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Abstract

The study of bifurcations of vectorfields is concerned with changes in qualitative
behaviour that can occur when a non-stucturally stable vectorfield is perturbed. In
a sense, this is the study of how such a vectorfield fails to be structurally stable.

Finding a systematic approach to the study of such questions is a difficult problem.

One approach to bifurcations of vectorfields, known as “generic bifurcation the-
ory,” is the subject of much of the work of Sotomayor (Sotomayor [1973a],Sotomayor
[1973b},Sotomayor [1974]). This approach attempts to construct generic families of
k-parameter vectorfields (usually for k=1), for which all the bifurcations can be
described. In Sotomayor [1973alit is stated that the vectorfields associated with the
“generic” bifurcations of individual critical elements for k-parameter vectorfields
form submanifolds of codimension < k of the Banach space X"(M) of vectorfields
on a compact manifold M. The bifurcations associated with one of these subman-
ifolds of codimension-k are called genersc codimension-k bifurcations. In Sotomayor
[1974]the construction of these submanifolds and the description of the associated
bifurcations of codimension-1 for vectorfields on two dimensional manifolds is pre-
sented in detail. The bifurcations that occur are due to the parameterised vectorfield

crossing one of these manifolds transversely as the parameter changes.

Abraham and Robbin used transversality results for evaluation maps to prove
the Kupka-Smale theorem in Abraham and Robbin [1967]. In this thesis, we shall
show how an extension of these evaluation transversality techniques will allow us to
construct the submanifolds of X"(M) associated with one type of generic bifurca-
tion of critical elements, and we shall consider how this approach might be extended
to include the other well known generic bifurcations. For saddle-node type bifurca-
tions of critical points, we will show that the changes in qualitative behaviour are
related to geometric properties of the submanifold £y of X"(M) x M, where &,
is the pull-back of the set of zero vectors—or zero section-by the evaluation map for
vectorfields. We will look at the relationship between the Taylor series of a vector-
field X at a critical point p and the geometry of ¥, at the corresponding point
(X,p) of XT(M) x M. This will motivate the non-degeneracy conditions for the
saddle-node bifurcations, and will provide a more general geometric picture of this
approach to studying bifurcations of critical points. Finally, we shall consider how

this approach might be generalised to include other bifurcations of critical elements.
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1.1

1.1 Some Parts of a Dynamical System

The flow of a dynamical system is usually composed of several flow-invariant
sets, including critical points, periodic orbits, and the stable and unstable manifolds
of the critical points and periodic orbits, as well as other more complicated types
of recurrent sets. By isolating each of these elements, we obtain a qualitati\./e pic-
ture of the behaviour of a flow. When we study bifurcations, the easiest qualitative
changes to consider are associated with changes in these elements because of the
description of the dynamics in terms of critical elements is relatively complete and

well-understood.

Definition of a Dynamical System

In the most general terms, a dynamical system is the deterministic evolution
in time of the states of some state space. We shall restrict ourselves to dynamical
systems defined by smooth vectorfields on spaces such as R" and other finite-
dimensional smooth manifolds. For example, suppose X is a smooth vectorfield
defined on an open subset U of R™ which vanishes off a compact subset of U.

Then X is a smooth map X : U — R"™ which defines a differential equation

dz

The solution to this differential equation is a map

. UxR-U,
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1.1

where ®(z,-) is the unique solution to the initial value problem

d e
a:z:(t) = X(z(t)), =z(0)=rz.

The map & is called the flow of the vectorfield X. Several properties of the flow
follow from elementary existence and uniqueness theory for ordinary differential
equations—A solution to the above initial value problem exists for suitably small
t, and any such solution can. be extended to be defined for all real ¢. Furthermore,
this solution is guaranteed to be unique and to depend smoothly (with the same
smoothness as X ) on initial conditions and time. Thus, it is is easily shown that
the flow is a 1-parameter group of diffeomorphisms-of U under composition in the
following way;

®(-,s +1) = ®(-, 5)od (-, 1).

The flow of a dynamical system gives the time evolution of states/points/initial
conditions in this way. Also, given a flow ® on a subset U of R", we may obtain

the associated vectorfield X by differentiating with respect to time, i.e.,

X(z) = %@(0, ).

The derivative of the flow in the variable z is given by the variational equation
d /0 a 0
E(a—xé(x,t)) = - X(®(z,1)) - 5-@(z,1).

A full accounting of these results can be found in Abraham et. al. {1983], sect. 4.1.

In subsequent chapters of this thesis, we will be exclusively concerned with dy-
namical systems defined on compact smooth manifolds. This restriction is necessi-
tated by the requirements of the evaluation transversality lemmas used in chapters 5
and 6. While there is no difficulty in defining a flow on a compact manifold, it is not
immediately obvious what is meant by a vectorfield on a compact manifold, and so
not obvious what the result of differentiating a flow with respect to time would be.
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1.1

We will define vectorfields on manifolds and derivatives of maps between manifolds
in sect. 2.1. For the present we will assume that we are working with dynamical
éystems defined on R". Most of the definitions in this section are topological in
nature, so that corresponding generalizations to the case of dynamical systems on

smooth manifolds is immediate.

Orbits. Trajectories

The trajectory ~v;(t) of a point £ € R™ for a vectorfield X : R® — R" is the

solution to the initial value problem

Celt) = X(nl0), %(0) ==

or in terms of the flow ®x of X;

1z(t) = ®x(z,1).
The orbit of the point z is the set of points in the (range of the) trajectory of z;
O(z) = {7:(t)It € R}

= {®x(z,t)|t € R}.

The trajectories of X partition R™ into orbits—each point of R" is in exactly one

orbit of X. Also, the orbits are trivially the smallest sets invariant under the flow.

Critical Elements

Certain kinds of orbits are of particular interest. A critical point is an orbit
consisting of a single point. The trajectory of a critical point £ € R" is just the
constant solution ~;(t) = z. A periodic orbit is the orbit of a periodic point; i.e. a
point z whose trajectory ;(t) is a periodic trajectory- which means there exists
7 € R such that ~,(r) = z. The smallest positive 7 such that ~v;(7) = z is called
the period of the periodic orbit/point/trajectory. Note that

vz(t + 7) = ®(z,t +7) = ®((7),1)
= &(z,t) = :(t),
-3-



1.1

so we see that all points of the periodic orbit are periodic with the same period.

The critical points and periodic orbits of a vectorfield X are collectively referred
to as the critical elements of X and denoted by T'(X). These are the most basic

recurrent sets of the vectorfield X.

Limit Sets

A trajectory ~; of X that remains bounded will have an orbit with compact
closure. In the case of a dynamical system on a compact set or manifold, all orbits
will have compact closure. For such orbits we may define the a— and w— limit sets

of the trajectory ~, by

wiz) = () 70k > T3,
T>0
and

afz) = (| O <T}.

T<0

The set a(z),(resp.w(z)) are where the trajectory through z ends up when t —
oo (resp.t — —oo). Intuitively, the orbit through the point z is “born” in ea(z)

and “dies” in w(z).

Orbit Structure

Critical elements are their own «- and w-limit sets, and so exhibit a very strong
form of recurrence. The a- and w-limit sets of any point are invariant under the
flow. The orbit through any point = “joins” its w— limit set to its a— limit set in the
sense that the trajectory ~; through z as the trajectory tends to the invariant set
w(z) as t —» —oo and tends to a(z) as t — +oo. Of course, these sets w(z), a(z)

may be equal, such as in the case of critical elements.

We may think of the orbit structure of the dynamical system, in qualitative
terms, as consisting of recurrent sets that are joined by other “connecting” orbits.
If S is a compact flow-invariant set for the flow ®, then we may define the inset
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1.1

(resp. outset) of S is the set of all points z such that w(z) C S (resp. a(z) C S).
We can obtain a great deal of information about the orbit structure by describing
the recurrent sets of the flow and indicating which of these recurrent sets are joined
by “connecting” orbits, i.e., orbits that are in the inset of one recurrent set and in
the outset of another. Of course, the structure of the recurrent sets and the various
connections can be very complicated. In the simplest case, the only recurrent sets
would be the critical elements of the dynamical system, and the orbit structure of
the system would consist of critical points, periodic orbits, and orbits connecting
various critical elements. More general cases involve more complicated recurrent sets
associated with less strong notions of recurrence. One important type of recurrent
point is a non-wandering point. A point z is non-wandering if for any neighborhood
U, of = and time T > 0, there exists a t > T such that some of the orbits starting

in U; have come back to U;; i.e.,

d(U,,t) [\ U: #0.

The set of non-wandering points of a vectorfield X is denoted by Q(X). Thisis a
comparatively general notion of recurrence, and difficult to understand well. Below
we shall consider a family of dynamical systems where all of the recurrence is in the

critical elements.

Stable Manifolds of Critical Points

Since the trajectory of a critical point is constant, it is easy to compute the
derivative of the flow with respect to initial conditions at a critical point. We recall

that IS 3 5
E(a@(.’t,t)) = EEX(Q(I,t)) . a@(z,t)
d

d
= — S t
BIX(I) azé(x, )s
if z is a critical point. Thus, £&(z,t) = exp(t - ;—IX(I)). The eigenvalues of

the matrix %X(I) are called the characteristic exponents of the critical point r.
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The characteristic exponents of a critical point are the various exponential rates of
growth and decay for the linearization of the flow at the critical point. One might
(correctly) expect that if none of these rates were zero, that the linear behaviour
would be dominant near the critical point. For example, if all of the characteristic
exponents of the critical point z have negative real part, then the linearization of
the flow contracts all perturbations exponentialy and we can show that z is an
asymptotically stable or attracting critical point. This means that there is a neigh-
borhood V, of z such that for any ¢-neighborhood U of z theré isa T > 0 such
that ®(V;,t) C U for all ¢t > T. In particular this means that z is the w-limit of

all points in V;, and that V, is in the inset of z.

If no eigenvalues of the critical point z have zero real part, then z is a hyperbolic
critical point. In this case the linearization of the flow contracts perturbations in
the subspace E; corresponding to eigenvalues with negative real parts and expands
perturbations in the subspace E, corresponding to eigenvalues with positive real
parts at various exponential rates. The stable manifold theorem tells us about the

structure of the inset and outset of z;

Theorem (Local Stable Manifold Theorem). If z is a hyperbolic critical point
of the smooth vectorfield X, then there is an ¢-neighborhood U, of z such that
the subsets Wi(z),W*(z) of U, which are characterized by

Wi(z) = {y € Uely(t) = z ast — +o0o and ~,(t) € U, Vt > 0},

Wh(z) = {y € Uclwy(t) = zast — —oo and vy (t) € U, Vt < 0}.
are submanifolds of U,, called the local stable and unstable manifolds of the critical
point z. Furthermore, the tangent spaces T,WS(z), T;W¥(z) of the local stable

manifolds at the critical point are the subspaces E., E, mentioned above.

A statement of this result with references is given in Guckenheimer and Holmes
[1983], p. 13, Theorem 1.3.2, and is also given with proof as Theorem 27.1 of Abra-
ham and Robbin [1967].
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Points in Wf(z) are attracted to z along W/(z) at exponential rates. This
manifold is the set of points near z that are atiracted to z without first wandering
away. Points that are not in W/(z) may be attracted to z eventually, but will first
have to leave the neighborhood U,. Corresponding statements hold for W!(z).
Clearly, the local stable manifold is invariant under the flow in positive time. If we

take the union

we(z) = |J e(W.(2),1)

teR

then W*(z) is an injectively immersed flow-invariant submanifold,. as it is an ex-
panding union of embedded submanifolds since the local stable manifold is invariant
under the flow in positive time. W*(z) is called the stable manifold of z, and is
in fact the inset of z as the orbit of any point in W* must eventually end up in
the local stable manifold, and so be in the inset of z, whereas points not in the
stable manifold will never end up in W (z), and so must leave the neighborhood
U. of z for arbitrarily large time. This characterizes the set of points that tend
asymptotically to the critical point z under the flow. Similarly we may define the
unstable manifold of z. Thus, the inset and outset of a hyperbolic critical point

have the structure of immersed submanifolds.

Periodic Orbits, Characteristic Multipliers

We would like to extend the above results to periodic orbits. Specifically, we
want to know which orbits will be attracted to a periodic orbit ~(t). If 7 is the
period of ~, then and z is a point in the orbit of ~, then ®(z,7) = z. We
would expect that orbits near ~ would approach ~ along directions transverse
to the orbit of 4 which are contracted by %(D(-,‘r). We need to consider the
asymptotic behaviour of perturbations transverse to the orbit of ~. Let S be
an n — 1 dimensional subspace (or submanifold) that intersects the orbit of 5
transversely at z ( X(z) does not lie in S). Then we may define a diffeomorphism
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1.1

of a neighborhood of z in S, called the Poincaré map of the periodic orbit ~.
Points y of S are defined by n-(y — z) = 0, where n is the normal vector of the
subspace S. Then n-(®(z,7)—z) = 0 and since g—t(n-(é(z,'r)—z) = n-%‘b(z,r) =
n - X(z) # 0, then by the implicit function theorem, we have that there is a map
7(y) in a neighborhood U of z such that n - (®(y,7(y)) — z = 0. This means
that ®(y,7(y)) € S. If we restrict y to S, then we end up with a map from a

neighborhood of z in S to a neighborhood of z in S. This is the Poincaré map

of the periodic orbit v which we shall denote by ©. We have for y in S near z

O(y) = &(y,7(y)),
@:5/(SnU) - S.

The Poincaré map is smooth (as smooth as the vectorfield X) as it is the com-
position of smooth maps. Furthermore, © is a local diffeomorphism by the inverse

function theorem. This follows as we may compute

) ) .9 0
a—y (I) v = 5;@(15, T) v+ EQ(I,T) ' ;9—1;7-(1) v
P 2
= —a—zé(x,r) v+ (5;7’(-73) v) X(z)

for v in S. Since Z&(z,7) is onto R", then the kernel of a%@(z) must consist
of vectors that are mapped along the direction of X(z) by Z&(z,7).But X(z) is

invariant under 6%Q)(:L,T) by the following;
&(z,7) = 9(®(z,0),7),

so that differentiating with respect to time gives

2 8(z,7) = X(8(z,7)) = X(2)
= 2 5(9(2,0),7)
- %‘I’(z,‘r) - %@(I,O)
- %@(z, 1) - X(z).
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Thus, the kernel of a%@(x) is along the direction of X(z), which is not in S.

The Poincaré map of a periodic orbit describes the behaviour of nearby orbits in
directions transverse to the orbit. The image of a point y in S under © is the point
of first intersection (in positive time) of the orbit through y with S. The asymptotic
behaviour of points under © indicates the asymptotic behaviour of the associated
orbits. If the successive images of point approach z, then the orbit through this
point is asymptotic to the periodic orbit ~. But the main reason for introducing
the Poincaré map is that there is a version of the stable manifold theorem for fixed
points of diffeomorphisms. We expect that nearby orbits will be attracted along
directions that are ‘expanded by the derivative %@(x) of the Poincaré map, and
repelled along directions that are contracted by a%@(:z:), by analogy with the stable

manifold theorem for critical points. We state the theorem

Theorem (Stable Manifold Theorem for Diffeomorphisms). Let f be a
diffeomorphism with fixed point z. If = is a hyperbolic fixed point (Df has no
eigenvalues of unit modulus), then there is a neighborhood U of z such that the
sets

Wi . (z) = {y eU|f"(y) = rasn — +ooand f*(z) € U, n > 0}

We.(z) = {y eU|f"(y) > zasn— —o0and f"(z) €U, n< 0}

are submanifolds in U, and the tangent spaces T,W (z)(resp. T.W} (z)) to these
manifolds at x are the subspaces corresponding to eigenvalues of D f(z) of modulus

greater than 1 (resp. less than 1).

All of the observations we made for the local stable and unstable manifolds of

a critical point hold for W; WY

loc? " loc*

The eigenvalues of the Poincaré map are called the characteristic multipliers
or Floguet multipliers of the periodic orbit. A periodic orbit is hyperbolic if the
corresponding fixed point of its Poincaré map is a hyperbolic fixed point. We define
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the stable and unstable manifolds of a hyperbolic periodic orbit « as the unions of
all orbits passing through the local stable and unstable manifolds of the Poincaré
map of the ~. These are injectively immersed submanifolds which are the inset and

outset of the periodic orbit.

Morse-Smale Systems

Now we define a family of vectorfields for which we have a fairly complete
description of the orbit structure. A vectorfield is a Morse-Smale vectorfield if it

satisfies:
(1) There are a finite number of critical elements, and each is hyperbolic.

(2) Allstable and unstable manifolds of critical elements must intersect transversely,

and
(3) The non-wandering set {1 consists only of critical elements.

This defines a family of vectorfields whose orbit structures are relatively simple.

Given a Morse-Smale vectorfield X, we may define its phase diagram T,

Definition. The phase diagram T of a Morse-Smale vectorfield X is the set of
critical elements of X with the following partial order: If 01,0, are critical elements
of X, then o3 < 02 if W*(01) "W¥(03) # 0. In other words, 01 < o3 if there is

an orbit joining o, to o9 that is “born” in o, and dies in o0,.

The phase diagram of a Morse-Smale vectorfield gives us a great deal of infor-

mation about the flow of the vectorfield.

-10-



1.2

1.2 An Example of a Bifurcation

In this section we will examine the bifurcations that arise from the failure of
a critical point of a vectorfield to persist smoothly under perturbations of the vec-
torfield. The usual approach to bifurcation theory involves dynamical systems de-
pending on parameters and the analysis of qualitative changes that occur in the
dynamics as the dynamical system is perturbed by varying the parameters. As an
example, let us consider a vectorfield X on a 1-dimensional manifold ( R!, or its
one-point compactification S! —if we insist on compactness) depending on a scalar

parameter . Then X is a function
X:R'xR!' —R!': (.i,u) — X(z,u).
Assume that X is at least C2.

Non-Degenerate Critical Points

Now, suppose that ¢ is a critical point of X(., o), i.e., that X(zo,uo) = 0.
We may examine what happens to the critical point zo as the parameter u is
varied near pug by looking at the solutions of X(z,u) = 0 that are near (zo,puo) -
For examp]e,.if %X(zo,uo) # 0, then by the implicit function theorem of cal-
culus, there is a smooth (at least C?) function z(u), defined near po such that
X(z(u), ) = 0. Furthermore, the implicit function theorem states that the curve
(z(u),p) is the unique solution of X(z,u) = 0 in some neighborhood of (zo, uo).

-11-
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Thus, the critical point z, varies smoothly as the parameter u is varied near up

and no new critical points appear near zp. This is shown in the graph of Fig. 1.

Critical points of this type are said to be non-degenerate.

Degenerate Critical Points

However, if the critical point zo is degenerate in the sense that ;%X(xo,uo) =0
then it may fail to persist as the parameter p is varied. If %X(zo,uo) # 0 then the
implicit function theorem may be applied as before to conclude there is a smooth
function u(z) such that X(z,u(z)) = O near zo.Furthermore, u'(zo) = 0 as
2 X(z,p(z))+ %X(z,u(z))u'(z) = 0 by implicit differentiation. The graph of such

a curve (z,u(z)) is shown in Fig. 2.

We can obtain some qualitative information about the bifurcation occurring at
(zo,pa) from the graph of Fig. 2. When p < uo we see that the vectorfield X(-, u)
has two distinct critical points near zy. At the bifurcation value of the parameter,
ko, there is only one critical point of X(-,po) indicated by the graph, z,. For
parameter values above pug there are no critical points of X (-, u) near z;. There
is an obvious change in qualitative behaviour as the parameter p is varied through
the bifurcation value ug as the number of critical points of the vectorfield near zg
changes. This change in behaviour is caused by two distinct critical points of the

vectorfield coalescing and annihilating each other.

Taylor Series Conditions

Of course, the above qualitative analysis depends on a qualitative property of
the graph of Fig. 2—that it is concave at zo. A sufficient condition for this concavity
is u"(z0) # 0.In terms of the Taylor series of the vectorfield X at (zo,uo) the

-12-
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sufficient condition above is equivalent to the following:

o
X(ICH”O) =0, _X(IOa IJO) =0,

or
iX( )#0
on Zo, o) # 0,
82 ke
and @)&(Io,uo)#o.
Indeed, X(z,u(z)) =0, so that
9 X(z,u(z)) + 2 X (z, u(x))i' (<) = 0
aI » U 6[1: I,lTjjp\z) =Y,
and also
O X(z () + 2= 2X (2, (2 (2) +
g X \(ula)) 5 25 52Xz uz)u (z)
9 Xz ul(@) (@) + 2 X (2, (@) (@) = 0
52 (& PG :

by implicit differentiation. We have shown that u'(zo) = 0 as %X(xo,u(zo)) =
-E%X(Io,uo) = 0. Then, from the last relation,

B £ X (o, o)

"
1"'(zo) = :
%X(.’CO, ILO)

so that p'(zy) # O if and only if BE—;X(IO,MO) #0.

Now consider the graph of the function X(-,u) : R} - R! : z — X(z,u) for
fixed u. For p = po we have that a%X(J:o,uo) = 0 and also a%Q—QX(zo,uo) #0 so
that the function X(.,po) has a local extreme value at z = zg . Also, X(zo,ug) =0
so that this local extreme value is zero. From the implicit function theorem, there
is a C? function Z(u) defined for u near po such that %X(.%(u),u) = 0 and

Z(po) = zo as we have assumed that %X(xo,uo) # 0. We can see that the point

Z(p) must be a local extreme point for the graph of X(-,u) as 3‘9:2X # 0 in some
neighborhood of (zo, po) - Also, since X(zg,uo) = X(Z(u), ) = 0 we know that the
local extreme value for the graph of X(-, no) is zero. Let us compute the derivative

of the extreme value as the parameter u is changed, %X(i(u),u) ,at w=po.
d o 0
Bl - — ——'X ~ ~f v - )
d“X(z(u),u) 5, X (E(k), 1) Z (1) + auX(av:(u),u)
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1.2

But, at pu = po, we have Z(ug) = zo, and also —a%X(xo,uo) = 0 so that

d . d
@X(I(Mo),#o) = 8”)((330,#0) 7 0,

so that the value of the local extreme point Z(u) of X(-,p) changes sign as p
is varied through the bifurcation value ug.This shows us that the graphs of the

X(:,u) are qualitatively the same as what is shown in Fig. 3.

In Fig. 3. we see that as the parameter p is increased through po the local ex-
treme value of the graph of X(-, #) (which in this case is a local minimum) changes
from negative to positive. This induces a change in the qualitative behaviour of
our system near z.Because the graph of X(-,u) is concave up near zg, then
when the local minimum of this graph is negative (u < ug) then there must be
two distinct zeroes of the graph of X(:,u), which will correspond to two distinct
critical points of the vectorfield X(-,u). As the parameter pu approaches the bi-
furcation value pug, these two zeroes approach each other, until, at the bifurcation
value po the the two zeroes of the graph meet, and the graph has a double zero
corresponding to a quadratic tangency. Above the bifurcation value ug the graph
of X(-,1) has no roots near z¢. It is worth noting that this qualitative analy-
sis depends only on the conditions we have given on the Taylor series of X at
(zo, po) , which state that X has a root at (zo,uo) which is non-degenerate in the
p-direction (i.e. %‘X(zo,po) # 0) and quadratically tangent in the z-direction

2

(]e %‘Xr(an ﬂO) =0, %X(anMO) 7£ 0)

Orbit Structure

In the 1-dimensional case it is easy to obtain the phase diagram of a vectorfield
from its graph. The critical points of the vectorfield are the zeroes of the graph of
the function. A zero such that the derivative %X is positive is a source, and if
%X is negative then it is a sink. A double zero is neither a source nor a sink, but is
instead the coalescence of a source and a sink as shown in the middle phase portrait

-15-



1.2

fee

)u>0

X(x\
?

X\

-

4
]
Y

ﬁ
X - .
r 4

X

A
Fiqure 1.2.8

-16-




1.2

of Fig. 3. The critical points of the vectorfield are joined by orbits between them, the
direction of these orbits being determined by the sign of the function in between the
two zeroes associated with the critical points. For adjacent pairs of non-degenerate
critical points the orbits joining them will start in a source and end in a sink. From
this viewpoint the bifurcation shown in Fig. 3 is caused by two critical points, one

source and one sink, coalescing and annihilating one another.

Generic Conditions for Vectorfields

In the above analyses, we have prescribed various conditions on the Taylor series
of the vectorfield X about a critical point (z¢,up). It seems reasonable to ask why
we should choose these particular conditions instead of some others, or to ask if are
“likely” to hold. Consider a vectorfield X on R! with a critical pomt zg which
is non-degenerate in the sense that —a%X(:co) # 0. We know that such a critical
point will persist smoothly under small perturbations of the vectorfield X, indeed,
if X(z,€) = X(z) +€€(z), then we have already seen that for small values of ¢ the
vectorfield X has a critical point z(¢) near zo where z(¢) is a C? function. It is

easy to see that this new critical point z(¢) will also be non-degenerate as

d d

y B 0
= X(2(),€) = - X(2(0)) + e5-(2)

which will be non-zero for ¢ sufficiently small. vThis shows that non-degenerate
critical points persist and remain non-degenerate under small perturbations. On
any compact subset of R! (or on a compact manifold such as S!), there will be
only a finite number of non-degenerate critical points, as non-degenerate critical
points are separated from other critical points by finite distance. So, in the case of
a vectorfield defined on a compact set or manifold, the property of a vectorfield
having all of its critical points be non-degenerate will persist under suitably small

perturbations of the vectorfield.

In the analysis of the bifurcation above, the vectorfield X(.,u) had a degenerate
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¥ x \_,A\ —%» ¥

Figure 1.2.{. Perturbing a vectorfield to make 0 a_reqular value

critical point z; for one value pg of the parameter, but this degenerate critical
point either vanished or became two distinct non-degenerate critical points if the
value of the parameter p was changed. Most critical j)oints of vectorfields are non-
degenerate in the sense that a vectorfield with some degenerate critical points can,
through arbitrarily small perturbations, be made a vectorfield whose critical points
are all non-degenerate. Indeed, Sard’s theorem states that for a C! map from R!
to R! that the set of critical values of the map has measure zero and hence is
nowhere dense. If the vectorfield X : R! — R! has a degenerate critical point,
then O is not a regular value of X .But we can find an arbitrarily small ¢ € R!
that is a regular value for X (unless we have chosen X = 0, which is silly). Then
the perturbed vectorfield X = X —-e has zero as a regular value and all the critical

points of X are non-degenerate as an Fig. 4.

Thus, we see that for such vectorfields on a compact space the property of
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having all critical points non-degenerate is “open” in the sense of persisting under
perturbation and “dense” in that any vectorfield can be approximated by one with
only non-degenerate critical points. This property is then said to be generic for

vectorfields (on 1-dimensional compact manifolds).

Generic Conditions for 1-Parameter Vectorfields

For vectorfields depending on a parameter, we still expect that the zeroes of
the function X : (z,u) — X(z,pn) will be generically non-degenerate, but now the
non-degeneracy means something different for the critical points of the various vec-
torfields X (.,u) from the non-parameterized case. Since X is now a map from R?

to R!, the derivative of X at a point (zg,uo) is a linear map
9 1 o a
DX (zo,pu0) :R* — R : (v,w) — EEX(IO’#O)U + 5;X(zo,uo)w.

Even if (zg,p0) is a regular point of X, there will be some direction (vg,wp)
such that DX(zo,po)(vo,wo) = 0.1f (zg,p0) is a zero of X, then there is a
curve tangent to (vg,wo) at (zo,uo) along which the value of X is zero. This
follows from a corollary of the implicit function theorem. Thus, one could still have

‘%X(zo,,uo) =0 if (zg, o) is a regular point of X, but only if %X(-’Eo,uo) #0.
If a vectorfield X (z,u) has a critical point (zo,u0) such that %X(zo,uo) =0,

and %X(zc.,uo) # 0, then, does this type of critical point persist under pertur-

bation? Under the non-degeneracy condition we have assumed for this bifurcation,

2

a—aﬁX(zo,uo) # 0, we may apply the implicit function theorem to the map

0o
1 . —_
J' X (z,p,€) — (Xe(:c,u), a:CXC(:IC,;1)>

where X, is the perturbed vectorfield

Xe(z,u) = X(z,u) + €€(z, ).

Indeed, we compute
2 32

WX(IML) +e—— (I’ﬂ))

g 0 d
—J]Xe(z,ﬂ,f) = (—X(x,ﬂ) + ((_9—136(1.’ M), 9r2

oz or
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and
07} 17} 0°

)
—J] "e 3 My = (7—X(z,u) + e sH)y 5 4
Xe(z, 1, 0) (au.X(:c,p) + (auf(m m) 520n

3# XC(Ia/l'))'

when (z,pu,€) = (zg, o,0) , this becomes

(%J]Xc(loe#o,o)> _ ( 0 2 X (20, 1o) )

Jd 11y ) 2 -
35 X(zo,10,0) ;%X(l‘o,ﬂo), E%X(Io,ﬂo)

-3—',X(:co,uo)

as %X(zo, po) = 0. This is an invertable matrix as both of the terms 322

and %X(xo, po) are nonzero. Thus, it follows from the implicit function theorem

that there are points (zo(¢), uo(¢)) depending smoothly on ¢ such that

Xe(zo(€), ma(€)) = 0

and

o

5 Xe(zo(e) ko(€)) = 0.

Thus,‘the degenerate critical point z¢ persists under perturbations of the whole 1-
parameter family of vectorfields X(z,p). Since a 1-parameter family of vectorfields
is the smallest family which may contain this kind of degenerate critical point in a
persistent way (recall that it wasn’t persistent for vectorfields with no parameters),

we call this type of critical point a codimension-1 critical point.

We may also use Sard’s theorem to obtain an approximation result for 1-

parameter families of vectorfields. Consider the map

JIX : (z,p) — (X(z,u),%X(x,p)).

Since we have assumed that X was at least C?, then the map J!X isa C! map.
Sard’s theorem gives us the existence of a regular value (eg,€;) of J!X , arbitrarily
close to (0,0). Then, if the range of X contains a neighborhood of 0, we have that

for the perturbed vectorfield

X(z,p) = X(z,1) — €0 — €z,
-20-
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(0,0) is a regular value for the associated map J!X . Then, if J1)~((z0,uo) =0,
or equivalently X(Io,#o) =0 and %X’(z(,,uo) = 0, we know that the derivative
map DJI)?(zO,#o) is a surjection onto R?. We compute

DI X (za,m0) | | ) = 3 X (20, mo)v + 3 X (20, po)w
s KO w - 8'2 " . 32 =
. 322 X (Z0, o)V + 525, X (T, ho)w)

) £ X (0, pa)u
%X(IO’ /“'0)‘0 + %}A’(.’EO, ﬂ(_))U))
as %f((zo,uo) = 0. This map can only be a surjection onto R? if both of the

X (zo,u0) # O are satisfied.

non-degeneracy conditions %X(Io,uo) # 0 and a%}—
Therefore, degenerate critical points of the vectorfield )?(.,u) must satisfy these
non-degeneracy conditions. This shows that this type of codimension-1 degenerate

critical points are generic for 1-parameter families of vectorfields.
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2.1 Tangent Bundle, Vectorfields

In the study of dynamical systems we regard vectorfields as differential equations
whose flows define dynamical systems. In this chapter we are mostly concerned with
the set of critical points of a given vectorfield and as such shall consider a vectorfield
as a differentiable map between manifolds. While there is no difficulty in defining
a dynamical system by its flow on a compact mainfold, it is not immediately clear
how to define the associated vectorfield. Specifically, a vectorfield X on M is a

smooth map from M to what manifold?

Local Vectorfields

In the case of a flow ® defined on an open subset U of R™, a vectorfield X

is given on U by the differential equation

d
Z8(2,1) = X(3(z,1))

or

X(z) = %@(x,t)[tzo.

Then, X is a smooth function X : U — R™ which we call a local vectorfield. Note
that the value of X at a point z depends only on the tangency of the integral
curve ~;(t) = ®(z,t) at t = 0. Indeed, one possible approach to extending the
notion of tangent vectors and vectorfields to manifolds that is adoped by many
texts (Abraham and Marsden [1978], Abraham et. al. [1983], Chillingworth [1976])
is to define tangent vectors to a manifold by the equivalence class of curves on the
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manifold that are tangent at a point. We shall follow a slightly different approach

here in order to motivate the important concept of a vector bundle.

Transformation Rule for Tangent Vectors

First, we consider what happens to vectorfields under a change of coordinate
system. We require that our vectorfield in the new coordinates has the same flow
as the old vectorfield after changing coordinates. Precisely, let X : U — R™ be a
local vectorfield and ¢ : U — V be the diffeomorphism that gives our change of
coordinates. Then, we require that our new vectorfield X' defined on V has the

flow ¢ o ®(z,t) where & is the flow of X on U. Thus

X'(p o ®(z,t)) = %(p o &(z,t),
= Dp(®(z.1)) - £ 8(z,0)
— Dp(®(z,1) - X(8(z,1)),
or equivalently

X'(y) = Delp™ (v)) - X (7' ().

This is the transformation rule for vectorfields (indeed even vectors) under changes

in coordinates.

Now suppose we have a flow ® on a compact n-manifold M which has an atlas
of charts {(Ua,pa)}- Via the charts, the flow ® defines local flows &, on open
subsets of R™ by

Qu(z,t) = pa 0 B(p5'(2),1).

As we have already seen, these local flows give rise to local vectorfields
Xo :R"pa(Us) — R™

Now we will apply the “globalization process” which will “patch together” these
local objects X, into global object which will be a vectorfield on M.
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By our transformation rule for vectorfields, we know that

Xp = Dopalpap(z)) - Xalpap(z)),

where p,5 = @, 0 (pﬂ_l, Oha = OO p;l are the chart transition maps for our atlas

of M.

Equivalence Relation

Consider the disjoint union

S = J{a} x pa(Us) x R™.

Our transformation rule for vectors motivates the following equivalence relation on
S;
(a,z,0) ~ (B,y. w)
iff 2= pap(y)

and v = Dpqs(ppalz)) - w,

or equivalently
z = pap(y) and v = Dp,s(y) - w.
We see that this does define an equivalence relation from the chain rule. Indeed,
reflexivity follows as
T = pap(y) < y = ppalz)
and so

v = Dyguply) -w <= w= Dpg,(z)-v

o Dypap(y) - Dppal(z) = Dpaplepa(r)) - Dppalz)
= D(pap 0 ppa)(z)
= D(id) = id
-24-
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by the chain rule. Transitivity of the relation also follows from the chain rule. We

have ©,0 = w45 ° gy, so that
D‘an(z) = Ds—ovﬁ(‘Pﬂa(x)) . Dﬂoﬂa(x)
Pra = Paf O Lpo. by the chain rule.

Tangent Bundle

We define the tangent bundle TM of the manifold M by
TM =S/ ~.

If M isa C" manifold, then the tangent bundle has a C"~! manifold structure
given by an atlas on TM that is inherited from our atlas {(Uas,¥aq)} on M as fol-
lows: Letting |(a,z,v)| denote the equivalence class of (a,z,v) under the relation

~, the charts of this atlas are (TU,,Tpq), where
TU, = {[(a’ goo,(p),v)] ipeUy,ve Rn},

and
Tea : [(a,z,v)] — (z,v).
The charts (TU,, Tea) of this atlas are called vector bundle charts for TM. The
transition maps for this atlas are given by
Tap : R*pp(Up) x R* — R pa(Uq) x R™
: (2,0) — (Pap(z), Dpag(c) - v).
It is easy to verify that these transition maps are cr! diffleomorphisms and that

the so-called cocycle condition

TSOa'y = T‘Paﬂ 0 T<pﬂ'1

follows from the transitivity of our equivalence relation ~ . It is not at all suprising
that the transition maps for this atlas on TM came directly from the definition
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of the equivalence relation ~ when one considers that the manifold M can itself
be defined as the disjoint union |J,{a} x po(Us) partitioned by the equivalence
relation given by the chart transition maps; i.e. (a,z) ~ (B,y) <= 7 = wup(y).
This is essentially what the globalisation process is—the creation of a global object
from its component local representations in different local coordinates, and noting
that such a global object is defined by any set of local objects that is consistent

with a transformation rule for the object in question.

Vector Bundles

The tangent bundle TM is the prototypical example of a vector bundle. That

TM is a vector bundle means:

1. TM has a local product structure given by the vector bundle charts as
TSOa(TUa) = Rn‘@a(Ua) x R",

so that TM is locally diffeomorphic to the product of a neighbourhood in M

(Us) and a linear vectorspace (R").

2. The maps Ty, are “inherited” from the chart maps ¢,, in that the first

component of the map Ty, is the chart map ¢,; ie.,
Tea(l(a,palp),v)]) = (valp);v),
or, for any tangent vector v, € T, M, (see below) we have

Tea(vy) = (palp),something € R").

3. The chart overlap maps in the atlas of vector bundle charts are linear isomor-

phisms on the second factor; i.e. for fixed =z,

T@aﬁ(za 6) = (‘paﬁ(zLDﬁoaﬂ(x) : 5)
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is a linear isomorphism in the variable £ € R™ from the vectorspace {z} xR"
into the vectorspace {pas(z)} x R™. Also, the chart overlap map .5 is the

first component of the overlap map Tp,p as was hinted at in (2) above.

We see that the vector bundle charts preserve the vector space structure of the

set
oM = {i(a,palp),v] :vER"}.

This set is called the fiber of TM over p. Clearly T,M is isomorphic to R”. We
may also define T,M as

T,M = = (p),

where 7 : TM — M is the natural projection map of the tangent bundle given by
7(|(e palp), v)]) = p.
Items (2)—(3) above state that the vector bundle chart maps Ty, satisfy
ToalTyM = palp),
and that this restricted map is an isomorphism from T,M and R".

Vectorfields, Sections -

The set T, M is also called the tangent space to M at p and can be thoughtof
as the space of all tangent vectors to M which are based at p. A vectorfield X
on M is a map which takes a point p € M to a tangent vector to M at p; ie.,
X(p) € T,M. Equivalently, a vectorfield is any smooth map X : M — TM which

is a section of the projection map 7 ; i.e. that satisfies
(moX)(p) =p, VpeEM.

The space of all C" -vectorfields on M , or sections of TM /sections of 7 is a linear
space which we shall denote by X "(M). In section 2.4 we shall define a topology of
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XT(M) that makes it a Banach space. Given that X"(M) is a Banach space, we

will be able to establish properties of the evaluation map
ev: X"(M)xM —>TM:(X,p)— X(p)eTM

that we shall use in our analysis of the bifurcations of the critical points of vector-

fields on M.
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2.2 Jet Bundles

In our study of bifurcations of critical points of vectorfields on 1-dimensional
manifolds in section 1.3, we looked at the effect of various assumptions about the
Taylor series of a vectorfield X about one of its critical points p on the changes
that could occur in the set of critical points of the vectorfield and also in the local
dynamics of the vectorfield under perturbation. In generalising this approach to
consider the case of vectorfields on compact manifolds, we realize that the Taylor
series of a vectorfield depends on the coordinate system in which it is expressed. In
order to make the most consistent use of the tools of differential theory, we shall
consider another example of a vector bundle, the bundle of k-jets of vector fields
on a compact mantfold M . In the same way that a tangent vector v(p) € T,M is
a coordinate independent object that is represented by its local representatives in
a coordinate independant way, the k-jet of a vectorfield X at a point p € M is
in essence a coordinate independant notion of the k-th order Taylor polynomial of
any local representative X, at the corresponding point ¢, (p) € R®. The bundle
of k-jets of vectorfields arises as the globalisation of local (coordinate) definition of

the k-th order Taylor polynomial of a local vectorfield at a point.

Transformation Rule for Taylor Polynomials

Recall that a vectorfield X € x"(M) is a smooth map X : M — TM.If
(TUqs,Tpy) is a vectorbundle chart for TM , then
X|TUq : Uy — TU,,
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and the local representative X, is defined using the chart maps o, T by
TpaoXo 80;] cpa(Ua) CR" — Tpa(TUs) = pa(Ua) x R",
and X, is the second component of this map: i.e.,

Tipa o X 00 (z) = (2, Xal2)).

For a point p € U, , the local vectorfield X, has a k-th order Taylor polynomial

al = paq(p),

P*Xo(z,h) = Xo(z)+ DXo(z) R+ 1D2Xa(z)-(h,h)+...+ 1Dkxa(z)- (h...h).
2! k! —
k times

The coefficients of this polynomial map P*X,(z) are

1 1
Xao(z), DXo(z), -2—'D2Xa(x), o PD"XQ (z).

These coefficients lie in the vector space Pg(R”) of symmetric k-th order polyno-

mials on R";

1

(Xa(:c),DXa(z),...,k!

D¥X,(z)) € R® x L(R") x ... x LE(R")
= P¥(R"),
where Lé(R") denotes the space of symmetric j-fold multilinear maps from R" to

R".

In order to discover the transformation rule for the Taylor polynomials P*X,

under changes of coordinates, recall that

Xp(z) = Dppa(paps(z)) - Xalpap(z)).

To obtain the coefficients of P¥X3(z) in terms of the coefficients of P¥Xo(pqas(z)),

we differentiate the transformation rule for vectors;

D*Xj(2) = D[ Depalpap(z)) - Xalpan(2))]-
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The composition Dypg, - X, is bilinear; Hence, we may apply Leibniz’ Rule for

bilinear maps, Abraham and Robbin {1967], p.3, which states that

Difa-B)= Y (?)D’a-D"‘lﬂ

whence

D'Xg(z)= Y. (‘{) D' Dpga(@apia))] - D [Xalpas(2))].
0<i<q

In order to differentiate the terms Dyg,(0ap(z)), Xa(wap(z) , we employ the com-

posite function rule, Abraham and Robbin {1967|, p. 3, which states that

Yaof)a)= Y. Y ouli,...rij)Da (ﬁ(z))-(Dflﬂ(z),...,pf:ﬂ(z)),

1<5<s Ji]=s
where the o,(i1,...,%;) are constants obtained inductively in the proof of the result.
Then we have
D! [D¢ﬂa(¢aﬂ<x))]
o1(ir, - >3} D ppalpap(z)) - (Di’%ﬁ(r),- --’Dij'spaﬁ(z))’
1<_7<I 1=l

D‘I"(Xu(soag(x)))

F: Og-1(n1,. ., nm) D" Xo(pap(z ))-(Dn‘goaﬂ(:r),...,D""'cpaﬁ(z)>,

]<m<q ln q

so that the full change of coordinate formula becomes:

D Xp(z) =

Y ¥ () i) Ot )
0<I<q1<7<! 1<m<g—1 f=I jl=g-

D pg0(pap(z)) - (D ag (@), .. Dpas(2))
- D™ X4 (pap(z)) - (D'H%ﬂ(z),...,D"vu%ﬁ(z)).
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This transformation rule expresses the derivative DX p(:r) , for 0 < ¢ <k,
in terms of X,(pap(z)), the old coordinate representation of X and its first ¢
derivatives DX, (pap(z),-..,DIXs(pap(z)), at the point p,p(z) that corresponds
to z in the old coordinates o, . It is interesting to note that the transformation rule
for the k—th derivative of a vectorfield depends on the first k+1 derivatives of the
chart transition maps. This is because the trasition maps for vectorfields involve the
derivative of the chart transition maps, so that in order to consider C" vectorfields,

the manifold M must be at least C™!.

Bundle of k-Jets

Given the change of coordinate formulas for the derivatives of a vectorfield, we
know how the Taylor series transforms under changes of coordinates. Unfortunately,
the transformation rules are rather unwieldy, and as such we will not proceed as we

did in defining the tangent bundle. Instead, we use the following definition;

Definition. Let X,Y € X (M), pe U, C M, where (Uy, o) is a charton M.
We say that X and Y have the same k-jet at p if the local representatives X,

and Y, have the same k-th order Taylor polynomial at the point p,(p); i.e.,
if and only if P*X,(pa(p)) = P*Ya(pa(p))-

The k-jet of a vectorfield at a point p is the eqivalence class of vectorfields having

the same k-jet at p.

From our observations about the transformation rule for the Taylor series of a
vectorfield, it follows that this definition does not depend on the choice of chart
(Ua, ©a) - Indeed, if local representatives X, and Y, have identical k-th order
Taylor polynomials at a point ¢4(p), then in new coordinates g, the coefficients
of the k-th order Taylor polynomials of the new local representatives Xz and Yp
at the point pg(p) may be expressed in terms of the coefficients of the k-th order
Taylor polynomials of X, and Y, and so are also equal.
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The k-jet of the vectorfield X at the point p is denoted by 7%¥X(p). The set of
all k-jets of vectorfields at a given point p forms a vector space which weé denote by

J:(T]M) . Indeed, the vector space structure is given in the way we would expect,

with A- %X (p) = 7*(AX)(p) , and j*X(p) + j*Y (p) = 7*(X + Y)(p) . Letting
JE(TM) = UnemJE(TM),

we may define a vector bundle structure over M as follows: Given a chart (Ua, vq)

for M, the associated vector bundle chart (J*U,, chpa) is defined by:
J¥U, = 7.1 (Uy)

where 7y : J¥(TM) — M is the natural projection map given by W(J:(TM)) =p.
Then JkU, is the set of k-jets of vectorfields at points p € U, . We define the chart

maps J¥p, for the bundle by
J*oq - JK(TM)|J*U, — R™ x PY(R")
: 7*X(P) — (pa(p), P* Xal(pa(p))).

In other words, the chart map assigns to a k-jet ij(p) the k-th order Taylor
polynomial of the local representative of the vectorfield X (or any vectorfield with

the k-jet j¥X(p) at p).

In order to show that the charts (JkUa, chpa) define a vector bundle structure

on J*(TM) it suffices to note:

1. J¥(TM) has a local product structure given by the chart maps. This is evident

as

T pa(J*Us) = R™pa(Uq) x PE(R™).

This map is surjective, for if Qx € P*¥(R") is an arbitrary k-th order symmentric
polynomial, we may define a vectorfield X' such that its local representative
X! has Qj for its k-th order Taylor polynomial at a point wq(p) .
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2. The induced chart transition maps J"(paﬁ = Jkpq 0 Jkgogl ,
T*pag : R"(0g(Up) x PE(R™) — R™pa(Ua) x P§(R"),

are linear isomorphisms of the space Pg(Rn) for fixed z € pp(Upg) . This follows
from looking at the transformation rule we obtained for the first k derivatives
of a vectorfield under changes of coordinates. The maps we obtained were linear
in the derivatives of the local representatives X,(0as(z)),. .., D* Xa(vas(2))) -
These maps must also be isomorphisms as the map J kgoaﬁ has an inverse given

by qupﬁa .

As we have already noted, the chart transistion map Jkgpaﬁ depends on the first
k+1 derivatives of the chart transistion maps ¢, of M. Thus, for a C” manifold

M | we have that the bundle of k-jets of vectorfields is a C™"*-1 vector bundle.
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3.1 The Banach Space x'(m).

In the example of a bifurcation in Chapter 1, the vectorfield X depended on
a scalar parameter pu and so was a map from R! x R! to R!. We analysed the
bifurcation associated with a given critical point (zg,ug) of X by looking at the
geometry of the the set of critical points of X near (zg, o). This analysis depended
heavily on the fact that X was a differentiable map, and as such we could apply
several results from diflerential theory. In generalising this approach to bifurcation,
we do not use a particular parameterised family; instead we think of a bifurcation
as being associated with a particular vectorfield and wish to consider the pdssib]e
changes in the set of critical points (or other parts of the dynamics) that occur

when the system is perturbed.

The spaces B'(p,(U,);:R")

Consider a finite collection of charts {(U,,©a)})_, that cover M. For a fixed

a=1

o, we have the map that takes a vectorfield X € X "(M) to its local representation
Xo : R"@a(Us) — R,
deﬁned through the vector bundle charts (TU,,Two) by
Xa(pa(p)) = second component of Typqo(X(p)),

since we have

Toa(X(p)) = (©a(p): Xa(wal(p))-
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This map is a surjection

X"(M) — B'(pa(Ua); R"),
where B"(4(Us); R™) is the space of C™ maps from the open subset (with compact
closure) ¢,(U,) of R™ into R™ which are bounded in the C"-norm

Ix.l, = sup {!/\u(r)’ +IDXg(z)+ ... + |D'Xa(:c)l}.
z€pa (V)

We shall make use of the following well known result.

Lemma. Let U C R" be an open set. Then the space B"(U,R") with the norm

“", above is a Banach space.

Proof. Clearly B"(U;R") is a vector space under pointwise addition and scalar
multiplication of fuctions, and “”, is a norm on B"(U;R"™). We must show that

B"(U;R") is complete in this norm.

Let {X,} C B"(U;R") be a Cauchy sequence in the norm ||,. Then, since the
convergence is uniform, _
Xpn— X
and DX, — X"

for some continuous functions Y,YI,...,X—T on U. Clearly, the y,—X-q are all

uniformly bounded on U. It remains for us to show that DX (z) = X'(z) for

g=1,2,...,r and for z € U. Let us first show that DX(z)-v = X' (z) -v. This

entails
|7(:z: + tv) — X(z) — 7l(z) ‘-t

lim = 0.

t—0

But X, — X so that this limit becomes

lim lim |X"(I +tv) = Xp(z) - X (2) - tv .
t—0n—0o | ;

But, by the mean value theorem

Xp(z + tv) ~ Xn(z) - X (2) - tv

t Yoo

= lDX,,(z:—i— fv)-v—-X (z)-v
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= [DXa(z + €0) v - X' (z+ £0) v+ X(z 4 €0) v =X (2) ]

< iDXn(:r+ €v) - v — 71(1+ £v) vlI + Wl(:r% fv) v —Yl(z) -v‘
for some €in(0,t). In the last expression the first term goes to zero in n uniformly
in ¢, and the second term goes to zero in t as X' is continuous. This proves that
DX =X By induction, we see that DIX = X? for g=1,...,7 and the lemma

is proved.

Constructing X" (M)

Now, consider the direct sum of these Banach spaces
X =&).,B (pa(U.):R"),
with the usual norm that makes X into a Banach space;
ie...exnl =Pl + ...+ [Xn],

We shall show that X"(M) is isomorphic to a closed subspace of X, whence

X"(M) is itself a Banach space.

Clearly the map
Xf(Ad) — I’:)(»——+()(h...,){N)

is an injection (here the X, are the local representatives of X in the a-th coor-

dinate chart on M.). The image of this map is the subspace of X defined by
{(le""XN) €X: X& = T()Oaﬂ © X’ﬂ}a

where Tp,g are the vector bundle chart transition maps for TM and the Xo =
idy, X Xq, etc... In other words, the image of X"(M) under this map is the sét
of collections of local representatives that are consistent with the transformation
rule for vectorfields. This is exactly what we have already seen in section 2.1. To
see that this is really a subspace, it suffices to note that the transition maps are
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linear in the Xjp. Also, this is a closed subspace. Indeed, if (XT*,..., X} )oo=; isa

m=]

Cauchy sequence in X satisfying

X:)n(r) = Dsoaﬁ(Soﬁa(x)) : Xgl((»oﬁa(x))a

then
lim X' = limﬁl)n,oaﬁ(goﬂo(z)) - X (ppalz))

m— oo m— 00

= Dpaplppa(z)) - lim X5'(opa(z)).
Thus, X"(M) C X has closed range and so X’(M) is isomorphic to a closed
subspace of the Banach space X .Then X"(M) inherits a topology from this em-
bedding that makes it a Banach space. This topology on X"(M) is the topology of

uniform CT7 -convergence on compacta, which is the same as the topology of uniform

CT -convergence since M 1s compact.
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3.2 Differentiability of the Evaluation Map

In this section we shall show that the evaluation map for vectorfields,

ev: X" (M)xM — TM,
(X,p) — X(p),

is a C" — map and we will compute a formula for the derivatives of this map.
In addition, we shall show that the derivative Dev(X,p) at the point (X,p) is
split-surjective; that is, it is surjective and its kernel ker(Dev(X,p)) splits in the

Banach space Tix,)(X"(M) x M).

The purpose of showing these properties of the evaluation map, is that we may
then apply the results for differentiable maps that we will obtain in the next chapter,
which will yield some results that are at the core of generic bifurcation theory.
The results that obtain from the study of the evaluation map itself are primarily
useful for the consideration of bifurcations that involve only the critical points of
a vectorfield. However, it is possible to consider the more general relatives of the
evaluation map in this same framework, and obtain similar results for periodic orbits
and the like. The power of these so-called evaluation-transversality techniques is in
reducing different kinds of bifurcation questions to questions about the geometry of
certain submanifolds of X "(M) x M. In chapter 5, we shall consider the example of
the saddle-node bifurcation in detail in terms of this framework, as well as indicating
how we might generalise the approach taken there so that it would include other
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bifurcations of critical elements and connections of critical elements.

The Derivatives of ev

Let us begin by formally differentiating the evaluation map. We have
ev: X' (M) xM —>TM
ev: (X,p)— X(p) € T,M.
The derivative of this map will be a globalisation of the derivative of the map ev,
induced by local coordinates ¢, so it suffices to consider the derivative of this

map. We have
evg 1 X' (M) X R"po(Ua) — ©a(Us) x R™ = Tpo(TM|U,),
where this is defined by

evg = T 0evo (idX'(M) X gpa)_l.

Now, ev,(X,z) = X,(z), where X, is the induced local representative of X in

local coordinates ¢,. In order to differentiate this map formally, we consider that

Devy(X,p) - (€,v) = Devy(X,p) - (£,0) + Deva(X,p) - (0,0).

Each of these partial derivatives is easy to calculate. First, since for a fixed = we
have that ev, is the linear functional X — X,(z) in the vectorfield X, we have
that Dev,(X,z) - (€,0) = €,(z). For the other partial derivative, we notice that
Devy(X,z)(0,v) ~ Xa(z + v) — Xalz)
~ DXq(z) - v,

so that we would guess that the derivative of ev, is
Devo (X, z) - (€,v) = €o(z) + DXy (2) - v.
That this is in fact the derivative is trivial to verify. We consider
eve ((X,z) + (€,v)) — evo (X, z) = Xo(z + v) + €a(z + v) — Xo(2)

= €a(z + v) + Xo(z + v) — Xo(2).
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Now

l€a(z + v) + Xo(z + v) — Xa(z) = (€a(2) + DXo(z) - )| <

[€a(z + ) = £a(2)| + Ka(z + v) — Xa(z) — DXa(z) - v,
and the second term clearly goes to zero faster than |¢], + !v’ as X is differentiable.
The first term goes to zero as £, is continuous. Furthermore, by the mean value

theorem, we have that

150(1 +v) - éa(x)‘ = LDEG(C) ’ v‘

for some ¢ between z and z + v. So, since £, is bounded in the C"-norm, we

have
[€a(z + v) = €alz)] < [éal - 1]

and we know that this goes to zero like (|€s], + 1])? from the inequality |y <

%(}I‘ + ly')2 Thus the above function is Dev, by the definition of derivative.

Now, let us consider the higher derivatives of ev,. We consider the map
(X,z) — €1(z) + DXo(z) - v'.

Then, D%evq(X,x)-((£',v'),(€%,v?%)) is just the derivative of the above map in the
direction (£2,v%). Again, we compute the partial derivatives of this map. We see

that

derivative in (0,v?) direction = D¢l (z) - v + D*X,4(z) - (v', %),

and that

derivative in (£%,0) direction = D¢2(z) - v?,

since the the part of the map that depends on X is a linear functional in X. So,

we would guess that the formula for D%ev,(z) is given by

Dlevy(z) - (£1,0, €%,0v?%) = Dl (z) - v + DEE(2) - v! + D2 X, (2) - (01, 0%).
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Continuing in this fashion, we arrive at the following formula for the first r deriva-

tives of ev,,

DPevy(z) - (€1,v',...,€%,v") =D X, (z) - (v*,...,vP)
P

- ZD”_IEL(J:) N L L B
1=1]

where the notation (v’,...,{)i,...,v”) is used for the (p-1)-tuple that does not

contain o',

We proceed to prove this formula by induction. Let us compute the (p+1)st
derivative of ev, by taking the derivative of the above formula in the direction

(7+1,u7+1). We have
DPlevo (X, z)-(€',0},. .., €71 vPTh)
- D(D”eva(X, z) - (fl,vl,...,f”,v”)) Naias)
= D(®7(X, z)) - (&P, 0F),

where ®F denotes our formula for the p-th derivative,

p
®7(X,z) = D" Xo(z)-(v),...,07) + D DP 6o () (v),...,5,...,vP)- (€711, 0PT)).

i=1
As before, we compute,
B(X + € 2+ v7H) - &(X,2)| <
B (X + P 24+ 0™ — B(X,z + ")+
B(X, z + vPH1) - (X, 1)
and '

<D eh(z) - (-, 0) + (D Xalz + 07) = DPXa(2)) - (0, . 07+

P
Z(D”'lﬁa(z +oPH) - D”"lga(:c)) OIS

—
Consideri;lg each of the terms in the second part above separately, we see that

3

(DP X o(z+v”t1)—DP X,(z)), and each of the terms (DP~ ¢, (z+vPt)—DP1E,(x))
are approximated by their derivatives, D?*1X,(z)-v”"*! and D?¢,(z)-vP. As long
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as p+ 1 < r, these derivatives will exist as X and the ¢£'’s are all C". We know

that

IDPXa(z + v"*!) = DPXo(2) — DP*' Xa(z) - o™ = 0

faster than WH‘, and hence faster than EQ!, + }u’”’l‘, by the definition of differen-

tiability and the fact that X is C’". Also, each of the terms
|Dp—1£°‘(1-' - ,Up-{—l) - Dp_lga(l') - Dpéa(l) : ’UP—'L]‘

goes to zero faster than sup, [DP*1¢,(z)| - l’u”“l < [éals - P*Y| by the mean value
theorem, since the norm here is uniform. This shows that the formula for the p-th
derivative of the evaluation map is

DPevo (X, z)-(€', 0%, .. L EPVP) =
P
D" Xo(z) - (v),...,07) + 3 DP M o(z) - (v, 0. .., 07).
i=1
Since all of the derivatives in this expression exist and are continuous for p < r, we

know that the local representative ev, of the evaluation map ev is C” and hence

the evaluation map itself is a C” map from the Banach manifold X"(M) x M to
TM. |

Split Surjectivity of ev

The implicit function theorem from advanced calculus is usually stated for a
C! function f : R™ — R"”, such that the derivative in the first n-coordinates
D1 f(zo,yo) has maximal rank n. Then there is a unique implicit function h such
that f(h(y),y) = f(zo,y0) for y near yo. To generalize this theorem to the case of
a function between Banach spaces, f : E — F, we must replace the assumption of
maximal rank with an appropriate generalisation, namely that Df(zg) is surjective
at the point zy. Additionally, we must assume that the kernel of Df(z¢) splits in
E, that is, that there is a direct sum of closed subspaces E = ker(Df(zo)) ® K'.
This is necessary for the decomposition of E into a direct sum of two components
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so that an implicit function can be expressed as a map from one component to the

other.

In chapter 4, we will look at the implicit function theorem and some of its global
generalisations in the Banach space/Banach manifold setting with the intention of
applying these results to the evaluation map. For this reason, the remainder of this
section is devoted to showing that the derivative of the evaluation map is surjective

and kernel-splittling.

Consider the local representative ev, of the evaluation map, and its derivative,
Devy(X,z) - (€,v) = €a(z) + DXo(z) - v.

clearly this map is surjective onto R™ as we may have an arbitrary value for £, (z).

To show that the kernel of this map splits in X "(M) xR", we consider the subspaces
K, = {€: €a(z) = 0} x ker(DXa(z)),
K; = {(£,9) : €a(2) # 0 and £, (z) + DXa(z) - v = 0},
K; = {¢: falz) = 0} x K/,
Ky = {€: £a(z) # O} x ker(DX,(2)),

where K’ is a complement of ker(DX,(z)). The K; are all closed subspaces of

XT(M) x R™ and it is easy to see that
X"(M)xR"=K; 0K: 8 K; ® K4

and that ker(Devya(X,z)) = K; & K2, and so is complemented. Thus ev is a

kernel-splitting submersion.
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4.1 The Implicit Function Theorem and Transver-
sality

In this section we consider the implicit function theorem for smooth maps of
Banach spaces and Banach submanifolds. Viewed geometrically, the implicit func-
tion theorem gives us conditions under which the inverse image, or pull back, of a
point under a smooth map is locally a smooth submanifold of the domain. Intro-
ducing the definition of transversality of maps to submanifolds allows us to extend
these results to the pull-backs of embedded submanifolds. In the next chapter, these
results will be applied to the evaluation maps of Chapter 3 for the purpose of study-
ing the relationships between the dependence of critical points of a vectorfield on

perturbations of the vectorfield and the jets of the vectorfield at its critical points.

Implicit Function Theorem

We state a version of the implicit function theorem for C"— maps of Banach
spaces. The statement and proof of this theorem is found in [Abraham et. al. [1983],p.107};
However, the statement there omits a necessary condition for the uniqueness of the

implicit function.

Theorem (implicit function theorem). Let U C E,V C F be open subsets of
the Banach spaces E,F, andlet f:U xV — G be C",(r > 1), into the Banach

space G. For some (x9,y0) € U x V assume that f(zo,y0) = wo, and that

Dy f(zo,y0) : F — G
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is an isomorphism. Then, there exist neighborhoods Uy of z, and Wy of wy and
a uniqgue C'—map ¢ : Uy x Wy — V such that
(1) g(zo,wo) = yo

(i2) [f(z,g9(z,w)) = w for all z,w € Uy x Wy,

The content of this theorem is essentially geometrical. It states that the part of
the inverse image f~!(wq) that passes through the point (zo,yo) is locally given as
the graph of a C"— function gy,(z) = g(z,wo). This means that near (zo,yo), the
pull-back f~'(wg) of wy is a submanifold of E x F. Furthermore, we can compute
the tangent space of this submanifold at (zg,yo) by implicit differentiation. Indeed,

since f(z,guw,(z)) = wy, then

D f(z0,90) + D2f(20,40) - D1gu,(z0) =0

which implies

Dy gy, (z0) = “(sz(xo,yo)) : (le(zo,yo))

since Dj f(zo,yo0) is an isomorphism. Thus the tangent space T(z0,50) (f‘l(wo)> Is
of the form {(ﬁ,Dlgwu(zo) ‘&) : €€ El}.

Kernel Splitting Submersions and Regular Values

Often we are interested in the preimage/pull-back of a point p by a map f
where f : U C E — F is a C"—map from an open set U in a Banach space
E into another Banach space F. We may reduce this to the case of the implicit
function theorem setting if f is locally a kernel splitting submersion. We see this in

the following corollary;

Corollary. Let f:U CE — F be C",(r > 1), defined on the open set U. Assume
that for some ug € U, we have f(ug) = wo and that Df(uo) is surjective and
E, = ker(Df(uo)) splits in E. Then E = E; ® E; and there exist neighborhoods
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Uy,U; in Ey,E; with Uy @ Uy C U and such that f~Nwe) N (U; ® Us) is a
submanifold given by the graph of a C"— function g : E; — E;. Furthermore

S (p) is tangent to ker(Df(uo)) at uo.

Proof. Since Ey = ker(Df(uo)) splits, then there exists a closed complement E,
to E; in E, whence E = E; @ E;. As Df(ug) is surjective, then D f(uo)|E;
1s an isomorphism from E; to F. Thus, the conditions of the implicit function
theorem are satisfied for the function f(:c,y) = f(z +y) on E; x E;, since
sz(xo,yo) = Df(uo)|E; where up = 2o + yo. We can then infer the existence
of a unique C"—function g : E; — E; such that g(yo) = z¢, and f(g(y),y) =
wg for y in some neighborhood of yy. Also, as shown previously, D2g(yo) =
- (Dgf(zo,y0)>_l . le(zo,yo), which is zero since le(:co,y@) = Df(uo)lE1 =0
as E = ker (D f(ug)).

The generalization of this result to maps between Banach manifolds is immedi-

ate;

Corollary. Let f : M — N be a C"-map of Banach manifolds with f(p) = q.
Assume that f is a kernel splitting submersion at p. Then there exists a neighbor-
hood U, of p such that f~1(q) is a C"-submanifold tangent to ker(Df(p)) at

P.

Proof. Introducing local coordinates ¢, at p and ¥ at g gives a local represen-

tative fg that satisfies the hypotheses of the previous corollary.

A point ¢ € N is a regular value for a C"-map f: M — N if for each point
pe fq), fisa kernel-splitting submersion at p. It is evident from the previous

corollary that the inverse image/pull- back of a regular value is a C"-manifold.

Pull-Backs of Submanifolds., Transversality
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A point g of a manifold N is a particular case of a submanifold of N. We now

consider the pull-back of a submanifold S of a Banach manifold N via a C"-map.

Recall that S is an embedded submanifold of the C”"-manifold N if for each
point ¢ € S there is a chart (Vs,15) about ¢ in the atlas of N that has the
submanifold property

¢p: Vs — E,
and ¢g(Vs N S) = E; x {0} CE,
where E; is a subspace that splits in E. Then S inherits a manifold structure
from N with chart maps taking values in E,. If E; is a finite dimensional subspace
of dimension k, then S is clearly an n-dimensional (sub)manifold. However, if

E; has a closed complement E2 of finite dimension k, then we say that S is a

submanifold of codimension-k.

It is clear from the above that any submanifold of codimension-k can be locally
expressed as SNW = A7!(0) for some neighborhood W in N where A: W — R*
is a submersion, since we may take A to be the projection onto E; of 13 above.

This provides some motivation for the following definition.

Definition. Let S C N be a codimension-k submanifold and let f : M — N be

a C"-map. We say that the map f is transverse to S at the point p € M if either

(i) f(p) €S, or (ii)) f(p) € S, Df(p) is kernel-splitting and
Df(p) - TM + Tj)S = Tyip)N-

The notation f -~ ,S means that the map f is transverse to the submanifold S
at the point p in the domain of f. If f is transverse to S at all points in some
set W, we write f +~ w S, or simply f 7S to mean that f is transverse to S at

all points in its domain.

We can now easily obtain the following result.
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Theorem (pull-back via transversal maps). Let f : M — N bea C"-map
of Banach manifolds, S C N be a C" -submanifold, and assume that f ~+ S. Then
f71(S) is an immersed submanifold of M, and is an embedded submanifold if S
is compact. Furthermore, if S has finite codimension k in N, then f~!(S) has

codimension k in M.

Proof. First consider a small neighborhood V of a point ¢ of S. As we have noted,
SNV = X71(0) for some surjection A :V — R*. We show that 0 is a regular value
of Ao f. First,let p€ (Ao f)~1(0). Then pe f~1(SNV). Since f -+ S, then we
have that

Dfp) - LM + Ty(s)S = Ty(p)N.
Applying DA(f(p)) to both sides,

DA(f(p)) - Df(p) - TyM + DA(f(p)) - Ty(»)S = DA(f(P)) - Ty(p)N,
D(xc f)(p) - ToM = R¥,
by the chain rule, and noting that A is a submersion and Ty(p)S is the kernel
of DA(f(p)). This shows that Ao f is a submersion. Furthermore, we know that
(D(X o f)(p))"1(0) = (Df(p))~! - Ty()S is a subspace of T,M which is com-
plemented and whose complement is isomorphic to the complement of Tfp)S in
Ty(p)N. Indeed, for any linear surjection A : E — F, we have that the induced
map A:E/A"!(F') —» F/F' is an isomorphism. Thus ker(D(X o f)(p)) has closed
complement so that A o f is kernel-splitting. Thus, A o f has 0 as a regular value
and so (Ao f)71(0) = f~}(SNV) is an embedded submanifold of M. Taking a
union of neighborhoods that cover S, we see that f™!(S) is a union of embed-
ded submanifolds, which will be an immersed submanifold. In the case that S is
compact, the above union can be made finite, so that f‘l(S’) is still an embedded

submanifold.

Also, if § has codimension-k, then we know that the complement of Tj,)S
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14

in Ty N is isomorphic to R*. By our observation, the complement of T,(f71(S)

~ would be isomorphic to RX, so that f~! (S) is also a submanifold of codimension-k.

The following corollary to this result is essentially a direct extension of the

implicit function theorem.

Corollary. Let f: M — N,S C N,f < S as above. If for p & f~1(S) we have
that T,M = E;, & EIZ, such that the transversality condition holds with the sum

being direct when T,M is replaced-by E;, ie.,
Di(p)-E, & Ty()S = Ty N,

then in a neighborhood U, of p, we have that for any local coordinates ¢ : U, —
T,M such that ¢ = (p!,0%),(p) = (0,0) with Dy'(p) -ToM = E;,, we know
that the component of f~'(S)NU, through p is the graph of a C” -function from
E] to Ez.

Proof. Consider the function F = Ao fop™1: E,]J X Ef, — F' where X is as above.

Then
D,F(0,0) - T,M = DF(0,0) - E,

= D(xo f)(p) - E,

= DA(f(p)) - DI (p) - E;.
But this equals

DA(f(p)) - (D(p) - EL + Ty S) = DA(S(3)) - Ty N

since Ty(;)S = ker(DA(f(p)). Since A is a submersion, we have that D, F(0,0) is

surjective.

Also, we have that ker(D; F(0,0)) is trivial. Otherwise, there would bea v € E;,
with Df(p)-v € ker(DA(f(p))) = Ty(;)S, which cannot happen as the sum in the
statement was direct. Thus, DIF(O,b) is an isomorphism, and the result follows
from the implicit function theorem.
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We will use this result in section 5.2 to obtain a parameterisation of the subman-
ifold of critical points of the evaluation map at a point corresponding to a bifurcating
critical point. We will use this to compute the relationship between qualitative prop-
erties resulting from the geometry of this manifold and the jets of the vectorfield at

the critical point.
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5.1 Ciritical Points of the Evaluation Map

In this section we will look at eritical points of the evaluation map
ev: X"(M)xM — TM.

The evaluation map ev(X,p) = X(p) can be thought of as a parameterised vector-
field on M where the parameter is the vectorfield X € X"(M). We are primarily
interested in the critical points of individual vectorﬁeldsi and families of vectorfields
in the study of bifurcations of critical points—and these are related to the critical
points of the evaluation map: A point p is a critical point for a vectorfield X iff
(X, p) is a critical point for ev. However, the critical points of ev are especially
useful for studying bifurcations as the local geometry of the set Ly of critcal points
of ev depends-on the relationship between changes in a vectorfield (perturbations)
and changes in critical points. Exploiting the properties of ev that were developed
in the last chapter, we shall examine the relationship between the k-jets of a vec-

torfield X at a critical point p and the local geometry of Xy at (X, p).

The advantage of this approach is that it allows us to take a particularly ge-
om;tric view of parameterised families of vectorfields. If X, is a family of C" -
vectprﬁelds depending on a parameter u, where the parameter is in some compact
manifold A, possibly with boundary, then the family (if it is at all reasonable) X,
defines an embedding

A — XT(M).
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The image of this embedding will be a submanifold of (the Banach space) X" (M).
Thus, a parameterised family of vectorfields can be regarded as a submanifold of
XT"(M) or a smooth embedding A — X"(M). This geometric point of view makes
it much easier to see the mechanism behind certain bifurcations, and will provide
us with a coherent approach to the whole study of bifurcation theory. In a.later
section, this geometric viewpoint is used in conjunction with transversality theory

to obtain genericity results for vectorfields and families of vectorfields.

Critical Points, Zero Section

In order to define critical points for vectorfields on compact manifolds, we will
use the definition of a critical point for the local representatives of such a vectorfield

and then extend the definition in the obvious way.

Definition. A point p is a critical point of the vectorfield X € X"(M) iff for some

(and hence for any) chart (U, o) with p € U,, the induced local representative
X, defined by

TpacXopy'(z) = (z, Xa(z)) € R"|pa(Us) x R,

has the corresponding point = = p,(p) as a critical point; i.e., the value X,(po(p))
of the local representative at the corresponding point is zero. Equivalently, p is a
critical point iff

Tpo(X(p)) = (valP),0).

It is obvious that this definition is independant of the choice of chart (Ug,pa)-

While this may seem like an awfully formal definition for such a straightforward
concept, this definition does motivate us to define the zero section of the tangent

bundle TM.

The zero section Orps of the tangent bundle TM is simply the set of all vectors
in that are zero vectors in the sense that their local representatives are zero vectors.
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Thus Orpr C TM. It is easy to see that Oppg is a submanifold of TM as
Teao0rpm|TUy = R" x {0},

for any vector bundle chart map Tw,. Clearly Orps has codimension n in TM.
The zero section can also be thought of as a vectorfield on M; For each point
p € M, there is a zero vector Orps(p) at p. Thus, the zero section is a section of

the tangent bundle, and is also a vectorfield as the map Oypy : M — TM is smooth.

The Manifold ¥,

The set £y of critical points of the evaluation map is the pull back of the zero

section by the evaluation map;
Yo = ev_l(OTM).

In section 3.2 it was shown that ev was a kernel-splitting submersion. Thus, apply-
ing the results of sect 4.1, £y must be a codimension-n submanifold of X"(M)x M

as Orpas is a codimension-n submanifold of TM.

I (X,p) is a point in Iy, then the tangent space T(x,p)zo indicates the re-
lationships between perturbations in X and changes in the critical point p. For
example, if (£,v) € T(x )Xo, then perturbing the vectorfield X in the direction ¢
will move the critical point p in the direction v; More precisely, we can say that for
the 1-parameter family X, = X + €£, there is a corresponding 1-parameter family

of critical points p(¢) for small € such that

p(0) = p, Xc(p(€)) = Orm(p(¢)), and p'(0) = v.
In order to compute the tangent space T(x p)Xo, recall that since

ev(X,p) = Orm(p)
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for all (X,p) € &y, then differentiating along Ly gives us that

T(X,p)ev(f, v) = TpOTM('U)

for all (§,v) € T x p)Xo- Putting this expression into coordinate form,

T p, 0 Tixpev(é,v) = T?p, 0 TPOTM(qu;](vO)),

or
T(X,z)eva(gava) = TZ(TSOQ ¢ OTMWZI)(va)y

= (1705 Uaa0)=
as Twao07rr(p) = (pa(p),0). Recall that the local representative of the evaluation

map ev, was defined for a chart (U,,pq) on M by
eva(X,z) = T, 0 ev(X, v, (7)),
or
eve (X, 1) = T(idxr(M) X qa) 0 €v o (idx'(M) X pa) !

so that

Tevy = T 0 Tev o (THg) ™!
where ©, = (1dy "(M) X ©a). Finally we have
eva(X,z) = (7, Xa(z))
so that
Teva(Xa,2, €asva) = (2, Xa(2), 0 €a(z) + DXa(s) - va),

where z = p,(p), and the subscripted quantities are the local representatives in

the @, coordinates. This shows that

(€,v) € T(x ) Zo iff £a(z) + DXo(z) - v0 = 0.

This tells us some things about the geometry of Ly at (X,p).First, in the
case where the linearisation DX, is non-singular, we see that v, can be expressed
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in terms of the perturbation £,(z) of the vectorfield X, at the critical point
T = pq(p). This means that an arbitrary perturbation ¢ of the vectorfield X
will cause the critical point to move in the local coordinates in the direction v, =
—(DXa(z) - €u(z)) to first order. In the case where the linearisation DX,(z) has
non-trivial kernel, then for vy € KerDX(p), we have (£, vy) € T x p)Yo, for any
perturbation ¢ such that £(p) = 0 (i.e.£(p) = Orpg(p).) For other perturbations ¢
of X we may have several directions v in which critical points may move, or no
directions. We shall see what the interpretations of these results are in the following

analysis.

Non-Degenerate Critical Points

A critical point p of a vectorfield X is non-degenerate if X ~ ,0rp. This

means that

DX(p) - .M + TOTM(P)OTM = TOTM(P)TM'

In terms of local coordinates, this means that D X,(z) is a submersion, as T%p,lphao

TOTM(p)OTM = (.’C,O,Rn,O). Indeed,
DX(p) : M — Tx(p)TM,

whence
T2 paeDX (p)o(Tipa) "} (2,0a) = T(Tpa o X 0031) - (2,0a)
= (z,Xo(x),va,DXa(:t) * Ug)
which is surjective at (z, X,(z)) if DX,(z) is surjective.
We may apply the implicit function theorem in the case of a non-degenerate

critical point. Consider ev : X"(M) x M — TM. We know that ev is surjective,

but in the case where DX,(z) is surjective, we have that

Dev(X,p) - TyM & TOTM(P)OTM = TOTM (P)TM’
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so that we may apply the extension to the implicit function theorem in section 4.1

to conclude that there is a unique implicit function ® : X"(M) — M such that

ev(X,®(X)) € Orps.
For vectorfields X sufficiently near X in X"(M). In fact

ev(X,®(X)) = Orpr(P(X)),

so that ®(X) € M is a critical point for the vectorfield X. As we have already
seen in Sect. 1.3, this shows that the critical point ®(X) is a smooth function of
the perturbation X of X and is a locally unique critical point in a neighbourhood

of the point p.

Degnerate Critical Points

A critical point p € M of the vectorfield X € X"(M) is a degenerate critical

point if the derivative of X at p has non-trivial kernel;i.e,, the map
DX(p) . T,,M —- Tx(p)TM

vanishes on a non-trivial subspace of T, M. In local coordinates, we can see what
this means for the linearisation DX,(z) of X,(z), where z = p,(z). We have
that

TtpacXgo;’ rz— (7, Xo(z)),

so that

T paoT XoT,' (z,v) = (z, Xa(z),v, DXa(z) - v).

Since Tpq(TyM) = {z} x R, and T?p,(Tx(,)TM) = (2, Xa(z)) x R™ xR, then
we see the that Ty, (ker(DX(p)) = {z} x ker(DX,(z)), which is what we would
expect. In the next section we shall see how may apply the extension to the implicit
function theorem in section 4.1 to a non- degenerate critical point in order to obtain

a well known bifurcation result in a very geometric way.
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5.2 An Example—The Saddle-Node Again

In the previous section we saw what the main distinction between non-degenerate
and degenerate critical points of vectorfields. For a non-degenerate critical point p
of a vectorfield X, the critical point varies smoothly under small perturbations of
X. This is due to the implicit function theorem; More precisely, we can express the

critical point p as a smooth function p(X),
p: X' (M)|Nx — M,

with p(X) = p, defined in a neighbourhood Nx of X € X"(M). This is in turn
due to the local geometry of ¥, specifically that the tangent space T xp)Xo is not
“vertically tangent” in any direction. However, in the case of a degenerate critical

point p, we have already seen that T, Yo is tangent to { X} x M along directions
(X.p)

that are in KerDX(p).

In order to consider the analysis of degenerate critical points, let us first consider
the simplest case in which Xy is tangent to {X} x M along only one direction
= T, M. This corresponds to a critical point p for which the linearisation DX(p)
has 1-dimensional kernel spanned by v°. Furthermore, let us assume that 20‘ is
quadratically tangent to {X} x M in this Idirection. The graph of ¥, is shown in

Figure 5.2.1.

From the graph of this function, we can see what kind of qualitative change will
occur when the vectorfield passes-through X. On one side of the graph, there is no
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Figure 5.2.1

xX(M)
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critical point near p, then as we cross the fold, the critical point p appears and
divides into two separate points that grow apart at quadratic rates. This is exactly

what happened with the saddle-node example in section 1.2.

We need to consider a parameterisation of £y near (X,p); i.e., we need to
express Y as the graph of a smooth function. In order to find suitable variables
for such a parameterisation, let us try and find a subspace S C T(x ;) (X (M) x M)

such that

DC'U(X,p) S TOTM(p)OTM = TOrm(p)T]u'

Then, the subspace S will satisfy the conditions of the generalised implicit function
theorem of section 4.1 and X, will be locally diffeomorphic to the graph of a
function 0g : §' — S, where S’ complements S in Tx,) (X" (M) x M). Invoking

local coordinates, we have that
T?pa o T(TM)o = TTpa((TM)o)
= T(R" x {0})
=R" x {0} x R" x {0}
and

TZSOa(ToTM(p)TM) = {pa(p)} x {0} x R x R™.

Since

TCUQ(X,:C, 53 va) = (I7 Xa(z)avm EQ(I) + DXQ(:E) : ’Ua)

from before, we can see what vectors would comprise a suitable subspace S. Indeed,
we need to find a set of (&,v) such that £,(z) + DX4(z) - va- will span R". Since
the range of DX,(z) is n — 1 dimensional, we can choose vectors of the form
(0, DX (p)-v) tospan an n—1 dimensional subspace of S. Finally, adding a vector
of the form (&,0) where £,(z) complements the range of DX,(z) would give an
n-dimensional subspace satisfying our requirements.
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Now, let 7' be a projection onto a complement of range DX,(z) in R". Let
v’ be a vectorfield such that #'(v(z)) # 0. Clearly v' defines a 1-dimensional

subspace X? of X"(M) which is complemented by the subspace
X'={¢e X"(M)|n'(£(z)) = 0}.

Then the subspaces § = X" x span(v'(p)) and S' = X' x ker(DX(p)) are as

previously required.

We can see that near to (X,p), the submanifold £y will admit a parameteri-

sation

oo : X' x ker(DX(p)) — Zo.

We can use this parameterisation for the computation of certain quantities;
Specifically, we are interested in obtaining conditions on the k-jets of X at p that
are equivalent to the non-degeneracy conditions of the quadradic tangency of g
to {X} x M in the direction v°. In terms of the parameterisation oy, this non-
degeneracy condition is

7' 0 Dy304(0,0) # 0
1

where o is the vectorfield part of 0o, and the D;; means diflerentiating twice

along the second component (along the kernel of DX (p) .)

Recalling that ev(X,p) = Orp(p) for any (X,p) in Xy, we have the parame-

terisation
ev(0p(X',v),03(X",v)) = Orpm (0t (X', v)),
for (X',v) in X'x ker(DX(p)) where o} and o are the vectorfield and manifold
components of o0g, respectively. We may take tangents of both sides along {0} x
ker(DX(p)) using the composite function rule:
Tev o (0} x 62)(0,0,0,w) = Tev o (T03(0,0,0,w) x To’(0,0,0,w))
= T(Orm o 02)(0,0,0, w)
= TOrps 0 To2(0,0,0, w).
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Taking another tangent along ker(DX(p)) by the composite function rule, we have

T?ev o <(T20(1, x Tzog)(0,0,0,w,0,0,0,u)> = T%0rp 0 T%62(0,0,0,w,0,0,0, ).

Now, we introduce local coordinate maps so that we can see what this equation

means in terms of the Taylor series of X, at the point p,. So,
T?ev : T? X" (M) x T*M — T°M,
whence
T 0 T?ev o (T2 (idyr 5y X ¥a)) ™! |
o (Tzo(lJ x (T?pq 0 Tzag))(0,0, 0,w,0,0,0,u)

= T%ps 0 T*07rpr 0 (T?0a) Lo T?pq o T2og(0, 0,0,w,0,0,0,u).
But

T3pq o T?ev o Tz(idx "(M) X goo,)—1 = T?ev,.
We may compute an expression for T?ev, from
eve (X, z) = (z, Xa(2)),

Teva(X,z,€,v) = (2, Xa(z), v, €a(z) + DXa(z) - v),
whence
T?eva (X, z,&,v,1,u,¢,w)
= (2 Xa(2), v, £0(z) + DXa(z) - v,,m0(2) + DXal(z) - v, w,
Déa(z) - u+ Dna(z) - v + D*Xa(z) - (4,0) + Ga(z) + DXa(z) - w).

Now, we can compute expressions for the quantities £,v,n,u,¢,w from our

parameterisation og. We have
(o0 x 03)(0,0) = (X, p),

whence
T(o} x 62)(0,0,0,a) = (X, p, D203(0,0) - a, D203(0,0) - a),
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and, differentiating once more along kerDX(p), we have
T*(o} x 02)(0,0,0,4,0,0,0,b)

= (X,p, D20} - a, D30} - a, D20} - b, Dol - b, D330} - (a,b), Dy} - (a, b)),

so that
£ = Dy04(0,0) - a v = Dyol-a
n = Dy04(0,0) - b u = Dyol - b
¢ = D3204(0,0) - (a,b) v = Dygol - (a,b).

Now, from the quadratic tangency conditions,the parameterisation o satisfies
D;04(0,0) = 0, whence £,n above are zero. Also, D20%(0,0) will be along ker (DX (p)).

Substituting this into the eighth (last) component of T%ev,, we have that
D*X,(z) - (v,v) + T 0 D2yal(0,0) - (a,b) + DX4(z) - w = 0,

by equating this with the last component of T2p, 0TOras. Applying the projection

n' onto the complement of range(DX(p)), we have that
7 - D*Xo(z) - (u,v) = ~Tpq o (7r’ - Dy204(0,0) - (a,b))).
Recalling the non-degeneracy condition for the quadratic tangency, that
7' - D2200(0,0) # 0,
we have that the equivalent condition in terms of the jets of X at p will be
2 D?X(p) - (v,v) # 0
for v € ker(DX(p)).

The Manifold ¥,

The “fold” in ¥, appears to be a submanifold of X" (M) x M of codimension-
n + 1, as it appears to be of codimension-1 in Xy. Knowing that this fold is the
set of vectorfield-point pairs (X,p) such that X satisfies our saddle-node conditions
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at p-that X(p) = 0, the derivative DX(p) has rank n — 1, and the second
derivative satisfies the quadratic non-degeneracy condition we derived above. It is
easy to show that this defines a codimension-n + 1 submanifold when we consider
that this is the pull-back of a codimension-n+1 submanifold of the bundle of 2-jets
of vectorfields. Consider the submanifold of J!(TM) defined by our conditions on
X(p) and DX(p). In natural vectorbundle coordinates induced by a chart g,

these conditions will become

X.(z) =0

and

DX,(z) has rank n —1.

The set of n x n matrices that has rank n — 1 is a codimension-1 submanifold of
L(R"™) by the implicit function theorem. Indeed, consider A € L(R") having rank
n—1. Then, there is a neighborhood of A such that all matrices have rank at least
n—1. The determinant map det : L{R") — R is a submersion, and the set of rank
n — 1 matrices is det!(0) restricted to the set of matrices of rank at least n — 1,
which is an open set in L(R"). Thus, the set of rank n-1 matrices is a submanifold

of codimension equal to the codimension of {0} in R!.

The quadratic non-degeneracy condition is open in that it persists under small
perturbations in the 2-jet, so that our saddle-node conditions do define a codimension-
2 submanifold of J%2(TM). The manifold ; indicated in Figure 3.1 is the pull-back
of this submanifold by the evaluation map for 2-jets, and so is also a codimension-

n + 1 submanifold.

The important observation to make about ¥; is that locally it will project
to a codimension-1 submanifold )51 of X"(M). For a vectorfield X € il, we
see that TxY; is complémented by the direction X* shown in figure 3.1. This
direction is the direction in which v' - ¢ changes for perturbing vectorfields ¢.
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Geometrically we see what causes the saddle-node bifurcation. If we cross through
the submanifold ¥, transversely, then we are crossing the fold in the graph of X,
and this will cause the appearance of pair of critical points associated with the fold.
For a one parameter vectorfield X, crossing ¥; at the parameter value Ag, the
condition that we cross ¥; transversely is that d%(w' - X))(p) # 0. This motivates
the saddle-node bifurcation theorem, which 1 have taken from Guckenheimer and

Holmes [1983], Theorem 3.4.1.

Theorem. Let £ = f,(z) be a differential equation depending on the single pa-
rameter u. When u = py, assume that there is a an equilibrium p for which the

following hypotheses are satisfied:

( SN1) D,f,, has asimple eigenvalue 0 with right eigenvector v and left eigen-

vector w.

( SN2) w-D,f(p,uo) # 0.

( SN3) w(D2f,,(p) - (v,v) # 0. Then there is a smooth curve of equilibria in
R"™ x R passing through (p,uo), tangent to the hyperplane R™ X {uo}. For u on
one side of po there are no equilibria of f, near p, while for p on the other side

of uo there are two distinct equilibria of f, near p

We can see that the conditions (SN1) and (SN3) are the same as our condi-
tions that ker(DX(p)) is 1-dimensional and that #' - D?X,(p) - (v,v) # O for
v € ker(DX(p)). If we think of a one-parameter family of vectorfields as a one-
dimensional arc in X"(M), then the condition (SN2) is really a requirement that
the arc X, crosses through the point X € X"(M) transversal to projection of the
”fold” in figure 5.2.1 onto X "(M). This projected fold is a codimension-1 subman-

ifold ¥; € X"(M), which we shall discuss in the next section.
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5.3 Concluding Remarks.

We have seen an example of how me may study the local geometry of an evalua-
tion map to get a result for saddle-node bifurcations of critical points of vectorfields.
However, it remains to be seen how this approach might be extended to obtain other
results from generic bifurcation theory, or even what the connection between the
material in the preceding sections is related to generic bifurcations. In this section, 1
will make some comments (of a somewhat speculative nature) on how this approach
can be extended to include the other types of bifurcations that are encountered in
generic bifurcation theory and also on the connection between this approach and

that of generic bifurcation theory.

Transversality and Ge_nericity

We have the definition of transversality of a map f : M — N to a submani-
fold S of N. We have considered transversality for two particular kinds of maps;
vectorfields, which are maps M — T'M, and parémeterised vectorfields, which are
maps from a parameter space into the space X"(M) of all vectorfields. It is the
transversality of these maps to various submanifolds that give rise to genericity
results for vectorfields and parameterised vectorfields by the following well-known

results.

Theorem (Openness of Transversal Maps). Let M,N,S be C"-Banach man-
ifolds, and f : M — N be transverse to the closed submanifold S C N. Then there
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is a neighborhood Uy of f in C"(M,N) such that g € U; implies ¢  S. Thus,

the set of maps transverse to S is open in Ck(M,N).

The statement and proof of this result is found in Palis and de Melo (p. 24), or
Abraham, Marsden and Ratiu (p. 179). Of course, the statement belies the definition
of the topology of the space C"(M,N). In the case where M is compact, this is
the C" -compact—open topology. We saw an example of this in topology section 3.1
for the case of vectorfields o'n a compact manifold, where the topology on the space
X"(M) of sections was defined. As in most of the results in section 4.1, the proof
relies on locally replacing transversality of maps with the equivalent surjectivity
conditiohs. Specifically, consider p € f~!(S). Then, there exists neighborhoods
Up C M,Vj(;) € N, and a submersion A : Vy(p) — F' such that f(Up) C Vyp),
and SNVy, = A71(0). Then there is a neighborhood W; of f in C"(M, N) such
that g(Up) C Vy(p) for all g € W;. We have that ¢y, S if and only if Aog is
a submersion on Up. Finally, we note that the evaluation map that is defined near

(f,p) € XT(M,N) x M by

{(9.9) = D(Xog)(q)

is continuous, so that there are open neighborhoods W} C Wf;,U;', C U, such
that D() o ¢') is surjective as the set of linear surjections is open. This means
that for all ¢ in the C"-neighborhood W} of f, we have ¢ 7 ¢, S. Finally, since
f71(S) is compact, we can cover f~!(S) with a finite number of the U}, and so

the intersection of the corresponding W} is a CT -neighborhood of f of functions

transverse to S.

One consequence of the above proof is that we may generalize the above result
and claim that the set of maps transverse to a given submanifold is open in any
space for which the evaluation map considered above is continuous. For example,
the above theorem is not directly applicable in the case of vectorfields, as X"(M)
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is not a space of the form C"(M,N), but we still have that the set of vectorfields

that are transverse to a given submanifold of TM is open in X"(M)..

There is a corresponding result concerning the density of transversal maps. First,
recall Sard’s theorem for a map f: M — N of finite-dimensional manifolds, which
states that the set of regular values of the map is dense in N. The C -version
of this theorem is found in most texts on advanced calculus, differential geometry
or introductory differential topology. The Sard-Smale theorem is a generalization of
this result where the map f: M — N is now a C*-Fredholm map and M, N are
Banach manifolds. In this case, if f is sufficiently smooth, then the set of regular

values is again dense. This extension of Sard’s theorem is the subject of Appendix

E. of Abraham et. al. [1983]and also covered in section 16 of Abraham and Robbin
1967].

Given an evaluation map, we may use the following lemma.

Lemma. Let F: AxM — N be transverse to S C N. We know that S = F1(5)
is a submanifold of A x M. Let wp : A X M — A be the natural projection map
and 7y = 7TA!.§ : S — A. Then, F) = F(X,-) is transverse to S if and only if A is

a regular value of 7.

Proof. If F) is not transverse to S, then for some (A,p) € A x M we have
DF(X,p) - ToM + Tp(x )N 2 Tr(a p)N-

But, TS = DF()\,p) - T(rp)S, so that
ananM+ﬂM§)¢nwmv

Obviously TpM + T(5 ;)S 7 T( ) (A x M), so that

D”A(A’p) ) (TpM + T()\,P)g> = DﬁA(A’ p) ) T(’\)p)g
2 Dmp(A,p) - T(A,p)(A x M),
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so that D7,(A,p) is not surjective, whence A is not a regular value of 7. Con-

versely, if A is not a regular value of 74, then for some p € M, we have
Di’A(A,p) . T(,\,p)g z T,\A,

which implies
Dra(M,p) - (T,,M n T(,\,,,)S‘) 3 TA,
so that
TS + T,M 3 ThA.
Letting (vy,0) be in T)A x {0} but not in T(,\,p)bh‘ + T, M, we know that
DF(A,p)- (1,0) ¢ DF(\,p) - (TpM + T3, 0§ )
= DF(A,p) - TyM + Ty 1) S,
whence DF(X,p) - TyM + Tp(» ;S D Tr(ap)N, so that F is not transverse to S.
In the case where the above manifolds are finite dimensional, the projection map
7y satisfies Sard’s theorem, so that the set of A which are regular values of 7, are
dense in A. Therefore the set of A for which F), & S is dense in A. However, the
interesting application of this lemma is in the case where F is an evaluation map

of the form

evy : F(M,N)xM — N,

where M is a finite-dimensional manifold, and #(M,N) is a Banach space of
functions from M to N. One example of this kind of map we have already seen
is the evaluation map ev : X"(M) x M — TM for vectorfields. Another example
was the map (¢,z) — D(Xog) that was used in the proof of the openness theorem
for transversal maps above (the range of this map is actually a linear map bundle,
and the proof used the fact that the set of surjections in in this bundle is open-
this is done carefully in Abraham and Robbin [1967], section 18.) The set of all
one-parameter families of vectorfields can also be considered in this way. A one-
parameter vectorfield X, € [0,1] can be considered as a map A — X'(M) in
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the Banach space C"([0,1], X"(M)). Then there is an evaluation map associated
with parameterised vectorfields
Ev:C'([0,1],X"(M)) x [0,1] — X" (M)
(X,A) — X(A,:) € X"(M).

In order to apply the above lemma to the evaluation map ev or Ev, we must
verify that ev and Ev are transverse to any submanifolds their respective ranges,
TM and X"(M). We have already verified that ev was a submersion in section
3.2. Similarly, it is easy to see that Ev is a submersion, for DEv(X), o) (Y, vy) =
Y, + a—axX,\“ -v), and since we can choose anything we want for Y) , the derivative
is surjective. Then, given a submanifold S of the range (TM or X"(M)), we need
to verify that the induced projections

7o+ (X"(M) x M)[S — X"(M),

711 (C7(10,1), X" (M) x [0,1])|S — €"([0, 1], X" (M)
are Fredholm maps, where S is the pull back of S by the evaluation map ev or
Ev. This requires that (i) both the kernel and range of D7; split, (ii) the kernel
is finite-dimensional and (iii) the range has finite codimension. If the submanifold
S has finite codimension, then § has (the same) finite codimension, and it is not
difficult to verify that (i)—(iii) hold. Then the Sard-Smale theorem holds for the 7,
and we have the same density result as above. Specifically, for any submanifold S
(remember that TM is finite dimensional) of T M, the set of vectorfields transverse
to S is dense in X"(M). For one-parameter vectorfields, we have that for any
submanifold S C X"(M) of finite-codimension, the set of one-parameter families

X that are transverse to S is dense in C"([0,1], X "(M)).

Thus, for a compact submanifold S, we have that the set of maps transverse
to S is both open and dense. If S is paracompact, then the resulting set of maps
transverse to S will be the countable intersection of open-dense sets, which is called
a residual or generic set. This is where the connection between transversality and
generic properties arises. We consider an example.
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G, is a generic property.

A vectorfield X € X"(M) is said to have property G if all critical points of X
are non-degenerate in the sense of section 5.1. Since X has non-degenerate critical
points if and only if X ~ 0pars, and therefore the set of vectorfields satisfying G

is open and dense (since Opps is compact.)

Generic 1-Parameter Vectorfields

In order to find generic properties of 1-parameter vectorfields, we must look
for 1-parameter submanifolds of. X"(M). In the last section, I hinted that one
could project the “fold” that gave rise to the saddle-node bifurcation and get a
codimension-1 submanifold £; C X"(M). If we consider the evaluation map for
2-jets of vectorfields, then we may pull-back the submanifold of J?(TM) that
corresponds to saddle-node critical points. In natural vectorbundle coordinates on

J2(TM) associated with a chart (U,,.), we have that this becomes
{0} x {A € L(R") : rank(A) = n — 1} X {non-degenerate quadratic forms}

in R" x L(R") x L*(R"). Since {0} C R" is codimension-n, the set of rank-n — 1
maps is codimension-1 in L{R") (since it is the pull-back of 0 € R by the map
A+ det(A)), and the set of non-degenerate bilinear forms is open in LZ(R"), then
the submanifold of saddle-node critical points is of codimension n +1 in J%(TM).
We may pull this back to a submanifold £, C (X" (M) x M) of codimension n + 1.
If this manifold projects to a codimension-1 submanifold £ C X"(M), then we

will have a genericity theorem for one-parameter families of vectorfields.

The openness result for transversal maps tells us that if a 1-parameter family has
a saddle-node bifurcation (which crosses )3 transversely), then nearby (in the sense
of C"(|0,1], X"(M))) 1-parameter families will also have a saddle-node bifurcation.
The qualitative change associated with the saddle-node bifurcation occurs when the
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manifold o) is crossed transversely—we recall that on one side there are no critical
points in a neighborhood of the bifurcating critical point, while on the other side

the bifurcating critical point splits into two.

Extension to Other Bifurcations.

The result that Gy is a genéric property for vectorfields is the first part of the
Kupka-Smale theorem (in Abraham and Marsden [1978], chapter 7 or Abraham and
Robbin [1967]), which gives several generic properties for vectorfields. Each of the
generic properties ( Go )—(G3s) is associated with some kind of non-degeneracy of
critical points, periodic orbits, or the intersection of the stable and unstable man-
ifolds of a pair of critical elements. In the literature on generic bifurcation theory
(Sotomayor {1973a), Sotomayor [{1973b), Sotomayor [1974]), codimension-1 bifurca-
tions are examined that correspond to failure of each one of the non-degeneracy
conditions/generic properties in the Kupka-Smale theorem, and submanifolds of
X"(M) are constructed that give rise to a corresponding genericity result for de-

generate (bifurcating) equilibria of 1-parameter families of vectorfields.

The content of Abraham and Robbin [1967], is a modernised proof of the Kupka-
Smale theorem that relies on evaluation-transversality techniques like that used
above to show that Gy was a generic property in X"(M). In order to consider
the corresponding codimension-1 bifurcations, it is necessary to extend all of the
evaluation transversality results used in Abraham and Robbin {1967]to account for
higher orderr terms. For example, the property Gy involves non-degeneracy or the
derivative, whereas it is necessary to have non-degeneracy of the second derivative
for the saddle-node bifurcation. If this were done (and I believe it is possible), then
the results from the literature on generic bifurcations could be reproduced along
the lines of what I have done in this thesis, which would be more geometrically

intuitive, and hence of some pedagogical value.
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