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Abstract

This thesis addresses the problem of combining the prior

density functions, f,,...,f , of n individuals. 1In the first of
n

two parts, various systems of axioms are developed which

characterize successively the linear opinion pool, A(f,,...,f )

n
n
= Zwif , and the logarithmic opinion pool, G(f,,...,f ) =
i-‘-l 1 i . n
n a(i) n af(i)
nt /Jf 0 f du. It is first shown that A is the only
i=1 i i=1 1

pooling operator, T™(f,,...,f ), which 1is expressible as
n

T(f,,...,f )(6) = H(f,(6),...,f (8),8) for some function H which
n n

is continuous in its first n variables and satisfies
H(0,...,0,8) = 0 for p- almost all 6. The regularity condition
on H may be dispensed with if H does not depend on 6. This
result leads to an impossibility theorem involving Madansky's
axiom of External Bayesianity. Other consequences of this axiom
of group rationality are also examined in some detail and yield
a characterization of G as the only Externally Bayesian pooling

operator of the form T(f,,...,f )(8) = H(f,(8),...,f (8))/
n n

n

fH(f,,...,f )du for some H:(0,») —>(0,=). To prove this
n

result, it is necessary to introduce a "richness" condition on

the underlying space of events, (®,u). Next, each opinion f |is
i
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regarded as containing some "information" about © and we look
for a pooling operator whose expected information content 1is a
maximum., The operator so obtained depends on the definition
which 1is choseh; for example, Kullback-Leibler's definition
entails the linear opinion pool, A.

In the second part of the dissertation, it is argued that
the domain of pooling operators should extend beyond densities.
The notion of propensity function is introduced and examplés are
given which motivate this generalization; these include the
well-known problem of combining P-values. A theorem of Aczél is
adapted to derive a 1large class of pooling formulas which
encompasses both A and G. A final characterization of G is
given via the interpretation of betting odds, and the parallel
between our approach and Nash's solution to the T"bargaining

problem” is discussed.

James V. Zidek

Thesis supervisor
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Technical Note

This thesis was prepared on the Amdahl 470 V8 computer of the
University of British Columbia with the aid of the FMT text-
processing language. Because the character sets for the Xerox
9700 printer are somewhat limited, it was necessary to depart
slightly from some conventional mathematical symbolism, For
instance, the letter "R" had to be reserved to denote the real
line and the British Pound Sterling symbol "£" was substituted
for script ell. On some occasions, it was also necessary to
write subscripts on the same line as the indexed gquantities,
e.g. w(i) instead of w when this quantity appeared as an
i

exponent. Furthermore, tildas were systematically printed over
the wvariables instead of under. We hope the reader will not be
inconvenienced by these departures from common usage.

The material is divided into 4 chapters, and each chapter into
several sections. Equations, definitions, theorems and examples
are numbered in the decimal notation. Thus, Equation (2.3.5)
refers to the fifth labelled equation of Section 3, in Chapter
2. Within Section 2.3, it might be referred to simply as
Equation (5).



viii

Acknowledgements

The author wishes to thank his supervisor, Prof. James V. Zidek,
for suggesting most of the problems treated in this thesis and
for financial assistance. His appreciation is also extended to

Mr. Bruce J. Sharpe for his constant willingness to enter into
discussion.

The financial support of the National Science and Engineering
Research Council and of the University of British Columbia are
gratefully acknowledged.



ix

Dedication

This dissertation is dedicated with all my love to the two women
who have supported me throughout my studies: my mother, Lucie
Lapointe-Genest, and my wife, Christine Simard-Genest.



I. PROLEGOMENA

1.1 Introduction

In this thesis, we shall be concerned with the problem of
devising methods for aggregating opinions. By "opinion," we
mean the expression of a person's belief vis-ad-vis the outcome
of an wuncertain event, as opposed to an intention, as in

"opinion polls" (e.g., "whom do you intend to vote for?").

Usually, opinions will be expressed as (subjective)
probability distributions over the appropriate space © of
"states of nature." They might be prior, posterior, structural
(Fraser 1966) or fiducial distributions, for instance. Indeed,
provided that the "degrees of belief" of an individual are
assessed quantitatively and in a coherent manner, they can be
shown to conform to the axioms of probability theory (de Finetti
1937; this question has recently been reexamined by Lindley

1982).

However, common observation ‘and experimental studies
(Winkler 1967; Tversky & Kahneman 1974; Slovic et al. 1977) tend
to confirm that although an individual may have a good knowledge
of the relative likelihood of the various possible states of
nature, it cannot generally be expected that he will also master

the calculus of probabilities and express his opinion



accordingly. Moreover, we would like to account for the use of
such widely spread expressions of belief as improper, vague, and
uniform or non-informative priors, as well as the more recent

concept of belief function discussed by Shafer (1976).

Therefore, we shall take an opinion to be any function

f:06 —>[0,=) on the space © of possible states of nature. 1If

the range of f is restricted to (0,«), we will call it a

propensity function, or P-function for short. Furthermore, if f

bélongs to a collection A = {g:0 ——>[0,w)|f§du = 1} . of
probability densities with respect to a dominating measure u on

©, we will say that f is a u-density.

In accordance with the literature, we will call assessor or
expert any person who is asked to produce his opinion concerning
e. Generally, an assessor will be some kind of expert whose
opinion on the subject matter is deemed to be enlightening, but
it need not be so. In our discussion, it will always be assumed
that when asked for their opinion, the experts are capable and
willing to present an assessment of all relevant facts and
evidence known to them, As long as this is the case, every
opinion has its value and should be treated with consideration.
For, in subjective or personalistic probability theory, the
relative likelihood attributed to an event or hypothesis is
simply what the assessor believes it to be; there 1is no such
thing as a "correct" or "objective" opinion. For a critical

review of this approach, cf. Fine (1973).



1.2 The problem of the panel of experts

In a decision analysis, it is often necessary to combine a
group of individuals' beliefs 1into a single representative
opinion which may be thought of as a consensus of these peoples’
judgements. This problem of determining decision rules for
statistically aggregating individual opinions without group

discussion nor bargaining is called the problem of the panel of

experts, after Raiffa (1968).

Let us suppose, for instance, that a decision maker who has

very little knowledge of a subject-matter is confronted with the
need to quantify his beliefs and determine a prior distribution
before he can undertake a formal Bayesian analysis. To solve
this problem, he might choose to express his ignorance by using
a prior distribution which adds little to the sample
information; much work has been done along these lines by
Lindley (1961), Jeffreys (1967), Novick & Hall (1965) and
Zellner (1977). However, the uncritical use of non-informative
prior measures sometimes leads to inconsistency and paradoxes
such as those presented by Dawid, Stone & Zidek (1973) or Stone
(1976). Moreover, this approach will not be satisfactory if the
problem at hand is of major importance and its analysis will
result 1in a costly, irreversible decision. 1If time is pressing
or collection of a large amount of data 1is impractical, the
decision maker may well decide to consult one or several people

who do have knowledge believed to be relevant to the question,



l.e. experts. These experts are said to form a panel of
consultants. Even after extensive discussion amongst them about
their beliefs and proper modification of their respective
opinions to take into account all the jointly perceived and
available information, it is wunlikely that the experts will
converge to a state of total agreement. When this happens, we
say that the group is left in dissensus. As only one opinion is
needed in the end, how does the decision maker proceed to
extract it from the number of (possibly) diverging opinions he
has collected, without being irresponsive to any particular

assessment?

Despite the prevalence of consulting in countless decision-
making situations, this problem has received comparatively
little attention in the literature, as pointed out in the review
papers of Winkler (1968) and Hogarth (1975,1977). An
instructive introduction to the various theoretical questions

raised by group-assessments is provided by Raiffa (1968).

In conceptualizing the phenomenon, we will assume that all
discussion and argument have taken place at the time when the
decision maker is presented with a number, n, of .opinions, one
for each member of the panel of experts. We will place
ourselves in his shoes and attempt to find desirable properties
which a -consensus opinion should have. More specifically, we
intend to propose and explore the consequences of various

interpretations of such vague concepts as "adequacy,"



"representativeness" and "consensus."

The approach we take here is normative, in the sense that
we prescribe the way in which a decision maker should process
expert opinions if he wishes to adhere to certain postulates of
coherence and rationality. "No attempt is made to describe how a
person confronted with the actual problem would be observed to
carry out the task. Moreover, we are implicitly adopting the
view that 1in the presence of uncertainty about ©, the quantity

of interest to the decision maker is T(f,,...,f ), the consensus
n

opinion describing his final assessment of beliefs concerning
the possible outcomes of the event upon collecting the experts'

views f,,...,f .
n

This attitude is by no means generally accepted, although
it has some supporters (Winkler 1968; Weerahandi & Zidek 1978;
Bernardo 1979 in a different context). However, it makes
perfectly clear that the problem we propose to examine differs

markedly from that of a group faced with a decision-making

situation, where the main concern lies with the final group
decision and where -by way of necessity- considerations of
utility and bargaining are invoked. The distinctions and
relations between these two problems havé béen“_qell emphasized

in a survey paper by Weerahandi & Zidek (1981).



Admittedly, therefore, the expression "decision maker" is
something of a misnomer. 1In fact, the present set-up leaves
open the possibility that the decision maker represents the
"synthetic personality"™ of a group amongst whose members
discussion has failed to create a consensus, but which is called
upon, nevertheless, to produce a single assessment of beliefs
representative of the various opinions voiced. This would be
the case if, for example, a group of meteorologists was asked to

issue a joint forecast.

It 1is important to realize, then, that the role played by
our decision maker has a 1lot in common with that of the
statistician of standard decision theory wﬁen he attempts to
devise strategies to estimate a quantity from a number of
observations. Only. here, observations are opinions, the
estimate sought is also an opinion, and there 1is no "true
objective opinion" against which to judge the performance of the

pooling formula that the decision maker chooses to use.

1.3 Previous proposals

The 1literature which relates to the so-called problem of
the panel of experts divides roughly into two main streams: on
the one hand are those papers which deal directly with personal
probability distributions and their aggregation; on the other

are those which are concerned with a broader picture, that of a



group decision problem, and which focus on considerations of
utility rather than on the consensus of opinions. References of
the latter type will only be mentioned when they include some

helpful comments regarding the problem at hand.

Following Stone (1961), most investigators have represented
group assessments by taking a weighted average of individual

distributions. Formally, if f represents the probability
i

density of the i-th member of the group concerning the unknown

quantity ©, then the 1linear opinion pool for n experts is

defined by

n
T(f,,...,f ) = Zwf, (1.3.1)

n
where w 2 0 and Z w = 1. The restrictions on the weights,
i i=

w , insure that the joint opinion of the group, T(f,,...,f )
i n

’

will be a density.

Winkler (1968) discusses the problem of determining the
weights for each expert's distribution and proposes various ad
hoc solution schemes. 1In subsequent studies, he and others
(Staél Von Holstein 1970; Winkler 1971) found that the uniform

weighting scheme, w = 1/n, was never outperformed more than
i

marginally (in terms of predictive ability) by other schemes



which attempted to rank each expert according to his expertise
or past performance (these included the method of Roberts (1965)
for combining and updating weights using Bayes' Theorem). Also
supporting Formula (1.3.1) is the often observed empirical fact
that composite distributions show greater predictive ability
than most of the individual experts, ' a phenomenon which might
be 1linked to the reliability of average point estimates in the

classical theory of estimation.

But it was in the work of Bacharach (1973, 1975) that solid
theoretical grounds for implementing the 1linear opinion pool
began to emerge. Although Bacharach is mainly concerned with
the existence of a sensible group preference relation for
ordering the possible courses of action in the face of
differences of opinion and utility, he finds conditions on this
group preference relation which entail, as a unigque solution,
Stone's Formula (1.3.1). In a theorem which he attributes to
Madansky (1964), Bacharach derives (1.3.1) by assuming
essentially that the group will prefer an action A to another
action B whenever each of its members does, and that the group's
preference relation is not affected by the presence of

irrelevant alternatives. After arguing in favour of these

' Dr. F. P. Glick brought to my attention some recent work of
Alan Shapiro (1977,1979) who rediscovered this fact for himself
and used the linear opinion pool to increase diagnostic accuracy
of physician-experts. -



postulates, he goes on to show that if an extra condition which

he calls group rationality is introduced, the pool can be forced

into dictatorial form, i.e. one of the w 's of (1.3.1) equals 1
i

while the remainder are 0. This far-reaching condition asserts
that the group acts as if it were a single expected-utility
maximizer. In Section 2.4, we too will prove such an
"impossibility theorem" wusing a similar concept called by

Madansky (1964,1978) External Bayesianity.

In our endeavour, we have been very much stimulated by the
work of Kevin McConway (1981) who was the first to give a strong
justification for using the 1linear opinion pool within the
framework we propose to adopt ourselves. His main theorem
states that if a decision maker wants his process of consensus

finding to commute with the marginalization of the distributions

involved, then he has no alternative but to use Formula (1.3.1).
Chapter 2 of this thesis will start with a discussion of

McConway's result.

Despite its great popularity, the weighted average formula
is endowed with features which may in certain circumstances be
viewed as drawbacks. For instance, Winkler (1968) notes that
(1.3.1) is typically multi-modal on its domain and so may fail
to identify a parameter which typifies the individual choices.
This 1leads him to formulate an alternate prescription, which he

calls the natural conjugate approach. In this method, each

group member's opinion is deemed to constitute "sample evidence"
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which can be represented by a natural cbnjugate prior (Bickel &
Doksum 1977, p. 77) to the distribution of the data-generating
process of interest. In order to form the group assessment,
therefore, the decision maker need only combine opinions in a
manner similar to successive applications of Bayes' Theorem.

The reader will recognize that even if this approach obviates
the possibility of multi-modal distributions, it leaves us
nonetheless with the difficult question of determining weights
for each of the experts, as well as the degree to which their

opinions are based on overlapping experience and data sources.

It is precisely these difficulties which brought Morris
(1974,1977) to elaborate a theory of expert use that is entirely
consistent with the Bayesian philosophy. 1In his work, Morris
pushes Winkler's idea one step further and treats each expert

probability distribution as a random variable whose value is

revealed to the decision maker., To obtain the consensus
distribution, the decision maker must then proceed to introspect
a likelihood function representing his assessment of the
different experts' knowledge and combine their opinions one-by-
one with his own wusing Bayes' rule. A conventional, albeit
complex uni-Bayesian analysis results. In the simplest case,
that where the members of the panel rely on independent data

bases and are good probability assessors (i.e. they are



"

calibrated ' ), Morris shows that the normalized product of the

experts' priors obtains:

n a(i) n a(i)
T(f,,...,f ) = nf /f £ du, (1.3.2)
n i=1 1 i=1 i
with a(i) = 1,1<i<n; this is a particular case of the so-called

logarithmic opinion pool which Dalkey (1975) had earlier

proposed on an ad hoc basis. Note that for T(f,,...,f ) to be a
“n

u—-density in (1.3.2), the a(i)'s do not need to add up to one.

However, Morris assumes that the decision maker is one of the
members of the panel, which forces a(1) = ... = a(n); otherwise,
the solution would be expert-dependent and thus could not

constitute an acceptable consensus.

Although Morris' work certainly is conceptually appealing,
consistent and insightful, only few would agree with him that it
represents a practical methodology because of the insurmountable
assessment problems which overlapping experience would cause.
For this reason, other researchers have continued to seek direct

ways of pooling opinions.

It is interesting to observe that the prescription embodied

' As Lindley & al. (1979) observed, this is asking a lot. On the
other hand, Dawid (1982) has recently shown that a coherent
Bayesian expects to be well calibrated!!
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in (1.3.2) is not only a natural implication of Morris' analysis

but as well it is Externally Bayesian when the a(i)'s add up to

one. This axiom, formulated by Madansky (1964,1978), requires
the commutativity of the operations of (i) compounding
individual probabilities into a group probability; and (ii)
updating probability assessments via Bayes' formula. The basic
properties of Externally Bayesian procedures have been explored
by Madansky (1978) who finds that of those pooling formulas
which are discussed in the 1literature, only dictatorships,
(1.3;2) and certain applications of the natural conjugate

approach survive the test.

External Bayesianity has also been supported by Weerahandi

& Zidek (1978), who call it prior-to-posterior coherence. Their

unpublished manuscript contains an incorrect (but correctable,
cf. Theorem 2.4.6) derivation of the 1logarithmic opinion pool
using External Bayesianity. Moreover, they argue that
randomized decision rules need to be introduced because, in some
cases, the prior opinions of the experts are so discrepant that
"tossing a <coin" is the only satisfactory means for choosing
between them. 1In Section 2.5, a similar idea will 1lead us to
still another characterization of Stone's linear opinion pool,
whilst it will be shown in Section 2.4 that the logarithmic
opinion pool is, in some sense, the only Externally Bayesian

procedure for combining the prior density functions f,,...,f of
n

n individuals.
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Our survey of the literature on the problem of pooling
densities would not be complete without at least a brief mention

of the two following papers.

In 1959, Eisenberg & Gale (see also Norvig 1967) presented
an ingenious scheme for combining probability distributions
based on the "pari-mutuel” betting method. Their idea was that
the principles determining "totalisator odds" could
appropriately determine group Jjudgements in more general
situations. However, it can be shown that certain inaividual
opinions will allow their holders to dictate the consensus odds,
and for that reason, the pari-mutuel method has never been very

popular.

Then, DeGroot (1974) proposes that upon being apprised of
the distributions of the other members of the panel, each expert
updates his own prior wusing Formula (1.3.1) by assigning
importance weights to himself and his peers. The procedure is
then iterated until further revisions no longer alter any of the
members' opinions, and limit theorems from Markov Chain theory
are invoked to determine when a consensus distribution exists
and what it is when it does exist. Berger (1981) points out an
error in DeGroot's original paper and gives the exact conditions
under which the iterative process will converge. A variation on
the theme is described by Press (1978), who also provides an

extensive list of references.
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Although DeGroot's method does not formally fit our set-up
(remember that we assume all discussion is closed), it could be
imagined that the iterative process 1is carried out by the
decision maker himself, once he has taken note of the wvarious
opinions expressed as well as the ratings that each individual
expert granted to himself and to the other people who were
consulted. Along with French (1981), however, we find three
important flaws in this general approach. They are: (i) the
linear opinion pool 1is still proposed as an ad hoc procedure;
(ii) it 1is assumed that no outside data, observations or
information about the value of 6 is available (this invalidates
External Bayesianity as a selection principle); and last but not
least, (iii) no provision is made for the (non-negligible) case

when the iterative procedure leaves the group in dissensus.

1.4 Outline of subseguent chapters

As pointed out in the first section of this chapter, we do
not restrict ourselves to what could be called the «classical
form of the problem of the panel of experts, where opinions are
assumed to have been expressed as pfobability distributions over
©. Rather, we enlarge the definition of opinion to include any
expression of beliefs, f:®6 —>[0,«), integrable or not. Thus,
we will be concerned with propensity functions as well as
density functions. The two topics will be discussed in separate

chapters.
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Starting with the problem of pooling densities, Chapter 2
begins with a discussion of McConway's (1981) characterization
of the linear opinion pool via the Marginalization Property. A
short proof of his theorem appears in Section 2.2. We are then
led to propose in Section 2.3 a different derivation of the same
operator founded on the concept of "locality." At least one
avenue for generalization is explored. Section 2.4 1is devoted
to a study of Madansky's (1964;1978) axiom of External
Bayesianity and the logarithmic opinion pool is shown to be the
only quasi-local pooling formula which is consistent with this
postulate. Some of the general properties possessed by
Externally Bayesian procedures are derived on the way. 1In
Section 2.5, we regard a consensus distribution as a statistic
which condenses the information contained in a set of opinions.
The 1idea of an information maximizing pooling operator then
leads to yet another characterization of Stone's linear opinion
pool. Furthermore, a large class of pooling formulas containing
both the 1linear and the logarithmic pools as limiting cases is
derived using Kullback's (1968) notion of divergence. Finally,
Section 2.6 discusses these findings and reiterates some words

of caution.

Chapter 3 addresses the more general problem of combining a
number of propensity functions. Examples are presented in
Section 3.1 which motivate this generalization; amongst them

appears the well-known problem of combining independent tests of
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hypothesis. All these examples are continued in Section 3.2,
where we focus our attention on pooling operators which are
local. Here, we argue that the quasi-arithmetic weighted means
of Hardy, Littlewood & Pblya (1934) are the only "sensible"
local rules for aggregating propensities; the approach is
axiomatic and well suited to those cases where the experts'
scales of belief are intercomparable. The 1last section is
devoted to characterizing the logarithmic pool when the
comparability assumption is not met; the parallel between our
approach and Nash's (1950) solution to the bargaining problem is

also discussed.

Finally, Chapter 4 contains suggestions for further

research.
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II. POOLING DENSITIES

2.1 Fundamentals and notation

Throughout this chapter, we will denote by © the space of
(mutually exclusive) states of nature over which each of a group
of n assessors (n22) will be asked to produce a probability
distribution. For convenience, we will assumé that u 1is a
dominating measure on © and that each opinion is expressed as a
u-measurable function £f:6 —>[0,=) with ffdu = 1. Because of
the properties of the Carathéodory process for generating
measures, there is no loss of generality in assuming u to be
complete and in taking Q(u) = {Ac ©|u(B)=u(Bn A)+u(B\A) for
all B < ©} to be the o¢-field of pu-measurable sets. In
applications, u will wusually be o-finite, so that every other
measure v which is absolutely continuous with respect to u will
have a Raddn-Nikodym derivative (Sion 1968, p. 110). But o-

finiteness is not essential otherwise.

We will write A for the collection of all u-measurable

densities on ®, and (f,,...,f ) to represent either a typical
n

n | n
element of A or else the function £:0 —>[0,=) defined by

£(6) = (£,(6),...,f (6)). The 1interpretation will always be
n

clear from the context, so no confusion will arise from this

convention. It will also be assumed that A # @, so that there
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exists A e Q(u) with 0 < u(A) < =,

n
By a pooling operator on ©, we mean any application T:A —>

A which maps the n-tuple (f,,...,f ) to T(f,,...,f ), a u-
n n

density. The following definition 1lists the properties of

pooling operators which we will most often refer to.

Definition 2.1.1

n
We say that a pooling operator T:A —>A is

(1) local

- n
iff there exists a Lebesgue-measurable function G:[0,®) —>

[0,=) such that T(f,,...,f ) = Gu(f,,...,f ) u-a.e. Here,
n n

o represents the usual composition of functions.

(2) guasi-local

n
iff there exists a function C:A —>(0,~) such that

T(f],oo.,f ).C(f1,.l0,f ) iS local.
n n

(3) unanimity preserving

iff 7T(f,,...,f ) = ¢ u-a.e. whenever f =f p-a.e. for all
n i

1<1<n.

(4) dogma preserving

n .
iff Supp(T(f,,...,f )) c U Supp(f ) u-a.e., where in
n i=1 i

general Supp(f) = {6e®|f(6) = 0}.
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(5) a dictatorship

iff there exists 1<i<n such that

T™f,,...,f ) = ¢£ u-a.e. for all choices of f,,...,f in
n i : n

the domain of T.

To prove theorems, we will often make use of the following

elementary results from the Theory of functional equations.

Their proofs are to be found in Aczél (1966).

Lemma 2.1.2

n
Let h:R —>R be Lebesgue-measurable or non-decreasing in each

of its n variables. 1If

| h(Z)+h(F) = h(Z+¥) (2.1.1)

for all X and ¥, vectors of real numbers, then there exist
n

constants ¢;,...,c € R such that h(X) = Lcx over its

n i=

domain, ¥ = (X{,...,%X ). The result also holds true when the
n

n
domain of h is [0,=) or [0,K] with K > 0 a constant.

Lemma 2.1.3

n
Let h:(0,») —>R be Lebesgue-measurable or non-decreasing 1in

each of its n variables. 1If

h(X)-h(¥) = h(X-§) (2.1.2)

n
for all X,¥ > &, then h(¥X) = I x for some c(i) e R.
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Edquations (2.1.1) and (2.1.2) are usually referred to as

Cauchy's functional equation. In the present context, addition

and multiplication of vectors is taken to be componentwise.

2.2 McConway's work in review

In this section, McConway's (1981) derivation of the linear
opinion pool will be discussed. A short proof of his theorem
(labelled 2.2.4) will also be offered. The discussion will

motivate and serve as a background for our own results.

It has already been mentionea that the approach adopted by
McConway fits the description of the problem of the panel of
experts set out in Section 2 of Chapter 1. To justify the
prescription embodied in (1.3.1), McConway first introduces what

could be called the Marginalization Postulate (MP). This

condition stipulates that the same consensus distribution should
be arrived at whether (i) the assessors' distributions are first
combined and then some marginalization 1is performed on the
consensus; or (ii) each assessor individually performs the
marginalization and the resulting marginal distributions are

pooled into a consensus distribution.

If a mild condition tantamount to that in our definition of

a dogma preserving pooling operator is added, then McConway



21

proves that the Marginalization Postulate is equivalent to what

he calls the Strong Setwise Function Property (SSFP), which 1in

turn holds true 1if and only if the pooling operator is of the
form (1.3.1). (To carry out his program, McConway introduces
the "Weak Setwise Function Property" (WSFP) and proceeds to show
that this property 1s equivalent to his Marginalization
Postulate. This fact constitutes Theorem 3.1 of his paper.

However, the proof is obscured by a misprint. The third line of
the 1last paragraph, p. 411, should read "any SeZ which contains
A has o(A) as a sub-o-algebra..." and not "any Se¢I contains A,

has o(A) as a sub-o-algebra...").

In his treatment, McConway does not assume the existence of
a dominating measure u, and consequently his results are stated
in terms of probability measures as opposed to densities.
However, McConway does say that "in practice, the experts will
usually agree on some obvious o-field over ©," and we claim that
most of the time, a natural p will impose itself just as well,
so that little is lost by assuming its existence. This point of
view 1s not entirely new, as an inspection of the set-up in
Stone (1961) or Weerahandi & Zidek (1978) will confirm. (Note
that for u to exiét, it suffices for the experts to agree on
some natural o-additive function 7 on a ring H. The
Carathéodory process will then automatically extend 7 to u and H

will be contained in Q(u). Cf. Sion 1968, p. 67).
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When a natural dominating measure u on © exists, McConway's

SSFP condition can be. formulated as follows:

Definition 2.2.1 (McConway 1981)

n
A pooling operator T:A —>A has the Strong Setwise Function

n
Property (SSFP) iff there exists a function F:[0,1] —>[0,1]

such that

SJI(AY-T(f,,...,f )Au = F{fI(A)E,8u, ..., JI(A)f Au] (2.2.1)
n n

for all A e Q(u), where in general 1I(A) stands for the

indicator function of the set A.

Before we state McConway's Theorem, we make a definition of

our own: !

Definition 2.2.2

We say that a space (O,u) is tangible iff there exist (at least)
three p-measurable neighbourhoods A, ,A,,A; in © such that

(1) 0 < w(a ) <=, i=1,2,3;
i

! Shortly after the completion of this thesis, a paper of Carl
Wagner (1982) was brought to our attention in which the author
uses the term "tertiary space” to denote what we call a tangible
space. Theorem 7 of his paper is equivalent to the formulation
of McConway's Theorem presented in Theorem 2.2.4 below.
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and

(I1) w(a nA) >0 => i=j.
i

One might wonder what an "intangible" space looks like. A
more or less complete answer to this question is provided by the

following lemma.

Lemma 2.2.3

The spaces 6, = {6,}, and ©, = {6,,6,} with » = counting

measure typify the class of intangible spaces.

Proof: Let (O©,u) be intangible, so that there are at most two
u-measurable sets A;,A, with properties (I) and (II). Assuming
A # @ is enough to guarantee the existence of at least one such
set A,.

If there exists only one set A, satisfying (I) & (II), then the
function f = I(A,)/u(A,) is the only element of A and (O,u) is
clearly equivalent to (©,,»).

On the other hand, if there are exactly two sets A,,A, with
properties (I) and (II), then it follows from Definition 2.2.2

that any u-measurable subset B of A must obey w(B) = 0 or u(B)
i

= u(A ), i=1,2,3, where A; = ©\(A,UA,). Moreover, A; itself has
i .

measure 0 or o=,
In particular, if feA and V(x) = {6e0|£(6) = x}, then

u(v(x)n A) = ula) for a unique value of x 2 0, say x , unless
i i i
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u(A ) = 0. Consequently, any f in A can be written as x,-I(a,)
i

+ x,-I(A;), i.e. (®,u) is equivalent to (&,,v). =

Evidently, intangible spaces are rather sparse. They are,
however, of some interest and practical importance, as the
reader can judge from Examples 2.5.5 and 3.1.3, say. If a space
(@,u) 1is intangible and includes two sets A,,A, with properties

(I) and (I1), we shall say that it is dichotomous.

With these definitions, we are now in a position to give a

precise statement of McConway's result (the proof appears

below):

Theorem 2.2.4 (McConway 1981)

Let (©,u) be a tangible measurable space. A pooling operator

n
T:A —>A has the SSFP iff

n
T(f,,...,f ) = Zwf u-a.e.
n i=1 1 1
n
for some w 20, Z w = 1.
i i=1 1

McConway observes that the restriction to what we call
tangible spaces (O,u) is hardly relevant to his argument
because if © had only two neighbourhoods, no nontrivial
marginalization could be performed. In view of Lemma 2.2.3

above, this 1is transparent. That Theorem 2.2.4 cannot be
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generalized to intangible spaces is illustrated by the following

Example 2.2.5

Suppcse © = {6,,6,} and u = counting measure.

Let G:[0,1]2—>[0,1] be such that

0 if x<y;
G(x,y) = |x if x=y;
1 if x>y,
and consider T:8?—>A defined by T(f,,f,)(6) = G(f,(8),£f,(6)).

Then T has the Strong Setwise Function Property and it is easy
to check that there are no weights w, and w, in [0,1] for which

T(f],fz) = W1f| + W2f2 for all f1,f2 € A.

Proof of Theorem 2.2.4:

One implication 1is obvious. To prove the other one, let
A,,A,,A; be three neighbourhoods with properties (I) and (I1),

and consider

3
£ = Za (j)-1(a)
i j=1 i j
where a (1).u(A;) = x , a (2).u(a,) =y and a (3)-u(A;) = 1-x -
i i i i i i
y 20 for given x ,y in [0,1] with x +y <1, 1<i<n. Then
i i i i i

(2.2.1) implies

Ji(a,)-T(f,,...,f )du = F(X),
n .
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JI(A)-T(f,,...,f )du = F(§),
n

and also

II(A1UA2)'T(f1,...,f )du = F(§+Y),
n

where X=(x,,...,x ), ¥=(y4,...,y ) and X+¥=(x 4y, ..., X +y ).
n n n n

Therefore F satisfies Cauchy's functional equation (2.1.1).
_ n
Using Lemma 2.1.2, it follows that F(x;,...,x ) = I w X on

n
[0,1] for some w,;,...,w in R. As F must be non-decreasing in
. n

each of its components, w 2 0 for all i=1,...,n; moreover, the
i
n

fact that T(f,,...,f ) is always normalized forces I w = 1, =
n i=1 1

At first sight, MP.seems sensible. It is a principle which
guards against inconsistency of ©probability assessments when
performing a "marginal analysis." The necessary pooling can be
accomplished either before or after the marginals are reported;
the same result is obtained by either route. However, there are
two typical situations in which the need for a marginal analysis

will arise, and they both cast doubt on the validity of the MP

principle:

Case I: © is a product parameter space over which each member of
a group of experts has been asked to produce his "multivariate"

distribution. However, the decision maker is only interested in
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a particular variable. 1In that case, McConway explains that MP
appears counter-intuitive, at least if the assessors are experts
in differing fields and hence have disparate prior knowledge.

It could be, for instance, that only one assessor has

specialized knowledge in the variable of interest.

Case II: © represents only one assessment situation and each
member of the panel has suggested his "univariate" distribution
to the decision maker. 1In that case, when would the decision
maker feel cohpelled to reduce the size of Q(u), the class of
all possible "events"? The answer 1is: in the 1light of new
evidence revealed to him (and to the panel) to the effect that

certain alternatives which had been considered possible a priori

can _now be ruled out because they have become "asserted 1logical

impossibilities" (Koopman 1940). Upon being apprised of this

new information, he would update his beliefs wusing Bayes'

Theorem, the only rational prescription for updating probability

distributions, subjective or not. !

Given that in general the processes of marginalizing and
updating priors using Bayes' rule are not eguivalent, what would

seem to be <called for, here, 1is not so much McConway's MP

In this regard, cf. French (1982) who provides axioms
justifying the use of Bayes' Theorem when = "changes of
information take the form of the occurence of an event in the
field upon which the subject is concentrating."
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condition as an axiom thch would guarantee that the same final
consensus distribution 1is arrived at whether (i) the experts'
priors are combined first and the resulting consensus opinion is
updated; or else (ii) the posteriors are derived by each expert
individually and then pooled by the decision maker. This axiom
already exists, and Madansky (1964,1978) calls it External

Bayesianity. For a more technical definition of this concept,

as well as an analysis of some of its consequences, the reader

is referred to Section 2.4 below.

Focusing on (2.2.1) now, a condition which is essentially
equivalent to MP, we see that the probability assigned by the

consensus distribution, T(f,,...,f ), to any measurable set A e
n

Q(u) is assumed to depend solely on the probabilities given to A

by the individual assessors' distributions f,,...,f . As Q(u)
n

is potentially very 1large and A 1is arbitrary in Q(u), this
condition is obviously a far-reaching one. Indeed, not only

does (2.2.1) dictate the 1local behaviour of T(f,,...,f ) in
n

terms of the f 's (A's with 0 < u(A) << 1), it also controls its
i

global behaviour (A's with u(A) >> 1) at the same time. We
think that this 1is unnecessary and that it should suffice to

examine what T(f,,...,f ) does on the atoms of m (for
- n

definition, cf. Royden 1968, p. 321). Thus, in the following
section, our first task will consist of characterizing the

linear opinion pool by assuming only what we have earlier
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defined as "locality" (cf. Definition 2.1.1), a condition which

amounts roughly to (2.2.,1) restricted to atoms.

2.3 A characterization of the linear opinion pool via locality

The purpose of this section is to establish that the linear
opinion pool is the only local pooling operator which preserves
dogmas. Both definitions were given in Section 2.1. The term
"locality"™ mimics Bernardo (1979) who uses it to describe an

analogous property of utility functions.

Roughly speaking, locality reduces pooling operators to

n
Lebesgue-measurable functions G on [0,«) , and thus constitutes

a fairly strong requirement. But it 1is intuitively appealing
and certainly constitutes a viable alternative to McConway's

SSFP. It could be viewed as a likelihood principle for pooling

operators in the following sense: a particular value of 6¢® is
correct and the consensus probability at 6 is required to depend
only upon the probabilities assigned to the "true state," and
not upon the probabilities of those states of nature which could
have obtained but did not. The condition that G be Lebesgue-
measurable is not needed explicitly here, but it ties the

present material to that of the ensuing sections.

We say that a pooling operator preserves dogmas if it

defines a consensus density which is zero on that part of the
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space where the probability assessors all said that it should be
zero. The word "dogma" is borrowed from Bacharach (1973) who
observes that if the probability of a certain event was assessed
to be zero by an individual, no pertinent evidence about that
event will ever affect his opinion. His judgement, shall we
say, rules out its force in advance, i.e. it is dogmatic. We do
not wish to debate, at this point, the problem of whether
professing dogmas clashes with the putatively scientific
attitude of leaving all questions open to be decided by "facts."
However, it seems reasonable to expect that a decision maker who
has sought the advice of articulate experts would not challenge
their common dogmas. Difficulties will arise only if the dogmas

expressed are conflicting.

Note that a local pooling operator need not always preserve

n
dogmas; consider for instance the operator T:A —>A which would

map everything to I(®)/u(®). However, as will be shown in the
next lemma, dogma preservation 1is automatic when u(®) is

infinite.

Lemma 2.3.1

n
Every local pooling operator T:A —>A preserves dogmas when

u(®) is infinite.

Proof:

n
Let G:[0,») —>[0,=) be the Lebesgue-measurable function whose
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existence 1is gquaranteed by Definition 2.1.1. If A e Q(u) is
such that w(A) = K for some real number O<K<e, let f = I(A)/K ¢
A and observe that 1 = [T(f,...,f)du = KG(1/K,...,1/K) +
G(0,...,0)-u(®\A) = 1. Since G(3)-u(B\A) ié finite and u(®©\A)
is infinite, we conclude that G(3) = 0, i.e. that T is dogma

preserving, =

We will use methods from the theory of functional equations

to prove:

Theorem 2.3.2

Let (©,u) be tangible. The linear opinion pool 1is the only

local pooling operator which preserves dogmas.
We split the proof of Theorem 2.3.2 into two lemmas.

Lemma 2.3.3

Let A,,A,,A, be three u-measurable neighbourhoods in € with

n
properties (1) and (II). If T:A —>A preserves dogmas and

n
there exists a Lebesgue-measurable function G:{0,) —>[0,)

such that

T(f,,...,£) = Gum(f,,...,f ) u-a.e.,
n n

~

n .
w x for all ¥ € [0,1/M] , where M = min{u(a,),
11 i

then G(X) =

nmM™M>o

i

H(AZ)I‘-‘(A3)}°
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Proof:

Callm = w(A ), 1i=1,2,3 and suppose that M = m;. There is no
i i

loss of generality in assuming A,,A,,A; disjoint: i#j => ANA =

i
@. Consider
3
£ = Za (j)-1(a)
i j=1 1 j
3
where a (j) 20 and Z a (j)-m = 1 for all 1<i<n, As T
i j=1 1 j
preserves dogmas, G(S) = 0 and furthermore
3
fT(fy, ..., f )du = Z G(3(3j))em = 1 ©(2.3.1)
n =1 j
Where g(j) = (a‘l(j)'ooo’a (j))’ j=1,2,3o
n

n
Define h:[0,1] —>[0,1] by

h(¢) = 1 - M-G((1-cy)/M,...,(1-c )/M)
n

for all © < ¢ £ 7T , so that h(d) = 0 and h(7) = 1.

It will suffice to show that h satisfies Cauchy's functional

Equation (2.1.1), for then Lemma 2.1.2 will imply that h(Z) =

n n

Zwe for some w 2 0, and Z w = 1 because h(T) = 1,

=1 1 i i i:

To establish this fact, note that by Equation (2.3.1),
G(z(1))em; + G(3(2))'m, = h(T) (2.3.2)

(T-T) /M.

whenever 3 (3)

In particular, observe that if © < X £ ¢ £ 7T are given, the

choices a (1) x /my and a (2) = (c -x )/m, imply
i i i i i
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G(%¥/m,)em, + G((Z-%X)/m,)m, = h(T). (2.3.3)

However, taking a.(1) = x./m1 and a.(2) = 0 in (2.3.2) shows
i i i
that
G(X/m,)m,; = h(¥X)
and, similarly, choosing a (1) =0 with a (2) = (¢ -x )/m;
i i i i
establishes that
G((¢-X)/m,)m, = h(T-%).

Consequently, (2.3.3) becomes
h(€) = h(¥X) + h(E-%X)

for all § £ ¥ £ € £ T, which we can rewrite as
h(X+y) = h(X) + h(y)

n n
for X, ¥ in [0,1] with X+ ¢ [0,1] (take ¥ = €-X).

This concludes the proof. =

Lemma 2.3.4

Suppose that (©,u) is tangible, and let My =
inf{u(A) |2 ¢ Q(u) and O<u(A)<=)}. Given & > 0, it is always
possible to find three u-measurable neighbourhoods A,,A,,A,

which have properties (I) and (II) and are such that My < M < M,

+8, where M = min{u(A,),u(a,),u(A;)}.

Proof: Since (©®,u) 1is tangible, there exist at least three u-
measurable neighbourhoods A,,A,,A, with properties (I) and
(I1). 1In fact, we might as well assume that they are disjoint.

Let & > 0 be given; we distinguish two cases:
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Case I: My, > 0
Choose B e¢ Q(u) to be such that Mg < u(B) < M, + min{é,Mg} and

look at B = BnaA, i=1,2,3, Then u(B.)=0 or 2 My, by the
i i i

definition of My, and there can be at most one i, say i=1, such
3
that w(B ) 2 My, for 2My, > u(B) 2 I u(B ). Our three sets are
1 1=
B,, A, and A,.
Case I1: My, = 0

Pick B ¢ Q(u) so that 0 < u(B) < &, and, once again, let B =
i

BnA , i=1,2,3. Put m = max{u(B,),u(B;),u(B;)} and relabel the
i

sets A ,B so that w(B;) = m. If m=0, our choice of sets is B,
i i

A,,A;; if m>0, then replace B by B,. =

Theorem 2.3.2 is an immediate consequence of the two lemmas
above, and Example 2.2.5 shows that the tangibility of the space
(0,u) 1is critical. Note also that, contrary to what one might
conjecture at first, not every pooling operator is local on an

intangible space. An example to this effect follows.

Example 2.3.5

Let @ = {6,,6,} and u = counting measure, as in Example 2.2.5
above. Let T:A?—>A be defined by T(f,,f,)(6,) = £,(8,)-£,(6,)
and T(f,,f,)(8,) = 1 - £,(6,)-£,(6,). Then T preserves dogmas

°

but is not local.
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It is possible to generalize Theorem 2.3.2 in at least one
way. In the proposition stated below and proved in the sequel,
the definition of locality is relaxed to allow the function G to
14

depend on 6 as well as on the values that the densities f,,...

£ take at that point. Thus, we consider all pooling operators
n

n
T:A —>A of the form

T(fy,...,£ )(8) = G(6,£,(68),...,f (6)) u-a.e. (2.3.4)
n n

n
for some measurable function G:0x[0,=) —>[0,=). A pooling

operator which satisfies (2.3.4) will be called semi-local.

Theorem 2.3.6

Let (©®,u) be tangible, and suppose that T 1is a semi-local
pooling operator which preserves dogmas. If the G(6,-) of

n
Equation (2.3.4) is continuous as a function on [0,=) for wu-

almost all 8 € ©, then T is a linear opinion pool.

Theorem 2.3.6 says that the class of semi-local non-local
pooling operators is small. 1Indeed, when © is countable, || =2
3 and p is a counting measure, it is in fact empty. For, take X

n
e [0,1] and let 6, 1n, N be three elements in ©. 1If

f () = x = 1-f (A) and g () = x = 1-g (A), the facts that
i i i i i i

fGu(f,,...,f )du = [fGo(gy,...,9 )du = 1 and £ (X)) = g (A),
n n i i
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1=1,...,n together entail G(6,%) = G(9,%). Our proof of
Theorem 2.3.6 1is an attempt to generalize this argument to

arbitrary spaces.

It is conceivable that the extra (continuity) condition on
G could be weakened, but we have not attempted to do so. Note
that whatever be (6,u), the requirement that T preserves dogmas
is necessary to rule out pooling operators which would map every

n-tuple of opinions (f;,...,f ) to the same fixed u-density g e
n

A. These operators are worse than dictatorships, since they
correspond to the case where the decision maker's mind is made
up in advance and "consultation" is conducted for form's ‘sake

only. They would therefore seem to be of little interest.

Here again, the result fails to extend to dichotomous

spaces:

Example 2.3.7

Let © = {6,,6,}, u = counting measure and consider a function
G:9x[0,1]2—>[0,1] defined by G(6,,x,y) = x-I1{y|0<y<1/2 or y=1}
+ (1-x)-1{y]|0<y<1/2} and G(6,,x,y) = x-I{y|y=0 or 1/2sy<1} +
(1-x)-1{y|0<y<1/2}. Then T:A%2—>A defined by T(f,,f,)(8) =
G(e,f,(6),f,(6)) is semi-local ‘and preserves dogmas. However,

it is not local.

The gist of the proof of Theorem 2.3.6 is contained in
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Lemma 2.,.3.8

Let A,,A;,A; be three u-measurable neighbourhoods in © with

n
properties (I) and (II), and let T:A —>A be a pooling operator

n
which preserves dogmas. If G:0x[0,«) —>[0,=) 1is a measurable

function such that (2.3.4) holds for all choices of f,,...,f in

n
n
A, then there exist w,,...,w e [0,1] with Z w = 1 for which
n i=1 i
n
G(:,%) = Zwx u-a.e. on A . (2.3.5)
i=1 i i j

n
for all X e [0,1/u(A.)] and j=1,2,3.
J

Proof: We divide the proof into three parts.

n
Step 1: Define f(X) = fI(A,)G(-,¥X)du for all X e [0,1/u(Ar,)] ;

we will show that f satisfies Cauchy's functional Egquation
(2.1.1).

First note that if £ = x I(A,) + y I(A,) + z I(A;) 1is in A4,
i i i i

JT(Ey, .00, f )du = fI(A,)G(-,%)du + fI(A,)G(.,¥)du
n .

+ fI(A3)G(-,Z)du = 1 (2.3.6)

by the fact that T preserves dogmas. Letting

(]
{1

o=y I(A;) + [1-y w(A;)]-1(A5)/u(A;) and
1 1 1

ol
L}

) Y'[#(Az)/H(A1)]'I(A1)'+ [1’YOH(A2)]’I(A3)/M(A3)
1 1 1
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both in A,1<i<n, we see that

IT(g",.-.,g )dIJ. =
n

JI(A,)G(-,¥)du + fI1(A3)G(.,[T-Fu(a;)])/u(As))du =1

and also

fT(h1,oo.,h )dIJ- =
n

SJI(A)G(. ,Fu(Aa,)/u(ay))du + [I(A)G(.,[T-Fu(A) }/u(Az))du = 1.

Thus
SJI(A,)G(-,¥)du =

JI(AG(,Fu(Ay) /u(a,))du = £(Fu(Aa,)/ul(a,)). (2.3.7)

Similarly, we find that
Ji(a3)G(-,2)du =

JI(AG(.,Zu(A;)/u(A))du = £(Zu(A;)/u(ar,)) (2.3.8)

and so (2.3.6) now reads
£(X) + £(Fu(A,)/u(Ay)) + £(Zu(Ay)/u(r,)) =1
whenever Xu(a,) + Ju(a,) + Zu(aA,) = 1.
Relabelling ¥ = Ju(A.)/u(a,), Z = Zu(a;)/u(A,), we have f(X) +
n
£(§) + £(Z) = 1 for all %,¥,Z in [0,1/u(A,)] with x +y +
i i
z = 1/u(r,),1<i<n,
n n
So if U, V are in [0,1/u(A;)] with U+ ¥V e [0,1/u(A,)] , and

if z = (1/u(A1))-u'—v.,i=1,...,n, then f(U+¥) + £(3) + f(Z) = 1
1 i i
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and also f(U) + £(¥V) + £(Z) = 1. But again, f(3) = 0 because
T preserves dogmas, and so f(U+V) = £(U) + £(¥).

According to Lemma 2.1.2 now, there exist a;,...,a in R such

n
n n

that f(X) = Z a x on [0,1/u(A,)] , and since £(X)2 0 always,

i=1 1 i
these constants a are non-negative.

i
n
Furthermore, f£(T/u(A,)) =1, so that Z a = w(A,). Just put
i=1 1
w = a /u(Ay),15isn.
i i

Step 2: We show that G(6,X) 1is u-almost everywhere constant in
6 on A=A,. For that, we use the key fact that for any u-

measurable subset A' of A,

JI(A")G(.,X)du = w x p(A').

1 11

nt™M>o

i
If wu(A') = 0 or = u(a), this is obvious, and if 0 < ;(A') <

u(A), we can apply the above argument to see that

LI}

n
Z w'x u(a")
i=1 1 i

SI(A")G(.,%)du

and

FI(A™)G(-,%)du w'x w(a"),

111

L}
"nMo

i

where A" = A\A' and the primes on the w 's indicate a possible
i

dependence on the set over which G(.,X) is integrated. These

primes may, in fact, be dropped; for, if
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g = x I(a") + [1-x w(a")]-1(A;)/u(a;)
1 1 1

and

h = x [w@)/pwa")].1(a") + [1-x u(A")]-1(A;)/u(A;)
1 1 1

are in A,1<i<n, then

JT(gy,e0.,9 )du = fI(A")G(-,X)du + [I(A,)G(:,[1-Xu(A")]/u(r,))du
n . .

eqguals 1 and equals

JT(hy,...,h )du = fI(A")G(+,Xu(A")/u(A™))du
n

+ fI(A,)G(.,[T-Xu(a')])/u(a,))du,

from which we conclude
SJI(A")G(-,%X)8u = [I(A™)G(:,Xu(A")/u(A"))du
and in turn

n
T w'x u(pa') =
i=1 1 i i

Mo

w"x u(A')
111

for every possible choice of x,,...,x in [0,1/u(A)]. Thus w'

n i
= w" for all i=1,...,n, and moreover w' = w since
i i i
SJI(A)G(.,X)du = JI(A')G(.,X)du + fI(A")G(.,%X)du
entails
n n : .
Zwzx u(r) = Zw'x [pA")+u(a™)],
i=1 11 i=1 i i
n n
or Zwzx = I w'x for all x,,...,x% in [0,1/u(A)].
i=1t i1 i=1 1 i n
n

Finally, fix X e [0,1/u(A)] and suppose that for some § > 0,

the set A' = {6eA|G(6,X) >

[ oo R

w x +8} is non-negligible. Then

1=1 1 1
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n n
JI(A")G(-,X)dr = Z w x p(A') > Ewx p(Aa") + su(r’),

n - .
a contradiction. Hence G(:,X) < I w x u-a.e. on A, and a

similar argument shows the reverse inequality.

Step 3: We can repeat steps 1 and 2 for A, or A; instead of A,,

so that

G(.,%X) = I w x p-a.e. (2.3.9)

n
for all ¥ e [0,1/u(A )] and some given constants W in [0,1]

j 1]
n
satisfying Z w =1, j=1,2,3.
i=1 ij
But by (2.3.7),
n
fI(AL)G(-,9)du = Z w y u(a,)
i=1 12 1

JI(A)G(-,Fulaz)/u(Ay))du

n
= Zw y u(a,)
i=1 i1 1
n
for all ¥ e [0,1/u(A;)] , so that w =w , i=1,...,Nn.
i1 12 )
Similarly, w = w follows from (2.3.8) and so (2.3.9) entails

i1 i3

the stated conclusicon, =

Let £ denote the collection
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{A,eQ(u)|A,,A,,A; have properties (I)&(II) for some A,,A;eR(u)}

(note that £ # ¢ <=> (®,u) 1is tangible). Lemma 2.3.8 can be

strengthened in the following way:

Lemmé 2.3.9

n
Let (©,u) be tangible and let T:A —>A be a dogma preserving

n
semi-local pooling operator. If G:9x[0,») —>[0,«) denotes the

measurable function for which (2.3.4) holds, then there exist w,

n
yeeo W e [0,1] satisfying Z w = 1 and such that
n i=1 1
n
G(.,%) = Zwx u-a.e. on A,
i=1 1 i

n
whatever be X e [0,1/u(A)] and A ¢ £.

Proof:
n
Let A and B in £ be so that G(.,%) = Zwx u-a.e. on A
i=1 1 i
n
and G(.,y) = Zw'y u-a.e. on B for some {w },{w'} in [0, 1]
i=1 1 1 i i

sets of weights, each set adding up to 1, and all X in

n n

[0,1/u(A)) , ¥ in [0,1/u(B)] . That the {w'} and {w'} exist
i i

follows from Lemma 2.3.8.

I1f u(AnB)> 0, then clearly w =w', i=1,...,n. Otherwise, let

i i
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A, be a non-negligible subset of A\B and pick A,,A; ¢ Q(u) SO
that A,,A,,A; have properties (I) and (II). Here, we used the
fact that (©,u) 1is tangible. From Lemma 2.3.8 above, we know

that

n
G(.,%X) = Zwx u-a.e. on A , (2.3.10)

where X e [0,1/u(A.)] and j=1,2,3.
]

If u(BnA ) > 0 for j=2 or 3, we are done.
]

If not, then {B,A,,A;} constitutes a set with properties (I)

and (II) and we employ Lemma 2.3.8 again to conclude that

n
G(.,y) = Zw'y u—a.e. on A , (2.3.11)
i=1 i i i
n
¥ being arbitrary in [0,1/u(A )] and j=2,3. Pulling (2.3.10)
J
and (2.3.11) together shows that w' =w , i=1,...,n. =
i i

We say that a w-density f € A is a simple function iff f£=

Zc I(A Ju-a.e. for some ¢ 20 and a sequence {A eQ(u)|i=1,2...}
i21 1 i i i

of disjoint sets. With this definition, we can state and prove

Proposition 2.3.10

n
If T:A —>A is a dogma preserving semi-local pooling operator

on a tangible space (©,u), then there exist w,,...,w e [0,1]
n

n
such that Z w = 1 and
i=1 1
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n
T(fj,..c,f ) = ZW f “-a.e-
n i= i

for all £,,...,f simple functions in A.
n

Proof:

1f £,,...,f € A are simple functions, it is possible to find a

n

sequence S = {A eQ(u)[i=1,2,...} of disjoint sets A together
1 J

with constants 0<c <= for which f = Zc I(a) u-a.e.,
i3 i j21 ij j

i=t,...,n. Since (®,u) is tangible, we can assume that |[S}| > 2,

so that the A"s belong to £. Thus, by Lemma 2.3.9, there exist
]

Wi,...,w € [0,1] summing up to 1 for which (2.3.5) holds true.
n

Since T is semi-local, T(f,,...,f ) =G(.-,c ,...,c Ju-a.e. on

n 13 - nj
A for each j 2 1, and observe that ¢ -u(A.) < ff.du <1, so
] 1] ] 1
n
that G(+.,¢ ,...,c¢ ) = Z wec u-a.e. on A by Lemma 2.3.9,
13 nj i=1 1 ij j

The formulation of the following corollary was suggested by

Dr. Harry Joe (personal communication).

Corollary 2.3.11

If (®,u) 1is tangible and u is both o-finite and atomic, the

linear opinion pool 1is the only semi-local pooling operator
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which preserves dogmas.

Proof: If u is o-finite and atomic, the collection C of its
atoms 1is at most countable; furthermore, |C| 2 3 from the fact

that (@,u) 1is tangible. So, if we write C = {A |i=1,2,3...},
i

every function f e¢ A can be expressed u-almost everywhere as an

infinite sum I c I(A ), i.e. A consists of simple functions
i21 i i

only. Apply Proposition 2.3.10, =

In general, it does not necessarily follow from Proposition
2.3.10 that any dogma preserving semi-local pooling operator is
local. What is clear, however, is that if T is continuous with
respect to the pointwise convergence topology, then Theorem
2.3.6 and Proposition 2.3.10 are equivalent. This regularity

condition is secured by requiring G itself to be continuous.

Lemma 2.3.12

n n
Let T:A —>A be semi-local and let G:0x[0,») —>[0,x) be the

corresponding function for which (2.3.4) holds. If G(6,:) is

n
continuous as a function on [0,=) for w-almost all 6 € ©, then
Lim T(f ,...,f ) =T(f,,...,f)
k——>c 1k nk » n
whenever f —>f pointwise u-a.e. as k->=, i=1,...,n.

ik i

Proof: Let
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>
]
(o]

{60 Lim £ (6)#f (6)1},
i:'l k—>m ik i

oy
"

U {6ed|T(f ,...,f )(6) # G(8,f (8),...,f (6))},
k=1 1k nk 1k nk

n
and C = {6e®|G(H,+) is not continuous as a function on [0,x) }.

Let also D = {6e®|T(f,,...,f )(8) # G(6,£,(6),...,f£ (6))} and
n n

denote by E the u-negligible set AUBUCUD. For all 6 e O\E we
have

Lim T(f ,...,£ )(6) Lim G(6,f (8),...,f£ (8))
k—> 1k nk k> 1k nk

G(,£,(8),...,£ (8))
n

T(f4,...,£ )(6),
n

i.e.. Lim T(f ,...,f ) = T(f,,...,f ) in the pointwise
k—>e 1k nk n

convergence topology. =

To complete the proof of Theorem 2.3.6, it suffices to
combine Proposition 2.3.10 with the above lemma, keeping in mind
that every non-negative measurable function on a space © is the
limit of some sequence of simple functions (Royden 1968, p.

224).

In conclusion, we have argued that when pooling opinions on
©, a dominating measure u will wusually impose itself as a
natural choice for both the experts and the decision maker. In
that case, opinions take the form of densities with respect to

u, and the condition which we called "locality" (or perhaps
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semi-locality) seems more readily interpretable than McConway's
axiom (2.2.1). McConway's characterization of the linear
opinion pool can then be reformulated in terms of locality and
appears as Theorem 2.3.2. Theorem 2.3.6 extends this result to
so-called "semi-local" ©pooling operators. These findings will
have an important consequence in the following section, where
Madansky's idea of External Bayesianity will be studied at some

length.

2.4 Seeking Externally Bayesian procedures

In Section 2.2, we suggested that External Bayesianity
seemed a more appropriate criterion for selecting pooling
formulas than McConway's Marginalization Postulate. In the
present section, we will give a precise definition of this
concept and investigate some of its implications. In
particular, conditions will be stated under which External

Bayesianity characterizes the logarithmic opinion pool (2.4.2).

External Bayesianity (EB) has been introduced by Madansky
(1964;1978) as an axiom of group rationality for solving
decision-making problems. The concept, however, can be readily
interpreted within our framework for the problem of the panel of
experts. Basically, 1if the panel were to use an Externally
Bayesian procedure to determine a consensus, they would be

perceived as acting in the manner of a single Bayesian. This
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entails updating their beliefs in accordance with Bayes' rule.

To 1insure that they would act in a consistent fashion, it is
necessary that the pooling procedure yield the same result
whether they pool before or after updating their beliefs . in the

light of new information.

More precisely, we have the following

Definition 2.4.1

n
Let T:A —>A be a pooling operator. We say that T is

Externally Bayesian iff

0 < f@T(f]’oo.,f )du < w, and
n

TI®f,/f®f Qu,...,df /fOf Au] =
n n

®T(f,,...,f )/fd1(f,,...,f )du u-a.e. (2.4.1)
n n

whenever &:0 —>[0,=) 1is a u-measurable function such that 0 <

f®f du < = for each 1<i<n (such a function & 1is called a
i

likelihood function).

Examples of Externally Bayesian procedures are
dictatorships and (provided it is well defined) the logarithmic

opinion pool,

n n n
T(fy,...,£ ) = I /I.H £ du, Z w(i)=1, (2.4.2)
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In his book on decision analysis, Raiffa (1968) illustrates
what can happen if the processes of updating and pooling
probability distributions do not commute. He gives an example
(on a dichotomous space) in which two experts find it in their
own best interest to convince the decision maker to compute the
consensus distribution before he learns of the outcome of an
experiment. They do so in order to maximize the impact of their
opinions on the consensus perceived by the decision maker,
regardless of the outcome of the experiment. Such behaviour
need not be entirely selfish and motivated only by the desire
"to win." In case they disagree, it would be quite reasonable
to expect that each expert would believe he is right. However,
new, relevant evidence should always be welcomed -by both the
experts and the decision maker- and the_question of whether to
update opinions before or after a consensus is found should not
admit the possibility of the experts gaining some advantage for

their opinions over the new evidence by strategic manoeuvring.

External Bayesianity has also been advocated by Weerahandi
& Zidek (1978) who <call it ‘"prior-to-posterior coherence."
Their rationale for using this axiom derives from the
observation that if each expert is a Bayesian, his prior opinion
might well have been his posterior in an earlier experiment, and
that similarly, he will use the posterior which will result from

his present investigations as his future prior.
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Thus, all in all, External Bayesianity seems to be an
eminently reasonable prescription for selecting "good" pooling
operators. We commence our analysis of its implications with an

easy lemma.

Lemma 2.4.2

n
Let T:A —>A be an Externally Bayesian pooling operator. Then

T preserves dogmas and furthermore T(f,,...,f ) = T(gy,...,9 )
n n
u -a.e. whenever f =g w-a.e. for all 1<i<n,
i i
Proof:

Let f,,...,f e A be such that Z = {#e®|f,(6)=...=f (8)=0} is
n n

non-negligible (i.e. u(Z)>0). If & = I(6\Z), then & = f and
i i

so [®f du = 1, 1<isn. Using Equation (2.4.1), it follows that
i

JeT(f,,..., £ )du = K for some real number O<K<e® and also
n A

T(f,,...,f ) = &T(f,,...,f )/K u-a.e.
n n

But the right-hand side equals 0 u-a.e. on Z, so that
o _
Supp(T(f,,...,f )) < U Supp(f ), i.e. T is dogma preserving.
n i=1 i

To prove the second assertion, suppose that f =g u-a.e. and
i i

let A = {6e0|f (8) = g (6)} 1in @(u), i=1,2,...,n. Define A =
i i i

n
UA and @ = I(A).
i=1 i
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Since wu(A) =0, ¢f = f p-a.e. and similarly &g =g wu-a.e.
i 1 i i

Consequently, jef du = j@g.du = 1, and furthermore
, i i

for(f,, ..., £ )au = f®¥T(gy,e..,9 )Gu = 1.
n n

And now, using the hypothesis that T is Externally Bayesian, we

find that
T(@f],...,@f ) = @'T(f1'-on'f ) M—a.€.
n n
and also
T(®9,,...,%9g ) = &-T(g,,...,9 ) wu-a.e.
n n
However, ¢f. = Qg_ everywhere, and hence
i i
T(f‘|,o.o'f ) = T(gjyooo,g ) N-a.e. L]
n n

Section 2.2 above <conveyed our view that new information
will more realistically cause a panel of experts to update their
probability distributions via Bayes' Theorem than to marginalize
them, although both procedures will sometimes yield the same
answer. Had McConway postulated External Bayesianity instead of
his Marginalization Postulate, he would have obtained a very

different result:

Theorem 2.4.3 (An Impossibility Theorem)

Let (©,u) be tangible. The only Externally Bayesian local

pooling operators are dictatorships.
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Proof:

n
Let T:A —>A be local and Externally Bayesian. Then we know

from Lemma 2.4.2 that T also preserves dogmas, and hence
n n

T™(f,,...,f ) = Zw of u-a.e. for some w 20, Zw =1 as
n i=1 1 1 i i=

a consequence of Theorem 2.3.2. We show that w
]

1 for some

j=1,ee.,Nn.
Let A,;,A, € Q(u) have properties (I) and (II). Such sets exist
because (®,u)is tangible, and we can take them to be disjoint.

Now pick i#j 1in {1,...,n} and consider £ = I(A,)/u(p,), £ =
i k

I1(A,)/u(A,) where k runs over the set of indices {1,...,n}\{i}.
If & = x-I1(A,) + y+I(A,) for some x and y in (0,«), x#y, then
Equation (2.4.1) applied on A, implies that

w /x = w /[w -x + (1-w ).y].
i i i i

Assuming that w 1is neither 0 nor 1, we conclude that =x=y, a
i

contradiction, =

Remark 2.4.4

Under the hypotheses of Theorem 2.3.6, the above result also
holds for semi-local pooling operators. Note that the condition
that (©,u) be tangible is indispensable, as evidenced by the

pooling operator of Example 2.2.5.

This theorem generalizes Genest (1982) and conflicts with a

previous finding of Weerahandi & 2Zzidek (1978). In their
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manuscript, these authors proposed a derivation of the
logarithmic opinion pool (2.4.2) based both on External
Bayesianity and locality. 1In view of Theorem 2.4.3, this is

only true when all w 's are 0 but one, and we interpret any
i

function raised to the power 0 as the <characteristic function

1(@) of the whole space.

We call Theorem 2.4.3 an "Impossibility Theorem"™ to
emphasize that dictatorships of opinions cannot generally be
regarded as desirable. Indeed, we would be inclined to follow
Bacharach's (1975) policy on this matter and make dictatorships
inadmissible. In this case, the theorem would read: "there are

no Externally Bayesian local pooling operators."

Next, we extend our search for Externally Bayesian pooling

operators to the class of quasi-local procedures, i.e. operators

of the form

T(f1,ooo,f ) =
n

Gu(f,,...,f )/IGn(f1,.-.,f )du u—a.e. (2.4.3)
n n

n
where G:[0,») —>[0,x) is a Lebesgue-measurable function with

the rather distinctive property that
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0 < fGu(f,,...,f )du < o (2.4.4)
n

for all choices of £,,...,f in A. This definition of quasi-
n

locality 1is equivalent to that given at the beginning of this
chapter (Definition 2.1.1). Note that G is not unique, as we
could multiply top and bottom of the right-hand side of (2.4.3)

by any non-zero positive constant without altering T.

We have already encountered one Externally Bayesian quasi-

local pooling operator, namely the logarithmic pooling formula

n w(i)
(2.4.2). Here, G(X) = mx and if #:6 —>[0,~) 1is such
i=1 1
that 0 < K = f®f du < =, then
i i
n w(i) n w(i)
T(®f /Ky, ..., Pf /K ) = 1T [®f /K ] /f 1 [®f /R ] du
n n i=1 i 1 i=1 i 1
n w(i) n w(i)
= &1 f /e 1 f du
i=1 i i=1 1
= &T(f,,...,f )/feT(f,,...,f )du
n n
n _
provided Z w(i) = 1, 1In order to ensure that Condition (2.4.4)
i=1

is met, however, it is necessary to restrict the domain of T to

a smaller class of u-densities f,,...,f for which the integral
n

n w(i) ' n w(i)
Jnf du is strictly positive (that [ II £ du is always
=1 i i=1 1
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finite follows from HOlder's 1inequality, at 1least when the

w(i)'s are non-negative; cf. Marshall & Olkin 1979, p. 457).
Here, we have chosen to use
A, = {feA|f#0 p-a.e.}

both for simplicity and ease of exposition. If A, # @, our
analysis suggest a fair amount about the behaviour of Externally

n .
Bayesian quasi-local pooling operators acting on A . In fact,

knowing from Lemma 2.4.2 that quasi-local Externally Bayesian
procedures preserve dogmas, the only situation which the
restriction to A, fails to encompass is that where some event E
in 2(u) would have been deemed "impossible" (zero probability)
by some of the experts but not by all. That this occasion
should arise after the experts exchanged their views (as we have
assumed they have) is unlikely. Moreover, it is unrealistic to
expect the decision maker to reconcile the irreconcilable. This
somewhat pathological situation is indeed not unlike that faced
in conventional Bayesian analysis when the prior and 1likelihood
functions have disjoint support and some improvisation is called

for.

The problem which we will now address is: are there any

n
Externally Bayesian quasi-local -pooling operators T:4, —>4,

besides (2.4.2)? The answer is no, at least when one is willing
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to make an extra assumption about (©,u), namely

Assumption 2.4.5

There exist non-negligible u-measurable sets in © of arbitrary
small measure, i.e.

Vs ¢ (0,) 3A ¢ Q(u) such that 0 < u(A) < 6. (2.4.5)

Indeed, we will now prove the following characterization of

the logarithmic pooling operator:

Theorem 2.4.6

Suppose (0, u) satisfies Assumption 2.4.5. The logarithmic
opinion pool (2.4.2) is the only Externally Bayesian quasi-local

n
pooling operator T:A, —>A,.

Remark 2.4.7

If (©,u) satisfies Assumption 2.4.5, then clearly it is tangible
and © is infinite. Thus Theorem 2.4.6 above does not cover the
important case where © is finite. The answer in the latter case

is unknown.

A special case of the following lemma will prove useful 1in

establishing Theorem 2.4.6:

Lemma 2.4.8

Suppose (©,u) satisfies Assumption 2.4.5. Given § > 0, there

exists a sequence {A eQ(u)|n=1,2,...} of mutually disjoint sets
n
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such that 0 < u(A ) < & for all n 2 1,
n

Proof:

The proof is by induction. If & > 0 is given and A,,...,A are
n

n mutually disjoint u-measurable neighbourhoods with 0 < u(a )
i

< &, i=1,...,n, let B e Q(u) such that

0 < u(B) < (1/2)-min{u(a )|1<isn} < &.
i

Then u(B) < §, u(A.\B) 2 u(A_)/2 and so {A,\B,...,A \B,B}
1 1 n

forms a collection of n+1 mutually disjoint sets in Q(u). .

Another obvious consequence of Assumption 2.4.5 is that the

n
function G in (2.4.3) must be defined everywhere on (0,=)

Lemma 2.4.9

Suppose (©,u) satisfies Assumption 2.4.5, and let

Xi,e00,X be given in (0,=). There exist f,,...,f in A, such
n n
n

that u( n {6e®|f (6)=x }) > 0.
i=1 i i

Proof:

Write & = min{1/x |1<i<n} and use Lemma 2.4.8 to choose A ¢
i

Q(u) such that 0 < u(A) < & and w(©\A) > 0. If h e A, is any

given u-density, then fhI(€\A)du > 0 for otherwise h would
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vanish on some set of strictly positive measure, a
contradiction.

Define

f =x -I1(A) + p -hI(6\A)
1 1 1

where p = [1-x u(A)]/fhI(E\A)du, i=1,...,n. Clearly f e A4,
i i i

and

n=9

{6e0|f (6)=x } = A is non-negligible. =
1 i i

1l

We start the proof of Theorem 2.4.6 with

Proposition 2.4.10

n
Suppose (©,u) satisfies Assumption 2.4.5. 1If T:A, —>A, is

Externally Bayesian and of the form (2.4.3) for some Lebesgue-

n
measurable G:(0,2) —>(0,=), then G(cX) = c-G(X) for all c20

n
and X € (0,)

Proof:
If ¢c=0, then G(3)=0 by Lemma 2.4.2 (T preserves dogmas). So
suppose ¢>0 and let X>0 be fixed.

-1

Given & = min{[x (c+1)] |1<i<n}, we can use Lemma 2.4.8 to find
i

five disjoint elements A,B,C,D,E of Q(u) with measure in (0,§).
Let ¥ > 0 be such that
-1

y < min{2[x -u(A)-cu(B)]/u(AUB)}
1
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and pick 0 < A\, f < = so that

-1
A < min{-y+2-[x -wu(A)-cp(B)]/u(AUB)|1<isn}
i

-1
max{-y+2-[x -u(A)-cu(B)]/u(AUB)|1<is<n} < £.
i

A

Now for each 1<i<n, there exists d e (0,1) so that
i

-1
o+ £(1-a ) = -y + 2:[x -p(A)-cu(B)1/u(AUB).
1 1 i .

+

Ad

Define f as
i

I1(AUB)/2u(AUB) + d.-I(C)/4u(C) + (1-d.)-I(D)/4u(D) + h-I(N)/4S,
1 1

where N = ©\(AUBUCUD), S = fhI(N)du, and h is some arbitrary
function in A,. Note that, here again, f[h-I(N)du > 0 for
otherwise h would vanish on E, a set of strictly positive

measure. It is easy to check that f belongs to A,.
i

Now consider
® ‘= I(A) + cI(B) + AI(C) + tI(D) + qI(N).

We have that @-f. # 0 p—a.e. and
i

f&-f du = [u(A)+cu(B)]1/2u(AUB) + Ad /4 + £(1-d )/4 + v/4
1 1 1

-1
= [2x.u(AUB)] =K .
1 1

Write u = 1/2u(AUB), so that u

n
»
]
IA
-
IA
o
Z
o]
E 3
-3
[}
n

Externally Bayesian, i.e.
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G(®f,/Ky,...,of /K ) fG(@f /K,,...,@f /K )du (2.4.6)
n n n
G(f,,...,f ) JOG(f,,...,f )du
n n

Observe that the right-hand side of this expression 1is a
constant independent of the set (A,B,C,D or N) on which both ¢

and the f 's are evaluated. So, in particular, the left-hand
i

side is the same whether on A or on B. Hence

G(u/Ky,...,u/K ) = (1/c)-G(cu/Ky,...,cu/K )
n n

upon cancelling a common factor of G(u,...,u) on both sides of

the equation. Recalling the definition of u and of the K 's, we
i

find that

c-G(xy,00., ) = G(cxy,...,cx ),
n n

as asserted in the statement of the proposition. =

n
Thus if a pooling operator T:A, —>A, 1is both quasi-local

and Externally Bayesian, Proposition 2.4.10 above tells us that
its corresponding G must be at least "homogeneous." However,
the technique which we have used to reach this conclusion could
not be applied successfully in cases when G need not be defined

n
over the entirety of (0,«) , as when © is finite for example.

Not all homogeneous G's generate an Externally Bayesian
quasi-local pooling operator. Consider for instance the

function G(¥) = max{x |1<i<n}, which gives rise to the quasi-
i
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local procedure

T™f,,...,f ) = max{f,,...,f }/fmax{f,,...,f }du.
n n ) n

Clearly G 1is homogeneous, but T is not Externally Bayesian, as

Proposition 2.4.11 will now establish.

Proposition 2.4.11

Let T be a vector of ones and write X-Y for the vector (x,y,

reee X Y ). Then G(X)-.G(Y¥) = G(X-¥):G(T) for all X,y vectors
n-n .

n
in (0,«) , where G 1is the function specified 1in Equation

(2.4.3).

Proof: Let

-1
0 < v < min{1,x |1<i<n},
: i

-1
0 < & <min{(1=9)/y ,(x =v)/y },
i i i

and let A,B,C,D be disjoint elements of Q(u) with measure in

(0,8). 1If we write t = 1-(7+y.u(B)), then t > 0 and 1/x. >
i i i i

v + y u(B) for all i=1,...,n.
i

Next, choose 0 < A,f{ < = so that

-1 -1
A < min{t -[x -y-y wu(B)]|1<i<n}
i i i

—1 —1 .
< max{t -[x. -y-y.u(B)]|1siSn} < ¢.
i i i
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Then for each 1<i<n there exists a unique @ ¢ (0,1) such that
i

A+ g(1-d) =t [x -y-y w(B)].
1 1 1 1 1

Define

£ = qI(a)/2u(A) + y I(B) + t d I(C)/u(C)
1 1 11

+t (1-d )1(D)/u(D) + (4/2)-[hI(N)/fhI(N)du]
1 1

where h e A, is arbitrary, and N = ©\(AUBUCUD). (That [fhI(N)du
is not 0 is a consequence of Lemma 2.4.8.)

Now f # 0 u-a.e. and
i

Jtdu = vy +yu+t =1,
1 1 1

and hence £ € A,, 1<i<n,
1

Consider & = 1I(AUB) + I(N) + AI(C) + tI(D); we have
J®f du = /2 + y u(B) + £t d XN+t (1-dd )¢ + v/2
i i i i i 1
= 1/x for 1<i<n,

i
and since ¢f. # 0 wu-a.e., we may use the fact that T is
1
Externally Bayesian to deduce that the left-hand side of
Equation (2.4.6) remains constant as the f 's and ¢ are
i
evaluated on A and B respectively. Consequently, we find
G(BXy,e0.,Bx ) G(X1Y1,eee,X Y )
n = n n

G(ﬁ,.-.,ﬁ) G(Y1,.o.,Y)
n

where g = v/2u(A). But by Proposition 2.4.10, the 1left-hand
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side reduces to G(x4,...,x )/G(1,1,...,1), whence the result. =
n

Proof of Theorem 2.4.6:

n
Consider H(¥) = G(X)/G(T), a function defined on (0,=) . Then H

is Lebesgue-measurable and it follows from Proposition 2.4.11
that H(X-¥) = H(X)-H(¥) on its domain. By Lemma 2.1.3, we

conclude to the existence of n real numbers w(1),...,w(n) such

n w(i)
that H(X) = I x always, i.e.
i=1 i1
n w(i)
G(X) = G(1)- I x .
1=1 1
Therefore
n w(i) n w(i)
T(f;,...,f ) = nf /Jf T £ du u-a.e.
n i=1 1 i=1 1

n
The fact that Z w(i)

1 follows directly from Proposition

1=1
2.4.10: if x>0 and c>0 are given, we have
Zw(i) n w(i)
G(cX)/G(T) = ¢ « I x
i=1 1
Zw(i)
= c -G(X)/G(T) = cG(X)/G(T).

This completes the proof of Theorem 2.4.6. =

Summarizing our investigations on guasi-locality and

External Bayesianity, we have seen that provided the class of

"admissible" u-densities is suitably restricted:
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n w(i) n w(i)
(i) the logarithmic opinion pool 1I £ /I £ du with
i=1 i i=1 1
n
Z w(i) = 1 is Externally Bayesian whatever (©,u);

(ii) "if (®,u) satisfies Assumption 2.4.5, the logarithmic
opinion pool is the only Externally Bayesian quasi-local pooling

procedure available.

In fact, this second conclusion can be somewhat

strengthened, as we will presently show:

Proposition 2.4,12

If (®,u) is such that Q(u) contains an infinite sequence

{Aa |n21} of mutually disjoint sets, then the 1logarithmic
n

opinion pooling operator (2.4.2) 1is not quasi-local unless

W;,...,w are taken to be non-negative.
n

Proof:

It suffices to show that given a > 0, we can find f,g € A, with

a
ff£-(f/g) du = =, For, if w <0 for some ief{1,2,...,n}, let a
i

_ a
-w >0 and consider £ =49, £ =1£, j#i, so that ff.(f/g) du
i i j

», a contradiction.

Use Lemma 2.4.8 to find a sequence {A |n21} of disjoint wu-
n
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measurable neighbourhoods, and define

f = I K,I(A)/[u(a )i?] + K,hI(N)/fhI(N)du
i21 i i ‘

for some h e A,. (If fhI(N)du = 0, then N = 6\( U A ) has
iz1 i

measure zero, in which case let f = K; Z I(A )/[u(a )iZ]
i1 i i
instead.)
In order that f be in A,, it is necessary to have K,wm?/6 + K, =
1, so K,,K, > 0 can be chosen accordingly.
c
Put g = L, Z I(A )/u(A )i + L,hI(N)/fhI(N)du where c equals
i21 i i
c
2(a+1)/a > 2. Then g 2 0 u-a.e. and fgdu =1L, Z t/i + L,
i1

can be made equal to 1 with appropriate choices of L,,L,, since

c
0 < Z 1/1 < &,

i21

a ati c a
Now fE«(£/g9) du 2 I [K,/u(A )i?] e[u(a )i /L,] u(a ) =
i1 i i i
att a
K, L, - Z 1 = o, »
iz1

In this last proposition, the hypothesis that there be at
least countably many disjoint neighbourhoods in © is clearly
necessary. If (@,u) 1is finite, there is no reason why some of

n

the w 's could not be strictly negative, as long as I w = 1,
i i=1 i

We complete this section with an example to show that an
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Externally Bayesian operator need not always preserve unanimity.

Example 2.4.13

Let (©,u) be dichotomous or tangible, so that there exist A,,A;
e Q(u) with properties (I) and (II). Write A = A, and B = O\A,
so that min{u(A),u(B)} > 0. Next, define g = I(a) + I(B)/2 and

n
let T:A —>A be defined by

T™(f,,...,f ) = f,g9/ff,9du
n

(note that 1/2 < [f,gdu < 1 since 1/2 £ g < 1), Obviously T
does not preserve unanimity and 1is nevertheless Externally
Bayesian. However, it is neither loca, nor semi-local, nor even

quasi-local!

2.5 Information maximizing and divergence minimizing

pooling operators

In this section, we take a different approach to the
problem of adequately describing a consensus of opinions. In

the first part, we adopt the point of view that each opinion £
i

contains some "information" about © and we look for a single

representative probability distribution, T(f,,...,f ), whose
: n

expected information content will be a maximum. The pooling
formula so obtained will differ according to which definition of

information 1is elected. This approach will be seen to have the



67

merit of providing a sensible interpretation of the constants w
_ i

with which each opinion £ 1is weighted, a question which was
. 1

left wunanswered by our previous attempts. Then, in the second

part, we employ Kullback's (1968) concept of divergence between

probability distributions to construct a class of pooling
formulas which contains both the linear and the logarithmic
pools as limiting cases. We begin with a short review of
Shannon's definition of entropy, which is basic to the Theory of
Information. For convenience, we work on A,, defined in Section

2.4 to be {feA|f#0 p-a.e.}.

Perhaps the most celebrated and popular measure of the
amount of information contained in a probability density f on ©

is the entropy function

E(f) = -ff-log(f)du e [0,=), (2.5.1)

the discrete version of which was introduced by Shannon (1948)
in the context of communication engineering. The gquantity E(f)
measures the "uncertainty" contained in the random variable @
(as governed'by f) and thus represents, in some sense, our best
knowledge of ©. The smaller the entropy, the less uncertain is
® and therefore the better informed one is deemed to be upon
being apprised of f. Strong justification for using (2.5.1) has
been supplied by way of axiomatic characterizations, though only

in the discrete case. Most derivations, including those of
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Faddeev (1956) and Forte (1973), are based on some version of

the additivity postulate which stipulates that the information

expected from two experiments equals the information expected

from the first experiment plus the conditional information

(entropy) of the second experiment with respect to the first.
This postulate must be considered fundamental to any idea of

"information."

The following expression for the entropy of one probability
density f in A, with respect to another probability density g is

usually known as the Kullback-Leibler Information for

discriminating between f and gq:
1(£,9) = (f-logl(g/f)du. (2.5.2)

1t was defined by Shannon (1948) in the discrete case and later
extended by Kullback & Leibler (1951) to the general case. The
quotient logl[g(8)/f(6)] may be interpreted as the "weight of
evidence" (Good 1950) or the information in © = 6 for
discriminating in favour of H,;: "the true distribution 1is g"
versus Hy: "the true distribution 1is f." Alternately, the

guantity (2.5.2) may be regarded as the information gain (a

negative quantity here)
E(f) - [-ff-1log(g)du]

incurred by using one's "best knowledge of ©," g, to take
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decisions, while the true (hypothetical) underlying probability

distribution governing © is f.

Two basic properties of the Kullback-Leibler information

are embodied in

Lemma 2.5.1

Let I:(Ap)2—>R be defined by Equation (2.5.2). If £ and g
represent any non-vanishing u-densities in A,, then
(i) 1(£,g) < 0 always, and

(ii) 1(f,g) = 0 iff f=g uw-a.e.

Proof: This result 1is stated and proved as Theorem 3.1 in

Chapter 2 of Kullback (1968). =

The above properties of the Kullback-Leibler Information
measure are enough to suggest a new characterization of the
linear opinion pool in the following context. Let wus 1imagine
for a moment that a decision maker has collected n expert

probability assessments f,,...,f about © and that he 1is
n

informed, knows or judges somehow that (i) one of these is the
density of the "objective" probability distribution governing ©
as a random variable; and (ii) the probability that the i-th
n
distribution, f , is objective isp 20, Zp = 1. We have
i i i=

already remarked in Chapter 1 that an objective distribution for
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® may only be virtual (6 may be observable only once, for
instance), so the situation which we are describing is

hypothetical. However, it is suggestive and descriptive.

If f were the density of the objective distribution, then
1

according to (2.5.2), the amount of information lost due to

adopting a probability distribution g instead of f would be
i

-1(f ,g) = ff -log(f /g)du.
i i i

~ Averaging over the f.'s, we find that the global'expected infor-
i

mation loss 1is

tm™M3

p -I(f ,q9), (2.5.3)
14 i

i
a functional depending solely on g. It would seem natural to
choose g so as to minimize (2.5.3), 1i.e. pick a probability

distribution which minimizes the expected loss of information

occasioned by the need to compromise. Note that the definition
of pooling operator rules out the possibility that g could be

randomly chosen from the £ 's: although attractive, this
i

selection scheme does not engender the idea of consensus. If a
n

pooling operator T:A, —>A, is such that T(f,,...,f) = g
n
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minimizes (2.5.3) whatever be £,,...,f ((py,...,p ) being a
. n . n

fixed vector of probabilities), we say that it 1is a Kullback-

Leibler Information Maximizer (KLIM).

Theorem 2.5.2

n
The linear opinion pool T(f,,...,f ) = Z w £ is the only KLIM;
n i=1 1 i1
moreover, w = p , i=1,...,Nn.
i i
Proof:
n
Call f = Zpf. To be a KLIM, g must minimize (2.5.3) or,
i=1 i i
equivalently, maximize
n
z = I(f,q).

p ff -log(g/f)du
1

1=1 1

Lemma 2.5.1 shows that g = £ u-a.e. =

Here, we have a characterization of the linear opinion pool
which does not impose a specific form on the pooling operator at

the outset. Locality merely comes as a consequence of the

definition of T. Also noteworthy is the fact that this result

does not distinguish between tangible and intangible spaces.

Theorem 2.5.2 provides us with a natural interpretation of

the weights, w , at least as they appear in the linear opinion
i

pool. If an objective probability density, £, for © and
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objective probabilities, p , of {f =f} exist, we have seen that
i i

w should equal p , 1<isn., When f exists but the p 's are
i i i

unknown, it would seem natural to let w repfesent the decision
i

maker's subjective probability that the i-th expert opinion is

the "right one." This supports the intuitive idea that even in

the absence of an objective distribution, f, the weights, w ,
i

should be chosen on the basis of a subjectiVe judgement made by

the decision maker concerning the accuracy of each assessor.

Winkler (1968) describes some of the most popular rules for
determining the weights. All of them are based on the intuitive
grounds proposed above. The most promising one, suggested by
Roberts (1965), looks at likelihood ratios to compare the
predictive ability of the experts; this involves the application
of Bayes' Theorgm to formally revise the weights after each
assessment and the related observation. More simply, though,
the decision maker could use the present methods to extract a
consensus on the weights after having asked each expert, i, to

produce a set of weights {w [1<j<n} on the basis of the
1]

relative importance that he would assign to the opinions of the
various members of the panel, including himself. Of course,
this raises further questions about the formula to be used in
pooling the weights and the value (weight) to be assigned to any
particular weights assessment. In principle, this process could

go on for ever, except that the final consensus will generally
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be less sensitive to the choice of weights than to the choice of
the pooling formula. "In a way,' state Mosteller & Wallace
(1964, p. 264), 'tﬁis is an old story 1in statistics because
modest changes in weights ordinarily change the output

modestly."

The 1idea of maximizing the expected Kullback-Leibler .
information is not new. It has been suggested by Lindley (1956)
as a sensible (but ad hoc) criterion for experimental designs
"where the object of experimentation is not to reach decisions
but rather to gain knowledge about the world." It is precisely
the context in which this idea has been applied here: collecting
expert opinions may be viewed as an experiment, and it is the
stated purpose of our problem to assess the relative likelihood
of the various possible states of nature, not to take decisions.
Bernardo (1979) has shown that this maximization procedure |is
but another instance of the general (Bayesian) principle of
maximizing the expected utility, and that it is, in some sense,
the only sensible one when the object is to make inference
without any specific application in mind. 1In Chapter 1, we drew
a parallel between the problem of determining a consensus and
that of estimating a quantity from a number of observations. We
have seen that the linear opinion pool may be interpreted as a
kind of sufficient statistic, a statistic which, according to
~ Fisher (1934), "summarises the whole of the relevant information

supplied by the sample."
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It would seem natural to try to extend Theorem 2.5.2 to the

so-called Rényi Information measures

-1 a 1-a
1 (£,9) = (1-a) -+logl[ff g dul], O<a<! (2.5.4)
a

based on the a-entropy functions

-1 a
E (f) = (1-a) -log[ff du], O<a<t
a

introduced by Rényi (1961). As the reader may easily check,

I (£,9) — I1(f,g) as a—>1 whatever be f and g in A; here, the
a A

restriction a < 1 1is imposed to ensure that the integral in
(2.5.4) is always finite. Reasoning in the same way as before,

we would like to find a possibly unique g = P (f,,...,f ) which
a n

maximizes
n
z p I (f_,g), (2.5.5)

the expected Rényi Information of order a, 0 < a < 1. This
problem has not yet been solved for arbitrary n and a. However,
a solution for the case where n=2 and a = p; = p; =1/2 where

(2.5.5) becomes log{[fvI,gdullfvE;adul} is given below.
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Lemma 2.5.3

The quantity [fvE,gdullfvT;gdul achieves a maximum when g =
H2/fH2du wu-a.e., H = VI7] + VI;.

Proof: Let F, = yIy{, F, = vI;, where H = F, + F, and G = vg. We
have

2fF,Gdu fF,Gdu < [[F,GAul? + [[F,GdAu]?
and so

4!F1Gdﬂ IFzGdu < [I(F1+F2)Gd“]2

IA

[S(F,+F;)%du]-[fG?du]

SH?2du.

The second inequality is strict wunless B(H)? = g u-a.e. for
some B,y € R, not both zero (Rudin 1974, p. 66). If =0, then B
# 0 and so H = 0 pu-a.e., a contradiction. Thus 4 # 0 and g =
BH2/y with fgdu = 1. Thus f # 0 and g = H?/fH?du u-a.e. It
so happens that the first inequality is also achieved by this

particular choice of g. =

This partial result was obtained independently by Mr. B.J.
Sharpe (private communication). It is he who pointed out that,

in the setting of Example 2.5.5 below, it is possible to show

n n .

that, in general, P # ( Z yI )2/f( Z vI')%du for n > 2 and w;,
a i=1 i i=1 1

=, =w = 1/n. The details are omitted.

We now propose to characterize the following pooling

operators which we call the "normalized (weighted) means of
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order a:"

n a 1/a n a f/a _
T (f,,...,f) = [ Z w f ] /I Z w £ ] du, O<a<1. (2.5.6)
a n i=1 1 1 i=1 11

(As before, the weights w are non-negative and sum up to 1.)
i

These bear an obvious connection with the weighted mean of order

a, M (x;,...,x ), of a set of n non-negative real numbers (cf.
a ©n

Hardy, Littlewood & Pblya 1934):

n
M (Xy,0e00,) = [ Z wx]
a n i= i

These weighted means will appear again in Chapter 3, when we

discuss the problem of pooling propensity functions.

The basic quantity, here, 1is Kullback's (1968, p. 67)

notion of divergence between any two probability distributions,

f and g:

_ a 1-a
8§ (f,9) = 1-ff g du, O<a<1.
a

In the case a = 1/2, & (f,9) 1is equivalent to the so-called
a

Hellinger (1909) - Kakutani (1948) - Matusita (1951) distance
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p2(f,q) = [f(VE - vg)?du,
a measure also used by Stein (1965) for measuring the distance
between posterior distributions obtained from two different
prior distributions. The function p(f,g) is sometimes referred
to as the affinity between f and g, after Bhattacharyya (1943).

We have the following

Theorem 2.5.4

The pooling operator T defined by Equation (2.5.6) is the only
a

n N
one which minimizes the expected divergence Z w & (f ,g).

1=1 1 a 1

Proof:

n a
Write £ = I w f . By Hélder's inequality,

i=1 1 i

1-a 1/a a
ffg du s [[f dul < o
1/a

and equality 1is achieved only when ff = yg wp-a.e. for some

B,y ¢ R, not both zero (Rudin 1974, p. 66). Proceed as in the

proof of Lemma 2.5.3. =

If a decision maker knows that each one of the n expert

opinions f,,...,f which he has collected has a corresponding
n

probability p of being the "right one," then it might well seem
i
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reasonable to him to choose a consensus distribution which, on
the avérage, will have the greatest "affinity" with the true

distribution. In that case, Theorem 2.5.4 above says that T
. a

should be used for some 0 < a < 1. The choice of the value of a
may be guided by the specific application; alternately, the
decision maker might want to assess the sensitivity of his

conclusions by computing a consensus for different a's.

One attractive feature of the class {T } is the fact that
a

both the 1linear and the 1logarithmic pooling operators are
n
included as limiting cases. Indeed, T (f;,...,f ) > Z w f as
T a n i=1 1 1

a —> 1, whatever f,,...,f € A. On the other hand, we can use
n

L'Hospital's rule to see that

n a 1/a -1 n a
log[Lim ( Z w £ ) ] = Lim a -log[ Z w f ]
a—>0 i=1 1 i a—>0 i=1 11
n a n a
=Lim [ Zw f -log(f )]/l Z w £ ]
a—>0 i=1 1 i i i=1 i1
n w(i)
= log[ I £ 1.
i=1 i

Now, it is known (Hardy, Littlewood & Pblya 1934, p. 26) that
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n
pointwise for all k 2 1, and of course [ Z w f du = 1.
i=1 i i
Therefore, we can use the Lebesgue Dominated Convergence Theorem

(Sion 1968, p. 95) to conclude that

n 1/k k n 1/k k
Lim f[ Z w £ ] du= [fLim [ Z w £ ] du
k=>e  i=1 1 i _ k—>e i=1 i i
n w(i)
= [ N¢ du.
i=1 i
n w(i) n w(i)
Consequently, T —-> II £ /Jf I f du always as a —> 0.
a i=1 i i=1 i

'This fact may provide some indication that this quasi-local

Externally Bayesian procedure is "robust" in some sense.

We conclude this section with an example borrowed from

Weerahandi & Zidek (1978):

Example 2.5.5 (Parliamentary voting procedures)

Suppose that a House of Representatives 1is composed of n
members, each of whom has a democratic weight of 1/n when he
votes. Suppose also that when a proposal is put before the
House for approval, each member i tells an independent judge,

Mr. Speaker say, his personal probability 0 < p < 1 that
i

passing the proposal 1is the right thing to do. The
understanding 1is that this person is required to form the

consensus and take a decision, approval or rejection, which is
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"consistent with it. Note that Mr. Speaker could have the right
to vote too, as long as he does not 1let his personal desires
influence unduly the decision wultimately made by him in his

capacity as arbitrator of the group. If Mr. Speaker uses T (0
a

< a < 1) to establish a consensus, his arbitrator's odds in
favour of passing the proposal (once he has heard every deputy)

will be

n a 1/a n a 1/a
[ Zp ] /L z (1-p ) 1 , 0 <ac<
i=1 1 i=1 i
n 1/n n 1/n
[onp]l /IO (i-p)] , a= 0.
i=1 1 i=1 i

Thus, the best non-randomized decision rule would consist of

passing the proposal if

n a n a

(t/n). Zp > (1/n)- Z (1-p), 0 <as1; (2.5.7)
i=1 i i=1 i
n

(1/n). Z loglp /(1-p )] > 0, a = 0. (2.5.8)
i=1 i i

When a = 1, the procedure reduces to passing the proposal if p >
1/2. When a = 0, the proposal will go through if, on the

average, the parliamentarians' log-odds-ratios favor passage,
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i.e. (2.5.8) holds.

Now suppose that n, of the House members, i=1,...,n, are
against passage, and the other n, = n-n, are for. Further

assume that p = v < 1/2, i=1,...,n,, and p = & > 1/2, i=no+1,
i i

...,Nn. Weerahandi & 2idek (1978) point out that if y = 1-§, the
optimal non-randomized decision rule (2.5.8) is nothing but the
familiar "simple majority" voting procedure. This is also true
of (2.5.7) for all 0 < a £ 1, as the reader may easily check.

Thus T, is not extraordinary in this respect. But the "simple
majority"” rule would seem well Jjustified, at least if
politicians were as certain as they appear to be in public

appearances and therefore the p 's were all essentially 0 or 1.
i

2.6 Discussion

The work of the previous sections has been directed toward
the theoretical aspects of group probability assessment in the
case where expert opinions are expressible as densities with
respect to a fixed underlying measure. In particular, we have
(i) proposed new arguments favouring the linear opinion pool,
T,; and (ii) characterized the logarithmic pooling operator, To,
as the "only practical" *Externally Bayesian procedure. We
regard the latter result as our main contribution to this

problem. Some of the following remarks will also apply in
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substance to the developments of Chapter 3 (they will not be

repeated).

It should be <clear, from the content of Section 2.5
especially, that there cannot be a wunique solution to the
problem of the panel of experts. This is also the conclusion
reached by Bacharach (1975). Certainly, the use of either the
linear or the logarithmic pool is by now well-justified, and it
is interesting to think of the two as being limiting cases of an
entire class of reasonable pobling formulas. This author would
personally favour the logarithmic pooling operator, as he finds
the axiom of coherence EB of Madansky (1964;1978) rather

appealing in a Bayesian framework.

The prescription
n n
nft /I.H f du (2.6.1)

is also recommended by Weerahandi & Zidek (1978), and indirectly
by Morris (1974;1977) and Winkler (1968), the latter thfough his
natural-conjugate (N-C) approach. The N-C recipe amounts to
that offered by the logarithmic opinion pool except that all
probability assessments must belong to some Afixed natural-
conjugate family of distributions. Of course, this approach is
valuable only to the extent that such a mathematical model may

well approximate one's judgements. Bacharach (1973) attributes
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(2.6.1) to Hammond, but he does not cite a source for the

result.

As Winkler (1968) points out, the choice of a pooling
operator can be influenced by practical considerations. For
instance, the desire to simplify computations or the need to
have an analytical_expression for the consensus may well deter
one from using an otherwise sensible formula. Morris' (1977)
procedure, for example, entails formidable assessment problems

in all but the simplest applications.

Thus, the following features of T, and Ty, the logarithmic
and 1linear opinion pools respectively, would be of some

relevance in the context of an actual application:

(i) T, is generally multi-modal, whilst T, is typically uni-

modal

It is generally observed that the larger the differences

amongst the modes of the individual probability densities £ .
1

the more 1likely it is that T; will produce a multi-modal
distribution. The fact that T, may fail to identify a parameter
which typifies its modes (i.e. the individual choices) might
well be perceived as a fault, even if the problem does not call

for a decision (cf. Weerahandi & Zidek 1981).



84

(ii) T, has a qreater variance than T,

This is not surprising in view of (i). Given a set of

w 's, the tighter distributions will automatically receive more
i

weight under T, than under T,. This is due to the
multiplicative nature of the logarithmic opinion pool. For an
analogy, think of the situation faced in a formal Bayesian
analysis where a large amount of sample information "swamps" a

relatively smaller amount of prior knowledge.

Whether a small or a large variance is more desirable will
depend on the particular application one has in mind. Bernardo
(1976) reports the following example: suppose that two experts
gave f, = N(0,1) and f, = N(1+/3/e,e?) as their respective

opinions, and that 6 later turned out to be 1.

1.0

0.5

Figure 1. Two opinions with a different entropy but giving
the same probability to the true value of the
guantity of interest before it is revealed to be
1.
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Explains Bernardo, on page 34: "In a sample survey where a
loose approximation of 6 may be useful, f, could be preferred on
the grounds that it attaches a high probability to such
approximate values. On the other hand, in a medical research
where a small error may have fatal consequences, £, could be
preferred on the grounds that it warns against a premature,
possibly fatal decision and rather suggests that more evidence
is needed." These preoccupations, however, are somewhat beyond

our present concern.

(iii) Calculations are easier with T,

We remark that if £,,...,f are members of a family of
n

exponential type determined by the same generalized density,

then To(f,,...,f ) will be a member of the same family. For
n

example, if f 1is a normal density with mean g and variance o?,

i i i
n
then To(f,,...,f ) will also be normal, with mean u = Z a u /
n i=t 1 i
n n
Za and variance o¢2 = 1/ Z a , where a = w /o?, 15isn.
i=1 i i=1 1 i i 1

n
Distributions of the form I wfe are called mixtures and

usually are intractable, unless of course all the f 's are the
i

same.
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Professor A.W. Marshall has raised an objection to the
logarithmic opinion pool (personal communication), pointing out
that it would be unsatisfactory for combining expert opinions
when these opinions are based on overlapping experience or data
sources. This is indeed a problem with Winkler's N-C approach,
where (2.6.1) comes as a by-product of Bayes' rule. However,
this is not a criticism of the logarithmic opinion pool which
was obtained in Theorem 2.4.6. It must be interpreted instead
as a criticism of the EB postulate, a 1logical consequence of
which is the logarithmic pool. It may well be that T and the EB

postulate ought not to be applied to the set {f_} for the
i

reasons cited above, but instead to an alternate collection of

opinions derived from the f 's. However once the derived set is
i

specified, EB would again lead to their logarithmic pool.

Morris (1974,1977) gets around this difficulty by encoding
the degree of dependence amongst the experts as well as each
expert's probability assessment ability in a so-called Joint

Calibration Function C:® —>[0,=). In general, this calibration

function will represent the decision maker's subjective
evaluation of the experts, rather than the result of the experts
empirically calibrating themselves; and so the task of
determining C will be rendered difficult by the need to assess

the elusive dependencies between the experts' opinions.
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When this is done, a "generalized logarithmic opinion pool"

M(f,,...,f ) emerges for the composite prior of n experts:

n
n n
M(f],u-u,f ) = Cn f /ICH f duo (206.2)
n i=1 i i=1 1
This reduces to (2.6.1) with w(i) = 1,1<i<n, if the experts are

independent and calibrated (i.e. if C 1is a constant). This
n

concurs with the ad hoc suggestion of Winkler (1968) that i§1wi
should be taken in the interval [1,n] and reflect the T"amount
of independence" between the experts. However, M 1is not
Externally Bayesian and will wusually have a much smaller
variance than T, if C is a constant (cf. remark (ii) above).

Also, note, that M provides us with an example of a "semi-quasi-
local" pooling operator. It would be interesting to
characterize all the Externally Bayesian semi-quasi-local

pooling operators.

As observed by Winkler (1968) and Weerahandi & Zidek
(1981), pooling operators can be used in an entirely different
spirit from that which has motivated their stud&. Indeed, the

assumption that each f represents a subjective probability
i

distribution assessed by a member of a panel of experts is
convenient, but not crucial to the analysis. Thus, a single

individual may well choose to reflect the surmised quality of
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his prior knowledge in an analysis by combining this prior with
"mechanical predictions" representing either ignorance or a
tendency tb persistence (what happened yesterday will happen
today), or else derived using more complex schemes such as
multiple regression. Nonetheless, the problem of determining

appropriate weights remains.

Finally, a word of caution concerning the game-theoretic
aspects of our problem. Throughout this- chapter, we have
assumed that the experts consulted by the decision maker were
candid and accurate in their probability assessments.
Paraphrasing Raiffa (1968), we could say that they are dedicated
staff men, whose sincerity is unguestionable and who would not
conspire to trick the decision maker. This is not a realistic
assumption if the ultimate objective of the exercise is to make
a (possibly consequential) decision and/or if the decision maker
only represents the "synthetic personality" of the group. For
example, one of the experts may intentionally falsify his
opinion in an attempt to influence the others toward a
particular consensus which is somehow advantageous to himself.
Fellner (1965) discusses probabilistic "slanting" and its
occurrence in group decision making. When bargaining is
involved, the solutions presented here will prove unsatisfactory
unless, perhaps, the members of the panel share  (roughly) the

same preference pattern, i.e., utility function. Unlike

Weerahandi & Zidek (1981), our approach to the multi-Bayesian

decision problem is through aggregation, not compromise.
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I111. POOLING PROPENSITIES

3.1 Motivation

Thus far, we have concentrated on the problem of
reconciling judgemental probability assessments, i.e. expert
opinions which are expressible as densities with respect to some
natural dominating measure on a space ® of mutually exclusive
alternatives. In this chapter, we enlarge this problem and

concern ourselves with what we call propensity functions, or P-

functions for short. Gliven a space, ©, of contemplated states
of nature, a P-function is 3just a transformation of © into

(0,»). We will denote by N the set of all P-functions on 6.

Examples of P-functions are likelihoods, belief functions
(shafer 1976) and density functions such as those obtained from
prior, vague .prior, ‘posterior, structural (Fraser 1966) and
fiducial distributions. These functions, p, need not have a
finite integral with respect to any particular measure; however,
they share the property that p(8)/p(n) represents the relative
degree of support (or "propensity") expressed in favour of 6
over n, 6 and n being elements of ©. This ratio p(6)/p(n) may
well be an odds-ratio or a likelihood-ratio, for example. In
any case, the larger this quantity is, the greater is the degree

of conviction in favour of 6 compared to 7.
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To fix ideas, some specific examples will now be presented
where the need will occur to pool P-functions. These
applications will also serve as a motivation for the ensuing

n
developments. In each case, a pooling operator T:MN —>N0 1is

required.

Example 3.1.1 (pooling utility functions)

When confronted with intra-group conflicts, it is sometimes
necessary to take into consideration gquestions of utility.
Typically, this will be the case if a choice or decision 1is to
be made which will affect the members of the panel. If such a
panel of experts disagrees on utility assignments for actions
(or their consequences) as well as on the prior probabilities
for the possible states of nature, a decision maker might choose
to decompose the problem into two parts, utilities and
probabilities, and proceed to extract a consensus on both
matters independently. This attitude is recommended by Raiffa

(1968, p. 232) despite some of its shortcomings.

Assuming that a solution to this consensus problem is

sought through aggregation, the decision maker will have to

decide on a formula for amalgamating the experts' utility
functions. In that respect, the techniques of Chapter 2 are of
no avail because utility functions generally do not integrate to
one. On the other hand, note that any strictly positive utility

function is a P-function, so that -in that case at least-



91

pooling wutility " functions amounts to pooling P-functions.

Furthermore, the positivity assumption can be waived if we adopt
the Paretian attitude that a measure of utility is ordinal (as
opposed to cardinal), and hence unigque only up to a strictly
monotonic 1increasing transformation (of course, not all such

utility functions will satisfy the expected-utility principle).

Example 3.1.2 (pooling likelihoods)

In general, 1likelihood functions are derived from
conditional probability distributions of the form
P{data|true value is 6} considered as a function of 6. These

conditional distributions can be subjective. For, in all but

the simplest statistical applications, they are modelled in some
convenient way to approximate more or less accurately the
observed (but wunknown) wunderlying distribution of the data.

This mathematical modelling involves some introspection and
arbitrariness on the part of the assessor, and subjective
likelihoods are a reflection of that mild "interpretation" of

facts and evidence.

1f a problem were delicate and complicated enough, it would
not be surprising that a panel of experts who were not in accord
on prior probabilities for the possible states of nature were
not in agreement either on the meaning and/or value of some new
piece of information presented to them. At best, in those cases

where the data was reliable, of good quality and related to the
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parameter of interest in a manner which is well understood, even
critical experts would probably nearly agree on their
significance and might even adopt the associated likelihood as
their (common) "revised opinion." However, it 1is easy to
conceive of situations where the new information would be so
much subject to personal interpretation that its disclosure
would cause the experts to disagree even further! This suggests
circumstances in which expert probability assessors could be
left in dissensus, even after an open and vigorous exchange of

information.

One method for resolving the disagreement amongst experts
about the interpretation of a set of data 1is to pool their
associated subjective likelihood functions. When these
likelihoods are non-zero everywhere on © (the usual case and the
most interesting one), this reduces to the problem of

aggregating propensities.

Example 3.1.3 ' (combining independent tests of hypothesis)

This is a well-known problem which has been investigated by
many authors; for a general discussion and a fairly extensive

bibliography on the subject, we refer to Monti & Sen (1976).

The formal statistical problem may be stated as follows: given n

! We are thankful to Dr. Peter McCullagh of Imperial College
(London) for suggesting this application.
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independent test statistics, J¢,...,dJ , for testing a null
n

hypothesis Hy:weQ, versus H,:we®, (2 = Q,UN; being a space of

probability distributions), select a function, P, of J,,...,J
n

which 1is to be used as the combined test statistic. The idea
behind the construction of P is that the aggregate of several
tests, possibly of marginal significance individually, can lead
to scientifically decisive conclusions if their results are

viewed as a whole. If large values of the J 's are considered
i

critical for testing H,, one common solution consists of finding

a test P based on the observed significance levels or P-values,

L = 1-F (3 ), where F (t) = Po{J <t}, the cumulative
i i i i i

distribution of J under the null hypothesis (it is assumed that
i

the probability distribution of each J 1is the same for all w e
i

Q). For example, Fisher's (1932) omnibus procedure is given by
n 1/n
p(Ly,...,L ) = nL and H, is rejected when the observed
n i=1 i

value of P 1s small.

DeGroot (1973) has shown that it is possible to interpret

the tail area L as a posterior probability or as a likelihood
1 .

ratio for the acceptance of the null. Because of this, each L
: i

may be regarded as an individual expression of belief or P-

function assessing the "likelihood" of @ = {"H, is true"} (the
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uninteresting case where L = 0 being neglected). In that case,
1

n n

P(L,,...,L. ) is a pooling operator acting on A = (0,1) .
n

Example 3.1.4 (The Bergson-Samuelson social-welfare function)

Economists make a distinction between what they call an

individual's social-welfare function and his wutility function

(cf. Samuelson 1947, Chapter 8). A person's utility function
quantifies, either cardinally or ordinally, what they prefer on
the basis of their personal interests or on any other basis. On
the other hand, the social-welfare function 1is supposed to
express what the individual prefers (or, rather, would prefer)
on the basis of impersonal social considerations alone. Stated
differently, the social-welfare function represents the
individual's "ethical"™ or "moral" preferences, whereas the
utility function describes their "subjective" preference
pattern. 1t is the former which the person would use if they

were called upon to make a moral value judgement.

Mathematically, a social-welfare function is a mapping W

which makes correspond a "social utility" W(u,,...,u ) to any
: n

vector (u;,...,u ) of private utilities. Provided that 1its
n

domain and range are appropriately restricted, W is an instance
of a P-function pooling operator. The guestion of defining and

determining the form of a "reasonable" social-welfare function
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has occupied economists for some time (cf.,e.g., Harsanyi 1955).
Generally speaking, there is agreement on two points: (i) W
should be "local," i.e. the social utility level attached to a
"prospect™ should only depend on the individual utilities
associated with that particular prospect; and (ii) W should be
increasing in each of its arguments, the rationale being that
"if you increase any agent's utility without dec;easing anybody

else's utility, then society is made better off.”

As we shall see, these two conditions play an important

role in the sequel.

Definition 3,.,1.5

n
A pooling operator T:II —>I1 is called local whenever there

n
exists a function G:(0,») —>(0,«) such that

T(py,...,p )(8) = G(p,(8),...,p (8)) (3.1.1)
n n

for all 6¢® and py,...,p € II.
n

Note that Equation (3.1.1) must hold everywhere, and not
merely "almost everywhere.” This is rendered necessary by the
absence of any natural choice for a dominating measure on 6.
The following lemma gives obvious equivalent conditions for an

operator to be local.
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Lemma 3.1.6

n
A pooling operator T:II —> Il is local iff

(i) ™(py,e..,p )(6) = T(py,...,p )(7n) whenever p (8) = p (9) for
n n i i

all i=1,...,n;
and

(ii) T(py,...,p )(8) = T(Qq1,...,q )(8) whenever p (8) = q (6)
n n i i

for all i=1,...,n.
Proof: This is trivial., =

Condition (i) above could be called "consistency." 1If all
the experts agree that states 6 and =n are "equiprobable" or
"equally likely," then, according to Condition (i), the decision
maker should attribute the same "likelihood" or "propensity" to
both 6 and 7. To assume that the decision maker 1is consistent
in this particular sense seems non-controversial, at least if it
is believed that the assessors did not bias their judgements in
the hope of gaining some strategic advantage. Condition (ii)
can be regarded as a likelihood principle for P-functions, just

as before (cf. page 29).

Definition 3.1.7

n
A pooling operator T:Il —> Il is said to preserve the ordering of

beliefs (POB) iff

(i) T(py,...,p )(6) < T(py,...,p )(n) whenever p (6) < p (n) for
n n i i
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all i=1,...,n;
and

(ii) T™(py1,ee.,p )(8) < T(Py,...,p )(n) whenever p‘(e) < p_(n)
n n i i

for all i=1,...,n with strict inequality for some i.

The above property corresponds to the second requirement
set out by economists for the social-welfare function. Apart
from its considerable intuitive appeal, we will find that it
often acts as a "regularity condition" in a manner similar to
the measurability assumption used in Chapter 2. Note that any

POB pooling operator will satisfy Condition (i) of Lemma 3.1.6.

In Section 3.2 below, locality will be used in conjunction
with four postulates of rationality in order to characterize a
large class of P-function pooling operators. Amongst the

requirements will appear the Unanimity Principle, which says

that

Py = ... =p =p =>  T(py,...,p) =Pp
n n

whatever p ¢ I (see Axiom A below). This condition only makes
sense if the scales of belief used by the different experts are

intercomparable, i.e. if there exists an "outside" standard for

the quantification of belief such as reguiring that the most
preferred alternative be ascribed a value of one. The
difficulties associated with comparing degrees of belief are

mentioned in Weerahandi & Zidek (1981); they are analogous to
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those which arise in the theory of utility when one attempts to
compare "preferences." Although various approaches have been
taken to overcome this problem in the latter context, the
question remains largely unsolved (cf. Luce & Raiffa 1957; Sen
1870). In the case of degrees of belief, the difficulties which
are referred to above derive from the existence of possibilities
which have not yet been identified and which, therefore, are not
included in ©. Situations are conceivable where it would be

natural to normalize p as p /p (6,), 6, being some fixed and
i i i

distinguished state in ©. 1In others, p /Sup{p (6)|6e8} might be
i i

more natural. In others still, there might be a natural

dominating measure u on © with respect to which every p could
i

be normalized; this, of course, is the very important special
case which we discussed in Chapter 2. In general though, no
particular choice seems dictated. Furthermore, certain
alternatives would not always be feasible as, for example, the

above-mentioned division by p 's total mass when © has an
i

infinite u-measure.

Notwithstanding these problems associated with the
intercomparability of scales of belief, we shall assume for the
time being that it 1is reasonable to wuse (local) wunanimity
preserving pooling operators for combining P-functions. 1In
Section 3.3, an attempt will be made at solving the more

difficult problem involving the pooling of incomparable
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propensities.

3.2 A class of local pooling operators

We now propose certain weak and appealing conditions which,
apart from locality, embrace the minimal requirements that any
reasonable candidate for the role of pooling operator should
satisfy (from now on, it is understood that a pooling operator
acts on P-functions). These "axioms" are seen to characterize
the quasi-arithmetic weighted means (defined below), a result
which was proven in another context by Aczél (1948). Aan
interesting feature of the theorem is that although all quasi-
arithmetic means are continuous in their n variables, no
assumption of smoothness appears in the list of axioms. When
considerations relating to the scales of belief are added, a
characterization of the 1linear and the logarithmic pooling

operators are obtained.

Definition 3.2.1

n
A transformation T:II —>II is called a quasi-arithmetic pooling

operator iff there exists a continuous and strictly increasing

function ¢:(0,*)—> R with inverse ¥~ ' such that

n
T(P1,eee,P ) =Y '[ Z w y(p)] (3.2.1)
n i=1 i i
n
for some fixed weights w;,...,w 2 0 with Z w =1,

n i=1 1
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Important examples of quasi-arithmetic pooling operators

n
are the linear opinion pool Z w p [v(x)=x], the 1logarithmic
i

i=1 i
n w(i)
opinion pool np [v(x)=1log(x)] and the root-mean-power
i=1 1
n c t/c c
pooling operator ( Z w p ) [y(x)=x ,¢c>0] which includes the
i=1t 1 i

first one as a special case (c=1) and the second as a limiting
case (c=>0). The basic properties of the quantity (3.2.1) are
discussed in Hardy, Littlewood & Pblya (1934) in the case where

the p 's are real numbers. Especially noteworthy 1is the fact
i

that the function ¢ 1is unique only up to an order-preserving

affine transformation ax+b, a > 0. This result we record as

Lemma 3.2.2

n
Let wy,...,w 2 0 be fixed with Z w = 1 and, for 3j=1,2, let
n i=1 i
n
G (X) =y-'"[ Zwy (x )] be two quasi-arithmetic weighted means
j j oi=1 1 3 i

such that G, (¥)=G,(%) whenever x e I for all i=t1,...,n, I
1
being some open interval in (0,=). If there exist at least two
o
strictly positive w 's, then Yy, = ay,+b on I for some a,b e R,
i

a>0.
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Proof: This result is stated and proved as Theorem 83 on page 66

in Hardy, Littlewood & P6lya (1934)., =

We will now present four axioms which pooling operator
could reasonably be required to satisfy. It will turn out that
these axioms characterize the quasi-arithmetic pooling operators

of Definition 3.2.1.

The central requirement is inspired by Weerahandi & Zidek's
(1978) "prior-to-prior coherence" axiom and stipulates that
"pooling opinions can be done seqguentially and in any order.”
Since the wultimate objective of pooling P-functions 1is to
construct something that can be called a cdmbined P-function
representing the beliefs of all the expefts, it 1is plausible
that the actual order in which this pooling is done should be
immaterial. In their manuscript, Weerahandi & Zidek express

this condition as

T (P1,eee,p ) = T, (T (Pr1seeerpP ).p ) (3.2.2)
k k k-1 k-1 k

for all k=2,...,n, where the subscript on T indicates the
dimension of its domain. Although it conveys the basic idea of
sequential pooling, this formulation of the prior-to-prior
coherence axiom is inadequate because it may induce an undesired
functional relationship amongst the weights ascribed to the
various experts. This point will be best illustrated with an

example.
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Suppose that we are dealing with n=3 experts and that

expert 1i's opinion, p , has a weight of w >0, w,+w,+w3;=1. Then
i i

the relative weight of opinion p, with respect to p, is w =
w,/{w,+w,), so T,(p,,p2) must assign a weight of w to its first
component. However, expert 3 has a weight of w;, which implies

that the combined opinion of experts 1 and 2, p, should carry a

weight of w,+w,. Since T;(p,,pz,P3) = T,(p,ps), it follows
that w,+w, = w = w,/(w,+w,), from which we conclude that w, =
Vw,-w, and in turn w; = 1-y/¥,, w, being arbitrary in (0,1). 1In

other words, the weight attributed to expert 1 determines the
weights of both experts 2 and 3, and not only their sum!! This

is clearly unacceptable.

In the above example, the difficulty arose from an
ambiguity in the use of T, as it appears in Equation (3.2.2)
when k=3. There, the "inner -T," has the opinion of expert i as
its i-th component,i=1,2, whereas the joint opinion of experts 1
and 2 appears in the first slot of the "outer T,." To avoid
this problem, it will be necessary to distinguish all pooling
operators by keeping track of the specific weights which they
ascribe to their various components, the underlying idea being
that the source of an opinion is irrelevant as long as it has

been properly calibrated.
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Change in notation

When appropriate, we shall write T (DPy,eee,P [Wiseee W ) to
n n n

denote the joint opinion of n experts E,,...,E whose propensity
n

functions, p , are to be weighted and amalgamated using formula
i
n
T and certain weights w 20, i=t,...,n, Z w = 1,

n 1l 1

If T is local, we shall write T (Py,eeesP |Wiseee,w )(6) =
n n n n

G (p1(68),c.0,p (8)|Wy,euu,w ).
n n n

In adopting this convention, it 1is understood that T
n

should satisfy

T (DyyevesD [Wrpeew,w ) =
n n n

T (p R o) | w peoe W ) (3.2.3)
n T(1) T(1) T(1) T(1)

where T is any permutation of the set {1,...,n}. Strictly
speaking, this requirement could be included in the following
list of axioms. However, we prefer to regard it as an intrinsic

property of all P-function pooling operators.
Axiom A (Unanimity Principle)

T (py,.e¢,P |¥W4,¢..,%w )= p whenever p, = ... = p =PpP
n n n , n
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Axiom B (Preservation of the ordering of beliefs)

T (PrseeesD |Wypeee,w )(8) €T (Qy,eee,q |[Wi,eee,w )(6)
n n n n n n

whenever p (6) < g () for all 1<i<n, the ineguality being
i i

strict if, 1in addition, p (8) < q (6) for some 1<j<n with
] ]

O<w <1, When T 1is local, this is equivalent to saying that T
3 n n

is a POB pooling operator.
Axiom C (Prior-to-prior coherence)

For all 1<k<n,

T(p1,-o.'p |W1,...,W) = T (p'p ,-oo,p |w,w ,'oo,w)
n n n n-k+1 k+1 n k+1 n

k
where p =T (py,ese,p |Wy/w,...,w /w) and w = Z w (if w=0, p
k k k =

is an arbitrary P-function).
Axiom D (Monotonicity of weights)

If w <w*, w = t-w +w* and there exists j#i such that w >0, then
i i i i j

T (p1,...,p |W1,..o.,w )(9) <
n n n

T (PyyeeesP |Woi/W, e, wX/w, 00, w /w)(6)
n n i n

provided that p (8) = max{p (6)|1<k<n & w >0}.
i k k
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When n24, we have the following

Theorem 3.2.3 (Aczél 1948)

Let T be local and suppose that there exist T;,...,T such
n n-1

that Axioms A-D above be satisfied. Then T is a quasi-
n

arithmetic pooling operator.

Remark 3.2.4:

The essence of the proof is contained in Aczél's (1948) paper.
However, we have adapted his axioms and freed them from some
obvious redundancies. For completeness, the necessary

adaptation of his proof is given below.

Proof of Theorem 3.2.3:

First, we show that T,;,...,T are local whenever T is. For
n-1 n
k
that, we define n-2 functions G :(0,») —>(0,=), k=2,...,n-1 Dby
k
letting

G(y1y.oo,y |v1’o'Q,V)=
k k k

T'(p1,...,p reeesD [Viseee,v ,0,...,0)(6)
n k k k

for any py,...,p ell wifh p (6)=y ,1<i<n., Since T 1is local, the
. k i i n

G 's are well-defined. Furthermore, we can use prior-to-prior
k
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coherence to see that

T(p1,oo¢,p '.co'p |V1,...,V 'Oyoao,O)(e) _=
n k k i k

T (p1l"’lp rplv1r'°-rv Iv)(e)
k k-1 k-1

where p = T (p yoeeyp |v ,0,...,0) =p Dby unanimity and
n-k+1 k k k k

v=v +0+ ,..+0=v ., Therefore,
k k

T (PrseeesP |[Vieowe,v )(8) = G (py(8),ece,p (8)|Vy,eee,V )
k k k k k k

always, i.e. T 1is local for all k=2,...,n.
k

Next, we define a function x:[0,1]—>[a,b] and verify that
Go(x(s),x(t)]1-w,w) = x[(1-w)s+wt] (3.2.4)
for all s,t,w e [0,1]. 1In fact, as is shown below, we may let
x(w) = G,(a,b|1-w,w) for all 0<w<1i, so that x(0)=a and x(1)=b by
unanimity and prior-to-prior coherence. Using Axioms A and B,
we see that a = G,(a,a]1-w,w) < x(w) < G,(b,b]1-w,w) = b for all
w e (0,17), and it follows from Axiom D that x is strictly
increasing in (0,1).
Conjugating Equation (3.2.3) with Axioms A and C, we have
successively

Go(x(s),x(t)|1-w,w)

G,[G,(a,b|1-s,s),G,(a,b|1-t,t)|1-w,w]

= G,la,b,G,(a,b|1-t,t) ] (1-w)(1-5),(1-w)s,w]
= Gyla,b,a,b|(1-w)(1-8),(1-w)s, (1-t)w,tw]
= Gyla,a,b,b|(1-w)(1-8),(1-t)w,(1-w)s,tw]
= G;[a,b,b|1-s+ws-wt,(1-w)s, tw]

= G,[a,b|1-s+ws-wt,s-ws+wt]
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= x(s-ws+wt) = x[(1-w)s+wt],

so that (3.2.4) holds true.
The key observation is that x is continuous on [0,1]. For then
it is surjective on [a,b] by the Intermediate Value Theorem and
hence it has an inverse x ':[a,b]—>[0,1]. This allows us to
rewrite Equation (3.2.4) as

Go(y,z|1-w,w) = x[(1-w)x" " (y)+wx "(z)] (3.2.5)
where y and z are in [a,b] and 0s<w<1, (x~' will be the function
v of Equation (3.2.1).)
We argue for x's continuity by contradiction. Suppose to, 1is a
point of discontinuity of x, say to the right. Then

3ye[a,b] Vs>0l(s+toe[0,1]=>x(to)<y<x(to+s)).

For such a number yela,b], write y = Gz[x(f),y|1/2,1/2] for
t

all te(0,1)]. By Axiom B, we have
GoIx(t),x(to)]1/2,1/2] < G [x(t),y]1/2,1/2]

= y < GpIx(t),x(toe+s)|1/2,1/2],
t

i.e., using Equation (3.2.4),

x[(t+to)/2) <y < x[(t+to+s)/2]
t

for all s>0 with (t+te+s)/2 € [0,1].

This would show that x is discontinuous at all (t+ty)/2 € [0,1];
however, a monotone function never has more than a countable
number of discontinuities (Theorem 4.30; Rudin 1976, p. 96).
Hence, x is continuous everywhere and Equation (3.2.5) obtains.

Using induction, we will now prove that

k
G (Yireees¥ |Vivoeeyv ) = x[ Z v x ' (y )]
k k k =1 1 i
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k
for all 2<k<n and y ¢ [a,b], v 20, Zv 1. Indeed, we

i i i
deduce from Axiom C that G (Y1s00ery [Vigeosv ) equals
k+1 k+1 k+1
k
y if v= Zv =0and Gy[G (yi,eee,Y |Vi/Vieue,v /V),Y |v,
k+1 i= k k k k+1

v ] otherwise.
k+1

However, we know by hypothesis that

n"nmMx

G (Y1:-~-yY |V1/vl---rv /v) = xI (v /V)-x”(y )]
k k k i=1 i i

and so G (Yireoer¥ |viseee,v ) equals
k+1 k+1 k+1

k
G.[x{ Z (v /v)ex"'(y )},y |v,v 1.
i=1 1 i k+1 k+1

Using Equation (3.2.5) now, we find that this last quantity

equals
k
x[vex-"{x( Z (v /¥)ex""(y N} +v «x Ay )],
i=1 1 i k+1 k+1
k+1
which is nothing but x[ Z v x~'(y )).
i=1 1 i

To complete the proof, it remains to show that if y,,...,y are
n

any in (0,«), then y:(0,2)—>R exists which is continuous,

strictly increasing, and such that

G (Yrseeery |Wiseoeyw ) = ¥

n n n 1l

ne1s

w Yy )] (3.2.6)
1 i

n
With W1,...,W 20, zw =1.



109

For this, we consider the nested sequence of closed intervals I
m

= [1/m+1,m+1] in (0,=); we can repeat the argument above with
a=1/m+1 and b=m+1 to prove the existence of a continuous and

strictly increasing function x-' = ¢ :I —>[0,1] such that
m m m

Equation (3.2.6) holds for yy,...,¥y €1 and ¢y instead of ,
n m m

n
m=1,2... Since 1, is contained in I and ¢ '[ Z w ¢,(y )]
m 1 i=1 1 i

n
v-'l Zwy (y)] onI,, weconclude from Lemma 3.2.2 that ¢
im i

m 1=1 m

aVy, +b for some a ,b € R with a strictly positive. Define
m m m m m

y* = [y -b 1/a so that y* is an extension of ¥, on I , m>2; we

m m m m m m
have that y* extends y* from I to I , Since y* = ay* + b
m+1 m m m+1 m+1 m
for some a,b € R with a>0, and y* = y* = ¢y, on I, (i.e.
m+1 m

a=1,b=0). We let vy = y* on 1 , m=1,2...
m m

This completes the proof of Theorem 3.2.3. =

Theorem 3.2.3 provides strong theoretical support for using
a quasi-arithmetic pool. 1If a decision maker wants his pooling
operator to be local, to preserve unanimity and the ordering of
beliefs, as well as to satisfy the two eminently reasonable
axioms of prior-to-prior coherence and monotonicity of weights,
then he must use Formula (3.2.1), with some undetermined ¢, to

pool his experts' P-functions. The requirement that n24 is not
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really limiting, because one can always throw in dummy opinions
and assign them a zero weight. The only possibly controversial
hypothesis, therefore, is that the various scales of belief are
intercomparable; this is essential in order for the Unanimity
Principle to make sense (cf. Section 3.1). As long as this
assumption is wvalid, it seems fair to say that Aczél's
.conditions reflect the minimal requirements that any serious
candidate to the role of P-function pooling operator would be

expected to meet.

How should one choose the function ¢ in Formula (3.2.1)7?
Clearly, there is no unique way to answer this question, at
least not at this level of abstraction. Generally speaking, the
criterion for selecting a "good" ¢y will vary depending on the
application at hand together with the intended goal. 1In certain
circumstances, all choices of ¢ will be meritorious; this will
happen in the problem of pooling P-values (cf. Theorem 3.2.9
below). In other cases, however, special considerations
relating to the scales of belief may induce some symmetry or
invariance in the problem, and -as a result- it could seem
reasonable to restrict the class of quasi-arithmetic pooling
operators to those operators which are symmetric or inQariant
with respect to certain operations. This method 1is frequently
used in statistical decision theory for choosing a decision rule
in cases where an overall best rule does not exist. As we shall
see presently, it will prove successful when searching for a

Bergson-Samuelson social-welfare function, amongst others.



Examples 3.1.1 & 3.1.4 (continued)

In this example, we are concerned with finding an

acceptable joint wutility function, W(u,,...,u ), which might
n

well be a Bergson-Samuelson social-welfare function. For that
purpose, we make the somewhat restrictive assumptions that the

u 's are cardinal utility functions which are bounded from below
i

and, more importantly, which are intercomparable. The first

condition implies that u +c > 0 for some ceR independent of i
i

and so the u 's can be simply treated as propensity functions.
i

The second condition makes it possible to require that W
preserves unanimity. However, this comparability assumption is

subject to some interpretation. For instance, the u 's might be
i

taken to be either scale comparable or fully comparable (Sen

1970, p. 106), depending on whether we are willing to postulate

that the transformed wutility functions, v = au + b , are
i i i

comparable for all a > 0 and b € R or only when b = b for all
i i

1<i<n, respectively.

Given that the utilities are fully comparable, say, Aczél's
four postulates (Axioms A-D) are easily interpretable and appear
to be eﬁtirely compatible with our intuitive expectations
concerning the behaviour of a "reasonable" social-welfare

function. By Theorem 3.2.3, the joint utility u = W(u,,...,u )
n
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should thus be given by

n
u = Yy 'l Zwylu)l

i=1 1 i

for some continuous and strictly increasing function ¢:(0,®)—>

£
]

n
R and Wi;,...,W 2 0, z 1. Furthermore, it would seem

n i

natural to demand that our pooling operator W obeys

W(au,+b,...,au +b) = a+W(u;,...,u ) + b (3.2.7)
n n

for all a>0 and beR such that au +b > 0 on the whole domain of
i

u ,i=t1,...,n. This invariance property of W guarantees that no
i

dilemma will arise from interchanging the operations of pooling

and transforming the scales of belief.

As it turns out, this extra requirement is sufficient to

imply a precise form for W.

Proposition 3.2.5

The linear opinion pool is the only quasi-arithmetic pooling
operator which satisfies Equation (3.2.7) for all a and b in

(0,=).

Proof:
It is well known (Theorem 84; Hardy, Littlewood & Pblya 1934,

p. 68) that the only quasi-arithmetic means M(x,,...,x ) which
n
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satisfy M(ax,,...,ax ) = a*M(x,,...,x ) for all x;,...,x , a>0
n n n

are the weighted means of order a,

n a 1/a
[ Z w(i)x ] , a#0;
i=1 i
n w(i)
I x , a=0,
i=1 1

M(x ,e0.,X )
a 1 n

-

which we have already encountered in Chapter 2 for 0O<a<l. Of

those, only M, obeys the second condition M (x,+b,...,x +b) =
a n

M (x,,...,X )*b for all x,,...,x ,b > 0.
a n n

In the language of pooling operators, this means that
n

w u for some w20 with Z w = 1 whenever W
11 i i i=t1 1

W(U‘],onupu):
n i

nMo

is quasi-arithmetic and Condition (3.2.7) holds. =

A similar argument could also be used if the u 's were only
i

assumed to be scale comparable. 1In that case, W would have the

added bonus to satisfy

W(au,+b;,...,au *+b ) = a-W(u,,...,u ) + b
n n n

n
for some b= Zwb , b>0. It may be of some interest to note

that the only quasi-arithmetic pooling operators, W, which
satisfy the following generalization of (3.2.7) are

dictatorships:
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W(a1U1+b1,...,a U +b ) =
nn n

W(a,,...,a )-W(U1,...,U ) + W(bj,..-,b ).
n n n

If we think of a "proper" social-welfare function as one which
takes account of the preference patterns of each of the
individuals concerned, then this last observation could be
interpreted as saying that such a function will not exis$t unless

interpersonal comparisons of utility are possible.

Example 3.1.2 (continued)

Suppose that p;,...,pP e I represent the n opinions of a
n

group of experts and that &,,...,% e II are their respective
n

(subjective) likelihoods for © given that a single data-set, D =

{X,,...,X¥}, has been observed by all the experts. We shall
s

assume that upon observing P, each expert updates his beliefs in

accordance with the following rule:

q_ = 4 ‘p.: i=1r°--rn: (3.2.8)

where g 1is the opinion of the 1i-th expert given BD. This
i

formula is implied by Bayes' Theorem in the case of P-functions:

the normalization constant is irrelevant as propensity functions
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are to be treated -and sometimes even interpreted through
consideration of- betting odds. Moreover, this constant may not

exist if p 1is sufficiently improper. So it is omitted and q
i i

is regarded as a label for the equivalence class of all constant

multiples of p (Novick & Hall 1965, pp. 1105-1106).
i

The natural counterpart of an issue raised in Section 2.4
arises here: should P-functions be combined before or after the
observation of the sample evidence BD. Note that if it is
decided to pool first, the discrepancy between the 1likelihood
functions of the experts will have to be resolved before the
joint P-function can be updated. The idea, here, is to pool the
likelihoods, and since they are but other expressions of opinion
(P-functions) from the same experts, it would seem natural to
use the same pooling formula as for the priors. Moreover, it
would be desirable that the operations of pooling and wupdating
commute. An operator which does this will be called "prior-to-
posterior coherent" after Weerahandi & Zidek (1978) who used it
as a substitute for Madansky's term "external Bayesianity;" in
this thesis, the two expressions are now vested with different

meanings.

Definition 3.2.6

n
We say that a pooling operator T:II —>II is prior-to-posterior

coherent iff

T(@‘lp‘,-o-,Qp ) = T(Q1,ll.'¢ )'T(p],ooo,p ) (302.9)
nn n n
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for all ¢ ,p € 1, i=1,...,n.
i i

Note that this definition does not involve 1locality.
Assuming that (3.2.8) holds, prior-to-posterior coherence is an
independent criterion for selecting a pooling operator; thus, in
theory at least, our search for such operators_could extend to

n
all applications T:lI —>II. However, arguments given above

suggest that pooling formulas should be local and satisfy
Aczél's four postulates, 1i.e. be guasi-arithmetic pooling
operators. In that case, it is easy to see that Property
(3.2.9) singles out the logarithmic opinion pool. 1In fact, we.

will show more:

Proposition 3.2.7

n
Let T:l —>I1 be a local pooling operator which preserves the

ordering of beliefs (POB) and is prior-to-posterior coherent.

There exist w(i),...,w(n) > 0 such that

n w(i)
T™py,...,p )(8) = 1T [p (6)] (3.2.10)
n i=1 1
n
for all 6e¢® and (py,...,p ) € M, i.e. T is a logarithmic
n
n
opinion pool. Moreover, Z w(i) = 1 whenever T preserves

1=1

unanimity.
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Proof:

Write T(py,...,p )(6) = G(p,(6),...,p (6)) for all 6e® and
n n

PisreessP e II. Using Equation (3.2.9), we see that G(X:¥) =
n

n
G(X)-G(Y) for all X and ¥ in (0,«) , and it follows from

Definition 3.1.7 that G is strictly increasing in each of its n

variables. Appealing to Lemma 2.1.3, we conclude that

n
G(Xxqy,0c0.,x ) = mx for some w(i)>0, i=1,...,n. The sum

LU o e

w(i) is arbitrary, unless we require that G(x,...,x)=x for

i=1

all x>0, i.e. T satisfies the Unanimity Principle. =

To illustrate this result, suppose that a decision maker

has collected some data Xi,...,X and that he regards the
n

likelihood function @_(e) which each of these items provides as
i

an individual expert opinion. Formula (3.2.10) or perhaps
n
® = 1 [ (6)] (3.2.11)

might then be used to obtain the representative likelihood, ¢.

Alternatively, if the sample is taken as a whole, there will be
just n=1 likelihood. Both (3.2.10) and (3.2.11) would then
return this 1likelihood in a possibly renormalized form. This

result would, in general, differ from that of Equation (3.2.11).
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The point, however, is that the pooling operator 1is not
indicating, in any given context, which propensity functions
should be combined, but rather it 1is providing a means of

pooling such functions once they have been selected.

Incidentally, if the data presented in the last paragraph
are obtained from independent measurements and their joint
likelihood is found by first computing the joint sampling
distribution and then inverting this in the wusual way, the

n n 1/n
result will be I & . This differs from the quantity [ Il $ ]

1=1 1 1=1 1
which would be obtained from Equation (3.2.11). The latter is
just the rescaled version of the former and, if n—>«, the Strong

Law of Large Numbers implies that it converges to a constant

multiple of exp{I(f ,f )}, where I denotes the Kullback-Leibler
6 6y

discrimination measure, ® (6) = f(x [6), f£(.|6) is the sampling
i i

density if 6 is the "true state of nature," and 6, is the true
realization of the random variable 6. If, on the other hand,

the data are highly dependent, say x = X,,i=2,...,n, then
i

Equation (3.2.11) would give, or very nearly give, the joint

likelihood itself.

In Section 3.3 below, we shall address ‘the problem of
finding non-local prior-to-posterior coherent pooling operators.
Let us mention in passing that a characterization of the

weighted mean of order a (M defined above) obtains if the
a
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validity of Condition (3.2.9) is limited to those cases where
there was mutuallagreement a priori on the 1likelihood ¢ = ¢,=

= e e o =¢O
n

Proposition 3.2.8

n
Let T:II —>l1 be a quasi-arithmetic pooling operator. If T

satisfies

T(@p,,...,@p ) = ¢°T(p1r"-'p )
n n

for all &, py,...,p €I, then T = M for some a € (0,=).
n a

Proof: This is because the weighted means of order a>0 are the

n
only quasi-arithmetic means M:(0,®) —>(0,=) which are

"homogeneous." See Theorem 84 on page 68 in Hardy, Littlewood &

Pblya (1934). =

Example 3.1.3 (continued)

In this case, the pooling operator P(Ly,e0.,L ) is
n

automatically local, because © = {H,} is a singleton. The
interpretation of Aczél's axioms causes no difficulty either.

For instance, Axiom B expresses the evident requirement that a
set S, of P-values should be more significant, as a whole, than
another set S, if the p-values in S, are smaller than the

corresponding P-values 1in S,. As another example, the
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inequality min{L |i=1,...,n} < P(L,,...,L ) < max{L |i=1,...,n}
i n i

(a consequence of Axioms A and B taken together) accounts for

the fact that because the data upon which J,,...,J are based
n

cannot be combined directly (either because they are unavailable
or incomparable due to differences 1in the quantitative or
qualitative aspects of the various designs), we do not expect
the combination test to give us more (less) confidence in H,

than the most (least) optimistic of the observed levels L .
i

Theorem 3.2.3 suggests that we use the test statistic

P(L1,..-,L ) = ¢-1[

n 1

[ o o]

v y(L )],
1

1 1

where y:(0,)—>R would be continuous and strictly increasing on
its domain, Moreover, wusing the fact that in general any
strictly increasing continuous transformation  x(s) of a
statistic S will produce the same one-sided test as S (cf.

Liptdk 1958, p. 176), we can restrict our attention to

n
Plvl(L,,...,L ) = Zw y(L ) (3.2.12)
=1 1

1

n
with suitable weights w20, Zw =1, say. This family of test
i i=

statistics was first introduced by Lipt&k (1958) and comprises
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(i) Good's (1955) weighted version of Fisher's omnibus procedure

[v(x)=log(x)]; (ii) the so-called inverse normal procedure

[y- " (x)=fI(-=,x) -exp{(-1/2)(y2+log(27)}dy]); and (iii) the more

recent logit statistic of Mudholkar & George (1979) [y(x)=

log(x/(1-x))]. 1In the two latter cases, the domain of ¢ is
restricted to (0,1), but this can be justified by appealing to a
different form of Theorem 3.2.3 where the P-functions would only

take values in [0,1].

The following result vindicates the use of the quasi-

arithmetic weighted means in this particular application.

Theorem 3.2.9 (Lipt&k 1958)

Each member P[y] of the class (3.2.12) yields a most powerful
test against some specific alternative. Moreover, P[y] is an
unbiased test for the sample consisting of the P-values whenever

the original test statistics J;,...,J are.
n

Proof: A detailed proof of this theorem is contained in Lipték's
paper. However, we would like to mention that the first
statement is a direct consequence of the fact that any test
staﬁistic P[y] of the form (3.2.12) satisfies Birnbaum's (1954)

"condition 1." ]

In general, the alternative against which a particular test
P[y] is admissible may be quite obscure, so this result does

not constitute a strong basis for choosing one form of P[y]
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over another. Moreover, the alternative is generally specified
only vaguely. In his paper, Lipték proposed to circumvent this
difficulty by wusing ¢ = the inverse of the cumulative
distribution for the standard normal N(0,1), i.e. the "inverse
normal procedure." He <claimed -without proof- that this
particular choice, apart from being convenient from a
computational point of view, was optimal for a large class of
one-sided hypothesis testing problems, including those where the
possible distributions are generated by densities belonging to
the exponential family. More recently, Scholz (1981) proposed
to let the P-values themselves choose the "proper" function ¢ by
taking that ¢ (suitably standardized) which yields the largest
possible value of P[y]. He describes his proposal as an
application of Roy's (1953) union-intersection principle to a

nonparametric setting.

Another way of comparing the P[y]'s would be to compute

their Bahadur (1967) efficiency, 1i.e. the 1limiting ratio of

sample sizes reguired by any two given test statistics of the
form (3.2.12) to attain equally small significance levels.

Thus, Littell & Folks (1971) showed that Fisher's method is
always at least as efficient, in the Bahadur sense, as three
other well-known competing methods, including Lipték's inverse
normal procedure. In fact, a stronger result of the same
authors has the following consequence (we are grateful to Dr. A,
John Petkau for bringing this second paper of Littell & Folks to

our attention):
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Theorem 3.2.10 (Littell & Folks 1973)

Let P(L,,...,L ) be any test statistic which preserves the
n

ordering of beliefs (POB) concerning the validity of the null
hypothesis (Axiom B). Then P is at most as efficient, 1in the

Bahadur sense, as Fisher's omnibus procedure.

Proof: 1f P(L,,...,L ) satisfies Axiom B, then the statistic
—_— n :

$(Jy,e..,J ) = -P(L;,...,L ) which rejects the null hypothesis
n n

for large values of S satisfies the condition of the theorem

which appears on page 193 in Littell & Folks (1973). =

Remark 3.2.11

It is not too difficult to find continuous and strictly

increasing functions y:(0,1)—>R for which the test statistic

n ,
Z w(i)y(L ) will have the same Bahadur efficiency as the
i=1 i
n w(i)
corresponding weighted Fisher procedure 11 L . For example,
i=1 i
one could take ¢y to be the inverse of the cumulative

distribution of a gamma, an inverse-Gaussian or a Laplace random
variable. However, Theorem 3.2.10 asserts that no test based on
a statistic of the form (3.2.12) will surpass the omnibus

procedure.

In summary, a set of weak and appealing conditions was

developed which was shown to characterize the quasi-arithmetic



124

pooling operators (3.2.1). It was assumed, fundamentally, that
the scales of belief which were used by the various experts to
express their opinions were intercomparable, so that the pooling
operators could be legitimately supposed to be unanimity
preserving. A locality assumption was also made for
mathematical convenience. Furthermore, we saw that, depending
on the application, extra invariance conditions pertaining to
the scales of belief can be imposed to reduce the class of
acceptable operators. However, care must be taken in imposing
such conditions, as the consequent reductions may sometimes rule
out "optimal" solutions. In the following section, we take a
look at the more challenging problem of pooling P-functions

whose scales of belief are not necessarily comparable.

3.3 Deriving the logarithmic opinion pool

It is shown in this section that the so-called general
logarithmic opinion pool, L, 1is a reasonable choice of a P-
function pooling operator even when degrees of belief are not
intercomparable. When © is finite, another product formula is
derived which is prior-to-posterior coherent and preserves the
ordering of beliefs. At the end of the section, a parallel is
drawn between our approach to pooling P-functions and Nash's
(1950) solution to the multi-person cooperative decision

problem.
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Definition 3.3.1

The general logarithmic opinion pool is defined by

w(i)
[p (8)] (3.3.1)
1 i

n=as

E(piyeeesp ) = C(py,eee,p )
n n i

n

for all p;,...,p € @ and 6e®, where C:II —>(0,*) is some
n

unspecified function and w(1),...,w(n) are non-negative

n
constants such that Z w(i) > 0.
i=1

The operator L defined above 1is not 1local because the

function C depends on (p;,...,p ). If C(py,...,p ) = 1 for all
n I

choices of py,...,p € II, then L reduces to the logarithmic pool
n

(3.2.10). 1In anticipation of the developments below, we make

the following

Definition 3.3.2

n n
The relative propensity mapping is a function RP:II x62—>(0,=)

n

which maps any (n+2)-tuple (py;,...,p ,6,7) in T x8% to the
n
vector of quotients
RP(pPy,...,p ,08,n) = (p:(8)/p1(n),...,p (6)/p (n)).

n n n

It is immediate that the application RP induces an

n n
equivalence relation on D = II x@2, If two elements of 1 x82%,
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say d, and d4,, are called RP-equivalent whenever RP(d,) =
RP(d,), then D may be decomposed into RP-equivalence classes

n
obtained through RP's inverse mapping. The set (0,*) may be

regarded as a label set for the guotient space D/RP. As will be
shown, the following property characterizes the general

logarithmic opinion pool.

Definition 3.3.3

n
We say that a pooling operator T:I —>I1 is relative propensity

consistent (RP-C) iff

T(p1,ev.,p )(6) T(Qy,...,q )(n) (3.3.2)
n >

n
T(DP1,.--,P )(N) T(Q1,0..,9 ) (E)
n n

Whenever Rp(p1’-oo'p ,9,)\) > Rp(q‘]’ooo'q ,n,z)’ _p1,-.o,p 7
n n n

d41,...,9 being arbitrary elements of Il and 6,7n,}A,{ belonging to
n

@.

To 1interpret this new concept, it is useful to decompose

Condition (3.3.2) into two parts, namely

(i) T(py,e..,p )(6) T(P1,....,p )(7)
n > n

T(p1,...,p ) (N) T(p1,...,p )(E)
n n

whenever RP(p;,...,p ,8,\) > RP(pPy,...,D ,0,¢);

n n
and
(ii) T(p1100.,p )(8) T(q1,...,q )(8)
n = n
T(Pisess,p ) (A) T(Q1see.,9 )(Q)

n n
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whenever RP(p;,...,P ,08,\) = RP(Qy,...,q ,6,7).
n n

It is easy to check that Conditions (i) and (ii) together
are equivalent to (3.3.2). The first of these conditions says
that a good pooling procedure should preserve any prior
consensus of the form "the odds in favour of the occurrence of 6
versus A are better than the odds for 15 wversus ¢§¢." 1In
particular, note that any operator which satisfies this
requirement will automatically preserve the ordering of beliefs,
in the sense of Definition 3:1.7, and -by way of consequence-
the "consistency" condition which appears in Lemma 3.1.6. Here
again, Condition (ii) 1is a simplifying assumption; only this
time it involves odds-ratios. It may be interpreted in the -same

way as the Condition (ii) which appears in Section 3.1.

We are now in a position to state and prove the principal

result of this section.

Theorem 3.3.4

Suppose that © contains at least three distinct elements. The
general logarithmic opinion pool, &, 1is the only relative

propensity consistent pooling operator.

Proof:
1f T is any P-function pooling operator satisfying the
hypotheses of the theorem, Condition (3.3.2) above has the

immediate implication that the function Q{(p,,...,p ,6,7) =
n
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T(P1yeee,p ,8)/T(Py,...,p ,n) mMust be constant on RP-equivalence
n n

n
classes of D. Therefore, there exists a mapping H:(0,=) —>

(0,) such that Q=HmRP, the symbol n representing as before the

composition of functions.

RP e

(0,=)

Pick 6,n,A, three distinct elements of ©, and let X and ¥ be two

n
arbitrary vectors in (0,«) . I1f p,,...,p e I are chosen so
n

that p (6) = x , p (n) = 1/y and p (A) = 1 for all 1<i<n, then
i i i i i

H(X-¥) = H(p,(8)/pri(n),...,p (8)/p (1)) = Q(pi,ee.,p ,0,n) =
n n n

Q(P1yeeesP 0, 0)0(Pyyeee,p A, 1) H(p,(68),...,p (8))-
S n n « n

H(1/py(n),e..,1/p (n)) = H(X)-H(Y). It also follows from the
n

RP-C condition that H is non-decreasing in each of its n
n w(i)
variables, so that H(X) = ig1xi with some fixed numbers
w(1),...,w(n) > 0 by an application of Lemma 2.1.3 (here, POB
plays its role as a regularity condition).
w(i)

n
Consequently, Q(py,...,p ,8,72) = 1 [p (8)/p (7)] for all
n i=1 i i
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Pi,...,p €Il and 6,n ¢ ©, i.e. we have shown that the function
n

n w(i)
C(p1r...,p )(e) = T(plyO-o,p )(9)/-1-1 [p (9)]
_ n n i=1 i

is independent of 6! =

This theorem is not true if © contains exactly two

elements, as the following counter-example shows.

Example 3.3.5

' n
n
Then T is relative propensity consistent and even unanimity

preserving, but clearly T # L.

As before, the problem of choosing the weights w(i) remains
and is not addressed here. Note also that the function C in
Equation (3.3.1) 1is wundetermined, except for the trivial
requirement C(p,...,p) = 1 for all p e NI if L satisfies the
Unanimity Principle (and the experts' scales of belief are
intercomparable). At the moment, it is not clear to wus what
role this function plays or even how it could be interpreted.
If we insist that t should be prior-to—posterior coherent in the

n
sense of Definition 3.2.6, it is necessary to have i2_‘.1w(i) = 1

and also C(py,...,p ) +C(@q4,...,qQ ) = C(py*Qy,...,p *q ) for
n n n n

n
all (py,«..,p ).{@y,...,9 ) € I ; but even that requirement is
n n
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not strong enough to completely determine C.
The following partial result gives still another indication
of the large variety of pooling operators which is encompassed

by the term "non-local."

Proposition 3.3.6

n
Let © = {6,,...,68 } be finite, and assume that T:II —>I is a POB
m

pooling operator which is prior-to-posterior coherent. There
exists a set {w(i,j,k)]|1<i<n,1<j,k<m} of positive constants such
that

w(i,j, k)

[p (8 )]
1 i 5

T™pi,...,p V(08 ) =
n k j

11

n=as
([l Ba

for all py,...,p € Il and ke{1,;..,m}.
n ,

Proof:

Fix 6 e © and consider H(py,..c.,P ) = T(Py,+...,p )(6 ) as a
k n n k

n
group homomorphism between I and (0,«) with multiplication.

Then H(p1'ooo,p ) =
n 1

)

H (p ) where H.:H——>(O,w) is defined by
i

1 1 1

H.(p ) = H(1,...,p.,...,1) for each 1i=1,...,n, and we have
i i o

H.(p-q) = H_(p)-H.(q) whenever p and g belong to Il. Each H can

1 1 1l 1

be decomposed further as H (p)
1 J

H (p(6 )) where H :
1 ij 3 1j

]
"=
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(0,)—>(0,=) is defined by H (x) = H (X), where Xell is that
ij i

P-function whose value at 8 1is x and 1 otherwise.
3

Now, H is a homomorphism on (0,=), and it is non-decreasing
1]
because T preserves the ordering of beliefs. Using Lemma 2.1.3,
w(i,j, k)
it follows that H (x) = x for some w(i,j,k) > 0, with
1]

k indicating a possible dependence on 6 . Combining all these
k

facts, we obtain the desired conclusion., =

To conclude this section, we would like to draw a parallel
between the general logarithmic opinion pool and Nash's (1950)
solution to the so-called "bargaining problem." The two are

related in a manner which will now be described.

In general, given an action space A and a space of

randomized decision rules D*, let

u (§) = ffu (a,6)%(da)b (6)r(de),
i i i

where u denotes the i-th player's utility function and b 1is a
i i

prior or posterior distribution, whichever is appropriate. Then
Nash's axioms imply that the solutions, §*, are those which
1/n

[u (§)-¢c ] where ¢
1 i i i

ll‘=l:l

maximize the symmetric product
i
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denotes the i-th player's status quo point, i.e. the amount in
utility which he will have in the event that the group fails to

agree on a choice for §. This maximization is subject to u (%)
i

> ¢ for all i=1,...,n (see Weerahandi & Zidek 1981 for further
i

details).
Now suppose © = {6,,...,6 } is finite, as in Proposition
m
m
3.3.6. Assume further that u (a,8) = &8(a,8) + c /Zb (8)
i i9=1 4 3

where &(a,0) 1is the Kronecker delta function. Then the Nash

solution maximizes -

n 1/n n 1/n
mI[ffé(a,6)s(da)b (8)rv(d6)) = Im[fb (a)t(da)] '
i=1 i i=1 i

where v denotes the usual counting measure. Observe that 1if §

is restricted to be nonrandomized, the optimal choice of a is

n 1/n

the 6 which maximizes M [b (6)] , essentially the quantity
i=1 i

which would be obtained from Equation (3.3.1) with

w(1) = ... = w(n) = 1/n. This observation lends some additional

support to the general logarithmic pooling recipe.

Clearly, a similar argument could be found for Stone's
linear pooling operator by appealing to the work of Bacharach

(1975) which in turn relies on an unpublished contribution of
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Madansky. This work 1includes a theorem which shows that the
n
optimal decision rule maximizes i}=:1wiui(§). Indeed, the sort of
. reduction which is sketched in the last paragraph would yield
the 1linear opinion pool. It should be noted; however, that
Bacharach's result implicitly assumes the intercomparability of
utilities. This implicit hypothesis arises when a theorem of
Blackwell & Girshick (1954) is invoked in proving the asserted
conclusion. The Blackwell-Girshick result deals with ‘the
classical decision problem where the 1i's represent different
states of nature, not different players. 1In that situation,
there is only one player and presumably he would have no
difficulty comparing his own preferences and hence deducing the

utility functions for the different states of nature, i.

In certain decision or estimation problems, a propensity

function may be used to find the # in @ for which there is the

maximum joint propensity (MJP). 1f, for example, b (9)
i

exp{6éu - A(6)}, the 6 of MIP is the unique solution of A'(6)

n
2= L au. This has the curious consequence pointed out in

Weerahandi & zidek (1978) that if the u 's are widely separated,
1
u may well have a very low propensity as measured by the

individual P-functions, b . The corresponding difficulty with
' i

the linear opinion pool is that the joint propensity function in
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this case is multi-modal. 1In place of a single representative u
(say wu) of 1low propensity relative to each b , a family of
1

nonrepresentative u's (approximately the u 's themselves) is
i

obtained, each of high propensity relative to exactly one of

these b 's,
i

By extending the domain of the pooling operator from 6 to
D* in the manner advocated by Weerahandi & Zidek (1978), the
anomalies described in the previous paragraph can easily be
circumvented. In this extension, which is suggested by the Nash

theory sketched above, b (6) is replaced by b (§) = fb (6)(d6)
i i i

and the 6 of MJP is replaced by the § of MJP; in the situation
we have just described, this would lead to a randomized choice

amongst, approximately, the widely separated u 's. The various
i

pooling operators suggested 1in this chapter would remain
unchanged under this extension of domain. In fact, their

derivation would go through in exactly the same way, since the

b (¢{)'s are P-functions too!
i

Finally, it should be added that we have not attempted to
extend our definition of propensity function to comprise those
whose range 1includes zero. Most derivations of this chapter
would run into difficulty in this case. Again, the problem we

face in this situation 1is not wunlike that encountered in
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conventional Bayesian analysis, when the prior and the
likelihood functions have disjoint supports and some

improvisation is in order.
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IV. SUGGESTIONS FOR FURTHER RESEARCH

The present work has reinforced, if anything, the view that
there is no "one best way" to aggregate expressions of belief.
Along with Savage (1971), one could say that "what to do when
doctors disagree has always been, and will always be a
guandary." However, there is great potential value in the idea
of choosing amongst the infinite number of synthetic experts
that constitute the convex closure of a panel; witness the
various studies (cf., e.g., Sanders 1963;'Winkler 1971; Shapiro
et al. 1977,1979) in which composite distributions have been
observed to predict with greater accuracy than most individual
experts. Granted, the evidence is still mainly empirical and
remains to be probed with sound analytical models; but, says
Hogarth (1977, p. 241), "there would seem to be little doubt
that the general results concerning the reliability and validity
of average judgments in the form of point estimates... will
carry over to probability distributions." The development of

such models is one urgent task that lies ahead of us.

In the paper of Savage which is cited above, the author
argues -albeit indirectly- that the chronic lack of dependable
techniques of communication from which our society suffers makes
the aggregation of opinions difficult. This difficulty 1is
reduced at least 1in the case which we described where it is
specified at the outset that the purpose of the decision maker

is "to 1learn more" or perhaps to make a forecast, but not to
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take decisions. A lack of candor or ineffective communication,
gross exaggeration or excessive deference, for example, are more
likely to be witnessed in situations where a group of experts
finds that they are competing with one another for some
strategic advantage. Moreover, even in decision-oriented tasks,
one would expect such solidly established rules as the linear or
the logarithmic opinion pools to show some robustness to
"reasonable" departures from the assumption of nearly identical
utility functions for the experts. Nevertheless, we agree with
Savage that the need is there to devise appropriate methods of
communication which will help a panel to honestly share all
relevant factual information and make it possible for 1its
members to assist one another in thinking their beliefs through

thoroughly.

To a large degree, the problem of choosing an appropriate
scheme for weighing individual opinions also remains unsolved.
Efforts in this direction have been made by Roberts (1965) and
Winkler (1971), inter alia. However, no wholly satisfactory
solution to this problem is yet in sight. In fact, the 1issue
would seem to have been made more complicated in the light of
the results of Section 3.3 which reveal that the weights could
vary with 6, the parameter of interest. The only firm
recommendation which can currently be made to decision makers
seeking to find a consensus for a panel of experts would seem to

be that they should use sensitivity analysis to identify the

crucial aspects of the weight allocation task.
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In a recent technical report, 2Zidek (1982) introduced two
new criteria for assessing group decision procedures. One is
based on the idea of subsampling the group and it is found that
amongst the proposed solution concepts only Nash's solution is
optimal under "subsampling." The other assumes that the group
is itself a sample from a superpopulation, and this yields an
analogue of Wald's theory where the elicitation of the priors
becomes part of the experimental process. It will be
interesting to see what these ideas will yield when they are

applied in the present context.

Finally, we 1list a number of unsettled technical issues

which were raised in the course of the discussion:

1. We proved in Section 2.3 that if T 1is any dogma
preserving semi-local pooling operator whose underlying function

n
"G" on [0,=) is continuous, then T is also local and hence a

linear opinion pool. As noted in the second paragraph following
Proposition 2.3.6, this condition on G seems rather artificial
and, considering the way in which it was used in our proof,

could conceivably'be weakened, if not removed altogether. How?

2. In Theorem 2.4.6, it was seen that the logarithmic
opinion pool 1is the only available Externally Bayesian quasi-
local pooling operator when (©,u) contains non-negligible sets

of arbitrary small measure (Assumption 2.4.5). - Can this
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somewhat irritating regularity condition be weakened or, better
still, eradicated? It would be particularly important to find
out whether there are or are not any other guasi-local
Externally Bayesian procedures than the logarithmic pool
n :
(allowing for negative weights w as long as Z w = 1) when 6

1 1i=1 1

is finite and u is a counting-type measure.

3. The problem of determining which g ¢ A, maximizes the

product

n a 1-a w(i)
P= NI[ffg dul

arose in Section 2.5 when we were trying to determine which u-
n

density g optimized the expected Rényi Information Z w I (f ,g)
i=1t 1 a i

of order a, a € (0,1). This would seem to be a hard problem,

but it may nevertheless be possible to solve it analytically.

4. It was suggested in Chapter 3 that the rule (3.2.8)
could be viewed as an analogue ¢of Baves' formula for updating P-
functions. However, arguments in favour of its use could be
best developed within the framework of an axiomatic theory of

propensity functions.

These questions remain for future consideration.
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