if and only if G is
connected.
Now we consider one-particle irreducibility. Note that DG(0) is a
sum of products, each of which consists of one DC(O)i.ik multiplied by
J

the remaining C(O)i PR Each such product is greater than or equal
27 m

to zero, so DG(0) = 0 for every AI if and only if each such product
is zero for every AI . This happens if and only if at least two factors
C()\)i-j occur in G(A) with i e {1,...,m} and j e {m+l,...,2m} or
vice-versa for every AI , i.e. if and only if G is 1-PI . a

Note that the above proof goes through if we take m =1 and do not
require that different vertices be assigned to different lattice points.
The requirement that different vertices be assigned to different lattice

points will be needed in Theorem 5.6.

§3. The Lattice Theory

In this section we introduce a lattice analogue to the effective
potential E(h) which generates exactly the same topological graphs as E
but which assigns values to the graphs in such a way that the irreducibility
test of §5.2 can be applied. 1In the lattice theory we include space-time

dependent coupling constants gkji , which will be used to reduce the

analysis ofigraphs with vertices summed over the lattice to the analysis of
graphs with fixed vertices. Because of these space-time dependent coupling
constants, it is necessary (although it is not obvious at first glance) to
make the external field space-time dependent to preserve the irreducibility

of the effective potential. It is because of the space-time dependent coupling
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constants and external field that it is more convenient to work on a
lattice theory than a continuum theory. (See the remark after Theorem 4.3).

The lattice interaction in an external field u € R is given by

2m

n
I (,g,x) = Yoy
i=l k=2 j

3 k
X, = U.x, 3.1
qkj‘h gkjlxl ulxl ) ( )

I ~1 0018

0

_ 2m _ 2m .
where u—(ul,...,UZm)e R , X = (xl,...,xzm)e R“" , and the qkj are defined

in egn. (1.6). The variable g serves to label the quantity hjx? in

kji

Iu . The vector g has components gkji (k=2,...,n;j=0,...,g;i=l,...,2m)

N
m

and is restricted to lie in the subset E; c R ’ Nm = 2m(§+1)(n-l) ’

defined as follows. The positive constant € will be fixed below.

N
Definition 3.1: For e > O , Ce cR™ is the open cone with vertex at the
. N
origin, axis the line segment {(t,t,t,...,t) e R™" : 0 < t < 1} , and radius

€ at its wide end. |

By taking € small and any coordinate 911 near 1 , we can ensure
n 3
n 2 . Kk
that the coefficients of 2 z a .hjg ..X, are close to those of the
. kJj kiji i
k=2 3=0
n " _
polynomial z qk(h)xi , for all g ¢ CE
k=2

We now prove a useful fact about Ce.Let P : E; + [0, 1] denote
the mapping which takes a vector in E; to the first component of its

orthogonal projection on the axis of E; .
Lemma 3.2: For any g ¢ E; and any component gk,, of g,
—_— ji

g - Bg| < ¢ Bg

kji

Proof: Let Elg denote the projection of g € E; on the axis of E; .
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By the triangle inequality |g - Egl j_lg - Blgl . But by the cone

k3ji
|2, gl

geometry, |g - 219| Le =ebkg. 0

N

The import of this lemma is that by choosing e small, we can make

n
n 2 . n
. ] k k
the coefficients of Z 2 q, .h~g, ..X, near to those of Pg Z q (h)x, .
k=2 3=0 ki Tkji i k=2 k i

The analogue of the pressure in the lattice theory is given by

1
’ -=:I (h,q,x):
n I e how

— m
sz(hlgIUIA) = thC()\) . (h,g,u,A) € (0,°) X CE X R X [9,1];
(3.2)
where dYD is Gaussian measure on R2m with covariance D , i.e.,
1 -
_EXD lx
a - € dx
¥p 1 -1
-EXD X
Je dx
and the Wick dots are with respect to the covariance hC(A) , i.e.,
k
[5]
k j i k~27
xe: = ) c L (-1)Imemy, Px .
1 .2 kJ 11 i
3=0
Because T has not been normalized by dividing by the volume it generates

2m

lattice graphs that have all vertices summed over rather than having one
vertex fixed as with the continuum pressure.
The lattice analogue of E(h) is the Legendre transform F2m (evaluated

with the classical field equal to zero) given by

Fzm(h,g,k) = sup [*hTZm(h,u'g,A)] » (h,g,A) € (0,°) X Ce ™ fo,1]. (3.3)

2m
HeR



The following lemma will be used in the proof that T

is fin

2m

Lemma 3.3: Let dv = g(x)dx be a finite positive measure on

tix eI*ay

g >0 and e € L'(dv) . Let dvj = { . Then 1lim

J ejxdv

Proof: It suffices to prove that lim dev. =4+ © ,

e]xg(-x)dx

dev ; = -[xdv; where dv . = , and dv_
- J

Jejxg(—x)dx

the hypotheses of the Lemma.

koo

since

= g(-x)dx

ite.

R' , with

dev. = to
J

satisfies

-

To prove the j - + » case, we begin by showing that given any a <1
and y > 0 there is a J(y) such that
J dv, > a for every 3j > J(y) .
j = z
Y
. Y
In fact, let € > 0 and choose X, <y such that J dv < € . Choose J0
X
0
J(x_-y)
0 .
such that e < g for 3 3_J0 . Then
X X
® ix 0 ix y Jx ® ix I%g (o Jjy ® ix
e’ "dv = J e” dv + I e” dv + J e’ dv < e J v t e e + e”"dv
- - Xy y - Y
"o -3y [0 ix
= ejy[g J dv + € + e J el dav]

for e sufficiently small.

91



But for y > 0 and j > J(y) ,

© -y Y °° -y
I xdv | = I xdv, + J xdv, + J xdv, > j xdv, - y(l-a) + ya
-0 J -0 J -y j y J . -0 J

-y
= J xdvj + (2a-1)y . (3.4)
And if y >0 and j > 0 then
I X e_jxg(—x)dx

_y 00 00
|J xdv.| = J xdv . f_J xdv |, = 0
] ~J -]

J e_ng(-x)dx

J x g{-x)dx

<0

— (0
J g{-x)dx

(3.5)

1t
Q

By egns. (3.4) and (3.5), [ xd\)j >=-c+ (2a-1)y if j > J(y) . The
-0

lw

Lemma then follows by taking a = . since y can be taken to be

arbitrarily large. O

Theorem 3.4: The lattice Legendre transform P2m(h,g,k) is finite for

(h,g,A) € (0,%) x Ce x [0, 1] , and the supremum in its definition is

attained at a unique point wu(h,g,}) .

Proof: The variables h,g,A,m play no role in the proof so we drop them

92



from the notation and simply write

I =sup [-T()] = -inf T (u) . (3.4)
2
ueRzm ’ HER ™
—:Io(x):-ux
Now T(u) = &n J e e dYC(x) , so for 6 € [0, 1] and u # v ,

T(6u +(1-6)v)

9(—:Io(x):+ux) (l—G)(-:Io(x):+VX)
n j e e dYC(X)

-:Io(x):+ux 0 —:Io(x):+vx 1-6
av) (I o avg) |

an [(Je

| A

= 0T(u) + (1-8)T(v) , (3.5)

by Holder's inequality. By the conditions for strict inequality in Holder's
inequality given in [Rudin 74, p. 661, H5lder's inequality is strict here
provided there are no constants o, B (not both zero) such that

—:Io(x):+ux —:Io(x):+vx
o e =f e ) a.e.(dy) . Since there are no such ao, B

if uw # v the inequality in (3.5) is strict:
T(6u + (1-6)v) < 6T(p) + (1-8)T(v) .

That is, T is strictly convex. It follows that if T is bounded below
then the supremum in egn. (3.4) is finite and is attained at a unique point.
By a standard theorem [Rock 70, Thm. 27.2], T is bounded below if

lim —E-T(tu) >0 for every U # 0 . We use Lemma 3.3 to show more, that

o0 ot

in fact 1lim 5%-T(tu) = 4o , By definition of T ,
£
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—:Io(x):+tux

. ux e dYC
-_..T =
ot (tw) -:Io(x):+tux
e a
YC
—lxc-lx
Expand the Wick dots, write dYC = const e dx , and choose an i for
. A 2m-1

which Hy #0 . Let 2z =u*x and y = (xl""'xi""'X2n3€ R

Then for some polynomial P in 2m variables,

z etZ(Je-P(z'y)dy)dz

J etz(Je—P(z'y)dy)dz

which goes to +»® as t > « by Lemma 3.3. [

§4., Regularity of the Lattice Legendre Transform

o«
In this section it is shown that F2m is C as a function of

th,g,x) € [0, y) % E; x [0, 1] . Because the lattice interaction involves

n
. . 22 . .
the basic polynomial z quk + %mlx , the lattice and continuum theories

k=2
have similar structures. The proofs in this section are based on the same
ideas as the proofs of smoothness of the continuum pressure and effective

potential, and can be omitted in a first reading.

We begin with a lemma about C()\)_l . Recall from the definition of

C(A) (egqn. (2.1)) that the nondiagonal elements of C(\A) are required to

be less than or equal to r .

Lemma 4.1: For any € > 0 there is an rb > 0 such that C(A)-l exists

for all r < rO .. and xC(k)_lx 3_(mf —€)|x|2 for all x ¢ R2m , T < rO R

AE[OI l] -
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1

miI . By choosing r

sufficiently small the spectrum of C(A) can be confined to a neighbourhood

Proof: For r =0 , C(A) = m121 , so C(\)

of m12 small enough to guarantee that the spectrum of C(>\)_l is within

2
e of m] . ad

The following Lemma provides a multi-dimensional analogue to

Lemma 2.3.6, and is the key to proving smoothness of T After T

2m ° 2m
has been shown to be smooth Lemma 2.1.2 will be applied to obtain smoothness

of sz .

Lemma 4.2: There exist ryr €, P, Y > 0 such that the polynomial in

X € R2m

- . . - 1 -1
Ju(h,g,X,x) = .Io(h,g,x).hc(x) ux + 2xC(A) X (4.1)

(after undoing the Wick ordering) has a uniquely attained global minimum, at
say &E(h,g,u,Ar) , for all (h,q,u,r,xr) € [0, v) X E; X D, % fo, 11 x [o, r0] ’

where D = {x e Rzm:|x| <p} . BAlso, £ e C ([0, y) % E; X D X o, 11) .

Moreover, there exists a ¢ > 0 such that

2
K(h,g,u,A;x) = JU (h,g,A;x+E(h,g,u,))) - Ju(h,gr)\;g(h,gm:)\)) ic.|xl (4.2)

— 2
for every (h,g,u,A,x) € [0, v) % c. X Dp x [0, 1] x R o

Proof: Recall from egn. (4.3.2) that for a ¢ B there is a § > 0 such that

n n
122

) g yk +Imiy” > 68 ) |y|k for every vy € R . (4.3)
=2 kO 21 T k=2

&k

By Lemma 4.1 rq > 0 can be chosen sufficiently small that

1

-1
EXC(X)

x 3_(%mi - %)]x|2 for all (A,r,x) e [0, 11 x [o, ryl x rF" . (4.4)



By Lemma 3.2 it is possible to choose Yy and € small enough that the

k

coefficient of xi in ;Io(n,g,x): (after undoing the Wick ordering)

hC(A)

. 8 —
is within ZEg of (Eg)qkO for all ¢(h,qg,Ar) € [0, v) x Ce x [0, 1] and
ie {1,2,...,2m} , ke {2,...,n} . This can be done because the coefficient
is a sum of terms each of which is linear in one component of g and

. k ,
which are at least O(h for all term X t th X term. Usin
(h) erms except the gkOiko i te g
this, together with eqn. (4.4), we have
2m n

k ' § k 12
Jo(h,g,X;X) i'izl kzz [(Eg)qkoxi - (Bg) leil 1+ (-2-ml - 2)x

+C (g, + C (h,gA) .

where C; and C, come from the Wick ordering, are O(h) , and are a sum

of monomials in components of g . Therefore, using egn. (4.3),

2m n
k 1202 8 k 8 2 ]
. + = - - -
To®iaix) > (e ) | (] an; * gmox) = Gl 1" - Sl
i=1 k=2
12 8§ 2
+ (1-B9) (Gmy Z)l | < + C;x + C,
8 2 12 J 2
> - - - - -
> (Bg)slx|* + Bg) (5m; 4)[ | < + c x + Cg
§ ; 12 8 12 ) 36 12
- 4 - = - - = - - + P —_— - -
But (Bg)y * (1-Rg)(3m) - ) =3m) - 3 * P95, - 3m)
> l.m2 - § + .2.6_ - 1‘m2 = §
—21 4 4 21 2'
. 12
since >m, > & by egn. (4.3) (and the fact that Aoy = 0) . Therefore

|2 + C.x + C 2m

: §
Jo(h,gﬂ\;x) z_"i IX 1 0’

for (h,g,A,x) € [0, Y) % E€ x [0, 1] x R

(4.5)
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and hence

| TRE § |
Ju(h,g,k;x) -C 3_Z|x] + (Cl—u)x 3_Z|x|2 - (Iul + |C1|)|x| .

0
It follows that

3 thgdix) - ¢y 20 if [x| > asTHu] + Ic D - (4.6)

0

Since JuCh,g,A;O) - CO = 0 we have min Ju(h,g,A;x) - C0 5;0 for every
X
2m

U € R and it suffices to show that 5%—-Jo(h,g,k;x) = ui (i=1,...,2m)
i

has at most one root in {x:|x| 46_l(|u| + |C1|)} . By egn. (4.5) ,

IA

32 2m
det 9x, 9%
i

(g) , for (n,g,)) € [0, v) x EE x [0, 1].

|v

Jo(h,g,k;xﬁ

x=0

Using this and the fact that derivatives of J with respect to x are

0
uniformly bounded in (h,g,A) € [0, y) x E; x [0, 1] and choosing ¥y and

€ smaller if necessary, there is an a' > 0 such that

2m

2
Jo(h,g,l;x)] > (%) for all (h,g,A,x) € [0,y) X Ce x [0,1] x Da'

)
det [3;75;—
i 3]

NI

(4.7)

One can argue using (4.7), the fact that derivatives of J are uniformly

0

bounded and an adaptation of the proof of the inverse function theorem, that

there is an a > 0 such that VJO(h,g,A;-) : Da > R2m is one-one and

hence VJO(h,g,A;x) = p has at most one solution in Da , for any 4u € R2m .

Let 2p = ad/4 . Then for 1 € D and y small enough that |c_ | <p ,

p 1|

{x : lxl §.45_l(|u| + |Cll)} < D, and so Ju has a uniquely attained global
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minimum.

Call the location of the global minimum E£(h,g,u,A) . Then £ is c
in (h,g,u,2) € TO,y) x E; x Dp x [0, 1] by eqp. (4.7) and the implicit
function theorem [Warn 71] . Finally, egn. (4.2) follows from the fact
that E(h}g,u,k) can be made arbitrarily close to zerxo by choosing Yy and
P sufficiently small by egn. (4.6), and hence the coefficients of K

can be made arbitrarily close to those of Iy - 0

From now on we take r = rO .

Theorem 4.3: hTZm(h,g,u,k) is C in (h,g,u,A) € [0,y) x E; x p x [0, 1].

NI~ O

Proof: Translating x by & in eqn. (3.2) and then scaling by h gives

1

-%K (h,g,H r>‘ ;hzx)
Je dx

hsz(h,g:U:A) = —Ju(hlgl)\;g(hlgIUIA)) + h n , (4.8)

—%XC(A)_lx
Je dx

where Ju and Ku are given by (4.1) and (4.2) respectively.

The first term on the right side of egqn. (4.8) has the required smoothness, by
Lemma 4.2. Using the bound of egn. (4.2) and Lebesgque's Dominated Convergence
Theorem, the sec?nd term can béldifferentiated under the integral sign with
respect to (tﬁha,g,u,k) € [O,YE) x E; X D, X [0, 11 . The only thing to
check is that odd t derivatives vanish at t =0 , i.e.

k L

)
-EE-D D" ——z'[t
IH 4

Zsz(t2,g,u,A)] >0 as t+0, if k is odd. (4.9)

To see this, note that by eqn. (4.2)
1
5 —
L x(t2,9,u, 05 tx) Z.C|X|2 for all (t,g,u,A,x) € (-y°,y )XCEXDpX[O,l]XRzm ,

t2

NI



so that in fact the second term on the right side of egn. (4.8) is c”
1 1

. 2 2 = .

in (t,g,u,A) € (=y , vy ) X Ce X Dp x [0, 1) . But by scaling

1
'—];K(tzlgIUrkftx) —'_21<(t279rur>\7x)

2
I e t | dx = t—2m e t dx .

Therefore the second term on the right side of eqn. (4.8) is invariant

under t - -t , and egn. (4.9) follows. 0

Remark: A continuum version of Theorem 4.3 would be more difficult to
prove than the lattice version, because in a continuum theory with space
time dependent coupling constants the function & which removes the linear
term from the interaction satisfies a non-linear partial differential
equation. Also, smoothness properties of sz with respect to g and u
would be in terms of functional differentiation in the continuum theory
rather than the partial differentiation in the lattice theory.

In the next lemma, we use the notation

1

e

ﬁ%:l (h,g,x):
H a
J © The (1)

Lemma 4.4: The following limits are uniform in g, u, A € E; x Dp x [0, 1] .

(1) im h T, (,g,u,A) = -3 (0,9,2;£(0,9,u,2))
ht0
(11) 1im (x> = £.(0,9,1,})

w0 - T h,g,u,



(111) 1im h 7 (x, = o h,

P X
h+0 J>hlglu'l>\

is invertible (in fact, positive definite) by egn. (4.2).

j' where M

= R A K(0,g,u,A;Xx)
ab axaaxb

x=0

-1
In particular, 1limh X, 1 X, = C(A), .
< 1 3>‘h,g,0,>\ 1J

hio

Proof: (i) The result follows from egns. (4.8) and (4.2).

(ii) Differentiating egn. (4.8) with respect to L the left side gives

<>_<i> . while
n

4
rGeH,A

0

8ui i

m 3E . 2m
= ] 3 e —L-E - ) oy,
=1 aaj Y duy Sl

3 . .
The result then follows since —— applied to the second term on the right

Bui

side of egn. (4.8) is 0(h) by egn. (4.2).

-1
! J(x.,x.)e h
1]

{

]

3

—Jd - .

0

g
i

1

“_Ju(hrg,)\ig(‘hlgrul)\)) = a-i‘—[Jo(Tlrg,)\iE(h:g:U,M) - Ug(hrgru,)\)]

1

—lJu(n,g,x;x)

dx

(iii) T <xi,xj>

1
Th,g,u,A

e

-n'lf((xfai) ; (xgHE ) e

\

J{ —ﬁju(hlglu;x)

dx

-lK('h:g:U,)\ix)

dax

1
-=K Yy I>\;
Je_h (h,g,u x)

dx

100



1
-1 ‘-K(hrgrl—‘rxix)
h J(x.;x.)e dx
i ]

1
{ "'K(Tl:g,UJGX)
h
e dx
1

2
-}K(?lrg,u:)\ih X)
J(x.;x.)e dx
i 3]

1

( —lK(TlIgIUIA;hzx)
h
e dx

101

using eqgn. (4.2) in the last step. Since M is a symmetric positive definite

quadratic form, the last integral is a Gaussian integral ‘that can be

-1

evaluated explicitly to give (M 7)., . 0

1)

Lemma 4.5: 1lim u(h,g,)) = 0 uniformly in (g,}) € E; x [o, 11 .
h+O

Proof: To simplify the notation, let £(h,u) =h sz(h,g,u,k) and

fw) = —JU(O,Q,A;E(OIQ,U,A)) . By Lemma 4.4(i), lim f(h,u) = £(u)
h+0

/

uniformly in g and X . *By egn. (3.5) £(h,*) is convex, so the same
is true of f . Also, f is smooth for small |u| and £(u) > 0 with

f(u) =0 only if u=0 . Let € ¢ (0,p) and set

a = min Isg-f(sﬁ)[ . Then o > 0 and for any Iﬁl =1,
s=te

lnl=1
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<=0 s =-¢
3 ~ 3 ~ ~
_— f . B t - f ’ = ~
5s (sn) ut == (h,su) = p <x>h,g,su,>\ and
> o s = +e
2 £(si) = 243 _(0,9,4:8(0,g,50,0) - SHE(0,g,s0i,A)]
as as 0 r r 7 4 4 r 14 r ’

NE(O,g,sH,A) .

Therefore |-é%f('h,sﬁ) - -a—a— f(sp)| = | <x> - ﬁg(o,g,sﬁ,)\)|
S hrngUlA
< | &> - EO,g,su,0) ] (4.10)
n,g,suU,A .

The right hand side of eqn. (4.10) goes to zero as h + 0 uniformly in g,A ,

s = *e¢ and [ﬁl =1 by Lemma 4.4 (ii).
N ) ~

Therefore there exists a & > 0 such that I-é-g f(h,su) - s f(su)l < %

for all (h,g,s,M,\) € (0,8) x Ee x {-¢,+¢} x {0 : 0] = 1} x [0, 11, and
a

3 R < - 5 s S = —€ R

so 3o f(,sn) for all B <6 , |u|] =1 . It follows that
. i % ' s = +€

the minimum of £(h,y) is attained at some point s@@)p(m) with [0(@®)| =1

and sth) <e . DO

Theorem 4.6: Fzm(h,g,)\) is ¢ in (h,q9,X) € [0,y) x Ee x [0, 1]

Proof: We first show smoothness of sz(h,g,)\) = -h TZm('h,g,u(h,g,)\),)\)

in the open set (0,y) X CE x (0,1) . By Lemma 4.5, u(h,g,\) € Dp for
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"h < vy sufficiently small. Therefore by Lemma 4.4 (iii),

2
) -1
__° = > >
det T h sz(h,g,u,)\) det | h <xi,xj> >cC 0
h,g,u,A

Ihim, g,
(4.11)

uniformly in h, g and X if e and Yy are sufficiently small. By
egn. (4.11) and the implicit function theorem [Warn 711 , u(h,qg,}x) is
[+]
C in (RB,g,A) € (0,y) X% CE x (0,1) .

The extension of smoothness to [0,y) x E; x [0, 1] poses no
difficulty since derivatives of P2m can be seen to be uniformly bounded

in (h,g,A) € (0,y) X Ca X (0,1) wusing egn. (4.11) and the fact that

derivatives of sz are uniformly bounded (by Theorem 4.3). [

§5. Irreducibility

In this section we give the proof of Theorem 1.4.3(b). The first

theorem of this section allows us to analyze the graphs occurring in

N .
lezN(O,g,A) instead of those in DTE(O) .

N
Theorem 5.1: For N > 2 , —D1T2N(O,g,k) is given by a finite linear

combination of graphs which is topologically identical to the sum of graphs
equal to —DTE(O) (as given in Theorem 1.3), with the following rules of

evaluation:

1. Whereas a vertex in —DTE(O) takes a factor -qkj:¢k(R2): , @ vertex
‘ 2N

in —DTP(O}g,A) takes a factor - z

i=1

U551 %4
2. No vertex is fixed — all are summed over the lattice.

3. A line joining xi to xj contributes C(>\)ij .
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Proof: Since

N

jtk-1 -1

2N n =
k
_z [ 2 2 qk‘h 2 g L33 :xi:_h211i(h:gr)\)xi]

: . kiji
_ i=l k=2 j=0
FZN(Tl’g’A) = <“h &n Je dYC(A)
13 '+
n 2 ’ g-l k '%
'J £ Z qu-Tl : ¢ :h “uth)el
- _ J
d E(M) = -n L lim &n A k=2 3=0 d
an ) = TXT e uc '
A 1
1
2

differentiation of T with respect to t =+t is formally very similar to
1
2 .

h , and with the rules 1-3

differentiation of E with respect to t
above, yields graphs of the form (1.10) with £ replaced by

b{t,g,A) = t_lp(tz,g,l) . However a different mechanism is responsible
for hooking the graphs Dib(t,g,%) onto the corresponding legs, as we

now explain. For b € R2N , let

,:xk:—b,x,]
i7" i%i

z(»tlglblx) = T(t2'glt~bl>\) = fn Je (5.1)

a .

Yoo
3 .

Then b(t,g,A) is characterized by Py z(t,g,b(t,g,A\)},A) =0, (i=1,...,2N).
i

Simplifying the notation by denoting differentiation by subscripts and

using an implied summation convention, differentiating egn. (5.1) with

respect to t gives

-1
zbt + zbbbt =0 , and so bt = -zbbzbt .

2
Since Zyy = t2Tuu , it follows from Lemma 4.4 (iii) with t = +h
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that b is invertible if t is sufficiently small. In fact,

. -1 _ -1 co s -1
lim z = C(A) ~,. . The matrix inverse =z plays the role here of
£40 bibj ij bb

2 .
the denominator DZC(t,f(t)) in Theorem 1.3.

-1
To see that 2z hooks things up in the right way, consider for

-1
mol - e, . . .
example ztl]zbbzbttt at t 0, i.e., a linear combination of terms of

i i
1 _ , .
D—lcm L 3‘_&32
ij
12 R
J3

where a vertex denoted k is fixed at X

the form

Suppose the llne ———i 1is connected to vertex i

T A Fesy o) {5: b\cz»

i, 3 =1 i,
This shows that at t =0 ,

.J =1 J2

Corollary 5.2: Dl 2N(O 1,0 =

where o is a multi-index with 2N(g+l)(n—l) components.

Proof: By Theorem 5.1, DlF2N(O,g,A) is a polynomial in g of degree N ,

so the Corollary follows by Taylor's Theorem. a

The following Lemma shows that when g = 0 the interaction (defined

in (3.1)) occurring in the lattice pressure T(h,g,u(h,g,A),A) vanishes.



Lemma 5.3: p(h,0,A) =0 for (m,A) e [0,y) x [0,1] .

Proof: It was shown in the proof of Theorem 3.4 that

1
=ux
h TZN(h,O,u,A) =17 4n Jéh is strictly convex as a function of u .

Nacmn)

Since h T2N(h,0,—u,l) =h TZN(h,o,u,A) , it follows that

inf *h T2N(h,0,u,x) occurs at u(,0,x) =0 . 0O

U€R2N

To simplify the notation for derivatives with respect to components

of g , given indices kz, jg, il we write 9, = gkgjgiz , and denote

derivatives with respect to gl with a subscript £ , e.qg.,

= —_—— e e I" . .
PlZ...N 3 3 and we drop the subscript 2N from FZN and T2N

gi.j. Iy

The following lemma is the first step in identifying the graphs contributing

to -Flz...N(h,O,A) .
Lemma 5.4: For B < vy , -F12 N(h,O,X) is a finite sum of graphs with the
. 1
32+§k2_l kl .
N vertices -gq_ . h sx,: (2=1,...,N) and lines C(X) . No
k3 )

self-lines can appear. Graphs enter the sum with either a plus sign or a
minus sign, but all those with minus signs are 1-PR . Furthermore, every
1-PI graph with the mentioned vertices enters the sum with a plus sign.
The combinatorial factor of a 1-PI graph is the same as for

lel_.N(hIO,O,X) .

Lemma 5.4 will be improved in Theorem 5.6 whexe it will be shown that
all the 1-PR graphs in —Fl2 N(h,0,>\) cancel, leaving only the 1-PI
graphs.

106
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Proof of Lemma 5.4: The variables h and A play no significant role

in the proof so we drop them from the notation. Derivatives are denoted
by subscripts and an implicit summation convention is used. In the
following, all derivatives of T are evaluated at (g,u(g)) .

Differentiating the equation -T(g) = T(g,u(g)) with respect to g1

ives -T_. = + = i = i
g 1 T1 Tuul Tl , Since Tu 0 . Note that in Tl the g

dependence of 1 1is not differentiated. Differentiating —Fl = Tl »

with respect to g, gives

T2 T T * Ty

To compute ui , differentiate the equation Tu = 0 with respect to 9

toobtain T , +T u, =0, i.e.,
H1 HU 1
-1
M, = =T T | (5.2)
1 HE U1
where the inverse on the right side is a matrix inverse. Therefore
T =T, - - (5.3)

T
12 12 luTuuTu2

Note that when g =0 (g,u(g)) = (0,0) by Lemma 5.3 and we have a free
theory. Using the lattice analogue of the formula (1.3.3) for the
derivative of the logarithm of a partition function and the definition of

T in egn. (3.2), a derivative of the form T, , X at g =0 1is the
ij...kp...u

M

-

sum of all connected graphs with fixed vertices as specified by the gz's ’
and M fixed one-legged vertices because of the p derivatives. As shown

in the proof of Theorem 5.1, T;i serves to link up graphs in a free theory.

We use a graph notation for the derivatives as follows. Denote



T. . :
...kU... b PR
1] H H Y .
M

on the y, = -T °T
i ui

was brought down by differentiation with respect to p . When g =0

or <::>=>i is given by a sum of connected lattice graphs without self-lines.

(In particular, at g =0 <:>=>==O) . In this notation, egn. (5.3)

becomes -T, , = l<(:>:>2 - r<(:)——<:)>>2

The theorem now follows by repeated differentiation of eqgn. (5.3)

£

using the following facts:

L
) -1 -1 -1
—— T =T (T +T  u )T = - é +
a9, “uu uu( V318 [VEVS VRS A VT

Clearly all graphs occurring in —P12 N(O) with a minus sign are

1-PR , because a minus sign is introduced with every factor of T;i (and
in no other way) and a factor of T_1 corresponds to a line whose removal

disconnects the graph. Furthermore —P12 N(0) contains the term

+T12 N(O,O) which is the sum of all connected graphs {(with combinatorial

factors) having vertices as in the statement of the Lemma, and hence

contains as a subset all 1-PI graphs. [

The following theorem is the key to obtaining the cancellation of all

lo8
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1-PR graphs in --T,, N(h,O,A). Is is inspired by [CFR 81].

Theorem 5.5: Given gy = Ik, 3,i, (=l,...,N) , if at least onme

is an element of {1,...,N} and at least one i is an element of

1 L

L
{N+1,...,2N} then for all h ¢ [0,Y)

DsFlz...N(h,O,O) =0,s=0,1.

Proof: Since h plays no role in the proof it is omitted.

R 0
. . . - 4
Beginning with the case s = 0 , since C(0) 1. my 1
-1
0 R
2
does not mix {xl,...,xN} and. {xN+l,...,x2N} we can write

T(g,u4,0) = S(1) (g(1),u(1)) + S(z) (g(2),u(2}))

where u(l) and g(l) (respectively 'u{(2) and g(2)) consist of those

M, and I i1 with i e {1,...,N} (respectively i e {N+1,...,2N}) , and

1l

S (1) (g(1) 1 (1))

s

2N n k
-1l CRLSTL L

_ i=N+1 k=2 j=0
8(2)(g(2),u(2)) = QnAJe ar _, (XN+1"' ’XZN)
m. R
1 2
. -53— 5.y @A) ie (1.8
Therefore 5;-T(g,u,0) = Hy .
i
9 .
3. s(z)(g(Z),u(2)) i e {N+1,...,2N} |
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uil)(g(l),O) ie {1,...,N}

It follows that ui(g,O) =
(2)

My (g(2),0) i e {N+1,...,2N}

and hence T (g,0) ~T(g,u(g,0),0)

1l 2
= -S(l)(g(l),u( )(g(l),O),O) - S(z)(g(2).u( )(9(2),0),0) '

and the theorem follows in the case s =0 .

To prove the theorem in the case s = 1 , we begin by noting that

- __4 - _ -
DZF(g,O) = 7 x=0T(g,u(g,k).k) = D2T(g,u(g,0),0)D2u(g,0) D3T(g,u(g,0),0)
= -D3T(gru(g:0):0) ’ (5.4)

since D2T(gyu(g,k),k) = 0 . Denoting expectations with respect to dYC(A)

-:I (g,x):
by [.]A and expectations with respect to e H dYC(A)
-:I (g,x):
u
Je e
by <> g, we have
-:I (g,x): ~:I (g,x): :I (g,x):
-k u - u -1 3 ]
D3T(g,u,0) = ¢nle ]A = [e ]0 = [e A
0 0
v -:I (g,x):
=:I (g,x) =Ll B ) H
=[le " L« axlo( o lgx i ny)e do
2N
-:I (g,X):. -} _1 . 5 5
+Te M P T3, Z_ %;DC(0) ;3x.1,) (5.3
i,j=1
<: ) 1 2N 1
= Q=) I (g,x): ) -z ) pc(o;i({x.x -Ix.x.1) .
0
3 0 0 c(A) >g,u,0 2 i,3=1 ij i j>g'u’0 iy



- X

By egns. (5.4) and (5.5),

9
D,T(g,0) ={=+| I _(g,x):
2 Ao O C(Ai> g,u(g,0),0

-1
DC(o), . ( <x.x. - [x.x. 1) (5.6)
137 V5 g,u(g,0),0 30 |

Now differentiate eqn. (5.6) with respect to ga and gb where

ia e {1,2,...,N} and i, e {N+1,N+2,...,2N} . Since

b
tgj
s =7 ck.<-1)3c(x)?.x5'23 ,
i ) 3=0 J ii i
[%]
91 ..k, _ 3. j=-1 k-23
o %= Z o5 (-1 73c(0) 7 "peto) x T

o Ycm) =0

9 . . .
Therefore =3 :I.(g,x): is a sum of two polynomials: one in
3 o 0 C(A)

Xjse..,%, depending only on g, with i, € {1,...,N} , and one in

L

17 Fon depending only on g, with i, € {N+1,...,2N} . Since as

was seen in the proof of the s = 0 case the measure .

P ) < >gIU(gro)lO
1,...,xN and
e {1,...,N} and 9, with

factors into a product of probability measures in x

X /X depending only on 9, with i

N+1'°" T ToN %
32

i
—t :I_(g,x):
0 0

89,39, I =0

i e {N+1,...,2N} respectively, C(*i>
g,u(g,0),0

Next, observe that the term involving [xixj]0 on the right side of

ean. (5.6) does not depend on g at all and hence vanishes after taking

g derivatives. It remains only to show that

111
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ﬁ— <xix. =0 . (5.7)
92%9p 2 g,u(g,0),0

Consider the case where both i and j are in {1,...,N} . Then by

factorization of the measure <x.x,> depends only on the g
i L
g,u(g,0),0

with 1

g € {1,...,N} and egn. (5.7) holds since ib e {N+1,...,2N} .

The case where both i and j are in {N+1,...,2N} is similar. Now
consider the case where exactly one of i, j 1lies in {1,...,N} . Then
by factorization of the measure,
<Xix. = <xi > . <xj> .
] gIU(gro)ro grU(glo) /0 . 9,11(910) .0
Each factor on the right side of the above equation vanishes by definition

of u(g,0) . This completes the proof of egn. (5.7) and hence of the

Lemma. [

We now show that all 1-PR graphs occurring in —F12 N('h,o,)\)

cancel, and identify explicitly the remaining 1-PI graphs. As in the

Ull (a)
statement of Theorem 1.4.3 we write d(a) = Z;—log —95—— .
m
Theorem 5.6: The derivative —Flz N(h,O,A) is a polynomial in *h

where the coefficient of hm is the sum of all d(a)-renormalized m
(kl) kg

loop 1-PI graphs with vertices =(P (a)/kll)xi (2=1,...,N) and
L

C(\)} lines with self-lines allowed. Note that the vertices are fixed.
Each graph takes the same combinatorial factor that it has in

T12...N(h'0’0'>‘) .
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Proof: We first show that —F12 N(h,o,k) can be written as a sum

of 1-PI graphs having h dependent vertices. Part of the work was

done in Theorem 5.4, from which it follows that we can write

K M L
T, = Y I, (B,A) + I R (B2 - anm,m , (5.3)
e k=1 m=1 2=1
where the three sums on the right side of egn. (5.3) are respectively
the sum of all 1-PI graphs made of C(A)-lines and vertices
.1
j.+zk, -1 kl

L
-qk . h %2 :xi : (havinq the same combinatorial factor as in

23 %
112 ,N(h,O,O,K)) , the sum of all 1-PR graphs occurring in the expansion
of Theorem 5.4 with a plus sign, and the sum of all 1-PR graphs occurring
in the expansion with a minus sign. We now use Theorem 5.5 to show that
the last two sums cancel.

In fact, treating il,...,iN as free variables, it follows from

Theorem 5.5 that D§Fl2 N(h,O,O) =0, s =0, 1 for any admissible
imposition of il...iN on the lattice L2N of 2N points. On the other hand
K

z D;Ik(h,o) =0, s=0,1 for any AI , by Lemma 2.2. It follows from
k=1

egqn. (5.3) that

M L .
Z DzR (h,0) = z DSN (h,0) , s =0, 1, for any A.I. (5.4)
m 272
m=1 =1
M
We now show that this implies that z Rm(h,k) consists of exactly the same
m=1
L
graphs as z Nz(h,k) .
2=1

For a graph G with vertices as in Rm or NZ , denote by G the

graph obtained from G by cancelling all factors
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j+}—l

—qkjh . Since Rl is reducible and has N vertices, it can be

imposed on L by choosing i ,....,1 in such a way that a line of

2N 1 N

reducibility of R (i.e., a line whose removal disconnects Rl)

1
joins x) to Xae1 * and no other line joins {xl,...,xﬁ} to
{XN+1,...,X2N} . This imposition of Rl on L2N of course also imposes

the other Rm's and Nz's on L2N . Since all these graphs are connected,

at least one line crosses from {xl,...,xN} to {x } for each

N+1’ " FoN

d — s . , .
graph. But a Rm(O) or EX-NR(O) is zero if and only if more

than one line makes the crossing from {xl,...,xN} to {xN+1,...,x2N} .

Hence for the above imposition

M

d— d = d —
— = —R = -_—
) 5 R, (0) ) _ 7 Rn (0 Z. 5 g (0 (5.5)
m=1 one line one line
where Z a%—ai denotes the sum over those i for which Gi has a single
one line

line joining {xl,..;,xN} to {xN+1""’¥2N}' But because of the form of C(}A)

(ean. (2.1), for a graph ﬁk on ﬁﬁ with exactly one line joining {xl,...,xN} to

ay ds . o
ceer , =R i o
{XN+1' ¥2N} e Z(O) on =¥ . (0) is r multiplied py a product of rlj s

(1<i,j<N or N+1<i,j<2N) , because it is only when the line joining

{xl,...,xN} to {X_ _,...,%x..} is differentiated that the result is non-

N+1 2N

zero. It follows that the second equality in egn. (5.5) is an equality of
polynomials in the rij (1<i,j<N or N+1<i,j<2N) , and so the coefficients
of these polynomials must agree. However these coefficients characterize

the graphs topologically. To see this, note that the rij are in a one-one

correspondence with lines joining - X to xj . Thus a product of rij's
characterizes the parts of the graph sitting in each of the sublattices

{xl,...,xN} and ({x } . Because there will be only one vertex

N+1,...,x2N
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xi in each sublattice that does not have its full quota kp of lines
p
provided by the sublattice graphs, there is one and only one way that

the line crossing from {xl,...,xN} to {xN+1,...,x2 } can join the two

N

sublattices, and the graph is uniquely determined. Therefore

] R = 1 N (5.6)
one line one line

with exactly the same graphs occurring on each side of the equation. Now
discard the graphs contributing to egn. (5.6) from egn. (5.4) and repeat
the above procedure until none of the Rm remain. We now show that no
graphs NQ remain, arguing by contradiction. Discarding all R, graphs
and the corresponding Ng graphs from egn. (5.4) leaves O = X'Dzug(h,o)

s = 0,1 , for every AI, where z' denotes the sum over the remaining

graphs. Therefore 0 = 2' E%-ﬁ@(o) ., 8s=0,1, for every AI . Each
term in z' a%-ﬁi(O) is nonnegative, and since ﬁ& is 1-PR, for a given

L the i.,...,1 can be chosen in such a way as to make _Q.ﬁ' (0) >0 .
0 1 N dA 20

But this contradicts 0 = z' E%'EQ(O) and hence there can be no N

M L
remaining. The end result is that ] R (h,A) = ] N, (R,A) , with exactly
: m=1 2=1

L

the same graphs on each side of the equation, and hence

X

-T (h,0,A) = ) I (h,A) . (5.7)
12...N k=1 k

To identify the graphs contributing to the right side of egn. (5.7)

as those stated in the theorem, we begin by obtaining an explicit formula

for qkj . By definition (egn. (1.6)),

_ 13 .
qkj = ETD qk(O) , where I is

- n
. k

defined in egn. (3.1.9) by the requirement Z ak:¢ :hC =

: ' k=3 k

| >3

k
g, (h):¢ : .
o k- hCl
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ar 3<k<n

Let ék = . and extend the definition of
0 , otherwise

kl

Cpy = —g———~4———— by setting ¢ =0 if 3§ > [g] . Then by Lemma 2.2.1,
I 3rk-29) J
k
(51
n n n 2
k ~ k - i k=25
) ab o= L oaaen= ] ) (ha) 7:0 J’hc
k=3 k=0 k=0 © §=0 : 1
n
2 n
=1 1 &q, ma) T 45723, o
j=0 k=0 1
n
2 n 5
=Y tha) 3 : ¢*
520 2=0 2+2] 2+23 3 hcl
n
S oy
= z C a’n’']: ¢ . (5.8)
=0  §=0 Z+23 2+23,j Cl
- = j
Therefore qkj = ak+2j Ck+2j,jd , and a vertex
.k .k
+=- +oe ,
- hJ 2 l-xk- = -a hJ 2 : dj-xk-
%5 Kyl k+23 “k+23,5° Ui

can be interpreted as j ;E}(::ik where each closed loop takes a factor of

d , the combinatoric factor ck+2j 3 counts the number of w%ys of choosing
r’

j pairs from k+23j 1lines, each half-line takes a factor h2 , and the

vertex takes the factor -% 5k+2j . This means that there is a one-one
correspondence between I-PI graphs having vertices

!

+2k-1
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_qkjh ;xi: and no self~lines, and d-renormalized 1-PI graphs having



-1 . xk+2]

vertices 5 254 with self-lines allowed and each line taking a

factor h .

i

It remains only to identify the overall power of h of a graph.

/

An unrenormalized graph has a power.of h given by P=1I -V + 1 , where
I is the number of lines of the graph, V is the number of vertices, and
the extra +1 comes from the h in -T'=hT . But I - V + 1 is exactly
the number of loops in the unrenormalized graph. 0 |

In conclusion we combine the results of this chapter to prove
Theorem 1.4.3(b). By egn. (l1.1) and Corollary 1.2 we need only show that

for N> 2,

_ -1 N __ 1N _ 1N
—VN(a) = N DlV(O,a) =- N D ql(o) N DlE(O) (5.9)

is the appropriate sum of graphs. The first term on the right side of
egqn. (5.9) was identified in egn. (1.2) to be the d(a)-renormalized single

vertex N-loop diagram. By Theorem 5.1 the second term is a sum of graphs

N

topologically identical to the L,y-9raphs whose sum is - E%DIF(O.l,l) '

where T 1is the L2N Legendre transform (evaluated at the classical field

)

equals gzero). By Corollary 5.2,

1 N 1 1 _a N _ -1 I
S DT (0,1,1) = - 5 ¥ ~ D,D;T(0,0,1) = — )) —+ D,T(h,0,1).

o] M lalar
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(5.10)

But by Theorem 5.6 the right side of egn. (5.10) is exactly the desired sum
of graphs: the different terms in the sum over a give the N-loop graphs
with different kinds of vertices.

Finally we show that the combinatorial factors are as indicated in
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Remark 1 under Theorem 1.4.3. By Theorem 5.6 the combinatorial factor
of a graph contributing to Dg(h,o,l) is the same as for DzT(h,0,0,l) '

namely the factor associated with the graph by Wick's Theorem. The factor

|

of - occurring on the right side of egn. (5.10) provides the factor

R

1
™. appearing in Remark 1. Since the ﬁ% on the right side of (5.10)
jk’ )

N

ié cancelled by an N! brought down by —gﬁ-, the combinatorial factor of
dh

a graph in - E% D?F(O,l,l) , and hence in —VN(a) , is as stated in

Remark 1.

CHAPTER 6: FAILURE OF THE 1~PI LOOP EXPANSION

8§1. An Asymptotic Connected Loop Expansion

Until now we have discussed the asymptotics for the effective potential

when a ¢ B . The set B2 c B 1is not very interesting because it corresponds

to a massless theory which will be divergent when h = 0 . The set Bl c B
is more interesting and has recently received some attention in the
literature [Fos 831, [Bc 83], [CF 83] for the case of a double-well

2
potential. Consider the classical potential Uo(a) = (a2 - %) , with m=1

2 1 2 11
(so P(a) = (a2 - l) -5 a )y , for which B =8B = [~ —, —] .

1 Y8 Vs

(The constant % appearing in U0 is arbitrary and can be replaced by any
positive constant provided that m 1is also changed so as to agree with the
curvature of U at its minima). It is clear that the loop expansion

0

must break down at least for the interval |a| < Eg- where Ug(a) <0,

since in that interval vy (a) and the graphs contributing to vn(a) as
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given by Theorem 1.4.3 are divergent. In the above references the authors

take both minima of the classical potential into account for |a| <2

/8

and conclude that for |a| < 1 the 0(h) approximation to the effective

/8

potential is the straight line interpolation of Uo(a) - hy(a), Ia[ > L .
/8

In this section we give a rigorous proof that this picture is correct,
showing how it is a consequence of the definition of the effective potential
using the Fenchel transform and the occurrence of a phase transition

h

[GIs 76]. Moreover we find that the Nt order contribution is the sum

of all N-loop connected graphs, for N > 2.

Theorem 1.4.5: Let V(h,a) denote the effective potential for m =1 and

2 1
P(a) = (a’ - %) - %az . Then for J|a| < —= DlV(O,a) = -Y(—lﬁ =0,
) /8
and for N > 2 , -ﬁ%-DTV(O,a) is given by the sum of all N-loop connected

graphs with no self-lines, with three~ and four-legged vertices taking

P(3)(-33 = - /2 and lT-P(4)(—lﬁ = -1 respectively, and

/8 V8

factors -
3!

lines corresponding to the free covariance of mass one. Graphs take

combinatorial factors as per Remark 1 under Theorem 1.4.3.

1.2 4 3.2 1
. —_ - = [ + — t
Proof LetA P(x) Uo(x) 2x b 4x ea ' and le

-1 J EP(¢) :-u¢]
oy

. 1
=hl1l '
pth,n) Ai.l'; -rA—I- in |e duhc v
1

where C = (-A+1) The boundary conditions on C can be chosen as a

matter of convenience since p 1is independent of a wide variety of boundary



conditions [GRS 76]. By taking C to have periodic boundary conditions

' +
and appealing to Lemma 2.2.2, translation of ¢ by 1 gives
V8

1
‘EJ ,[.A:d>4:i/2—:¢3:—u(¢i—l—)]
A )

. 1
p(h,u) = h k:l;z TT\‘T n f e . duhc .

By Lemma 2.2.4 we obtain

1 1
—[ (h:o?:4v2 B2 93-uh 2¢th_l/—_)]
1 A 7] )
p(h,u) = h lim n e du
vechal oc
1 L
. -J (h:od:v2 1219 :-un 4]
=i—lu+‘h1im 11\ 2n | e A duc
V8 AMR? [A]
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(1.1)

We will apply results of [GJS 76] which use free BC , so for the remainder

of this section we take C +to have free boundary conditions. As usual,
Wick dots in an integrand match the measure.

In Theorem 2.2 of [GJS 76], for sufficiently small h and u the
one-point function corresponding to the pressure p(h,u) is controlled

using a low temperature cluster expansion. It follows from their results

)l =0('h2) ’

+
IDlpm,0) - ¢ =
)

as perturbation theory and egn. (1.l) would éuggest. (In the notation of

[GIs 761 thel + +version of thti above equation is A <¢(x)> = A£+ + 0()\4)
where A = ‘h2 and £+ = (8h) 2 lis the location of the minimum occurring

on the positive axis of 'h_lUO ('hza)'_= 'ha4 - 711a2+(64h)-l) . Therefore for

any |a| < L there is a §&8(a) > 0 such that a € [D;p(‘h,o), D;p(h,O)]
V8

that
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for all h < 8(a) , and hence (see Figure 2 on p. 19)

V(h,a) = suplua - p(h,w)] = =-p(h,0) , h < §(a)
U

. (1.2)

In [GJS 76] an infinite volume theory corresponding to the interaction

1

nx? + VEThz x> and covariance C is obtained. In §6 of [GIS 76] it is
1

shown that the perturbation series in h2 for a generalized Schwinger
function of this theory is asymptotic. The pressure is not discussed, but
it is straightforward to use the estimates of [GJS 76] to show that

perturbation theory is also asymptotic for p(h,0) , as we now show.

1 -[ [t2:¢4:+/5f:¢3:]
A

2 1
= t = .
Iet t =" and EA( ) TIT‘ln J e | duc

Then p(t2,0) = t2§(t) , where r(t) = lim CA(t) . By the Fundamental
A

Theorem of Calculus,

t t
1 4 3
QA(t) - CA(S? = Js DCA(x)dx = TAT ){S<2x:¢ (Ay: + /2—:¢> (A):>x Adx , S,£ >0

(1.3)

—J [X2:¢4:+/5 x:¢3:]
A

J c e duc
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1 4 = .
By Theorem 6.2 of [GJS 761 , W|<2x:¢ (A) :472 ;¢3(A):>X,A | is

bounded uniformly in A and small x > O . Taking the limit A 4 R% in

egn. (1.3) and using Lebesgue's Dominated Convergence Theorem gives

t o
z(t) - ¢(s) = J <2x;¢4(0):+/2:¢3(0):>x dx , s, t>0; s, t small,
s :

(>

where < >x = lji\m < >x,A . Since <2x:¢4(0)+/2_:¢3(0):> % is € in

small x > 0 by Theorem 6.1 of [GJS 76], it follows that

DZ(t) = <2t:¢4(0) + /5:¢3(0):>t t>0, t small, (1.4)

In Theorem 6.1 of [GJS 761 it is also shown that the derivatives of the

right side of (1.4) at t = 0 are given by perturbation theory. Since

p(t2,0) - tzc(t) , the same is true of p(t2,0) . The odd order derivatives
‘of p(tz,o) vanish at t =0 (becapse of the t + -t gymmetry of ) ,
and the derivatives with respect to t of order 2n at t =0 correspond

to derivatives with respect to h of order n at h =0 . It follows that

+

]
I

p(h,0) is Coo in small l‘h t2 , including h 0
Since p(h,0) = Bz (B2 . D p(0,0) = £(0) =0 . But by definition of

Y in egn. (3.1.6), Y(-—l) = 0 , and hence —DlV(O,a) = -Y(—L) = 0 by
) V8

1 . .
,DI]\_]V(O,a) = E;'DI]\_]p(O,O) is given by

AN

(1.2). Moreover for N > 2 , -
perturbation theory to be the sum of all connected n-loop graphs with 3
and 4 legged vertices taking factors -¥2 and -1 respectively and with

1

legs corresponding to (-A+1) ~ , with the usual combinatiric factors

and no closed loops. [
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Theorem 1.4.5 shows that the asymptotic behaviour of the effective

1 2
potential corresponding to the double-well classical potential Uo(a) = (a2—§)

is quite different for |a| < L and |a| S . For |a| > L Theorem

V8 /8 /8

1.4.3 gives an asymptotic one-particle irreducible loop expansion for <V(h,a)
with graphs having three- and four-legged vertices taking factors -4a and -1

. 1
respectively and lines of mass 12a2 - % . However for |a| < — Theorem

/8

1.4.5 gives an asymptotic connected loop expansion for V(h,a)graphs having three

1
and four-legged vertices taking factors =4(—)= -/2 and -1 respectively

/8

2
and lines of mass 12(—24 - =-=1, i.e., the vertex factors and lines are

V8

NI

, —lJ . The asymptotics for V(h,a)
/8

calculated at an endpoint of B = [=

& |-

1
are independent of a when [a| < -1 because for la0| <— and h
/8 /8
sufficiently small V(h,*) is linear with slope zero near a and

0

approaches the linear portion of coano at an ao-independent rate.

The mechanism responsible for the fact that connected graphs rather

than 1-PI graphs occur for |a| < 2 is clear from the proof of Theorem

0

1.4.5: the supremum in the definition of V is attained at a point
independent of a and small h and the cancellation of reducible graphs
provided by u(h,a) when a ¢ B® does not take place. Thus in some sense
Theorem 1.4.5 shows what is lost by defining the effective potential to be
linear when there is a phase transition. It is an interesting open question

whether V(R,a) can be defined in B by an analytic continuation from B® ,

so that V itself might have a double-well structure.
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