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S i,

"ABSTRACT

This work focusses on the development and evaluation of so-called "closure
methods" for solving the equations governing the time-dependent behaviour of
single-server retrial queues. These methods involve assuming that particular
known algebraic relationships between various characteristics of the corresponding
steady-state queue also apply approximately when the queue is not at steady-
‘state. The objective is to replace a problem requiring the solution of dozens or
hundreds of simultaneous linear differential equations with a system of a few
differential equations that has a solution that approximates those queue
characteristics of immediate interest. The viability of such closure methods is

assessed by examining the results of a series of test calculations.

The methods described in this thesis apply to a retrial queue in which inter-
arrival times for new customers, inter-retrial times, and service times are all
assumed to be exponentially distributed. The steady-state solution for such a
quecue 1s described in some detail. A survey of the literature indicates that the
description of this steady-state retrial queue has become quite sophisticated,
whereas only very tentative steps have been taken in the study of the time-
dependent behaviour of such queues. On the other hand, the time-dependent
behaviour of the simple M/M/s queues have been studied to a much greater
extent. The apparent value of closure methods in computing approximations to
various basic time-dependent M/M/s queue characteristics motivated this

examination of the extension of such methods to the single-server retrial queue,.



iii.

After discussing the basic approach to be used in devising and testing
prospective closure methods for the single-server retrial queue, a variety of such
methods is presented, with each being tested in considerable detail. It is found
that three of the methods devised give results of comparable or better accura;:y
than those closure methods for the simple M/M/s queues which motivated this
study. All recommended closure methods developed here involve systems of either
two or three differéntial equations and permit the calculation 'of good
approximations to four of the characteristics of greatest interest for non-
stationary queues: the probability that the server is idle, the mean queue length,
the variance of the queue length, and the conditional mean number of customers
in the system given that the server is idle. Each of the methods presented is

tested for queues with constant mean arrival, retrial and service rates, as well as

for queues in which arrival and retrial rates vary sinusoidally with time.
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CHAPTER 1

Review of the Retrial Queue, Time Dependence, and the

Notion of Closure Methods

‘Consider your verdict,” the King said to the jury.
'Not yet, not yet!’, the Rabbit hastily interrupted.
'There’s a great deal to come before that!’

{Lewis Carroll, Alice in Wonderland)




1.1 The Single Server Retrial Queue

I have seen something under the sun: The race
is not to the swift or the battle to the strong,
nor does food come to the wise or wealth to
the brilliant or favour to the learned,; but time
and chance happen to them all.

(Ecclesiastes 9:11, NIV)

Description of the Retrial Queue

This thesis deals with an approach to computing the time dependent behaviour
of busy telephones and similar systems. The main results apply to the simplest
such system, denoted technically as the M/M/1/1 retrial queue. The situation to

be dealt with can be described schematically as in Figure 1.1.

Here, the box labelled S represents the ’server’, which at any given time can
be idle (£ = 0) or busy (g=1). If the server is idle when a customer approaches,
the customer receives immediate service. On the other hand, if the customer
finds the server busy, he must abandon his attempt to engage the server, and
goes into ’orbit’. Blocked (or orbiting or milling) customers are presumed to
continue to approach the server repeatedly until they find the server idle, receive
service, and exit the system, though it is possible to formulate more sophisticated
models in which an orbiting customer eventually tires and abandons further
attempts at service [Cohen, 1957]. The characteristics of this system which we
will be interested in calculating are quantities like the number or mean number of
customers in the system and its variance as a function of time, the fraction of
the time that the server is idle, the length of time a customer can expect spend

in the system to receive service, and so on.



5> Server >
New customers Scrved customers
arrive at an average ' lcave the system.
rate of A per unit The server is
time. assumed to be ablc
Blocked customers to accommodate an
(arriving when the average of u
server is engaged) customers per unit
must go into time.

‘orbit’ or 'mill’.
Each will attempt
to engage the
server an average
of Vv times per
unit time until
successful in
receiving service,

FIGURE 1.1 Schematic Representation of a Single-Server Retrial Queue.



What makes the consideration of this problem nontrivial is that in actual

systems of this type, the exact

e times at which new customers enter the system
e times at which orbiting customers will ’retry’ for service

e length of time the server will spend with each customer

are random variables. This means that rather than being able to state precisely
when a particular customer (the first or the tenth, etc.) will first approach the
server, or precisely when the server will be approached by a new or orbiting
customer, or precisely how long the server will spend with a particular customer,
we will only be able to speak of the probability of such events occurring in time
intervals of some length or of the expectation of these quantities. The degrec of
complexity this indeterminacy brings to the analysis of the problem depends on

the nature of the probability distributions of the random variables involved.

Equations Governing Queue Behaviour

We assume that the arrival times of new and retrying customers are
statistically independent and that the probability of more than one arrival of cach
type occurring in some time interval approaches zero as the length of the time
interval approaches zero. While it is possible to envision unusual circumstances

under which, say, telephone calls placed to a particular receiver (server) do not



conform to these assumptions?!, they do reflect a sufficiently wide range of
experience to justify adopting. These assumptions are consistent with adopting
the exponential probability distribution for interarrival times for new as wecll as
retrying customers. A similar, though weaker, case can be made for service times
having the exponential distribution.? An immediate consequence of assuming that
arrival, retrial, and service rates are exponentially distributed is that the state of
the system is completely specified by the pair of numbers (£ ,n), with & = 0 or 1
denoting the server as idle or busy respectively, and n indicating tﬁc number of

customers in orbit.3

Let A be the mean number of new customers entering the system per unit
time, V be the mean number of retrials a customer makes per unit time and U

be the mean number of customers the server can handle per unit time. For the

The telephone calls of a Wall Street stock broker on the afternoon of
October 24, 1929 comes to mind as a potential example of a of a retrial queue in
which both assumptions are violated.

’In his first paper on the subject, Cohen (1957) refers to experimental
results which fully justify’ the adoption of the exponential distribution for
interarrival times as well as service times. Because the exponential distribution
does reflect the behaviour of a considerable variety of systems which can be
modelled as queues, and because of its mathematical simplicity, it is usual to
adopt this distribution for interarrival times and service times as a first
approximation at least. Since the initial goal here is to develop computational
techniques for a model already appearing in the literature, nothing further will be
said in attempting to justify the model (though the issue is not entirely
irrelevant).

3No other continuous probability distributions share the ’lack of memory’ or
Markov property of the exponential distribution (see, for example, Ross (1983),
pages 24 -25). If interarrival times or service times were assumed to follow some
other such distribution, then in addition to the values of £ and n, a complete
description of the state of the system might also require the time at which the
most recent customer arrived or the time at which the currently served customer
entered service.



moment, we can think of ), pu,and v, as being constants, though the end
result of the derivation below does not change materially if they are sufficiently
smooth functions of time. Using the properties of the negative exponential

distribution, we can state the following for some small time interval At:

Pr(a new customer arrives in the interval At)= )\ At + o(At), (la)

Pr(service of a customer is completed in the interval At|

the system is not empty) = U At + o(At), (1b)

Pr(a customer retries for service in the interval At]

there are n customers in orbit) = vnAt +. o(At), (1c)
Pr(more than one new customer arrives in At) = o (At), (1d)
Pr(more than one customer completes service in  At) = o (At), (le)
Pr(more than one customer retries for service in At) = o(At), (1£)
Pr(more than one event of any type in At) = o(At) . (lg)

The notation o( At) indicates a quantity that becomes negligible compared to
At as At approaches zero (in an abuse of notation, we can say that o(A t) is
any ’quantity’ satisfying 1lim o( At)/ At = 0.)
At~0
It is now a simple matter to derive a system of differential equations for the

probabilities {pg (t), £=10,1; n =0,1,2,..}) where
n



po (t) = Pr(server is idle and there are n customers in orbit at time t),
n
n=20,1,2, ..

and

pl (t) = Pr(server is busy and there are n customers in orbit at time t),
n

n=20,1, 2, ..

To do this, we simply use the so-called law of total probability, which can be

written here as

oo 1
pgrgt«f- At)= kEO _Z-O pkw(t) Hwk,gn(At)’ E = 0,1 (2)
=vw= n=20,1,2,...
where Ilwk En (At) is the conditional probability that the system will be in state

(€, n) at time t + At given that it was in state (w, k) at time t.4

If we are concerned only with retaining terms to first order in At in
equations (2), then the conditions given in equations (1) drastlcally reduce the
number of nonzero terms in the summation above. The solid arrows in anurc 1.2

represent the II (At) which are first order in At or larger as At

wk ,€En

becomes small. Using that diagram, for example, we have forany n =0, 1, 2, ..

‘Here, Hwk £n (At) depends only on At because all the interarrival and
service times are assumed exponentially distributed. If that were not true, the
Hwk £n would also depend on the value of t.



(l-p-A)dt

c--(1,n-1)

udt

Adt

(1-pu-A)dt (1l-uy-A)dat
(/—\D Adt (/_\>
> (1,n) > (1,n+1)---

Adt

\

ot (0,n-1)

{1-A-(n-1)v}dt

FIGURE 1.2

\

Adt udt Adt

J

(O,n) (0O,n+1) - -

{1-A-nv}at {1-X-(n+1)vl}dt

Possible State Transitions and Differential Transition Rates for
the Single-Server Retrial Queue

The six pairs ( £,n) above represent possible states of the retrial qucue, with
£ =0 or 1 corresponding to the scrver being idle or busy respectively, and
'n’ being the number of customers in orbit. The arrows represent possible
system state transitions for this single-server retrial queue with the
corresponding differential transition rates as indicated.



poét+ At) p n(t)-Hon n(At) + pln(t)'H L (Ot)

In,0

0 .0

pOn(t)~ Pr(the system is in state (O,n) at time t and no
arrivals of either type occur in the
interval At)
+ pl (t) - Pr(the system is in state (1,n) at time t and there
.1 .

is one service completion in At but no

arrivals of either type)

P, (t){1 - AAt + o(At)}{1 - nvAt + o(At)}
n _

+ pln(t){uAt+o(At)}{1—AAt+o(At)}{1—nvAt+o(At)}

Il

pon(t) - Apon(t)At - nvpon(t)At + upln(t)At

+ o(At)

Subtracting pOH(t) from cither side, and dividing this last equation through by At

gives

Pyt + Bt) - p, (¢t) o(At)

0 - _ _of{st)
N = (X + n\))pon(t) + upln(t) + AL

In the limit as At -+ 0, this reduces to

d-
dt

p n(t) = —-(A + nv)pOn(t) + upln(t),

0 (3a)
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In a similar fashion we find that

d
dt Y1

L(E) = —(A+Wp, (t) + Xpl,n_l(t) + Ap, (t) (3)

+ (n+l1)vp +l(t)’ n=0,1,2,... ,

0,n

with the understanding that pgn(t) is identically zero whenever n < Q.

The characteristics of the system which are of practical interest are all
calculable from the pg (t) (£=0,1; n=0,1,2,..) in a straightforward manner.
n
However, these p_ (t) can be obtained only by solving the combined infinite scts
n

3
of differential equations in (3a) and (3b).

The Steady State Solution

An exact solution of the combined system of equations above has been
obtained only when A, yuy, and vy are constants, X\ < y,and in the limit that t

becomes infinite. In this case, the p_ (t) become independent of the value of ft,
n

g

and the values of the constants p‘g = p_ () are unaffected by the initial state
cn

En

of the system.

This so-called steady-state solution can be obtained in one of several ways

[Gross & Harris, 1974, pages 44-51]5. While we will be primarily interested in

SThat such a steady-state solution of equations (3a) and (3b) exists is
inferred from the construction of it which follows. This is a common approach
(see, for example, Gross and Harris (1974), pages 38 - 40 and Cooper (1981),
section 2.3). It is recognized that the existence of such steady state solutions
involves the concept of ergodicity, for which some rather general results are



11.

examining techniques for approximating the time dependent behaviour of the
retrial queue, the major technique studied makes extensive use of this steady
state solution. Qur intent is to use the characteristics of the calculable stecady
state solution to develop approximation techniques which will allow bypassing the

full systems of equations in (3a) and (3b).

Perhaps the simplest approach to obtaining the steady state solution to this
single server retrial queue problem is to assume the solution exists, -rcplacc the
derivatives in (3a) and (3b) by zeros, and solve the resultant difference equations
recursively. With the derivatives replaced by zeros, the systems (3a) and (3b)

can be rearranged to give

- _b_
Pin = c‘(c * n)p0n' (4a)
c(p + 1) c

— L] - e ’ 4

Py n+1 (n + 1)p Pin m o+ 1 (P1.on-1 tPon’ (4b)
n = 0, l, 2, I'4
where
0 = —3— and c = —%— ) (5)

known (see Shiryayev (1984), section 1.12 and Chapter V). To quote Gross and
Harris (1974, page 40), "It is generally not necessary to appeal to these [ergodic]
theorems to determine the conditions under which queueing processes are ergodic,
since they usually fall out from other considerations." We can apply the remarks
of Cooper (1981, page 19 and following) for the M/M/s queue, to indicate herc
that if limiting values of py,{t) and (t) exist as t >« , then equations (3a) and
(3b) imply that their derivatives p’o t) and p'_-l (t) must also have limiting values

- .on . n A .
ast - o, But the existence of limiting values for the probabilities is possibie
only if the limiting values of their derivatives are zeros. If on replacing the
derivatives in equations (3a) and (3b) by zeros, we obtain a system of difference
equations with no solution or with no acceptable solution (as when X > y ,
when the probabilities diverge with increasing n to «), we will presumably have
encountered an example of "other conditions" indicating that the queue is not
ergodic.
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Alternating between (4a) and (4b) for increasing values of n, we get successively
P10 = PPyo

Po1 = “PPpo

2(c + 1)
P PO

Pp; 7 0
2
_ P c(c + 1)
Ppa 2 Poo
3
_ P (c + 1)(c + 2)
Pio 2 Poo
3
_ _p c(c + 1)(c + ZL
Ppos z 3 Poo

and so on. A reasonably clear pattern in the formulas for these steady state

probabilities has already emerged, leading us to hypothesize that for general n,

n c + n - 1
_ P cl(c+1) (c+2) - ---(c+n-1) _ pn (6a)
Pon n! Poo n Poo~ -
n = 11 2/ 3/ L 4
and
n+1 :
o} (c+1) (c+2)--°(c+n) c + n n+1
= = 6
Pin n! Poo < n > P Pyo- (6b)

Substitution of (6) into (4a) and (4b) confirm that the formulas (6) do indecd
satisfy the system of difference equations. Finally, since the sum of all of the

steady state probabilities must be 1, a bit of routine algebra allows detcrmination
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of Ppo 23S

c+1
= - 7
POO (1 p) (7)

which together with the formulas in (6) completes the specification of the stcady

statc probabilities.

We notc in passing that p , the probability that at steady state there are a
n .

total of n customers in the system, cither in service or in orbit, is given by

= +
pn pOn pl,n—-l n

- (c+n)pn(l_ p)c+l. (8)

These probabilities form the so-called negative binomial distribution with

parameters c+1 and 1 -p.

Evaluation of Steady-State Moments

In what follows, we shall make considerable use of formulas for steady statc
moments for the system. The evaluation of such moments is greatly facilitated by

first obtaining corresponding probability generating functions

o c+1
P (z) = z P, 2" = (I - o) = (9a)
0 n=0 n (1 - pz)
o c+1
n (1 - p)
P,(z) = L p,,z = c+1 (ob)
n=0 (1 - pz)



and
[e9) c+1
_Z -
P(z) = I p zn = Po(z) + zPl(z) ( e py
n=0 (1 - pz)
The steady state quantities of particular importance are
[s 0]
HO = Pr(server idle) = z pon = Po(l) =1 - p,
n=0
[s 0]
Hl = Pr(server busy) = z P, = 1 - HO = p,
n=0
[o0]
m_ = Y n- = d P (z) = C
0 Py dz -0 = <Py
n=0
z=1
> d 1
m_Z = z (n+l)p = 3 Pl(z) plco + 1)
n=0 n z z=1 1l -9
m = mean number of customers in the system
= m, + ml
p(c + 1)}
1 -0p
o2 a’ (p 1)
pc c +
= = +
CO Z n Py 5 Po(z) m,
n=0 dz 1 -
z=1
o 2
2 - d
— = 24 zZ } + m
Cl nEO(n+l) Pin d 2 tz 1( ) l 1
z T z=1
p{(cp + 1)(cp + 2) - (1 - p)}

2
(1 - p)

14.

(9¢c)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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z = expectation of the square of the number of customers in the system
=ty
2 2
_ (c + 1)(cp + p + p) (17)
2
(1 - p)
o 3 3
n_ = z p = P (z) + 32;0 + 2m
0 n=0 on dz3 0 z=1
pc {(pc + 1)(pc + 2) - p(1 - p)} (18)
= 2
(1 - p)

We also note that the variance, v, of the number of customers in the system is
given by

2
(1 - p)

Related Queueing Models

Before leaving this rather condensed description of the basic system we will be
examining in greater detail shortly, it is worth recognizing that the problem is in
a sense intermediate between two of the very small number of queueing models
for which not only the steady state problem is easily solved, but analytic

solutions have been found for all positive values of t.



16.

If we regard the orbiting customers as forming a sort of balky waiting line,
the single server retrial queue is seen to be a generalization of the well-known
M/M/1/ % single server queue with service in random order (SIRO).® The big
difference between the two is that whereas in the ordinary M/M/1/» queue, the
server will never be idle as long as there are any customers in the system, in the
retrial queue, it is quite possible for the server to be idle for a time even though
quite a large number of customers are orbiting unserved. We would expect that
as the mean retrial rate, v , becomes larger and larger, the retrial queue will look
more and more like the M/M/1/ «/SIRO queue. We note that the system of
equations governing the time-dependent behaviour of this queue have been solved

formally only in the case that the arrival and service rates are constants,

Alternatively we can regard the orbiting customers as similar to customers who
are not waiting in the system at all, giving the impression that the retrial queue
is a bit like an ordinary single server queue with no waiting room at all (ie. the
ordinary M/M/1/1 queue). This queueing model is perhaps too simple to provide
much useful insight into the characteristics or behaviour of the single server

retrial queue.

%Queues are usually described with a notation developed by Kendall (1953)
and others, making use of a collection of symbols separated by slashes:
A/B/C/D/E. Here A’ indicates the interarrival time distribution, B’ indicates the
service time distribution, ’C’ indicates the number of parallel service channels, D’
indicates the capacity of the system including customers in service, and E’
indicates the waiting line discipline. An extensive list of the symbols commonly
used can be found in most basic books on queueing theory (for example, Gross
and Harris (1974), page 9 and pages 464-471). The symbol "M’ is used to indicate
the exponential distribution, so the notation M/M/1/« denotes a queue with
exponentially distributed interarrival and service times, a single server, and
infinite capacity. To indicate that customers in the system are served in random
order, we could expand the notation used to read M/M/1/ «/SIRO.



17.

The similarity between the single server retrial queue and the ordinary
M/M/1/ =/SIRO queue is what prompted the investigations described in Chapter 2
below regarding the adaptation to the retrial queue of so-called closure methods
which have been applied successfully to computing the approximate time dependent

behaviour of the simpler M/M/1/ « queues.

It should be noted also that the retrial queue is distinct from so-called
’feedback queues’ in which customers may return to the queue to await service
again after they have completed service. For example, while a particular
customer might have been released from service, the service provided may have
been incomplete or unsatisfactory in some way. In the retrial queue, customers
return to the queue after an unsuccessful attempt to engage the server, but once

served, they are viewed mathematically as leaving the system forever.
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1.2 Retrial Queues to Date

Miller’'s Law: ’'You can’t tell how deep a puddle
is until you step into it.
(The Official Rules, Paul Dickson, ed.)

Cohen

The literature on the subject seems to agree that Cohen [1957] was the [irst
to consider the retrial queue problem in detail. In this lengthy paper, he deals
both with the underlying assumptions of the formalism as they apply to telephony

as well as with developing the mathematical formalism in great detail.

Cohen actually treats the multiple-server retrial queue in the paper. He uscs
an approach similar to that outlined in the section 1.1 of this thesis leading to
equations (3a) and (3b) to deri__v__g, the underlying system of differential equations
which can be solved for the probabilities of finding the system in any of its
possible states. . However, to cope with the considerably greater complexity of
the resultant equations whose solutions are the steady state probabilities, he first
transforms the equations for the probabilitics into a system of a smaller number

of equations for probability generating functions.

Despite this stratagem, obtaining the formal solution of the problem is no
mean feat. The expression Cohen gets for the mean number of 'congested calls’
at steady state (what we would refer to here as the mean number of customers in
orbit) is a fraction with both the numerator and denominator containing doublc

index summations over products of generalized Laguerre polynomials and integrals -
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involving components of probability generating functions for the system. Cohen
then goes on to demonstrate how solutions for a variety of special subcases of

the problem can be obtained from his general solution. His results are so detailed
and comprehensive that no attempt will be made to itemize or summarize them

here.

Keilson, Cozzolini and Young

The next appearance of the retrial queue in the literature seems to be in
Keilson, Cozzolini and Young [1968]. These authors consider both the single-
server and the two-server retrial queue with exponentially distributed interarrival
times and general service time distributions. They consider the time-dependent
behaviour of the queues but obtain formal and numerical results for both types of

system only at steady state.

Note that when service times have a general (non-exponential) distribution, the
single-server retrial queue is characterized by something like a pair (n, € ), wherc
n is a non-negative integer giving the number of customers in orbit, & =0
indicates the server is idle, and £ > 0-indicates that the server has been
engaged by the current customer for & time units already. I'ﬁ;tcad of the two
discrete values of £ (0 and I above) required to characterize this system when
service times are exponentially distributed, & is now needed to be a non-negative

rcal quantity.

For the steady-state single server retrial queue, Keilson, Cozzolini and Young
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derive formulas for the probability that the server is idle (PE =1- AT), the
mean number of customers waiting in orbit (i = [ é. A2T2 4+ ( % AT/ - AT,
the mean waiting time in orbit of a customer ( T = m/ \), and the mean number
of attempts at service per customer for each successful call (¢ =1+ vT). All
of these quantities are determined by the mean service timc,_f, which is simply

/1 when service times are exponentially distributed.

For the multiple-server case, Keilson, Cozzolini and Young assurﬁe
exponentially distributed service times as well as exponential arrival and retrial
rates. This permits them to describe the system by a pair of numbers, (n, £ ),
where n is the number of customers in orbit and £ is the number of servers
engaged. Thus, £ can only assume values from a finite sct‘of non-negative

integers.

They obtain formal results for the steady-state of a two-server retrial system
using an approach borrowed from the study of current flows in networks of
resistors in electrical engineering. Their analysis gives formulas for quantitics
Pm , Q o and Rm , which are the probabilities that there are m customers in
orbit and zero, one, or two servers busy respectively. The characteristics of the
retrial queue mentioned in the previous paragraph for the single-server case can
all be computed for this two-server case as sums of multiples of the Pm . Qm s
and Rm . While use of a computer is necessary because these sums cannot be
rearranged into a simple closed algebraic form, the necessary formulas are not

difficult to program.
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Alexsandrov

Chronologically, the next treatment of the retrial queue appears in Alexsandrov
[1974], who derives a number of results for the M/G/1 system considered carlicr
by Keilson et. al. {1968]. This short paper concentrates on obtaining ¢xpressions
for the first two moments of the system at steady state. He also derives
expressions for the expected time of sojourn of a customer in the system, the
effective arrival rate of retrying customers, and the expected number of retrials
each customer will make before succeeding in obtaining service. Alexsandrov’s
paper provides a number of references to earlier papers on the subject appearing

in the Russian literature.

Falin

The Russian torch, as far as the retrial queue is concerned, is then taken up
by G. L. Falin, culminating in a lengthy paper (Falin, [1979]) dealing with, in his
words, the non-stationary regime of operation of the system’, and concentrating

on characterizing a ’system busy period’.

Falin defines the busy period for the system as the time interval from when a
customer enters service in an otherwise empty system until the system becomes
totally free of customers cither in service or in orbit. Whi'le for non-retrial
queues, the system busy period defined in this way would correspond to the
server busy period, for the retrial queue there may be many intervals during the

system busy period when the server is idle. Expressions are obtained for the
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length of the system busy period and the number of service completions in such a
busy period. It is noteworthy that this difficult paper makes reference only to

the Russian literature.

Hashida and Kodaira

Mecanwhile, Hashida and Kodaira [1975] published a trcatment of the rctrial
queue in which new customer interarrival times were assumed expoﬁcntially
distributed, but inter-retrial times and service times had general distributions. -
They were interested in the problem of the inefficient use of circuit switching
networks because of line time wasted by customers during repeated unsuccessf{ul
attempts to obtain service. Their approach is similar to that of Keilson et. al.
[1968], and they produce some numerical results for the probability that incoming

calls will find the server busy.

Choo and Conolly

Choo and Conolly [1979] present some results for the system time of
customers, service idle time, and system busy period for the steady state M/G/1
retrial queue. vais in this paper that the term ’orbit’ is first used in reference
to the situation in which those customers unsuccessful in obtaining service on
their first attempt find themselves. Choo and Conolly attempt to extend
Alexsandrov’s work by obtaining formulas for the customer’s system time (waiting
time in orbit plus time in eventual service), the server idle time and the system

busy period. Their derivations assume service times are exponentially distributed
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as are new customer arrival times and retrial times, though some of the results

are valid when service times have a general distribution.

Choo and Conolly derive an infinite system of equations for probability
distribution functions of the first passage times between various states of the
queue. This is motivated by the observation that the system busy period is the
first passage time from the state ( £, n) = (1,0) to the state (£, n) = (0, 0).
Unfortunately, it does not appear possible to find an exact timc-dcbendcnt
solution to this system of equations. The authors present computational algor-
ithms for calculating the first and higher moments for these first passage times,
from which moments of the system busy period can be obtained. For cxamplc,

they find that the mean system busy period is given by ﬁ = ;_ [_l_ - 1],
S

Poo
where p,, is the probability that the system is empty (see equation (7) in

section 1.1 above).

Choo and Connolly apparently have greater success in obtaining simple
algebraic formulas for the mean system time of a customer (the time from when
the customer first attempts to obtain service until service is completed for him)
and its variance. Unfortunately, Kulkarni [1982] and Falin! point out an apparcnt

error in the approach of Choo and Conolly to the analysis of a customer’s waiting

Iprivate Communication with B. W. Conolly. In a short letter to the editor
of the Journal of Applied Probability, appearing immediately after Kulkarni {1982],
Conolly acknowledges the ’serious difference of opinion’ expressed by Kulkarni
[1982] as an error in the waiting time analysis appearing in Choo and Conolly
[1979] and laments the apparent lack of collaboration between people in Britain,
the United States, and the USSR, interested in the retrial problem .
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time in the system. Kulkarni presents a corrected analysis of the problem and
finds it impossible to obtain a simple closed form expression for the waiting time.
Instead, his result is in the form of a numerically well-behaved convergent
infinite series whenever P < 1, with terms defined by a set of recursion

relations.

Choo [1978] considered the retrial queue in his Ph. D. thesis as well.

Kulkarni

The most recently appearing paper on the retrial queue seems to be Kulkarni
[1983). Kulkarni develops a simple formula, AR = ASRS, where A is the mean
arrival rate for new customers, KS is the mean service rate, R is the average
n.umbcr of unsuccessful retrials made by a customer, and RS is the average
number of unsuccessful retrials made during one service period. This formula is

reminiscent of the so-called Little’s Formula (L _=}\W)2, though its intuitive

2The intuitive basis of Kulkarni’s formula comes from recognizing that cach
unsuccessful retrial belongs to some customer and takes place during some service
period (according to the model, an unsuccessful retrial cannot take place when
the server is idle). Little’s formula as stated, with L being the mean total
number of customers in the system at steady state, including customers in service,
A the mean arrival rate, and W the mean time a customer spends in the system
including time in service, applies with great generality to a wide variety of steady
state queucs and is one of the most celebrated and discussed results in queueing
theory. It too has a simple intuitive base (the mean number of customers in the
system must be the mean number of customers that arrive during the time a
single customer spends in the queue and in service). Kulkarni’s proof of his
formula is modelled on a proof developed by Stidham [1972, 1974] for Little’s
formula, and Kulkarni claims the same sort of generality for his formula relative
to retrial systems as is the case for Little’s formula for non-retrial queues.
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plausibility belies the intricacy of the analysis required in a rigorous proof. This

is another feature shared by the two formulas.

Kulkarni applies his formula to the steady state analysis of a retrial queuc
involving two types of customers having cxponcntially distributed arrival, retrial
and service times, but with differing mean values. He obtains expressions for the
expected waiting time for each type of customer in the system and the expected

number of each type of customer in the system.

One of the interesting special cases to which Kulkarni’s results can be applied
is a situation in which one customer decides to conduct retrials at a different
average rate than all other customers in the system. Kulkarni presents a formula
for the expected waiting time (before service) of such a customer. One would
expect that a detailed understanding of the characteristics of such a result would

have some very useful applications.3
Conclusions

Though a number of the works cited in this section contain derivations of
equations governing the time-dependent behaviour of single-server or multiple-
scrver retrial queues (for example, Keilson, Cozzolini and Young [1968]), the

resultant equations invariably do not have simple closed form solutions. Because

3This result of Kulkarni’s would seem to be a useful starting point for
developing strategies for a customer who finds himself in orbit, and would like to
minimize his expected waiting time in orbit. It would provide some way of
estimating the value of ’keen-ness’ in such a customer.
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of this, major results are presented only for the much more tractable steady-state

case for such queues.

This twenty-five or more years of work on the steady-state retrial queue has
led to some very sophisticated results. However, it is not difficult to think of
actual systems corresponding to retrial queues to which these steady-state results
do not apply because arrival, retrial, and/or service rates vary in time to the

extent that a steady-state regime cannot be established.

Because the main objective in this thesis is to examine some viable approaches
to determining the time-dependent behaviour of a single-server retrial queue, it is
unnecessary to discuss any further the results described briefly in this section for
the steady-state retrial' queue. However, we note that these steady-state results
could bear a more detailed examination, since there appear to be some
discrepancies outstanding between the forms of results obtained by different
authors. One example is the relatively simple expression Keilson, Cozzolini and
Young [1968] obtain for the mean waiting time in orbit of a customer, which
contrasts markedly wit'h, for example, the complexity of the corresponding result

obtained by Kulkarni [1982].
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1.3 Time-Dependence of Queues

Anderson’s Law: 'l have yet to see any
problem, however complicated, which, when you
look at it in the right way, did not become still
more complicated.’

(The Official Rules, Paul Dickson, ed.)

Why Bother With Explicit Time Dependence?

The main part of this thesis is concerned with formulating and testing a
particular set of approximation methods for studying the time-dependence of the
single server retrial queue. In this section, the motivation for these studies is
developed by discussing the importance of considering time-dependent behaviour of
non-stationary quecues, by noting the inapplicability of various traditional
approaches to solving the relevant differential equations or systems of differcntial
equations, and finally, by noting the computational problems encountered using

standard numerical approaches to the problem.

For some years it has been recognized that there were many applications of
qucueing theory for which the stcady state solutions were inappropriate in
principle if not in practice. The problem was not so much a need to take
account of the transient time-varying regime as systems evolve from some initial
state to a stcady state, but rather that many systems have intrinsic non-
stationarity because arrival rates and/or service rates vary with time. Further,
this variation in time may not (in fact, likely will not) be as simple low order
polynomials in t, but more likely as a periodic function involving trigonometric

functions.
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Koopman’s Work

Koopman [1972] pointed out that the queue formed by aircraft wishing to take-
off or land at an airport had a definite 24-hour periodicity. Within each 24-hour
period, demand for access to runways varied from zero during the early morning
hours to a level during rush hours which could for some airports be well in
excess of the allowable runway capacity. To model such a system as a steady

state queue is clearly inappropriate.

| To deal with such a significant time variation in the characteristics of the
queue, Koopman first noted that the smallest time interval over which a change in
the state of the queue could occur was strictly positive. Since an aircraft takes
of the order of one or two minutes to enter the runway and leave it, either
during take-off or landing, changes in the state of the queue can only occur on

that sort of time scale, and so the whole problem is discrete.

Secondly, he noted that for even the largest airports, the number of aircraft
that can be waiting on the ground to take-off, or the number which can be
waiting in the vicinity to land is necessarily quite small. Thus one can
realistically assume that there is a specific finite number (maybe a few dozen, and
certainly not more than a few hundred), with the probability of the number of
aircraft in the system ever exceeding that number being zero in practice. As a
result, the infiniltc system of linear differential equations analogous to (1.1.3a) and
(1.1.3b) above which needs to be solved to describe the time-dependent behaviour

of the system can be truncated to a finite system. The solution of the equations
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using numerical methods then becomes feasible.

Though Koopman was concerned primarily with the repercussions his computational
results had for airport design and operation, and though he considered a number

of other issues! in the application of queueing models to systems like this, the

main impact of his paper seems to have been to establish the necessity of taking
time dependence of queues into account explicitly in modelling many real systems.
His quantitative results showed that quantities like the expected qu;:uc length and
its standard deviation, the probabilities of finding the queue empty or finding it
full, the cumulative number of customers turned away from a full queue, and the
expected waiting time for a customer entering the queue, varied appreciably with

variations in arrival and service rates.

Solution by Power Series Expansion

There are several straightforward approaches to determining analytic solutions

for systems of linear differential equations like (1.1.3a) and (1.1.3b). Power serics

1Koopman also considered the issue of choosing an appropriate probability
distribution for the service times. He carried out a number of calculations using
first the exponential distribution (corresponding to minimum information regarding
the time of the next service completion) and then assuming constant service times
(corresponding to maximum information about the time of the next service
completion). He found that the quantitative results were relatively insensitive to
which of these service time distributions was used. Considering these alternative
models to represent extremes, he concluded that it was an acceptable
approximation to adopt the exponential distribution to take advantage of
simplifications in the formalism, in place of a more realistic but likely much morc
complicated distribution. Koopman’s devotion to realism is further demonstrated
by his use of actual airport records to evaluate his computed results.
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solutions are sometimes useful. In this case, we can write?

) a(,n)tj

o J ’ pln(t) B E

P n(t) =

, (1)
o)

J

Substituting these two expansions into equations (1.1.3a) and (1.1.3b) and requiring
that the coefficients of a given power of t on either side of each equation bLe

identical, we obtain

b(,n) - (X + n\))a(,n)
a(,n) - 1 J (3a)
j+i i o+ 1
and
ap (1) ra’® 4 (ne1yvalotl) (A b (Y
b(.n) _ i J J J (3b)
j+i j o+ 1

When n = 0, the first term in the numerator of (3b) must be dropped. These

formulas express coefficients with lower index ’j+1’ completely in terms of

ZCarter and Cooper [1972] employ a power series approach in a study of the
stationary waiting time distributions for various queues. They factor a factorial
out of the coefficients in the series. In our case, that approach would make
formulas (1) look like

(n) . d(n)
[o o] C s . A j
p (t) = ¢ —L 7, p, (t) = I — . (2)
on j=0  j! n j=o  j!
. . (n) (n) . .
The coefficients ¢ ; and d ; arc then given by equations (2a) and (2b)

respectively, but with the denominators *j+1’ dropped. One suspects that this
approach will lead to difficulties in calculating factorial-sized quantities explicitly -
when large values of j are handled.
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cocffiéients with lower indices ’j’, and so form a feasible basis for computing
these coefficients recursively. The above formulas apply when A, U, and V arc
all constants, and the situation would certainly become more complicated if any or
all of these quantities were time-dependent. One can readily imagine the
additional complexity involved in separating powers of t if, for example, arrival

rates were sinusoidal.

Of course, the real problem with this approach is that even formélly
convergent power series expansions form hazardous bases for computation except
when the value of the independent variable is very small. In this case, the
numerical sum of these series will always be a number between zero and one
(since the sum represents a probability), and yet, for values of t much greater
than one, the small sum may be constructed out of terms having magnitudes much
greater than the final sum, and so serious round-off error can occur in summing
the series as a result of the finite precision with which all computing machinery

stores numbers.

For example, when A=0.5,1=07 and v = 0.3 and all constant, the
probability p00(20) is very near its steady state value of 0.035. Yet in evaluating
this quantity using the power series expansions above, one finds that more than

. . . . . 40 60
twenty terms in the sum including those involving t =~ through t are all greater
in magnitude than 1012, and alternate signs in an irregular fashion. This means
that something like the fifteen lowest order significant figures of the computed
series sum will be garbage. Since the highest precision (in the computerese

sense) normally used in scientific calculations is around 15 or 16 significant
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figures, the inappropriateness of this approach to computing these probabilities is

clear’

Determination of Time-Dependent Probability Generating Functions

An alternative approach to solving equations (1.1.3a) and (1.1.3b) exactly is to
transform each set of equations into a single partial differential cquation {or the
corresponding probability generating function. All probabilitics aﬁd moments of
the system can be computed straightforwardly from the probability gencrating’

functions.
For the retrial queue, we define the two generating functions,

£)z" t—ozo £)z" 4
n( Jz , gl(zl)— - pln( )z . (4)

Multiplying equations (1.1.3a) and (1.1.3b) each as written by zn, summing the

resultant equations over n, and rearranging terms appropriately, we obtain

) 9

Bt Eo(zlt) = T}\Eo(z/t) + U_lil(zlt) - Vz 82 go(zlt)l (5)

3 3

g B, (z.t) = (AW P, (z,t) + AzP, (z,t) + AP (z,t) + AgEp(Z/t) -

3The basis of this rough quantitative estimate of the effect of numerical
roundoff error on the accuracy of the computed sum of these power series is
somewhat simplistic. More sophisticated analyses of the problem are available
(see, for example, Lyashenko and Nikulin {1986]). Such analyses appear to
indicate that the true cumulative round-off error in computed sums can be
significant even when there are not such large differences in the magnitudes of
the individual summands.
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So, the doubly infinite system of ordinary differential equations has been
replaced by a system of two partial differential equations. These equations can
be solved directly (see Zachmanoglou [1976], chapter 10), but that approach scems
to result in a system of two integral equations which are solvable only by
iteration, and the complexity of the expressions arising out of the iterative

approach may make attainment of adequate accuracy infeasible.*

‘Following the method of characteristics as outlined by Zachmanoglou [1976],
we obtain: :

t .
: e—vt_ ) . 'U ) o
v (z,t) = - -v + A - v (z_(t),t)
0 z ze—\)(E—t) 0 0
0
u
+ v.(z (t),t) > dE,
-V (Et-t) 10
ze
t
1 u — -
Vl(z,t) = = - 2A - ~— *tu vo(zl(t),t)
0
+ [___u - (>\+u—>\z)]v(z (F),E)pdt
z 1 1
where
- -V(Et - ¢t) -
zO(t) = ze , zl(t) = z

are the equations of the characteristics of equations (5) passing through the point
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Transform Methods

Alternatively, one could attempt to solve equations (5) using Laplace

transforms,
(o] [o o]
- -st - -st
Po(z,s) = 1_>_O(z,t)e dt, Pl(z,s) = f_l(z,t)e dt,
0 0
(6)
which, on substitution into (5), gives the two equations
P AP P_( ) V22 P (z ;)
sPO(z,s) - _zio(z,O) = —)\Po(z,s) + pPl z,s 250 ,
(7)
and

- ‘ . 3
—()\+u—}\z)Pl(z,s) + )\Po(z,s) + \)a—z—PO(z,s),

sPl(z,s) - g_l(z,O)‘

if we assume A, U, and V, are independent of time.

In principle, we could solve the first equation for —I;l(z,s), substitute this into
the second equation, and obtain a single first order partial differential equation

for Fo(z,s). At best the resultant equation is of daunting complexity. This

(z,t). Here,

go(z,t) = zvo(z,t) and Bl(z,t) = Vl(Z,t) - VO(Z,t)

It would appear possible to evaluate the necessary integrals analytically if an
iterative method was employed to solve these equations, even if some or all of A,
1 ,and V are non-constant, though the amount of work required may increcase
rapidly with successive iterations. An as yet unresolved problem here is that in
employing the successive approximation approach described in Zachmanoglou
[1976], we seem to get an expression for Bl(z,t) involving negative powers of z,
which contradicts equation (4).
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approach is not likely to be feasible when any or all of A, p, or v, are
functions of time, since then equations (7) would become even more complicated,

and potentially involve higher order derivatives of the Laplace transforms.

Previous Work on Time-Dependent Queues

Even though comparatively little attention has been given to the time-
dependent behaviour of queues in the literature, the number of papers which have
appeared on the subject is quite large. No attempt will be made here to give a
comprehensive review of the entire history of the subject. However, it is
worthwhile to note the types of problems which have been solved successfully,

and the sorts of approaches used.

Among the early works on the subject was that of Morse [1958], who was able
to obtain the time-dependent probabilities for the M/M/1 queue with constant
service and arrival rates using the probability generating function approach.
These analytic solutions were very complicated, involving sums over terms
containing Bessel functions. Later, Saaty [1961] succeeded in obtaining the
Laplace transforms of the time-dependent probabilities for the M/M/s queue with
constant arrival and service rates, but was able to invert the transforms only for
the two-server case. In both works, the time-variation of the probabilities was a
transient effect as the systems ’decayed’ to their steady state. Similar
approaches would not have produced corresponding solutions had the arrival

and/or service rates themselves been functions of time.
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With the failure of frontal attack for more complicated queue models, an
alternative approach was developed by Newell [1968a, b, c], with extensions more
recently by Keller [1982] and Massey [1985]. Newell was interested in modelling
the behaviour of a traffic system going through a rush hour during which the
’arrival rate’ significantly exceeded the capacity of the system. Since the length
of a queue experiencing more arrivals than departures on average will grow
without limit, a steady state cannot be established. Newell recognized that in
such a saturated queue, to a good approximation one could consider arrivals and
departures to be a continuous process because the time intervals between
successive such events are very small. This approach led to a kind of diffusion
equation for the time-dependent distribution function for queue length. That
equation could not be solved generally, but its form facilitated the drawing of

various conclusions about the behaviour of the system.

Keller [1982] employed a formal asymptotic analysis amounting to adopting a
time scale over which changes in arrival and service rates are very small. Keller
found that his analysis reproduced many of Newell’s results. Massey has
apparently put Keller’s work on a more solid theoretical foundation, particularly
in proving that several of Keller’s results were in fact asymptotic to the exact
solutions. These analyses are quite complicated, and neither Keller nor Massey
attempt to compare the results of their approach with exact numerical solutions.
All three authors deal with some vériant of the M/M/1 queue, though Keller
states that his method of analysis applies to other cases as well. To extend this

approximation approach to the retrial system would be quite a major undertaking.
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Kelton and Law [1985] have restructured the M/M/s problem in terms of the

probabilities:
Pk(n,i) =Pr{X =1 k customers were already present at t = 0},
n .

where Xn is the number of customers in the system at the instant the nth ‘new’
customer arrives, including the new arrival. Thus we are looking at the system

at a monotonely increasing sequence of random, discrete times, rather than in a
continuous time framework. Using this approach, Kelton and Law are able to
compute the expected delay in the queue for each arriving customer exactly. This
approach is worth examining for the retrial queue, but that will not be done here
because our immediate goal is to produce a viable approach to describing the

continuous time behaviour of the system.

Numerical Approaches

As far as being able to predict the continuous-time behaviour of actual single
server retrial queues, there seems to be little hope of finding computationally
feasible exact analytic solutions. Turning attention to strictly numerical methods,
we find that while they introduce difficulties of their own, these can be
minimized at a price. None of the factors of the retrial queuecing problem which
dash hopes of an exact analytic solution are of any great consequence as far as

implementation of numerical methods are concerned. If we adopt a specific
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numerical approach to solve the systems (1.1.3a,b), the algorithm will simply
require us to be able to supply numerical values of A, p, and v, for any
specified value of t. Whether these parameters are constants throughout or are
generated by complicated formulas involving transcendental functions or worse, is

effectively irrelevant to the structure of the numerical algorithm.b

The available algorithms for the numerical solution of ordinary differential
equations easily number in the hundreds if not thousands. For the.work discussed
following this section, a modification of the Runge-Kutta-Felberg-45 or RKF45
method [Felberg, 1970] based on Algorithm 6.3 of Burden, Faries, and Reynolds
[1978] was used exclusively (see Figure 1.3). This method generates both a so-
called fourth order estimate and a fifth-order estimate of the solution efficiently
at the end of each interval in t. There are good reasons for considering the
difference between these two solution estimates as an acceptable estimate of the
numerical error in the fourth-order estimate (see Burden, Faries, and Reynolds
[1978], section 6.5). Since the fifth order estimate is the one retained, this
difference between the two estimates is generally a very pessimistic estimate of

the actual numerical error in the adopted solution.

The main reason for choosing this method was that it not only produces an

estimate of the numerical error being incurred, but it can be implemented so that

SMost numerical methods for integrating systems of differential equations arc
based on some combination of polynomial extrapolation and interpolation.
Changing the functional form of various coefficients in the equations would not
require modifying the structure of the algorithm, though it would likely affect the
detailed performance of the algorithm. As these coefficients, and so the solution,
become less like a smooth low-order polynomial, the polynomial
extrapolation/interpolation approach may become less effective or efficient.
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FIGURE 1.3 The Runge-Kutta-Fehlberg-45 Algorithm

The following is the implementation of a Runge-Kutta method as developed by
Fehlberg (see Burton, Fairies, and Reynolds [1978], section 6.3) as used exclusively to
solve systems of differential equations for the calculations presented in this thesis.
The algorithm produces a fourth order and a fifth order estimate of the solution,
requiring a total of only six derivative evaluations per internal step. The difference
between the two estimates is taken as an upper limit on the error in the fifth order
estimate, and internal step lengths are adjusted automatically to meet a preset
tolerance on this error limit.

INITIALIZATION:

The algorithm computes an approximation to y(b) = {y(b), ¥5(b), ., y_(b)} with n an
integer greater than or equal to |, given a function subprogram whic}{‘computcs

YO = (¥ 7O, Y0, e YO = {00, £,(0, o £ (0)

= f(t)
and the initial values

y(@) = {y,(@), y_(a), . y_(a)}.
2 n
It is also necessary to specify
€ = the desired maximum absolute difference ( € > 0) between the generated

fourth and fifth order estimates of yi(t), i=1, 2, .., n, over the range
agtgb.

STEP 1: Estimate the initial internal step length: h = (€) 174

Set to= a.

STEP 2; Sctt=to+h.
If t > b, reset t=b,h=b-to.'

STEP 3a: Set (kl )i = h.fi(to’wo)’_ i=12,.,n

1 :
STEP 3b: St (k,), =hef (t+ 7h,w + gk;), i=12 0
3 9 .
-—kl+ 32k2), 1=1,2,.,n

1932, 7200 7296
2197517 2197K2 * 3755530

3
STEP 3c:  Set(k_), =hef (t + gh, w o+
3°1 io o

12
STEP 3d: St (k; ); = hef (t+T5:h, w

i=1,2, .,n
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Figure 1.3 continued......

STEP 3e:

STEP 3f:

STEP 3g:

STEP 3h:

STEP 3i:

STEP 4:

STEP S:

STEP 6:

STEP 7:

. 439 80 i 845
Sct(k)-hf(t+hwo+ -—l—gl.clsk2 k3 —=k ),

1=12,.,n

Set (kg ); = hefl (t+ 30, w_ - 3ok + 2k, - S2ad 4 1859
%ks Y i=1,2 ., n

Setwy =w ¥ 7k, * ek, * fTodfa %ks

Set wy =w_+ -1_;%‘1 + 1?2?2‘% ggii; 4 s'<97k5 * 's_fzaket

Compute = max(|(w5)i - (w4 )i], i=1,2,.,n)/h

i

Update internal step length:

Compute 6 =084 (e/r )1/4

If r is effectively zero (say r < 10 14), g0 to step 6.
If § < 0.1, replace h by 0.1h.

If § > 4.0, replace h by 4h.

If 0.1 < 8§ < 4.0, replace h by §&h.

return to step 2‘(thc fifth order estimate we has been

rejected).

Ifr> g,

We have r < €, therefore the current flfth order estimate at t is
accepted.
If t =Db, go to step 7.

Copy wg into v,
Set t, equal to Tod
Rcturn to step 2.

The numbers (ws ) yi=1,2, n, . estimate Y; (b), i=1, 2,

n, with local error cstlmatcd to bc less than € (the sum of thc valucs of
r computed for each internal step gives a rough estimate of the global
error over the interval {a,b]).
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internal step sizes are adjusted automatically to keep this numerical error below a
pre-set threshold. This is a very important feature since we wish to be able to
control numerical errors entering computed results so that discrepancies between
results obtained from the exact equations (1.1.3a,b) and our approximations can bc
reliably attributed to the nature of the approximation rather than to carelessness

in handling the equations.®

Questions of efficiency of implementation and speed of computation are
important, but secondary to the objectives here, so no studies have been done to
determine how the RKF45 algorithm performs compared to other types of

algorithms.

Truncation of Systems of Differential Equations

No numerical algorithm can cope with an infinite system of differential
equations, and so the system (1.1.3a,b) had to be truncated. In practic_c, this
truncation is done fairly arbitrarily. As calculations reported in this thesis were
carried out, the sum of the computed probabilities was subtracted from one at
each point where the solution was computed to give an estimate of the residual
' probability ’lost’ due to truncation. If that residual probability became greater

than l.0x10—6, the calculation was repeated with the system of equations

SIn the calculations reported in this thesis, this error threshold was taken to
be 0.00001 throughout on the probabxlmcs Pg (t) Except in rare cases when the
expected number of customers in the system can become very large, this ensures
that the computed first and second moments at least should be accurate to three
or four significant digits. Of course, it must be remembered that this error
estimate threshold is an upper limit, and the actual errors incurred may be very
much smaller than this.
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truncated at a larger dimension. It would not be difficult to implement the
algorithm to permit the dimension of the truncated system to be adjusted from
step to step automatically in order to keep the residual probability below a pre-

set value, but this was not done,

Also, at each step, the residual probability was added into the highest index
probability computed (or pro rata into the two highest index 'n’ probabilities for
the retrial queue) to reduce system truncation errors in computed rﬁoments, and
the buildup of these errors from step to step as the complete specified range of

time was covered.

Truncation of the system to a finite size is justified on the basis that the
equations dropped are effectively all identities, 0 = 0. In order for this to be
true, we must retain equations for all states of the system which have a

probability greater than some criterion of negligibility.

A problem with the retrial system is that for a given utilization of the queue,
the number of equations is roughly twice or more the number which would have
to be included for the simple M/M/1-type queue, since the probabilities are
indexed both by tht; number of customers in the system and by whether the
server is idle or busy. Also, we can have a relatively lightly utilized retrial
system ( P = A/u significantly smaller than 1) but if the retrial rate, vV, is also
small, there can be significant probabilities of finding larger numbers of customers
in the system and so the dimension at which (1.1.3a,b) can bé truncated has to be

correspondingly greater.
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Steady-state probabilities illustrate this problem. The P, for the M/M/1 qucuc
and the ponand plnfor the M/M/1/1 retrial queue normally exhibit a maximum
value for some value of the index n and then decrease with increasing n,
eventually to zero. A relative indication of the necessary dimensions of truncated
systems of the differential equations can be obtained by noting the number of
elements of these sequences of steady-state probabilities with value at or above a

specific threshold e.

e egegs -6
For example, take the "negligibility” threshold € as 1.0 x 10 . When p =
0.5 and ¢ = 1, we find that P < e for n > 19, whereas P, <€ for n > 26 and

p, < € for n > 20. So, while only the first 18 steady-state probabilities for the

In
M/M/1 queue are non-negligible by this criterion, there are 25 + 19 = 44 non-
negligible steady-state probabilities for the corresponding retrial queue. Using

= 0.5 and ¢ = 10, the number of non-negligible steady-state probabilities for the

retrial queue is 86 by this criterion (and is still 18 for the M/M/1 queue, since

the pn depend only on p).

Altcrnativély, as ¢ gets nearer to zero (indicating retrial rates are much
greater than new customer arrival rates), the number of non-negligible pon’s for
the retrial queue becomes similar to the number of non-negligible pn’s for the
- simple M/M/1 queue, and the number of non-negligible P, n’s approaches zero.
For example, when p = 0.5 and ¢ = 0.1, there are 18 non-negligible ponand 10
non-negligible P4 for a total of 28 non-negligible steady-state probabilities for

this retrial queue (compared to the total of 18 for the corresponding simple
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M/M/1 queue).

Of course, for time dependent calculations, the truncated systems may have to
have higher dimensions than indicated here to ensure that at times before a
steady-state is approached, no non-negligible probabilities are excluded from the
calculation. However, this rough analysis gives an indication of the differences in
dimension of the system of differential equations which must be solved in
computing the time-dependent behaviour of the two queues starting with systems

(1.1.3a) and (1.1.3b).

This problem is of significance in computing moments of the distribution, since
errors in high index probabilities (including the ’error’ of neglecting them) are
magnified. Thus, for retrial queues, we will find that it is necessary to truncate
the system of differential equations to be solved numerically at dimensions two or
three or more times the size as would be necessary for a simple M/M/1 queue.

In the calculations reported in this thesis, necessary dimensions for truncations of
the systems (1.1.3a,b) were typically in the range of 50-100 though a few
calculations required handling systems of 130 equations to attain the desired

accuracy.” Details are given in Appendix A.

TAgain, the actual computed results were considered more important than
how fast or efficiently they were computed. Programs were written in FORTRAN
and calculations were carried out on an IBM mainframe using the WATFIV
compiler for convenience. With the numerical error threshold set at 0.00001 over
a step of length At = 0.5, of the order of 0.1 to 1 second of cpu time was
required for integration of systems of equations with dimensions in the 50 - 100
range. On an IBM PC/XT without a numerical coprocessor and using the
Microsoft FORTRAN compiler, execution times for calculations like these would
require of the order of one to ten minutes per step of length At = 0.5. These
numbers are of order of magnitude only since no attempt was made to write
FORTRAN code optimized for execution speed, and since the algorithm will break
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It is noted that there are multi-step methods for the numerical solutions of
systems of differential equations which also permit dynamic step length/error
control (see for example, Algorithm 6.5 in Burden, Faries and Reynolds [1978],
based on a fourth order predictor-corrector approach). These algorithms require a
single-step routine like the Runge-Kutta methods to start them off, ar‘1d they
would be worthwhile evaluating if a search was being made for the most efficient
algorithms. Similarly there are higher order single-step methods (sc'e, for
example, Shanks [1966), who gives §évera1 cighth-order Runge-Kutta methods).
These higher order formulas in principle give greater accuracy for a given step
length, or, more importantly, they allow longer step lengths for given error
tolerances. Higher order formulas are mainly used to avoid unacceptable round-
off error due to the finite precision with which a digital computer stqrcs

numbers,® which grows as the step length gets shorter.

an interval of length At = 0.5 up into the required number of smaller subintervals
to meet the error tolerance. The number of such subintervals required may vary
widely with the value of t for certain functional forms of A(t), u(t), and v(t).

8As distinguished from what we have been calling the numerical error, which
is due to the approximation of the function of interest by a low order polynomial
over small intervals.
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1.4 Closure Approximations for M/M/s Queues

Snafu Law #1: Given any problem containing
n equations, there will be n+1 unknowns.
(1001 Logical Laws..., Peers & Bennett)

Details of the Rothkopf and Oren Closure Method

The rationale behind the use of so-called closure techniques to the
approximation of solutions of infinite systems of differential equations is well
described in Rothkopf and Oren [1979]. The essential feature in applying such a
technique in a queueing context or in any other context is to make one or more
assumptions about the form of the functional relationship between various
quantities with the result that an infinite system of equations can be reduced to

a small number of equations determining a few quantities of direct interest.

We illustrate this approach as applied by Rothkopf and Oren to the M/M/l
queue (with confributions by earlier authors as cited in their paper). Defining
pn(t) as the probability that there will be n customers in the M/M/1/® system
at time t, including any customer in service at that time, we can proceed much as

in section 1.1 above to obtain the equations

d = —_
T po(t) = Apo(t) + Llpl(t)
(1)
d -
T pn(t) = (A + Ll)pn(t) + )\pn_l(t) + upn+l(t)

n =1, 2, 3, ... .

Here, A is the average arrival rate and M the average service rate. In order

to compute any characteristic of the system, such as the mean or the variance of
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the number of customers at time t, it is necessary in principle to solve the
infinite system (1). The difficulties to be encountered have been described in

detail in the preceding section of this thesis.

What Rothkopf and Oren propose is the following. If each of the equations in

(1) is multiplied by n, then all equations summed over n, we get first

e o] d o had ot
Eogptarp, (8= mw Lonep (£) + AL ncp, ,(8) # U Eap, 0t

n=0 n=0 n=0 n=0

With some rearrangement, this can be written as

d
dt

m(t) = A - pf{1 - po(t)} (2a)

[ee]
where m(t) = I npn(t) is the mean number of customers in the system at time t.
n=0
In a similar way, the equations can be multiplied by n2, summed, and using the

. . 2
fact that the variance of the number of customers in the system = v(t) = E(n" ) -

2
m , so that
d - d 2
Ty v(t) = ~3t E(n ) 2m qac ’
we get
gt v(t) = A+ u - up,(t) {2m¢t) + 1} . (2b)

Equations (2a) and (2b) contain three unknown functions: po(t), m(t) and v(t).

There is no obvious way to eliminate one of the three exactly.

Rothkopf and Oren then proposed an approximation to eliminate pO(t) in terms
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of m(t) and v(t), so that equations (2a) and (2b) would become a system of two
differential equations in these two unknown functions only. This involves
introducing a so-called "closure assumption”, in the form of an approximate
relation (or "closure formula") between the three quantities. We will use the

terms closure assumption and closure formula interchangeably.

Rothkopf and Oren noted that the steady-state probabilities for the M/M/1/
system were a geometric distribution, which was a special case of the negative
binomial or Pascal distribution. They noted further that for the Pascal

distribution, one could write

mz/(v - m)
p. = |—=— . (3)

They then adopt this functional relationship to eliminate po(t) from equations (2a)
and (2b).! The choice of this functional relationship is prompted and justified in
part by the resultant equations correctly reproducing the steady-state values of m
and v when the derivatives in (2a,b) are replaced by zeros. However, as Rothkopf
and Oren note, "the key to thc success of a closure method is its closure
assumption, while the test of any such assumption is the empirical usefulness of

the resulting equation.”

The success of the approximation will depend on how close to a negative

binomial distribution the p (t) are over all finite values of t. Intuitively, we
n

1A modification of this formula is given for use in the case that v=m -- this
usually only occurs at the beginning of a calculation when the system is assumed
to be empty so that m(0) = v(0) = 0.



49.

would expect an approach like this to perform most poorly when at least some of

the probabilities, p (t), are changing rapidly with time, since then it is plausible
n

that the deviation from steady-state relationships between these quantities is

likely to be greatest.

Numerical Results

The largest part of Rothkopf and Oren [1979] consists of the presentation and
discussion of various computed results. Their assessment of this closure
approximation as giving an acceptably accurate practical computational method is
generally favorable. However, the results they present are mainly graphical and

so cannot be subjected to detailed quantitative analysis.

A set of standard calculations were performed here, to which corresponding
results for retrial queues will later be compared. For one set of calculations, the
mean arrival and service rates were assumed constant, so that over time, the
closure solutions obtained should describe the transient decay of the system to
steady state. At the other extreme, arrival rates were assumed to have the

functional form
2
At) = 2 {1.1 + sin¢2LE)y . (4)
0 P
where }‘0 is a constant and P represents the period of oscillation of the arrival

rate (taken to be 10 time units throughout this thesis). We will refer to the first

type of calculations as constant parameter calculations, and to the second typc as
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oscillatory parameter calculations. The number *1.1° was used in (4) to avoid A(t)
becoming zero. This secemed to cause numerical algorithm problems. For both

types of calculations, the service rates were held constant in time,

The RKF45 algorithm was used to solve all systems of differential equations
here to ensure that the discrepancies found between the quantities computed from
the effectively exact solutions of the system (1) and those obtained 'by solving
(2a,b) with (3) are due to errors in the closure approximation, and not due in any

significant way to the numerical approximation of the solutions of the equatiohs.

Rothkopf and Oren used the simple forward Euler method for the work
reported in their paper. While the adequacy of this simplest of all algorithms
may not be strenuously questioned for very well-behaved systems of only two
differential equations at the level of accuracy required, it is not necessary to
adopt an algorithm so prone to numerical error, given the power of commonly

accessible computing machinery these days.

For the constant parameter case, graphs depicting the relative errors? in po(t),
m(t) and v(t) respectively as calculated by the closure approximation are given in
Figures 1.4, 1.5, and 1.6. Calculations were done for p = 0.1, 0.3, 0.5, 0.7, 0.9,
and 0.95 (where p = A/p is a measure of the mean utilization of the server) to
compare the accuracy of the closure approximation for queues approaching steady-

state with a range of characteristics. Only the results for the three largest

2Throughout this thesis, errors are always computed as ’approximate - exact’,
and relative errors are that quantity divided by the exact value of the quantity
being considered.
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values of p are graphed to avoid clutter. In all calculations, it was assumed
that the system was empty at t=0 (that is, p0(0)=1, m(0)=0, and v(0)=0) and in all

cases, the closure approximation solution converged to the steady-state solution

o0 = - [e'e] o e——— 0 = p ’
po( ) 1 P, m() , v(®) P (3)

(1 - p)

monotonically or with small oscillations about a monotonically converging path.

As can be seen from Figures 1.4 - 1.6, the relative errors in each of the three
quantities computed with this closure approximation start out at zero, increase in
magnitude to a maximum, and then decrease slowly and in a somewhat oscillatory
fashion to zero. On the scales adopted in the figures, the relative error in v(t)
when P = 0.1 shows up only as a barely noticeable blip near t = 1.5. Relative
errors increase in magnitude with p . For po(t) and m(t), the maximum relative
errors when p = 0.95 would appear to be under 4%, whereas for v(t), this
maximum is nearer to 15%. When g is significantly less than 0.9 or 0.95, these

maximum relative errors are much smaller.

These constant parameter calculations are not difficult. Even when p =095,
the RKF45 algorithm was able to produce a solution to a truncated system of 80

012 using step

equations as in (1) with error estimates in the range 108 to 1
lengths between 0.5 and 1.0. Nevertheless, some fairly significant changes in

values are occurring (for example, when p = 0.95, p0(1.5) = 0.251, a drop of 75%
in value in 1.5 time units, m(10) = 5.62 against m(0) = 0, and v(25) = 53.4 against

v(0)=0, so that over this range, the derivative of v(t) averages more than 2.0). It



52.

is encouraging to see that the much simpler closure approximation does reproducc

these changes rather accurately.

It is more difficult to get an overall impression of the "pattern” of accuracy
of the closure approximation for the oscillatory parameter calculations. Figurcs
1.7a, 1.8a, and 1.9a show the relative errors in po(t), m(t) and v(t) respectively
for po = )\0/11 values of 0.5, 0.7, and 0.9. Now the relative errors gs a function

of t are oscillatory with rather complicated shapes.

It is somewhat disquicting to note that the relative errors for larger valucs of
Po attain rather large magnitudes for certain ranges of values of t. For Py =
0.9 and in the range t = 0 to t = 25, the relative error in pO (t) approaches 0.9
three times (always near the mid-period where A(t) is greatest and so po(t) 18
smallest), and the error seems to be exhibiting an increasing sequence of maxima
like 0.5, 0.7, .... at the beginning of each period (where the value of A(t) is

midway between its greatest and its smallest values).

Similar types of behaviour of the relative errors in m(t) and v(t) are also
observed, but with one important qualification. The extreme values in the
relative error plots are not greatest for the largest values of pO over the range
of values of Po represented in Figures 1.8a and 1.9a. For smaller values of po
like 0.1 and 0.3, the relative error extremes for m(t) and v(t) are smaller than
they are for DO = 0.5. For the values of pO for which calculations were done,
p = 0.5 leads to the greatest extremes in the relative error in m(t) and o, =

0.7 leads to the greatest extremes in the relative error in v(t).
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The reason for this shape of the relative error plots can be seen from Figures
1.76-1.7d for p (1), Figures 1.8b-1.8d for m(t), and Figures 1.9b-1.9d for v(t). In
these figures, exact and approximate valucs are plotted for each of po = 0.5, 0.7,
and 0.9. It is seen that the correspondence between the approximate and exact
curves is not all that bad. Though the gaps bétwccn the two are readily
observable in each instance, in most of these plots the approximate curve tracks

the exact curve rather well.

These quantities are all oscillatory, reflecting the oscillatory mean arrival ratc.
Near the minimum values in each curve, where the graphs reverse direction, the
gaps between the exact and approximate curves widen. As a result, absolute
errors tend to be largest where the values of these quantities are smallest,

leading to larger relative errors in those regions.

What is happening is that the approximation is poorest where the queue is not
only changing rapidly, but where the rates of change of the queue are changing
rapidly (which, as remarked earlier, is precisely where we would expect these
closure techniques to break down since they are based on steady state
relationships). This happens to coincide at timés with regions where thc
quantities being computed attain their minimal absolute values. The instantancous
relative error is thus not a very good indication of the overall accuracy of the

approximation, since its graph will be dominated visually by small regions of

relatively large errors in small quantities.
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Period-Mean Values and Period-Mean Errors

Perhaps‘ a better approach is to get some estimate of the ’average’ relative
error over a single period of oscillation. Using the known values of po(t), m(t)
and v(t) in steps of At = 0.5 forming the basis for the plots in Figures 1.7 - 1.9,
we can apply Simpson’s Rule to estimate the integral of each of these three
quantities and their absolute errors over ’periods’ of length 10 time units, and so
obtain their mean value over that time interval.® Dividing the mean absolute
error over such a period by the mean value of the quantity itself then gives a
relative mean absolute error, which will be more representative (it is hoped) of
the overall discrepancy between the exact and approximate solutibns than are the
point-by-point relative errors. This has been done in-Tablc 1 for each of Py =
0.1, 0.3, 0.5, 0.7, and 0.9, and in each case, for the two rangest =0 to t = 10

and t = 10 to t = 20.

It is worth taking note of several features of the information in Table I.
First, the relative mean absolute errors do seem to reflect the degree of
agreement between the graphs of approximate and exact values of these
quantities. Except for m(t), these relative errors increase with the value of p

as happens in the constant parameter case.

3In effect, we would be using a 21-point Simpson’s formula on an interval of
length 10. When the function sin(21wt/10) is integrated on the interval [0,5]
using points spaced at intervals of 0.5 in width, the error in the integral obtained
is 0.000174 on a value of 3.1830989 or about 0.0055%. While the quantities we¢ arc
trying to integrate above are not simple sine functions, their shape is not so
different that we would expect the Simpson formula to perform drastically poorecr.
It would appear that this approach will produce integrals of adequate accuracy for
our purposes here.
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A good example of the detailed correspondence between the Figures 1.7 - 1.9

and Table 1 occurs for the variance when p_ = 0.9. In Figure 1.9d, it is clear

0
that the two curves are moving apart steadily as t increases. From Table 1, we
see that the relative mean absolute error over the interval [0,10] is 0.1953,

whereas over the interval [10,20] it is 0.2470.

One does not get the same sense from the corresponding plot of the point-by-
point relative error in Figure 1.9a, which consists of a sequence of peaks at about
t =95, 19.5, ... In fact, from Figure 1.9a, one probably gets the opposite
impression since the peak at t = 19.5 has the value 0.457 against a value of 0.493
at t = 9.5, and we tend to perceive peak height as most significant in graphs of
errors. A closer look indicates that while the peak at t = 9.5 is slightly higher
than the peak at t = 19.5, the former peak is also sharper than the latter, and so
the average error over an interval containing the first peak could well be smaller
than the average error over an interval containing the second peak. In order
that Figure 1.9a appear to agree with Table 1, we have to focus on both the
heights and the widths of the peaks in Figure 1.9a. In work dealing with the
oscillating parameter case for the retrial queue below, we will rely heavily on this
relative mean absolute error to indicate the goodness of a particular closure

approximation.

What is most striking about the relative mean absolute errors listed in Table 1
is that they are so small in general. The mean queue length, m(t), seems

particularly well determined by this closure approximation. Errors in v(t) and
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po(t) only become disquietingly large when Py is 0.7 or larger. Because of the
factor ’1.1° in equations (4), this corresponds to a time average ratio of

interarrival to service times of 0.77 or greater.

Also included in Table 1 are values of the relative errors found in computing
mean values of po(t), m(t), and v(t) over 10-unit time periods. These relative
errors cannot be greater than the relative mean absolute errors discussed above,
and in fact, will be equal to those only when the approximation produces
uniformly positive or uniformly negative errors over the period in question. When
actual approximation errors change sign, we find that errors in the computed
mean value of these queue characteristics can become very small. In the casc of
po(t), the relative mean absolute errors over the time intervals [0,10] and [10,20]
are 23% and 38% respectively when po = 0.9, whereas the relative error in the
mean value of po(t) over each of these intervals are only 5% and 7% respectively.
The difference between these two types of error for po(t) are even greater when
po =05.

On the other hand, for v(t) with po = 0.5, 0.7, and 0.9, both types of relative
error are identical because the Rothkopf and Oren closure method consistently
overestimates v(t). Relative errors in computed period-mean values are useful if
the primary interest is to compute such mean values of queue properties.
However, the relative mean absolute error is a more sensitive single number
measure of the overall accuracy of an approximation method here, since it takes
into account all errors with no cancellation between positive and negative errors

in different subintervals of time.
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The influence of the initial state of the system shows up in the differcnéc
between the averages computed in Table | applying to the time interval [0,10]
compared to the time interval [10,20]. It is expected that after a sufficiently
long time has elapsed, all of the properties of the queue will attain a sort of
periodic steady state. Koopman [1972] refers to this periodic solution, with the
statement that it is a consequence of classical theorems that only one solution of
the basic system of differential equations will have the pcriodicity-;)f the mcan
arrival rate and all other solutions will approach this periodic one exponentially
with increase of time. He notes that this periodic solution is analogous to the
steady state solution approached exponentially with increasing time in the
constant parameter case [see Odoni and Roth, 1983]. For 0y = 0.1, this
periodicity is easily observed to six figures or better in the numerical results by
the time t = 15. For other values of po , the graphs demonstrate a tendency
towards establishing such a periodicity, but it has not occurred to similar

precision over the time ranges for which solutions were generated.

Extensions and Other Approaches

Finally, we note that éothkopf and Oren [1979] also present a closure mcthod
for use with simple multiserver queues. In the case of s > 1 servers, they réquirc
expressions for pl(t), pz(t), s ps‘l (t) in terms of m(t) and v(t) in order to
close’ their pair of equations. They compute these probabilities using the
negative binomial distribution, which is no longer quite correct. This means that

the closure equations no longer produce the correct steady state solution in the
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constant parameter case. Calculations indicate that the error due to this problem
is small, and Rothkopf and Oren include a table of corrections to be applied
(which depend on the number of servers and the value of )\/p ). The errors
they observed in the corrected results obtained using their approximation were

apparently of an acceptable magnitude.

Clark [1981] has also considered closure approaches to the multiple server
problem, using what he calls a ’surrogate distribution’. He found thAat his
approach generally was more accurate than the method of Rothkopf and Oren,’
though it required the solution of a system of five differential equations as
opposed to their two. Since this thesis will not deal with the multiple server

retrial queue, it is not necessary here to examine these works in greater detail.



TABLE 1: Period-Mean Values of p.(t), m(t) and v(t) and Their Relative Errors for the

M/M/1 Queue When the %othkopf and Oren Closure Method is Used.

The first column in each triple gives exact mean values over the time intervals indicated.
The sccond column in each triple gives the relative error in the period-mean computed using
values of the quantity given by the Rothkopf and Oren closure method. The third column
in each triple gives the relative mean absolute error in the Rothkopf and Oren
approximation in each case.

time

t
ﬁo interval ——go(t) —-EL—L—‘
-7 - -7
0.1 [0,10] .8927 —7.246X10_.7 1.640x10_: 1271 3.934X10_6 .004351 .1058
(10,20) .8900 1.231x10 1.494x10 1304 4.858x10 .004146 .1549
0.3 (0,10] .6790 -3.194x10:z .001772 '.5965 -.002217 .008117 1.1086
[10,20) 6700 -1.526xX10 .001755 .6162 -.002126 .007849 1.1518
0.5 (0,10] 4677 .003103 .02301 1.7427 -.01787 .03886 4.,9362
(10,20] L4501 .0004911 .02684 1.8373 -.01126 .03665 5.3220
0.7 {0,10) .2722 .03590 1246 4,1337 -.04107 .05356 14.4653
(10,20] .2357 .01114 .1496 4.7874 .03815 .05179 18.9005
0.9 [0,10] .1304 -.05368 .2253 7.9358 -.03627 03627 28.5147
(10,20] .07323 -.06970 .3817 11.3146 -.01401 .01536 55.2801

v(it)

7.231x10" 2
6.350x10

.02674
.02564

L1547
.1607

.2638
.3799

.1953
.2470

.002532

.002411

.03398
.03292

.1547
.1607

.2638
.3799

.1953
.2470

‘65
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Relative Error in p(t) Computed Using Rothkopf and Oren’s Closure
Method for the Sxmple M/M/1 Queue with Coanstant Arrival and

Service Rates.

FIGURE 1.4

The relative error is computed here as (approximate value - exact value)/(exact value),
plotted here for various values of p. The relative error when p = 0.3 is discernable
on the scale above only for small values of t, and that when p = 0.1 is not
distinguishable from the t-axis on this plot. The service rate p is fixed at 4.0/unit
time in each calcultion and the system is assumed empty at t = 0. Details of
calculations to obtain ’exact values’ are given in Appendix A.



61.

0.005

Relative Error in m{t)

_0,04 VTII1T—IIIIITIIlllllIlIlTllllmlIlll1lll]lelllIIIII

0 S 10 15 20

[
h

FIGURE 1.5 Relative Error in m(t) Computed Using Rothkopf and Oren’s Closure
' Method for the Simple M/M/1 Queue with Constant Arrival and

Service Rates.

The relative error is computed here as (approximate value - exact value)/(exact value),
plotted here for various values of the utilization p. The relative error when p = 0.1
shows up only as a slight thickening of the t-axis for small values of t on this plot.
The service rate p is fixed at 4.0/unit time in each calcultion and the system is
assumed empty at t = 0. Because m(0) = 0, the relative error is not defined at t = 0
(but at t = 0, the absolute error in m is zero by definition here). Details of
calculations to obtain ’exact values’ are given in Appendix A.
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FIGURE 1.6 Relative Error in v(t) Computed Using Rothkopf and Oven’s Closure
Method for the Simple M/M/1 Queue with Constant Arrival and
Service Rates.

The relative error is computed here as (approximate value - exact value)/(exact value),
plotted here for various values of the utilization p. The relative error when p = 0.1
is.barely discernable along the t-axis for small values of t on this plot. The service
rate p is fixed at 4.0/unit time in each calcultion and the system is assumed empty at
t = 0. Because v(0) = 0, the relative error is not defined at t = 0 (but at t = 0, the -
absolute error in v is zero by definition here). Details of calculations to obtain ’exact
values’ are given in Appendix A.
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FIGURE 1.7 Comparison of Exact p_(t) and p_(t) Computed Using Rothkopl &

Oren’s Closure Method of the M/M/1 Quecue in the Oscillatory
Parameter Case.

Figurc 1.7a gives the relative crror in the closure approximation po(t) for pgy= 0.5,
0.7, and 0.9. Figures 1.7b,c,d plot the cxact p (t) along with the closure
approximation p, (t) for py = 0.5, 0.7, and 0.9, respectively. In cach case, the plot
of thc approximate p,(t) tends to swing wider at the maxima or minima rclative to
the plot of the exact py(t). Herc the period of oscillation is 10 timc units and the
system is assumed to be cmpty at t = 0 (i.c. Py (0) = 1.0).
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FIGURE 1.8 Comparison of Exact m(t) and m(t) Computed Using Rothkopf &

Oren’s Closure Method of the M/M/1 Queue in the Oscillatory
Parameter Case.

‘Figure 1.8a gives the relative crror in the closurc approximation m(t) for p = 0.5,

0.7, and 0.9. Figurcs 1.8b,c,d plot the cxact m(t) along with the closurc
approximation m(t) for pg = 0.5, 0.7, and 0.9, respectively. At lecast in part becausce
m(t) generally increases with pg, the magnitude of rclative crrors gencrally
decrcases with pg as shown in Figurc 1.8a.  Here the period of oscillation is 10
timc units and the system is assumed to be empty at t = 0 (i.c. m{0) = 0.0).
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Figure 1.9a gives the relative error in the closure approximation v(t) for Pg= 0.5,
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Comparison of Exact v(t) and v(t) Computed Using Rothkopf &

Oren’s Closure Method of the M/M/1 Queue in the Oscillatory
Parameter Case.

0.7, and 0.9. Figures 1.9b,c,d plot the exact v(t) along with the closure

approximation v(t) for p, = 0.5, 0.7, and 0.9, respectively. The approximate v(t)
produces the upper curves throughout (note that the relative errors over the time
range shown in Figure 1.9a are positive). Here the period of oscillation is 10 time

units and the system is assumed to be empty at t = 0 (i.e. v(0) = 0.0).




CHAPTER 2

Closure Techniques for the Time-Dependent Single-Server

Retrial Queue

‘Write that down’, the King said to the
jury, and the jury eagerly wrote down all
three dates on their slates, then added
them up, and reduced the answer to
shillings and pence.

(Alice in Wonderland, Lewis Carroll)

66 .
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2.1 The Basic Equations

Our little party of travellers awakened next
morning refreshed and full of hope.....
(The Wizard of Og, L. Frank Baum)

Retrial Queue Characteristics of Immediate Interest

We wish to do now for the M/M/1/1 retrial queue what was done for the
simple M/M/1 queue in section 1.4. The retrial queue is more complicated and so
the system of differential equations (1.1.3a,b) contains more detail than does the
corresponding system (1.4.1) for the M/M/1 queue. As a result, the variety of

potential closure techniques is much greater for the retrial queue.

The characteristics of the retrial queue of greatest likely interest are:

On(t)

I ™M 8
3

(l)no(t) = Pr(server idle at time t) =

(2) m(t) = mean number of customers in the system at time t, including

any customer in service

[oo] ) [e o]
= z n-pon(t) + X (n+l)pln(t)
n=0 n=0
= mo(t) + ml(t)
(3) v(t) = variance from the mean number of customers in the queue at

time t
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[ee]

® 2 2 2
= L n'p (t) + I (n+t1)°p. (t) - {m(t)}
=0 On n=0 in

: 2
= t + t - t
Z,(t) g, (t) {mct)}
(4)Y0(t) = conditional mean number of customers in the system at timc t
given that the server is idle at that time

mo(t)

HO(‘t)

The quantities m (t), my(t), co(t), cl(t), and so on are defined in section 1.1.
0
The four quantities above are all determined by second or lower order moments of

the probability distribution for the state of the retrial queue.

Derivation of the Basic Equations

The first step in developing these closure techniques is to obtain equations for
the derivatives of the quantities of interest. This is easily done by summing

appropriate multiples of equations (1.1.3a) or (1.1.3b). For example, we have

po'n(t) = -(A + n\))p0n(t) + “pln(t)’- n=20,1,2, ... . (1.1.3)

Summing both sides of this equation over all values of n,n =0, 1, 2, ..., we get
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I p' (t) = -2 p (t) - VI nep (t) + WL p_  (t)
n=o0 917 n=0 0n n=0 On n=0 17
i{; p “J M (t) m (t) M. (t)
dt on 0" 0 1
n=0
or
Ho(t) = —AHO(t) - vmo(t) + le(t) . . (1)

Similarly, we can first multiply equation (1.1.3a) by n on both sides before

summing, to get

e o] oo [oo]

[o] , 2

z n-p0n(t) = -X I n'pon(t) - v Xn pon(t) + U X n-pln(t)
n=0 n=0 n=0 n=0
We notice that

nep, (t) = I {(n+1) - 1}p, (t) = I (n+l)p, (t) - L p,
n=0 n=0 n=0 n=0

= ml (t) - Hl (t) V4

and, since n is independent of t on the left hand side,

00 d e 0]

Lapon(t) =G| & nrpy, (80 = my(t)
Thus, we obtain

' = - - - . 2
mo(t) Amo(t) vco(t) + uml(t) qu(t) (2)

We can proceed in the same way to derive equations for ml (t), m’(t), and so
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on. The derivative of Yo(t) = mO(t)/IIO(t) can be obtained by applying the basic
formula for differentiating a quotient and using (1) and (2). Formulas for the

derivatives of moments through second order are listed in Table 2.

Additional Criteria

The next step is to take sets of one or more equations from Table 2 and
eliminate enough of the quantities they contain using relationships between those
quantities suggested by steady-state formulas so that the resultant system can bc
solved uniquely. These relationships ("closure formulas") can often be constructed
in a number of different ways, and the assessment of their goodness or badness
will ultimately depend on the outcome of test calculations. However, it seems
useful to impose two ground rules on the process to eliminate approximations

which are very likely to fail the computational tests.

(1) Whenever possible, exact relationships are to be used to
eliminate quantities from equations in preference to presumed
approximate relationships based on inspection of the steady state

solution.

Thus, to eliminate Hl(t) in terms of either Ho(t) or mo(t) from equation (1),
we would always use Hl(t) =1- Ho(t), since this relation must always hold for
valid probability distributions. At steady state, it is true that Hl =p = mo /c.

However, we would not consider eliminating I[l(t) from cquation (1) by writing



TABLE 2.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Formulas for Moment Derivatives for the Single
Server Retrial Queue.

-All
0

-Am

Am
0

_}\C
AT

2 (A

p(l -

-V
n0

+ Vv
r]0

+

(TR 2um1 + ull

1 1

HZ. + 2um + A

1

Wm + A + qu + 2umo

U - uHO(Zm + 1) + 2umO

71.
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Hl(t) = mO(t)/c because this would allow the resulting closure equations to have

a solution violating the fundamental relation
= (3)
Ho(t) + Hl(t) 1,

whereas using Hl(t) =1- no(t) would eliminate that possibility. Other
inviolable relations here are
mo(t) + ml(t) = m(t), _ (4)

and

g(t) . (5)

Co(t) + c;l(t)

(2)We will insist that proposed closure methods correctly produce
steady state values as t becomes large in constant parameter

calculations.

This amounts to requiring that when derivatives in the closure cquations-are
replaced by zeros, and. A, p., and vare constants, the resulting system of
algebraic equations give uniquely the correct steady state expressions for the
quantities whose derivatives were originally present. For example, in section 2.3
below, we propose a closure technique for computing Ho(t) and m(t) based on

the two-equation system

Ho(t) —Mlo(t) + qu(t) - vm(t) + \)ml(t)
(6)

m (t) = A - Wi, (t)
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The steady state solution is obtained correctly by replacing the derivatives by
zeros here to get

0= —)\Ho + unl - vym + \)ml ,

The second equation gives immediately

_A_.
m, = ——=0°

I4
or, using 1 - Ho = IIl, we get 1 - HO = p, so that the solution can be

rewritten as HO =1 - p, which is the correct expression for the constant

parameter steady state case. Then from the first equation, we have

1
m=——{—)\]'[0+11]'[1}+ml
Vv
=—1¥{—Ak1—9) + upl + m
\Y 1
I S
= P 1
= cp + p(cp + 1) _ p(c + 1) ,
1 - p I -0

as required. The substitution of the steady state expression for m; in the last
line above is justified by the fact that we will eliminate m, (t) from the system
(6) using steady state relationships to obtain a viable closure method for

computing HO (t) and m(t).
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An example of a system of equations which does not satisfy this criterion is

the three-equation system

Ho(t) = -AHO(t) + qu(t) - vm(t) + \)ml(t),
m'(t) = A - u{1 - Ho(t)} , (7)
vi(t) = A + p - uHO(t){Zm(t) + 1} + 2umy (t)

which might be used as a basis for a closure method for computing Ho(t), m(t)
and v(t). When the derivatives on the left hand side are replaced by zeros, we'

obtain a system of equations which contains no reference to the variance v.

The resultant system can be solved for the correct steady state expressions for

say I m ,and monce I_ =1-1_ andm_, =m - m, are eliminated (no

o o 1 0 1
approximations are used here). But, since the steady state expression for the
variance cannot be determined in this fashion, we would reject this system of

equations as a basis for a closure method for computing Ho(t), m(t) and v(t).

In fact, if one proceeds to.eliminate say HO (v, ml(t), and mo(t) from
equations (7) in terms of Ho(t) and m(t), the transient time-dependent solution of
the system for the constant parameter case is not too bad for HO (t) and m(t).
The solution for v(t) is not at all good, however, and as t increases, v(t) does

not apparently converge to a value anywhere near its actual steady state value.l

1As mentioned earlier, Rothkopf and Oren [1979] did propose a closure
method for multiserver queues which did not converge in the constant paramcter
case to the correct steady state values. However, they were able to devise a
table of approximate numerical corrections, which, when applied to the solutions
produced by their method, did result in correct steady state values. These
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In a small number of test calculations done for five or six methods which
violated either or both of these ground rules,v the numerical results were
invariably unrealistic, with moments negative at times, probabilities significantly
exceeding unity at times, and clear convergence to incorrect steady state values
for increasing values of t in constant parameter calculations. The first rule
above amounts to avoiding use of inexact relationships when viable exact
relationships are available. The second rule amounts to requiring that the
methods proposed be capable of handling the simplest aspect of the simplest type
of time-dependent queue behaviour if we are to consider it seriously for

describing time-dependent queue behaviours in more complicated situations.
Notation

The closure methods examined in this thesis are described in detail in the
following four sections. We categorize them accordihg to the number of equations
involved. For example, methods 1A ana 1B are alternative approaches based on a
single equation. Similarly methods 2A, 2B, 2C, ..., would be alternative approachcs

based on systems of two equations.

numerical corrections were then carried over to variable parameter calculations.

In their case, Rothkopf and Oren were able to trace the source of the errors to
specific assumptions in the underlying probability distribution on which they bascd
their approach. Here, the error in v(t) at steady state is being approached is an
artifact of the numerical algorithm employed to solve the system (7), and so
general correction factors do not exist.
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2.2 One-Equation Closure Methods

Committees of twenty deliberate plenty,
Committees of ten act now and then,
But most jobs are done by committees of one.
(old rhyme quoted by Laurence Peter in
Why Things Go Wrong)

It is possible to devise relatively simple single-equation closure methods for
calculation of either Ho(t) or m(t). Though neither method produces highly
accurate results, it is interesting to note how close their solutions are to the

exact solution when so little detail is included in the computation.

Method 1A (HO_Q)_)

To obtain a single equation for approximating Ho(t), we begin with the first

equation in Table 2,

1
= - - t . 1
Ho(t) AHO(t) + pnl(t) VmO( ) (1)
IIl(t) is replaced here by the exact equivalent, 1 - Ho(t). At stecady state,

= = — 2
m cp c(l HO), (2)

-as seen from equation (1.1.12). Thus, as an approximation, we can write equation

(1) as
Ho(t) = _AHO(t) + u{1 - Ho(t)} - vef{1 - Ho(t)} ,
or, simplifying, as

! = - - . 3
Ho(t) uHO(t) + U A (3)
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There is a certain degree of plausibility to this formula. When the server is
idle, Ho(t) = 1, then HO’(t) = - A, indicating that the probability of the server
being idle will decrease with increasing new customer arrival rate. When the
server is busy, Ho(t) = 0, then HO’(t) = M - A, indicating that HO (t) will tend
to increase if the service completion rate is greater than the new customer
arrival rate. The term - u-HO(t) in equation (3) simply indicates that one cannot
expect the difference in service and arrival rates to lead to high rates of change

in Ho(t) if the system is largely empty ( ]'[O(t) near 1).

One significant deficiency in this formula is that it is independent of the
retrial rate, v(t). In a way, this is what you would eXpect of a formula based
on steady-state relationships. When the number of customers in the system is no
longer changing, then over any given time interval, the number of customers
served (whether they are new customers served the first time they request
service, or old customers who have been attempting to obtain service over a very

long time) must equal the number of new customers arriving in that time interval.

It is difficult to speculate about the effect of this deficiency other than to
say that for very low or for very high retrial rates, the value of HO will be
primarily determined by A and U when the server is not saturated. Under
these conditions, when Vv is very small, the arrival of an orbiting customer is a
rare event and most of the customers seen by the server are first-trial customers.

The system would look much like an M/M/1 queue with no waiting room.



78.

Similartly, when v is very large compared to A, orbiting customers would tend
to be served before the next new customer arrives, again giving something like
the M/M/1 queue with no waiting room and a random delay of onset of service
after the customer arrives. On this basis, we would expect the lack of
dependence of (3) on Vv(t) to be most critical at intermediate values of v(t),
when compared with. A and u . It would be quite straightforward to test this

suggestion by a series of calculations, but that has not been done.

When A and y are constants, equation (3) can be solved easily in closed form

to get

M,(e) = (1 - p) + (N (0) - (1 - p)le ™° | (4)

In particular, if HO(O) = | (that is, if the server 1s initially idle), then this

becomes

Ny(t) = (L - p) + pe”HE | (5)

Figure 2.1a shows plots of Ho(t) against time for IIO (t) computed exactly and
then using equation (5), for the constant parameter case with A =2 and y = 4.
It is seen that equation (5) gives a solution here that decays to the steady state

“value of HO much too fa’st“'witix time. Figure 2.1b gives a plot of the relative
error in Ho(t) computed using (5). While this plot indicates a maximum relative
error of only 18% at t = 1, it should be noted that for these values of. A and 1,
cquation (5) does not represent a solution significantly more accurate numerically

/
that simply defining

HO(O) = 1

Ho(t)=1-—p, t >0 .
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It will be recalled from section 1.4 that maximum relative errors in Ho(t) in
the constant parameter case using Rothkopf and Oren’s closure method and p =
0.5 was significantly below 1%, so equation (5) cannot seriously be considered as

an acceptably accurate approximation.

When A or u vary with time, equation (3) must be solved numerically.
Figure 2.2 is a plot of Ho(t) computed exactly and I[o(t) computed using (3) with
n(t) = 4 throughout and A (t) given by equation (1.4.4) with )\0 =20and P =

10.0. The retrial rate is also taken as oscillatory now, using the formula

_ . 2m(t-1) 5
V(t) = \)0 1.1 + sin (—-——P ) . (6)

The ’t-1° was includcd in the oscillatory part to give the effect of retrial rate

changes lagging new customer arrival rate changes.!

Equation (3) does lead to a solution which reproduces the periodic behaviour of

10ne might attribute this kind of variation in retrial rates to unsuccessful
customers (of which there will be more when the new customer arrival rate is
higher) initially increasing their rate of reapplication for service. Then,
eventually the ones who still don’t succeed in obtaining service will decrease their
rate of retrial out of frustration or exhaustion. Of course, the retrial rate, V(t),
is applied to all customers in orbit -- those who have just entered the system and
those who have been orbiting for some time, and so it represents a kind of
average collective ’enthusiasm’ of all customers in orbit at a particular time.
This is not the place to discuss in greater detail the psychology of unsatisfied
customers, but these remarks underline again the fact that the usefulness in
actual application of all of the computational techniques discussed or used in this
thesis may well be overshadowed by non-mathematical considerations. The main
goal of the work in this thesis is to find viable ways of circumventing the
solution of large systems of first order linear differential equations. This is only
a sub-goal of the much larger goal of being able to predict the behaviour of rcal-
life single server retrial queues.
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the exact solution rather well, but the approximate solution overshoots badly at
the relative extrema of Ho(t). This overshoot causes the approximate Ho(t) to
become slightly negative in this case in the vicinity of the relative minima of
HO (t). The mean rclative error over the time interval [0,10] is 0.336 and over

the time interval [10,20] is 0.347, which is also not very good.

Method 1B ( m(t) )

A second single-variable closure approximation can be obtained from the {Gurth

equation in Table 2,
m'(e) = x - pl{1 - HO(t)} , (7)

to determine m(t). We note that at steady state,

1—H0=Hl=p
and
)t + 1
 plc + 1) _ 5 (¢ ) (8)
m = = -
1 - p Ho

S - m | 9)
1 l-[0 (c + 1 + m) (

which, on substitution into (7) gives the equation

um(t) : (10)
c + 1 + m(t)

m () = X -

As with equation (5) above for I[O(t), cquation (10) leads to a transient time-
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dependent solution in the constant parameter case which converges much faster
than the exact solution to the steady state value of m(t). This can be seen in
Figure 2.3a. Figure 2.3b shows that the maximum relative error is again much

greater than for Rothkopf and Oren’s method applied to the M/M/1 queue.

The results of a calculation based on (10) when the arrival rate is oscillatory
are shown in Figure 2.4. The tracking of the exact graph of m(t) by the solution
of (10) is remarkable, though again the closure approximation ovcrs'hoots on the
bends. The average relative error on the time interval [0,10] is 0.269 and on thc
time interval [10,20] is 0.196. These compare with values of 0.0389 and 0.0367
respectively for the Rothkopf and Oren method applied to the simple M/M/1

queue under similar loads.

For what it’s worth, equation (10) is separable when A , 1, and v are

constants, and can be rewritten as

o 4+ 1 + m

Mc + 1) + (A - wm 9® = 98 - (11)
Integration of both sides gives
m B U(c + lé log Al(c + 1) + (X - Wm - w(0)
A - u (A - W Xc + 1)
= t (12)

For example, when A =2, 1 =4, v =2 and m(0) = 0, this reduces to

B - 2-log(l - g) =t . (13)
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We could regard this as a closure method for computing approximate times at
which m(t) attains particular allowed values in the constant parameter case.
Since it is not a particularly difficult nonlinear equation to solve numerically, it
can also be used as an alternative to equation (10) in computing values of m(t)
for specific numerical values of t. In fact, formula (12) is more efficient to usc
when m(t) is desired for only a few isolated values of t, since the integration of
equation (10) requires determining m(t) for a sequence of values of t between the

initial time and the time of interest.

Neither of these closure approximations would be suitable for serious study ol
the time-dependent behaviour of a single-server retrial queue. However, it. is
noteworthy that the solutions of the approximating single equations mimic the
exact behaviour of the corresponding characteristics of the queue so well, even

when nothing resembling a steady state is occurring.
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FIGURE 2.1 Ily(t) Computed
Using Method 1A
in the Constant

Parameter Case.

Figure 2.1a compares exact
values of Ig(t) for a constant
paramcter calculation (A = 2.0,
u = 4.0) with J4t) computed
using the approximation Mecthod
1A, equation (2.2.5). Both
curves converge quickly to the
steady state value Il5= 0.5.
Figurc 2.1.b is a plot of the
relative error in ' the approximate
Il{t) shown in Figure 2.1a. For
thesc calculations, the system
was assumed initially empty, i.e.,
I40)=10.
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FIGURE 2.2 Comparison of I[(t) Computed Approximately Using Method 1A
With Its Exact Values in the Oscillatory Parameter Case.

The graph of the approximation is the one which swings wider at all local

maxima and minima. The calculation was done with Ag= 2.0, Vo= 20, U =

4.0, and a period of oscillation of 10 time units. Note the small but
disconcerting excursions of the approximation curve below the horizontal axis.
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FIGURE 23 Mean Number of
Customers, m(t), in the Retrial
Queue Computed Using Method 1B
in the Constant Parameter Case.

The lower curve in Figure 2.3a is
the exact m(t) when X = 2.0,

¥ =40,and VvV = 2.0. The
upper curve is m(t) computed
using Mecthod 1B, equation
(2.2.10).

Figurc 2.3b shows the corres-
ponding relative error in this
approximation m(t). The closure
approximation estimate of m(t)
approaches the steady state value
of 2.0 much too fast. In these
calculations, it was assumed that
the system was initially empty,
i.c. m(0) = 0.
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FIGURE 2.4 Mean Number of Customers, m(t), in the Retrial Queue Computed
Using Method 1B in the Oscillatory Parameter Case.

For the curves plotted here, A, = 2.0, u(t) =4.0, vg = 2.0, and the
period of oscillation is 10 time units. Initially, the system is empty, i.e.,

m(0) = 0.0 .
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2.3 Two-Equation Closure Methods: JO and m

'I should like to buy an egg please,’ she said
timidly. 'How do you sell them?’

Fivepence farthing for one -- two pence for
two,’ the sheep replied.

'Then two are cheaper than one?’ Alice said in
a surprised tone, taking out her purse.
'Only you must eat them both, if you buy two,

said the Sheep.
[Through the Looking Glass, Lewis Carroll]

Methods 2A and 2B (HO (t) and m(t))
The first and fourth equations in Table 2 can be used as the basis of a much
more accurate closure approximation than those examined for retrial queues in the

previous section. We have

Ho(t) = -AHO(t) + ynl (t) - vm(t) + \)ml(t) ,
(1)
m'(t) = X - ull,(¢t)
In order to turn these equations into a system involving just Ho(t) and m(t), it is

necessary to eliminate Hl(t) and m(t).

As before, we have the exact relation Hl(t) =1- Ho(t). However, for

ml(t) it is necessary to resort to some sort of approximation. At steady state,

we have
m p(cp + 1) , (2)
1
1 - p
whereas
m=lc* 1) 5 o, (I, = p) . (3)
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We would like to express m, at steady state in terms of both m and HO , since
then account of the values of both quantities will be taken in computing H(;(t).

Just by inspection, we note that

plc + 1) . _cp + 1 R T ()

1 1 - p c + 1 c + 1

This formula reflects the type of relationship expected between changes in m,
and corresponding changes in m and in nl . As m increases, we expect both of
its components, m, and m,, to increase since in this situation there would be

larger numbers of customers present when the server is busy as well as when the

server is idle. Also, m_ is the component of m corresponding to the server

1
being busy. As Hl increases, the proportion of the time the server is busy is

larger and so the component ml is expected to reflect a larger fraction of m.

A second obvious approach is simply to replace p by Hl everywhere in (2)

(or 1 - p by HO) to obtain the closure formula
Hl (cHl + 1)

m, = , (5)
H0

which effectively expresses m_ in terms of IIO only. Again, this formula has

1
qualitative plausibility since it expresses the fact that, for reasons cited just
above, m will tend to increase directly (though not necessarily in strict direct

proportion) with increases in Hl and inversely with increases in HO

We will have a problem here if IIO (t) attains the value zero. However, in that
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case all p0n(t), n=20,1,2,.., must be zero, and so m, (t) is zero and we have
that ml(t) = m(t). It is unlikely that HO (t) will vanish except when the system
is started with the server assumed busy (then HO(O) = 0). However, it is likely
that this proposed closure formula will be at its worst when Ho(t) gets closer to

ZCYO0.

Adopting (4)Aas the relationship between ml(t), Hl(t) and m(t) at all times in

equations (1) leads to method ’2A’, say, and (5) leads to method 2B’.

Numerical Performance of Methods 2A and 2B

A set of test calculations were done using (1) with method 2A and with
method 2B in the constant parameter case with A =2, uy =4,and v = 2.
Relative errors are plotted against time in Figures 2.5a and 2.5b for each of these
two options. The maximum relative error in Ho(t) in this example is around 4%
for both methods. The maximum relative error in m(t) is around 10% for both
methods. It appears that the 2B method is slightly better in this constant

parameter case than is the 2A method, though the difference is very slight.

A corresponding set of calculations was done using these two closure methods

in the oscillatory parameter case with )\0 =2 and v, = 2, leading to the relative

0
error plots in Figures 2.6a and 2.6b. The oscillation period here, as usual, is ten
time units with maximum arrival rates occurring at t = 2.5, 12.5, ..., and

minimum arrival rates occurring at t = 7.5, 17.5, ..... The 2A-method gives Ho(t)

with relative errors oscillating between roughly +0.1 and -0.1, which is comparable
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to the relative errors in po(t) computed using Rothkopf and Oren’s approach (sec
Figure 1.7a). The relative errors in HO (t) computed using the 2B-method here

oscillated between + 0.2 and -0.2 roughly.

On the other hand, relative errors in m(t) as computed using the 2A-method
vary between 0 ;cmd 0.6 (except for an initial region where the errors in m(t) arc
negativel), whereas the 2B-method results in relative errors in m(t) lying in the
much narrower range of -0.2 to +0.1 . Keep in mind that magnitudés of relative
errors can be somewhat misleading, particularly where the quantity under study

has rather small numerical magnitudes.

Method 2C ( Ho(t) and m(t))

What is more interesting about the two sets of Figures, 2.5 and 2.6, is that
where the 2A-method results in a positive and maximal error, the 2B-method
roughly gives a negative and minimal error. This strongly suggests that an
intermediate method ’2C’ should prove even more accurate than either of these
two.

For any one of the exact solutions we have for bparticular téSt cases, we could
construct a combination of (4) and (5) to minimize in some sense the errors in
the solution produced by the hybrid method ’2C’. However, here we will simply

test the potential value of such a hybrid closure method by quite arbitrarily

IThroughout, errors have always been computed as 'approximate - exact’, and
relative errors are this quantity divided by the exact value.
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adopting an equal mix of the two approximations above, and for method 2C simply
writing 2

+ 1
cll,(t) + 1 Hl(t){cﬂl(t) }

m(t) + . (6)
c + 1 HO(t)

N~

ml(t) =

Constant Parameter Calculations Using Method 2C

Straightforward application of (6) in the constant parameter calculations done
to produce Figures 2.5a,b indicates the maximum relative error in Ho(t) has been
reduced to something like 0.013 and in m(t) to something like 0.04. This

represents a decrease in the maximum relative error by factors of three roughly.

A more extended series of calculations was carried out using this method 2C.
With V fixed at 2.0 and 1 at 4.0, calculations were run for A =04, 1.2, 2.0,
2.8, 3.6, and 3.8 (corresponding to p = 0.1, 0.3, 0.5, 0.7, 0.9, and 0.95) in the
constant parameter case. Then, with J fixed at 4.0 and A fixed at 2.0, constant
parameter calculations were run for Vv = 10, 4, 2, 1, 0.4, and 0.2 (corresponding
toc=0.2,05,1, 2, 5, and 10 respectively). Plots of the relative errors in
IIO (t) for each of these values of X appear in Figure 2.7a and for each of these
values of V in Figure 2.7b. Similar plots of the relative error in m(t) are given

in Figures 2.8a and 2.8b.

2The value of varying the way simple closure formulas are *mixed’ is
considered at greater length in section 2.4 .
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There is nothing very complicated about these plots. Generally, the maximum
relative errors increase in magnitude for increasing A and for decreasing v for
both HO(t) and m(t). Also, the usually observed decrease in relative error as t
gets large takes longer to reach the vicinity of zero for those calculations
resulting in larger peaks in the relative error, mainly because this decrease has

farther to go and not because it is remarkably slower.

The other main thing to note is t'hat over this fairly wide range of parameter
values, the relative errors do not become unreasonably large. In the worst cascs
shown, they peak in the vicinity of 0.10, wherea:s in the application of Rothkopfl
and Oren’s method to the simple M/M/1 queue, these maximal relative errors were
more in the vicinity of 0.04, as seen in Figures 1.4 and 1.5 . A simple direct
comparison of Figures 2.7 and 2.8 with Figures 1.4 and 1.5 is not easy, since the
relative errors found here for the retrial queue calculations are quite sensitive to

the retrial rate -- much more so for m(t) than for HO (t). The current method

appears viable over a wide range of operational conditions for the retrial queue.

It becomes quite difficult computationally to obtain exact solutions when A or
v are very large. For example, for the calculation with v =10, A =2,and y =
4, the exact calculation of the pgn(t) from which HO(t) and m(t) were computed
in half-integer steps over the time range t = 0 to t = 25.5 required just over
10,000 evaluations of the derivative vector and about 25 seconds of computer
processor time. On the other hand, the closure method required under 2000
derivative evaluations and less than 0.4 seconds of computer processor time to

obtain the approximate values of Ho(t) and m(t) at these points. As mentioned
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before, no rigorous attempt was made to optimize any of the programs developed
for these calculations and so the actual amounts of processor time required arc

not significant. But, what is significant is that at a cost of incurring relatively

small errors, this closure approximation in the case cited reduced the computing

time required by a factor of 60. For most queue parameter value combinations,

such a dramatic reduction in computing time would not be observed, yet the

reductions are still significant.3

Oscillatory Parameter Calculations Using Method 2C

A corresponding series of calculations was carried out using this method in the
oscillatory parameter case. Calculations were done with U(t) = 4, \)0 = 2, and
)\0 =04, 1.2, 2.0, 2.8 and 3.6 (corresponding to pO = 0.1, 0.3, 0.5, 0.7, and 0.9,

respectively). Another set was done where U(t) = 4, >‘0 = 2, and \)0 varied

over the six values 10, 4, 2, 1, 0.4, and 0.2.

No calculations were done with )\0 = 3.8 in the oscillatory parameter case,
since the term ’1.1’ in equation (1.4.4) results in an average arrival rate of
approximately 4.2 over a period of oscillation. This exceeds the average service
rate of 4.0 over each period, and so the system is divergent. In fact, with ,)\0 =
3.6, the time-average arrival rate is 3.96, corresponding to a timc-averagcd

utilization of DO = 0.99, which is a system very near saturation. Since our

3In general, exact calculations become very costly for both large values of A
(near yu) and large values of v. Large values of A require system truncation at
large dimensions for acceptable accuracy. Large values of v lead the RKF45
algorithm to use very short internal step lengths, for reasons which are not clear,
and so calculations require large numbers of derivative evaluations per time increment.
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calculations were limited to the first 2-1/2 periods, and we start with an empty
system, we do not have to deal with the large mean queue lengths that would

occur by the time this system reaches the equilibrium periodic state.

In Figure 2.9a are plotted exact values of HO (t) against time, giving an
indication of the nature of the variation of this quantity with time in the
oscillatory parameter case. It is seen that the influence of the initial state herc
is more pronounced as po increases. Also, the regions of maximal ;/aluc of IIO(t)
become increasingly sharper peaks as po increases, whereas the troughs becomé
wider. Remember that largé values of IIO (t) correspond to less customers in the
system. The wide smooth troughs (compared to the sharp peaks) are likely due to
the more uniform utilization of the server because of the increased effective
retrial rate, nv(t), when the number of customers present is larger. It would be
interesting to repeat these calculations using an oscillatory service rate (eithcf
in-step with the arrival rate or with a slight delay relative to the oscillating

arrival rate).

In Figure 2.9b the relative error in Ho(t) as computed using this hybrid
closure formula is plotted against t for pO = 0.1, 0.3, 0.5, 0.7, and 0.9 . The
higher values of po lead to wider swings in this plot of relative error. On the
scale used, relative errors in I[O(t) when Py = 0.1 show up as a periodic
thickening of the t-axis only. A plot of the exact and approximate Ho(t) against
time is given in Figure 2.9c. The closure approach does not produce as wide

swings from minimum to maximum values of Ho(t) around t = 4, 14, 24, ... units.
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The plots in Figure 2.9c give the impression that the closure approach Ho(t) is
decaying to the periodic steady state more quickly than the exactly computed
HO (t). This pattern of error was also noted for the one-variable closure methods

examined in the preceding section.

Relative mean absolute errors are listed in Table 3a for these calculations.
They too increase sharply for increasing po as well as for in.crcasing time at
each value of Py However, this increase in the relative mean absoiutc errors is
again due at least partly to the decreasing size with time of the quantity to
which the mean absolute errors are being compared, since. the mean absolute

errors appear to decrease with time.

Figures 2.10a-d deal with the computation of m(t) in the oscillatory parameter
case. Figure 2.10a shows m(t) against time for OO = 0.1, 0.3, 0.5, 0.7, and 0.9.

For p, = 0.1, 0.3, and 0.5, the periodic steady state secems to be established very

0
quickly, and there is little significant difference between successive periods of
variation from the beginning. A more quantitative indication of this is given by

the mean values of m(t) over the first two ten-unit time intervals, listed in Tablc

3a.

For Py = 0.7 and 0.9, the local maxima and minima of m(t) are still increasing
very markedly after two such periods, and by comparison with stecady state valucs
of m computed using p = l.lpo and ¢ = 1.1, we would expect the periodic
steady state will not be established until perhaps twenty or more additional

periods of ten time units have elapsed. By that time, m(t) will be oscillating
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around a mean value of something in excess of 200 when 00= 0.9.4

In Figure 2.10b is compared m(t) computed exactly when using this closure
method with 7\0 = 3.6. The approximate m(t) tracks the exact m(t) very well,
giving an estimate of the exact m(t) which is slightly too large in this case over
the time interval considered. At least over the first 2-1/2 periods, there is no
sign of the accuracy of the approximation deteriorating. The largest gaps occur
in the vicinity of the local maxima of m(t), which occur att = 5, 15, 25, ....
When t=5, the approximation error is 1.442 (with m(5) = 15.167, this gives a
relative error of 0.095), when t = 15, the approximation error is 1.515
(corresponding to a relative error of 0.065 since m(15) = 23.168), and when t = 25,
the approximation error is 1.308 (corresponding to a relative error of 0.045, since

m(25) = 29.145).

It is seen from Table 3a that po = 0.9 leads to the greatest mean absolute
errors in m(t) over all of the test calculations represented in Table 3a, though
not the greatest relative mean absolute errors because the mean values of m(t)
over one period are much greater when po = 0.9 than for any of the other

values of o for which calculations were done here.

4We can compare the period-averaged values of I, and m given in Tablc
3a with the corresponding steady-state values of I, and m computed using p =
1.10p0 and ¢ = 1.1 . For Il these latter are 0.89, 0.67, 0.45, 0.23 and 0.01,
respectively, for pp = 0.1, 0.3, 0.5, 0.7 and 0.9 . For m, the corresponding
steady-state values are 0.2596, 1.034, 2.567, 7.030, and 207.9 . The period-
averaged values of [[,(t) are similar to the steady state values obtained when p
and c are period-averaged in those cases when pp is small enough for our
calculations to give an apparent periodic steady state. For m(t), the similarity
between the early time period-averages and steady-state values computed using
mean values of P and c is less obvious from the data in Table 3a.
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Figures 2.10c and 2.10d illustrate variations of relative errors in values of m(t)
computed using this closure method. Plots of these relative errors for the cases
po = 0.7 and 0.9 were done separately in Figure 2.10d to allow adoption of a
larger scale and to make it easier to trace the rather complicated curves than
would have been possible if all five relative error curves in these two figures had
been plotted together. It is noteworthy that the local maxima in these relative
error plots quite clearly decrease in value as t increases (though the magnitude of

the local minima do increase in some cases shown -- the )\0 = 1.2 and >\0 =20

cases being examples).

It would be interesting, though potentially very expensive computationally, to
push these comparisons between exact and approximate for, say, >\0 = 2.8, to
much greater values of t to determine if these oscillatory relative errors tend to
a mean of zero over a complete period of oscillation, with the extremes of the
relative error over such a period tending to zero as well. In Figure 2.10d, there
are two swings of the relative error in m(t) from relative maximum to relative
minimum. The difference between these two successive pairs of extrema are 0.982

and 0.969 respectively, perhaps indicating a trend.

One other feature of Figures 2.10¢c and 2.10d is the complexity of these
relative error curves. They are by no means primarily simple sine curves. This
complexity seems to repeat itself each period though some smoothing out of
irregularities is noticeable on comparing the portions of the curves in the sccond

full period to their parts in the first full period. This complexity seems to be a
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feature of relative error plots.

As mentioned earlier, a second series of oscillatory parameter calculations was
carried out, keeping )\0 at 2.0, p(t) constant at 4.0, and considering the values
Vo = 10, 4, 2, 1, 0.4, and 0.2 . These calculations were done to assess the

accuracy of this closure method when the mean retrial rate changed relative to

new customer arrival rates and service rates.

While the steady state value of Ho does not depend upon the retrial rate for
reasons already given, Ho(t) does show some variation with v (t) in the
oscillatory parameter case, as illustrated in Figure 2.11a. The server is more
likely to be idle if orbiting customers attempt only rarely to obtain service than
if they do so relatively frequently. The degree to which IIO(t) is affected by
varying v, is not as great as when )_\0 is varied. ]'[O(t) is much more sensitive
to the rate at which new customers enter the system than to the rate at which
unsuccessful customers reapply for service. Figure 2.11b shows the variatibn of
the relative error in the approximate Ho(t) computed using the current closurc
method for the sequence of values of \)0 considered. Figure 2.11c compares the
approximate Ho(t) with its exact counterpart when \)0 = 10. The worst
correspondence between- the two occurs in the vicinity of the local minirr;a of
IIO (t) wﬁich tends to magnify local maxima of relative errors. The closure
method gives local minima in Ho(t) which are somewhat shallower, broader, and

shifted compared to those of the exact Ho(t).
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Corresponding results for m(t) computed for this sequence of values of \)0 arc
depicted in Figures 2.12a-c. Other than the observation that relative errors in

the approximate m(t) for the smaller values of V. show very weak oscillatory

0

behaviour as a function of time, these figures require little discussion.

Relative mean absolute errors are listed in Table 3b for this series of
oscillatory parameter calculations corresponding to various retrial rates. The
interpretation of these numbers corresponds to that applying to Table 3a, and thc

discussion will not be repeated.’

~The relative mean absolute errors given in Tables 3a and 3b for oscillatory

parameter calculations done using this closure method can be compared with their
counterparts for po(t) and m(t) in Table 1 where the Rothkopf and Oren method
has been applied to the simple M/M/1 queue. Generally the values in Table 1 are
srﬁa-llcr than the corresponding ones in Tables 3a and 3b, in some cases by large
factors. The relative mean absolute errors for m(t) when po = 0.1 are smaller in
Table I by a factor of near 50 than those in Table 3a. However, in this instance,
the relative mean absolute errors in m(t) from Table 3a are still under 2% when
p0= 0.1, and so this large difference in accuracy is really the difference between
an exceedingly accurate approximation and an acceptably accurate approximation.
Where relative mean absolute errors become larger, this retrial queue closure

method gives results which do not exceed the numbers in Table 1 by more than a

SFor the calculations represented in Table 3b, the period-averaged value of p
is 0.55. It would be very interesting to determine if for sufficiently large values
of t, the period-averaged value of Iy (t) approached Iy = 1 - p = 0.45. There
is some support for expecting such a trend from the data in Table 3b, though the
data given apply only to the first two full periods of oscillation,
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factor of two, and in most cases, the correspondence between the relative mean

absolute errors in the two sets of calculations is much better.

Computation of Period-Averages of Ho(t) and m(t)

Before leaving discussion of this two-variable closure method, we note the
comparison of exact and approximate period-averaged values of Ho(t) and m(t)
given in Tables 4a and 4b. Exact and approximate values of Ho(t) énd m(t) were
computed for integer and half-integer values of t. The period-averages were
obtaincg from these equally time-spaced values using Simpson’s rule. In a
footnote in section 1.4 above, we have explained why we believe that this
approach leads to no significant error in the numerical integration step, so that
discrepancies between period-averages of exact quantities and period-averages of
their approximations computed using this closure method are effectively totally

attributable to the closure approximation.

It is seen from Tables 4a and 4b that these period averages can be computed
very accurately from the closure method results. The relative error in the mean
of Ho(t) is far below 1% for most of the test values of)\o and \)0 and rises
to 2.5% in the first ten-unit time period when \)0 = 0.2 and 4.3% in the first
such period when 00 = 0.9. These cases are near the computationally most
difficult end of the range of values A and v may have. The relative errors in
the period average of m(t) are quite uniform over the set of computations for
various values of Vo being in the 8% - 10% range for the first ten-unit time

period, and in the 6% - 10% range for the second such period. With VO fixed at



101.

2.0, the relative errors in the period averaged m(t) vary with }\0 from a low of

just under 1% when Py = 0.1, to a 6% - 9% range when P, = 0.5, 0.7, and 0.9 .

In both Tables 4a and 4b, the relative errors in the period averages of m(t)
generally are smaller in the second ten-unit time period than in the first. This
occurs in part because these averages are increasing in successive periods as the
system evolves from its initial empty state to its eventual periodic steady state.
The absolute errors are also given in these tables and are seen to bc;, relatively
unchanged in the two periods for which numbers were obtained and in most cases
slightly larger in the second period compared to the first. The same trend in
relative errors is not observed for the period averages of Ho(t), which generally

decrease slowly through successive periods.
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TABLE 3a Exact Period-Mean Values of II,(t) and m(t) and Mean
Absolute and Relative Mean Absolute Errors When These
Quantities are Computed Using Closure Method 2C for Various
Values of po .

The closure approximation values of Mo(t) and m(t) on which these numbers
arc bascd werce calculated using Mcthod 2C, equations (2.3.1) and (2.3.6).

The first column gives the value of pgy. The sccond gives the time interval
to which thc computed mcan valucs apply. The next two columns give the
cxact mecan values of I4(t) and m(t) respectively over these time intervals,
the ncxt two give the mcan absolute crrors in the closure approximation
cstimatc of thesc quantitics over the indicated time interval (computed as
intcgratcd absolute crrors divided by the interval length), and the last two
columns give the corresponding rclative mcan absolute crrors (computed as
thc mcan absolute error divided by the mcan valuc of the quantity in
qucstion).

Exact Mcan Mcan Absolutc Rclative Mcan
Valuc Error . Absolutc Error

°y (Jlo) (m) (HO) (m) (HO) (m)
0.1 (0,10]} .8930 .1509 .0005177 .002962 .000579 .01962
[10,20] .8900 .1571 .0004485 .002699 .000504 .01718
0.3 [0,10] .6840 .8979 .007470 .03718 .01092 .04141
{10,20] .6701 .9789 .008760 .03943 .01307 .04028
0.5 (0,10] .4969 2.7446 .02868 .2226 .05771 .08112
[10,20] .45595 3.4260 .02946 .2257 .06461 . 06588
0.7 [0,10] .3560 5.9320 .05283 .5610 .1484 .09457
- [10,20] .2799 9.0347 .05231 .5591 .1869 .06189
0.9 {0,10] .2638 10.1175 .06480 .8653 .2457 . 08552
[10,20] L1717 18.0434 .05733 1.0238 .3340 .05674
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TABLE 3b Exact Period-Mean Values of II;(t) and m(t) and Mean
Absolute and Relative Mean Absolute Errors When These
Quantities are Computed Using Closure Method 2C for Various

Values of ¢ or Vv _.
0 o)

The closurc approximation valucs of IIo(t) and m(t) on which thcse numbcers
arc bascd were calculated using Mcthod 2C, equations (2.3.1) and (2.3.6).

The first column gives the value of Vg, the mean retrial rate,and the sccond
column gives the valuc of ¢ o= A/ vy The third column gives the time
intcrval to which the computed mcan values apply. The next two columns
give the exact mean values of Ig(t) and m(t) respectively over these time
intcrvals, the next two give the mean absolute errors in the closurc
approximation estimatc of thcse quantities over the indicated time interval
(computed as integrated absolute errors divided by the interval length), and
thc last two columns give the corrcsponding relative mean absolute crrors
(computed as the mcan absolute error divided by the mcan value of the
quantity in quecstion).

Exact Mcan Mecan Absolutc Rclative Mcan
Valuc Error Absolutc Error
\)0 <, (HO) (m) (HO) (m) (HO) {m)

10.0 0.2 {0,10] .4734 1.9893 | -.002197 .1648 | .08629  .1427
(10,20] .4505 2.1655 | —-.0004056 .1346 | .09539  .1285

4.0 0.5 (0,10] .4821  2.3078 | —.002023 .1852 | .06878 .1075
{10,20] .4519 2.6483 | -.0008732 .1459 | .07753  .09209

2.0 1.0 (0,10} 4969  2.7446 .00006752 .2224 | .05771  .08112
(10,20] .4558  3.4260 | -.001340 .1992 | .06461  .06588

1.0 2.0 [0,10] .5230 3.3794 .005831 .2816 | .05080 .08332
(10,20) 4676  4.7900 | -.001536 .3062 | .05807 .06392

0.4 5.0 (0,10] 5714  4.3977 .008987 .4167 | .04722 .09476
[10,20] .5032 7.5169 .0002891 .5898 | .05478 .07846

0.2 10.0 {0,10] .6088  5.1257 .01527 .5568 | .04565  .1086
{10,20] 5434 9.8624 .005137 .9539 | .05165 .09672




TABLE 4a Period Averages of II(t) and m(t) for Various New Customer

Arrival Rates, Based on Method 2C.

This tablc gives the exact period-averages of  (t) and m(t) (third column),
the corrcsponding averages of the samc quantities calculated using the two-
cquation closure approximation *C’ (fourth column), and the actual errors
(fifth column) and errors rclative to the cxact values of thesc approximate
values (sixth column) for various values of pg. For these calculations, v

was fixed at 2.0, and p(t) was constant in time with value 4.0 . The sce§nd
column indicates the time interval over which the averages were computed,
and reprcsent complete periods of oscillation in the new customer arrival ratc
and retrial rate.

104.

Eo(t : Exact Approximatec Absolute Error ~ Relative Error
Mcan Mcan in Mcan in Mcan
Po
0.1 [0,10] .8930 .8930 .00001828 .00002047
[10,20] .8900 .8900 -.00000025 -.000000281
0.3 [0,10] .6840 .6842 .0001832 .0002678
[10,20] .6701 .6713 .001154 .001722
0.5 (0,10)] .4969 .4970 .00006752 .0001359
[10,20] .45595 .45461 -.001340 -.002938
0.7 [0,10] .3560 .3596 .003644 .01024
[(10,20] .2799 .2757 -.004167 -.01489
0.9 {0,10]}] .2638 .2752 .01144 .043355
[10,20)] <1717 .1708 -.0008418 -.004904
m(t) :
p0
0.1 {0,10) .1509 .1521.- .001120 .007419
(10,20] .1571 .1585 .001488 .009475
0.3 [0,10] .8979 .9284 .03057 .03405
{10,20] .9789 1.0101 .03118 .03185
0.5 {0,10] 2.744¢6 2.9671 .2224 .08104
(10,20] 3.4260 3.6252 .1992 .05813
0.7 {0,10] 5.9320 6.4930 .5572 .09457
[10,20] 9.0347 9.59196 .5610 .06168
0.9 (0,10] 10.1175 10.9828 .8653 .08552
{10,20] 18.0434 19.0672 1.0238 .05674
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TABLE 4b Period Averages of II.(t) and m(t) for Various Retrial Rates
for the Single-Server ?{etrlal Queue, Based on Method 2C.

This tablc gives the exact period-averages of llg(t) and m(t) (fourth column),
the corresponding averages of the same quantities calculated using the two-
cquation closure approximation 'C’ (fifth column), and the actual crrors (sixth
column) and crrors relative to the exact values of these approximate valucs
(seventh column) for various values of v, the mcan rctrial ratc for orbiting
customers. For these calculations, Ay was fixed at 2.0, and p(t) was
constant in timc¢ with value 4.0 . The third column indicates the time
intcrval over which the averages were computed, which comprise complete
periods of oscillation in the ncw customer arrival rate and retrial rate. The
sccond column gives cg = Ao/ Vo.

I (t): Exact Approximatc Absolutc Error Relative Error
0 Mcan Mean in Mcan in Mcan
Yo ‘o0
10.0 0.2 {O 10 .4734 .4711 -.002197 -.004640
{10,20 .4505 .4501 -.0004056 -.0009004
4.0 0.5 {0,10 .4821 .4801 -.002023 -.004195
[10 .4519 .4510 -.0008732 -.001932
2.0 1.0 {0 10 .4969 .4970 .0006753 .0001359
[10,20 .4559 .4546 -.001340 -.002915
1.0 2.0 {0,10 .5230 .5262 .005831 .01121
0 .4676 .4661 -.001536 -.003284
0.4 5.0 {0,10 .5714 .5804 .008987 .01573
(10 .5032 .5035 .0002891 .000574¢6
0.2 10.0 0,10 .6088 .6241 .01527 .02508
O 20 .5434 .5485 .005137 .009453
m(t)
\)0 4
10.0 0.2 0,10 1.9893 2.1541 .1648 .08285%
v . [10,20 2.1655 2.3001 .1346 .06218
4.0 0.5 0,10 2.3078 2.4930 .1852 .08025
(10,20 2.6483 2.7942 .1459 .05508
2.0 1.0 0,10 2.7446 2.9671 .2224 .08104
0 20 3.4260 3.6252 .1992 .05813
1.0 2.0 0,10 3.3794 3.6609 .2816 .08332
0,20 4.7900 5.0962 .3062 .06392
0.4 5.0 0,10 4.,.3977 4.8145 .4167 .09476
0,20 7.5169 8.1067 .5898 .07846
0.2 10.0 0,10 5.1257 5.6826 .5568 .1086
0,20 9.8624 10.8164 .9539 .09672
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FIGURE 2.5 Relative Errors in
II5(t) and m(t) When Computed

Using a Two-Equation Closure
Approximation With Basic Methods
’A’ and B’ in the Constant

Parameter Case.

Figurc 2.5a results from a
calculation using equation (2.3.4) to
eliminate m; (t) (the so-called
method ’A’), whereas Figure 2.5b
results from a calculation using
equation (2.3.5) (the so-called
method 'B’). What is notcworthy
here is not so much the magnitudes
of the relative errors as the fact
that the two figures are very
nearly reflections of each other in

the t-axis.

This observation

suggests the hybrid method 'C’
described in section 2.3 .

Calculations here correspond to

A

= 2.0,

p =40,and v =20.
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FIGURE 2.6 Relative Errors in
IIo (t) and m(t) When Computed

Using a Two-Equation Closure
Approximation With Basic Methods
’A’ and ’B’ in the Oscillatory
Parameter Case.

These two figures are the
oscillatory parameter counterparts
of Figures 2.5a and 2.5b,
corresponding to A\, = 2.0, vo= 2.0
and u(t) = 4.0. Becausc these
relative error curves oscillate, it is
not so easy to sce at a glance that
those in Figure 2.6a go through
their maximal and minimal values in
the regions where those in Figure
2.6b go through their minimal and
maximal values respectively.
However, comparison of the
t-coordinates of these local extrcma
indicates that this correspondence
in their locations is virtually exact.
The shapes of the corresponding
curves here are not as ncarly
mirror images as in Figures 2.5a
and 2.5b. However, the overall
range in values of relative errors
observed for each quantity is not
much different between Figure 2.6a
and Figure 2.6b if one ignores the
first five or so units of time. It is
also noteworthy that the maximum
magnitudes of relative errors in
this oscillatory parameter case are
two to six times those obscrved for
the corresponding constant
paramecter cases.
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FIGURE 2.7 Relative Errors in
My (t) Using the Two-Equation

Closure Method ’C’ in the Constant
Parameter Case With Various

Arrival and Retrial Rates.

Calculations represented in Figure
2.7a wcre done with 1 (t) = 4.0 and
V(t) = 2.0 in all cases, with A (t)
taking on the values 0.4, 1.2, 2.0,
2.8, 3.6, and 3.8 in sequence.
Calculations represented in Figurc
2.7b were done with u(t) = 4.0 and
X(t) = 2.0 in all cases, with v (t)
taking on the values 10.0, 4.0, 2.0,
1.0, 0.4, and 0.2 in sequence. The

p = 0.5 calculation in Figure 2.7a is
the same as the ¢ = 1 calculation

in Figure 2.7b, corresponding to the
calculations shown in Figure 2.5 for
o(t). Note that the maximum
rclative error here is smaller by a
factor of three to four for It)

in that particular case.

Appendix A gives details of
calculations done to obtain exact
values required in determining
these relative errors.
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FIGURE 2.8 Relative Errors in
m(t) Using the Two-Equation

Closure Method ’C’ in the Constant
Parameter Case With Various

Arrival and Retrial Rates.

Calculations represented in Figure
2.8a were done with y (t) = 4.0 and
v(t) = 2.0 in all cases, with A (t)
taking on the values 0.4, 1.2, 2.0,
2.8, 3.6, and 3.8 in sequence.
Calculations represented in Figure
2.8b were done with y (t) = 4.0 and
\(t) = 2.0 in all cases, with Vv (t)
taking on the values 10.0, 4.0, 2.0,
1.0, 0.4, and 0.2.in scquence. The

p = 0.5 calculation in Figure 2.8a is
the samc as the ¢ = 1 calculation

in Figure 2.8b, corresponding to the
calculations shown in Figure 2.5 for
m(t). Notc that the maximum
rclative error here is smaller by a
factor of 2.5 to 3 for m(t) in

that particular case.

Appendix A gives details of
calculations done to obtain exact
values required in determining
these relative errors.
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FIGURE 2.9 I, (1) Computed Using the Two-Equation Closure Mcthod 'C’ in the

Oscillatory Parameter Case for Various Values of pg.

Figure 2.9a simply displays the exact Ip(t) for various values of p,. Figure 2.9b
displays the corresponding relative error in II,(t) calculated using closure method
2C. Figure 2.9¢ compares the exact and approximate Il (t) when pg =0.9. Note
that on the scale employed in Figure 2.9b, the relative error curve for p, = 0.1 is
indistinguishable from the t-axis. Appendix A gives details of calculations done to

obtain exact values used in preparing these plots.
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FIGURE 2.10 m(t) Computed Using the Two- Equatlon Closure Method 'C’ in the
Oscillatory Parameter Case for Various Values of p

Figure 2.10a simply displays the exact m(t) for various values of p,. Figure 2.10b
compares the closure approximation m(t) with its exact counterpart whcn p, = 009.
The plots of relative errors in the closure approximation m(t) are displayed in
Figures 2.10c and 2.10d. Appendix A gives details of calculations done to obtain
exact values required in determining these relative errors.
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FIGURE 2.11 I, (t) Computed Using the Two-Equation Closure Method ’C’ in the
Oscillatory Parameter Case for Various Values of c;.

Figure 2.11a shows the exact II,(t) for various values of cy. At the local minima,
¢ o = 0.2 corresponds to the lowest curve and ¢, = 10 to the highest. Figure 2.11b
shows corresponding relative cerrors in the closurc approximation Ho(t), with the
widest cxtremes corresponding to ¢, = 0.2, and the narrowest to ¢ = 10 . In
Figure 2.11c is compared the exact and approximate II(t) in the worst case

o= 0.2.
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m(t) Computed Using the Two-Equation Closure Method ’C’ in the
Oscillatory Parameter Case for Various Values of ¢g.

Figure 2.12a shows the exact

having the lowest local minima corresponding to o
highest local minima corresponding to ¢

m(t) for various values of ¢_. Throughout, ¢ ="0.2
corresponds to the lowest curve and ¢y = 10 to the highest. Figure 2.12b shows
corresponding relative errors in the closure approximation m(t), with the curve

=10.

exact and approximate m(t) when o= 0.0.

= 0.2, and thc onc with the

In Figurc 2.12¢ is compared the
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2.4 Two-Equation Closure Methods: HOJ m, and v

Then he got up on top with a tip of his hat.

'l call this game FUN-IN-A-BOX’, said the cat.

In this box are two things [ will show to you
now.

You will like these two things’, said the cal
with a bow.
[The Cat in the Hat, Dr. Seuss]

Method 2D (I . m, v)

Because the steady-state probabilities for the single-server retrial queue form
the negative binomial distribution, it is possible to write down an analoguc of thc

Rothkopf and Oren method using the following equations from Table 2:

m'(t)

ft

A - u{1 - Ho(t)},
(1)

i

v' (t) A+ oy - uno(t){Zm(t) + 1} + 2].1m0(t) .

As before, m(t) is the mean number of customers in the system at time t,
mo(t) is the contribution to m(t) by server idle terms, v(t) is the variance of the
number of customers in the system, and Ho(t) is the probability that there arc no

customers in the system at time t. At steady state,

H0 =1-p, My = €0 m plc + 1)
1l -0
and (2)
v = p{c + _Z)2
(1 - p)

The object here is to eliminate Ho(t) and mo(t) in equations (1) to obtain a
system of two equations which can be used to compute values of m(t) and v(t), at

least approximately.
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Following Rothkopf and Oren, we note that

m2/(v—m)
c+1 (m (3)

2
1/(c+1) m®/{(v-m) (c+1)}

I, = (1 - p) =p,, = = - (4

When v - m = 0, we follow Rothkopf and Oren in writing

HO - e—m/(c+l) ] (5)

In the simple M/M/1 case, the last term in the equation above for v’(t) does not

appear.

Examination of the formulas in (2) easily yield a number of relationships for

m at steady state. Among these are

m, = ¢p = c(l - Ho), (6)

obtained by direct replacement of p by I - ]IO;
m_ = mll - 1 , (7)

obtained by replacing cp by m, in the numerator of the formula for m, solving

for mO, and replacing- p by Hl or 1-p by HO; and finally,
m_ = vl - ., , (8)

obtained as is (7) but starting with the formula for v.
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Formula (7) has the most intuitive appeal, since it relates mo(t) in a dircct
way to m(t) and Ho(t). We would expect mo(t) to increase with both m(t) and
with Ho(t) in general. Unfortunately, substitution of (7) into the right-hand sidc
of the equation for v’(t) causes it to become identical to the right-hand sidc of
the equation for m’(t) in (1), which is unrealistic. The subtracted terms in (7)
and (8) are also cause for concern, and computational tests quickly indicatc that
using (8), v’(t) is prone to become negative when v is near zero (as is the usual
case at the beginning of a calculation when the system is in a known definite
state). This leads to v(t) becoming negative, and so (m/v) is negative, and the

right hand side of (3) is not real.
As a result, we will initially consider using only formula (6) in conjunction
with (5) and (1) to comprise a closure method for computing approximations to

m(t) and v(t). We will call this approach Method 2D.

Numerical Performance of Method 2D

A scries of calculations was carried out using Method 2D. The results werce
not very encouraging. In constant parameter calculations, relative ¢rror maxima
were several times larger than they were for corresponding M/M/1 queuc
calculations using the Rothkopf and Oren method. This is best seen by comparing
Figures 2.13a, 2.13b, and 2.13c directly with Figures 1.4, 1.5, and 1.6. Figurc 2.13
shows the relative errors in HO, m, and v, as functions of time for a sequence of

new customer arrival rates.
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For the calculations represented in Figure 2.14, the new customer arrival ratc
is held constant and the retrial rate is varied. When the retrial rate is
comparable or smaller than the new customer arrival rate, relative accuracy over
the time range shown in the figures is poor. Of particular interest are Figurcs
2.13c and 2.14c, dealing with the variance, since no other closure techniquc has

been discovered for computing this quantity for the retrial qucue so far.

Figure 2.15a shows the exact v(t) and v(t) obtained using this proposed
closure method when p = 0.5 and ¢ = 10 (actually A =20, =4.0,and v =
0.2). This figure gives an alternative impression of the approximation errors

~arising.

The situation is much the same for oscillatory parameter cdlculations using
this approach. Figures 2.15b, 2.15¢, and 2.15d contain plots of the exact v(t) and
the approximate v(t) for the most difficult cases studied (po = 0.7, CO = 1.0, in
Figure 2.15b; DO= 0.9, CO = 1.0, in Figure 2.15¢; and po = 0.5, cO = 10.0 in
Figure 2.15d). The approximation errors in Ho(t) and m(t) computed using this
method are not as relatively large as for v(t). However, they are significantly
greater than when the best of the methods developed in the preceding section arc

used.

Figures 2.16a and 2.16b show the éi)proximatc HO(t) along with its exact
values in the oscillatory parameter case when }\0 = 3.8, u = 4.0, VO = 2.0, and
when )\0 = 2.0, U =40, and v, = 0.2, respectively. The corresponding

comparisons of approximate m(t) with exact m(t) in these two worst-of-the-cascs-



118.

studied situations are displayed in Figures 2.16¢ and 2.16d. Figures 2.16a and

2.16c go with Figure 2.15¢c, and Figures 2.16b and 2.16d go with Figure 2.15d.

In Table 5 are given period averages of  I[H(t), m(t), and v(t) as well as
relative mean absolute errors. These numbers indicate further the breakdown of
the accuracy of this approach as the problematic large P, Of large <, situation
is approached. Error measures in Table 5 should be compared with corresponding

quantities in Tables 4 and 1.

Method 2E ( HU. m, v)

There are two approximations in the method just described. The first is to
use (4) to express Ho(t) in terms of m(t) and v(t). This rather complicated
formula is unlikely to be a significant source of error since its analogue in the
Rothkopf and Oren method for simple M/M/1 queues worked extremely well.
Also, relative errors in Ho(t) computed using this method are much smaller

gcr;erally than for m(t) and v(t).

The second approximation in the computations just described was in using
equation (6) to eliminate mo(t) from the formula for v’(t). Equation (6) was
obtained simply by substituting 1 - I[O(t) for pin the steady-state formula for
m’O, and so is anaihogous to formula (5.3.5) in the previous section. For the
closure method developed in section 2.3, there was a second expression, equation
(2.3.4), which expressed the component ml(t) in terms of m(t). The analogue of

equation (2.3.4) in the present context is equation (7), which, as already
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explained, cannot be used by itself to eliminate mo(t) in equations (1). However,
in section 2.3, it was found that a superior approximation for ml(t) was obtained
by combining formulas (2.3.4) and (2.3.5). And, in fact, the difficulty in using
equation (7) here does not arise if a combination of (6) and (7) is used:

m,(t) = ne(l - Iy + (1 - n){mno - Hl} ,

(9)
0 <7y <1 .

This formula, (9), is the analogue of equation (2.3.6) in the preceding section.
There, the value 1 = 0.5 was adopted somewhat arbitrarily. Here we will look a
little more closely at the effect of varying the mixing factor n because of the

large errors which can arise in the approximate v(t) when n = 1.

Of course, one could stretch the reader’s indulgence further by starting with a
mixture of formulas (6), (7), and (8), but the author’s advancing age precludes an
adequate study of such a scheme. In addition, formula (8) would not appear to
have a strong intuitive appeal, and as well, contains v(t), which is a quantity we

are not able to estimate very accurately at present.

Constant Parameter Calculations Using Method 2E

The calculations already described in this section correspond to n = 1. The
highest p or Py and the highest ¢ or <, (corresponding to smallest v or
\)0 ) calculations and the intermediate p (or 'go )= 0.5, ¢ (or CO }=1.0

calculations were repeated with n = 0.75, 0.5, 0.25, 0.1, and 0.05. Since the
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formula (7) is exact when Ho(t) = 1.0, a scheme was also tested in which the

mixing factor N varied with time by computing n(t) = 1 - Ho(t).

Results by Method 2E in constant parameter calculations were very
encouraging. Figure 2.17 illustrates the relative errors in v(t) for the various
mixing factor values. In the three situations illustrated, N = 0.25 scems to givc

the lowest overall errors of all of the values of n tested.

When A =2 and v = 2, the smallest of the local maxima of absolute rclative
errors observed is 0.06, occurring in the calculation with n = 0.25. This is less
that one-quarter of the maximum relative error occurring whenn = 1 is used.
Actually, for this particular calculation, the relative error starts off with a value
of 0.102 when t = 0.5, but its value drops rapidly toward zero. For low values of
t, v(t) also has a smaller value and so larger relative errors are not as
significant. When A= 38and v =2, the n = 1 calculation gives a maximum
absolute relative error in v(t) of approximately 0.48, whereas with N = 0.25, this

maximum is likely to be around 0.121, again smaller by a factor of near four.

When ) =20 and v = 0.2, the maximum relative error in v(t) decreases
monotonically with the values of n used, and has a value of 0.52 whenn = 0.03,

the smallest value of N for which calculations were done. This compares with a

1The absolute relative error in v(t) when n = 0.25 occurs at a time greater
than t = 25.5, the largest value of t for which numbers were obtained in these
calculations. However, as seen in Figure 2.17b, the relative error curve is very
nearly horizontal by t = 25.5, and which point the relative error is -0.1138. It is
reasonable to infer that the actual turning point of the curve will not bc far
below -0.12:
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maximum of 0.81 when N = 1. Thus, as v becomes small relative to A, use of
the formula (9) with n < 1 does lead to more accurate estimates of v(t), though
the improvement is not as great as for the other two examples illustrated in

Figure 2.17.

Only in the intermediate case (A = 2.0, v = 2.0) is the variable n approach
competitive with fixing n at some constant value. In the other two cases
studied, it is actually no better than a poor intermediate between the worst casc
n = 1 calculation and the calculation using the absolute relative error minimizing
constant value of n. Jumping ahead a bit, we note ﬁerc that this conclusion
regarding the accuracy of the variable n approach has also been born out by
comparing relative mean absolute errors given in Table 6 for corresponding

oscillatory parameter calculations.

Figure 2.18 gives a more graphic impression of the limitations of formula (9)
when V is small relative to A in the constant parameter case. For the
calculations represented in Figures 2.17a and 2.17b, 1 = v anq )\ ~ 2
respectively, whereas in Figure 2.17c, A = 10v. If, for the first two cases,
curves of one approximate quantity are plotted on the same grid as the exact
quantity for different values of N, the gap between the n. = 1 approximation and
the exact curve is nearly evenly filled by curves corresponding toAa sequence of
values of N between 1 and the best value of n for the given queue parameter

values. Figure 2.18d illustrates this by plotting v(t) when A = 3.8 and v = 2.0,

and the approximations to v(t) computed with n_ =1, 0.75, 0.5, and 0.25.
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Figures 2.18a, 2.18b, and 2.18c give corresponding plots for Ho(t), m(t), and.
v(t), respectively, when A =20 and V = 0.2. In each case, it is seen that the
approximate curves for the various values of M form a tight band well separated
from the exact curve. This means that the comparative lack of improvement
observed in using formula (9) when V is quite small relative to A is due to thc
intrinsic limitations of formula (9) and not the result of an inadequate search for

the best value of n.

For constant parameter calculations with A not large compared to v, the
formula (9)_ gives an closure approximation of comparable accuracy to those of the
previous section when a value of N somewhere between 0.5 and 0.25 is used.

When the retrial rate, v , is low relative to the new customer arrival rate A, we
are still without a closure method for computing v(t) with truly acceptable
accuracy, though formula (9) represents best (and significant) improvement over

(6) if a value of n_near 0.1 is used.

Oscillatory Parameter Calculations Using Method 2E

The oscillatory parameter case is, as usual, more complicated’to analyze here.
Figure 2.19a shows the exact v(t) plotted on the same grid as the approximate
v(t) curves obtained using n = 1. 0.75, 0.5 and 0.25. When )\0 = \)0 = 2.0, this
figl;rc indicates that a highly accurate calculation of v(t) should result if a valuc
of N approximately midway between 0.5 and 0.25 is used. Figure 2.19b shows a
similar comparative plot when )‘0 = 3.6 and \)0 = 2.0. Again, it appears that thc

best value of N is somewhere between 0.5 and 0.25.
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Figuré 2.19c gives a similar comparative plot for v(t) in the oscillatory
parameter case when >\0 = 2.0 and \)0 = 0.2. Here, the n = 0.75 curve has been
left out and n= 0.l and 0.05 curves included. Unlike the corresponding constant
parameter calculations when the new customer arrival rate is much larger than
the retrial rate, here the use of formula (9) with a value of n in the
neighborhood of 0.1 results in remarkable improvement in accuracy in the
computation of v(t). The improvement on using (9) is not as dramatic for Ho(t)

and m(t) in this oscillatory parameter case, though still significant.

Without belabouring the discussion, we note that a closure method based on (9)
appears to give acceptably accurate approximations for v(t) in this oscillatory
parameter case using similar values of n to those found best for corresponding
constant parameter calculations. This tends to allay suspicion that formula (9) is
simply a numerical trick, and to strengthen the presumption that it actually
approximates the relationship between mo(t) and ]'[O(t) and m(t) in some

generality.

Computation of Period-Averages of m(t) and v(t)

In Table 6 are found period-averages and mean absolute relative errors of
ﬁo(;), m(t) and v(t) for various values of n in the three cases of oscillatory
parameter calculations done. These entries can be compared with the entrics for
n. = 1 in each case to get a numerical measure of the improvements in accuracy

formula (9) represents over formula (6).
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The entries for v(t) in Table 6 are of greatest interest, and the results are
quite remarkable. When the parameters have intermediate values, )\0 = \)0 =20
with H(t) = 4.0 as usual, the smallest of the relative errors observed in the
mean value of v(t) and in the mean absolute errors occurred for n = 0.35.2
When n = 0.35 was used, the relative error in the computed mean value of v(t)
over the time intervals [0,10] and [10,20] were just under 5% and 6% respectively,
compared to just over 33% and 18% respectively whenn =1 was used. This
compares well with the values both near 16% found for the corresponding
calculation using Rothkopf and Oren’s method on the M/M/1 queue (see the po =
0.5 entries in Table 1). Thus the accuracy of the computed mean values of v(t)

over these two periods of oscillation improves by factors of more than six and

more than three respectively.

Similarly, the relative mean absolute error in v(t) over these two time
intervals drops from 40% and 28% to 8% and 8%, respectively. These compare
with 15% and 16% as the relative mean absolute errors in v(t) observed using
Rothkopf and Oren’s method on the simple M/M/! queue in the corresponding
Py = 0.5 case (see Table 1). These are the first instances observed in which th>c
relative accuracy of a closure technique for the retrial queue is better than that
of the Rothkopf and Oren method for the corresponding M/M/1 qucue, and the

increase in accuracy here is significant.

2The "mean values" of II (t), m(t), and v(t) or their absolute errors referred
to here are always computed over 10-unit time intervals, the period of oscillation
of A(t) and +(t) used throughout in oscillatory parameter calculations. For '
discussion- purposes throughout this thesis, such mean values are always computcd
over two "standard" time intervals, [0,10] and [10,20].
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The corresponding improvements in accuracy shown when >\0 = 3.6 and \)0 =
2.0 are even more dramatic. When N = 1, the relative errors in the computed
mean values of v(t) over the first two complete periods of oscillation are 78% and
55% respectively, whereas when N = 0.35, these relative errors drop to 8% and
0.5% respectively, an improvement by factors in the neighborhood of 10 or better.
The relative mean absolutc errors in v(t) in this case drop from 78% and 55%
when n = 1 (the fact that both types of relative errors discussed here are equal
indicates that the approximate v(t) is always greater than the exact v(t) ) to 8%
and 2% when n = 0.35. These numbers compare with 20% and 25% respectively
for the Rothkopf and Oren method applied to the simple M/M/1 queue. Becausc
the relative error in the computed period-mean of v(t) is positive when n = 1
and negative when n = 0.1, and is apparently continuous,® one could in principle
find values of n which wo.uld make this period-mean of v(t) exact in any pre-

specified period.

Thus, it is noteworthy that errors in the mean value of v(t) in the two
disjoint periods for which calculations were done become small for the same or
nearly the same values of . But more significant is the fact that the mean
absolute error in v(t) decreases so dramatically here, since in computing this

quantity, there is not the potential for large positive error components in one

3The claim of "apparent continuity” is based on the numbers in Table 6 for
various values of n between 1 and 0.1 . This looks like the sort of assertion
that could be proven rigorously without a great difficulty by someone more
familiar with the theory of ordinary differential equations. n 1is effectively a
simple constant numerical parameter in equations (1), and the claim would be th'n
the solution-of the system (1) under these circumstances is continuous in 7.
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region to cancel large negative error components in another region as can occur

in computing errors in the period-mean itself.

The numbers in Table 6 for the calculation of v(t) when )\0 =20and V,=02
are not as good as for the two cases just described, though use of equation (9)
with an appropriately chosen value of n still does give significant improvements
in the accuracy of computed approximate mean values compared to calculations
when n = 1. When n = 1, the relative error in computed mean values of v(t)
are 63% and 40% respectively for the two standard periods, when N = 0.05, these
are -4% and -18%, respectively. One would expect that at some value of N
between 0.1 and 0.05, both relative errors would be found roughly between 10%
and -10%, which is an improvement by factors of 4 - 6 compared to the n = 1

case. The same is true for the relative mean absolute errors in this case.

In all three of the cases covered in Table 6 for v(t), the variable n method
gives, if not the poorest relative accuracy, then close to the poorest as far as

the computation of these period-mean values is concerned.

The dependence of the relative error in the computed period-mean valucs of
Ho(t) and m(t), and their relative mean absolute errors on 1 is not as great as
for v(t). Because these relative errors are generally much smaller than for v(t),
we sim‘bli? note here that inspection of Table 6 indicates that while minimal
relative errors for Ho(t) and m(t) seem to occur whenn is closer to | rather
than 0.35 when retrial rates are not much smaller than new customer arrival -

rates, their values are generally well under 10% over most intermediate values of
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N and compare well with the numbers observed for po(t) and m(t) of the M/M/1

queue with Rothkopf and Oren’s method.

Estimation of mULt) Using Method 2E

It appears that in these cases where the retrial rate is not much smaller than
the new customer arrival rate, equation (9) is not only compensating for
deficiencies in equation (6), but also to some extent for deficiencies in ecquation
(4), since with optimal values of n, we are observing significantly smaller rclative
errors here than for the corresponding results for v(t) for the M/M/1 queuc with .

Rothkopf and Oren’s original method.

Evidence for this claim is found in the fourth part of Table 6 dealing with
ma(t) and in Figure 2.20 . If it was simply a matter of equation (9) giving morc
accurate estimates of mo(t), then we would expect that the value of N leading to
the most accura.tc v(t) should also give much impfovcd estimates of mo (t). Not
only is this not so according to Table 6, but the relative errors found for mo(t)
in virtually all cases are extremely large, indicating that equation (9) generally
would be a completely unacceptable way to compute mO(t) even though it is an
integral part of a method which produces quite acceptable estimates for'HO(t),

m(t), and v(t).

The numbers in Table 6 for mO(t), and cven more so, the plots in Figurc 2.20,
are disturbing because they cast at least some doubt on the entire rationale of

closure approaches as described by Rothkopf and Oren in their paper, and in this
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thesis. Of the several closure methods examined so far, this is the first which
required two distinct closure formulas, and so it is the first instance where
accuracy in some of the quantities computed may be enhanced by taking

advantage of the interplay between closure formulas used.

What is also remarkable after seeing the plots in Figure 2.20 is that the n =
1 calculations give as accurate values for Ho(t), m(t), and v(t) as they do, since
the estimates of mo(t) when n =1 are almost as bad as they can be without
being totally absurd numerically. However, it is not valid to conclude that
closure formulas are nothing but fancy or complicated "fudge-formulas" , since
here, Ho(t) is also estimated using such an imposed formula, and the resulting

estimates reflect exact values very well.

A more viable approach for computing mo(t) is described in the next section.
Also, the method described in the preceding section produces an estimate of m_l(t)
as well as m(t), and the difference of these will give an estimate of mO(t). No
attempt has been made to determine the accuracy of such estimates of m, (t)
however. If one was going to do that, it would probably be worthwhile to first
explore the improvements possible by varying the mixing factor in equation (2.3.6).
Since such an approach to computing mo(t) would involve taking the difference of
two approximate values, it would be desirable to maximize the accuracy of both

approximate values first.
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TABLE 5a Period Averages and Mean Absolute Errors in II_(t), m(t) and
v(t) for Various New Customer Arrival Rates Using Method 2E.

The entries in this table correspond to oscillatory parameter calculations
using Method 2E with Vv, = 2.0 and u(t) = 4.0, a constant, in all cases. The
first column below gives the value of Pg = Ag /U, the second gives the time
interval over which the mean values were computed, the third column gives
the exact mean, the fourth column gives the closure method mean value, the
fifth column gives the error in these period-mean values, and the sixth
column gives the relative error in the closure method mean values. The last
two columns give, respectively, the mean absolute error over the indicated
time intervals, and the corresponding relative mean absolute error.

I (t):

_O_.____

0.1 (0,10} .8930 .8935 .004987 .0005585 .002452 002746
10,201 .8900 .8900 .000001 .0000011 .001842 .002069

0.3 (0,101 .6840 .6857 .001743 .002548 .02159 03157
£10,201 .6701 .6700 -.0001209 -.0001804 .01834 .02736

0.5 [0,10] 4969 4915 -.005414 -.001089 .05286 .1064
{10,20] .4560 L4523 -.003608 -.007912 .04824 .1058

0.7 0,101 .3560 .3453 -.01071 -.03008 .08535 .2398
{10,201 .2799 L2631 -.01680 -.06000 .07880 .2815

0.9 {0,101 .2638 .2530 -.01084 -.04108 .09822 .3723
[10,20] 1717 . 1452 -.02649 -.1543 .07521 .4381

m(t) :

0.1 {0,101 .1509 . 1545 .003536 .02342 .01131 07491
[10,20) 21571 . 1604 .003371 .02146 .01121 .07135

0.3 [0,10] .8979 .9237 .02580 .02874 . 1268 L1412
{10,20] .9789 .9934 .01442 01473 1217 .1243

0.5 (0,101 2.7446 2.8200 .07538 .02746 .3838 .1398
{10,201 3.4260 3.2611 -.1650 -.04815 .3078 .08983

0.7 [0,101 5.9320 6.1062 1741 .02935 .6280 . 1059
[10,20] 9.0347 8.4946 -.5401 -.05978 .5806 06427

0.9 {0,101 10.1175 10.4763 .3588_ .03546 7707 .07616

£10,20] 18.0434 17.4799 -.5635 -.03123 .6127 .03396
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Table 5a, continued....

v(t) :

0.1 [0,10] .1787 . 1834 .004647 .02600 .01399 .07826
{10,20] .1862 .1908 .004538 .02437 .01412 .07583

0.3 [0, 10] 1.5713 1.7450 21737 .1106 .3396 2161
{10,201 1.7420 1.9002 .1582 .09083 .3398 . 1951

0.5 [0, 101 6.4256 8.5757 2.3980 .3732 2.5981 4043
(10,201 8.8236 10.4124 1.5888 . 1801 2.4490 2776

0.7 [0,101 15.3710 24 .4532 9.0822 .5909 9.2383 .6010
[10,20] 28.5567 38.4299 9.8732 .3457 10.6962 3746

0.9 [0,101 25.5950 45.5821 19.9872 .7809 19.9872 .7809

£10,20] 57.8233 89.3676 31.5443 .5455 31.5443 .5455



TABLE 5b
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Period Averages and Mean Absolute Errors in I, (t), m(t) and
v(t) for Various Retrial Rates Using Method 2E.

The entries in this table correspond to oscillatory parameter calculations
using Method 2E with }\0 = 2.0 and u(t) = 4.0, a constant, in all cases. The
first column below gives the value of vy and the second column gives the

value of ¢y = }\0/\)0. The remaining seven columns are arranged as are the
last seven columns of table 5a.

2.0

1.0

1.0

0.4 .

0.2

0.5

1.0

2.0

5.0

10.0

0.5

2.0

10.0

(0,103
[10,201

(0,103
{10,203

(0, 10]
[10,20]

(0,103
110,203

(0,101
{10, 20]

(0,10]
(10,20}

[0,101
{10,201

10,103
{10,201

{0,101
{10,201

(0,103
(10,20]

[0,10]
(10,201

{0, 10)
(10,201

L4734
.4505

.4821
L4519

L4969
4560

.5230
4676

5714
.5032

.6088
L5434

1.9893
2.1655

2.3078
2.6483

2.7746
3.4260

3.3794
4.7900

4.3977
7.5169

5.1257
9.8624

4745
.4506

.4815
451

.4915
.4523

.5090
L4560

.5552
L4742

6146
.5096

1.9789
2.4170

2.3280

2.5961

2.8200
3.2611

3.6067
4.4184

5.2172
7.2490

6.8207
10.7406

.001115
.0000775

.0005578
.0007688

.005414
.003608

.01402
.01159

.01614

-.02902

.005798
.03386

-.01040
-.01847

.02017
-.05223

.07538
-.1650

.2273
-.3717

.8195
-.2679

1.6949
.8782

.002354
.0001720

.001157
.001701

.01089
.007912

.02680
.02478

.02825
.05768

.009523
.06231

-.005227
-.008531

.008738
-.01972

.02746
-.04815

.06726
-.07759

.1863
-.03563

.3307
.08905

.01078
.01066

.02742
.02485

.05286
.04824

.09094
.08200

-1482
.1290

.1864
.1608

-0665

02276
.02232

.05687
.05498

. 1064
.1058

L1739
L1754

.2594
.2564

.3062
.2959

1 .03343

.07212 .03331

.1663
. 1484

.3838
.3078

.7285
.5725

1.2978
9721

1.7413
1.5219

.07205
.05605

.1398
.08983

.2156
-1195

.2951
L1293

.3397
.1543



Table 5b, continued....

4.

1.

0.

0.

0

4

2

0.2

1.0

2.0

5.0

{0,103
{10,203

[0,10]
[10,20]

ta, 10
{10, 20}

[0, 101
110,20

(0,10]
(10,201

{0,101
110,20]

5.3642
6.0539

5.8539
7.1297

6.4256

8.8236

7.0719
11.3991

7.8444
15.2618

8.3430
17.6819

6.4752
7.2249

7.4099
8.5744

8.5757
10.4124

10.1098
13.2489

12.2899
19.0427

13.5835
24.7199

1.1110
1.1710

1.5565
1.4447

2.3980
1.5888

3.0379
1.8499

4.4455
3.7809

5.2405
7.0380

.2071
.1934

.2659
.2026

.3732
.1801

.4296
.1623

.5667
L2477

.6281
.3980

132,

1.1223
1.1834

1.7028
1.6789

2.5981
2.4490

3.8331
3.7199

5.3012
6.1736

5.7930
8.6585

.2092
.1955

.2909
.2355

L4043
L2776

.5420
.3263

.6758
L4045

6944
.4897



133.

Period Averages and Relative Mean Absolute Errors in IIO (1),
m(t) and v(t) Using Method 2E With Various Amounts of
Mixing, N , in the Closure Formula for mo(t).

TABLE 6

The three triads of numbers in the rightmost nine columns below are the
approximate mean value of the quantity indicated (as calculated from closure
method values), the relative error in this approximate mean value, and the
relative mean absolute error over the intervals indicated, respectively, for
three different oscillatory parameter retrial queues with the parameter values

listed at the bottom of each section of this table. The number, n ,

tabulated in the first column, is the mixing factor,

n , in equation (2.4.9) .

a) I _(t):
()_ _0()
n
1.0 [0.101 .4915  -.01089 .1064 .2529  -.04108  .3723 L6146 .009523
£10,20)] .4523  -.007912 .1058 L1452 - 1543 .4381 .5096  -.06230
0.75 10,101 L4941 -.005766 .1087 .2468 - .06455  .3901 .6142 .008771
{10,201 L4530  -.006486 .1082 L1425 -.1698 L4704 .5090  -.06339
0.5 [0, 10 L4966  -.0006466  .1159 .2528  -.1026 L4119 .6128 .006545
{10,201 .4536  -.005041 L1224 L1318 -.1956 .5015 .5303  -.06581
0.4 {0,10] L4972 .0004573  .1198 L2309  -.1246 L4199
[10, 201 .4539  -.004393 L1315 .1351 -.2126 .5122
0.35 o, 101 L4973 .0006131 .1219 L2274  -.1378 L4243
£10,20] L4541 -.004035 .1366 21332 -,2239 .5172
0.25 {0,101 .4968  -.0002608 .1299 .2349  -.1705 L4351 L6074 -.002449
{10,201 4545 -.003270 474 .1210  -.2552 .5248 .5301 -.07169
0.1 [0,10] L4934 -.007194 L1571 . 1981 -.2489 L4631 L5954  -.02212
110,201 .4547  -.002783 L1694 L1113 -.3518 .5212 .4998  -.08037
0.05 0, 101 L4901 -.01372 L1732 .1862  -.2942 L4739 .5860  -.03747
{10,20] .4542 - .003845 .1823 .09924 - .4219 .5283 L4947  -.08961
vble 0,101 .5045 .01510 .1185 L2576  -.02330  .3951 L6176 .01445
[10,20] .4565 .001275 .1515 L1564  -,08899  .5064 5166  -.04939
Exact {0,101 L4969 .2638 .6088
{10,20] L4560 717 .5434
DO 1.0 0.9 1.0
C
0 1.0 1.0 10.0
A
0]2-0 3.6 2.0
V
ol2-0 2.0 0.2
U 14.0 4.0 4.0

.3062
L2959

.3074
.2966

.3107
.3032

.3182
.3219

.3310
.3461

.3409
.3563

.3127
.3181



Table 6, continued....

(b) m(t):
n.'

1.0 [0.10]
110,201
0.75 {0,101
110,201
0.5 {0,103
[10,20]
0.4 {0,10]
[10,20]
0.35 {0,103
10,201
0.25 {0,101
{10,201
0.1 0,101
[10,201
0.05 [0, 101
[10,201]
vble 0,101
[10,20]
Exact [0, 101
[10,20]
p0

C
0

A
O.

\Y
0]

2.8200
3.2611

2.7710
3.2515

2.6836
3.2367

2.6294
3.2220

2.5959
3.2092

2.5106
3.1613

2.3004
2.9319

2.1819
2.7225

2.7856
3.6729

2.7446
3.4260

1.0

1.0

2.0

2.0

4.0

.02746
.04815

.009625
.05095

.02224
.05526

-04199
.05955

.05420
.06327

.08527
.07728

.1618
.1442

.2050
.2053

.01492
.07206

.1398
.08983

.1284
.09186

.1280
. 1065

.1336
-1164

.1400
.1221

.1582
1357

.2166
1745

.2545
.2120

.1123
L1377

10.4763
17.4799

10.3148
17.2285

10.0988
16.8022

9.9897
16.53N1

9.9286

16.3753

9.7895
15.9511

9.5172
14.8405

9.3953
14.1551

10.3706
17.9813

10.1175
18.0434

0.9

1.0

3.6

2.0

4.0

.03546
-.03123

.01950
-.04516

-.001849

-.06879

-.01263
-.08337

-.01867
- .09245

<.03242
-.1160

-.05933
=775

-.07138
-.2155

.02501
-.003442

07617
.03396

.07767
.04516

.08200
.06879

.08533
.08337

.08741
.09245

.09287
1160

. 1068
775

L1144
.2155

.07113
.03371

6.8207
10.7406

6.7776
10.6638

6.6984
10.5263

6.5200
10.2291

6.2550
9.7145

6.0817
9.2632

6.6968
10.8931

5.1257
9.8624

1.0

10.0

2.0

0.2

4.0

134.

-3307
-08%905

.3223
.08126

.3068
.06732

.2720
.03718

.2203
-.01500

. 1865
-.06076

.3065
. 1045

.3397
.1543

.3343
.1523

L3272
L1499

.3198
.1485

3257
L1466

.3335
-1508

.3231
L1633



Table 6, continued....

(c)

1.0

0.75

0.5

0.4

0.35

0.25

0.1

0.05

vble

Exact

v(t):

[0.10]

(10,201

[0, 101
(10,201

[0, 10]
{10,20)

(0,101
£10,20]

[0, 101
{10, 20]

[0, 103
[10,201

{0,103
{10,203

10,103
{10, 201

0,10}
{10,201

10,101
110,203

8.5757
10.4124

8.1823
10.1664

7.4808
9.7751

7.0277
9.5223

6.7415
9.3387

6.0015
8.7741

4.2022
6.6994

3.2710
5.1419

9.1767
14.1814

6.4256
8.8236

1.0

1.0

2.0

2.0

4.0

.3346
-1801

.2734
.1522

.1642
.1078

.09371
.07918

.04918
.05838

-.06600
-.005612

-.3460
-.2407

- .4909
-.4173

.4282
.6072

L4043
2776

.3032
.2016

.1645
.1098

09371
.07918

07762
.08096

.1333
.1186

.3489
.2566

4929
4173

L4282
.6072

45.5821
89.3676

40.2226
79.9766

33.1423
67.8332

29.6465
61.6341

27.7192
58.0919

23.4414
49.7807

15.6918
32.2777

12.6375
23.9212

45.9507
98.9332

25.5950
57.8233

0.9
1.0
3.6
2.0

4.0

.7809
.5455

5715
.3831

.2949
1731

.1583
.06590

.08299
.004645

-.08414
-.1390

-.3869
-.4418

-.5062
-.5863

7953
.7110

.7809
.5455

5715
.3831

.2949
731

.1583
.06590

.08299
.02388

..08515

.1390

.3874
4618

.5066
.5863

.7953
.7110

13.5835
24.7199

13.3437
24.1721

12.8761
23.1664

11.6088
20.9121

9.4407
17.3672

8.0350
14.5742

13.7861
27.1265

8.3430
17.6819

1.0

10.0

2.0

0.2

4.0

135.

.6281
.3980

5994
3671

5433
.3102

3914
.1827

L1316
-.0V779

-.03691
-.1758

.6524
.5341

.6944
.4897

L6511
L4423

.5657
.3538

.3914
. 1899

.1365
.03091

.1083
.1758

.6524
.5341



Table 6, continued....

d) m t):
(d) m (t)
n
1.0 [0.10)
£10,20]
0.75 [0,101
{10,201
0.5 0,10}
[10,20]
0.4 [0,10]
{10,201
0.35 {0,101
[10,201
0.25 [0,10]
{10,203
0.1 (0,101
[10,201
0.05 {0,10)
(10,201
vble 0,101
{10,201
Exact [0,101
[10,20]
pC
c
0
A
0
V
0
1

.5085
5477

L4995
5477

4738
.5377

L4905
-5488

4649
.5351

.3893
.4880

2493
3666

.1588
.2608

.6483
. 7903

.6315
.7685

1.0

1.0

2.0

2.0

4.0

-.1948
-.2874

-.2090
-.2873

-.2498
-.3003

-.2233
-.2860

-.2638
-.3037

-.3835
-.3650

-.6053
-.5230

<. 7485
-.6607

.02662
.02836

.5402
4738

4247
.3644

.3636
.3261

3417
.3069

3727

.3412

.4898
.4408

.7050
.6119

.831
7123

.3014
.2723

7470
.8548

L7951
.9213

.8309
9113

.4480
.5420

.3355
.3738

-66%90
7144

.2710
.3687

- 1148
-1307

1.3016
1.4561

1.7622
2.4026

0.9

1.0

3.6

2.0

4.0

-.5761
-.6442

-.5488
-.6165

-.5712
-.6208

-.7458
- T7464

-.8096
-.8444

-.6858
-.6985

-.8462
-.8466

-.9349
-.9456

-.2613
-.3939

N.1222
.6675

.5860
.6165

.6183
.6208

.7867
7744

.8519
8444

L7409
.7152

.9016
.8472

.9903
9456

.3581
.4106

.3854
4904

1.1089
1.5051

1.8010
2.5505

2.1212
2.9248

2.2252
3.1747

2.3869
3.4673

2.5424
3.5388

2.4843
3.4292

2.2512
3.0418

2.7905

- 4.9159

1.0

10.0

2.0

0.2

4.0

-.8619
-.9002

-.6026
- 4606

-.3546
-.4976

-.2398
-.4050

-.2026
-.3542

- 1446
-.3302

-.08890
-.2801

-.1097
- .3024

-.1932
-.3812

136.

.8619
.9002

.6241
.6938

.5056
4976

L4745
.4289

L4676
L4201

4721
L4243

.5079
4514

.5433
L4753

L4792
4379
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FIGURE 2.13 Relative Errors in [5(t), m(t) and v(t) Using Closure Method 2D

for Various Values of 0 in the Constant Parameter Retrial Queue.

The graphs were prepared from calculations based on equations (2.4.1) with (2.4.6).
The six curves in each Figure correspond from lowest to highest to © = 0.1, 0.3,
0.5, 0.7, 0.9, and 0.95, respectively. In Figures 2.13a and 2.13b, the relative error
curves corresponding to P =09 and P = 0.95 are effectively indistinguishable at
the resolution employed. Appendix A gives details of calculations done to obtain
exact values required in determining these relative errors.
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FIGURE 2.14 Relative Errors in I[(t), m(t) and v(t) Using Closure Method 2D
for Various Values of ¢ in the Constant Parameter Retrial Queue.

The graphs were prepared from calculations based on equations (2.4.1) with (2.4.6).
The six curves in each Figure correspond from lowest to highest to ¢ = 0.2, 0.5,
1.0, 2.0, 5.0, and 10.0, respectively. As always in this thesis, the system is assumed
to be empty at t = 0 (i.e,, Iy(0) = 1.0, m(0) = 0.0 and v(0) = 0.0). Appendix A
gives details of calculations done to obtain exact values required in determining
these relative errors.
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FIGURE 2.1§ Comparison of Exact and Approximate Quantities for the Retrial

Queue Using Method 2D.

The calculations corresponding to these Figures were based on equations (2.4.1) and
(2.4.6). Figure 2.15a applies to the constant parameter case, whereas the other
three Figures on this page apply to oscillatory parameter cases. The emphasis is
on v(t) here, and the accuracy of the closure approximation is clearly not great in
any of the cases displayed. Appendix A gives details of calculations done to

obtain these exact quantities.
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Comparison of Exact and Closure Method 2D Approximation
Values of Ho(t) and m(t) for Oscillatory Parameter Retrial Queues.

For all of the calculations represented here, u(t) = 4.0 .
between the exact and approximate Iy(t) and m(t) are not as great as those
between the exact and approximate v(t) as displayed in Figures 2.15¢ and 2.15d.
However, particularly when v = 0.2 and A = 2.0, agreement between exact and
approximation is still less than acceptable. Appendix A gives details of

calculations done to obtain these exact quantities.

The discrepancies
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n variable

(c) A=2.0, v=0.2

Relative Errors in v(t) Computed Using the Closure Method
2E in the Constant Parameter Case.

The calculations represented here were done using equation (2.4.9) along with
(2.4.1). Particularly when v is not small compared to A , the relative errofs
are very sensitive to the value of N used in (2.4.9). In Figure 2.17c, the
relative error curves for n = 0.1 and n = 0.05 peak lower yet than those
shown, at values of approximately 0.54 and 0.52, respectively. Note that the

vertical scale in Figure 2.17c is clipped.

u =40.

In all calculations represented here,
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m(t)
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FIGURE 2.18

v=0.2, A=

n variable

n=1l—

n:

.25
exact ‘

2.0

Performance of the Closure Method 2E When the Retrlal
Rate is Much Smaller Than the New Customer Arrival Rate.

Fig>urcs 2.18a, b, c, illustrated the limited improvement represented by equation
(2.4.9) when the retrial rate is significantly lower than the new customer

arrival rate.
0.5, 0.25, 0.1,

The notation ‘all n® means the sequence of values n = 1, 0.75,
and 0.05, as well as the time varying n(t) =

- HO(t). Figure

2.18d provides a contrast to the first threce Figures here with a Similar plot
when A and v have more similar values.
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FIGURE 2.19 Comparison of Exact and Method 2E Approximation v(t) for

Various Values of n in Equation (2.4.9) in the Oscillatory Parameter Case.

For all of the calculations represented here, u(t) = 4.0. Appendix A gives
details of calculations done to obtain these exact quantities.
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(2.4.9) for Selected Values of n

exact
exact
i n
vble.
-~ n vble.
") J
o
CHE M n=".5
n=.5
i =.75
=.75 \
t 4
n=1 n=1
T ARaaL e A T e ;
pai] be) 0 5 10 15 0 %5
2.0 (b) AO=3.6, 2.0
exact
n vble
n=.39
/
.35 \
7 /
N vble. qfl
e T T e T Tt
5 10 15 20 25
(c))\o =2.0, Vv =0.2

Comparison of Exact my(t) with my(t) Given by Equation

in an Oscillatory Parameter Retrial Queue.

Thé-rcason equations (2.4.1) with (2.4.6) give the poor results observed earlier

scems clear from comparing the n = 1 curves here with the exact my(t).

What is surprising is the accuracy of the results achieved when equation (2.4.9)

is used with (2.4.1) and intermediate values of n.

It is clear that cquation

(2.4.9) does not gencrally constitute an acceptably accurate way to compute

mo(t) for its own sake.
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2.5 Closure Methods With Three or More Equations

Grandma Sonderquist’s Conclusion: A chicken
doesn’t stop scratching just because the worms
are scarce.

{1001 Logical Laws..., Peers and Bennett}

Three Equation Methods

Between fhe two two-equation closure methods described and analyzed in the
preceding two scctiqns, we are able to compute approximate values for all four
the quantities listed at the beginning of section 2.1 . Little has been said about
the computation of Yo(t) so far, but since both of these methods produce

estimates of Ho(t) and mo(t), it is easy to compute Yo(t).

We have used only some of the equations listed in Table 2, and that Table can
be extended indefinitely. A reasonably concerted search has been made for
additional viable closure methods, perhaps based on systems of more than two
differential equations. One such method is described below, but in general thc.

results of this search have not been particularly encouraging.

The main problem encountered in widening the scope of equations from Tab-lc 2
which were considered is in finding viable closure formulas. The quantities which
must be eliminated from many of the equations not coﬁsidcrcd until now usually
include moments or components of moments of order two or greater. These
quantities have much more complicated steady state formulas, and they tend to

vary over much wider ranges of values as a function of time.
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We end up trying to approximate higher order moments by complicated
expressions involving lower order moments which are not only difficult to test
comprechensively, but also difficult to justify intuitively. It is not surprising that
such approximations are usually not simply poor, but lead to equations with
solutions that violate some very basic requirements (such as the occurrence of
negative values for moments of queue length, or probabilities with values

exceeding 1).

However, a three-equation closure method was found for computing Ho(t),
m(t), and Yo(t). We start with the first, second, and fourth equations in Table

2, modifying them trivially to get the system

Ho(t) = —)\HO - qu - \)HOYO ,
wee) = A -l 2
. ol = Mol
Yo(t) = 2 ’
I
0
where
! = - - - ) 2
mo(t) AHOYO \)2;0 + wm le (2)
Since we have the exact relations
0
Hl = 1 - HO , m, = m - mo . and YO = HO .

the only closure formula we need is to eliminate Co(t) from equation (2).
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Now, at steady state,

pc(pc + 1)
1 -p

and so with a little effort, we can come up with a list of potential closure

formulas, including the two simplest,

T = cm , (3)

g, = ’ (4)

since m , cp,and I, =1 - p, giving Method 3B.

A number of more complicated flights of fancy were included briefly in test
calculations, but all resulted in catastrophic numerical breakdown of the solution
of the resulting system of differential equations within one or two steps of the

starting point .

What formula (3) has going for it is simplicity. In constant parameter
calculations with‘ A =20,u =40, and v = 2.0, results were almost
mi.slea.dingly good. Figurc 2.21 includes a plot of relative errors as well as plots
comparing the exact and approximate quantities for this set of constant
parameters. Note from Figure 2.21d that the approximate mo(t) takes a bit of a

negative dive for a short interval initially, and that the relative error in mO(t) 1s
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rather large initially.!

Figure 2.22 shows what happens when the corresponding oscillatory parameter
calculation is done using equation (3). There is no real need to discuss
magnitudes of relative errors here, though, for what it’s worth, the first clipped
peak in Figure 2.22d actually rises to a value of approximately 150, which is
around 60 times the true value of YO(t) at that point. Reservations regarding
use of formula (3) above in a closure method for any sort of calculations are
difficult to avoid in view of Figure 2.22. This is perhaps a good example of the
risks in using a closure formula based only on simple algebraic coincidence
between steady state formulas, since it is difficult to think of reasons for Z;O to

vary in simple direct proportion to m

l in general.

On the other hand, the formula (4) leads to a very accurate closure method
here. This could well be due to the fact that not only is (4) true at steady state
in the constaﬁt parameter case, but one could perhaps argue that go will vary in
a manner similar to the square of mz . At any rate, for the constant parameter
retrial queue with A = 2.0, 4 = 4.0, and v = 2.0, relative errors in Ho, m, and
' mo, never exceed a magnitude of 0.03, and when plotted on the same grid at the
level of resolution employed in figures in this thesis, graphs of the approximate
and exact quantities are virtually indistinguishable. Figure 2.23 compares plots of

exact and approximate values of HO, m, and m, using (4) for the oscillatory

IFigure 2.21a has been clipped somewhat. At t = 0.5, the first positive value
of t for which an approximate value of my(t) was computed, the relative error in
m(t) is -1.7. While this is a rather large value, the magnitude of the relative
error does decrease rapidly to a range of values comparable with the relative
errors in the other two quantities being computed.
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parameter case with )\0 =20, ¥ =4.0, and \)0 = 2.0. Clearly, when formula
(4) is combined with equations (1) and (2), a closure method results which is of

comparable accuracy to those methods discussed in previous sections.?

Closure Methods Involving Four or More Equations

Two attempts were made to find viable four-equation closure methods. One
attempt involved the equations for I[(')(t), m’(t), C(; (t), and i;o'(t) from Table

2 (a round-about way to get at Il |, m, and v). This required a closure formula

0’
for mo and no , the server-idle component of the third order moment of the
system. A second line of work involved the equations for I[(’)(t), mo’(t), m’(t),

and v’(t), which required closure formulas for ml and go. All attempts here

produced ludicrous results.

A five equation system using the equations for I[[; (v, mo’(t), m’(t),
Cé (t), and g_; (t) was tested briefly, but abandoned on the basis of early results.
This system required only a single closure formula for N, but none of the four

such potential expressions tested showed any promise at all.

ZActually, one can use equations (1) and (2) as written to solve for I, (v),
m(t) and Yy(t), or simply use the original equations for T/(t), m’(t) and my(t) -
in Table 2-with formula (4) to solve for Ho(t), m(t) and mo(t), from which Yo(t)
can be computed easily.
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The calculations represented here correspond to Ay = 2.0, u(t) =
Vo = 2.0 and a period of oscillation of 10.0 time units. Appendix A gives
details of calculations done to obtain these exact quantities.
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details of calculations done to obtain these exact quantities.
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2.6 Summary and Conclusions

In each of sections 2.2 through 2.5, we have described and analyzed one or
more distinct closure methods for the single server retrial queue along with
computations illustrating the accuracy of the approximate quantities produced and

discussed why we might expect a certain degree of accuracy in each case.

Of the methods studied, three were found to give results of the same degree
of accuracy as the closure method due to Rothkopf and Oren [1979]. These are
summarized in Table 7. Only one of these three serviceable methods produces
estimates of the variance of the queue length, v(t), whereas all three give
estimates of the probability that the system is empty, HO(t), and the mean
number of customers in the system, m(t). It is also possible to compute estimates
of mO (t), the server-idle contribution to the mean number of customers in the
system or Yo(t), the conditional expected number of customers in the system
given the server is idle, using any of the three best methods described, but the

accuracy of these estimates has been examined only for Method 3B.

The quantities HO (t) and m(t) can be obtained using any of the three closure
methods found viable, Experience so far does not indicate that any one of these
three methods is markedly superior to the others if HO (t) and m(t) are the only
quantities of interest. Use of Method 2E in this case may be attractive, since

that method has been studied most comprehensively.
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The primary value of these closure techniques is in the reduction in
computational labour they allow compared to determining the same quantities
’exactly’ by solving an appropriately truncated subsystem of equations (1.1.3).
Instead of solving a system of dozens or perhaps hundreds of simultaneous
ordinary linear differential equations, we can get good approximations for these
quantities by solving a system of two or three such equations only. The
reduction in dimension of the systems to be solved when closure methods are used
brings their solution within the capability of currently available microcomputer

systems.

This work also demonstrates that Rothkopf and Oren’s closure approach can be
usefully modified to apply to more complicated queuing regimes, and no doubt to
other probability models involving systems of ordinary linear differential

equations.

We do note however, that the work in this thesis applies only to the single
server retrial queue, with all inter-arrival, inter-retrial, and service times assumed

exponentially distributed. The work of Rothkopf and Oren would seem to imply

that extension of these techniques to multi-server retrial queues with arrival and
service times exponentially distributed would be easier to do than to allow
alternative and inevitably more complicated probability distributions. One would
not be surprised if the development of closure methods turned out to be very
difficult if not impossible for systems which could not be described by a system
of ordinary linear differential equations. In Chapter 1, mention was made of a

number of alternative approaches proposed for non-exponential queue systems.
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TABLE 7. Summary of Serviceable Closure Methods for Computing the Time-
Dependent Behaviour of the Single-Server Retrial Queue.

METHOD 2C: Ho(t), m(t) (Two Egquations)
/
Ho(t) = —Ho(t) + qu(t) - vym(t) + vml(t)
(2.3.1)
m/(t) = X\ - qu(t)
with
Hl(t) = 1 - Ho(t)
cHl(t)+l Hl(t){cﬂl(t)+l}
ml(t) = nm(t) + (1-m) (2.3.6)
c+1 Ho(t) ‘

(Calculations reported in this thesis used the arbitrary value
n = 1/2, and no attempt was made to determine if this was an
optimal value to use for 71, nor was any search made to find
values of 1 leading to greater accuracy.)

METHOD 2E: Ho(t), m(t), v(t) (Two Equations)

m’(t) = A - p{1 - Ho(t)}

(2.4.1)
vi(t) = A + p - uHO(t){Zm(t) + 1} + Zumo(t)
with 2
m /{(V—m)(c+l)}
<J1{> if v #£ m (2.4.4)
v
Ho(t) =
e M/ (1) ifv=m (2.4.5)
m,(t) = nc{l-Ho(t)} + (l—n){m(t)HO(t) - T, ct) (2.4.9)

Hl(t) = 1 - Ho(t)

(when A = Vv, choose N between 0.25 and 0.5,
when X >> v, choose n = 0.1)
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TABLE 7, continued.....

METHOD 3B: Ho(t), m(t), mo(t) or Yo(t) (Three Equations)
/
HO (t) = —AHO(t) - qu(t) - vHo(t)YO(t)
(2.5.1)
m’ (t) = A - qu(t)
m(’)(t) = —MIO(t)YO(t) - \)co(t) + uml(t) - qu(t) (2.5.2)
or 7/ Vs
) mo(t)HO(t) - mo(t)HO(t)
Yo(t) = 5
{m_(t)}
0
with
Hl(t) = 1 - Ho(t)
»ml(t) = m(t) - IHO(t)
Yo(t) = mo(t)/HO(t)

mo(t){mo(t) + 1}
L, (t) = ’ (2.5.4)
I, (t)




APPENDIX A

DETAILS OF CALCULATION OF EXACT QUEUE PROPERTIES

As described in Section 1.3, exact values of time dependent probabilities
required to compute exact properties of the various queues considered were
determined by solving truncations of the systems (1.1.3a,b) for the M/M/1/1
retrial queue and (1.4.1) for the simple M/M/1 queue using the RKF45
algorithm,

The dimension of the actual system solved numerically was set by
specifying a maximum value of n (the number of customers in the system for
the simple M/M/1 queue and the number of customers in orbit for the M/M/1/1
retrial queue). The RKF45 algorithm then extrapolated a numerical value for
each of the probabilities corresponding to all values of n smaller than the
specified maximum value, beginning with a fixed initial value at time zero. In
gll cases, solution estimates were obtained in steps of At = 0.5 starting with t =

At the end of each such step, all of the computed probabilities were
summed, and the residual obtained by subtracting this sum from unity was a
measure of the error caused by solving only the finite subset of the infinite
system of differential equations describing the queue. The maximum value of
n to be considered was generally chosen so that this residual probability never
became greater than 10-6, though in some calculations used, this residual
attained larger values over brief time intervals.

To partially compensate for this truncation error, the residual was added
into the maximum index probability for the M/M/1 queue or pro rata into the
maximum index probabilities for the M/M/1/1 retrial queue.

The actual maximum values of n used in calculation of exact probabilities
for test calculations reported in this thesis and the maximum values attained by
the probability residuals in each case are tabulated below. It should be noted
that the quoted residuals are the maximum rather than typical values that
occurred over the entire time range considered.

Simple M/M/1 Queue:

Oscillatory

P Constant Parameter Parameter
0.1 25 <10-12 25 <10-12
0.3 30 <10-12 30 1.0 x 10-12
0.5 30 4.6 x 10-10 30 5.6 x 10-7
0.7 35 8.7 x 10-7 50 2.6 x 10-7
0.9 65 5.3 x 10-8 70 2.6 x 10-5

0.95 80 1.4 x 10-°
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M/M/1/1 Retrial Queue (¢ = 1):

p

0.1
0.3
0.5
0.7
0.9
0.95

M/M/1/1 Retrial

¢
0.2
0.5
1.0
2.0
5.0
10.0

Constant Parameter

20
20
30
35
50
60

<10-12
2.4 x 10-11
3.0 x 10-9
6.1 x 10-6
5.0 x 10-5
1.1 x 10-5

ueue = 0.5):

Constant Parameter

20
20
30
25
30
35

4.1 x 10-7
8.4 x 10-7
3.0 x 10-9
4.7 x 10-7
4.1 x 10-7
2.3 x 10-7

20
20
29
50
65

20
20
29
25
30
35

Oscillatory
Parameter

6.0 x 10-12
8.1 x 10-8
3.9 x 10-6
2.2 x 10-5
5.4 x 10-4

Oscillatory
Parameter

2.5 x 104
4.4 x 10-4
39 x 10-5
4.1 x 10-4
5.0 x 10-4
40 x 10-4
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