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ABSTRACT

A brief introduction to the general subject of baroclinic-
barotropic instability is given in chapteril followed by a discussion
of the work done in the following chapters.

In chapter II a three-layer model is derived to study the
stability of large-scale oceanic zonal flows over topography to quasi-
geostrophic wave perturbations. The mean density profile employed has
upper and lower layers of constant densities p: and pg respectively
_(p: <p§) and a middle layer whose density varies linearly from p? to pg.
The model includes vertical and horizontal shear of the zonal flow in a
channel as well as the effects of B (the variation with latitude of twice
the local vertical component of the earth's rotation) and cross-channel
variations in topography. 1In chapter'II the effects of density stratifica-
tion, vertical curvature in the mean velocity profile, B, constant slope
topography and layer thicknesses Hi (i=1,2,3) are studied. The following
general results with regard to the stébility of the flow are found:

(1) curvature in the mean velocity profile has a very strong destabil-
izing influence

(2) density stratification stabilizes

(3) the B-effect stabilizes

(4) topography stabilizes one of two possible classes of instability
(a bottom intensified instability) and

(5) increasing either H1 or H3 relative to H2 stabilizes.
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Finally, the model is compared with two-layer models and
results clearly indicate the importance of having at least three layers
when curvature of the.mean velocity profile is present or when HZ is
significant.

In chapter I1I, mixed baroclinic-barotropic instability in a
channel is studied using two- and three-layer models. The equations
appropriate to the two-layer model used have been derived previously
by Pedlosky (1964a). This model consists of two homogeneous layeré'of
fluid with upper and lower layeré of densities pt.and d; respectively
(p;>p§) and the corresponding mean velocities are taken as U1 = UO.
(l-cos r(y+1)), U2 = eUl(e=constant). The chpice'of a cosing jet allows
the possibility of barotropic instability (Pedlosky, 1964b) while the
possibility of baroclinic instability is introduced by considering
values of € other than 1. In the study of the three-layer model,whose
governing equations were derived ;n chapter‘II,the mean>velocities are
chosen in the form U1 = Uo(l-cos m(y+l), U2 = sUi and U3 = 0 and to
simplify the interpretation of results, the effects of 8 and topography
‘are neglected. Again the study of mixed baroclinic-barotropic inétability
is studied by varying €.

The study of pure baroclinic or pure barotropic instability
in either model is justified for the cases (L/ri)2 << 1 or (L/ri)2 >> 1,
respectively (L i; the horizontal length scale of the mean currents and

ri is a typical internal (Rossby) radius of deformation for the system).
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For tﬁe case (L/ri)2 N.l it is found that the properties of the most
unstable waves vary with the long-channel wavenumber. For each model,
it is found that below the short wave cut-off for pure barotropic
instability there are generally two types of instabilitiés: (1) a
baroclinic instability which generally loses kinetic energy to the

mean currents through the mechanism of bérotropic instability and (2)

a "barotropic instability" which in some cases extracts the majority of
its energy from the available potential energy of the mean state. The
latter type of instability is most apparent in the study of the three-
layer model although it is also present in the two-layer case. It is a
Qery interesting case since its structure is largely dictated by the
mechanism of barotropic instability even when its energy source is that
of a baroclinic instability. Beyond the short wave cut-off for pure
barotropic instability, only the former of these twoc types of instabilities
persists (i.e. the baroclinic instability).

Qualitative results for the three-layer model are also derived in
chapter III (section 3). The energy equation is discussed, bounds on
phase speeds and growth rates of unstable waves are derived and the
condition for marginally stable waves with phase speed within the range
of the meén currents is presented.

Chapter IV is concerned with oceanic applications. Low
frequency motions (£ 0.25 cpd) have recently been observed in Juan de Fuca
Strait. The three-layer model developed in chapter II is used to show

that at least part of this activity may be due to an instability (baroclinic)



of the mean current to low-frequency quasi—geoétrophic disturbances.
Recént satellite infrared imagery and hydrographic maps

show eddies in the deep ocean just beyond the continental shelf in

the north-east Pacific. The wavelength of these patterns is about

100 km and the eddies are aligned in the north-south direction

paralieling the continental slope region. A modification of the three-

layer model derived in chapter II is used to study the stability: of the

current system in this area. It is found that for typical vertical and

horizontal shears associated with this current system (which consists

of a weak flow to the south at shailow depths, a stronger poleward flow

at intermediate depths and a relatively quiescent region below), the

most unstable waves have properties in agreement with observations.



TABLE

ABSTRACT . &« & ¢ ¢ &« o o o o o s o o o &
LIST OF TABLES . « ¢« v v & &« o o o & o &
LIST OF FIGURES . « . + ¢ « ¢« ¢ s o« o« &

ACKNOWLEDGEMENTS . . . . . . « « . « . .

I INTRODUCTION. o ¢ v ¢« ¢ + o ¢ « o &

1I BAROCLINIC INSTABILITY AND CONSTANT BOTTOM SLOPE.
1. Introduction. . . . . . . . . . e . “« .
2. Formulation . .+ 4+ ¢ v v 4 o v o o o 4 .
3. Linear Perturbation analysis. e e e e e
4. Results of Independent Parameter Variations .
5. Two-layer Models. . . « « « v & « « « . . .
6. Conclusions . « « ¢ o o o« o o« « o e e e e
ITT MIXED BAROCLINIC-BAROTROPIC INSTABILITY IN TWO-
MODELS. . . . + « + « « & I I
1. Introduction. .4. .« e e .‘. . e e e e e
2. The Two-layer Model . . « « « « & o « « o &« &
3. The Three-layer Model (Qualitative Results) .
4, Baroclinic-barotropic Instability in the Three-layer Model
(A numerical study) . « « ¢ 4 4 .t e e 4 . s s
5. Conclusions . . . . . « « + .« . e e e e e
IV OCEANIC APPLICATIONS. . . . . ; . o o e o e »

Introduction. . . . +. +« « . . .
Juan de Fuca Strait . . . . . .
The California Undercurrent

Conclusions . . « . « « . « o« &

OF CONTENTS

. . . . . . e

Vancouver

THREE-LAYER

.

vi

viii

LXix

.112

<124
<141
.150
.151
.153
.169

.193



vii

V CONCLUDING DISCUSSION . . . . P A 5

REFERENCES CITED + + v + o o i o % o o o o o o e o e e o 0 v e v 205

APPENDIX (GLOSSARY OF SYMBOLS) & « v & v o o v v v v v v e v v v . . .210



viii

LIST OF TABLES
CHAPTER IV

Table 2.1: Properties of the most unstablé wave found in

the three-layer modelvof Juan de Fuca Strait .ceeeeseeccsosseseseeae 161
Table 3.1: Comparison of the instabilities found by Mysak

(1977) and the corresponding instabilities found using the‘

analogous three—layer>model......................................... 181
Table 3.2: Properties of the most JQStable wave corresponding

to the system shown in figure 3.7 ..ecevevesscrocssecosonsssasensess 181
Table 3.3; Properties of the most unstable wave corresponding

to the system shown in figure 3.8......eceeeveveseccasacaccssassasa. 188
Table 3.4: Properties of the most unstable waves found using

two-layer models to study the stability of the upper layers of

the California current SYStEM...cescevssceccscossscansasssascasssnass 192



LIST OF FIGURES

In this thesis, figure, table and equation numbers are local

to each chapter. When a figure, table or equation is referred to which

ix

is found in a chapter other than the current one, the appropriate chapter

is explicitly noted.

CHAPTER 1

Figure 1.1: Different trajectories along which fluid elements are

displaced in the discussion of baroclinic instability.....eeeveeeeesn.

Figure 1.2: The displacements of fluid elements through a velocity

and vorticity distribution considered in the discussion of

barotropic Instability.eeeeeeesessosseessseseossacsnacsnsacnosenonssncs

CHAPTER II
Figure 2.1:A cross-section of the three-layer model studied here.....

Figure 4.1:Stability boundaries (a) for H, = H T=0, B=-6

1 T Hy T Hg,
and first mode (m=l) dispersion curves corresponding to these

parameter values with F2 = 1 and 52 =-0.75(b), 0.00(c), and

0.75(d)nuooooclononcocoolo-o'ooooo--oo.oqnuaou-.o--co-oo--oc----o-ou-

Figure 4.2: Stability boundaries (a) for H, = H2 = H3, T=20,8=-3

1

and first mode (wr=1l) dispersion curves corresponding to these
parameter values with F2 =1 and 82 = -0.75(b), 0.00(c), and
0.75(d). Statistics for positions of maximum growth rate (marked

by plus signs in the figures) are given in the table. The signs of

6

9

18

45

Yy and u3 are given in brackets following 61 and 63 respectively... 46

r



Figure 4.3: As in figure 4.2 with é = 0. Also shown in part (a) is the
corresponding result of Davey (1977). (broken CUIVE)..uveeeeunweenons Y]
Figure 4.4:As in figure 3 with é Theesvessrcnenossaneccanssnnsnssenei 48
Figure 4.5:As in figure 3 with é =120 00iinnns seececststertaaneens e 49
Figure 4.6:Stability boundaries (a) for Hl = H2 = H3,
= 0 and first mode (w=1) dispersion curves corresponding to these

parameter values with F2 =1 and 82 = -0.75 (b), 0.00 (c), and 0.75

(d). Statistics for positions of maximum growth rate (marked by plus

signs) are given in the table in order of increasing K.vveeveveeeee...51

Figure 4.7:As in figure 7 with % = =100t eensanans creasesesrenannnae. 52
Figure 4.8:As in figure 7 with ; ==5.i0ea et et erescasneaeasanaa «..53
Figure 4.9: As in figure 7 with % =0 ceesans Crreesacraanans «ee. 54
Figure 4.10:As in figure 7 with ; = 5.4 cesssecnnea crveceseanta, 55
Figure 4,11:As in figure 7 with ; = 10ieeeteneanenns creteerteretsrenn . 56
Figure 4.12:As in figure 7 with ; L 1 57

Figure 4.13:Stability boundaries (a) for Hl/H2 = 0.5, H3/H2 =1,
T=0, B= 0 and first mode (w=l) dispersion curves corresponding

to these parameter values with F, =1 and 62 = ~0.75(b), 0.00(c),

2
and 0.75(d). Statistics for positions of maximum growth rate
(marked by plus signs) are given in the table........... sesessenna vee. 6l
Figure 4.14:As in figure 14 with Hl/HZ =1, H,
Figure 4.15:As in figure 14 HI/HZ =5, H3/H2 = 1. Values are
given in order of increasing k..... Ceseeneen ceeeeoes tesesessecssessee. 63

Figure 4.16: As in figure 14 with H1/H2 =1, H,/H, = 0.5. Values

are given in order of increasing k..... ceesesecssensrsacna N 1



Figure 4-17:As in figure 14 with Hl/H2 =1, H3/H2 e 65
Figure 4.18: As in figure 14 with Hl/H2 =1, H3/H2 = 5eiirininans ceees 66
Figure 5.1: A cross-section of the two-layer model obtained by

letting HZ-»O.... .......... et e asteesec e asneensasesennas a0 coees 72
Figure 5.2: Dispersion curves for the first mode (m=1) for Sl =1,

£, = 1074 ¢71, =0, T=-10,L=10km, g' = 0.02 m 572, Hy = 180 m
and H = H3 = (HT_HZ)/Z for (a) H, = 60 m, (b) H, = 6m, and

(c) H, = 1077 Mo, C e et 73
Figure5.3: A cross-section of the two-layer model obtained by

letting Hl P 0icienncees IR e teeee et et receratesteanns . 76
Figure5.4: Dispersion curves for the first mode (m=1) for S2 =1,

£, = 1074 s_l, g=0,T=-10,L =10 km, g' = 0.02 m s—z, =180 m,
and H2 = H3 = (HT—Hl)/Z for (a) H1 = 60 m, (b) Hl = 6 m, and

(c) I-I1 = 10_5 11 . 77
Figure 5.5: A cross-section of the two-layer model obtained by

letting H, » O..iierriiiocennsenannss e esieceserarecaressane cesens .. 80

3

xi



xii

Chapter III

Figure 2.1: (a) Mean potential vorticity gradients in the upper layer
(solid line) and the lower layer (dashed line). (b) Complex amplitude
for the stream function in the upper layer (¢2=0).(c) Tranéfer of
Available Potential Energy (T.A.P.E.). (d) Transfer of Kinetic Energy

(T.K.E.) in the upper layer. Since ¢2=0, the transfer in the lower

layer is very small. f0=1o'4, g=0, L=57.735 km, g'=0.66 ms-z, H,=H.=

5 km (F1=F2=0.Ol), U1= l-cos¥(y+l), U2=-U ceeeas 93

I RERRAEEREE R Ceeessan
Figure 2.2: Stability boundary corresponding to the parameter values

£,=10 -4 1, g=1.5, L=1,000 km, g'=0.66 ms *, =5 kn (F =F,=3),

2

l O(1 cosT(y+1), U =0.cuv.e et e et eareteetttatitace sttt anterennaonens 96

Figure 2.3: Stability boundary corresponding to the parameter values

4 -1 -2

fo=lo- s =, B=0.0, L=1,000 km, g'=0.66 ms , "Hz =5 km, (F1=F2=3)’

Ul U2 Uo(l OB (T ) ettt ittt tenenoeseeooneencsoscnoesasanenanaonsennes
Figure 2.4: Approximate stability boundaries in € vs. k space for the

two-layer model with parameter values: f =10 4 l, g=0.0, L=2,000 km,

2

g'=0.66 ms “, H.=H.=5 km (F F2=12), U,=1l-cosf(y+1), U2=eU . Also shown

1 2 1 1
here is the stability boundary appropriate to (L/ri)2<<l (dashed line).
Note: these boundaries are qualitative and details should not be taken

ST IOUS LY e et v eneeee e nnsoneennosonesosaneaseasonesnesneenesnesnennonons 99

Figure 2.5: (a) Mean potential vorticity gradients in the upper layer
(s0lid 1line) and lower layer (dashed line). (b) Transfer of available
potential energy. (c) Transfer of kinetic energy in the upper layer (
=transfer in the lower layer which is indicated by a dashed line in this
and future figures). (d) Compex amplitude of the stream function in the

upper layer. (e) Complex amplitude of the stream function in the lower



xiii

layer. Parameter values as in figure 2.4; e=-1.0, k=1.5.....c0ccvuceen 101
Figure 2.6: As in figure 2.5 but €=-0.5...cicvveieccnriinnneacnsnnnns 102
Figure 2.7: As in figure 2.5 but €=0.0...cc00veuunenen, Ceressesanees 103

Figure 2.8: As in figure 2.7 - a second significant instability at

the same position in PATamMELET SPACE.....evreeessereraasssncsesascnans 104
Figufe 2,9: As in figure 2.9 but e=0.5...c0cicecarinannn Ceiecsasenean 106

Figure 2.10: As in figure 2.9 - a second significant instability at

the same position in parameter SPACEe...cvescssverscoscnccccsarscncsceee 107

Figure 2.11: (a) qu (quy) (b) T.K.E. (T.A.P.E.=0) (c) ¢l(5¢2).

Parameter values as in figure 2.4; €=1.0, k=1.5...cieieiienrncnnnses 108
Figure 2.12: Parameter values as in figure 2.4; k=3.5, e=0.0........ 110
Figure 2.13: Parameter values as in figure 2.4; k=3.5, e=0.5........ 111

Figure 4.1: Approximate stability boundaries in ¢ vs. k space for

the three layer model. fo=10_as-1, 8=0.0, g'=1.0 ms_z, H1=H2=H3=
3333.33 m; L=57.735 km - approximately vertical line; L=1,000 km -

dashed line; L=2,000 km -s0lid 1ine€.....ccvevuviencrececnsssnnsosacnnns 126

Figure 4.2: (a) The mean potential vorticity gradient in the upper
layer (solid line); the middle layer (long dashes); the lower layer
(short dashes). (b) Transfer of available potential.energy due to
shear between the upper layers (solid line) and that due to shear
between the lower layers (dashed line). (c) The transfer of kimetic
energy in the upper layer (solid line) and in the middle layer (
dashed line). The transfer in the bottom layer is zero since U3EO.

(d) The compex amplitude for the stream function in the upper layer.



xiv

(e) The compex amplitude for the stream function in the middle layer.

(f) The complex amplitude for the stream function in the bottom layer.

fo=1o’43§%=o.o, L=1,000 km, g'=1.00 ms 2, H,=H,=H

=3), U

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1

3=3333.33 m (Fl=F2=F3
=1-cosT(y+l), U2=eUl; EZ0.5 0t eeneecronattesartanesssnrsnsans 129
4.3: As in figure 4.2 but L=2,000 Kil..vuveereennneenennaassns 130
4.4: As in figure 4.2 - the instability at larger ki........ . 131
4.5: As in figure 4.3 - the instability at larger Ke..o.eeusn. 132
4.6: As in figure 4.2 but €=0.75.. 0000 uenn P, 133
4.,7: As in figure 4.2 but L=2,000 km, €=0.75........... cereen 135
4.8: As in figure 4.7..... ceeeenas et ecaeareeeeeate e 136
4.9: As in figure 4.6.......... e Creeseaan Ceeeeeeae 138

4,10: As in figure 4.10 but L=2,000 km, €=1.0..c0uvevennennnn 139



Chapter IV

Figure 2.1: (top) Juan de Fuca Strait and nearby geographical features.
(bottom) Juan de Fuca Strait with positions at which Fissel's data (°)
and one section of Cannon and Laird's data (x) were collected. (from

Cannon and LairX@, 1978) ceceerescecosootssenoossonnosseanansssonssnssseeldl

Figure 2.2: The cross-section of Juan de Fuca Strait at which Fissel's

data were collected. Numbers above each station are used to indicate the

station considered in figure 2.5. Along-channel velocities are given in
-1

cm s . The dashed line indicates the topography used in the model of

the strait. (from Fissel, 1976) «cseeesseesotvssoncsosasoesseassoessesslBD

Figure 2.3: The mean density profile on June 14-15, 1975 across the
section at which Fissel's data was collected (from Fissel and Huggett,

2976 )t e e e eneoeeosoossoscecaseessaoasoocssesosessscenosucessonennaneanes 156

Figure 2.4: Along-channel total-record average currents (cm/sec.)
through the cross-section marked by x's in figure 2.1 (from Cannon and

Laird, 1978)'.'....0.'.."l.'l.l.....l.l.....l..'....'0.........'..‘..A157

Figure 2.5: The power spectral density of the residual currents for
the current meter stations of Fissel (1976). Stations 130-136 are shown
in figure 2.2 and station 137 is the additional station a few kilometers

to the west of Sheringham Point seen in figure 2.1 (bottom). (from Fissel,

1976) o coavvseeosoesesoosocnaosaansssesssosnannnsossssassssssssssesssssas 159



xvi

Figure 2.6: (a) Approximation to the mean currents used to model Juan

de FPuca Strait; (b) the mean potential vorticity gradients corresponding
to the three layers of our model: upper layer-solid line, middle layer-
long dashes, lower layer-short dashes; (c) the eigenfunction corresponding
to the most unstable wave in the model; (d) the transfer of available
potential energy corresponding to this wave: the solid line corresponds

to the transfer of energy due to the shear between the upper layers and the
dashed line to that due to the shear between the lower layers; (e) the -
transfer of kinetic energy for this wave: solid line corresponds to the
upper layer, long dashed line to the middle layer and the short dashead

line to the DOLtOm 1ayer. seeeseesesoasassossssssocscvessssasssssascasssss. 160

Figure 3.1: Enhanced infrared image of sea surface showing spatial structure
of surface temperature on 10 September, 1975 off the west coast of British
Columbia and Washington. The dark areas are warm water and the grey-white,

cold water (after Gower and Tabata, 1976) . ceceeeesesecscsosssscsesasanssss 171

Figure 3.2: Geopotential topography (dyn m) of the 10, 150, 300 and 500 db
surfaces (referred to 1000 db), 7-20 Septebmer, 1973. Open circles refer
to time-series stations. The 100 and 500 fathom (1 fathom = 1.829m.)

isobaths are also shown ( from Reed and Halpern, 1976). ¢ecccreneencecsenn . 172
Figure 3.3: The two-layer model studied by Mysak (1977). cccccecccecncaes. 174

Figure 3.4: Temperature, salinity and o, profiles, 10 September, 1973,

at 49°N, 127° 19'W (right-hand open circle in top line of time series

stations shown in Fig. 3.2). (from Holbrook, 1975) eecccccscerocrccccsncnns 176



xvii

Figure 3.5: 1Isobaths (m) off Vancouver Island and Washington. Topographic

cross-sections at lines A - E are plotted in figure 3.6. (from Mysak, 1977)
sesseass 178

Figure 3.6: Topographic cross-sections at lines A - E shown in figure

3.4. (frOmMysa.k, 1977)0 .-oonnoooo.o-ooout-ooo-ot'uou-oo-.-no...--.ooo'179

Figure 3.7: The three-layer, channel model analogous to the two layer

model Of Mysak (1977) ceeeesesossocrtocsssnessnsessaesasascssassacasasases 180

Figure 3.8: The extension of the channel model to include effects of
horizontal shear and reduce the influence of the artificially imposed

WEStEYN DOUNAAYY. s e enteosonsssesosoaseseeasancononcnsoassnssasnssnsess 182

Figure 3.9: Graph of c. (non-dimensional phase speed) in the wave-
number range k = 0 - 5 (wavelength = © - 47.1 km) for the first two cross-
channel modes. The unstable regions corresponding to those studied by
Mysak (1977) are labelled as such. The position at which the most

unstable wave is found is indicated by a plus sign.cveeeesceecsosssnesssas 183

Figure 3.10: Transfer of available potential energy (in arbitrary units)
corresponding to the most unstable lst mode instability analogous to

that considered by Mysak (1977). The position of this wave in figure 3.9
is marked by a circle. (The solid line corresponds to the transfer of
energy due to the shear between the upper layérs and the da#hed line to

that due to the shear between the lower 1layers) eeeeeceeessesscssscesesss 185

Figure 3.11: Transfer of available potential energy corresponding to the
most unstable wave found using the three-layer model (plus sign in Fig.
3.9) (The so0lid line corresponds to the energy transfer due to the shear

between the upper layers and the dashed line to that due to the shear

between the lower layefs.) et et ecececnenssasaseseearsescenescencecansaes 185



Figure 3.12: (a) Approximation to thé mean currents used to model

the California undercurrent off Vancouver Island (see figure 3.8); (b)
The mean potential vorticity gradients corresponding to the three layers
of our model: upper layer-solid line, middle layer-long dashes,

lower layer-short dashes; (c) The Eigenfunctions corresponding to

the most uhstable wave in our model; (d) the transfer of available
potential energy corresponding to the above wave; (e) The transfer of
kinetic energy in the three layers. (see figure 2.7 for the meaning of

the different lines in (d) and (€).) cececrsecessvsctesosstsoresssscsavensse

xviii

187



xix

ACKNOWLEDGEMENTS

Although discussions with many people have contributed to
the work présented in this thesis, I am particularly grateful to Dr.
Lawrence Mysak for his efforts as my thesis supervisor. His encourage-
ment, enthusiasm, interest, and good advice through every aspect of the
preparation of this thesis have been practically unlimited and are
greatly appreciated. I would also like to thank Drs. Paul LeBlond,
Robert Miura, and Steve Pond for their helpful criticisms of a prelim-
inary draft of this thesis.

The financial support of the Nationmal Research Council of
Canada through a post-graduate scholarship, and that of the University
of British Columbia through a teaching assistantship are also gratefully
acknowledged. In particular it is a pleasure to express my gratitude
to the Department of Mathematics for affording me the opportunity to
proofread the book "Waves in the Ocean" by P.H. LeBlond and L.A. Mysak.

Finally, I would like to thank my wife, Donna, my good friend,
Dan Frail, and my parents, Fred ané Connie, for their encouragement,
without which this work may never have been undertaken, let alone

completed.



CHAPTER 1

INTRODUCTION



Introduction

This chapter is designed to introduce the uninitiated
to the processes of baroclinic and barotropic instability, and
briefly outline the contributions made in this thesis. Our intro-
duction will be brief and draws heavily on the references cited here.

The ocean basins are filled with a slightly compressible
fluid subjected to the influences of the earth's rotation and gravity,
as well as atmospheric forces. Of the many types of waves which
exist in such a system (see LeBlond and Mysak, 1978) we are concerned
with the free, low-frequency, quasi-geostrophic waves which exist
due to an intrinsic instability in the system. Since the aspect
;atio H/L, (H and L are vertical and horizontal scales for the
motion) for such waves is generally much smaller than unity and the
period is much longer than one day, it may be shown that vertical
accelerations can be neglected relative to the acceleration due to the
earth's gravity. The motions are thus in hydrostatic balance. Further
since the length scale of density variations in the ocean 1is much
larger than the vertical scale of motions, the continuity equation
may be approximated by the incompressibility condition §-u = O.
With exception of sound waves (which are filtered out under the assumption
of incompressibility), this approximation is valid for most oceanic motions
(see Phillips, 1969). Finally since the relative density variations
are very small (--'10.2 at most), their influence through the inertia and
Coriolis acéelerations are also small ané can be neglected in these terms.
These observations allow use of the Boussinesq approximation in which the

“actual density is replaced by a constant reference density exept when assoc-



jated with the gravity'where a bou&ancy force is introduced due to the
>density d&fference. This approximation may be shbwq to be valid if we héve
NZH/g <<l (N?=—(g/p°)a§o/az, whete;po is the potential density in.ﬁhe
absence ofumotion), (see LeBlénd and Mysak; 1978,p.15; and Pond anaAPiEkard,
1978, chapter 5, for methods used to calculate N2 in'practice). LeBlond |
and Mysak have also given a de;ailed derivation of the B—plaﬁé equations
in which the natural spherical coordinate systemlof the earth'is approx-
imated by a local cérteéiaﬁ coordinate system., It is readily seen from
their derivation that these equations are valid for'H/L << L/R << 1 (R is
the radius of the earth). For the motions under,consideration here, these
conditions are satisfied. In particﬁlar, for Juan de Fﬁca Strait, H< 200m,
L~20km (H/L< 1 x io;% L/R~3 x 10—3)+and for the California Uﬁdercurrent)

4, L/R~8 x 10_3)3 Finally the influence of

H<3kn, L~50km (H/L£5 x 10
the horizontal component of the earth's rotafion (which I shall neglect)
on long period waves has #een considered Sy Needler and LeBlond (1973); The
neglect of this effect is justified for H/L << 1.

The effect 8f viscosity on these motiéns will be a;sumed negligible..
This assumption»will‘géﬁeréiiy be true for thewihimigiéggpyth;of the perturba-
tions if the Ekman number (v/fon;v is the kinematic [eddy] viscoSftywagg'fo

is twice the local vertical component of the earth's rotation) is small in

T It must be noted here that the condition H/L << L/R arises as a condition
under which the horizontal component of the earths rotation is negligible.
The actual condition is %% << 1 . Scaling w with U H/L, y with L, and
u with U, we get the condition H/L << L/R which is only weakly satisfied for
Juan de Fuca Strait. However, we will find that for the motions considered
here, w _should be scaled with R0 U H/L so that this condition may be
replaced by Ro H/L << L/R (note that we still need H/L << 1 and L/R << 1)
which is strongly satisfied in our applications.



comparison to the square of the Rossby number. However, for finite

amplitude motions, this approximation will not, in general, be

valid (see Pedlosky, 1970). - ..

Finally, we assume a simple equation of state of the form

P =P, (1- aT + BS) (1.1)
where’p*,.a,B are constants and T and S are the temperature and
salinity respegtively. Resfricting ou? attention to motions whose
time scales'are sufficientiy short thatlthe Aiffusion-of heat and salt
may be peglected, the equations for the conservation of internal enefgy
and salt (neglecting external sources) reduce to the statement that

density is conserved for individual fluid elements. i.e.,

Do _ »
Dt 0. (1.2)

Under the approximations made above, the governing equatiéns
teduce to equations (2.2), chapter II. These equations will be taken
as the starting point for our analysis.

We shall now turn our at£ention to the question of where tﬁe
growing perturbations obtain their energy from. To answer this
question we shall consider the special cases of baroclinic and barotropic

instabilities seperately. -

Baroclinic Instability
We begin with a discussion of the "wedge of instability".
The basis of this argument was presented by Fjgrtoft (1951) and has

since been repeated in various forms by several authors. The dispussion



given here is largely a reproduction of work presented by Pedlosky
(1971b) and Orlanski and Cox (1973) and is gi§en here solely for the
readers convenience.

Let PP, (z) and po=p° (z) be the pressere and density in
the absence of motion and let §p and §p be the deviations from these
values due to a mean flow, U(z), in the x-direction. Then, as we
shall show in chapter I;,if the Rossby number (=U/foL) is small
.relative to unity, » the mean state will be in
hydrostatic and geoetrophic balance. Thus, under the Boussiﬁesq

approximation we have:
Px foU =’6py

6pz = ~0p-g
where subscripts y, and z indicate partial differentiation.

Eliminating the pressure we obtain:

8p, =0, £, U, /8
Hence the isopycnals have a slope given by:

£U 2
(Q=.;f’_x %y Pots g u
z Poz -gp

0oz

2
where we have used Sp/po << 1 in the second equality and N~ = - gpoz/p*
is the square of the Brunt-Viaisdld  frequency. Such a tilt of the

isopycnals supplies a possible source of potential energy for the growth



of perturbations. To examine the possibility of a wave extfacting‘
energy from this mean state, we consider the consequences of inter-
changing fluid elements constrained to move in a plaﬁe along the
various trajectories indicated in figure 1.1.

A fluid element displaced from A to A" will find itself in
a region of lighter fluid and thus will experience a downward restoring force
proportional to the density difference. This fluid element will thus
return to its original position and no instability results. (Note
that the fluid element will generally overshoot its original position
and oscillate about this position until the motion is damped out by
viscous effects. .This type of motion is essentially an internal
gravity wave).

Fluid elements displaced in the plane through BB’ experience
no restoring force along BB since gravity acts perpendicular to this plane.
No instability may result from this interchange either.

Similarly a fluid element displaced in the plane DD' feels
no restoring force since all fluid elements in this plane are of equal
density.

Finally,consider the interchange of fluid elemen;s originally
positioned at C and C/. The particle displaced from C to ¢’ finds
itself in a region of lighter fluid and thus the effect of gravity
tends to accelerate the fluid element beyond c’. Similarly the fluid

element displaced from ¢’ tocC experiences a bouyancy force lifting it
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Figure 1.1: Different trajectories along which
fluid elements are displaced in the discussion
of baroclinic instability.



beyond C. Hence motions of this type (exchanging fiuid between the
wedges BOD and BbD’) will be amplified. Note, howevef,that such an
interchange of fluid elements reéults in a decreaée in the potential
energy of.the system. This is the basic mechanism of baroclinic
instability by which potential energy is released from the mean state
to the perturbations. Further'details of the nature of this type éf
instability may be found in Bretherton (1966b), Pedlosky (1971b), and

€rlansky and Cox (1973).

Barotropic Instability

The basic mechanism of barotropic instability was described
in 1945 by Lin., The presentation given here is simply a reproduction
of part of Lin's paper and as in the previous section is given solely
for the readers convenience. The argument is kept as simple as possible
by considering wave perturbations to a horizontally sheared mean current
in a homogeneous, inviscid fluid. Since the effect of the earth's
rotation is not essential to the instability process,(This is not to
say that the effects of rotation are negligible. Rather it is felt
that the inclusion of rotation is not necessary to understand the
nature of the instability.j we consider a two-dimensional parallel
flow on a non-rotating plane.

Consider the interchange of fluid elements between lines L1



and L2’ and lines L3 and L4 in figure i.2. If one envisions the
fluid as being full of vortex filaments, then when fluid elements are
interchanged in an inviscid fluid, the fluid maintains its vorticity and the
interchange of fluid elements implies the interchange of vortex
filaments. Lin has shown that an element of fluid displaced in the
y-direction (perpendicular to the direction of fhe mean flow) by .the
component v’ of the perturbation velocity experiences an acceleration
in the positive y-direction given by r'_{ﬁ {v;(x y)i 2 S,Qddxdy,
f1uid o

where Sé (y) is the gradient of vorticity of the mean flow and Tﬂ =

JSS’(§,T ) dfd? is the strength of the superposed perturbation
fluid
vortex (this restoring force is due to the distortion of the mean vortic-
ity field). Now, consider the comnsequences of this acceleration on the
fluid elements labelled a, b, ¢ and d. The element a carries an
excess of vorticity (relative go the surrounding fluid in its new
position on Ll) with it so that T > 0. Since in this regi§n’s; < 0,
the fluid element experiences an acceleration in the negative y-direction
thus restoring it to its original position. Similarly the fluid element
b has T < 0 and S; < 0 so this element experiences a positive acceleration
and is also restored to its original position. Thus for the case in
which fluid eiements are not displaced acrossan extremum in the mean
vorticity,the motion must be stable.

Now consider the forces acting on c after being displaced.
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Figure 1.2: The displacements of fluid elements through

a velocity and vorticity distribution considered in the
discussion of barotropic instability.
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Sincé S; changes sign between L3 and L4 tﬁe restoriﬁg foréé is

clearly impaired by the presence of an inflection point in the mean
velocify profile and if the integrated value of S; when weighted with
v'2 is of the opposite sign to T1, the motion may actually be amplified.
. Thus, due to the conservation of vorticity following a fluid element a
perturbation may under certain circumstances extract energy from the
kinetic energy of the mean flow. This exchangé of energy is, of course,
only possible in the presence of a non-zero mean vorticity and, in
particular, requires a local extremum in this quantity. The process

by which this occurs is essentially the mechanism of barotropic instability.
Further insight into this mechanism may be found in Lin (1945, Part II),
Rossby (1949) and Brown (1972).

The physical arguments discussed here (for both baroclinic and
barotropic instabilities) are unquestionably inadequate for a detailed
investigation of the stability of a given system. A detailed study of
the initial growth of wavelike disturbances to a given mean flow generally
requires the solution of a singular non-separable partial differential
equation (see Pedlosky 1964a, and chapter II). |

‘In the literature several methods have evolved to study these
equations. The earliest s;udies‘wefe made under the assumption that the
mean state was either vertically or horizontally uniform. Under the |

assumption of vertical homogeneity the mechanism of baroclinic inétability
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" is rendered inactive (see for example Kuo, 1949), and when the mean
currents are assumed horizontally uhiform, the mechanism of barotropic
instability is rendered inactive (Charney, 1947; Eady, 1949; Fjértoft, 1951).
Probably the most natural extension of the study of pure baroclinic
instability is the extension to include weak horizontal shears in which
case the problem may be attacked using the WKB teehnique (Stone, 1969;
Gent, 1974, 1975). Other important contributions have been made through
the numerical integration of the governing equations (see for example
Brown, 1969, Gill, et al, 1974), integral methods involving the use of
generalized Green's functions (McIntyre, 1970), integral equations
(Miles 1964a,b), and asymptotic methods (Miles, 1964 a,b,c,; Killworth
1978). However, the most widely used method to study mixed baroclinic-
barotropic instability is probably via the introduction of layered
models in which the non-separable parﬁial differential equation
mentioned above is replaced by a system of n (where n is the number of
layers) coupled, singulaf, ordinary differential equations. The study
of layered models was initiated by Phillips (1951) who considered a
two-layer model. This model has since been extensively studied, most
notably by Pedlosky (f963, 1964’a,b,c; 1970, 1971a,b; 1972, 1974, 1975,
}976).

This thesis is mainly concerned with a model in which the

density stratification is approximated by three layers. Davey (1977)
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!

has studied pure baroclinic instability in.a three-layer model

similar to the two-layer model of Pedlosky. Here, on the other hand,
we deri§e a three-layer model from the equations for a specialized
continuously stratified fluid (see figure 1, chapter II). 1In deriving
our equations from those appropriaté to a continuously stratified
fluid it is possible to circumvent one of the major difficulties in
using layered models. That is, it is no longer necessary to "guess'
(though an educated guess may be quite good) what the appropriate
density differences between the layers should be. ThisAchoice is
automatically built into the model when the actual density stratification
is approximaﬁed by a simpler continuously stratified fluid.

The new three-layer model is then used to study the effects
of density stratification, vertical curvature in the mean velocity
profile,‘variation of the Coriolis parameter with latitude, bottom
slopes and relative layer thicknesses, all in the absence of horizontal
shear. A brief discussion of the limiting cases of two-layer models is
then given., In chapter III a détailed study of mixed baroclinic-
barotropic instability in two- and three-layer models is made, and in
chapter IV, two case studies are considéred. Furthef introductory
comments on each of these studies may be found in an introductory
section at the beginning of each chapter. Finally, some general

concluding remarks are made in chapter V.



CHAPTER II

BAROCLINIC INSTABILITY AND CONSTANT BOTTOM SLOPE

14
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1. Introduction

As discussed in' the previoué chapter, baroclinic instability
is the process by which the kinetic energy of a quasi-geostrophic
disturbahce may increase with time by extracting energy from the
available potential energy of the mean state, and barotropic instability
is the process by which perturbations may extract energy from the
kinetic energy made available by horizontal shear in the mean currents.
One method of simplifying the study of baroclinic (or mixed baroclinic-
barotropic) instability is to consider layered models. That is, one
considers two or more layers of fluid, each of uniform but different
densities, lying one above the other. In this way the essential dymamics
of the baroclinic problem are retained while the possible modes of prop-
agation are reduced to a small numﬁer. Most of the earlier work has
been with two-layer models (see for example Pedlosky, 1963,1964a,b,c)
but some work has recently been done on three-layer models. Holmboe (1967)
has generalized Eady's baroclinic model of the atmosphere with constant
entropy gradient to a vertically symmetric three-layer model with constant
entropy gradient in each layer and Davey (1977) has generalized the two-
layer model of Phillips (1951) to a three-layer model with each layer of

uniform but different density.
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By introducing density discontinuities,the usual layered
models overemphasize the stabilizing influence of dénsity stratification
which must be compensated for by decreasing the density difference
_between successive layers in the model. By approximating a continuously
stratified model withlspecialized density profile, this thesis attempts
to make use of the simplifications of the layered approach without intro-
ducing discontinuities in density and velocity profilest The motivation

)
for considering such a density profile is the desire to model situations
in which the transition of density from its surface value to its value
at depth occurs gradually. Such a situation occurs in Juan dé Fuca
-Strait which is the subject of Chapter IV, Section 2 of this thesis.

The baroclinic problem for flows over constant slope topography
is considered in this chapter. Later chapters are concerned with the
combined case of mixed baroclinic-barotropic instability iﬁ.the presence

of more realistic topography.

i Following the completion of this thesis (October 30, 1978) it was brought
to my attention that the choice of density stratification employed here had
been considered earlier by. Savithri Narayanan (1973). Her approach to the
problem was, however, very different than that taken here. Emphasis is
placed on the study of free waves and the study of pure baroclinic instab-
ility in the absence of vertical curvature in the middle layer (a case
which we shall find to be rather more stable than the more general case
including vertical curvature in this layer). No side walls are included
so that the model is directly applicable to studies of the open ocean. For
the case of no horizontal shear in the mean currents it is found that by
transforming to density coordinates the continuously stratified problem is
made analytically tractable and it is the resulting analytical solutions
which are studied.
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In section 2 of this chapter, the stability problem is formu-
lated for a channel flow with mean velocities containing both horizontal
and vertical sshear under the assumption that the Rossby number is small.
Section 3 1is concerned with the study of'small perturbations propagating
on a steady mean flow. Necessary conditions for instability are discussed
and an analytic solution is found for the strictly baroclinic problem in
the presence of'small, constant bottom slope. In section 4 some general
results concerning parameter variations are discussed and in section 5
two-layer models are considered as limiting cases. Finally a brief

summary of the results of this chapter is given in sectien 6.

2. Formulation

We will formulate the stability problem for quasi-geostrophic
disturbances of oceanic channel flows containing both vertical and
lateral shear. The beta effect is included but the fluid is assumed
i{nviscid and non-diffusive. The basic state density stratification is modelled
by three layers with upper and lower layers of constgnt densities pzand
p; respectively (p;<p;)ahd‘a middle layer whose density var%es linearly
~from. p; to p; (Figure?2.1l). This choice of demsity stratification is
convenient:as well as being a teésonable approximation to many real

situations. = The basic state density stratification is thus given by:
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Figure 2.1: A cross-section of the three-layer model studied here:
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*

p1 -Hl <zk <0
A R z* + Hy (o -o*) -H. - H. < z* < -H
P=1P27 P H, P17P3 s T T | (2.1)
1 2

*
- * < -H, -
P3 : : HT + bh < z' < -H H

Hl, H2 and H3 are the thicknesses of the upper, middle and lower

layers in a state of no motion, HT = H1 + H2

height of the bottom above z* = —HT (b is a typical amplitude of the

+ H3 , and bh 1s the

~ topographic variations). *'s are used to indicate dimensional variables.

We choose our coordinate system such that y* = 0 is at the
centre of the channel, with y* increasing to the north, x* points
along the channel to the east and 2z* is vertical with z* = 0 as the
position of the free surface in the absence of motion. If the effect of
B 1is negligible the orientation of the =x*, y* axis in the horizontal
plane may, of course, be varied.

Under the hydrostatic approximation, the equations of motion

for an inviscid,incompressible,non-diffusive fluid on the @-plane are:

(a) u*t* + u*u*x* + v*u*y* + w*u*z* -p*x*/p* + fv*

(b) VE , +oukvk 4 vV L FwkvE o, -p*y*/p* - fuk
(o4 %* e -0k )
(c) P* p*g (2.2)
(@) | UK F VR VR, = 0

=0

(e) p*t* + u*p*x* + v*p*y* + w*p*z*

Where (u*, v*, w*) d1s the velocity of the fluid, p* 1is the total

préssure and p* the density.



We now

variables:

(a) (x*,y*) = L(st)
) z* = Hz

(c) (u*,v*) = U(u,v)
(d) w* = (UH/L)w
(e) t* = (L/U)t
(£) £= £+ Bry*
(8) p* =

(h) p* =

*
where po(z) and

no motion,

. (2
(z) + p.R_|—>—]p
po 3%
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introduce the following nondimensional (unstarred)

— 3 = 2
= £ (48R y) ; B* = B(U/LY)

*(2) + oyUf
p,(2) + p,Uf Lp

gH

U and L are typical horizontal velocity and length

(2.3)

x :
po(z) are the pressure and density in the state of

scales, H 1is a vertical scale (= say), and R (= U/f L) 1is the
° o

Rossby number which we shall assume to be small.

Making these substitutions into (2.2), -and invoking the

Boussinesq épproximation,

(a) Ro(ut+uui+vuy+wuz)

(b) Ro(vt+qu+vvy+wvz)

() P,
‘(d) u + vy f v,
(e) p* w

0oz

we have:

= -px +-v(l+R°By)
= -py - u(1+R°By)

*
=-p8H , P, = P

z

=0

2.2
= -p;Ro {'?F-] [ptﬂpxﬂpy]

(2.4)
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Ndw expressing each of the dependent variables as a power

series expansion in R , e.g. p= _LR p( 3

we find to lowest
o n=0 o

order in R° :

(a) (0) p(0)

v = <
(b) U(O) - _p}(’o)
' (2.5)
(e) p:z = 'D:gH pio) —
() W0 _ 0

z

(Note that p(o) is a stream function for the zeroth order problem.)

* *
Now, since fluid elements on the surface (at z = n,; see figure 2.1)

remain there, we have:

D * % =0
E* (Z -nl) O

.
at the surface. We now scale nl by:

M~ "% en ™M -
1
This choice of scaling 1is consistent with (2.3g) and the hydrostatic

approximation. Thus in terms of the non-dimensional variables we have:

2.2
v -r £L [(g_t+ ROFEN v(O)g—)n{O)]
surface b 8 * y surface
2.2
Expanding w in a power series in Ro and using 'Eﬁ << 1 (this condition

states that the external Rossby radius of deformation is much greater

than the channel width and is valid in many oceanic applications), we

thus have:

W(O) = W(l) =0
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at the surface. Combined with (2.5d), w(o) = 0 at the surface gives

) . (1) _ . s
w' . = 0, while w = 0 at the surface is the basis of the rigid 1lid
approximation.

To the next order in Ro we have:

@ 8@ 4 u@O 0 4 OO L, D O

'Px Yy
by v©@ 1+ @O L @ ) @) O
t X y y .
(2.6)
(c) u(1) + v(1) + w(1) - 0 ,
x 4 z £2,2 '
(d) | pgzv(l) - -pg[———gﬂ ][oio)w(o)pio)w(o)o:f,o)]
Cross—-differentiating (2.6 a,b) and using (é.6c) gives:
2 0)2 03 )| (0, o (1)
{SE + )5;'+v( )3§] Vs Y +BZJ "V (2.7)

(2.1), (2.5), (2.6d) and (2.7) are the basic equation for the following
analysis. These eguations shall now be used to derive a consistent

approximation to the continuously stratified flow which has three degrees
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of freedom in the vertical. In the following work a subscript will be
used to denote which of the three “layers of fluid defined by (2.1) is
being considered.

| Since p* 1s constant in the upper and lower layers,
pio) = ng) = 0  and hence from (2.5) u(o) and v(o) are depth inde-
pendent in these layers. Hence we may immediately integrate (2.7) over

W .,

these layers. Using w at the surface and requiring the vertical

velocity to be continuous across the interface between the layers, we

have:

3 (03 (03 |, (0)_ (0) __B (D
[st 1 3x 1 8;][vl x U1 y+6y] - Hl Y2 (2.8)
z*=—Hl+n*

2

where n* 1s as shown in figure 2.1.

2
Using (2.6d) and (2.1) wgl) may be expressed as:

H,)2 | |
(1) 2 3 (03 L (0)3 | (0)
Y2 7 -[H J -F-ZEtqu ax V2 3y|P2 z (2.9)

where ‘FZ = fiLZ/g'H2 , g' = |—%|g .

Using this expression in (2.8) and using (2.5a,b) we have:

: 2
9 (0)2 (0)3_|,52.(0) E_.EZ (0) ]
[é‘{ Py y3x 1Py xay] [Vypy “+By- HI[H ] F,Py .1=0 (2.10)

h=ee %
z H1+n2

From (2.7) and (2.9) the equation for the second layer is simply:
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H,
3 _ (03 (0) 3 |2 (0) =
[at P2y 3x P2 x ay] sz+B +[H ] FoPrzz | =0 (2.11)

Finally integrating over the depth of the lower layer, using
the fact that the vertical welocity is contiﬁﬁous acfbss the upper sur-

face of the layer and that particles on the bottom remain on the bottom

1) _ (0)8 (0)2_| bh : .
(this gives L [Bt +u3 +v3 3y i;ﬁ- ) we have:

H,-bh
3 3__ (03 ., (0) 3 | 2 (0)
[ Hy (at 3y3x P3x ][VHP3 8yl
8 _ (3 _ (0)3 || b (0) _
* [Bt P3y 3% "P3x 3 ] R_H, h+ 3p2 z =0 (2.12)

= - *
*=-H,-H,+n3

Appropriate boundary conditions are that each of the stream
functions p§0)(i=1,2,3) remain constant on the boundaries of the chan-
nel. Taking L to be the half channel width,the boundary conditions

are:

apio)

T = 0 on y =%l '(i=1,2,3) (2.13).

(0)

We now expand Py in a power series about the middle of

the second layer

(0) ‘f n ith — E_z_ /H
P, " = Lo yn(zfzm) wit z = (-Hl— 2 ) (2.14)

The procedure is now to assume that the first few terms in this series

(0)

give a reasonable approximation to. P, . From the work done on
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.continuous mbdelsvit appears that the most unstable waves have a rela-
tively simple vertical structure (e.g. see Gill, et al; 1973, §6) and
hence this approximation may be reasonable (provided, of course, that
the mean currents also have a simple vertical structure). A second
problem in using this approach is the neglect of possible critical layers.
However as pointed out by Bretherton (1966a),it appears from the work
of Green (1960) that the growth rates of unstable waves associated with
critical layers (which are not found using the crude layered theory)

are markedly smaller than those which are found using the layered model.
Hence, provided the critical layers do not play a crucial role in the

| dynamics of the fiow, the filtering out of critical layers should not
cause significanf errors.

H

: 3
Now, neglecting terms of order {E%] in (2.10) and (2.12)

and satisfying (2.11) exactly at the middle of the layer the following

equations are derived.

9 3Y). 2
[g—t by B ry] [V 9, +8y-F, (39, ~4¥,+0.) ] = 0
[3— b, 2wy i—][vzw +BYHIE, (b =20, +p.)] = 0
ot Y2y Bx *lx ay)l HY2 T PYTH WV T,
(2.15)
H.-bh :
3 3 3 3 12

b =
R H, h-Fo (4, -4y, +30,) | = 0

_ . a_
+ [at l’)3y 9x 3x ay]
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2 3
vhere ¥, = p§0) - pém\ =Y tMm fa + P E_z_} +ol|"2
o z=-Hl/H 2K 2H 2H
¥y = P ‘ Yo
Z=Zm
Tu n.1° _k
PP i
IR o 2
Vv, =P = P =y =y x5l + v 055l Y Olsn
3 3 2 1wy o 1|2H 2|20 2H
1 2
and F, = szzlg'H (1=1,2,3)
R 1 o i k]

Appropriate boundary conditions are:

Bwi :
-5'x—= 0 on y = %1 (i=1,2,3)

(Notc that ncglecting bh in (H3—bh)/H3 is valid if bh’-i’--’H3 since this

causes only a negligible perturbation to the equations. However, if

(0) .

bh~H_ then provided uy

3 VHh<KRo is satisfied (sb that (2.2) is valid),

it is more accurate to retain this term. Since we will consider only
variations in h across the channel, the condition ugo)~VHh€<Ro for h~H3
is satisfied if v;/U<KRO.)

The corresponding equations fbr a fluid witﬁ three layeré of
uniform densities 6&, 62 and 63 (63 = (61+63)/2) have been given by
Davey (1977). [When comparing this paper with Davey's it is important
to note that where we have 6(=(63—3?/5;)' he has used &/2 (=(5}—5}/5)
and whereas we have chosen L to be the half-channel width, he chose
the full width]. When (wl-wz) = (wz-w3) (corresponding to a linear
velocity variation in the middle layer in our model and interpreted as

a linear velocity variation through the total depth in Davey's model)
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the two systems of equations are ideﬁtical. When this equality is mot
satisfied the two systems may be quite different. In figgre 4.3, we shall see
that for the same mean velocities in each layer the model dérived here
. gives an unstable range (in the total wavenumber squared) rOugﬁly twice
as wide as that found by Davey using the model consisting of three
layers of uniform density. This is not to be interpreted as an error
in eithér model but rather as a reminder that when using a layered medel
care must be taken in fitting the model to the real continuous profile
(see for example Phillips, 1951). The model derived here avoids this
"fitting problem’ for the density and velocity profiles considered here
by consistently deriving the layered model from the equations for a
continuously stratified fluid. On the other hand the usual layered
models must be fitted by appropriate reduction of the densiﬁy difference
between the layers. Since both models are in agreement for the case
0?1—¥b) = (Wz—yg), some explanation is needed for the latter statement.

From the form of the governing equations for the layered model of Davey

(these equations are of the same general form as (2.11)) it is clear that
decreasing the- density difference between the layers has basically the same
effect as increasing the vertical curvature of the. Hence the close rela-
tion between vertical curvature and densityvstratification is expected.

Now, consider the approximations to the vertical curvature in the two models.
In our model, the vertical curvature in the middle layer is approximated by:

. U, -U v, -U
.} lo 20 _ _20 3o
Yoze (H,/2H) (H2/2H)} / (Hy/H)

(2.12)

_ 2 :
-Z(H/HZ) (Ulo 2U20+U30)

whereas the corresponding approximation for the usual layered model is

(for H1 = H2 = H3):


file:///tv2hT

u Y107%0 U20_030 | '
222 = -
i {(Hz/ﬂ) 7 |/ Ha/® (2.13)

2
(H/HZ) (Ul°—2U20+U3O)-

Although we have written the approximation to ngz.in terms of the
values of the velocities at the middle of each layer, the layered models
have the velocities in each layer indepentent of z and hence in these

models,u222 is generally approximated by:

5 2
11222 = (“/Hz) (u1—202+u3) (2.14)

For an approximately linear velocity variation in each layer the
difference between (2.13) and (2.14) is small. HoweQer,‘in the presence
of large vertical curvature, the difference is significant. Even if

we use (2.13) there is still a factor of tyo difference between it and
(2.12). This difference arises due to’the fact that in the usual

layered quel the velocity difference between the layers is essentially
aésumed to occur over a separation of (H1+H2)/2 (fhe distance from the
middle of the upper layer to the middle of the second) while in our model,
since the density is uniform in the upper and lower layers, the shear. between
‘the upper layer and the middle layer occurs over a distance of H2/2 (the
distance from the bottom of the upper layer to ;he middle of the second
layer). Clearly the approximations of the vertical curvature in the

‘two models are quite different and if both models are to be applied to

the same situation, some fitting procedure is needed. The advantage of
the model developed here is that the density stratification ié chesen

to closely approximate the actual density stratification whereas this

is not the case for the usual layered model. If we want to use these
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layered models it is clear that the density difference between successive
layers must be reduced (The mean currents should not be tampered with

as they also appear in the advective terms and thus changing them will
change more than just the approximation to the vertical curvature of

the mean currents. Note, however, that if one considers tbe case of

large vertical curvature, Ul’ UZ’ and U3 should be replaced by Ulo’

U, , and U

2 in the layered models.). The fitting of the model by

3o
an appropriate choice of density structure is not all that surprising
when one realizes that the differences in the approximations to the
vertical curvature of the mean currents in the two models are originally
due to the different choices of density stratification‘in the two models.
Finally we note that if the actual density stratification is not well
approximated by the model developed here, one might prefer to use the
usual layered model (for which intuition through analogy with finite
difference approximations is probably better) or derive a yet another
layered model (either by the method described in ghis section or by

some other method). The latter choice is certainly preferable but

generally not as convenient.
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3. Linear Perturbation Analysis

We now wish to consider the stabilify with respect to quasi-
geostrophic disturbances of a steady mean flow which is uniform along
the channel. Hence we take wi = E; + Ei (i=1,2,3) where E; = E;(y)
is a zonally uniform time independent solution of (2.15) and £i is a
perturbation stream function which we take to be of the form appropriate

to waves propagating along the channel (i.e. E, = Re{¢i(y) exp[ik(x-ct)]1}) .

i
The linearized equations to be satisfied by ¢1, ¢2 -and ¢3 are:

2 : _
(Ul-c)[¢1yy-k ¢1-F1(3¢1-4¢2+¢3)] + ¢1[B-Ulyy+F1(3Ul-4U20+U3)] =0

4

Wy~ [y —k2¢ +4F (¢1 20,461 + ¢,[8-U W-AF L (U =20, +0,)] = 0

-bh -bh
+ B (U -4, +30,) + bH h|=0
o 3 y

where U, (=—¢1y), U3(=—¢3y) are the time independent veloc1ties in the
upper and lower layers and U20 =—E&y) is the corresponding velocity at
the middle of the second layer.It is convenient at this point to express
U20 in terms of the vertically averaged velocities in the three layers.

In the preceeding analysis we have essentially approximated the velocity,

in the middle layer by:
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) 2H1+H2
2H

2 ' ,
Uz(z) = 0 U (z z ) where z

U3 and that

Requiring that Uz(z=-H1/H) =0, U2(z=-(Hl+H2)/H)
-

—

- I H u (z)dz = U2 (the vertically averaged mean velocity in the
2 Hy +H

H

m|m

middle layer) it is easily shown that U2 = (6U2-U1-U3)/4 ¢and

= (H/H ) (u 3(H/H2) (U -2U +U3): note that the local

17030 U, = 2

curvature in the middle layer is U22/2) and hence that the equations

for ¢1, ¢2, and ¢3 may be written as:

, ; _ .
(Uy-c) 16, k"6 =F) (36, ~44,+65)] + ¢; 33 = 0

2 3y _
(Uqmc) [0y o=k §,+4F, (8,-26,40) ] + 45 322 = 0 (3.1)

' H.-bh
, c)[[ 3 ](¢3yy K ¢3) - F3(¢1-4¢2+3¢3E]+-¢3 %§3 =0
H, A



32

where %g; =B f Uly§ + 2F1§2Ul—302+u3)
} %gzﬁ; 3 —'U20yy:f 6F2(U1_2U2+U3),
. §§3 f'AHZ;Bh kaU3§y) + 25 (U -30,420,) + ﬁfﬁ; B
Use ~ (éuz‘Ul'U35/4

with boundafy conditions‘ ¢l = ¢2 - ¢$f;:0 O?iy'% éi-'l'

Before discussing the solutiéps of (3.1) in particular cases,
it is of interest to consider the possible mechanisms of energy transfer
. for this model. To derive an energy equation we begin with the real

form of (3.1) for bh << H

(i.e. for topographic variations small
3 pog

compared to the depth of the lower layer).

5 5 ‘ 98; 99
Gt U1 50 Do TE1yy T1 (381748 E9) 1 + 527 557 = 0
5 3 98y 39,
(a—t— + UZQ "3—;) [EZXX+EZYY+4F2(£1—252+E3)] + a—x— F =0 (3.2)
O B N CRTSNETR S G Wi
ot 3 9x” "73xx "3yy 371 U2 737 9x . 3y

Multiplying the ith equation by gi/Fi and integrating from
y=-1 to y= +1 and over one wavelength in the x direction (a
region we shall refer to as R) and adding,the following energy equation

is readily derived. -
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-2 2, . .\2

(V. £)) (v.£) (v, £2) ,

3 h°1 ) h°3 2 2
JI 2k, ' T 2F, MR (818" + (537%3)

R'—
+.—- =25, +E.) dxd

(3.3)

y | o |
= I[Ulyglxgly/Fl * Upoybaxbay/Fa * Usybaxbay/Faldxdy
R

-

rr. .fé' IR ‘f;, T oo
o+ J (4E 8o+ £381,) (U0, ) " ) ChEEg, + B38y) (U, -U3) ldxdy

J,

- €3 
The left hand side represents the rate of change of kinetic
plus potential energy of the depth-averaged perturbations. The first
energy transformation integral on the right hand side ié an expression
for the'horizontal Reynolds stress convefsioﬁ of kinetic energy in the

three layers while the second integral expresses the conversion of the

available potential energy of the mean flow. The ith term of the first

infegral on tHé right“hand'side'of (3.3) will tﬁ;é4ﬁehfeferfed:to askthe traﬁs—
fer of kinetic energy (T.K.E,) in the ith layer, and the two terms in the
second integral will be referred to as the transfer of available potential
energy (T.A.P.E.) due to the shear between the upper layers and lower layers
respectively,

We note here that the terms involving tﬁe correlation bétweén the
upper and lower layers in the T,A,P.E, terms of (3,3) are absent in the usual
layered models, These terms arise here as a direct consequence of thelapprox—
imations to'E1Z and €3z at the upper and lower interfaces (éee chapter V,

P. 199-200).
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Necessary Conditions for Instability

If the first and third equations of (3.1) are multiplied by
¢i/[(Ui<c)Fi] (i=1,3) and the second equat?o§ by ¢2/[(U20 C)FZ]
(this is justified if Im(c)#O;’a.f’indi;atés.ﬁomplé#‘cohjugaﬁidnfhé;é),
integréteq.from y¥—l‘to£y=+}5»gndafhéitﬁige_fésuiting'equations added,

 the following equation is derived: -

22, 2 -
1 3 e, |5+k“|e,] - :

iy i ) 2 _
f izl ¥ + 201,117 + T437¢,

. -1 ' ‘ I' r.
,
ey l” aqy

Jl
K U,—-c Yy
ST T B

2 1 2

(3.4)

o~ W

(Note that since the upper and lower layers are vertically uniform,
the vgrtical mean value of the velocities (U1 and U3) and the value

at the middle of these layers (U10 and U30) are equivalent.)

Taking the imaginary part of this equation gives:

‘ 1 3 2
. ) lo 17 da; | 5.5

We see that the expected necessary condition for instability
is found, i.e. the potential vortiéity gradient must change sién either
within a given layer ér in going from one layer to another.

For ci#O, the real part of- (3.4), aftér using:(ﬁ.g)‘yields:

|2+k2| 2

¢, |
1 2
F + 2_[I‘bz""l| + 4574,

2 1 2
|7 + Zl6,-26, 445171 dy

(3.6)

13 2
- J A 8qy 4

; U, — d
7, 7 Tﬁisclz iody F, y




Since the left hand side of (3.6) is positivé, it is clear that the
product of the mean velocity and potential vorticity gradient mﬁét be
positiye,at“leaé??épmewhéféihone of the layers. Thus a sufficient

. : : 9q
condition for stability in this case is that Uid§§—

Analytic Solutions =~

<0,(1=1,2,3).

For the remainder of this chapter we shall be concerned with the

case in which the following conditions hold:

Ui = constant - (i =1,2,3)

bh << H3

"h = constant
y

Under these conditions, solutions of (3.1) exist in the form

¢i =My sin[%ﬂ(y+l)] , (1 =1,2,3) where the ui's are constants to be

determined from the following eigenvalue problem (with the Doppler

shifted phase speed, C = ¢ - U20 as the eigenvalue).

2 39y
("~§1c)—C)[—K,[]11J1 - Fl(3ul—4u-2+u3)] + ¥y 0
3q3

2 ‘ | .
(=520 OV Ky Fa (uy=uyt3ug) 1 + g 55 = 0

2
where K2 = k2 + (%E)
m

(3.7)

(3.8)
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3y~ B- 6F, (S, -S,)

»3q3 RN S

\ 55 "8+ 2F3(51’252) +‘(b/R°H3)t5,

S =03 - Uy |
S, =0, = U;

S10 = Uy = Upo = (55,78,) /4

Sy6 = Upo ~ Uz = (55,75.)/4
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(Note that although: ixhafe expressed the equations in terms of c—Uzo,

in the dispersion curves plotted in the following sections we have

used U20=U2—(Sl—82)/4 to plot the results in terms of,(c—U2)~kr)

The condition for a nontrivial solution "(the vanishing of the

coeffieient matrix of ul, uz, u3) _gives the folibwing dispersion

relation:

2
- (3F1+Km)(Slo—C) +
- 4FZC

F3(820+C)

aql
55_ AFl(Slo_C)
. 9q
2 2
(8F2+Km)C + 5y

2 _
- 4F3(SZO+C) (3F“+Km)(SZO+C) +

3

- Fl(Slo—C)

- 4F2C

8q3

oy

For our calculations we will want to consider many different

g » _
values of Km for each set of parameters so that it is convenient to

(3.9)

rearrange the dispersion relation into the form given in Appendix a, at the

end of this chapter.
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If we normalize with respect to the middle layer by setting

u, = 1, then ui and uy are given by:

— S — . — —

2 :
-(3F1+Km)(Slo—C) + 3y -F. (S o —4F1(Slo—C)

8q3

) = (3.10)
F3(SZO+C) (3F3+Km)(S +C) + ¥y My 4F3(82°+C)

S S R —

The pefturbation velocity components are mow readily computed

by using the relations u = -gﬁy and v, o= gnx ; they take the forms

[+
i

w.t
: i
-sgn(un )Iunl %ﬂ-e cos(kx-wrt+6n) cos[%l1 (y+1)]
T

w,t ‘ '
--sgn(un )Iunl ke i sin(kx—mrt+6n) sin[%ﬂ-(y+l)] ; (3.11)
T _

<
]

(n=1,2,3)

: whére w=-ck, w, = Relw), w, = Im(w) unr = Re(un) , and

tan Gn =W /un » =m/2 < §,< w/2. sgn 1is the signum function which
i T
gives the sign of the argument.

Following Davey (1977) we now reduce the range of parameters

to be studied. Defining T = ( )hy it is clear from (3. 8) that if
. O 3
the system (Sl’ SZ’ B, T, Hl’ H 3) bas solution (C, Hys Hys u3) .

then the system (usl, aSz, aB, aT, H H3) has solution

2,
(aC, Hys Hoo u3) . Further, if the system (Sl 2, B, 0, H 2, 3)

has solution (C, Hys Hos u3) , then (-82, -Sl, B, O, H3,,H2, Hl) has
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solution (C, Hys My, ul) . The first of these relations corresponds
to a simple rescaling while the second follows by virtue of the rigid
1id approximation apd dorresponds to interchanging the top and bottom
layers. From the first relation it is clear that we need only conéider
the case S1 = 1 ., This corresponds to téking the horizontal velocity
scale, U , equal to the shear between the upper layers. (Note that
although U 1is taken to be a typical horizontal velocity for the pre-
ceding analysis, once the equations have been derived it factors out

14

of each equation and hence we may choose it to be S; = Ui - Ug for
convenience.) If T = 0 , then using the above relations, one may show
that the systems (1, SZ’ 8, 0, Hl, HZ’ H3) and

1, 1/82, -B/Sz, 0, H,, H,, Hl) have the same stability with respect

to. Ki . Hence in this case, the behaviour of all systems with T=0 can be

deduced from the subset (S =1, -1k5,¢1,8, 0, H,, Hy, Hy) . ‘In fact, in

2

every case considered we will take S. = 1 and consider -2 < 82 <2,

1
In this manner, most cases of interest are covered simply by choosing
= *

U Sl . |

We may also reduce the range of B to be considered. From
(3.5) we know that for instabilities to occur the following relation
must be satisfied.

. 2
lU _clz 9y Fy y -
-1 { 1=1 "4,

Hence, if all the basic state po;ential vorticity gradients are of one

sign no instabilities will occur. This condition will thus give us
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bounds on B for instabilities to occur. For Sl=1,_1;,s <1,and T=0,

. 9q, 2
all the —= are positive for g = 8/F2 > max(12, 2 Hzlﬂé) and all

3y
are negative for g < —6max(H2/H1, 32/H3) . It is interesting to note
further that th? corresponding range of g found by Davey using a model
with three lgyers of constant density and equal thicknesses is
-2 £ é € 4 . The range of é for which instabilities occurs is reduced
by a factor of three due to the over estimation of the stabilizing
effect of density statification (see the last paragraph in section 2).
It is important to note here that although it appears that
‘waves with é < 0 (corresponding to a relative westward flow in the
surface layer) are more stable than those with g >0 (eastward flow
in the surface layer), our results do not contradict the qualitative
statement made by Gill et al (1973) that, "because of the effect of 8
on stability, the most favourable conditions for instability are found
where the isopycnal slope upwards towards the equator ...". On the
contrary, if we consider Sl ='82 (which is approximatelj satisfied
in the studies mentioned above) we find that instabilities can only

occur for

-2112/111 < B < 2112/113

Since we generally have Hl << B3 we recover the resultrthat
for the open ocean (or anywhere that §, n S1 » and Bl << H3) it
appears that flows with a relative westward flow in the surface layer
are more favourable for instabilities than those with a relative east-

ward flow in the surface layer. It is, however, important to note that
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this conclusion relies strongly on the condition H1 << H3 .

4. Results of Independent Parameter Variations

For the purpose of considering the effect 6f parameter variatioms,

it is useful to first divide each of the equations in (3.8) by F

9 * The
resulting set of equations is:
2 9Q,
(S,70) [=(RG/F )by = (B,/B)) (3¢,=4¢,+4,)1 + ) 5= = 0
2 8Q2 (4.1)
- CI-(R/F) b, + 48 -20,%02)] + ¢, === 0 :
2 | 9Q4
(=5,=0) [=(KL/F)) 65 = (H,/By) (§;-40,436)]1 + 65 5= = 0
RN
where ) W_ = 8 + 2(H2/Hl) (231"52)
3Q2 A
3y b 65,75y
3Q; . - .
il 2(H,/H,)(5,-28,) + T
A _ 2
B = B/F2 = B*L /FZU
T = T/F, =

2 = (&'/0) (By/H bR,

Note that if plotting is done against Ki/F2 and if the

velocity scale, U , is chosen to be equal to SI = Ui - U; (so that

S, = 1), then the parameters to be considered are §,, H./H,, H,./H,, é
1 22 717727 3772
and T . From the form of the equations above we may also make some
general conclusions about the effect of demsity stratification. The

effect of varying each of these parameters independently shall be
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discussed in:this section.

Before beginning a study of the effects of parameter variations, it
is useful to give a qualitative discussion of the roots of (3.9). There are,
of course, three roots for a given wavenumber, k. 1In all of the dispersion
curves presented in this chapter, I have plotted wr—Uzk (=(c—U2)k) vs. k for
the first cross—channel mode (m=1). Thé non-dimensional phase speed is thus
obtained by dividing the ordinaﬁe by the absissé in the graphs and then
adding the appropriate value of U2, and the non-dimensional group velocity

~is obtained by taking the slope of the dispersion cﬁrve and adding U When

2°
two distinct real dispersion curves cross each other so that thevphasé speeds
and wavelengths are identical,an interaction between the two waves (and the
mean state) is possibleband an instability may occur. Since we have neglected
horizontal shéar and considered only constant bottom slopes, any such instab-
~ility must extract its energy from the potential energy of the mean state (i.e.
we are considering only pure baroclinic instability here). Since vertical

shear clearly plays a fundamental role in the mechanism of baroclinic instab-
ility (through its role in tilting the isopycnals), I have have chosen to
classify the different waves in terms’ofvthe vertical éhear of the mean current.
To make this classification, we consider the case B=T=0, to eliminate all but
the effects of the shears. In this case we note that if.Sl=S2 (no curvature

in the middle layer-see the paragraph preceeding (3.1)) then the constant

term in the dispersion relation (§ in appendix a) vanishes identically since

q2y = 0 for this case. Thus for zero curvature, one of the roots of (3.9) is
C=0 (i.e. ¢ = UZO)' (This is due to the fact that for B = 0 and Sl = Sz,
q2y = 0. Analogous results also hold for qu = 0, and q3y =0, i.e. qiy =0
=> ¢ = U, 1is one root of the dispersion relation, i=1,2,3). Since in the

10

absence of B, the wave corresponding to this root depends on the curvature
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of the mean currents to give it a non-zero phase speed relative to the.mean
flow in the middle layer, I shall refer to this wave as the curvature wave.
In the dispersion curves presented in figures 4.1-4.18, this root generally
lies near wr-Uzk = 0 at large k (note that at very large k, this root reduces

toc = U20’ i.e. wr—U k = ~-k(S —Sz)/4 so if we went to large enough k this

2 1
root would be better identified by its slope). For Sl # 82 this root plays

a fundamental role in destabilizing the flow. A careful examination of
figures 4.1 to 4.18 reveals that when this curve meets either of the others,
the flow is generally destabilized. The other two waves do not generally

interact in this way unless H, is relatively small. These other waves may

2

be classified as an upper shear wave (Sl—wave) and a lower shear wave (Sz—
wave). [Alternatively each of the roots may be classified by its dependence

on the mean potential vorticity gradient - the S,-wave depends critically

1

aql, the curvature wave on an, and the Sz-wave on aq3.] The lower shear

dy 3y 3y
wave is indicated by a dashed curve in the figures and is clearly very sen-

on

sitive to variations in S2 as wéll as variations in topography and B. The
upper shear wave is rather insensitive to variations in 82 and rises up to
the left showing relatively little variation throughout the figures in this
section (figures 4.1-4.18). It is however strongly affected by variations
in S1 holding 52 fixed. Finally we note that although these three types of.
waves are duite distinct at short wavelengths (where the layers tend to dg—
couple), the distinction at long wavelengths (where the layers are strongly
coupled) is not nearly as clear.

Also shown in figures 4.1 to 4.18 are stability boundaries (part(a)
in each figure). The stability boundary for each set of parameters is a plot
of 82 vs. Ki/F2

ant of the cubic given by (3.9)vanishes. This curve separates the region in

and shows the curve in parameter space on which the discrimin-
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which waves grow with time (Im(c) # 0) from the region of stable waves (Im(c)
= 0) and hence is very useful in studying the stability of a given flow. The
position of this curve was determined by numerical evaluation using the form
of (3.9) given in Appendix a. |
Let us now consider the effect of independently varying the parameters

in the model.

Variation of the Coriolis Parameter with Latitude
The variation of the local normal component of the earth's rotation

enters (4.1) through the term:-

~ * *
BE(g'/fS)EZ_B
ol £
(o]

*
1

a given latitude the effective B is increased by either an increase in

A negative value of é corresponds to S, < 0, and we see that at
density stratification or by a decrease in shear. (Note that if Sl = 82 = 0,
the only non-zero terms in qiy (i=1,2,3) are due to B and topography. 1In
this case the only non-trivial roots of the dispersion relation correspond

to Rossby waves. i.e. one of thé planetary Rossby wave (B#0,T=0), the
topographic Rossby wave (B=0,T#0),or the topographically modified planetary
Rossby wave (B#0,T#0). The case S, = S2 =0, B=0, T # 0 is briefly considered'

1

in appendix a.
From figures 4.1 to 4.3 we see that decreasing B from zero stabilizes

PN

the flow and from figureé 4.3 to 4.5 we see that increasing B from zero also
stabilizes the flow. In each case the effect is very similar with the very
long waves being quickly stabilized as expected. Further, we note that the
instabilities near S1 = S2 = 1 are quickly stabilized by é‘(either positive

or negative). This result is not very surprising as the unstable waves in
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this region are long and strongly affected by B. Perhaps more surprising is
the stabilizing effect of B on the short waves corresponding to the branch
extending to the fight in figure 4.3. However, the growth rates corresponding .

to these waves are very small even for B = 0.
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Stability boundaries (a) for H, = H, = H, , T=0, 8=-3 and first

mode (m=1) dispersion curves corresponding to these parameter values

with Fz =1 and S2 = 20.75(b), 0.00(c), and 0.75(d) . Statistics for

positions of maximum growth rate (marked by plus signs in the figures)

are given in the table. The signs of LY and My are given in
T T

brackets following 61 and 63 respectively.
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0.00 0.07 0.16 0.66 - 9.28(+) 87.72(+)
0.75 0.09 : 1.38 0.56 19.79(+) -11.40(+)
As in figure#2with ‘f =0, Also. included in part (a) 1s the

corresponding result of Davey (1977), (broken curve)
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Finally, we note here that whereas we have chosen to
classify our waves in terms of shears, when B is significant a
classification in terms of potential vorticity gradients, as mentioned

earlier, is more appropriate. These comments also apply to the following

?
‘section on topography, however we shall continue to classify our waves

in terms of shears, due to the role of vertical shear in supplying an

energy source for baroclinic instability.

Topography

The effect of topography in (4.1) is given by:

>

b
= (=) h
RoHsFy" Ty

g
(-f_ﬁ) (H,/H,) bh,

il

as in the case of R we see that an increase in stratification or a
decrease in shear increases the effect éf bottoﬁ topography. Bottom
topography is, of course, also felt more strongly if the depth of the
lower layer is decreased.

The qualitative difference in stability between the cases

T % 0and T > 0 is understood when one realizes that of the three roots

of (3.9), only ‘the S,-wave is significantly affected by topography. (This

2

is, of course, consistent with a classification in terms of potential
”~N

vortiéity gradients.) From figures4.s to 412 we see that as T increases
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k k
s, Maximum Growth Rate Iulluzl |u3/u2| 6y 8,
-0.75 0.50 1.14 0.06 66.47(+) ~47.18(+)

0.00 0.35 ' 1.38 0.05 43.37(4) 23.44(-)
0.00 0.03 2.90 7.66 -71.94(4) 21.16(+)-
0.75 0.04 1.73 ‘0.09 11.38(+) - 1.17(-)
0.75 0.03 . 0.90 6.51 77.16(+) 16.54(+)

Stability boundaries (a) ‘for H1 = H2 = H3 N

mode (m=1) dispersion curves corresponding to these parameter values

T=-30,8=0 and first

with F2 =1 and Sé = -0.75 (b), 0.00 (c), and 0.75 (d). Statistics
for positions of maximum growth rate (marked by plus signs) are given

in the table in order of increasing k .
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As in figureégwith T = 30 .
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~

from -30 to +30 the 82 -wave dispersion curve (which for large T is a

topographic Rossby wave modified by the shears) decreases from being

a generally positive root to being a negative root (consistent with the
shallow water being to the right of the direction of phase propagation;

see Languet-Higgins, 1972). In decreasing from positive values at

T = -30 to negative values at T = +30, the Sz~wave passes through and

interacts with the curvature wave. For 82 = 0 and 0.75 the Sz—wave root

already lies below the curvature wave root at T = 0 and hence no inter-

~

action takes place between these waves for T = 0 . For 82 = - 0.75 the

Sz—wave does not lie beléw the curvature wave for the full range of k
considered until % = +30 and hence some interaction between these waves
does occur for % > 0 in the presence of large curvature in the mean
velocity profile. Thus, for moderate curvature the interaction between
the curvature and Sz—waves occurs for ; < 0 while for large curvature
the interaction generally occurs for % > 0. In either case the effect
of topography on the direction of phase propagation is in opposition
to advection in the lower layer (relative to the other layers) thus
restraining the phase speed of the waves in the lower layer to remain
in the range where interaction with the other waves in the system is’
possible.

It should be noted here that even a very large bottom slope
does not cause significant reduction of the growth rates of instabilities

due to the Sz— and curvature waves interacting. However, if one

concentrates on the case 82 = - 0.75 in figures 4.¢ to 4.12(in each case the
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instability at smaller k is due to such an interaction) it will be
seen that topography does strongly affect both the phase and
amplitudes of these waves in the lower layer. Of particular interest
is tﬁe decrease in perturbation amplitude in the lower layer with
increasing bottom slope. Hence, evén‘in this case, topography has a
stabilizing influence, but its significance is restricted to the
lower layer where the bottom slope is strongly felt.

Finally we refer the reader.to Orlansky and Cox (1973) for an
alternative explanation of the stabilizing effect of bottom topograph§
based on energy argumenté involving the interchange of fluid elements
within the'wedge of instability'in a continuously stratified fluid. The
application to our model is simple. A large cross-channel botfom slope
will cause the fluid trajectories near the bottom to also have a significant
cross-channel slope and thus the release of potentiai energy from the
lower interface is inhibited. Hence the bottom infensified waves due
to fhe interaction of the'Si- and curvature waves are stabilized by such
a slope; However, in the region of the upper interface; the fluid
trajectories of the unstable waves due to the interaction of the Sffand
curvature waves are not nearly as strongly affected by the sloping
bottom and hence potential energy continues to be released from the
upper interface. Further, a slightly sloping bottom in the same sense
as (but shallower than) ‘the slope of .the lower interface may actually

‘increase the growth rates of the instabilities which extract potential

energy from the lower interface by constraining the fluid trajectories
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in this region to lie within the "wedge of instability".

Relative Layer Thicknesses

Figures ﬁi?to 415 illustrate the effect of increasing HI/HZ
while holding H3/H2 constant. Two basic effects are seen. The
curvature wéve and the S, -wave tendlto separate as Hllﬁ2 increases

1

causing the instabilities to shift to lover wavenumbers. The Sz—wave
dispersion curve is affected little by changes in HI/HZ but as the
other two curves separate, when the curvature and Sz—wave dispersion
curves meet, an instability results.
An exactly analogous situation occurs for H3/H2 increasing
(Figures 4l6-4.13) only in this case the curvature and Sl—wave dispersion
curves come together as H3/H2 increases.
In general we note that as a layer thickens the perturbation
velocities in that layer have a tendancy to decrease.
This is due to the fact that as a layer thickens it requires more
energy.to maintain the same velocities in that layer, yet the thickening
of a layer does not make more potential energy available for this
purpose and thus a decrease in perturbation velocities in this layer
will generally occur (this cbntrasts with the case of barotropic
instability where the thickening of a layer makes more kinetic energy
available). Alternative possibilities are to have smaller pérturbation
velocities in the other layers or to have a smaller growth rate for the

‘wave. In general the system responds with a combination of these

possibilities.



@ 20

~ 00

w

-20

00 80
2

© 59

STABLE

UNSTABLE

A,

160 240
Km /Fz

[ $,=0.00

1 J

00 20 40 6.0

k
Figure 4{131 S2 Maximum Growth Rate
-0.75 0.78
0.00 0.54
0.00 0.06
0.75 0.22

@R~y 2 k

|u1/u2|
1.18
1.67
0.34

1.81
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Statistics for positions of maximum growth rate (marked by plus

are given in the table.
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The point to be noted is tﬁat it is ﬁot always true that the case
Hl =‘H2 = H3 is typical.

Density Stratification

We first note that for a given channel geometry (i.e. H2 and L
fixed), F2 (=f§L2/g'H2) decreases as the effective density stratification
increases either through a decrease in the rate of rotation or through an
increase in the actual density stratification (either of these possibilities
decreases the slope of the isopycnals necessary for the process‘of baroclinic
instability).Thus through its presence in Kli/F2 in (4.1) it is clear that
an increase in stratification decreases the range of Ki in which instabilities
occur. This explains why,for the case of large curvature, the range of unsta-
ble waves found by Davey is only about half of that found here (after account-
ing for the difference in terminology), (see figure 4.3). This is primarily
due to the over-estimation of the stabilizing effect of density stratification
when considering a. fluid of three layers, each of uniform density (again see
the last paragraph in section 2),

One way to visualize the stabilizing effect of density stratification
on these unstable rotational waves is to consider their effect on the isopyc-
nal slopes. An increase in density stratification causes a decrease in the
slope of the isopycnals in the mean state and hence a smaller 'wedge of
instability" (see Pedlosky, 1971; Orlansky and Cox, 1973). This naturally
decreases the range of wavelengths for which instabilities may occur and
generally causes a corresponding decrease in the growth rates of the most

unstable waves in the system.
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The strong stabilizing influence of density stratification
is also seen from its effect on the influence of B and bottom slope.
As seen previously , an increase in either of these parameters
is generally accompanied by a &ecrease in thg range of unstable waves as
well as a decrease in the maximum growth rate of the unstable wéves.

Thus the‘presence of F, in the denominator of B and T (Equn. 4.1)

2
clearly shows further evidence of the stabilizing effect of density

stratification.

Curvature in the Mean Velocity Profile

The curvature of the mean velocity is indicated by the
difference Sl-S2 . (Note that S1 = 52 corresponds to no curvature
of the mean velocity in the middle layer but over the full depth of
the fludid the velocity field is of the form k\ . A study of part (aj
of figures 4] to 418 shows that the unstable range is always small near

SZ= 1 (recall that Sl-= 1 in these figures) and that the growth rate of

the most unstable wave generally increases away from 82 = 1, This is in

agreement with the qualitative statement made by Davey (1977) - "... the
range of unstable wavelengths increases as the curvature is increased
from zero'". When one notes that it is the curvature wave which inter-
acts with one of the other waves to generate an instability (at least

when H, is significant - see section 5) and that in the limit S1 =85

2 2

this ‘wave tends to become energetically inactive (recall that for

Fl = F2 = F3, and T = 8 = 0 the curvature wave reduces to the stable

root ¢ = U2), Davey's result is not surprising.
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One may aléo consider the effect of curvature in the mean
velocity profile on baroclinic instability by looking at the mean
potential vorticity gradients. Setting S1 = S2 in the expressions
given in (3.1) (with B, h, and the horizontal curvature of the mean

velocities set equal to zero to isolate the effects of vertical

curvature) we have:

qu = 2F1 Sl
=0

qZY

q3y - ZFBSI

Since the necessary condition for instability states only that a

change in sign of'qy must occur somewhere in.the fluid, this criterion

is clearly satisfied. However, if the thickness of the middle layer is
significant,lthe regions in which qy has opposite signs are effectively
isolated and instabilities are inhibited. [Note, however, that.as the thick-
ness of the middle layer 1s decreased relative to that of the other léyers

(so that F_ becomes large relative &o . F

9 ;and‘F3)the upper and lower layers

1
"will interact more strongly and thus generate significant instabilities
(see section 5).] If on the other hand, Sl#S2 a change of sign in qy
between adjacent layers may occur and instabilities are more probable.

Finally, we note that although in our figures we have only
plotted cases in which 52<‘Sl so that the uns;able long waves are
generally due to the curvature and Sl-waves interacting, it is important

to note that for SZ> Sl’ the Sz-wave and curvature wave will interact

at long wavelengths. Thus although the relatively long unstable



70

waves shown in the figures of this section tend to be surface intensified,

for Szé‘Sl,\the long unstable waves will tend to be botton intensified.
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5. Two-layer Models

It is of interest here to consider the cases in which one of

Hl s H2 or H3 vanishes. We first consider the case H2 + 0 (Figure 5.1).

In this.case F2 + o ‘and thus from (2.14) we see that wz +-%(wl+w3)

This in turn gives ¢2 - %(¢l+¢3) and U, - (U . Equations (3.1)

Us)
thus reduce to (after replacing the subscript 3 by 2 to relabel the

2

layers appropriately):
. ) aql
@ Oy Ty (=41 + ¢4y 557 = 0

, H2 aqz (5.1)
Bql
where F = B - Ulyy + Fl(Ul_UZ)
aq H
2 _ . vl b
5y B T Upyy H,-bh Fp(Uy=Up) + R, (8,5 "y

with ¢1 = ¢2 =0 on y-= %1 .

Assuming bh << H.2 , these equations reduce to (2.2.13) of
Pedlosky (1964). Hence, as expected, the cése H2 + 0 simply gives
the two-layer model. | |

Taking'the limit H2 + 0 in (3.9) we see that one root of fhe
dispersion relation for thevthree layer model is

= 0(i.e. ¢ = U2 = (U +U3)/2) . Thus the roots of the dispersion rela-

tion in this case reduce to o =~ [(U1+U3)/2]k = 0 plus those appropriate

to a two-layer fluid.

Figure 21 is an example of how this transition of roots occurs.
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Figure 51 A cross-section of the two layer model obtained by letting H2 + 0.
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Figure 5.2a: 5, Maximum Growth Rate '"1’"2' |u3/u2| N 8y
H, = 60m
1.25 0.21 0.28 3.36 54.92(+) -50.77(+)
Figure 5.2b: ¢,75 0.12 0.60 1.564 60.19(+) -18.52(+)
Ry = 6m  1.00 0.06 0.61 1.65  27.42(+) - 9.84(+)
1.25 0.37 0.19 1.43  20.89(+) -55.97(+)
Figure §.2¢!1.00 0.09 0.57 1.62  42.02(+) -13.63(+)
H, = 1075

-4 -1
Dispersion curves for the first mode (m=1) for S1 =1, fo e 10 rad.s ,

8=0,T=-10, L = 10kmy g' = 0.02u s 2, H. = 180m and

“1 = H3 = (HT-HZ)/Z
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Only the case B =0, T = - 10 has been shown but the same general

features are seen in other cases. For definiteness we have taken

£, = 107% rad _s'l, L=10km , g' = 0.02 ms'z, H, = 180 m , and

= = - = =5 =
Hl = H3 = (HT Hz)/2 for \Hz 60m , 6 m, and 10 ~ m. For Sl S2 s
the case H, = 10-5 m is indistinguishable from the two layer model.

2

From figures (5.2a) and (5.2b) we see that a small change in curva-
ture can cause considerable difference in the stability of the flow.
For example in each of these cases when SZ'= 1.25 the curvature wave
interaéts with the Sz—wave to create a significant instability mear
ik}?uz.o . However, as S2 -> Sl the curvature wave tends to become
energetically inactive and this instability diminishes. In each case
we also see that the cases S2 = 0.75 and S2 = 1,00 are very similar
at least for the choéice of parameters considered here. This is, of
course, only one special case and we should not try'to draw any general
conclusions from it. However, it is clear that the stability of the
system is rather sensitive to changes in the curvature of the mean

velocity field and care is needed when attempting to use a two-layer

model to approximate a situation in which curvature is significant. On

the other hand, when S2 = S1 the three cases considered in figures
(5.2a) to (izg).are encouraging. Although when . Hl = H2 = H3 = 60 m
(5.2a) the Sl and §,-waves don't interact, by the time H, = 6m (520b)

the stability of the 3-layer system is very near that of the two-layer
system shown in figure (%2¢) (all of these cases would show better

agreement. if the density differences between the layers were reduced
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appropriately; however, the choice of an appropriate reduction is

not a trivial matter). It appeafs that the two—layer~sys£em shéuld be
used with great care but is useful when Sl = 82 and H2 is relatively
small compared to H, and H,. When H, v H, H. the model must be "fitted"

1 3 2 173

by appropriate reduction of the total density difference.

The explanation for our result is that for the two-layer
model the curvature wave reduces to an energetically inactive stationary
(relative to the velocity in the middle layer) wave and the Sf-and Sz—
waves can now interact (though they probably should be renamed). Thus
the two—léyer model is a good approximation when the middle layer is
thin enough for the upper and lower layers to interact and the
curvature wave does not interact significantly with the other waves.

The problem with the commonly used two-layer model isvthat

the effect of curvature is neglected. If instead of letting H, > 0 one

2

lets H1 + 0 we get the situation illustrated in figure 5.3 In figure
5.4we see that in this case the curvature wave remains active and at
least for the parameters we have chosen this model is a better approxi-
mation to the three layer model than is. the model consisting of two
constant density layers.

For H1 + 0 we see from (2.15) that wl -> (4w2-w3)/3.
Hence U, ~ (4U, —U'_;s)/3 and o, > (4@2—%)/3 so that (3.1) gives
(after letting i = i ~ 1 to relable the layers apbropriately):

Bql

2 -
(Ulo—c) [@lyy—k ®1+8F1(Q2—®1)/3]+ @1 5y 0



@, linear

AANREARRN \\\\\\‘\\\\ |

€, constant

=-P11-+t>f\ ‘ 7

9L

Figure 5.3: A cross-section of the two-layer model obtained by letting Hl + 0.
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.
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H,_-bh aq

2 2 2
(Uz-c)[( Hz ) (¢2yy-k ¢2) + 8F2(¢l-¢2)/3] + ¢2 3;— =0
where U10= (9U1—U2)/8
9q
: 1 _B-1U, +3F(U-U)
y oyy
- B_Ulc'yy + 8F1 (Ulo-UZ)/3
' H.-bh
3q, 3 . b .
Ty (H_B_) (B-UZyy) + 3F2(U2-U1_) + -RO—HZ by
H
_ ,3-bh b
= (—=2- -U - —_—
( H, ) (B 2yy) + 8F2 U,-1 /3 + R A, by

(Note that these equations are identical to (5.1) with the density

difference between the layers reduced by a factor of 3/8 and Ul

replaced by U, ,i.e.,the appropriately "fitted" two-layer model.)

1
Further, if one takes the limit H1 <+ 0 in (3.9) we see that
for 8 = 0 the dispersion relation reduces to C = +S1 (the Sl—curve
. o
whose slope tends to 3/8 (= 3/8 82) as H1 + 0 in figure 54) plus the

dispersion relation for the two-layer fluid illustrated in figure‘53.
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In the case where the curvature wave interacts with the

S,-wave, the limit H, + 0 (figure ES) may be of interest but we shall

1 3
not considgr this case here.

Due to.the possiBle qualitative difference between the
three-layer model and the two-layer model with constant densities in
each layer it is puggested that care be taken wheﬁ'either the middle
laye; hgs significant thickness or curvature of the mean velocity
profile is present. When the simplicity of a two-layer model is

strongly desirablé, perhaps one of the other possibilities introduced

here should be considered to choose an appropriate density difference

between the layers (a case where this idea is useful will be considered in
Chapter IV, Section 3 of this thesis, where we consider a three~layer
model with linear density variation through the upper layer, and a density

discontinuity between the lower layers).



. H, ¢, constant

(’2 linear

HT=H| +H2

Z*="HT+bh o

08

Figure 5.5: A cross-section of the two-layer model obtained by letting H3 + 0.
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6. Conclusions
In general, three ve;tical modes may exist in the system studied
here. They have been classified as shear waves here due to the role of
the vertical shear in destabilizing the flow. They could equally well
have been classified as vorticity waves. The S -wave which is strongly

1

affected by variations in Sl as well as B 1is clearly linked to
aq
1

5y ° Similarly the curvature and Sz—waves could be classified by
3q 3q
their dependence on 3;2 and 3;— respectively.

It is shown that when the thickness of the middle layer is
" significant the S1 and Sz-waves cannot generally interact but the
curvature wave is very strongly interactive with either of these waves.
Density stratification is shown to stabilize the flow both by
decreaging the range of unstable wave numbers and by increasing the
effect of B and topography. B stabilizes both the unstable Sl-wave
and the unstable Sz—wave, while topography only has a significant
stabilizing influence on the Sz-wave. Increasing either Hl or H3
relative to H2 tends to stabilize the flow.
The three-layer model with uniform denéity‘in each layer is
a good approximation to the model developed here in the case of zero
curvature in the velocity profile but for large curvature (i.e.férlsl—szllarge)
it overestimates the density stratification and must be compensated for.
The model consisting of two constant density layers is shown
to be a good approximation to the three-layer model only when the curva-
ture in the mean velocity profile and middle layer thickness are small.
In particular the agreement seems best when the shear is slightly stronger
in the upper layers than in the lower layers. Improved agreement may be

found by reducing the density stratification appropriately. Although



82.

it is generally not clear how this should be done, for a linear density
variation through the upper layer, it is shown that the density difference

should be taken as 3/8 of the density difference through the top layer.
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Appendix a

I have found it convenient to rewrite (2.25) in the following

form, especially for the purpose of finding stability boundaries:

ac> + gc2 £ yC + 8 = 0
6 4 2
where o = A6Km + A4Km + A2Km
A6 =1
A4 = 3Fl + 8F2 + 3F3
A2 = 8(F1F2+F2F3+F1F3)
_ 6 4 -2

B = B6Km + BéKm + Bsz + BO

B = 52~ Slo
89, 3, 39,

B4 = (szo—slo)(3Fl+8F2+3F3) + By + % + 5

. aq

_ _ 1
32 = 8(820 Sl )(F1F2+F2F3+F1F3) + 35— (8F2+3F3)
i 3q2 3q3
+ _By_ (3F1+3F3) + _ay_ '(3F1+8F2)
39, 3, 3q,4
BO = 8(3_}7_ F2F3 + F F1F3 + W— Fle)
_ 6 4 2

Y = CER + €K'+ CK + C_

C6 = _Sl SZ
oo
: qu 8q3 : aql 3q2

C4 = —310320(3F1+8F2+3F3) - Slo(gy— + F) + 520(3— + ‘ay—)
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, ' ' 3q aq
C2 -8510520(F1F2+F1F3+F2F3) 10(8 (3F +3F ) + (3F +8F ))
3q; 34,
+ S, (— (8F +3F ) + (3F +3F ))
20 3y
. Bql 3q3 Bql 3q2 . qu aq3
dy 9y 3y 9y 3y dy
8q3 3q2 : 3ql 3q2
Co = —Slo(SF F2 3y + 8F1F3 3y —) + (8F F3 5y + 8F1F3 By =)
0
por 2 fa ey 09 R
1 9y 9y 2 3y 3y 3 9y 3y
§ = D4Ki + DZKi + D0
aq
2
D, =-~8_ S —
4 1o 20 3y
3q 3q 3q, 3q dq, 9q
D2='5132(3F3a_2+3F1'é_2)'51 3233 2 'é_lﬁ_z
o 20 y y Y o 3y 3y
aq 9q, 99 aq, dq
_ 2 _72°73 1 772,
Do = 1 2 (8F F3 5y —) + Slo( -3F 13y 3y —) + S (3F3 3y 3y
3q1 aqz 8q3
9y 9y 9y

The case of an advected topographic Rossby wave is found by letting

S.=S_ =0, 8=0. Then

4 2 o 1
[Km + (3F1+8F2)Km + 8F1F2]T

2.4 2
Km[Km + (3El+8F2+3F3)Km + 8(F F +F1F3+F2F3)]

and if we take the limit F2 > © (H2+0) we obtain the dispersion rela-

tion for a topographic planetary wave in a two-layer system



(e.g. Helbig and Mysak, 1976).

2
c - T(Km+Fl)

T 2,2
K_(K +F. +F,)
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CHAPTER III

MIXED BAROCLINIC-BAROTROPIC INSTABILITY IN

TWO- AND THREE-LAYER MODELS

86
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1. Introduction

Pedlosky (1964b) has studied mixed baroclinic-barotropic
instability in the two-layer model with upper and lower layers of
uniform densities pi and p; respectively (b; S p;). To simplify the
analysis he has considered the case in which the velocity in the lower
layer is uniform across the channel. The first main purpose of this
chapter is to extend the work of Pedlosky (1964b) to inclﬁde the effect
of horizontal shear in the lower iayer (section 2). The mean velocity
profile is taken to be a cosine jet in each layer with the amplitude
of the velocity in the lower layer varying relative to that in the
upper layer, i.e. U1 = Uo(l—cos mT(y+tl)), U2 = sUl with € a constant
whose value is varied. To concentrate our attention on the effects of
horizontal and vertical shears of the mean currents, the effects of B
and topography are not considered although they will be important in
most applications.

The final sections of this chapter are concerned with a model in
which the density stratification is modelled by three layers. Davey
(1977) has studied pure baroclinic instability in a three-layer model
similar to the two-layer model of Pedlosky. In chapter II, on the other
hand, pure baroclinic instability has been studied in a three-~layer model
derived from the equations of motion relevant to a specialized continuously
stratified fluid in which the upper and lower layers are of uniform

* % '
densities Py and p3 respectively (pﬁspz) and the density of the middle
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layer varies linearly from 52 to 62. The segond’main purpose of this
chéptgr i§ td'further:deyelope;the:ﬁbdg}tiﬁﬁf&duééa-iﬁ éhaptéfgII.

In séétion 3 (of this chapter)“éome general results
analogoué to those of Pedlosky (1964a,b) for the two-layer model are
presented for the thrée—léyer ﬁddel. The energy equatioﬁ is discussed,
bounds on phase speeds and.gréwth.rates of'ﬁnstable\waves‘ére found and
the condition for marginally stable waves with phase speed withiﬁ the
range of the mean velocity is presenéed. Section 4 is concerned &ith
some specific results on mixed baroclinic-barotropic instability in the
three-layer model. The flow in fhe lower layer is assumed to be
uniform (and thus set equal to zero) while the velocity profiles in
the upper layeré are chosén as in the study of the two-layer model,
i.e. U1= Uo(l—cos T (y+1)), U2 = eUl. By vgryiﬁg €, ﬁixéd baroclinic-

barotropic instability is examined. Finally some general conclusions

are made in section 5.

2. The Two-layer Model

The two-layer model introduced by Phillips (1951) to study the stability
of quasi-geostrophic flows has been gﬁtensively used in both meteorology
and oceanography. The'rgason forAits popularity is the simpiifications which
result in replacing a singular non-separable partial differential equation
with a pair of coupled, singular ordinary differential equations. The
analysis is often'further simplified by making the assumption that the mean
flow in the lower layer is umiform (both vertically and horizontally) and

hence without further loss of generality it is set equal to zero. The main
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purpose of this section is to investigate.the effects of non-uniform flow
in the lower-layer. The’anélysis will generally be restricted té the case
B=20". Killworgh (1978) has pointed out fhat the effect of B is mainly
quantitative r;ther'thah'qualitétive except in pases.where é‘;ié
lsufficientiy large to stabilize the flow. ‘This_is particuiariy feigyantffo
the very long waves-which may be stabilized by a relatively smallivalue of
.B and hence we will restrict our atténtioﬁ to unsﬁabie waves at moderate
wavelengths.

We begin with a brief discussion of the cases in whicﬁ the mean
currents vary over a horizontal length secale which is either small or large
compared to the local internal deformation radius in each layer. This is
followed by a detailed discussion of the case in which these length scales
are of the same order. The case of a cosine jet in the upper layer of a

= 0 (first studied by Pedlosky, l964b) is fﬁrther

two-layer fluid with U,

considered followed by a discussion of the case U2 E Ul .. For these cases
some simple analytical results are discussed. The remainder of this section

consists of a numerical study of the effects of horizontal shear in the

lower layer.

The effect of taking Ué f 0 will, éf coufse, depend on the héfizoﬁtal
length scale of the motion. More precisely; it depends on the ratio of the
horizontal length scale of the mean flow to the internal (Rossby) radius
of deformation. This fact is clear from the equatib#s for the non-dimensional

(complex) amplitudes of the stream functions for the two layers.

2
(Ul—c)[¢1yy—k ¢1+F1(¢2—¢1)] + ¢1[B—Ulyy+Fl(Ul—U2)] =

[
o

(2.1)

|
o

2 . '
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where the nondimensional quantities are related to the corresponding dimensional

(starred) quantities as”in-section 2 .of chapter II. i.e.:

xy0) = L(x,y)
* * _
.(C ,Ul’z) - U (C’Ul’z)
- k* _ k/L

* N
¢y = ULoy
* 2 R
B = BU/L (f=fO+B y ) (2.2)

in which L and U are typical horizontal length and velocity scales, fo
is the local value of the Coriolis parameter, -g' 1is the reduced gravity

H are the thicknesses of the upper and lower

Yk *k.
(g'=[(r pl)/p2] g) > H o, Hy

layers in the absence of motion respectively. Finally, Fi = f(Z)LZ/g'Hi
is the square of the ratio of the horizontal length scale of the mean flow
to the internal deformation radius of the ith layer. We note .

that the definition of the internal’deformation radius- introduced here is not

. /.g'BH,y .
equivalent to the usual definition (r, .= ————;;2——0 but it has the same

int fg(Hi+H2)
basic properties and we will find it very convenient to refer to the
quantity /gTﬁEon as the iﬂternal deformatioﬁ radius of the ith layer.
We will briefly consider the cases Fi << 1, Fi n~1 and Fi >> 1
separately. A more detailed treatment of these limiting cases.may be found

in Killworth_(l978).
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Case I1: Fi << 1 (i=1,2) .

Assuming'that Fl and F2 are of the same order, the fdliowing expansions

are appropriate:

-©-
]

0 1 .
¢i + ¢i F1 + ... -

0O
il

c(_)ji-chl+ ces 1 (2.3)

Substituting these expansions in (2.1), we find that to leading order.

. 0 0 0 . e
in Fl s ¢l R ¢2 .and c satisfy:

il
o

(U,=c%) o7, k0gT + o7 (8-, ]

0..0 .2.0 0 :
(U,-c%) Log k091 + 18-, 1 =0 . (2.4)

Hence, in this case the equations decouple, each layer yielding a Rayleigh

instability problem. If U, # U2 , an eigenvalue of the first equation will

1
not generally be an eigenvalue of the second equation so that the perturbation
motion is generally trapped in one layer where instability may occur due

to pure barotropic instability. (To next order in F1 there will, of course,
~ generally be motion torced in the other layer). In this case, only the form

of the mean velocity in the layer in which instability occurs is of any

consequence. A typical example of this type of instability is shown in

bl

Figure 2.1 where we have taken fO = 10 , B = b; L= 57.735 kn,

g' = 0.66 ms -2 s H1 = H2 =5 km (F1=F2=0.01), U1 = Uo(l—cos m(y+1l)) and

U2 = —Ul . We note that with the exception of ‘L these parameter values have
been chosen to model atmospheric flows. This choice was made in order to

facilitate comparison with the studies of Pedlosky (1964a,b) and Brown (1969a,b),

however the resulté only depend on the values of F1 and F2 and are
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immediately applicable to appropriate oceanic flows. For these parameter -
values, the layers are essentially uncoupled and ¢1 and ¢2 satisfy, to

a good approiimation:
_ . o, , )
[(Uy-c)-Uycos n(y+lﬂ[¢lyy~k ¢,1 + ?1[—ﬂ Ugcos m(y+1)] = 0
[(eUy-c)~eUjcos v(y+l)][¢lyy—k2¢i] +.¢2[—w28U0cos m(y+1)] = 0 (2.5)

" Since we have taken B = 0 , the growth fate of any instébility will simply
be proportional to the maximum velocity in that layer. This is the only
role of € at these very small horizontal length scales. Further details
on this type of instability can be found in Lin (1945, parts I, II, III),‘V-
Pedlosky (1964b), Drazin and Howard (1966),Brown(1969a,b) and Kuo (1973) as

well as a multitude of others.

Case 11: Fi >> 1A(i=1,2)..
In this case the horizontal length scale is much greéter than the
internal deformation radius and we gﬁpect any instability to be basicélly
_baroclinic in nature. This being the case, the appropriate horizontal
length scale for the perturbation is the internal deformation radius rather
than the scale on which the mean flow varies. Hence we introduce the foilow—

ing transformations

1/2
y' = y(F) /
v -1/2
k' = k(Fl) (2.6)
and expand ¢i and c¢ as:
_ .0 1 _-1
¢i—¢i+¢iFl + ...
_ D0 1 -1 .
c=c¢ +c F1 + ... . - (2.7)
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Figure 2.1: (a)Mean potential vorticity gradients in the upper layer
(solid line) and the lower layer (dashed line). (b)Complex amplitude
for the stream function in the upper layer (¢230). (c)Transfer of
Available Potential Energy (T.A.P.E.). (d)Transfer of Kinetic Energy
¢2=0, the transfer in the lower

(T.K.E.) in the upper layer
layer is very small. f =10

=5 km (F

H =H, 1°Fy

1

o , B=070, 1=57.735 km, g'=0.66 ms~2,
=0,01), U1=l-cosﬂ(y+l), U2=—U
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Making these substitutions in (2.1), we find that to leading order,

0 0 . .
¢1 and ¢2 satisfy:

0,,.0 2,0,,.0 0 0 —
(U =e) [0y v o=k 07 +(8,-01) 1 + 6/ [B+(U;-U,) ] = 0

0.0 2.0 0.0 0 B
(Uy=e”) gy o=k Loty /1, (4701 + 65 (648, /i, (U,-0)] = O (2.8)

These equations constitute the justification for considering 16ca1 values of
the mean flow in studies of baroclinic instability and are valid for

(ri/L)2 << 1 . The study of these equations amounts to the study of the effect
of weak horizontal sheér on baroclinic instability. Further comments relevant
to this case will be made in the following section, but here‘”I will just

note that for this case, the marginally stable waves marking the short wave
cut-off will be baroclinic in nature as opposed to the expected barotropic
nature conjectured by Pedlosky (1964b): This is due to the fact that tﬁe'
short wave cut-off for barotropic instability is proportional to the horizontal
length scale of the mean shear while that for baroclinic instability is
roughly proportional to the internal deformation radius. Thus for

(ri/L)2<< 1 we expect the short unstable waves to be baroclinic in nature.
This prediction. is,in fact, verified by numerical computation.

It must be noted here tﬁat the horizontal shear may influence the cross-
channel structure of the most unstable waves even for (ri/L)2 << 1 . The
marginally stable waves at the short wave cut—off will have a meridional scale
of the order of the internal Rossby radius and hence are unaffected by the
horizontal shear. However, Simmons (1974) has shown that the meridional

/2

. . ' . 1
length scale appropriate to the most unstable wave is (Lri) and hence
one must be careful not to neglect the effects of horizontal shear when these

waves are to be studied. Of course if one is interested in the local (on
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the scale of L ) stability properties of the flow then it is reasonable to
consider the case of no horizontal shear but this will not give any infor-
mation on the meridional structure of the waves occurring on the much larger

scales.

Case ITI: Fif& 1 (i=1,2)
This is the case of greatest interest here. Pedlosky (1964b) has

considered the case of a cosine jet in the upper layer with U, = 0 and has

2

 given the stability boundary corresponding to the short wave cut-off. 'In
the interest of completeness, the full stability boundary is given in figuré
2.2 which has been found by the methods described in appendix a. For the

‘case U2 = 0 , Pedlosky was also ablé to demonstrate numerically that the

minimum value of U, at which instability occurs is precisely that value for

0

which the necessary condition for instability is just satisfied (i.e. precisely

the minimum value of U for which qy changes sign somewhere). It turns

0

out that this result is relatively.easy. to prove analytically for the cosine

jet and that this point on the stability boundary corresponds to c¢=0,

k =-é§ m (see appendix b). It is interesting to note that this value of

k gives precisely the short wave cut-off for pure barotropic instability (the
reason for this result becomes clear in appendix b).

Finally it is of interest to look at the case F1 = F2 , U = U2

1
analytically. The stability boundary for this case in U0 vs. k space
is given in figure 2.3 for f = 104, g=0.0, L = 1000 kn ,

-2 _
g' = 0.66 ms » Hy = H, = 5 km , Ul =T, =~U0(l—cos m(y+1l)) . For
Fl = F2 and U1 = U2 our equations reduce to
2
- - + - + -U =0
(Uy=€) L8y, K 61 +F; (6,6,)1 + 6, 18- U ]

2 -
(U)=0) L6, 0, +F) (0001 + b, [8-U) 1 =0 (2.9)
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Figure 2.2: Stability boundary corresponding to the parameter values
£ = o6l g = 1.5 , L= 1,000 km , g' = 0.66 m.s.”>, H = H, = 5 kn.
(F1 = F2 = 3), U1 = Uo(l—cos n(y+l)), UZ'E 0.
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Figure 2.3: Stability boundary corresponding to the parameter values

-4 -1
fo= 107", 8=0.0,L=1,000km., g' = 0.66 , H; = H) =5 ka.

(Fl - F2 = 3), Ul - U2 = Uo(l-cos n(y+l)).
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The phase speed at the short wave cut-off is given by c = Ul(ys) where
2 < :
ql (ys) = 0 (see Pedlosky 1964b). This gives c¢ = U0 - B/w~ which reduces
y . . : . .
our equations to:

2 2
bryy by F (00 F ey

|
o

2 2 =
- - = ) 2.10
. Substituting ¢i = Ai sin %;(y+l)f,'(if1,2) we find that'the condition
for a non-trivial solution is:
. : r - 2
“2 —{Eﬂ] - 2F

2 1

Clearly only ﬁ =1 gives k2 > 0 , so the short wave cut-off is given

k ¥-f—— or k° = ~— - 2F

The significance of these two cut—off values has been.clearly pointed out
by Dr. J, fedlosky (thesis report). His comments are as follows, "When the
mean flow is barotropic the perturbations can be resolved on ;he N vertical
resting state modes of the system, The stability problem then reduces to

2 2
+ R, where P

. 2
the classical barotropic stability problem With k= replaced by k
is the vertical wave number of the mode. Since c = c(k2 + ri), while the growth
rate is kci it is apparent that the maximum instability (which is always
barotropic) must correspond to the barotropic mode which has /g==0. The
th . 2 2% .
short wave cut—off for the n mode is at (kB - rn) where kB is the.

barotropic cut-off," 1In the preceding work N = 2, The short wavelength
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cut-off for the barotropic'mode, kB, is VEW/Z and that for the first
] : . o 1 .
baroclinic mode, which has ¢1 = ¢¢2, is (3n2/4 - 2F1)1. The corresponding

" regions of instability are marked appropriately in figure 2.3,
" To consider the effects of varying Uzi in general we consider the
following parameter values: £y =‘10—4 sfl; B =10, L ="2,000 km, f_ﬁ
T

= 5 km (F1 = F, = 12), with U, = (1-cos m(y+l)),

2. 2

U2 = éUl . Note that in the absence of bofh B and topography, the value

of U (the horizontal velocity scale) is irrelevant. The choice of these

g' = 0.66 ms 5 H) =H

parametef valges gives the ratio of terms involving the vertical shear of
the mean‘currents to those involving the horizontal shéar of the mean éufrents
to be of order unity‘(iié. Fl(U1¥U2) ~n Ulyy).« Further% the choice of‘a cosine
jet is appropriate since we wish to consider a case in which both baroclinic
and barotropic instabilities are.possible.

Figure 2.4 gives appro#imate stability boundaries in> € vs. k space
for the parameter values given above‘(see'appendix a for a further discussion
of the stability boundaries). Probably the only meaningful conclusion which can
be drawn from this figure is that, as expected, away from €= 1.0 the short
waQe cut—off for unstable waves is shifted to higher wavenumbers due to the
presence of vertical shgar. The unstable fegions beyond the short dashed
line are probably not meaningful, We will first consider a series of cases in
which both energy sources are expected to be important (k = 1.5; € varying)
and then ?e will look briefly at larger values of k (k = 3,5). 1In each case,
attention will be focused on the most unstable waves,

The most unstable wave for k = 1.5, €= -1 (strong vertical shear)
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Figure 2.4: Approximate stability boundaries in € vs. k space for the

two-layer model with parameter values:. fo'= 10—45-1, 8 = 0.0 ; L = 2,000‘km;,
. _
' = = = = = - \
g 0.66 m.s. °, H1 HZ 5 km. (Fl FZ 12), U 1 cos n(y+1l) ,

U, = €U, .

2 1 Also shown here is the stability boundary appropriate to

P - JUPNEN

(L/ri) <<l (short dashed llne5 Note' These boundarles are qualltatlve. The

long dashed line indicates that value of k below which.the‘apparent'iﬁetaﬁilitles

are likely real. Beyond this line the apparent instabilities have very small growth S

rates and details of the boundaries shown should not be taken seriously.
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has w = 0.00 + i 1.50 and is illustrated in figure 2.5. 1It's energy source
is almost purely baroclinic with only a vefy‘small contribution from

barotropic sources (Transfer of Kinetic Energy [TKE] < 1/50 Transfer of -

Available Potential Energy [TAPE]). As one might have expected, this wave

has zero phase and group velocities making it a very special case and hence
probably only of limited use in mbdelling. Other apparent instabilities
aﬁi k = 1.5, € = -1 have very small growth rates: w = 0.37 + i 0.09 -
mixed energy source extracting potential energy from the interface and
kinetic energy from the upper layer in roughly equal amounts and

w=-0.37 + 1 0.09 with the same properties as above but its source of
kinetic energy is the lower layer.

The most unstable wave at é = -0.5 (k = 1.5) has w =0.43 +1i 1.10
and is illustrated in figure 2.6. 1In this case the ﬁet conversion of kinetic
energy in the upper layer is nearly zero while that in the lower layer is
again very small compared to the conversion of potential energy. The 6n1y
other instability found at k = 1.5 1s a bottom intensified wave (perturbation
energy of lower layer = 4x perturbation energy of upper layer) whose
energy source is mainly barotropic instability in the lower layer with
TAPE < TKE/2 in the lower layer. The TKE in the upper layer is small and
negative.

At ¢ = 0.0 the most unstable wave has © = 0.84 + i 0.56 and is
illustfated in figure 2.7. It is a potential energy converting wave losing
a small amount of kinetic energy to the mean flow in the upper layer. (The
conversion of kinetic energy in the lower layer vanishes since U2 =0).
Also significant at € = 0.0 is the unstable wa;e shown in figure 2.8. It
has the same basic energy conversion properties as the most unstable wave

but the TAPE is more evenly distributed across the channel and this is



5835

@) (b) (c)
200r o2 r
LLi .
& jo0f ¥ 006f
: :
1 ) 0.00
O'o-l.o 00 (.0 -1.0 00
y y
. @)
1.5 k=15 o 05
= 0.00+il.5
w ' Rl(d’z)
~ N\ /
Y 9 -05F :
4
- Im(®,)
- 1 J
LQIO 0.0 1.0
g \

Figure 2.5: (a)Mean potential vorticity gradients in the upper layer
(solid line) and lower layer (dashed line). (b)Transfer of available
potential energy. (c)Transfer of kinetic energy in the upper layer
(=transfer in the lower layer which is indicated by a dashed line in
this and future figures). (d)Complex amplitude of the stream function
in the upper layer. (e)Complex amplitude of the stream function in

.the lower layer. Parameter values as in figure 2.4; e=-1.00, k=1.5 .
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reflected in the form of the eigenfunctionsA(especially Ql ). This wave
is basically a higher mode instability.

The most unstable wave at € = 0.5 (k=1.0) has w = 0.76 + 1 0.34 and
is illustrated in figure 2.9. Unlike the most unstable waves of previous
cases this wave has substantial energy conversion contributions from barotropic
instability especially in the upper layer. In fact the TAPE = TKE . One
significant consequence of the TKE in the upper layer is that the wave is
considerably intensified in the upper layer. (When considering baroclinic-
barotropic instability in the three-layer model we will see that an apparently
insignificant conversion of kinetic energy méy cause significant intensifi-
cation inbthe corresponding layer). A second significant instability also
occurs at e = 0.5 . It is illustrated in.figure 2.10. This wave extracts
most of its energy from the tilt of the interface near the centre of the
channel and is itself somewhat concentrated towards the centre of the channel.
The growth rate of this wave is considerably reduced by a loss of kinetic
energy to the upper layer. The perturbation is, however, not significantly
intensified in either layer.

At ¢ = 1.0 , the only source ofvenergy for the perturbations is the

horizontal shear of the mean currents. This case has already been considered

in some detail analytically. Since F1 = F2 = 12 fof the case considered

here, the wave with ¢1'= —¢2 is not present (recall that the short wave
. ‘ 2

cut-off with this class of waves is given by k2 = é%— - 2Fl )} and hence

the only unstable wave found here has ¢l = ¢2 (see figure 2.11). This wave'
has w = 0.93 + i 0.39 and actually grows somewhat faster than the corresponding
wave at € = 0.5 (w = 0.76 + i 0.34).

In conclusion we note that at k = 1.5, Fl = F2 ~ 12 the most unstable
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waves witﬁ €'< 0 are essentially baroclinic energy converting waves
extracting energy from the tilt of the interface and losing small amounts
of kinetic energy to the mean flow. For this type of instability, the most
important quantity to estimate is the magnitude of the vertical shear; For

€ > 0 however, this is not the case. The most unstable waves have

significant contribution from kinetic energy conversions and taking e = 0.0
as a first approximation may give very misleading results.

‘Finally, let us consider the instabilities present at values of k
greater than that corresponding to the éhort wave cut-off for barotropically
unstable waves.. In particular we have considered k = 3.5 . At values of
e where instabilities occur at k = 3.5 the energy source is almost purely
baroclinic, however a significant loss of kinetic energy to the mean flow
may occur for e > 0 . Two effects thus serve to stabilize the flow near
€ =1 . The first is that the net conversion of potential energy is
roughly proportional to the mean vertical shear and hence decreases as
e =1 is approached. The second effect is that the loss of kinetic energy
to the mean currents increases as € = 1 1is approached. Both of these
effects will be noted on comparing figure 2.12 (e=0.0) with figure 2.13
(e=0.5).

We thus conclude that even in the case where we are interested in waves
considerably shorter than the short wave cut-off for barotropically
unstable waves, the neglect of horizontal shear in the lower layer may
be significant (especially for e > 0 ) in that we are neglecting a potential

stabilizing effect. However, we note again (as in the case of "small" k)

that for € < 0 this effect is probably not very significant and the study

of baroclinically unstable waves is reasonably approximated by setting e = 0.0
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3. The Three—laier Model (Qualitative Results)

In chapter II a three-layer model was derivedlfrom the
equations of motion for a continuously stratified fluid with densities
of the upper and lower layers given by pf and p; respectively (Q;SQT)
and p; varies linearly from pf to p§ (Figurez.{ chapter II). There it

was found that for bh/H,<<1 the linearized equations expressing the

3

conservation of potential vorticity for the model described above are:

L'ait + 0y | gy Py (38 65,460 T + &1 g = O
ri+U iw[VZEMF (g,-2e,+¢ )1+ €&, q, =0
at 20 3x| " H”2 271 273 2x 2y '
er + U —ij[Vzﬁ_—F (g,-4g,+32 )1 + &, q, =0 (3.1)
Lat 30 9x| " H’3 3 1 2 3 3x 3y \
where
q, = B - Ulyy + 2F1(2U1—3U2+U3)
dy, = B"UZOyy - 6F2(U1—2U2+U3)
Gy, = B - Uy + 2F3(U1-3U2+2U3) + (/R b, (3.2)

are the northward gradients of the potential vorticity of the mean currents

in each layer. Subscripts 1, 2 and 3‘refer to quantities defined in the

upper, middle and lower layers respectively and the additional subscript o
indicates that the quantity is to be evaluated‘at the middle of the appropriate
layer. Note that since quantities in the upper and lower layers are verfically

uniform, Ulo =z U1 , U30 = U3 but (c.f. chapter II):
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Uy, = (6U2—U1-U3)/4. ' (3.3)

The purpose of this section is to extend the qualitative

results of Pedlosky (1964a,b) to the three-layer case.

(a) The Energy Equation

In'chapter I1 it was found that if the ith equation of (3.1) is
multiplied by gi/Fi and integrated across the channel and over a wavelength
in the x-direction, a region.we have referred to as R, the following energy

equation is derived.

2 2 2
(V,£.) (V.£.) (V. .£.)
3 H>1 H"2 H~3 _r 2 2 1. 2
P J[ T, tam ot ) (G (2 ] axay
R
=Jﬁply€lxgly/Fl + U20y£2x52y/F2 + U3y£3x€3y/F3] dxdy (3.4)
R

+j[4€152x(U1'U20) + 481, (U)Uy) + 48,85, (U5 -Up)] dxdy

y This equation expresses the fact that the local rate of change of
total perturbation energy is due to one (or both) of two distinct energy
conversion mechanisms. The first of these mechanisms extracts energy from
the mean flow made available to tﬁe perturbations by the horizontal shear of
the mean currents. When this is the dominant energy source for the perturba-

tions the instability is referred to as barotropic instability. If, on
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the other hand, the perturbations extract energy principally from the
available potential energy of the mean currents (due to the effect of
rofation on a vertically sheared, stratified fluid) the instability is known
as baroclinic instability. 1In this chapter we are basically interested in
the mixed baroclinic-barotropic instability case where both mechanisms méy

be significant.

(b) Necessary Conditions for Instability
The necessary conditions for instability have been given in

chapter II (equations 3.5 and 3.6). The first of these is:

13 | l2
iy| o,
JEel
7 i=1 ¥ Ju, ]
- i'"io (3.5)

which implied that for unstable waves (i.e.for Im(c)#0) the

potential vorticity gradient must change sign somewhere, either within a
layer or in going fr&m one layer to another. An enlightening interpretation
of this'cbndition has been given by Pedlosky (1964a). Basically (3.3)
results from the fact that in the absence of external forcing, momentum can
be redistributed between the mean and the perturbations but no net change in
momentum may occur.

The second necessary condition for instability is:
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3
ji: ( |®iy’ 2+k l@ , )/F + 2[|® @ 2 4 |®2 3, + 1’@ =29 +®3|2] dy
i=1

2
13 Ui|¢i| .qu ;
2 3y y

=kec,
S 1

1 =1 F Uy e

(3.6)

It can be shown (see Pedlosky 1964a) that (3.6) is equivalent to
the statement

13 Uloié '

Bt 2

Jy//
[Perturbatlon Energy] « me, Z: —————= dy exp (2kcit) » (3.7)
i=1 F_|u, -c|
it io

-1

For an unstable wave, the left hand side of (3.7) is positive and hence we
9q,

see that the product Ui 5§i must be somewhere positive for Instability to

occur. This result may also be seen directly from (3.6), but the form (3.7)

(and its derivation)is more satisfying physically.

(¢) Bounds on Phase Speeds and Growfh Rates

In this section bounds will be found for the phase spéeds and
growth rates of unstable waves in the three;layer model studied here (B and
topographic effects are now included). Since the details are.someﬁhat more

complicated than for the two-layer model a full derivation will be given.
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We begin with Eq. 3.1 from chapter II with bh<<H

5
2 _
(U ) [8) ) k"0, ~F (30 ~40,+2)] + &1q; = 0
) 2 _
(Uyye) {8y ~k @ +4F, (0,-20,+0,)] + &,a, = 0
' 2 o |
(UsqmC) [05, ~k @37F (8, ~60,438,)] + &30, =0 . (3.8)

Since for unstable waves, Im(c)#0, it is permissible to make the

transformations

b, = (Uio—c)ei (i=1,2,3). (3.9

From (3.8) it can be shown that the eﬁuations satisfied by 91’ 92 and 93

are:
d (Ul—c)z de, _kZ(Ul—c)2 .
dy F Iy F 9, - (U;-©) [3(Ul—c)el- (U20—c)92+(U3—c)93]
+ (Ul—c)

- [B+2F, (20,-30,+0,)]8) = 0
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g U207 @), T2 |
ay| F, ) R S P 4(U, =€) [(U}=¢)8 | =2(U,, _=¢)8 ,+(U;=c)8 ,]
(UZO_C)
+ T[5-6F2(U1—2U2+U3) ]e2 =0
4 (U3-¢)2 d., 2(U3—c)2
dy| Fy 3y | Fy 04 = (Uymc) [(U;-c)8,-4(U, —c)8 ,+3(U =) 4]
(U3—c)
+ —————F3 [B+2F3(Ul—3U2+2U3)+(b/R0H3)hy lby=0 (3.10)
.th . . o % .
If the i~ equation is multiplied by 8, (where a * is used to represent
the complex conjugate), integrated from y = -1 to y = +1 , and the three

equations added, the imaginary part of the resulting equation gives:

- BT Iy - 2§57 .
c (B8, #0) = UR) + TRy + UgPy - 5(J H,H o) 2R H, hyly (3.11)
where
2 2, 2
0,17 + k78]
19y 1 21 2
17 ¥ + 208078, - 318,78,
2 2. 2
e, |+ k|8, |
- _2y 2 2 a4 12
?, T, + 2[91 92|A + 2|e2 93|
2 2, 2
o, + kK o, -
- 3y 3 o 12_1 2
?; F, + 2]o,7041" - 3lo;-0,
2
oyl
3, = (i=1,2,3) (3.12)

and an overbar denotes integration from y = -1 to y =+1 . (3.1l1) is



118

'.directly analogous to (4.2.5) of Pedlosky (1964a). However, further analysis
is complicated by the possibility of one of ?1 or ?3 being negative in
some region (It seems plausible that _?1, ?2, ?3‘ are always positive for an
unstable wave but I have been unable to prove this. If this result could

be proved, bounds identical to those given by Pedlosky would follow in

the same manner as in the two-layer case). To proceed further, we let

U20 = (U1+U3)/2 + 8U and rewrite (3.11) in the form:

H ) = | wa BTy -2 R T 31
cr(‘Pl+'P2+‘P3) = Ul(?f-%Pz) + U3(?3+%“Pz)_ + 68U ‘Pz 2(J1+J2+J3) 2R0H3 hyJ3 (3.}3)

Now, using the identity

2 2
2 atb a-b
| e ]? | Jacb]

+ IbI2 = 5

(3.14)

la

it is easily seen that ?1 + %?2 and ?3 + %?2 are positive definite quantities

2 2 1 2 . -
(e.g. ?l + %?2 = |el—92| + |92—63[ --§|91—93[ + positive quantities =

1 2 s s
-5|91—292+63l +v(p051t1ve quantities)) .

Now, since for any reasonably well behaved function g which vanishes

on y = *1 we have
1 f
2 T, 2 .
I'gy| 52 gy, (3.15)
1

it is easily shown that

e 2, 12, 2, M2, — ‘ |
'Pl+?2+‘P3 > (k"+GT) (,J1+J2+J3) > (k +(§) ) N (3.16)
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and using (3.14)

?1+?2+P3 Z-?Z . o (3.17)
o . . 1,3 _ .
By considering the cases c. >U = max(Ul,U3) (note that this is
max 1.3
not necessarily greater than the maximum of U20) and ¢ < U - = mln(Ul’UB)

and using (3.13), (3.15) - (3.17) the following bounds are readily found

for c, (the details are analogous to those of Pediosky 1964a).

\ .
max(h ,0)
Uili + min(8U ; ,0) - ~2B T2 " 21?11 3 :mén
267 +@% o3 o+
min(h ,0)
<c <ul3 4 maxeu  ,0) - =2 ymax (3.18)
— T — max max

ZROH3 (k2+(g?2)

In the case in which U20 = (U1+U3)/2 , these bounds reduce to the same
form as found by Pedlosky (1964a) for the twoelayer model.

To derive a semi-circle theorem applicéble to our model the real part
of the equation corresponding to (3.11) is used. This equation can be

arranged into the form:

2 2, 2. _ 2, 2 s 2 2 2 2

Uy + Uy By + Uy = (ephep) BB L+ 208 10, |7 (0-U, )7 + 208,70,]7 (U, ~Uy)
1 2 2 :

- 5|el—e3| (U =U)" + B(U T +U, T 40T + U3(bhy/R0H3)J3 (3.19)

Further considerations will be restricted to the case in which UZo = (U1+U3)/2

(in any case where ?i >0, i=1,2,3, this restriction is not necessary).

Now, letting a =1U , d =10 . and using ?jk%?z 20, ?jkf 2 20

max 'omin

we have:
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0 > (Uj-a) (U-8) (B +38,) + (Uy=a) (Uy=d) (2 30,

.2 2 2 2
= U1?1+U20‘P2+U3‘P3 - (at+d) (Ul‘Pl+U20‘P2+U3‘P3) + ad(?1+‘P2+‘P3) + ((Ul—U3) /2) ?2

2.2 ———
= (cr+ci) (?1+‘P2+’93) + B(U1J1+U20J2+U3J3) + U3(bhy/R0H3)J3

" 8 — ,_b 5y + Lon on )2
- (a+d){cr(‘Pl+‘P2-I~'P3)+2(Jl+J2+J.3) +2ROH3 .hyJB} + ad(‘Pl+‘P2+‘P3) + 4(U1 U3) 'PZ

1 2 2 1 2 2 1 2 2
+ 5(0,-0.) [0,-8, 17 + 5(U -0 [0 ,-0,]7 - (U, -UY lo;- 65! (3.2)

where (3.11) and (3.19) have been used in the second equality. Using (3.14)

and the definition of ‘Pz(cf.(3.12)) the sum of the last four terms in (3.20)

is easily seen to be positive. Hence (3.20). gives:

2 2
. a+d 2 a-d
{i:r-[—z—]:[ +ci}(?l+?2+?3) < [—2——] (B 40,30 )

: + - +d
+ B{[é'z'g] (I HIHTy) = (U440, J2+U3J3)} + [aT_U3)_RLH-hYJ3
-2 0 o3

2
a-d\* =5 a-d) ——— b atd -
< { > ] @, 4P, + s[ > }(J1+J2+J3) + R A, max{[ > U3]hy}J3

Using (3.16), we finally have:

-] -1
U 40
b max min 2 w2 .
+ x g max [T—U?’ hy- Ec +(5)] (3.21)

03
T]max-*-Umin - ) 1
Using max ——2———U3 hy iE(Umax_Umin) ‘hy\ nax this can be replaced
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by the convenient form:

Upaxt? in 2 2 Um ~Uni ? ' (Umax-U in)
o - |meEX_mingy o, C o | DX _MIRG L (gi(p/RH) | ) —T TR (3,22)
T i 2 0 3" "y 'max 9 1.9
2[1( +(§) ]

Although (3.22) has only been derived for the case UZo = (U1+U3)/2 .
comparison with the corresponding relations found for the two-layer and
continuous cases (Pedlosky, 1964a) suggests that it is probably valid in
general. A proof of this result appears to depend on Pl, P2 and P3 being
independently positive, a proof of which I have been unable to
produce.

To find a bound on the growth rate which does not increase as B increases
we again follow the work of Pedlosky (1964a). Multiplying the ith equation
of (3. 8) by ¢:/Fi , integrating from y = -1 to y = +1 and taking the
imaginary part of the sum of these equations we have:

B TR Lo C R I e P
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Now, using

l6.6.] < lo,1%+ lo, (3.24)

1] — 1 J



122

and'

2 2 2
2k|¢i¢iy[ <k |¢i| + |¢iy| (3.25)
we obtain the following inequality
2(Fl’LFz)kJ Ul—UZOIma (F+F kU -0, 2(Fy+F k| U, ~Uy .
ke, | < : X+ + ,
- 2 w2 2, 72 2. w21
E{*‘(?] 2]} +(§):l E< +('2") _l
U U U . :
+ l 1ngax + ‘ 2ylmax + I 3§|max . (3.26)

Thié method of bounding the growth rate has been interpréted by
Pedlosky (1964a) as simply the bound obtained by majorizing the energy
conversion terms due to vertical and horizontal shears.

A final bound on the growth ra.te can be found from (3.8 ). Multiplying
the ith equation by d):/Fi(Ui -c) , integrating from y = -1 to y = +1 ,

0
summing, extracting the real part and using (3.5) we have:

U, |¢, | N2 2,2
[l 3 "io0'di qu}_dy ) (1 % |¢iy| +k ’qzll
1 1=1_|U1 - lz 3y F 21 i=1 Fi
2 2.1, 2 7
+ 20010, [ loy=0,517 + 516, -20,44] ]}dy (3.27)
qu :
Since we have shown that, for this case, v, =) > 0 for instability

io 9y "max

~ (cf (3.6)) the following bound is easily derived from (3.27).

(kep)? < (kz/k2+'(§)_2)(u-g§)max (3.28)

Finally, if |U—cr| >6 (di.e. if c. lies outside the range of - U )
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this bound can be replaced by:

2 2,2 ,m.2 ) 2
gk - 29
(ke)® < (/@D WD = () (3.29)
(d) Marginally Stable Waves
The condition for marginally stable waves whose phase speed lies in
the range of the mean velocity of one or more of the layers is derived in
exactly the same manner as for the two-layer case (cf Pedlosky, 1964b)
and hence only the final result shall be given. It is
2
3 Iq)il aqi '
) ) =To T 55 = O (3.30)
i=1 ¢ritical points i' Tdio y
in the ith 1layer
A critical point in the ith layer is defined as the point Y. where
Uio(yc) = ¢_ . The result (3.30) is identical in form to that corresponding

r

to a two-layer fluid.

With the results of this section in hand we now proceed to consider

the effects of mixed baroclinic-barotropic instability in the three-layer

model.
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4. Baroclinic-barotropic instability in the three-layer model (A
numerical study)

In this section we consider the three-layer model discussed above with

U 0 and U, = €U, where U1 = Uo(l—cos m(y+l)) . In many respects the

3 2 1
work done here is similar to that of section 2 on the two-layer model but one
must bear in mind that the vertical shear between the lower layers is an
important energy source for baroclinic instability (especially near ¢ = 1.00) .

As in section 2 we are interested in the effect of varying e(=U2/U1) and

we look at this effect in the three cases, Fi<<l’Fi>>l and Fi AV

Cases I,11: Fi<<]' and Fi >>1  (i=1,2,3)

These cases may be studied in exactly the same manner as was done for
the two-layer model. TFor Fi<<1 , 1=1,2,3 (horizontal lgngth scale of the
mean currents much smaller than the internal deformation radii) the three
equations decouple to leading order in Fl , and for each layer fhere is the
possibility of barotropic instability. For Fi>>1 , 1=1,2,3 the main energy
source for unstable waves is the tilt of the two interfaces, and the most
unstable waves are essentially the same as the corresponding waves in the
absence of horizontal shear (this has been verified by direct numerical

studies). This case has been studied in some detail in chapter II,
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Case II1: Firn 1 (i=1,2,3)

This is the case of greatest interest here for it is in this case that
both baroclinic and barotropic energy sources are likely to be important.
To facilitate comparison with the work on the two-layer model in section 2

-1

the following parameter values were chosen. £, = 10_43 , B=0.0, g'=l.00ms_2

0

(Note that this is somewhat larger than for the two-layer case), HlfH23H3=
3333.33m (Note that HT = 10 km as-in the two-layer case) and L = 2000 km.

The choiée of g' 1is such that Fi (i=1,2,3) are all equal to the corresponding
parameters in the two-layer model (i.e. F1=F2=F3=12). Since away from ¢ = 0.5
it was féund that baroclinic energy sources strongly dominated the barotropic
sources for these parameter values, L = 1,000 km . ﬁas also considered in

some detail. This is of considerable importance in itself since it indicates
the fact that the baroclinic energy source is apparently considerably stronger
for the three-layer model than fof the two—layér model. The explanation for this
appears to lie in the fact that the term involving Uzz in the equation exﬁressing
the conservation of potential vorticity is poorly estimated in a two-layer | ‘
model but somewhat better estimated using the three-layer model. In fact it-was
shown in chapter II that the two-layer model corresponds to the limit of the three-

layer model as H24 0 with U =(U1+U3)/2 (i.e. with the finite difference approx-

2

imation to Uzzin the middle layer set identically equal to zero).

Approximate stability boundaries for these two cases are given in
figure 4.1. Several general features of these boundaries deserve some

explanation. Possibly the most striking feature is the cusp at ¢ = 0.5 .

This feature has been discussed above and is due to the fact that the vertical



Figure 4.1: Approximate stability boundaries in ¢ vs. k space for the

three~layer model. fo = 10'“5'1 ,B8=00,pg"=1.0, H1 = H2 - H3 = 3333.33 m.;

L= 51735kq.- approximately vertical line; L = 1,000 km - dashed line;

L = 2,000 km - solid line.

9tT



127
curvature of the mean flow is small here. The branches extending to lérge
values of k near € = 0.0 and € = 1.0 have been explained by Davey
(1977) in a study of pure baroclinic instability (no horizontal shear) in
a similar three-layer model. .At these short wavelengths, the layers are
only weakly coupled and a tilt of one interface acts as effective topography
for the two layers above or below as the case may be. The branches may thus
be reléted to similar features of a two-layer model with topography. We
also note that instabilities extend to much shorter wavelengths in a three-
layer model than they do in the corresponding two-layer model (compare
figure 4;1 with figure 2.4). This feature is éxpected since in the three-
layer modgl; the minimum vertical scale of the motion is two thirds that of.
the corresponding two-layer éase,,and we know that for baroclinic instability
to occur the vertical and horizontal length scales must be related such that,
on the average, the slope of the fluidvtrajectories in the y-z plane lie
withinbtheﬂwedge of instability‘(see Pedlosky, 1971; Hide and Mason, 1974).
Finally,‘we'note that the stability boundaries for L = 1,000 km and
L = 2,000 km are nearly identical outside of a factor of two due to scaling
with respect to the half—channel width. If the horizontal length scale‘had
been chosen as’the internal deformation radius for the system the two
stability boundaries would nearly overlap. This is due to the fact that by
L = 1000 km, the short wave cut-off is dictated almost entirely by
baroclinic instability with the short wave qut—off for barofropically
unstable waves occurring at much smaller values of k .

In order to study the effects of varying € we shall consider the
three values ¢ = 0.5, 0.75 and 1.0 for different values of k . The

main emphasis will be on the case L = 1,000 km but any significant
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differences between L = 2,000 km and L = 1,000 km will be pointed out.
At k=1.0, e = 0.5 the most unstable wave has changed from a layer-
limited bqrotropic‘instability aﬁ L<<ri to a baroclinically unstab}e wave
with substantial energy input from barotropic instability at L = 1,000 km
((L/ri)zw3) (figure 4.2). Due to the influence of barotropic instability
in the upper layer this wave is substantially intensified in the upper
layer. Even at L = 2,000 km ((L/ri)2m12) wheré the net tranéfer of
available potentiai energy is of order six times the net transfer of kinetic
energy, the eigenfunctions of the most unstable wave are very similar to those
in figure 4.2. Also pfesent when L = 2,000 km' is a baroclinically umstable
wave which loses energy to the mean flow through the horizontal Reynolds stresses.
This wave 1is sﬁown in figure 4.3. It is significant that this wave is equally
as strong in the upper and lower layers and considerably diminished in the
middle layer. Also‘considered for € = 0.5 was the case k = 2.5 . At
L = 1,000 km the most unstable wave had appfoximately equal contributions
from baroclinic and barotropic energy sources with the major source of
potential energy being the tilt of the lower interface and the major source
of kinetic energy being the shear of the mean currents in the upper layer as
expected (figure 4.4). By L = 2,000 km the situvation is quite different
(figure 4.5). The transfer of kinetic energy represents a loss from the
perturbations in both of the upper layers and the energy source is baroclinic.
The most unstable wave at k=1.0, g=b,75 has w=0.33+ 1 0.26 and is
shown in.figure (4.6). Comparing this with figure 4.2 (e=0.5) we see that
the phase speeds, growth rates and eigeﬁfunctions for these two cases aré
very similar. The relative magnitudes of the net TAPE and TKE are also

very similar, but their distribution is quite different. At e = 0.5
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Figurc 4.3:

As in figure 4.2 but L = 2,000 km.
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the source of potential energy is almost equally distributed between the
upper apd lower interfaces whereas ét g = 0.75 the tilt of the lower
interface is the main source éf potential energy. Also, with the increase
in U2 the TKE in the middle layer is substantially ingreased. Unlike
the case ¢ = 0.5 the most unstable wave at L = 1,000 km still remains

at L = 2,000 km. with relatively minor changes in phase speed, growth rate
and eigenfunctions. However, as expected the relative magnitﬁde of the TKE
is considerably reduced compared to the TAPE (compare figures 4.6 and 4.7).
One point of considerable interest is clear from these figures (especiglly
figure 4.?). Although the major source of energy for the perturbations is
the tilt of the lower in;erface, the wave is intensified in the upper layers.

In the absence of horizontal shear, the unstable wave here would be intensified

in the lower layers. It appears that a relatively small TKE 1is capable

of a very significant vertical redistribution of energy in the growing per-

‘turbation. This behaviour has frequently been observed in this study and
appears to be of major importance whenever the TKE represents a source of

‘energy for the perturbations. This behaviour will be observed again for

e = 1.0 in figure 4.10.
Although the most unstable wave at L = 1,000 km is still present at
L = 2,000 km it no longer has the largest growth rate. The wave with the

largest growth rate is due to baroclinic instability and loses very small
amounts of kinetic energy (reiative to the TAPE ) in both of the upper layers
(figure 4.8). A

Now, if one considers k = 3.5 (with e = 0.75 still), things are
much as ekpected. We are well beyond the shortAwave cut-off for barotropic

instability and the waves are not substantially influenced by the presence
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of the horizontal shear. As shown in figure 4.9 the most unstable wave for
L = 1,000 km is a bottom intensified barocliniéally unstable wave extracting
its energy primarily from.the'tilt of the lower inte?face. Ibere is.a small
gain through tﬁe Reyrnolds stresses in the upper layer, and a loss in the

lower layer but ngither of these appear to have any significang effect. The
only major difference at L = 2,000 km. is that both the phase speed and the
_growth rates are substantially increased (w = 3.06+i 1.94 for the most un-—
stable wave at L = 2,000 km. compared to w = 2.35+i 0.72 at L ='1,000 km ).
The energy transfer properties and eigenfunctions are not substantially
altered although the eigenfunction is slightly less intensified in the lower
layers. .The explanation for the seemingly large disérep;ncy in phase speed
(we expect the growth rate to be increased) lies in the fact that we are
comparing waves with the same non-dimensional wavelength when scaled with the
horizontal 1ength scale of ﬁhé‘mean currents when the appropriate length scale
i§ the internal deformation radius.  'In fact the phase speed of the most
unstable wave at k =.7.0, L =2,000km. is very near that for k = 3.5,

L = 1,000 km as it should be. The eigenfunctions and energy transfer
properties of these two wéves are also in e%cellent agreement.

Finally, we consider € = 1.0 . This case is in fact very similar to

€ = 0.75 and hence will only be considered briefly. The figure corresponding
to figure 4.7 (e = 0.75) is given in fligure 4.10. We see that the only differences
that occur are quantitative and due mainly to the increase in TKE in the
middle layer. The figures corresponding to figures 4.6, 4.8 and 4.9 show
similar agreement and will not be reproduced. In figure 4.10 we see that the
effect of the small TKE in redistributing the energy of the perturbation

is again surprisingly strong. In fact, the effect is so strong that

in spite of the fact that
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TAPE ~ 10x TKE it is still reasonable to refer to these waves as baro-
tropically unstable waves modified by baroclinic effects.

The final case of interest is the instabilities associated with the
branch extending to the right near ¢ = 0.0 and € = 1.0 in figufe 4.1,
As mentioned earlier this branch has been explained by Davey (1977) as a
result of the layers'effectively decoupling and the tilt of one or the other
of the interfaces acting similar to bottom topography. No attempt was
made to study these waves in detail as the growth rates of
these waves were very small and it would take a large number of cross-
channel modes to properly resolve them. Studies with 10 symmetric cross-—

channel modes did however indicate that Davey's conclusions are correct.
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5. Conclusions

We have considere& baroclinic-barotrdpic instability in two- and three-
layer models. For the case of a mean flow with a short horizontal length
scale ((L/ri)2<<].)‘it is shown that the study of barotropic instability is
appropriate with the thickness of the layer in which the large horizontal
shear occurs used as the fluid depth. From the proof given in section 2 it
is clear that this result holds-for any region (layer) in which the conditiqn
(L/ri)2<<1 holds. This result may be immediately extended to a continuously
stratified fluid. The condition (L/ri)2<<]. simply states that the vertical
stability of the fluid is so large that the process of baroclinic instability
is inhibited (i.e. that the rotation rate is so small or the density stratification
so strong that the isopycnal slopes are insufficient for significant amounts of
potential energy to be released by the process of baroclinic instability), however
the process‘of barotropic instability involves only horizontal exchanges of
fluid (and vorticity) and hence is affected little by the vertical stability.
Thus in a region of high vertical stability, 'layer limited" barotropic
instability is possible. This fact is very significant since averaging over
the depth of the fluid may eliminate or greatly diminish the instability if
the large horizontal shears occur over a limited depth of the fluid, thus
such averaging is not recommended in the study of cases where the process of
barotropic instability is believed to be dominant. A better approximation
would be to consider the region in which (L/ri)2<<]. separately.

Ndw, as (L/ri)2 " increases the mechanism of baroclinic imstability
becomes increasingly important. Since ba¥oclinic instability occurs on
the scale of the internal deformationxradius, and barotropic instability

occurs on the scale of the horizontal shear of the mean currents, for
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(L/ri)2 ’small,barociipic instability will be limited to very large length
scales (i.e. very small k = k* L Y. TFurther, the growth rates.of such
baroclinically unstable waves will be small relative to- those pf,Barotropically
unstable'waves in fhe syétem. However,.for (L/ri)2 & 1 substantial‘
baroclinic and barotropic instabilities may occur at the same wévelengths and
the interaction can be strong. The (basically) baroclinically unstable waves
generally lose kinetic enefgy'to the mean flow.throughhtﬁé'hori;oggéi“oé
Reynold's stresses while the barotropically unstable waves extract additionél
energy from the mean state through the process of baroclinic instability. As
expected, the main effect of the losses due to thé Reynold's:stress_on the
'barbclipicaliy ungéaﬁle wavesr(both'abéve andFSélow the lpng'waQexcdt—éff fd}
barotropic instability) is to reduce the growth rates of the waves. It
appears that the study of these waves may be reasonably undertakeﬁ by taking
the'shear between thé layers to be an ‘appropriate mean value acrossfthe channel.
‘However this.approximation _eliminates the second class of instabilities
(the basically barotrépically unstable waves) which we have seen méy have
significant growth rates even for (L/ri)2 large due to their ability
to extract potential energy from the mean flow. A very interesting property
of these waves is that their vertical energy distribution appears to be
dictated primarily by the transfer of kinetic energy even when their
dominant energy source is the transfer of available potential energy.

For (L/ri)2>>]  the barotropically unstable waves are limited to very
long wavelengths (relative to those of the most unstable baroclinic waves)
where the growth rates are much smaller than for the shorter baroclinically
unstable waves. Thus for (L/ri)2>>]_ the flow will be essentially baro-

clinically unstable and may be studied by considering uniform shears across the
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. . 2
channel. It is, however, important to note that the condition (L/ri) >>1
must be strongly satisfied before such a study is justified (the studies
with the cosine jet suggest that this condition is more accurately stated

as (L/ri)2>>n2)

Finally, we mention the work of section 3 in which the three layer
model of chapter IT is further developed. The energy equation is
discussed, necessary conditions for instability derived, bounds on phase
speeds and growth rates are found and the condition for marginally stable
waves with phase speed within the range of the mean currents is discussed.
All of these results are essentially identical to the corresponding work
done on the two-layer model (Pedlosky, 1964a,b) although the bounds on the
phase speeds are somewhat weakef unless ‘UZ = (U1+U3)/2 .

The work done here suggests that in most cases of reai oceanic flows
the study of instabilities should include the effects‘of both horizpntal and
vertical shears (as well as the effects of topography and 8 which have
not been considered here). All of these aspects are considered in chapter

.

IV in which the three-layer ,model is applied to real ocean situations._A
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Appendix a - Method of Solution
We have already seen in chapter II how a simple analytical solution of

(3.40) (with ¢, =0 on y=#1,1=1,2,3) may be found for the case

U

. constant
ie

h
y

constant

s s . ,_ mm
Under these restrictions solutions are found in the form ¢i = u,; sin ??(y+1)
with the ui's being determined from the differential equations. In order
to extend this method to more general cases the following expansions are made.
«©

u, + z u,; cos %;(y+1)
0 k=1 "k

U, (y)

(y) = uc, + z ucikcos %;(y+l)

1yy 0 k=1
° Ln
bh /H, = hsy + Y hs cos ERSALY
y =1 & -
6, = L w sin S (y+L) | (A.1)
m=1

The second of these expansions permits the study of cases in which the
differentiated series for the first case may be slowly or non-convergent.
Substitution of (6.1) in (3.10) results in an infinite dimensional

matrix eigenvalue problem of the form:

(A- cB)o =0 - (A.2)

(=
|53

where ¢ 1is the (complex) phase speed, A and B are square matrices,'and

@ 1is a columm matrix containing the coefficients for the eigenfunction
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expansions. The components of these matrices are given below.

1,.2
a - =
3j-2,3m-2= - (K_-F.) (u -u ) = 3F, (u -u ) + F.(u -u )
’ e T T I L TR
-5 (ucl -uc ) + (B-Kiul -uc +Fl(ul —6&2 +2u3 5)6 .
Ylo-j| Tmt) o o o “0 o ™
= 2F - + 4F S .
#335-2,3n-1 l(ullm-jl “1m+j) 1°1, m3
= -F_/2 - - F S,
a33-2,3m " 1/ (“1|m_j| “1m+j) 1°1,"n]
433-1,3m-2 2F2(u2°|m—-j|_u2°m+j) + 4F2“2006mj
1,2 . 1
a.,. = -= (K +8F,) (u ~-u - >(u -uc )
3j-1,3m-1 2 m 2 2°|m—jl 2°m+j 2 zolm-jl 20m+j
-3F, (u -u -2u +2u +u -u,
21 1.,. 2 . 2 .. 3 . 3 ..
lm-3] “wri Clm-j| CwH w3 Tmhj
+ (B=(K248F. )u, -uc, ~6F,(u, -2u, +u, ))&
m 2 200 200 2 10 20 30 m]j
235-1,3m 2F2(u2°[m-j I-u20m+j) t 20, ms
a.,. =~-Fu, § ., -F,/2(u -u
3j,3m-2 3 30 mj 3 3|m-j| 3m+j
a.. = 4F.u, § ., + 2F_(u -u
3j,3m-1 3 30 m]j 3 3|m—j| 3m+j
2 ' 1
a.,. = -K7/2(u -u ) - =(uc ~uc )
3j,3m m 3|m—jl 3m+j 2 3Im_jl 3m+j
1 1
+ F_ (u -u -3u +3u +-u -=u )
31 . 1 2 . 2 . 273 .1 273 .
lo~j| w1 “|m-i]  Cwki © T|m-j m+j
+ (B—Klznu3 -uc, +2F3(ul +3u2 +%u3 )+hso/R°) <Sm, + (-z-lR—) (hs ' —hs )
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2 |
b3j-2,3m—2 - _(Kﬁ+3Fl)6mj
P35-2,3m-1 = “F1%m3
P3j-2,3m = F1%nj
®33-1,3m-2 = “F2’n
b = _(K%+8F.)6
3j-1,3m-1 m . 2’ mj
®35-1,3m = *F2%n;
B35,3m-2 = “F3%n;
b35,3m-1 = 4F30n;
b - _(3F K26
3j,3m 3 m mj
¢3m—2 T VYip ¢3ﬁhl = Hop <I>3m = Hay
2 .2 . mm2
where Km = k" + (2 )
Uy, = (6u2:l ulj u3j)/4
uc20j = (6uc2 —uclj—uCBj)/4

1

This system was approximately solved by truncating the eigenfﬁnction
expansions at a point where the eigenfunction expansions appeared to have
settled down.k For the most unstable waves, only a few modes were generally
required although the number variéd with the form of the mean currents.

In this paper, only symmetric velocity profiles are considered and we have
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taken h = 0 . Under these restrictions, the solutions of (3.10) are either
symmetric or anti-symmetric in y (since the coefficients in 3.10 are
then even functions of y ) and these two classes of solutions can be

considered separately (at a considerably reduced expense). Since the symmetric

modes were generally the most unstable, only these modes are discussed. 1In

practice, ten symmetric modes were used in all the calculatlons presented in

this paper (1.e. ¢i was approximated by ¢ z My si (2m 1)“( +1))

v=1 “2m-1 2
This is considerably more than is generally required.

Finally, we note that for cases such as those presented in figures 2.2

and 2.3, the value of c¢ at the short wave cut-off is known exactly from the

work on marginally stable waves ( 3(d)). In this case it is preferable to fix

¢ in (3.10) and solve the resulting eigenvalue problem with k2 as the eigenvalue.

This eigenvalue problem is simply expressed in terms of the definitiomns given

by (.3). It is given by:

3 -KkBe=0

where

>

and E; are given by the following. First, set Ki = (%;)2
instead of (921[—)2 + k2 in (A.3). Then £=

A-cB and B is given by

b, . =0 (i # 3)

1
=< - + (u, -c )8
P35-2,3m-2 z(ullm—jl “1m+j) (“10 °s) % |

-1 _ -
b 1,3m-1 T 24y, Uyy ) ¥ (uy, =e I8

lm-3]  ““m+j 0 J

1
b,. =3 - + -c_ )¢ .
3j,3m 2(u3lm-jl “3m+j) (“30 &) ®mj

Finally the approximate stability boundaries presented in figures (2.4)
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some further discussion. The ﬁethod used in this paper to
waves is not well suited to the calculation of stability

to the singular nature of the governing differential equations
resulting eigenvalue problem) for ci=0.(or 20). For this reason

while we may use the method employed here to study the most

unstable waves, the stability boundaries calculated by this method -are

qualitative in

nature and small details should not be taken seriously. 1In

fact the unstable wave associated with the branches extending to the right

in both. figures 2.4 and 4.1 have very small growth rates and are not very well

resolved. Due

to the inherent qualitative nature of these boundaries, figure

4.1 was calculated using only 3 symmetric modes and checked at several points

with 10 modes for qualitative accuracy (the results agree quite well). In

spite of the qualitative nature of these figures, they do contain much

useful information.
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Aépendix b

In this appendii it is shown that the minimum value of U0 at which
instability occurs in a two-layer model with Ul = Uo(l—cos m(y+l)) , U2 =0
is precisely the minimum value for which qy changes sign soméwhe;e. Since
the phasé speed at the high wavenumber cut-off is given by c¢ = Ul(ys)
where Yo is given by qq (ys) = 0 and the low wavenumber cut-off
Aconsists of retrograde wast the minimum value of U° . for which instability
occurs must have c¢ = 0 . The equation for the'second layer then gives
¢2 = 0 (i.e. we are essentially considering a case of'barotropic instability)

and the upper layer equation reduces to
u.[¢ -k2¢—F¢]+¢[6—U +F.U.] =0
1" "lyy 17171 1 lyy "'1'1

It is now easily verified that for Uo = B/vr2 (the minimum value for

which qy = 0 somewhere and also precisely that value which makes 9 - Ul )
y
¢l = A sinEgL(y+l) is a solution for k2 = nz-(%;)z . Clearly only the

first mode can be unstable and the value of k corresponding to the minimum

value of U0 on the stability boundary is k = (/3/2)7 .



CHAPTER IV

OCEANIC APPLICATIONS

150



151

'l. Introduction

Energetic current fluctuations with periods longer than a day
have been observed in many regions of the ocean during the past decade.
Probably the most accepted explanation for the presence of these
fluctuations is that potential energy (available from the tilt of the
‘isopycnals in a rotating stratified fluid in the presence of vertical
shear) may be released to perturbations at these frequencies by the
process of baroclinic instability (Charney (1947), Eady (1949}, Green
(1960) , Pedlosky (1964)). A second possible energy source for these
fluctuations is the kinetic energy of the mean currents made available
by horizontal shear in these currents. When this is the principle
source of energy for the perturbafions the mechanism by which energy is
extracted is known as barotropic instability (Lin (1945), Kuo (1949, 1973),
Drazin and Howard (1966)). Using the model developed in chaptér 11,
both of these energy sources are included in a study of the stability
of the current systems in Juan de Fuca Strait and the northefn region of
the California Uhdercurrent (off Washington and Vancouver Island). 1In
each case, it is found that the major source of energy is the potential
energy due to sloping isopycnais and that the main influence of horizontal
shear in.the mean currents is to limit the region in which the vertical
shear is such that energy is released to the perturbations. Mysak (1977)
has studied pure baroclinic instability in a two-layer model of the
California Undercurrent and found results consistent with observations.
Through a study of'the stability of a three-layer system including
horizontal shear and non—constént bottom slope, fhe results of Mysak's
study are extended and several qﬁestions raised in his paper are examined.

In particular we find that replacing the upper layer of strongly stratified



152

fluid with a rigid 1id is valid in the study of the waves examined by
Mysak. However, this approximation filters out a very important class
of ‘instabilities which extract potential energy from the tilt of the
upper interface, and it appears likely that this class of instability
may be responsible for the observed wave-like perturbations in the

region of the California Undercurrent.
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2. Juan de Fuca Strait

Juan de Fuca Strait consists of two basins separated by an

effective sill extending southward from Victoria at a depth of about 100 m
(see figure 2.1). Although we will principally concentrate on the western
basin, we will find that the most unstable waves in the‘strait are strongly
surface intensified and hence the sill probably does not act‘as.a barrier
to these waves. The western basin is appféximately 20 km across and

90 km long with a relatively uniform rectangular cross-section throughout
~its length. The most complete measurements of the currents in this
basin have been presented By Fissel and Huggett (1976), Fissel (1976),
Cannon and Laird (1978) and Holbrook and Halpern (1978) . The reports
by Fissel and Huggett, and Fissel are concerned with the same set of
measurements collected in the period from late May to mid-July 1975. The
" positions at which these measurements were taken are shown in figures 2.1
(circles) and 2.2. Figure 2.2 also includes the values of the mean long-
strait currents during the measurement period. The average density
profile across this cross-section, measured during a cruise on June 14-15,
1975 is indicated in figure 2.3 together with the approximate density
stratification corresponding to the model developed in chapters II and ITI
of this thesis. The approximation.is clearly quite reasonable. A more
complete set of measurements of the mean currents than those given in
figure 2.2 (appropriate to the nearby cross-section indicated by the x's
~in figure 2.1), measured during the séme season (June-August 1977), has
been presented by Cannon and Laird (1978) and is reproduced in

figure 2.4. These two sets of mean current measurements appear to be
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Figure 2.1: (top) Juan de Fuca Strait and nearby geographical features.

(bottom) Juan de Fuca Strait with positions at which Fissel's data (e)

and one section of Cannon and Laird's data (x) were collected. (from

Cannon and Laird, 1978)
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reasonably consistent and hence in our studies we shall use the more
complete set of values presented in figure 2.4.

Fissel (1977) defines the residual currents as thevflow
remaining after currents with fr;quencies greater than 0.8 cycles per day
have been removed; His analysis shows fhat the residual currents in
Juan de Fuca Strait between Sheringham Point and Pillar Point have the
following properties:

(1) 80% of the total variance of the residual currents is concentrated

at frequencies less than 0.25 cycles per day,

(2) the amplitude fluctuations in the up-strait component of the

residual currents are larger by a factor of two than those of the cross-
strait currents,

(3) the amplitude fluctuationé of the residual currents at 20m depth

are considerably larger (by a factor of two or three) than the fluctuations
at 120 m depth,

(4) theAresidual up—strai£ currents are poorly correlated at the lowest
frequencies where most of their activity occurs. Even fiuctuations of

thé current at pairs of stations that are adjacent fo oné another (with a
typical separation of 4km) are not consistently correlated at the 90% sign-
ificance level. Verification of the first three statements above can be
found in figure 2.5 which gives the spectral densities of the residual
currents measured at the various stations shown in figure 2.2. The

fourth statement is discussed furthér at the énd of this section. The
principal‘subject of this section is the study of the stability of the
mean currents to low-frequency quasi-geostrophic wave perturbations.

, The~model used. to study the stability of the mean currents
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de Fuca Strait; (b) the mean potential vorticity gradients corresponding

to the three layers of our model: upper layer-solid line, middle layer-
long dashes, lower layer-short dashes; (c) the eigenfunction corresponding
to the most unstable wave in the model; (d) the transfer of available
potential energy corresponding to this wave: the solid line corresponds

to the transfer of energy due to the shear between the upper layers and the
dashed ling_to that due to the shear between the lower layers; (e) the
transfer of kinetic energy for this wave: solid line cozrresponds to the

upper layer, long dashed line to the middle layer and the short dashed

line to the bottom layer.



Table 2.1: Properties of the most unstable wave found in the three-layer model of Juan de Fuca Strait.
This wave is illustrated in figure 2.6. (A positive value of ¢ or c corresponds to an
eastward velocity.) ’ 9

Model Ul'UZ'U3 Period Wavelength e-folding Phase Group
, 1 (days) "~ (km) time velocity velocit
(x 16 cm sec ) : (days) (xm day~1) (km day™*)
Figure 2.6 figure 2.7a 13.7 76 6.6 -5.5 -6.8

191
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in Juan de Fuca Strait to propagating quasi-geostrophic perturbations
has been derived in Chapter II, section 2, A three-layer model was
derived from the equations of motion for a continuously stratified

‘fluid with densities of the upper and lower layers given by pf and

*

3 respectively and p ¥

e 2

varies linearly from 51 to 3} over the middle
layer in the absence of motion (the basic state density approximation is
shown in figure?2.l.chapter II)., There it was found that the linearized

equations. expressing the conservation of potential vorticity for the

model described above are:

2
(Ulo--C)[¢lyy -k ¢l - Fl(3¢l—4¢2+¢3)] + ¢1qu =0
2 , =
(U,,=C) [¢2yy - kg, + AF, (-2 ;49 ) ] + $,d,, = O (2.1)
H_-bh 5
(u, =3)[( ) ($,. =k"d,) = Fo(¢.~4¢ +3¢)] + ¢.q, =0
30 H3 3yy 3 3'71 2 3 33y
where qu =B - Ulyy + 2Fl(2Ul - 3U2 + U3)
q2y =8 - Uz_yy - 6F2(Ul-—2U2+U3)
H,-bh ,
A3, = ( i, )(B—U3yy) + 2F3(Ul—3U2+2U3) + (b/ROH3)hy
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In the study made here and in that made‘in the next section the

effect ofJB is very small and hence it is neglected. in“fact; as
pointed out by Dr. Roland de Szoeke iprivate éommunication), thislis
probably genérally true for the study of baroclinic instability in

the oceans since the effect of B is not likely to be strongly felt on
the scale of the internal deformation radius of the oceans. This is,

of course, not true for atmospheric flo@s where the internal deformation
-radius is much larger,

The bottom topography and density stratification used in our
ﬁodel are shown in figures(Z.Z)and(2.3L bThe structure of the mean
currents (averaged over each layer) are modelled by the approximation
shown in figure (2.6a) . Also shown in this figure (part (b)) are thg
mean potential vorticity gradients. Thé form of the potential vorticity
gradients is of great interest in the study of either barotropic or
baroclinic instability. If the potential vorticity gradient changes
sign within a given layer then the possibility of barotropic instability
extracting its energy from the kinetic energy of the mean currents is
introduced. A change of sign in going from one layer to another
introduces the possibility of baroclinic instability in which energy is
extracted from the available potential energy due to the tilt of an
interface. As can be‘seen from the figures showing the transfer of
available potential energy (T.A.P.E.) and the transfer of kinetic
energy (T.K.E.) for the most unstable waves found (figure 2.6) the
major source of energy is potential energy and its release is centred on

_the region in which qu X q2y is large and negative (- .7 £y S .3).
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The T.K.E. is very small but it is interesting that its 1a£gest effect
is a léss of energy in the lower layer due to the stabilizing effeét
of topoéraphy. The eigenfunctions correspénding to the most unstable
wave in this system ére shown in fig;re 2;6(c). It is interesting to
note that the t?ansfer of potential energy is stroﬁgl§ intensified in
the region of maximum vertical shear (see Fig. 2.6(a) and (d)) in spite
of the fact that the channel is only about two internal deformation
radii in width. Hence averaging the mean currents over a couple of
internal (Rossby) radii of deformation.is not justified
if large horizontal shears are present. Further, it is interesting
that with horizontal shear included, the stability of the system was
.found to be relatively insensitive to small changes in the mean
currents. A case in which the stratification and mean currents of the
flow are retained as in figures 2.3 and é.6 but topography
is totally neglected (i.e. the bottom is assumed flat) was
also studied. The results for the most unstable wave were not significantly
different from those given in figure 2.6 and table 2.1, which gives the prop-
erties of the most unstable wavevillustrated in figure 2.6. These results
are encouraging as they indicate that the changes in mean currents and bottom
topography which occur over the length of the channel may be reasonably
neglected. Note, however, that although this is the case for the study made
here, in the geﬁeral situation these results will not always be true. (eg.
if the main sourée of energy was the tilt of the lower interface, effects of
bottom topggraphy would be significant).

Table 2.1 gives the properties of the most unstable wave fouﬁd in

Juan de Fuca Strait. Though the observations are seriously limited, we see
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that the prediétions of our mddel are at leaét consistent with Qhat is known.
The period is in the right geﬁeral range, and the wévglength is such that

the ratio of iong—strait to cross-strait energy is of qrder”fouf, as observed.
The e-folding time and group velocity are such that the perturbation velocities
e—fpld in the time that the group trévels about 45 km (i.e. about two channel
widths). Hence the growth rate is certainly sufficiently large to have
significant influence on the low-frequency motions in the strait. Finally,
from figure 2.6(c), we seelthat the perturbation is predicted to be surface
intensified as observed. We thus conclude that the low-frequency motions
observed in the strait may be at least partially due to baroclinic instabil-
ity of the mean currents, however, we have not yet explained the observed

lack of coherence between the stations. It seems likely that it is due to
several processes occurring simultaneously. Some possibilities are:

(1) influence from low-frequency motions in the Strait of éeorgia,

(2) influence of varying outflow from Puget Sound and Frazer River,

;

(3) effects due to the proximity of boundaries for thé near-shore stations,
(4) wind forcing over the ocean causing a "piling up" of wate? along

the coast creating an adverse pressure gradient in the ﬁpper layer,

(5) the diffraction of shelf waves or other waves propagating up the

coast (which may be generated many kilometers to the south) into Juan
de Fuca Strait,

(6) the effects of non-linearity and geostrophic turbulence,

(7) the effects of étrong "high-frequency” (w ~ f) tides.
The most significant of these aré piobably the last four. Cannon et al

(1978) have found that, during the winter, deceleration of the along-channel
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currents géﬁerally occurred during st:oﬁg soutﬁerlf winds off the coast
and during increasing sea surface height at Neah Bay. They found that
significant correlations existed between:
(l) the along—channél 4-m currents ét Site A'(Fig. 2.1) aéd the north-
south Pacific winds with currents lagging winds by 42 hours (process (8));
(2) the along channel 4-m currents at Site A and the sea surface height
at Neah Bay with currents lagging sea-surface heiéht by 6 hours (process
(95); and
(3) the north-south Pacific winds and sea surface height at Neah Bay
with seé-surface height lagging winds by 24 hours (the winds are apparently
either generating or reinforcing wave motions on the shelf). These
observations certainly support the assumption that motions on the shelf
and winds over the open ocean have significant influence on the currents
in the Strait.

Without doubt the effects of non-linearity are also strong.
The study made heré assumes that the perturbations are much smaller than
the mean currents and predicts that these small perturbations will grow
at the expense of the potential energy of the tilting isopycnals. '
However, when the perturbation velocities become comparable with the
mean velocities (observations in Juan de Fﬁca Strait show that
perturbation velocities ~ mean velocities ~ 20 cm s_1 ) the gqverning
equations for the "perturbations" become highly non-linear and the
effects of geostrophiclturbulence probably dominate the flow. Though
the effect of strong non-linearity on a realistic channel flow is not
well understood it is certain that some or éll of the low- (and high-)

frequency waves will interact and tend to initiate an energy cascade to-
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‘ward larger scales (Charney, 1971). Due to the proximity of boundaries,
the studies of geostrophic-turbulence in the open ocean are not directly
applicab}e since they rely strongly on the assumption of isétropy. However,
the basic dynamics are probably similar and interactions are ﬁndoubtedly
strong. Such strong non-linear interactions almost certainiy act to
decrease the coherence between stations.

Finally we must consider the possible effects of strong, "high-
frequency" (diurﬁal and semi-diurnal) tidal currents. The inclusion of
tidal cﬁrrents in our model introduces some interesting effects. The
Rossby number corresponding to the tides in the.channel is not small and
thé scaling used in our model must be revised. The result is that we
must consider the effect of an imposed high-frequency ageostrophic
wave on the low-frequency geostrophic waves studied in this thesis.

To study this pfobleﬁ,’the fullvageostrophic equations must be

considered and no simple solutions appear possible. Rao and Simmons

(1970) have shown that instability can occur as a result‘of a coupling
between anninternal gravitational mode (an ageostrophic wave) and a
rotational wave (the high-frequency analogue of the geostrophic waves
studied here). However, this instability occurs at much higher frequencies
than those considered in this thesis and gives little insight into the above
mentioned problem other than to demonstrate that interaction is possible.
Since the tidal frequencies are much gfeater than those of the low-frequency
quasi-geostrophic instabilities studied here, it has been assumed that their
effect on these instabilities is negligible. However, this is by no meéns
obvious and a more complete study including ageostrophic effects would

certainly be enlightening.
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Werthus conciude that although barocliﬁic ;nstabiiity.iégp%obably
significant in Jgan de'Fuca Strait, it is not likely the dominanf energy
source for the observed low—frequency motions. It seems quite likely-that
the effects of motions on the continental shelf are of at least ;qual
importance and that the effects of tides are also strong. Finally, dué to
the large "perturbation'" velocities in the strait, the effects of non-linearity
are certainly important and must be included before any firm conclusions can

be made.
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3. The California Undercurrent off'Vancouver Island

The California current is a broad eastern boundary current off
the west eoast of Canada and the United States formed at mid-latitudes
where the eastward flowing Subarctic Current (west wind drift) separates
into northern and southern components. The northern component formé
the Alaska Current while the southern component forms the California
cqrrent, At intermediate depths beneath this weak (~ 5-10 cm s .

Tabata (1975), Reed and Halpern (1976), Bernstein, Breaker and Whritner,
a976L.ﬁalpern, Smith and Reed (1978)) current, a strong (mean speed of order
10 cm s_ with maximum speeds as high as 100cm s-1 ; Tabata, 1975),
narrow (~ 50 km ) poleward flowing jet known as the California Undercurrent
occurs. The major features of this current system have been discussed

by Mysak (1977) and will be summarized here. The undercurrent

extends all the way from California up to Vancouver Island

and its water properties suggest that it has its origin in the North
Equatorial Counter Current (Tabata, 1975). Off California it consists of
approximately an equal mixture of Pacific Equatorial water and subartic
water, but further north the percentage bf equatorial water is significantly
reduced.

Off california where extensive measurements have been made,
meso-scale eddy-like formations have frequently been observed through
the analysis of hydrographic data (eg. Wooster and Jones, 1970;

"Wickham, 1975). Further, the formation of these eddies has been observed
through the use of satellite-borne infrared séanners (Bernstein, Breaker
and Whritner, 1977). Though our primary interest‘is with the flow off

Vancouver Island, the analysis produced below may .also be used to explain

the presence of these eddies.
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Off vancouver Island, the data base is far more limited than
_off California; howevef, as seen in‘figure 3.1 such mesoscale eddies as
those observed further south are again observed here. We sﬁall show that,
as first suggested by Mysakr(l977), the presence of these eddies may
be explained in terms of baroclinic instability ofAthe undercurrent.

The presence of the undercurrent in these northern regions
is now fairly well established. It has been observed over the slope
and shelf off Oregon by Huyer (1976), who suggests it may be a part of
the wind-induced coastal upwelling regime. (It had earlier been shown
(Pedlosky, 1974) that a deep topographically controlled poleward
undercurrent is part of the steady-state response of a wind-driven
flow in a rotating stratified fluid in a channel with a sloping bottom;)
Halpern et al (1978) have also noted the existence of a northward flow
over the depth range of 200-500m over the slope off Oregon in the first
half of July. Dodimead et al (1963) found a northward flow during
winter in the same depth range, and Ingraham (1967) observed that
within about 200 km of the shore there was a net northward volume
transport relative to 1500 m. bver the depth range of 200-500m the
maximum current speeds were estimated to be 10-20 cm s _}. Finally,
Reed and Halpern (1976) and S. Tabata (see Mysak 1977) have found a
northward flow during early fall at intermediate depths in the latitude
range 46-50°N.

Maps of geopotential topography at four levels off Washington
and the southern part of Vancouver Island as computed by Reed and Halpern

(1976) are .shown in figure 3.2. The 10/1000 db map shows a weak (~ 5cm s_l

)

southward flow over the continental slope which is apparently considerably

reduced as one moves further from the coast. The remaining maps all show
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Figure 3.1: Enhanced infrared image of sea surface showing spatial structure

of surface temperature on 10 September, 1975 off the west coast of British

Columbia and Washington. The dark areas are warm water and the grey-white,

cold water (after Gower and Tabata, 1976.)
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surfaces (referred to 1000 db), 7-20 Septebmer, 1973. Open circles refer

to time-series stations.
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- a northward flow over the slope region with a southward flow further

west. The 150/1000 and 300/1000 ab maps are nearly identical while the
500/1000 db map shows a considerébly reduced flow. From Reed and Halpern's
estimates of the volume transports of the 150/1000 db layer off Vancouver
Island, Mysak (1977) has estimated the maximum speed of the undercurrent
in this regién to be of the order of 15-20 cm s-l.

The mean flow over the slope region off Washington and Vancouver
Island can thus be described (at leést to a first approximation) as a
weak southward flow of order 5 cm s_l in the upper 200m (decreasing
slowly to the west) with a stronger narrow poleward jet with speed of

ordef 10 cm. s-'1

in the approximate depth range of 200-600m. Beneath
this depth, the flow is assumed to be relatively quiescent and in our model
we shall take the mean flow to be identically zero‘at éuch depths.

Mysak (1977) has noted that the low frequency eddy-like motioﬁs
discussed above are likely due»to an instability of the mean flow itself
to quasi-geostrophic perturbations at the observed length and time scales.
Since, in the‘upper layer, the mean currents are small and the density
stratification strong (see figure 3.4), Mysak assumed that this layer acts
effectively as a rigid 1lid on the flow below and modelled the undercurrent
by the two layer system shown in figure 3.3. The results of his analysis
do indeed'indiéate the possibility that the undercurrent is baroclinically
unstable. However, as Mysak noted, the vertical shear in this upper layer
could be significant and thus the neglect of this surface current could be
a serious omission. We are thus led to consider a three-layer model.
Mysak has also noted the possible errors in introducing an artificial

outer vertical wall and neglecting lateral shear in the mean currents.

I shall show that both of these approximations are justified if the
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position of the outer wall is.chosen correctly.

| In figure 3.4 a typical set of temperature, saliﬁity and ct
profile in the slope regi@n off Vancouver Island is shown. Clearly the
three-layer model of the density stratification cOnsidered in éhapters II
and IIT of this thesis is not appropriate and we are led to
consider the approximation indicated by the dashed line in figure 3.4.
Foilowing the method descfibed in chapter II we find that the linearized

equations expressing the conservation of potential vorticity in the

three-layer model corresponding to this system are:

2
(U =0 [Eq o =k By H8F) (E5-E) ) /3] + £ [B-U)  =8F, (U)=U) ) /3] = O

, .
(U,=0) [, = K E,+BF, (E) =6,)/3 + FR(E;=E,)] + €, [8-U, —8F,) (U} -U,) /3

+ FZR(UZ—Ué)] =0

H_-bh 5 H,-bh
(U3-c)[( i) )(€3yy-k 53)—RF3(£3-£2)] + £3x[( i) )(8-U3yy)+F3R(U3—02)
- b
+ 2 hy] = 0
o 3
(3.1)

with all definitions and non-dimensionalizations exactly as in Chapter II,

section 2. R is defined by:

R = (0,-p )/ (05=P ) | O (3.2)

and U = (9U1—U2)/8 . &

1o is the (non-dimensional) perturbation stream

1

. . .t .
function in the.i layer and the subscript o indicates .that the quantity

is evaluated at the middle of
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the layer.
Note that the three-layer model described by 3.1 is equivalent to
the three-layer model of Davey (1977) with the density difference
between the upper lavers given by 3/8 of the density difference between
the fop and bottom of the ﬁpper layer in figure 3.7 and Ul replaced by Ulo .
We must now make an‘appropriate choice for the bottom topography.
Figure 3.5 shows isobaths off Vancouver Island and figure 3.6.shows
topographic cross—;ections correéponding to lines A - E in figure 3.5.
Since the undercurrent lies below,the shelf break, Mysak (1977) has
assumed that the motion on the shelf has little influence on the stability
of the undercurrent and hence models the steeply sloping region near the
shelf-break by a vertical wall. Further, he has estimated thgt the
more gently sloping region has a mean slope of approximately 0.0134.
We shall follow Mysak in both these choices. Finally, Mysak considers
uniform flow in each layer and considers a channel of width 75 km
with constant slbping bottom. We shall consider this model (extended
to include the effects of the upper layer ) as well as the model including
the effects of horizontal shear and a flat ocean floor of the same width
as.the sloping bottom; The three-layer models studied here are shown.
in figures 3.7 and 3.8. To compare our three-layer model with ﬁhe two~layer
model of Mysak (1977) we begin by considering the system depicted in

figure 3.7, with bh (bottom topography) neglected with respect to H3
For this system the cross-channel médes decoqpie and a simple analytic
solution is possible (seechépteriﬂ);The dispefsion curves corresponding

to the first two cross-channel modes are shown in figure 3.9. The regions

of instability corresponding to those studied by Mysak are marked as

such. These waves are easily identified as they extract most of their
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Table 3.1: Comparison of the instabilities found by Mysak (1977) and the corresponding instabilities fdund

using the analogous 3-layer model. 61 and 63 are the phases of the wave in the upper and

lower layers with respect to the middle layer. (A positive value of ¢ or c¢_ corresponds to
-~ . a southward velocity.) g

Model u.,u.,U Period Wavelength e-folding Phase Group ¢ ¢ 6., 6
17273 . . . . 1 2 1 3
(x 10 cm sec 1) (days) (km) time velocity velocit |$—|, .
' (days) (km day~1) (km day™ ) 2 2 (degrees)
figure 3.3 -, -1.0, 0.0 9.2 65 13.1 -7.0 -3.3 -, 0.9 -, 78
figure 3.7 0.5, -1.0, 0.0 11.3 54 13.0 -4.7 -3.3 0.4, 0.6 0, 80

Table 3.2: Properties of the most unstable wave corresponding to the system shown in figure 3.7.
61 and 63 are the phases of the wave in the upper and lower layers relative to the

middle layer. (A positive value of ¢ or cg corresponds to a southward velocity.)

Model u.,u.,U Period Wavelength e-folding Phase Group’ ¢ ¢ 6., 86
172773 . . , . 1 3 1 3
. _ (days) (km) . time- velocity velocit E_ ’ E_
(x 10 cm sec 7) : ' (days) (km day~1) (km day™+) 2 (degrees)

figure 3.7 0.5, -1.0, 0.0 55.7 107 6.9 -1.9 -1.0 - 1.7, 0.06 63, 114
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energy from‘the tilt of the lower interface (this is the only energy’
source in Mysék's model). The transfer of available potential energy
correspbnding to the most unstable wave of this type is\shown in
figure 3.10 and the properties of this wave afe given in table 3.1 together
with the properties of the corresponding wave discussed by Mysak (1977).
The results of the two models are clearly in quite good agreement. We
note however that the wavelength of these instabilities is only about
half of that observed (Mysak has considered other cases which show
better agreement with observations but the parameter values used in
these studies do not appear to be as reasonable as those used in the
above model).

| This class of instabilities (those extracting their energy
from the tilt of the lower interface) does not however have the largest
growth rates found in studying the above three-layer model. The most
unstable waves found extract energy principally from the upper interface
(see figure 3.11). Table 3.2 gives the properties of the most unstable
waves found in the study of thé model depicted in figure 3.7. The properties
of thisbwave are significantly different from those of the corresponding
wave at shorter wavelengths (compare tables 3.1 and 3.2). In particular
we note that this wave is strongly intensified in the upper layers and
has an along-channel wavelength approximately double that of the previously
discussed instability (this wavelength is in good agreement with the
observed wavelength 6f about 100 km.). The e-folding time, phase and
group velocities are also significantly reduced which, with the surface
intensification, makes this the more likely wave to be observed. Thus

the predictions of the three-layer model suggest that although Mysak's
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Figure 3.10: Transfer of available potential energy (in arbitrary units)
corresponding to the most unstable 1lst mode instability analogous to
‘that considered by Mysak (1977). The position of this wave in figure 3.9
is marked by a circle. (The solid line corresponds to the transfer of
energy due to the shear between the upper layers and the dashed line to

that due to the shear between the lower layers)
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Figure 3.11: Transfer of available potential energy corresponding to the
most unstable wave found using the three-layer model (plus sign in Fig.
3.9) (The solid line corresponds to the energy transfer due to the shear

between the upper layers and the dashed line to that due to the shear

between the lower layers.)
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fwo—layer model gives reasonable results for ohe type of instability,

if does not exhibit the instability which is most likely Qbserved. The
other values of the mean velocities considered by Mysak have also been
considered in the above fashion (results are not reproduced here). In
each case the results are similar to those for the case discussed above,
i.e. the two-layer model of Mysak (1977) reveals the instability which
extracts energy from the lower interface (which in some cases gives
reasonable agreement with observations) but the most unstable wave is due
to the shear between the upper layers. The model considered above gives
the smallest growth rates of the cases considered and is believed to
give a conservative estimate of the instabilities present in the region
of the California Undercurrent. Hence from the above work it is clear
that this current system is very unstable to quasi-geostrophic
perturbations at the observed length and time scales.

We now consider the effects of the artifically introduced wall
at the western boundary of the undercurrent. To do this we consider the
more realistic system depicted in figure 3.8. When the western
boundary is moved further out, horizonfal shear must be included. The
choice considéred here is shown in figure 3.12(a), but the form of the
mean currents can be varied considerably without significantly changing
the results. The potential vorticity gradients in the three layers are
given in figure 3.12b. Clearly there are two possible types of baro-

i
clinic instability in this system; one due to the change in sign of
qy between the first and secoﬁd layers and the other due to the change
in sign between the second and third layers. In each case the sign
change occurs in the region of large vertical shear and we expect the

amplitude of the unstable wave to be largest there. This is indeed
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Pigure 3.12: (a) Approximation to the mean currents used to model

the California undercurrent off Vancouver Island ‘(see figure 5.8); (b)

The mean potential vorticity gradients corresponding to the three layers

of our model: upper layer-solid line, middle layer-long dashes,

lower layer-short dashes; (c) The Eigenfunctions cérresponding to

the most unstable wave in our model; (d) the transfer of available

potential energy corresponding to the above wave; (o) The transfer of

~ kinetic energy in the three layers. (see figure 2.7 for the ne_aning of

the different lines in (d) and (e).)



Table 3.3: Properties of the most unstable wave corresponding to the system shown in figure 3.8. This wave

is illustrated in figure 3.12. 61 and 53 are the approximate phases of the wave in the upper

and lower layers relative to the middle layer in the region where the perturbations are largest.
(A positive value of ¢ or cg corresponds to a southward velocity.)

Model U ;U , U Period Wavelength e-folding Phase Group ¢ ¢ §., ¢
17273 . . . 1 3 1l 3
_ (days) (km) time velocit velocit E—-' $—
(x 10 cm sec 7) _ (days) (km day™ ) {km day™ ") 2 2 (degrees)
figure 3.8 figure 3.12a 57.3 100 8.3 -1.7 -0.3 ~2, ~0.03 ~60, ~115

881
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verified in figure 3.12(c). The instability due to the change in sign of
qy between the middle and bottom layers corresponds to the wave studied

by Mysak (1977). Its properties are very similar to those of the correspond-
ing wave fot the system illustrated in figure 3.7 and are not further
discussed. Finally we note that the energy source for the unstable
perturbations which owe their existence to the change in sign of qy
between the upper two iayers is almost purely potential energy

from the tilt of the upper interface, and the trarisfer of energy occurs

“in the region of large vertical shear (figure 3.12(c)). The properties of
the most unstable ;ave existing in this system (illustrated in figurev
3.12(b)) are given in Table 3.3. Clearly thevproperties of this

wave are very similar to the corresponding wave for the'system illustrated
in figure 3.7 (see table 3.2). The period, wavelength, e-folding

time, phase velocity, vertical distribution of energy and phase shifts
between the layers all show good agreement. The group velocity is
considerably smaller, however both values are quite small and the difference
may not be significant.

A final three-layer model was considered in which the topography
in figure 3.8 was neglected but everything else was kept the same. The
results were very similar to those corresponding to figure 3.8 and will
not be presented here. The insensitivity of:this class of instability
(extracting energy from the upper interface) to topography is expected from
the work done in chapter II.

Finally we note that just as Mysak (1977) studied the class of
instabilities which extract energy from the lower interface it may be
possible to use a two-layer model to study the class of instabilities

which extract potential energy from the tilt of the upper interface.
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The agreement between the results for the most unstable waves correspondiné
to figures (3.7) and (3.8) suggest that a simple channel model énalogous

to that shown in figure 3.7 should suffice to investigate this possibility.
Since our study of the three-layer model shows that the wave which extracts
its energy from the upper interface extracts very little energy from the
lower interface, it is probably reasonable to assume that the tilt of the
lower interface acts in a manner similar to a sloping bottom. The effect
will, of course, not be as strong as if the lower interféce were replaced
by a solid bottom and hence we consider two different two-layer models.

The first has zero bottom slope while the second has a bottom slope equal
to the slope of the lower interfaée due to the vertical shear of the mean
currents. It is to be expected that the true situation would be Eest
modelled by something between these cases. Since the mean state is in
hydrostatics and geostrophic balance‘it is easily found that the mean
position of the lower interface in the tﬁree-layer channel model

depicted in figure 3.7 is given by

£ .
* _ —_-——9__ * _ % ¥ * o
N3 = g(p F¢%) (FyU, = P3U3)yY (3.3)
and hence:
* fo * * % * (3.4)
N3y/Hy = g(p%-p%) (p3U, = P3URIL/H, '

<

We thus consider the two-layer models analogous to figure 3.7 with no lower

layer and bottom topography given by
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-
bh /H. = —ﬂc———;;—fc’ (p*U* - p*U*)L/H
y 2 g(p3-02) 272 3°3 2
hS ' (3'5)
or bhy/H2 =0

The properties of the most unstable waves in these two models are given in
Table 3.4 together with the average of these-two cases. The average is
clearly in good agreement with the predictions made using the three-

layer model (except for the group velocity, whichvalthough still quite small,
is increased significantly) corresponding to figure 3.7, however, the.

strong vafiation of these statistics with changing bottom topography.indicates
the difficulties in attempting to use such a tﬁo-layer model. ‘It appears
that at least three layers are required to study a system such as the
California Cufrent system. Further, using more than three-layers

would probably create unnecessary confusion as the data-base does not

permit the mean currents to be sufficiently well defined to warrant the
investigation of more -complex models. ﬁy investigations wiﬁh a three-

layer model do certainly support the conjecture of Mysak (1977) that

the eddies observed over the continental slope in figure 3.1 may be

due to the inherent instability of the current system to perturbations

at the observed length and time scales. Unlike Mysak, however, we find

that the fastest growing waves in this system probably extract their

energy principally from the tilt of the upper interface.



Table 3.4: Properties of the most unstable waves found using two-layer models to study the stability
of the upper layers of the California current system. §. is the phase of the wave in the
upper layer relative to the lower layer. (A positive value of c or Cg corresponds to a

southward velocity.)

Model u.,u Period Wavelength e-folding Phase Group ¢ -6
172 . . . 1 1
_ (days) (km) time velocity velocit 6—- _
(x 10 cm sec 7) » . (days) (km day‘l) (km day~+) 2 (degrees)
0 bottom 0.5, -1.0 14.4 124.0 5.92 -0.73 -3.3 1.4 56
slope )
constant 0.5, -1.0 111.1 31.2 5.86 -3.6 -3.0 1.0 75

bottom slope

Average of 0.5, -1.0 62.8 102.6 5.89 ~2.2 -3.2 1.2 66
above cases _

¢6T -
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4, Conclusions

Three-layer models have been used to study the stability of
the current systems in Juan de Fuca Strait and thé Calfiornia.Undercurfent_
off Vancouver Island to gquasi-geostrophic wave perturbations. The model
developed iﬁ chapter II is applied to Juan de Fuca Strait and it is found
that the most unstable wave has properties consistent with obsérvations
made by Fissel (1976). The lack of coherence between stations separated
by as little as four kiiometers is not expected from the predictions of
our model and it is suggested that it may be due to several processes
occurring at the same time at similar length and time scales. It should
also 5é noted that thé data analysed b; Fissel (1976) only cqntains
about three periods at the time scales under consideraﬁion and -are not
sufficient to make firm conclusions.

The observations off Vancouver Island allow us to detérmine an
approximatevwave length (~ 100km ) for the eddies and show that the eddies
are surface intensified. The results of the three-layer model applied to
this area (a modification of that developed in ;hapter II) are in
'good agreement with the limited obser&ations availableL Furtheér, the model
predicts an e-folding time of about 8 days with a group velocity of about
0.3 km day-1 (to the north) makipg it very likely that these waves are

.significantly amplified before propagating out of the undercurrent region
which extends all the way from California to Vancouyer Island. Note how-
ever tﬁat this large growth rate appliéd to the initial growth of the
perturbétion and is significantly reduced as the eddies reach finite
amplitude (Pedlosky (1970). Since the magﬁitudés of the méan currents used

are conservative estimates it appears very likely that the undercurrent
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system is highly unstable to perturbations at the observed length and
time scales.

Both a simple channel flow with constant bottom slope and
no horizontal shear, and a more realistic model including a flat ocean
floor and horizontal sheaf are considered in the study of the California

. v

Undercurrent. The agreement between the two models is excellent. This
agreement is, of course, strongly dependent on choosing the correct channel
width in the channel model. Tﬁis width must be chosen to include the
region in which the majority of the energy is released to the perturbations
but must not be much wider. A channel which is much to wide will predict
a perturbation which is also too wide and too narrow a channel will
predict too narrow an eddy as well as not inclqding the fuil energy
source for the perturbations. If the chanﬂel width is chosen correctly
though the agreement is good. For the models considered here it appears
that the choice may be made simﬁly by considering only the region in
which the vertical shear is largest but spch a choice may not always be
valid. An example of such a case would be furnished by any situation
in which the transfer of kinetic energy due to barotropic instability
is significant.

Finally a two-layer model is used to study the stability of
the upper two layers of the three-layer model. It . is found that the
system is very sensitive to the choice of bottom slope but with a correct
choice, results are in good agreement with those of the corresponding
instability in the three-layer model. Due to the sensitivity of the
instabilities to the bottom slope in such a model, it appears that to

model a current system such as that considered here at least three layers

must be used.



CHAPTER V
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Concluding Discussion

This study was initially undertaken in an attempt to determine
whether or not baroclinic instability could make a significant
contribution to the low-frequency motions observed by Fissel (1977)
in Juan de Fuca Strait. Since the transition of density from its
value near the surface (Ot x 24.7) to its value at depth (ot = 26.7)
occurred gradually over a depth of more than 80 m (nearly half the
depth of the strait; see figure2.3 chapter IV), the usual layered
models did not appear appropriate. Although Davey's three-layer model
(with each layer of constant density; Davey (1977)) could have been
applied to this situation with appropriate reduction of denéity
differences betyeen the layers, it is not clear exéctly how much these
differences should be reduced. Therefore, it was decided to derive
a three-layer model which would overcome (or at least minimize) this
problem, This was done by modelling the observed continuous deﬁsity
stratification by a simpler continuous model (figure 2.3,chapter IV)
and then finding an approximate solution to the new problem with three
degrees éf freedom in the vertical. The resulting equations are very
similar in form to those derived by Davey(1977) but the differences are
also significant. |
DAVEY'S EQUATIONS ( extendéd to‘include horizontal shear, variable
layer depths and weak bottom slopes; the density difference between

successive layers is equal):
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> az;l
Ge*+ Uy - )[vgl+zF €,8)] + —=

[s -U + 2F1(U1—U2)] =0

lyy

5 agz
=+, )[v £y + 2F(E) 2046 ] + 2= [B - Uy + 2F, (U;-0))] = O

ag
3 °c3
( +U33)[Vg3+2F(52g)]+ [B—U3yy+2F3(U )+———h3y]=0

(1.1)

(Davey's equations have been rewritten in our notation for convenience).
These equations are to be compared with equations 3.2, Chapter II (with
bh K H3):

Ly J3

9\ o2 1
Ge+ Uy 32 [V - P38 48 4E3) ] + o= [B - U, + F, (3U,-4U, +U

lyy 1=0

3)

P 3&2

Gr + Uy, ax)[v £y + 4F, (B -264E)] + —= [B8 - U - 4F (U, -2040 )

=0
20yy ]

) 353
(Gr * U3 59 (775 = (e 461361 + 2

[R - U3yy + F3(Ul—4U20f3U3)

Rthy] | (1.2
The first thing to note is that these two sets of equations
can 295 be made equivalent by any choice of density difference between the
layers in Davey's model. This is»due to the presence of § 3 (and U3) in the
firsf equation and 51 (and Ul) in the third equation of (1.2). The modelling
of vortex stretching is different; in the model developed here, the upper and
lower layers feel each others influence much more strongly (and directly)

than in Davey's model. One expects this kind of difference since the model
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developed here takes account of the fact that the vortex tubes are continuous
whereas the usual layered models do not. The second major difference is seen

_ by considering the second layer only. Where we have 4F,, Davey has 2F

22 2°
Decreasing the density difference between the layers by a factor of two in
Davey's model will eliminate this difference (note, however that the equations
for the upper and lower layers are still not in agreemenf). This explains
why, for a given density difference between the layers, the extent of the
unstable range (plo;ted against Ki/FZ) is only about half as wide for Davey's
model as it is for ours in the presence of large vertical curvature. Finally
there is the difference between U20 (the value of U at the middle of the.

second layer) and U, (the vertical mean value of U in the second layer) in

2
the two models. Although this difference is relatiﬁely small for Sl=-SZ, in
the presence of large vertical curvature, it is significant.

It is important to notice here that both Davey's model and the one
developed here are essentially finité difference approximations to the equat-
ions for a continuously stratified fluid. This is implicit in Davey's model
and is introduced a priori by considering three layérs,of uniform density.
"The model developed here introduces the finite difference approximation rather
more explicitely through a truncated power series expansion about the middle
of fhe second layer. Such an expansion is, after all, the basis of finite
difference models. By introducing the finite difference approximation in
this manner, the model is automatically "fitted" to the actual density strat-
ification and mean currents. Of course, if many layers are to be used, the

two models will bée essentially equivalent. However, the difference appears

very significant if as few as three layers are being employed.
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Due to the unusual form of ouf finite difference equations in the
upper and lower layers, we now give a brief derivation of our equation which
makes their finite difference nature more explicitely revealed.

We begin with equations (2.10)-(2.12), Chapter II. As in the
previous chapters, a subscript o will be used to indicate a quantity eval-
uatéd at the middle of a given layer, and we will use a A to indicate the
finite difference approximation of a given quantity. Thus APZZZ . is
the finite difference approximation to Py, at z=zp (=—(Hl+ﬁl)/H). We will

need the following expreséions:

aps| =) o V-0 )
(1.3)
avgon| . =4t/ {20 {04550

Using the second of these in (2.11), Chapter II, we get (2.15b), Chapter II,
immediately, and no further discussion of this equation is needed. The corr-
esponding equations for the upper and lower layers are equally as simply de-

rived. In (2.10) we use:

(0)

APZZ (O)

H

(0) 2
_— tav, 0, 2 (H2/2H) + 0((H2/2H) )

w/u)) iV -pS) + 2au/m)) (07-205P (P + 0(au, /202

@/my) 3o P -4p D+ () + 0w, /2m%)

and in (2.11) we use:



- 200

‘ . 2
S I NEDN S +AP2(2; . (B T2H) + 0((Hy /1))

o]

(n/H )(p(o)—p§°’> 2/, 0y " -2050 4p5) + o(, /2%

(a/x, ><p(°) p{V43p{%) + 0((a, /2m)%)

where we have used (1.3) in each case. Substituting these expressions in
(2.10) and (2.12) we get (2.15a,c).

This>a1ternative derivation of our equations not only demonstrates
the fiﬁite difference nature of our equations, but it shows the ease with
which they cae be derived (although this method of derivaeion was not obvious
at the outset). The important thing to notice is that, although both this
model and Davey's are essentially finite difference approximations, by
introducing step discontinuities in the density profile a’priori, Davey's
model has altefed the dynamics of the flow more than is necessary and it is
not clear exactly how the model should be "fitted" to the actual situation.
We suggest that if a finite difference approx1mat10n is to be used, it must

be 1ntroduced in a consistent manner, The method employed in this thesis

to find such an approximation is to first approximate the actual density
profile by a simpler profile which closely resembles that observed and then
find the appropriate finite difference equations corresponding to this
epproximate model. By finding the equations appropriate to a density
profile which closely approximates the real situation this method results
in a set of equations which can be used to model realistic oceanic

circumstances more accurately than the conventional three-layer model

without introducing more layers (and thus greater complexity). There will,



201

of course, still be an error introduced in making the finite difference
apﬁroximation and the study of the pfecise nature of this error is indeed
a worthy topic for future fesearch.'

It m;st be mentioned here tﬁat Davey's model does have some advan-
tages over the one developed here, The main advantage is that in the hands
of an experienced modeller (who chooses the density differences between the

layers correctly, uses the correct values for U and U3 [this includes

1’ Uz’

replacing U, by U when the vertical curvature of the mean currents is sig-

2 2

o}
nificant] and interprets results carefully), Davey's model may be immediately

applied to a large variety of cases without re-deriving the governing equations.
- Although it is believed the model derived here will yield more accurate results,
different density and veiocity profiles will require a re—derivation of the
appropriate equations. Because of this fact our method‘will be slightiy
less convenient,‘especially if one only desire a crude approximation before
going on to do a more detailed analysis. Finally we mention that the two
models may be combined as was doné in chapter IV,‘section 3 to study the
California Undercurrent system. In this manner, the region in which the
large density transition occurs may be modelled quite accurately using the
methods described in this thesis, and ' more degrees of freedom in the vertical
may be added with a minimal effort., Such a model would be useful in many
situations. In particular, it might be useful in studies of the open ocean
where a linear density variatién would model the thermocline quite well,

In chaper II, I have mentioned that a two—layer model is probably
most useful when the vertical curvature of the mean currents_and the region
of density transition are small, I now wish to stress a point made in
chapter IIT involving the study of pure barotropic instability in which a
"one-layer" model is employed. If over some depth of the fluid, ghe horizon-

tal length scale over which the mean currents vary is sufficiently strong
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that (L/rint)2<K.l in this region, then barotrobic inSt;bility may occur
over this depth with little effect from tﬁé fluid above.and below; Thus,
for such a case, averaging the mean currents over the depfh of the fluid
results in a rather poor approximation. This will significantly reduce and
may even eliminate any instabilities present, A better:approach would be
to consider the region in which (L/rint)2<K;1 separately,
‘Another interesting resplt found in chapter III was the presence
of a "bérotropic" instability which can draw energy from the potential
energy of tiltiné isopycnals due to the mean flow, This wave is filtered
out under thelassumption of a horizontally uniform mean flow, but even
for (L/ri)2 moderately large it can have a significant growth rate and
may, in some cases, be important, Thus, even for (L/ri)2}>l it may not
be justified to consider the case of no horizoqtal shear. (Note, however,
that such a study is valid for the study of baroclinic iﬁstabilities).
An.interesting discussion of momentum transports for tﬁe case of
mixed baroclinic-barotropic instability has been presented by Held (1975).
Of particular insterest is his proof that in an arbitrary zonal flow, linear
theory predicts that unstable waves cause a net transport of momentum out
of the region of fluid in which the generalized Rayleigh criterion for
instability (the change in sign of Jq/3dy; see Pedlosky, 1964a) is
satisfied locally. Altﬁough the author was unaware of this paper until
after the writing of this thesis was completed, it would certainly be
enlightening to re-examing the results of chapter III in the light of Held's
work., Work in this direction has now begun but will be reported elsewhere.
In each of the case studies (Juan de Fuca Strait and the California

Undercurrent) made in Chapter IV it was found that the significant instabilities
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"are basically baroclinic instabilitiésvextracting their energy from the inter-
face between the upper layers; The folé of the horizontal shear was simply to
limit the region in-ﬁhich baroélinic instability was possiﬁie. .The isolation
of these instabilities from the bottom made tﬂé influence of topography
relatively weak. This result will probably be true for many oceanic flows
where the large vertical shear occurs near the surface, However, one must
remember that bottom intensified waves may also exist due to bottom slopes
(Rhines, 1970), so if one chooses to neglect bottom fopograﬁhy on the grounds
that only surface intensified motions are being studied, it must be borme in
mind that these waves are filtered out.

Fiﬁally we mention that many effects have not been considered
in the model presentéd here. Some of these have been mentioned in Chaper
IV, section 2 in the study of Juan de Fuca Strait. Of these effects the
author finds the modifications of these low-frequency waves due to the tides
to be a largely overlooked problem, The inclusion of this effect as well
as the effects due to motions on the continental shelf off Washington and

Vancouver Island seem to be necessary before any definite conclusions can
be made about the low-frequency motions in Juan de Fuca Strait, For now,
we can only say that the predictions of our model are consistent with
observations,

The model of the California Undércurrent appears to be consistent

with the very limited ébserQations off Washington and Vancouver Island,
however the extremely sparse observations again make definite conclusions
‘difficult. It would be convenient to make detailed measurements here, but
the relatively small width of the undercurrent in this regioh and the extreme-

vly long periods predicted by our model (which, by the way, make our assumption

of a non-diffusive fluid rather questionable), make it unlikely that an
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adequate study will be made in the near futuré, Perhaps a more feasible
approach would be to ;pply the model develéped here. to theAregion of £

Califo;nia where much more detailed observationé have been made, If the
model predictions in this.régionAshbw good agreement with oBseryations, one .

could be more certain that the same would be true further north,



205 .
REFERENCES CITED

Bernstein, R.L., Breaker, L., and R. Whritner, 1977. California
Current Eddy Formation: Ship, Air and Satellite Results.
B . Science, 353-359. :
Bretherton, F.P., 1966a: Critical layer instability in baroclinic
flows. Quart. J.R. Met. Soc., 92, 325-334, .

Bretherton, F.P., 1966b: Baroclinic instability and the short wave-
length cut-off in terms of potential vorticity. Quart. J.R.
Met. Soc., 92, 335-345.

Brown, J.A., 1969a,b: A numerical investigation of hydrodynamic
instability and energy conversions in the quasi-geostrophic
atmosphere: Part I and II. J. Atmos. Sci., 26 352-375.

Brown, R.A., 1972: On the physical mechanism of the inflection point
instability. J, Atmos. Sci., 29, 984-986.

Canﬁon, G.A., and N.P. Laird, 1978: Circulation in the Strait of Juan
de Fuca, 1976-1977. PMEL, ERL, NOAA Technical Report, (in
preparation).

Charney, G.A., and N.P. Laird, 1978: Circulation in the Strait of
Juan de Fuca, 1976-1977. PMEL, ERL, NOAA Technical Report, -
(in preparation). '

Charney, J.G., 1947: The dynamics of long waves in a baroclinic
westerly current. J. Meteorol., 4, 135-162.

Charney, J.G., 1971: Geostrophic Turbulence. J. Atmos. Sci., 28,
1087-1095. '

Davey, M.K., 1977: Baroclinic instability in a fluid with three layers.
J. Atmos. Sci., 34, 1224-1234.

Dodimead, A.J., Favorite, F., and T. Hirano, 1963: Review of oceanography
of the subartic Pacific region. Bull. Int. N. Pacific Fish
Comm., 13, 195 pp. '

Drazin, P.G. and L.N. Howard, 1966: Hydrodynamic stability of parallel
flow of inviscid fluid. Advances in Applied Mechanics, 9,
1-89. ‘

Eady, E.T., 1949: Long waves and cyclone waves. Tellus, 1, 33-52.

Fissel, D.E., 1976: Pressure differences as a measure of currents in
Juan de Fuca Strait. Pacific Marine Science Report 76-17,
63pp. Institute of Ocean Sciences, Patricia Bay, Victoria,
B.C. (Unpublished manuscript).




206

Fissel, D.E. and W.S. Huggett, 1976: Observations of currents, bottom-
pressures and dénsities-—through a cross-section of Juan de
Fuca Strait. Pacific Marine Science Report 76-6, 68pp.
" Institute of Ocean Sciences, Patricia Bay, Victoria, B.C.
(Unpublished manuscrlpt)

Fjértoft, R., 1951: Stability properties of large-scale atmospheric -
' disturbances. In: Compendium of Meteorology, American
Meteorology Society, Boston (Reprinted in: Theory of Thermal
Convection, ed. by B. Saltzman, Dover Publications, New York,
1962).

Gent, P.R., 1974: Baroclinic instability of a slowly varying'zonal
flow. J. Atmos. Sci., 31, 1983-1994,

Gent, P.R., 1975: Baroclinic instability of a slowly varying zonal flow,
Part II. 7J. Atmos. Sci., 32, 2094-2102.

Gill, A.E., Green, J.S.A. and A.J. Simmons, 1973: Energy patrtition in
the large scale ocean circulation and the production of mid-
ocean eddies. Deep Sea Research, 21, 499-528.

Green, J.S. A;, 1960: A problem in baroclinic instability. Quart. J.R.
Met, Soc., 86, 237-251,

Halpern, D., Reed R.K. and R. L. Smith, 1977: On the California
Undercurrent over the continental slope off Oregon.
J. Geophys. Res., 83, 1366-1372,

Helbig, J.A. and L.A. Mysak, 1976: Strait of Georgia'oscillations.
Low-frequency currents and topographic planetary waves.
J. Fish. Res. Can., 33, 2329-2339.

Held, I.M,, 1975: Momentum Transport by Quasi-Geostrophic Eddies,
J . Atmos Sci., 32, 1494-1497,

Hide, R. and P.J. Mason, 1975: Sloping Convection in a rotating fluid:
a review., Advances in Physics, 34, 47-100.

Holbrook, J.R. and D. Halpern, 1978: Variability of near-surface currents
and winds in the western Strait of Juan de Fuca. PMEL, ERL,
NOAA Technical Report, (in preparation).

Holmboe, J., 1968: Instability of baroclinic three-layer models of the
atmosphere. Geofysiske Publikasjoner, 28, 1-27.

Huyer, A., 1976: A comparison of upwelling efforts in two locations:
Oregon and North West Africa. J. Mar. Res., 34, 531-546.




- 207

Ingraham; W.J., 1967: The geostrophic circulation and distribution of
water properties off the coasts of Vancouver Island and
Washington, spring and fall, 1963. Fish Bull., 66-223-250.

Killworth;-?.D., 1978:,‘Barotropic and baroclinic instabiiity in
’ rotating stratified. fluids, with application to geophysical
systems, Dyn./ Atmos. Ocean. (submitted).

Kuo, H.L., 1949: Dynamic instability of two-dimensional ﬁon—divergent
flow in a barotropic atmosphere. J. Meteorol., 6, 105-122.

'Kuo, H.L., 1973: Dynamics of quasigeostrophic flows and instability
theory. Advances in Applied Mechanics, 13, 247-330.

LeBlond, P.H. and L.A. Mysak, 1978: Waves in the Ocean. Elsevier,
Amsterdam, 602 pp.

Lin, C.C., 1945: On the stability of two-dimensional parallel flows,
Parts I, II, III. Quart. Appl. Math., 3, 117-142,.218-234,
277-301. '

Longuet-Higgins, M.S., 1972: Topographic Rossby waves. Memoires
Société Royale des Science de Liége, 6% serie, tome II, 11-16.

McIntyre, M.E., 1970: On the non-separable baroclinic parallel flow
instability problem. Journal of Fluid Mechanics, 40, 273-306.

Mileé, J.W., 1964a: Baroclinic instability of zonal wind. Rev. of
Geophys., 2, 155-176. "

Miles, J.W., 1964b,c: Baroclinic instability of the zonal wind: Parts
II and ITI. "J. Atmos. Seci., 21, 500-506, 603-609.

Mysak, L.A., 1977: On the Stability of the California Undercurrent off
Vancouver Island. J. Phys. Oceanogr., 7, 904-917.

Narayanan, S., 1973: 'Quasi-geostrophic waves in the open ocean (Ph,D.
thesis), Harvard University, Cambridge, Massachusetts.

Needler, G.T. and P.H. LeBlond, 1973: On the influence of the:
horizontal component of the earth's rotation on long-period
waves. Geophysical Fluid Dynamics, 5, 23~46.

Orlanski, I.and M.D. Cox, 1973: Baroclinic instability in ocean
currents. Geophysical Fluid Dynamics, 4, 297-332.

Pedlosky, J., 1963: Baroclinic instability in two-layer systems.
Tellus, 15, 22-25.



208

Pedlosky, J., 1964a,b: The stability of currents in the atmosphere
and ocean, Parts I and II. J. Atmos. Sci., .21, 201-219,
~ 342-353, ' :

Pedlosky, J., 1964c: An initial value.problem in the theofy of
baroclinic instability. Tellus, 16, 12-17.

Pedlosky, J., 1970: Finite ampiitude baroclinic waves. J. Atmos. Sei.,
27, 15-30. . -

Pedlosky, J., 1971a: FiniteFémplitude baroclinic waves with small
dissipation. J. Atmos. Sci., 28, 587-597.

Pedlosky, J., 1971b: Geophysical Fluid Dynamics. Mathematical Problems
in the Geophysical Sciences, W.H. Reid (editor), V. 13,
American Mathematical Society, Providence, Rhode Island,
pp. 1-60.

Pedlosky, J., 1972: Finite-amplitude baroclinic wave packets, J. Atmos.
Sci., 29, 680-686.

Pedlosky, J., 1974: Long shore currents, upwelling and bottom tépography.
J. Phys. Oceanogr., 4, 214-226.

Pedlosky, 'J., 1975: On secondary baroclinic instability and the
meridional scale of motion in the ocean. J. Phys. Oceanogr.,
5, 603-607.

Pedlosky, J., 1976: Finite-amplitude baroclinic disturbances in downstream
varying currents. Journal of Physical Oceanography, 6,
335-344.

Phillips, N.A., 1951: A simple three-dimensional model for the study of
large scale extra tropical flow patterns. J. Meteorol., 8
381-394.

Phillips, 0.M., 1966: The Dynamics of the Upper Ocean. Cambridge
University Press, 261 pp.

Pond, S. and G.L. Pickard, 1978: Introductory Dynamic Oceanography,
S Pergamon Press, 241 pp.

Rao, D.B. and T.J. Simons, 1969: Stability of a sloping interface in a
rotating two-fluid system. Atmospheric Science Paper No. 151,
Colorado State Univiuy Fort Collins, Colo., 32 pp.

Reed, R.K. and D. Halpern, 1976: Observations of the California Undercurrent
of Washington and Vancouver Island. Limnol. Oceanogr., 21, 389-398.




209

Rhines, P.B., 1970: Edge—; bottom—, and Rossby waves in a rotating
stratified fluid. Geophysical Fluid Dynamics, 1, 273-302.

A Rossby, C.G., 1949: On a mechanism for the release of potential
energy in the atmosphere. J. Meteorol., 6, 163-180.

Simmons, A.J., 1974: The meridional scale of baroclinic waves.
J. Atmos. Sci., 31, 1515-1525.

Stone, P.H., 1969: The meridional structure of baroclinic waves.
: J. Atmos. Sci., 26, 376-389.

Tabata, S., 1975: The general circulation of the Pacific Ocean and
a brief account of the oceanographic structure of the
North Pacific Ocean. Atmosphere, 13, 133-168.

Turner, J.S., 1973: Bouyancy. Effects in Fluids, Cambridge University
Press. 367 pp.

Wickham, J.B., 1975: Observations of the California counter current,
J. Mar. Res., 33, 325-340.

Wooster, W.S., and J.H. Jones, 1970: California Undercurrent off
northern Baja California, J. Mar. Res., 28, 235-250.




210
Appendix -

Glossary of symbolsf

b - amplitude of topographic vériations"

c*;c- phase speed

C=c - Uzo— doppler shifted phase speed

f - coriolis parameter

fO - lo?al value of the coriolis parameter

F, = fng/g'Hi - the Burger number for the ith layer

g — acceleration due to gravity

' - reduced gravity

g

h - cross-channel structure of topographic variations (bh gives the
height of the bottom above 2z* = - HT)

Hi - thickness of the ith layer

HT = Hl + H2 + H3

H - vertical length scale

*

k ,k- long-chanpel wavenumber

L - horizontal length scale

* . . L .th

P; dimensional pressure in the i layer

pi—non—dimensional perturbation pressure in the ith layer

: th
q - potential vorticity in the i layer (non-dimensional)

. ' R th
r.- internal deformation radius for the i layer

Ro =»U/foL - the Rossby number -

T =-—h-h — the topographic parameter
R0H3 Y

When a variable appears both with and without a star on its shoulder,

the starred variable is dimensional and the other is non-dimensional.
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T =
T/F2

x4 . . .th
u¥,u, - eastward component of the velocity in the i layer
U, U, - mean value of the velocity in the el layer .-

Uifuio_ mean value of the velocity evaluated at. the middle of the 1 &P layer

vi,vi_—_northward-component of the velocity in the i+ layer.
: . ' . o th |

w;;i,wi - vertical component of the velocity in the i layer.

x*,x — coordinate measured positive.eastwards

y*,y - coordinate measured positive northwards
" z*,z - coordinate measured positive vertically

B* - the variation of the coriolis parameter with latitude (f = f0+B*y*)

g = p+L.2/U

B = B/Fz

§ = (p§—pf)/p§ - relative density difference between the upper and lower
layers

61;63 - the phases of the upper and lower layers with respect to the

middle layer.
. .th
n;,ni - elevation of the surface of the i layer
o . t .
P amplitude factor for the mean stream function for the i b layer
t
p; — density of the i h layer

w - radian frequency

t
wi - vertically averaged stream for the 1 h layer
Ei ~ time average of ﬁi (i.e. wi in the absence of perturbations)
Ei - perturbation of wi
¢i - complex amplitude of Ei



