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Abstract

Two aspects of the theory of barotropic modons are examined
in this thesis., First, sufficient neutral stability conditions
are derived in the form of an integral constraint for westward
and eastward-travelling modons. It 1is shown that eastward-
travelling and westward-travelling modons are neutrally stable
to pertﬁrbations in which the energy is contained mainly in
spectral components with wavenumber magnitudes (|7n|) satisfying
|nl<k and |n|>k, respectively, where k is the modon wavenumber.
These results imply that when x/|%|>1 the slope of the neutral
stability curve proposed by McWilliams et al.(1981) for
eastward-travelling modons must begin to increase as k/|7|
increases. The neutral stability condition is computed with
mesoscale wa&enumber eddy energy spectra représentative of the
atmoéphere and ocean. Eastward-travelling atmospheric modons
are neﬁtrally stable to the observed seasonally- and annually-
averaged atmospheric eddies. The neutral stability of westward-
travelling atmospheric modons and oceanic modons cannot be
inferred on the basis of the observed wavenumber eddy energy
spectra for the atmosphere and ocean.

Second, a leading order perturbation theory is developed to
describe the propagation of barotropic modons in a slowly
varying medium. Two problems are posed and solved. A
perturbation solution is obtained describing the propagation of
an eastward-travelling modon modulated by a weak bottom Ekman
boundary layer. The results predict that the modon radius and

translation speed decay exponentially and that the modon
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wavenumber increases exponentially, resulting in an exponential
amplitude decay in the streamfunction and vorticity. These
results agree with the numerical solution of
McWilliams et al.(1981). A leading order perturbation theory is
also developed describing modon propagation over slowly varying
topography. Nonlinear hyperbolic equations are derived to
describe the evolution of the slowly varying modon radius,
translation speed and wavenumber for arbitrary finite-amplitude
topography. To leading order, the modon 1is unaffected by
meridional gradients in topography. Analytical pérturbation
solutions for the modon rédius, translation speed and wavenumber
are obtained for small-amplitude topography. The perturbations
take the form of westward and eastward-travelling transients and
a stationary component proportional to the topography. The
' general sélution is appliéd to ridge-like and escarpment-like

topographic configurations.
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I have resolved to quit only abstract geométry, that is to say,
the consideration of questions that serve only to exercise the
mind, and this, in order to study another kind of geometry,
which has for its object the e#planation of the phenomena of

nature.

Rene Descartes



I. INTRODUCTION

Rings and eddies play an important role in the overall dynamics
of the ocean, Flierl(1977) has argued, for example, that in the
northwestern Atlantic Ocean the observed distribution of
fluctuation kinetic energy and a theoretical estimate of this
distributién based on guasigeostrophic dynamics (QGD) of eddies
and their dispersive wave field are comparable. Lai and
Richardson(1977) estimaté from historical data that the lifespan
of a Gulf Stream eddy is typically between 2 to 3 years, the
average translation speeds are on the order of 5 km day-', the
radii are about 100 km and the vertical extent is up to one
kilometer. The number of rings and eddies observed at any given
time was approximately 15 with maximum counts about twice this
value. These observations suggest that eddy and ring dynamics
must be important for thermal, vorticity and nutrient mixing in
the ocean on mesoscales (i.e., length scales on the order of
100 km).

Eddies and rings can be generated from a variety of flow-
geometry configurations. Observations of eddies have been
theoretically described by coastal current instability
(Ikeda et al., 1984), topographic-mean flow interactions
(Swaters and Mysak, 1985), planetary wave reflection off coastal
geometry (Willmott and Mysak, 1980) and the meandering of
western boundary currents (Lai and- Richardson, 1977 and
Csanady, 1979). In addition to the above mechanisms, planetary

eddies can also be obtained when the effects of phase dispersion



balance amplitude dispersion in planetary waves (Clarke, 1971)
to produce the solitary planetary waves.

Malanotte-Rizz0li(1982) classified models of atmospheric
and oceanic solitary planetary waves into one of two categories
according to the nonlinearity of the potential vorticity
equation (PVE). Steadily translating solutions of the PVE
reduce to describing the potential vorticity as a function (P)
of the pathlines. Rossby solitons and solitary waves are
described by assuming P to be analytic. Examples of this
approach include the Maxworthy and Redekopp(1976) derivation of
Korteweg-De Vries (KdV) and modi fied-Kav equations from QGD in
zonal channel models with a sheared =zonal flow. Similar
derivations by Malanotte-Rizzoli and Hendershott(1980) and
Malanotte-Rizzoli(1984) with'cross-chénnel topographic variation
also resulted in a Rdv equétion and hence a solitary wave
solution. Also, Flierl(1979) has obtained radially symmetric
qguasigeostrophic solitary wave solutions on an infinite f-plane
assuming P to be analytic.

The second category is to specify P as a nonanalytic
function. The solutions that this procedure yields, hereafter
called modons, have the property that the streamfunction is only
differentiable to some finite order (usually two). Stern(1975)
obtained the prototype modon solution (and named them as such)
by assuming P to be a linear function 1in a bounded circular
domain on the p-plane with the streamfunction wvanishing
identically outside this region. These solutions were

continuous but not differentiable at the boundary and had a



dipole vortex structure.

Larichev and Reznik(1976) obtained what is now called the
barotropic modon by deterﬁining a form for P in the exterior
region when the streamfunction vanishes at infinity (see
Figure 1 for a three-dimensional plot of a modon). These
solutions have smooth vorticity everywhere except at the
boundary where the vorticity has a finite step discontinuity in
its radial derivative. These solutions have been subsequently
generalized to two-layer fluids (Flierl et al., 1980) and
spherical geometry (Tribbia, 1984 and Verkley, 1984).
Kloeden(1985a,1985b) claims to have established a theorem that
states that the modon is the unique localized separable solitary
wave solution of the PVE assuming that P is piecewise linear.

| Studies of modon dynamics have primarily focussed on
numerical integrations of the PVE. For example,
McWilliams et al.(1981) numerically calculated the effect of
Ekman dissipation on modon propagation and concluded that the
decay was approximately exponential and shape preserving. The
details of the decay 1in the amplitude and translation speed
could not be explicitly determined except that they appeared to
oécur on the modon "dispersion curve". Other numerical
experiments with random vorticity perturbations indicated that
the onset of instability was determined by the length scale of
the perturbations. |

McWilliams and  Zabusky(1982) numerically simulated
collisions between barotropic modons. Depending on the

parameter values, a wide range of interaction possibilities were



observed, from soliton-like, fusion-like and fission-like
interactions to the complete annihilation of the vortices. The
multitude bf interaction possibilities resulted in some debate
as to whether or not the modon is in fact a two-dimensional
soliton (Flierl et al., 1980 and McWilliams, 1980). No
theoretical framework has yet been developed from which to
understand these interactions.

Mied and Lindemann(1982) and McWilliams(1983) have
considered the problem of modon genesis. It had been suggested
(Flierl, 1976) that a pure baroclinic eddy would naturally tend
to develop 1into a barotropic modon. Mied and Lindemann(1982)
subsequently numerically calculated the evolution of a
baroclinic eddy with a tilted vertical axis and counter-rotating
upper and lower layers. Thei; results indicated that when the
vértical axis lies in the north-south plane modon genesis ensues
unless the horizontal separation between the centers of the
vortices 1is too large. If the vertical axis lay in other
directions the two vortices tended to separate with no coupling
taking place. McWilliams(1983) was also able to create modon-
like dipoles by the collision of two quasigeostrophic vortices.

Laboratory studies of modon genesis (Flierl et al., 1983)
indicated that dipole vortex formation likely evolves from very

general initial conditions. This conclusion was formulated as a

theorem (Flierl et al., 1983) which states that any slowly
varying 1isolated disturbance on a f-plane must have zero net
angular momentum. The modon is one of the simplest nontrivial

flow configurations with this property.



In summary, previous research on modon dynamics has
indicated the following results. Modon stability 1is dependent
on the structure of the perturbation field. Modon genesis is
conjectured to evolve from rather general initial conditions and
is one of the simplest realizations of isolated steadily
translating fluid motions on a f-plane. Modons in a dissipative
environment appear to preserve their shape, at least initially.
Modon-modon interactions appear to have many possibilities, some
of which are soliton-like others not.

However, several questibns in modon dynamics remain to be
answered before we can understand the role of modons to
atmospheric and oceanic dynamics. No theoretical or analytical
framework has yet been developed which can be used to describe
the above numerical results. Such a framework would seem to be
required if modon dynamics is to be understood in terms of known
geophysical fluid dynamic mechanisms. 1In particular, nothing is
known about basic problems such as how modons might interact
with their environment. For example, the interaction of modons
with currents and Rossby waves have yet to be studied. In
addition, questions relating to the stability of modons are
unanswered. For example, the specification of stability
conditions and the solution of the linearized stability problem
are unknown.

This thesis examines two aspects of barotropic modon
dynamics. The first aspect is examined in Chapter II, in which
sufficient neutral stability conditions are derived for normal-

mode small-amplitude perturbations of westward and eastward-



travelling modons in the form of an integral constraint. These

conditions are derived from the spatially-integrated
perturbation energy and enstrophy equations (Charney and
Flierl1(1981) and Malanotte-Rizzoli(1982)) for steadily

translating quasigeostrophic fluid motions. It is shown that
eastward-travelling modons are neutrally stable to normal-mode
perturbations that are solely composed of spectral components
with wavelength magnitudes larger than 2#/x where k is the modon
wavenumber (see Chapter 2). Westward-travelling modons are
neutrally stable to normal-mode perturbations solely composed of
spectral components with wavelengths smaller than 2n/«k.

These results imply that when «k/|n|>1, where |n| 1is the
magnitude of the perturbation wavenumber vector n=(%,,7.), the
slope of  the neu@ral stability curve proposed by
McWilliams et al.(1981) | should Dbegin to increase as |n|,
decreases. A similar trend in the neutral stability curve has
been numerically determined for topographically-forced planetary
solitary waves (Malanotte-Rizzoli, 1982).

The neutral stability integral 1is tested using observed
eddy energy spectra for the atmosphere and ocean. For the
atmospheric calculation, seasonally- and annually-averaged mid-
latitude 300, 500 and 700 mb two-dimensional wavenumber eddy
energy spectra were inferred ffom Tomatsu(1979), Saltzman and
Fleisher(1962) and Eliasen and Machenhauer(1965). It is argued
on the basis of the calculations contained in this thesis that
eastward-travelling atmospheric modons are neutrally stable to

the observed seaéonally— and annually-averaged fluctuations in



the atmosphere. Westward-travelling atmospheric modons may not
-satisfy the neﬁtral stability condition and thus their stability
or instability cannot be inferred.

The only published barotropic wavenumber eddy energy
spectrum available for the oceans 1is contained 1in Fu(1983).
Simple scaling arguments are presented to suggest that only
eastward-tfaveiling barotropic modons will have realistic
translation and particle speeds in the ocean. The stability of
eastward-travelling oceanic modons cannot be inferred from the
Fu(1983) spectrum. Arguments are presented suggesting that this
conclusion should only be considered a very preliminary estimate
of oceanic modon stability due to the 1limitations of the
Fu(1983) spectrum.

" The second aspect of modon dynamics examined in this thesis
is contained in Chapter I1I, in which a perturbation theory is
proposed to describe modon propagation in a slowly varying
medium. The perturbation methods developed are two-dimensional
generalizations of one-dimensional slowly varying solitary wave
calculatioﬁs (e.g., Luke(1966), Grimshaw(1970, 1971, 1977,
1979%a,b, 1881), Zakharov and Rubenchik(1974) and Kodama and
Ablowitz(1980,1981), among others). This calculation represents
the first application of these methods to a fully two-
dimensional solitary wave.

Two problems are pbsed and solved. In Section 3.1 a
perturbation theory describing the propagation of an eastward-
travelling modon over a weak Ekman bottom boundary layer is

developed. This calculation was done in order to compare the



result of the leading order solution with the numerical solution
of McWilliams et al.(1981).

The numerical solution suggested that the modon radius and
translation speed decay exponentially and the modon wavenumber
increases exponentially. - Throughout the decay the modon
parameters (to leading order) satisfied the modon dispersion
relationship. In the final stages of the decay the modon
dissolved into a field of westward-travelling planar Rossby
waves. The 1leading order perturbation solution obtained here
agrees with these results but is unable to describe the final
degeneration into the Rossby waves. This calculation has been
summarized in Swaters(1985).

In Section 3.2 a leading order perturbation theory is
developed to describe modon propagation over slowly varying
topography. As in previous work on the effects of wvariable
topography on barotropic planetary waves (e.g., Veronis(1966),
Rhines(1969a,b), Clarke(1971) and LeBlond and
Mysak(1978; Sec. 20), among others) the theory is developed in
the context of the rigid-1id shallow water equations on the §-
plane. |

Nonlinear hyperbolic eguations are derived for the slow
evolution of the leading order modon radius, translation speed
and wavenumber. These equations are valid for arbitrary slowly
varying finite-amplitude topography. In general they must be
solved numerically. It is shown that to leading order the
evolution of the modon is independent of the meridional (North-

South) topographic structure. This result is interpreted in



terms of simple vorticity arguments.

Analytical perturbation solutions are obtained for small-
amplitude topography (relative to the fluid depth, which is the
case in many atmospheric and oceanic applications). The
perturbations take the form of eastward and westward-travelling
hyperbolic transients and a stationary component proportional to
the topography. The general properties of the solution are
described in Subsection 3.2.2. Subsections 3.2.3 and 3.2.4
describe the slowly varying modon for the specific examples of a
topographic ridge and escarpment, respectively.

The work contained in this thesis 1is summarized in
Chapter 1IV. In the Appendix details of the many integral

calculations required in the topographic solution are given.



Figure 1. Three dimensional contour plot of the surface
displacement associated with an eastward-travelling modon. For

atmospheric scales, the horizontal distance
and minimum deflection is about 800 km with
geopotential is on the order of 100 m. For
horizontal distance between the .the maximum
deflection is about 80 km with a deflection

between the maximum
a deflection of the
oceanic scales, the
and minimum

on the order of

10 cm. The coordinate system is rotating with nondimensional
angular velocity 1+e¢dy where € is the Rossby number c(fa)-' and
8§ is the planetary vorticity factor Ba?c-' with a, ¢, f and 8
the modon radius, modon translation speed, local Coriolis
parameter and northward gradient in the Coriolis parameter,

respectively.

0t
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II. STABILITY OF BAROTROPIC MODONS

Mcwilliéms(1980) modelled an observed atmospheric blocking event
with a barotropic modon. Among several questions posed was
whether or not the modon solution 1is stable for typically
observed atmospheric fluctuations. Subsequently,
McWilliams et al.(1981) numerically examined the stability of
eastward-travelling modons when perturbed by a random vorticity
field. Their results indicate that for a given vorticity
perturbation amplitude (e), increasing ﬁhe perturbation
wavelength leads to instability; also, for a given perturbation
wavelength, increasing e leads to instability. |

This chapter describes sufficient neutral stability
conditions for westward and eastward-travelling modons.
Modifications to the regime ' diagram proposed by
McWilliams et al.(1981) are discussed in light of these results.
The stability condition is calculated with typical atmospheric
and oceanic energy spectra.

It is shown that atmospheric eastward-travelling barotropic
modons are neutrally stable to the observed seasonally- and
annually-averaged 300, 500 and 700 mb transient eddies. A
similar stability calculation 1is unable to determine the

stability of westward-travelling atmospheric modons. A neutral

stability calculation is also done for an oceanic barotropic
kinetic energy spectrum. On the basis of this calculation the
stability or instability of oceanic modons cannot be inferred.

Charney and Flierl(1981) derived a stability theorem for
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normal-mode infinitesimal perturbations of steady
quasigeostrophic flow based on the conservation of energy and
enstrophy (vorticity squared). This method gives stability
conditions similar to the Blumen(1968) finite-amplitude result
based on establishing sufficient conditions for which the mean
flow is a stable extremum of a suitably constructed
(Arnol'd, 1965) energy-enstrophy functional. Sufficient neutral
stability conditions for barotropic modons are derived by
similar methods.

Eastward-travelling modons are neutrally stable to
perturbations solely composed of spectral components with
wavenumbers n‘= (ny,m2) satisfying |n|<x where x 1is the modon
wavenumber (i.e., the parameter describing the functional
dependerice of the pathlines on the potential wvorticity in the’
modon interior). Westward—traQelling modons are neutrally
stable to perturbations solely composed with spectral components
with wavenumbers satisfying |n]|>«.

For eastward-travelling modons, the neutral stability
condition implies that when e is finite (though possibly only
'small') and the dominant perturbation spectral component
consists of scales «/|7n|>1 the modon is neutrally stable. Thus
when x/|n|>1 the slope of the neutral stability curve proposed
by McWilliams et al.(1981) for eastward-travelling modons should
begin to increase as «/|n| increases. This property in the
neutral stability curve has been numerically determined for
topographically-forced solitary planetary eddies (Malanotte-

Rizzoli, 1982).
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In reality, a modon would be subjected to perturbations
described by a spectrum of wavenumbers. The derived stability
condition suggests (for a modon radius on the order of the
external bdeformation radius) that an atmospheric westward-
travelling modon is neutrally stable when the eddy energy of the
surrounding fluid is contained mainly in global wavenumbers'
with magnitudes greater than approximately 16. However,
eastward-travelling modons are neutrally stable in flow regimes
in which the energy 1is contained mainly in wavenumbers with
magnitudes less than appro#imately 16. Consequently eastward-
travelling modons are neutrally stable for the observed mid-
latitude eddy energetics because typical observations show
In] = 8 (see Figure 3) (Eliasen and Machenhauer, 1965; Saltzman
and Fleisher, 1962 and Tomatsu, 1979).

The only pubiished barotropic -wavenumber eddy enerqgy
spectrum available for the oceans is contained in Fu(1983).
Simple scaling arguments are presented to suggest that only
eastward-travelling barotropic modons will have realistic
translation and particle speeds in the ocean. The neutrai
stability condition suggests that oceanic eastward—trévelling
modons will be stable if the eddy energy of the surrounding
‘fluid 1is contained mainly in wavelengths greater than about
160 km. The neutral stability of eastward-travelling oceanic

modons cannot be inferred from the Fu(1983) spectrum. It is

The global wavenumber is defined so that a wavenumber magnitude
of one corresponds to a wavelength equalling the circumference
around a latitude circle.
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noted that this calculation should only be considered a very
preliminary estimate of oceanic modon stability due to the

limitations of the Fu(1983) spectrum.

2.1 Integral Constraints For Perturbations Of Barotropic Modons

Consider the nondimensional barotropic potential vorticity

equation (Pedlosky, 1979)

(A -F)y +J(y +y, Ay - Fy + 8y) =0 (2.1)
. ,

where ¢ is the geostrophic pressure, J(-,*) 1is the Jacobian

determinant a(.,*)/a(t,y) and A=3 + 3 where ¢ 1is the
£t Yy :

translated coordinate ¢ = x - t with x, y and t the usual ' east,
north and time coordinates. The coefficients § = Ba?/c and
F = f?a?/(gH) are the planetary vorticity factor and rotational
Froude number respectively, with £, 8, g, H, a and ¢ the local
Coriolis parameter, northward gradient  of the Coriolis
parameter, gravitational acceleration, fluid depth, modon radius
and modon translation speed respectively. The length, time and
speed séalings are a, a/c and c, respectively. We note that ¢
may be positive or negative. |

Steady solutions of (2.1) have the vorticity Aw.- Fy + &y
expressed as a function of the pathlines ¢ + y, viz. P(y + y).

For the barotropic modon P is defined by (Flierl et al., 1980)

P(z) = 6z for r>1 (2.2a)
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P(z) = -(k? + F)z for r<1, (2.2b)

resulting in
v = =K [(8 + F)'/2rlsin(8)/KR,[(8 + F)'/2] r>1 (2.3a)

v = (8 + F)J,(kr)sin(8)/(k?3,(k)) -

(k2 + F + 8§)k-?rsin(9) r<i (2.3b)

where r? = (% + y?, tan(6) = y/¢ and where J, and K; are the
- ordinary and modified Bessel functions of order one respectively
(see Figure 1). The parameter « (henceforth called the modon
wavenumber) is determined by requiring continuity of W on r=1
and is the first nonzero solution of' the modon 'dispersion’

relation
-(8 + F)'V23,(k)R,[(8 + F)V/2] = xJ,(k)K,[(8 + F)'72], (2.3c)

It turns out (see Flierl et al., 1980) that «k 1is a slowly

varying function of § + F (in particular
8 + F =0(1) —> k = 4).

To obtain the stability condition consider

v = ¥ + exp(ot)y'(x,y) with |y'|<<|¥| where % 1is the modon

solution (2.3). Substituting into (2.1), linearizing and

exploiting (2.2) results in the eigenvalue problem

o(A - F)Y + Uo-VI(A - F - P)y] = 0 (2.4)
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where the prime has been dropped, ﬁ = dP(z)/dz and Uo = (-¢ -
y

1, ¥ ). Equation (2.4) is defined on the disconnected open

:

intervals O<r<«1 and'1<r<w with P obtained from (2.2). On r=1 y
and VY are assumed to be continuous. It follows from (2.4) that

the spatially integrated energy and enstrophy egquations are,

respectively
i '
(0 + o*) J g |V |2 + Fly|? rdrdé =
-7
T ™ '
= I (Uo-W*)Ay + (Uo-W¥)Ay* rdrds, (2.5)
-7
T o .
(0 + o*) § { |ay - Fy|2?/P rdrdé =
-7
T o
! { (go-VW*)Aw + (go-Vw)Aw* rdrdé, (2.6)
-

where y* is the complex conjugate of V.

Equatibns (2.5) and (2.6) have been derived by obtaining
energy and enstrophy equations in the exterior (r>1) and
interior (r<1) and adding the results together. In this
derivation certain integration by parts are required which
result in boundary integrals on r=1. These terms are either
identically zero since Uo+n=0 on r=1 where n is the unit normal

on r=1 or sum to zero when the exterior and interior integrals
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are added together (see Charney and Flierl(1981) and Malanotte-
Rizzo0l1i(1982)).

The addition of (2.5) and (2.6) gives

n o> .
(0 + 0%) f [ {|VW|2 + F|y|® + |ay - Fy|?/P} rdrd6 = 0. (2.7)
-7

I1f the integral in (2.7) is nonzero then the Re(o0)=0 and -the
modon. is neutrally stable (Drazin and Reid, 1981). Thus a
sufficient condition for the neutral stability of barotropic
modons 1is that the integral in (2.7) be nonzero. It is noted
here that for instability or for asymptotic stability the
integral must be identically zero (since in either case Re(o) is
nonzero).

The éondition that the 1integral in (2.7) is zero can be

rearranged to give

T
! { {|vy|? + Fly|% - |ay - Fy|2/(k? + F)} rdrdé = -1,/6 (2.8)
-T

T ™
I {|V|2 + F|y|%2 + |ay - Fy|2/8)} rdrdd = 1,/6 (2.9)
-%
with o

T &

I, =(8+F + k?)(k2 +F) 'S { |Vy - Fy|? rdrdé 2 O
-7
LR

I; = (8 + F + «?)(k? + F)°' [ [ |V - FY|? rdrde 2 0,
-7
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since & + F>0 for solutions of the form (2.3). Equations (2.8)

ahd (2.9) can be rewritten
T IvT12 (k2 = 0|2 (|92 + F) dn = -472(k? + F)I,/8 (2.10)
S T2 (n|2 + F)(8 + F + |n]|?) dq = 471, (2.11)
due to Parseval's equality, where ¢7 is the Fourier transform of

Vv, and n the wave number vector (7n,, 7:). .Equation (2.10) forms

the basis for the remaining analysis.

2.2 Discussion And Application To The Atmosphere And Ocean

The inteéral (2.10) provides sufficient conditions on the
wavénumber spectrum of the perturbation field if the modon is to
be neutrally stable. Consider the case ¢ < 0 (i.e., a westward-
travelling modon). It follows from (2.10) that if the
perturbation is solely composed of wavenumbers satisfying
|n] > k the LHS and RHS of (2.10) are of different sign (since
§<0). Therefore the integral in (2.7) cannot be zero and the
westward—travelliné modon must be neutrally stable. Equation
(2.11) places no constraint on the perturbation wavenumbers
since both the LHS and RHS are nonnegative. This stability
condition suggests that westward-travelling modons are neutrally
stable when the perturbation field is dominanted by wavenumbers
with magnitudes larger than the modon wavenumber.
Eastward-travelling modons (c > 0 hence 6 >0) are

neutrally stable if the perturbation is solely composed of
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wavenumbers satisfying |n| < x. As before, (2.11) places no
restriction on the perturbation wavenumbers. This stability
condition suggests that an eastward-travelling modon will be
neutrally .stable when the surrounding £fluid is dominated by
wavenumbers smaller than the modon wavenumber.

The sufficient stability conditions just described are in
fact wvalid for finite-amplitude perturbations (Charney and
Flierl, 1981, Benzi et al., 1982 and Purini and Salusti, 1984)
although the analysis may be only valid for small-amplitude
perturbations depending on the distribution of extremums to the
Blumen(1968) energy-enstrophy functional (Drazin and
Reid, 1981).

However this analysis is not a rigorous demonstration of
full nonlinear stability. Ebig and Marsden(1970), Marsden and
Abraham(1970) and Holm et al.(19835 have pointed out that the
Arnol'd(1965) argument is not a proof of nonlinear stability due
to inconsistencies between the topology of the Hilbert space of
which ¢ is a member and the topology of the second variation of
the energy-enstrophy functional. A rigorous proof }of a
nonlinear stability theorem for plane curvilinear flows can be
given using convexity  arguments (see Arnol'd, 1969 and
Holm et él., 1983).

McWilliams et al.(1981) proposed a regime diagram (see
Figure 2; adapted from Figure 10 in McWilliams et al., 1981) for
eastward-travelling modons.  Their numerically determined
neutral stability curve is shown as a solid line. The stability

condition given above (for c>0) suggests that as «k/|{7n| increases
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for «/|n|>1 (i.e., a disturbance dominated by wavenumbers
smaller than the modon wavenumber) a region of stability should
exist (at least for small-amplitude perturbations). Thus when
k/|n|>1 the slope of the neutral stability curve should begin to
increase as |7 decreases, allowing a region of stability
adjacent to the wavenumber axis. This trend in the neutral
stability ‘curVe is qualitatively shown by the dashed line in
Figure 2 (where it is assumed that for |n|=xk the two curves
should be close to each bther). Similar neutral stability curve
behaviour has been determined for topographically-forced
planetary solitary eddies (Malanotte-Rizzoli, 1982).

In the LHS of (2.10), the only explicit reference to the
modon is given by k and F, both of which are spatially constant
for a given translation speed (c) and modon radius (a). For
atmospheric scales (see McWilliams, 1980) the modon radius is on
the order of the deformation radius and |c| = 0(10) m/s. Thus
F=1, §=0(1)2 and consequently « = 4 (cf. (2.3c) see also
Flierl et al.(1980)).

In mid—latituées these pérameter values imply that
westward-travelling atmospheric modons will be neutrally stable
if the energy in the transients in the surrounding fluid are
contained mainly 1in scales with (global) wavenumber magnitudes
greater than approximately 16 (16 = kRcos(¢)/a where R and ¢ are

the Earth radius and 1latitude, respectively). Eastward-

The planetary vorticity factor must be 0(1) for phase dispersion
to balance amplitude steeping in (2.1) (see Charney and
Flierl, 1981).
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travelling modons, on the other-hand, will be neutrally stable
in flow regimes in which the energy is contained mainly in
scales with wavenumbers 1less than approximately 16. However,
the dominant contribution to the energy spectrum of eddies in
the midflatitude 300 mb, 500 mb and 700 mb atmosphere (which are
representative of the barotropic flow) resides in zonal
wavenumbers with magnitudes less than about 4-5 and meridional
wavenumbers (see Figure 3) 6-8 giving a (global) wavenumber eddy
energy peak at approximately 8 (calculated from Eliasen and
Machenhauer, 1965; \Saltzman and Fleisher, 1962 and
Tomatsu, 1979). Consequently the LHS of (2.10) will be positive
when evaluated for the observed 300 mb, 500 mb and.700 mb eddy
energy spectra.

As an example, (2.10) can- be evaluated for the
Tomatsu(1979) seasonally- and annually-averaged 500 mb eddy
kinetic energy spectrum. To calculate (2.10) we approximate
|¥T|2 by 2E(7n,,7n.)|n| % with E the nondimensional eddy kinetic
energy spectrum. A mid-latitude north-south (cartesian)

wavenumber was inferred with the approximation
n. = a{-D?PR(¢)/PR(¢)}'/2/(Rcos(¢))

evaluated at 45°N, where PN(¢) 1is the associated Leéendre
function, D?PM¢) = d?PR(¢)/d¢> and m = n,Rcos(¢)/a the
nondimensional zonal wavenumber. The contribution of the PQ(¢)
harmonic to the Tomatsu(1979) mth zonal wavenumber spectra was

inferred from the Eliasen and Machenhauer(1965) spectrum so that
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the percentage contributions remained the same (see Figure 3) in
both. These calculations imply a LHS of (2.10) of +35.57,
+42,.17 and +28.43 for the annual, winter aﬁd summer® eddy energy
spectra, respectively; with expected standard deviations of
approximately 14.88, 13.47 and 11.51, respectively based on
percentage standard deviations consistent with Saltzman and
Fleisher(1962). (These: calculations are nondimensional.)
Calculations based on the 300 mb and 700 mb eddy energy spectra
are qualitatively similar.

Therefore the LHS and the RHS of (2.10) are of different
sign (to two standard deviations) for c¢>0 and the conclusion is
made that eastward-travelling modons are neutrally stable for
typical (i.e., observed perturbation) mid-latitude energetics.
A stability or. instability inference cannot be made for
westward-travelling modons since both sides of (2.10).are of the
same sign and thus it is possible that the neutral stability
condition is not satisfied.

The available data describing oceanic mesoscale wavenumber
variability pales in comparison to the atmospheric record. To
the author's knowledge, Fu(1983) contains the only published
(barotropic) geostrophic kinetic energy wavenumber spectrum for
the oceans. Fu's calculation is based on SEASAT altimeter
measurements of the sea surface variability, for wavelengths
between 100-1000 km. A calculation testing (2.10) using Fu's

data should only be considered a preliminary estimate of modon

The seasons are defined so that winter is September through to
Feburary and summer is March through to August.
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stability in the ocean.

Note that solutions of the form (2.3) require 6 + F > 0 (or
else the modified Bessel functions have imaginary argument).
The translation speed for westward-travelling modons therefore
satisfies the constraint ¢ < -Ba?F-', Assuming
B=1.6+10""" m-'s-', a=10%m, f=10-%s-' and H=5-10> m it follows
that F=10-2 and consequently that c < -10 ms-'. This large (in
absolute value) translation speed (and hence particle speeds)
suggests that barotropic westward-travelling modons are. not
likely to be observed in the mid-ocean. Under the

approximations ¢>0 and F—>0 (2.10) reduces to

S TEIn]®(k® = |n|?) dn < 0. (2.12)

As in the atmospheric calculation, |¢T|? is approximated by -
2E(7n,,7m2)|n| "% where E(n,,n,) is the two dimensional kinetic
energy spectrum. Since horizontal mesoscale variability in the
oceans is nearly 1isotropic (Bernstein and White, 1974; Mode

Group, 1978 and Richardson, 1983) it follows that (Fu, 1983)
E(n,,m2) = Eo(|n|)(27|9]|) "
where E,(|7n|) 1is the scalar wavenumber spectrum for the

geostrophic kinetic energy (see Figure 4, adapted from Figure 8

in Fu, 1983). Thus the inequality (2.12) takes the form

2 { Eo(|n]|)[k%? - |n|?%] d|n| < 0. (2.13)
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Clearly if (2.13) is to be contradicted (i.e., a demonstration

of neutral stability), the dominant contribution to the integral

must come from |[7| < k. For a=100 km, c=10 cms-' and
B=1.6+10- 11 it follows that «k=3.9616, corresponding to a
wavelength of about 160 km (=2007/k km). Thus oceanic

barotropic modons will be neutrally stable to perturbations for
which the energy is contained mainly in wavelengths greater than
about 160 km. |

The integral in (2.13) was calculated using the Fu(1983)
spectrum (see Figure 4) with E, set identically zero for
wavelengths outside the 100-1000 km band. For the high energy
spectrum (see Figure 4), corresponding to data obtained near
major current systems (see Fu, 1983), the LHS of (2.13) was
computed to be -56.06. For the low energy spectrum (see
Figure 4), corresponding to data obtained in regions remote from
major current systems (see Fu, 1983), the LHS of (2.13) was
computed to be -44.54. As a measure of the error, standard
deviations of .6 and .5 were computed for the above estimates,
respectively, based on the 95% confidence intervals for the high
and low energy spectra in Fu(1983). (These results are
nondimensional.) Based on these calculations, the neutral
stability of barotropic modons in the oceans cannot be inferred.

There are, however, limitations to the Fu(1983) spectrum

which may restfiét its applicability here. For example, the
data wused to compute the spectra represents energy only at
periods less than 24 days (Fu, 1983), whereas Wunsch(1981) has

shown that the dominant energy containing eddies have periods
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between 50 and 150 days. Also, Fu(1983) argued that because of
the short duration of the data, the integrated kinetic energy
observed 1is about 5 times less than that reported by
Wyrtki et al.(1976). It is therefore conceivable that a
wavenumber spectrum computed with longer records would be quite
different from the Fu(1983) spectrum to the degree that the
opposite conclusion given above may be reached. Clearly,
further work on the mesoscale wavenumber spectrum of the ocean
is required before the constraint (2.13) can be realistically
tested.

Equation (2.1) can also be interpreted as a nonlinear
reduced-gravity or 1-1/2 layer model (White and Saur, 1981 and
Mysak, 1983) where ¢ 1is the interfacial displacement and F is
the internal Froude number. - Conseqguently, F = 0(1) and
westward-travelling modons will have fealistic translation
speeds (c=-10"'ms-').  In this context; (2.10) could be
calculated using a two dimensional baroclinic fluctuation energy
wavenumber spectrum obtained from geostrophic velocity fields
that are relative to a level of no motion (e.g., from isotherm
deflection data collected from a spatial array of XBTs). A
calculation of a low frequency energy wavenumber spectrum along
these 1lines 1is currently 1in progress (K. A. Thomson, 1985;

personal communication).
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Figure 2. Stability regime diagram for an eastward-travelling
modon. The vertical coordinate e, is the area-averaged
perturbation vorticity amplitude. The horizontal coordinate is
scaled so that |[n| = = corresponds to a wavelength equalling one
modon diameter (see Section 2.2). The solid line is the
numerically determined neutral stability curve of

McWilliams et al.(1981). The dashed line qualitatively
illustrates the expected increasing slope in the neutral
stability curve (cf. (2.10)) for =/|n|>>n/k = 0.8 under: the
assumption that when |n|=k the two curves are similar.
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Figure 3. The two-dimensional atmospheric kinetic energy
spectrum used to compute the LHS of (2.10) based on annually-
averaged statistics. The zonal wavenumber m, is scaled so that
m=1 corresponds to a wavelength equalling the circumference of a
latitude circle. The (cartesian) meridional wave number n, is
scaled so that n=1 corresponds to wavelength equalling the
longitudinal circumference (i.e. geodesic circumference through
the poles). The north-south wavenumber 7, is related to n via
n,=an/R (see section 2.2). The energy density amplitude has
been normalized so that ff E(m,n) dndm = 1, The dominant
contribution to the spectrum comes from m=1, 2, 3, 4, 5 and 6
and n=6, 7, 8 and 9, and accounts for 70% of the energy.

Lz
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Figure 4. Scalar wavenumber spectrum of barotropic kinetic
energy for the ocean used to compute the LHS of (2.13). The
curve labelled H corresponds. to data collected from high energy
regions (eg. near major current systems). The curve labelled L
corresponds to data collected from low energy regions (eg. away
from major current systems). The two large vertical marks on
the wavenumber axis correspond to 1000 km and 100 km from left
to right, respectively. The point |n|=x is indicated with a dot
on the wavenumber axis.
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III. MODON PROPAGATION IN A SLOWLY VARYING MEDIUM

Whitham(1965) showed that the slow modulation of nonlinear waves
in a dispersive medium could be described by the slow variation
of the wave parameters (such as frequency, wavenumber and
amplitude) within an averaged (over one wave period) Lagrangian
formulatioﬁ of the governing equations. Subsequent research
developments in slowly varying nonlinear waves have generally
tended to utilize perturbation methods (described below) or when
possible an inverse scattering transformation (e.g., Kaup and
Newell, 1978; and Karpman and Maslov 197%a,b). 1In this chapter
a leading order perturbation theory 1is developed describing
modon propagation in a slowly varying medium. The solutions
presented here represent the first application of these methods
to a fully two-dimensional solitary wave.

Two problems are posed and solved in this chapter. In
Section 3.1 a perturbation method 1is developed to study the
effect of an Ekman bottom boundary layer on an eastward-
travelling modon. This problem was chosen in order that the
analytical results obtained could be compared with a numerical
solution for the sahe problem (McWilliams et al., 1981). (This
provides a test for the perturbation method.) In Section 3.2 the
perturbation method is used to describe the interaction between
a barotropic modon and slowly Qarying topography.

Grimshaw(1970,1971) developed a perturbation method to
describe the slow evolution of the Boussinesq solitary wave as

it travels over slowly varying topography. Johnson(1973) and



30

Grimshaw(1977,1978,1979a,b,1981) developed similar perturbation
theories to describe other slowly varying solitary waves in a
variety of physical problems. Wérn and Brasnett(1983) have
applied these methods to model atmospheric blocking as the slow
modulation of atmospheric solitons over variable topography.

In the usual fashion, the perturbation solution is obtained
by introducing slow spatial and temporal variables (following
Whitham, 1965 and Luke, 1966) reflecting the scaling of the
-slowly varying medium relative to a typical wavelength. The
dependent variables and wave phase are expanded in a
perturbation series in a small parameter characterizing the
different scales associated with the wave and variable medium,
with the 0(1) solution taken to be the solitary wave.

In the Johnson and Grimshaw analysis, evolution equations
for the wave paraﬁeters are determined by demanding that the
coefficients of the inhomogeneities 1leading to higher order
secularities vanish, Since these coefficients contain
derivatives of the wave parameters with respect to the slow
variables, differential equations are obtained describing the
slow evolution of the solitary wave.

Luke(1966), Ablowitz(1971), Zakharov and Rubenchik(1974),
Ko and Kuelh(1978), Ablowitz and Kodama(1979), Ablowitz and
" Sequr(1981) and Kodama and Ablowitz(1980,1981) have developed an
alternate perturbation method for describing various one-
dimensional slowly varying solitary wave problems. The initial
formulation of the two perturbation problems 1is identical;

however, the differential equations describing the slow
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modulation of the leading order wave parameters are obtained by
exploiting a solvability condition on the first order
perturbation equation.

The solvability condition is that the inhomogeneity in the
perturbation equation be orthogonal to the homogeneous solution
of the adjoint probiem associated with the first order
perturbation operator (i.e., the Fredholm alternative theorem).
When the first order perturbation operator is self-adjoint, as
in the nonlinear Klein-Gordon (Ablowitz, 1971), nonlinear
Schroedinger and nonlinear sine-Gordon (Kodama and
Ablowitz, 1980, 1981) equations, the two methods are formélly
the same. However, for the (regular and modified) Korteweg-de
Vries (Kodama and Ablowiﬁz, 1981), Kadomstev and Petviashvili
(Ablowitz and Segur, 1981) and potential vorticity equations the
perturbation operator is not self-adjoint.

In the Johnson and Grimshaw analysis the solution of the
first order perturbation eguations must be obtained in order tov
determine the secular terms. In the problem considered here
this did not prove to be tractable. However, the homogeneous
solution of the adjoint problem associated with the first order
perturbation equations was easily seen to be the zeroth order
solution. Thus the theory developed here follows thenlatter

analysis.
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3.1 Perturbation Solution For Modon Propagation Over A Bottom

Ekman Boundary Lavyer

McWilliams et al.(1981) numerically calculated the effect of
(linear, Newtonian and biharmonic) vorticity dissipation on an
eastward-travelling modoﬁ and concluded that the decay was
approximately exponential and shape preserving. The modon
parameters (i.e., the radius, translation speed and wavenumber)
evolved (to a first approximation) 1in such a manner as to
preserve the modon dispersion relationship. In the final stages
of the dissipation the modon degenerated into a £field of
westward-travelling planar Rossby waves. These observations
suggest that the dissipatibn of a modon due to bottom friction
can be theoretically viewed in the context éf the slow evolution
of solitary waves. |

This Section describes a theory for analytically obtaining
the leading order solution of an eastward-travelling modon in
the presence of a bottom boundary layer. The solution we obtain
agrees with the numerical calculation of McWilliams et al.(1981)
for the dissipation of a modon although it is unable to describe
the transition to westward-travelling Rossby waves in the final
stages of the decay.

For typical oceanic and atmospheric mbdon scales (decribed
in Subsection 3.1.1) the effect of bottom friction is an order
of magnitude smaller than the inertial and dispersive terms 1in
the potential wvorticity egquation. Thus the dissipation of a

barotropic modon when the effects of a bottom Ekman layer are
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included 1in the vorticity equation can be described by a slowly
varying solitary wave calculation, The parameters  which
describe the modon'solitary wave are allowed to be functions of
a slow time and the solvability condition leads to initial-value
problems for the leading order translation speed, radius and
wavenumber. The method developed 1in this Section is used to
describe modon propagation over slowly varying topography in

Section 3.2.

3.1.1 Formulation And Solution Of The Dissipation Problem

The nondimensional barotropic potential vorticity equation in
which the interior of the fluid is asymptotically matched to a

bottom Ekman boundary layer is (Pedlosky, 1979)

Ay + J(y, Ay + 82y) = -eAy (3.1.1)
t

where ¢ is the geostrophic pressure field, J(*,.) 1is the
Jacobian determinant a(*,-i/a(x,y) with x, y and t the usual
(positive) eastward, (positive) northward and time coordinates
and where A 1is the horizontal Laplacian. The parameters
82 = Pay?/co and e = E'Y2/(2r,) are the planetary vorticity
factor and damping coefficient respectively, with E the vertical
Ekman number 2vf-'H"' where v, f and H are the vertical eddy
viscosity, Coriolis parameter and fluid depth respectively, and
where r, 1is the Rossby number cyof-'(ap)-' with a, and c, the

undamped modon radius and translation speed respectively. The
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space, time and velocity scalings have been chosen as ay, ao/Co
and c, respectively. For typical oceanic (atmospheric) modon
parameter Avalues of B, aog, Co, ¥, Hand f of 1.6-10"'' m-'s-1,
100 (1000) km, 10-' (10) ms-', 10-2 (10) m?s-', 4 (10) km and
10-% s-' respectively, it follows that e = 10-'. Thus for modon
scales the RHS of (3.1.1) can be viewed as a small perturbation.
The values of a, and c¢, were chosen to give an order unity
planetary vorticity factor while satisfying quasigeostrophy.
Equation (3.1.1) does not include the free surface effect, since
for oceanic applications the 1length scale a, is much smaller
than the external deformation radius (gH/f)'/2 = 2000 km.

For a leading order solution the fast variables (Ko and
Kuehl(1978), Grimshaw(1979,1981) and Kodama and Ablowitz(1981))

are given by

T
E = x - e { c(t')dat’

and a slow time is given by

Thus ¢ =-c(T) -and ¢ =1. Substitution of these variables into
t X .

(3.1.1) gives
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J(y + cy, Ay + 82%2y) = -eAy - €AY (3.1.2)
T

where the Jacobian is taken with respect to ¢ and y.
As in Grimshaw(1979a,b,1981) and Kodama and Ablowitz(1981)
a perturbation solution to (3.1.2) is constructed in the form
Vo= PloO (g, ysT) + ey D (E,y:T) + ool
The 0(1) problem is

J(YL® + cy, AYLO) + §2y) = 0,

the solution of which is taken to be the modon

(Flierl et al., 1980)

Y% = -caK,(8c ' 2r)sin(8)/K,(8ac-172)
AY‘®) = -§52aK,(8c-"“2r)sin(6)/K,(sac-1/2)
AP O = (82/c)y®  r>a (3.1.3)
Y% = §2x-2aJd,(kr)sin(6)/J3,(ka) - (62 + k?c)k *rsin(6)
APt = -§23J,(kr)sin(8)/J,(ka)

AYtO) = —g2yt0) - (§2 + ck?®)rsin(9) r<a (3.1.4)
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where J, and K; are the ordinary and modified Bessel functions
of order one, with the polar coordinates r and 6 defined by
r?2 = [£-£,(T))2%2 + y2? and tan(6) = y/[E-to(T)].

The term £,(T) is an 0(e) phase shift (in comparison to the
leading order phase ¢) and 1is determined by first order
perturbation energy considerations (Ko and Kuelh, 1978,
Grimshaw, 1979a,b and Kodama and Ablowitz, 1951). For the 0(1)
analysis presented here it remains undetermined and is
eventually chosen as a constant (the x-coordinate of the wave
center at T=0). It is formally included as a slowly varying
guantity at this stage because it appears in the 0(e) equations.
The modon wavenumber « in (3.1.4) is the first nonzero solution
of the dispersion relation (obtained by requiring continuity of

W% on r=a)
-8J,(ka)K,(8ac-'/2) = c'/2xJ,(ka)K,(bac"'72). (3.1.5)

The modon radius, translation speed and wavenumber a, ¢ and «
respectively, are allowed to be functions of the slow time
(following the general theory of Grimshaw, 1979, Kodama and
Ablowitz, 1981 and Ablowitz and Segur, 1981) with the initial
conditions a(0)=1, c(0)=1 and x(0)=x° where ko, solves the modon
dispersion relation for a=c=1 (ko = 3.9226, based on &=1).

The 0(e) problem associated with (3.1.2) is
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J(¢(1)’ A¢(°) + azy) = ‘A¢(°) - Aw(O)'
T

which for r>a can be rewritten as (see (3.1.3))

J(YCOr + cy, APLY) - §2cmlyl1)) = —APIO) - AYLOY, (3.1.6)
T

The homogeneous adjoint equation associated with (3.1.6) is
(0 - 8%2c~")JI(Y'° +cy, u) =0

for which u = y'°’(r>a) 1is a solution. The solvability
condition on y‘°’ for r>a is therefore (see the Luke and

Ablowitz citations given above)
T _
J F o (ayt® + AYf©)) rdrdd = 0. (3.1.7)
-7 a T

The 0(e¢) problem for r<a can be written as (see (3.1.4))

J(PLO + cy, AYPL') + k2Pl1)) = —ApO) - AYlO), (3.1.8)
T

with the related homogeneous adjoint equation

(A + k2)J(y'° 4+ cy, u) =0

for which u = y‘%’(r<a) 1is a solution. The solvability
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condition on Y%’ for r<a is therefore

T a
S [ vter(ayt® + Ay‘®)) rdrdé = 0. (3.1.9)
_.n.o T

It is noted here that

Ay‘°) = { a~'a - [DK,(6ac-'""2)/K,(6ac-'/2)])sac-'"2[a"'a -
T T T
(2c)-'c Jlayto) + c'2(rc-172) AYyto) -
T ‘ T r
cos(0)t, AY'°) + r-lsin(8)t, Ay‘°, r>a
T r T 6
Ay‘®) = { a-'a - [DJ,(ka)/J,(ka)lkala-'a +
T T T
k- 'k 1389C0) 4 k- 1(kr) APl -
T . T r
cos(8)t, AY'° + r-lsin(8)t, Ay'°), r<a
T r T 6

where DK, (sac-'72) and DJ, (ka) are the derivatives of
K (8ac~'2) and J,(ka) with respect to their arguments dac~'/?2
and «xa, respectively. The fast variable r is retained in the

terms (rc-'/2) and (kr) because of the slowly varying a(T) in
T T

the integration 1limits in (3.1.7) and (3.1.9). Note that the
last two terms in both equations express the slow evolution of
the phase shift term. It turns out that these terms integrate
to zero in the solvability conditions due to the periodicity 1in

6.
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After some algebra it can be shown that (3.1.7) and (3.1.9)

imply respectively

Aa'la - [A-1] (2¢)" ¢ = -1 (3.1.10)
T T

Ba'la +[B- 1) k 'k = -1 (3.1.11)
T T

where

A= yK(y)/K;(y) - 1 - Kj(7)/D1

D, = -7-'{7xj<7> - 2Ko (1)K, (v) - 7x:(7)}
3
B=1- {kJo(k)Dz/J;(k) -
2(kJo(k) /T (k) + 2)(1 + k2472)3J,(k)/(kJ,(k)) + 1 + 2k24-2}/

{nz/aj(7> - 2(1 + kK2972)3,(k)/ (kI (k))}

D, = k"{kJ:(k) - 23,(k)d, (k) + kaf(k)}

where

v=(62%a2/c) 42 k = ka.

Equations (3.1.10) and (3.1.11) are two -egautions in three
unknowns. A third equation 1is obtained by differentiating

(3.1.5) with respect to T yielding



40

k-'k = N[a-'a - (2c)-'c¢ ] - (2c)-'c (3.1.12)
T T T T
where N = -{4R + k2?R/v}/{4 + y/R + k?R/y} and R=K,(7y)/K,(7v).
Eliminating x 'k between (3.1.11) and (3.1.12) gives
T .
Ma'a - [M-1] (2¢)"'¢ = -1 (3.1.13)

T T

where M = BN+B-N, Provided M#A the unigue solutions (3.1.10),

(3.1.11) and (3.1.13) are easily seen to be

a = -a c = -2cC K
T T T

kK i.e.,

a = expl(-et) c = exp(-2et) K

koexp(et). (3.1.14)

The solutions (3.1.14) are the principal result of our
calculation in this Section. Concomitant with the intuitive
expectation that the RHS of (3.1.3) must result in a
exponential-like decay in the modon, (3.1.14) implies that the
vorticity and streamfunction amplitudes decay as exp(-T) and
exp(-3T) respectively.

The exponential decay that the solutions (3.1.14) predict
can be seen as the result of the energy énd enstrophy egquations

associated with (3.1.1). It follows from (3.1.1) that

T ™ T o>
i) f [ VWV rdrdé = -2¢ [ [ V-Vy rdrdé
t -7 © -7 ©
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T T =
d S [ |&y|? rdrde = -2¢ [ [ |A¢|? rdrde.
t - [ _.n.O

Thus the spatially integrated energy and vorticity equations
bredict exponential decay as implied by (3.1.14).

The solutions (3.1.14) appear non-unique when M=A, since
when thisv occurs there are only two independent equations for
three unknowns (i.e., (3.1.10) and (3.1.13) are identical).
However, numerical calculations showed that v=5.776 and k=4.4835
were the only values which could satisfy the dispersion relation
(3.1.5) and M=A(=.5073). The following argument shows that the
discreteness of these values and the continuity of a, ¢ and «
imply the uniqueness of (3.1.14) irrespective of A and M.

Suppose A=M at- T=7 and there exist solutions a,.c and «

such that v (T=7)#0 (recall 42=6%a?/c; the proof works equally
T

well exploiting k=«ka). It follows that there exists a>0 for
which v(T)#4(7) for the interval 7<T<r+a. Hence M#A 1in this
interval and thus (3.1.14) are the solutions in this interval.

Suppose the same hypotheses but that 5 (T=7)=0. But then either
T

v =0 in some nonzero interval (r,r+d) or not. If not, the
T

previous result applies on this interval. 1If true, from the
definition of vy and from (3.1.10) and (3.1.11) it follows

a-'a = (2c¢)"'c = -k 'k = -1 are the solutions on this
T T T

interval. However 7 is arbitrary so the proof is complete.



42

3.1.2 Discussion Of The Dissipation Solution

The solutions for a, ¢ and k satisfy (ka) = 0, (ac-'/2) = 0 and
T T

(kc'’2) = 0., Therefore (3.1.5) reduces to
T

_8J2(K0)K1(6) = K°J1(K0)Kz(5)

for all T implying that the dispersion relationship is invariant
during the decay. Thus the modon remains dynamically equivalent
to its initial state, at least initially and to 0(1), aé any
WKB-like theory must predict. The exponential decay of the
streamfunction and vorticity and the invariance of the
dispersion relation which we have obtained is in agreement with
the numerical solution of (3.1.1) (McWilliams et al., 1981) for
a modon initial state.

The compatibility conditions (3.1.7) and (3.1.9) are in
fact sufficient to eliminate the secularity in ¢''’ (note that
Ay‘°’ is a homogeneous solution to (3.1.6) and (3.1.8)) since

Ay'®) + AY‘°’ is indentically zero as a consequence of (3.1.14)
T

(introduce the change of variéble r —> a(T)r in (3.1.3) and
(3.1.4)). |

Figure 5 is a sequence of confour plots of the pathlines
Y¢% + ¢c(T)y as T increases. The observer is in the reference
frame of the modon so that as dissipation occurs the surrounding
fluid appears to slow down, as indicated by the increasing
separation of the contours. Figure 6 is a sequence of contour

plots showing the decay in the vorticity field as T increases.
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The observer 1is fixed with respect to the fluid at infinity.
The modon moves to the right with speed c(T).

An upper bound on the distance over which the dissipating
modon travels as a modon can be obtained from the characteristic

eguation
dx/dt = c(T)
which integrates to
x(t) = £ + (1 - exp(-2et))/(2¢€)"

so that the modon travels a maximum distance (2e)-' (about 5
modon radii) before breaking up into a field of Rossby waves.
McWilliams et al.(1981) éstimate that for t < 15 the modon
decays as a modon (based on similar parameter values for 62 and
r) and when t = 15 a modon Rossby wave transition occurs. Based
on the scaling in this Section, the transition takes place when
T = 1.5 (note that Figure 5 only goes up to T=1.39). At this
stage the amplitudes of Y‘°’ and Ay'°’ are very small (see
Figures 5 and 6) and thus the above solution qualitatively
describes the principal decay mechanism. For oceanic scales of
ap and c, of 100 km and 0.1 m s-' respectively the above
perturbation solution wili be asymptotically valid for a time
scale of 100 days, whereas for atmospheric scales of a, and ¢,
of 1000 km and 10 m s-', respectively (see McWilliams, 1980) the

perturbation solution will be asymptotically wvalid on a time



scale of 10 days.
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RADIUS =1.0000 TIME = 0.0000
SPEED = 1.0000 KAPPR = 3.9226

STREAM FUNCTION FIELD + CY

o
[ip}

3.0

1.0
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-1.0

-5.0

-5.0 -3.0 -1.0 1.0 3.0 5.0
X AXIS

Figure 5a. Sequence of contour plots of the pathlines

v(% + c(T)y for the Ekman dissipation problem. The observer is
fixed with respect to a coordinate system attached to the modon.
The contour intervals are #0.2.. The zero contour is marked with
a 0. The values of a, ¢ and k at each slow time T are listed in
the upper left hand corner.
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RADIUS =0.7046 TIME = 0.3500
SPEED = 0.4965 KAPPA = 5.5664
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Figure 5b. Modon pathlines at T=0.35 under Ekman dissipation.
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SPEED = 0.2490 KAPPA = 7.8397
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Figure 5¢c. Modon pathlines at T=0.695 under Ekman dissipation.
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RADIUS =0.3534 TIME = 1.0400
SPEED = 0.1249 KAPPA = 11.0979
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-5.0 -3.0 -

Figure 5d. Modon pathlines at T=1.04 under Ekman dissipation.
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Figure 5e. Modon pathlines at T=1.39 under Ekman dissipation.
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RADIUS =1.0000 TIME = 0.0000
SPEED = 1.0000 KAPPA = 3.9226
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Figure 6a. Sequence of contour plots of the vorticity Ay‘'°’ for
the Ekman dissipation problem. The observer is fixed with
respect to the fluid at infinity. The contour intervals are
+2.0. The zero contour is marked with a 0. The values of a, c
and k at each slow time T are listed in the upper left hand
corner., ‘



51
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Figure 6b. Modon vorticity at T=0.35 under Ekman dissipation.
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Figure 6c. Modon vorticity at T=0.695 under Ekman dissipation.
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Figure 6d. Modon vorticity at T=1.04 under Ekman dissipation.
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Figure 6e. Modon vorticity at T=1.39 under Ekman dissipation.
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3.2 Modon Propagation Over Slowly Varying Topography

In this Section a leading order perturbation theory for modon
propagation over slowly varying topography is developed. This
solution, which 1is independent of any functional form of the
topography, is applied to two specific topographic
configurations.

In Subsection 3.2.1 the general theory is developed which
is valid for finite-amplitude slowly varying topography (i.e.,
topographic amplitudes on the order of the depth of the fluid).
Also in Subsection 3.2.1, analytical perturbation solutions for
the modon radius, translation speed and wavenumber are obtained
for small-amplitude topography. These analytical solutions are
described in -Subsection 3.2.2. Subsections 3.2.3 and 3.2.4
apply the small-amplitude solutions to a modon trévelling over a
meridional ridge (modelled as a gaussian in the x-coordinate
direction) and an escarpment (modelled as a hyperbolic tangent

in the x-coordinate direction), respectively.

3.2.1 Perturbation Solution For Modon Propagation Over Slowly

Varying Topography

As 1in Veronis(1966), Rhines(1969a,b), Clarke(1971), LeBlond and
Mysak(1978; Sec. 20), Malanotte-Rizzoli and Hendershott(1980),
Matsuura and Yamagata(1982) and Yamagata(1982) the effects of
variable topography on planetary waves are modelled with the
shallow water -equations on the pg-plane. The nondimensional

rigid-lid shallow water potential vorticity equation can be
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written as (LeBlond and Mysak, 1978; Sec. 20)

V-(H- 'V ) + J[y, H 'V (H-'WY) + fH-'] = 0. (3.2.1)
: . ,

All symbols are defined as in Section 3.1 with the following

exceptions; ¢ is the transport streamfunction

—Hu

1 Hv = ¢ ,

where u and v are the (positive) eastward and (positive)
northward velocity components respectively, and where
H(ex,ey) = 1 - uh(ex,ey) is the slowly varying topography with
e = ap/(length scale of topography) << 1 and u 'is the
topographic amplitude parameter.® In. this Subsection it is
assumed that O<e<<u<t., The leading order solution will be valid
for finite-amplitude topography (i.e., wu=0(1)), althdugh the
smallness of u will be eventually demanded (i.e., O<e<<p<<i) in

order to obtain analytical solutions.

The Coriolis parameter is f = (ro)-' + 8%2y. The effects of
planetary vorticity dominate topographic steering if
(6%ry) " '0(VH/H) = e(82%r,) '<«1 (LeBlond and Mysak, 1978;

Sec. 20). Typical slopes of the ocean floor away from mid-ocean

ridges, 1large seamounts and escarpment breaks give e = 10-3,

The topographic parameter is the maximum absolute value of the
height of the topography divided by the mean depth. The theory
applies to topographlc depressions (e.g., trenchs) as well as to
topographic protrusions (e.g., ridges).
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thus e(6%ro)-' = 10-' (for scalings described in Section 3.1).
We note that larger bottom slopes can be considered as r, is
allowed to increase (e.g., atmospheric applications or in
equatorial regions).

As in Luke(1966), Grimshaw(1970,1971,1979%a,b,1981), Kodama
and Ablowitz(1980) and the work in Section 3.1 a solution to

(3.2.1) is found in the form

v = H(X,Y){ A(X,Y,T) + ¥'°)(¢,y;X,Y,T) +

e 1 (E,y:X,Y,T) + ...}, (3.2.2a)

with the related perturbation velocity field

u=u'(gy;X,Y,T) + eu'V(¢,y;X,Y,T) + ... , (3.2.2b)

v = vi®) (E,y;X,¥Y,T) + eviV)(¢,y;X,Y,T) + ... , (3.2.2¢)

where ¢ = -c(X,Y,T) and ¢ =1 and where the slow variables
t X

X, Y and T are defined by
X=e€x, Y=ey and T=et.
Substitution of these variables into (3.2.1) yields

-cH"'Ay + 82H 'y + H 2J(y, AY) = el -H"'Ay + 2cH" 'Y +
£ £ T EEX

2cH 'y - §2H- 'y - H-2J (y, AY) - H 23 (y, Ay) -
1324 X X Y
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2H-2J(y, ¢ ) - 2H 2J(y, ¢ ) -~ cH HYy - cH ?Hy +
£X ' yY X t¢& Y ty

2H-3(Ay)J (¢, H) + 2H *(Ay)d (¢, H) + fH 23 (¢, H) +
X Y X

fH-23 (Y, H) + H'PH J(y, ¥ ) + H"3H J(y, ¢ )} + 0(e?), (3.2.3)
Y X ¢ Y y

where J(,*) = a(-,*)/8(t,y), J (-,*%) = 0a(.,*)/0(X,y) and

J (-,%)
Y

a(-,*)/a(t,Y).

The formulation of the phase variable ¢ does not include a
x-direction wavenumber, say k. It can shown that if one defines

¢ such that ¢ =-ck and ¢ =k the leading order results presented
t X

here are not changed since the x-direction wavenumber factors
out of the governing eguations and only c remains. Theref9re,
at least to this.order such a parameter is free and one can sét
it equal to unity. Moreover, we argue that the role played by a
slowly varying wavenumber in the definition of the phase
variable is played by the slowly varying modon radius and
wavenumber. Also, it would be incorrect to attempt to
incorporate the y variable into the phase variable ¢ since it
would no 1longer be possible to define the polar coordinates
required to write the modon solution.

The 0(1) problem is
J(Y° + cy, AY'°) + §%y) = 0,

the solution of which is taken to be the modon (3.1.3),’(3.1.4)
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and (3.1.5). The comments regarding the phase shift term
£o(X,Y,T) made in Section 3.1 apply here and thus eventually ¢,
will be chosen to be the x-coordinate of the wave center at T=0,
allowing the topography to be centered at X=0. The wave
parameters a, c and k are slowly varying functions of X, Y and T
that satisfy the dispersion relationship (3.1.5). For the
initial value problem, a(X,Y,0)=1, c(X,Y,0)=1 and «(X,Y,0)=«k,,
where (as 1in Section 3.1) ko is obtained from the dispersion
relation (3.1.5) when T=0 (k,=3.9226 when &§=1).

The 0(e) problem can be written as

J(YL0) + cy, ApL1)) + J(W(1)} AY(O) + §2y) = -§2A -
X
§?2H-'AH - H-‘J'(HA, Ayt®) - H-'J (HA, AY'%)) - AYO) +
X X Y : T
2cy( o) - sz‘°’l— J (¢lor, AYtor) - 2g(yt0%), ¢to)) +
EEX X X £EX
20900 = J (YO, APLOY) = 23(y(0), ytor) +
EyY Y yY
c(H"'H )y‘® = §2(H"'H )y'®> = (H 'H )J(y'°?, ¢'°)) -
X ¢t X X .
(A‘l/(O) + f)(H“H )‘I/(O) - (H“H )‘p(O)Aw(O) +
X vy X Yy
c(H-TH )y'® - (H-'H )J(y'°), (o)) +
Y oty 4 y
(Agt°) + £)(H-'H )y'®) + (H-'H )y'® Ay, (3.2.4)
Y ¢ Y £

As in Luke(1966), Grimshaw(1970,1971,1979a,b,1981) and
Kodama and Ablowitz(1981), ¢!’ is assumed to have the property
W' —>0 as r—>=. Consequently, in the limit as r-—>= (3,2.4)

reduces to
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A + (H'H )a =0, (3.2.5)
X X

(recall ¢'°’—>0 as r->=). The general solution of (3.2.5) is
A = g(Y,T)H""

for some function g(Y,T). Thus the lfirst. term in the
perturbation expansion (3.2.2a) (i.e., AH) is simply g(¥Y,T)
which will be 1left undetermined in the leading order analysis
developed here.

Note that since AH = g(Y,T), J (HA, Ayt©°)=0 and
X

J (HA, ,Ay‘9))=-g Ay‘'°), It turns out this last remaining term
Y Y ¢

integrates to zero in the imposed solvability conditions due to
the periodicity in 6 (see the Appendix). 'Also, note that g(Y,T)

will not contribute to the 0(1) velocity field since

U(O) = _w(O) v(0) = w(O).

y 3

Therefore, with no loss of generality, g(¥,T) can be set equal
to zero in this leading order analysis. It is formally retained
at this stage because of its appearance in the 0(e) problems.

For r>a, (3.2.4) can be rewritten as (see (3.1.3))

J(Peo), APt - §2c Tyt 1)) = (82/c)H- g ¢ - AY(®) +
' Y ¢ T

2CW(°) - 52¢(°) + (52/C) w(O)w(O) - 2J(¢(0), w(O)) +
E£EX X X y EX
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C(H"H )W(O) - SZ(H-1H )w(O) - (H—1H )J(w(O)' w(O)) -

X Et X X ¢
[(ro)-" + 82y](H-'H )¢'°) - (282/c)(H 'H )y'tOryt0) +
X vy X y
2C¢/‘°)_— (82/C) ‘I/(O)\"(O) - ZJ(WI’(D): w(O)) +
£yy Y 3 yY
c(H"'H )y'®> - (H-'H )J(yt0°), ¢to)) +
Y &y Y Y
[(ro)-' + 862y)(H 'H )¢ + 2(82/c)(H"'H )y(®yt®,  (3.2.6)

Y ¢ .Y 3
Thg homogeneous adjoint eguation associated with (3.2.6) is
(A - 82c-1")J(y'®) + ¢cy, u) =0
for which u = y'%(r>a) 1is a solution, The solvability
condition on y‘°’ for r>a 1is therefore (éee the Luke and

Ablowitz citations)

T ™
f f V9 {RHS(3.2.6)} rdrdé = 0. (3.2.7)
-7 a

For r<a, (3.2.4) can be rewritten as (see (3.1.4))

J(w(O), Aw(l) + sz(1)) = _KZH-1g w(O) - Aw(O) +

Y ¢ T

2c¢(0) + xzcw(o> - (KZ) w(O)w(O) - 2J(w(0)' w(O)) +
£EX X X y £x

c(H'H )y % + k2c(H™'H )y(® = (H 'H )J(y<®, y'9) -
X ¢t X : X ¢

[(ro) " = k2cyJ(H-'H )yY'® + 2k2(H"'H )¢y ®Oyl° +
X y X y
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2cw(0) + (KZ) w(O)w(O) + [rsin(G)(&z + xzc)] w(O) -

EyY Y £ Y ¢
23(yt0), i) + c(H 'H )y'® - (H"'H )J(y'®, ') +
| yY Y &y ¥ Y ‘
[(ro)-' - k%2cy](H"'H )y'® - 2k2(H"'H )y 2y, (3.2.8)
Y ¢ Y £

The homogeneous adjoint egquation associated with (3.2.8) is
(A + k2)J(y'® + cy, u) =0

for which u = ¢‘°’(r<a) 1is a solution. The solvability

condition on Y‘°) for r<a is therefore

T a
! { v % {RHS(3.2.8)} rdrde = 0. (3.2.9)

-7

The calculation of the compatibility conditions (3.2.7) and
(3.2.9) is tedious but entirely straightforward. These
computations are described in the Appendix.
Four observations are made here about these calculations.

It has been noted that the first term in the RHS of (3.2.6) and
(3.2.8) (containing g(¥,T)) ihtegrates to zero due to the
periodicity in 6 (see the Appendix). Also, all terms that
contain derivatives of the phase shift term ¢§¢4,(X,Y,T) with
respect to X,Y and T integrate to zero for the same reason (see
the Appendix). In addition, terms which contain the Rossby
number as a coefficient in (3.2.6) and (3.2.8) also integrate to

zero due to the periodicity in 6 (see the Appendix). Thus the



63

eqguations we derive to describe the slow variation of the modon
parameters are independent of the Rossby number, {,(X,Y,T) and
g(Y,T).

Of physical interest 1is the observation that each
individual term 1in the RHS's of (3.2.6) and (3.2.7) that
contains a derivative with respect to the slow variable Y
integratesv to‘identically 2ero due to the periodicity in 6 (see
the Appendix). Thereforg the meridional structuré of the slowly
varying topography appears in parametric form 1in the 1leading
order solution and the leading order evolution of the modon
parameters is solely determined by the east-west topographic
structure.

However, only the leading order solution has a parametric
dependence on the meridional topographic structure. It is easy
to check that higher order derivatives with respect to ¥ do not
satisfy this orthogonality property. (Such terms are 0(e?) and
have been ignored in (3.2.3).) Meridional gradients in the
topography therefore give rise to 0(e?) modulations in the modon
parameters.

A physical explanation for this leading order parameteric
dependence on the meridional topographic structure can be given
based on the following vofticity arguments. Equation (3.2.1)

states that the potential vorticity (v -u +f)/H is a conserved

qguantity. Consider a particle of fluid displaced parallel to

the x-axis. If H is non-zero then the relative vorticity must
X

change in response to changes in H (f being constant when y. is
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constant). Thus the leading order relative vorticity adjustment
to zonal displacements occurs in response to zonal topographic
variations.

However, the leading order vorticity adjustment is not due
to topographic variations in meridional displacements. The
scaling of (3.2.1) (see also (3.2.3)) has assumed that changes
in planetary vorticity dominate topographic variations. Thus
the leading order vorticity adjustment to meridional
displacements occurs in response to changes in the planetary
vorticity (i.e., the y—coordinéte) and topographic variations
are second order in comparison.

After considerable algebra (see the Appendix), (3.2.7) and
(3.2.9) result in the following two differential equations for

a(X,Y,T) and c(X,Y,T)

A;a"'la - (A, - 1)(2c)"'¢ + (c¢/2)[A,a"'a -
T T X
(A, - 1)(2¢)"'c¢ ] + cA;(2¢c) " 'c +
X X
cAjsa-'a = -cE,H"'H (3.2.10)
X X
B,a~'a - (B, - 1){(2c)"'¢ + (c/2)[Bya-'a -
T T X
(B, - 1)(2¢)-'c ] + cB,(2¢c) " 'c +
X X
cBsa'a = -cE,H 'H (3.2.11)
X X

respectively, where A,, A,, A;, E,, B,, B., B; and E, are
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nondimensional functions of vy and k (recall y2?=62a2?/c and k=«a)
which are derived in the Appendix. The system (3.2.10) and

(3.2.11) can be rewritten as

a~'a +c(a,, + 1/2)a~'a + cA,,(2¢c)"'¢ = -cF,H"'H (3.2.12)
T X X X

(2¢)"'c + cA,q,a"'a +
T X

c(A,, + 1/2)(2¢)-'c = -cF,H 'H , (3.2.13)
X X

where

Ay, = [(1 - B1)A3.+ (A, - 1)B;)/(a, - By)

A12 = [(1 B1)A2 + (A1 - 1)B2]/(A1 - B1)

(_B1A3 + A]B3)/(A1 - B1)

Ay =
A,, = (-B,A; + AyB,)/(A, - B,)
F, = [(1 - B,)E, + (A, - 1)E;]/(A; - B,)

F, = (-B,E, + A,E,)/(A, - B,).

The evolution of «(X,Y,T) is determined by solving (3.1.5) at
each space-time coordinate given a(X,Y,T) and c(X,Y,T), the

solutions of (3.2.12) and (3.2.13).
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Whitham(1965) argued that hyperbolic differential equations
ought to govern the evolution of the slowly varying wave so that
the parameter modulations could propagate in space-time. The

eigenvalues of the matrix [M_.] with entries M;,=A,,+1/2,
1]

M;.=4,,, M,,=A,; and M,,=A,,+1/2 (denoted with the |usual

convention) were numerically determined to be real and distinct

for all wvalues of 4 and k (consistent with the dispersion

relation (3.1.5)) except for when A;=B; (in which case the

matrix [M_ ] is not defined). A,=B, only when ¥=5.776 and
1]

k=4.4835 (A, and B, are in fact identical to the functions A and
M defined in Section 3.1, respéctively). Similar arguments to
those presented in Section 3.1 can show that if there exists a
solution to the initial-value problem associated with (3.2.10)
and (3.2.11) then the continuity of a, ¢ and « and the
discreteness of the ¥y and « for which A,=B, imply that the
solutions satisfy (3.2.12) and (3.2.13) (except at the set of
discrete space-time coordinates for which the singularity
occurs). The equations (3.2.12) and (3.2.13) therefore form a
nonlinear hyperbolic system which is valid for finite-amplitude
topography. In practice, the problem must be solvéd
numerically.

Analytical solutions can be obtained for a, ¢ and «k by
demanding the smallness of the topographic amplitude parameter
u. When O<e<<p<<! (which 1is the case in many oceanic and
atmospheric applications), solutions to (3.2.12), (3.2.13) and

(3.1.5) can be obtained in the form
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W
]

1 + pa' " (X,¥Y,T) + 0(u?)

1 + uct M (X,Y,Y) + 0(p?)

(9]
n

kK = kKol1 + k" (X,Y,T) + 0(u?)].

Note that a‘'’, c!') and k''’ are u-perturbations and are not to
be confused with the role played by ¢‘'’, ut'’ and v‘'’ in the
e-perturbation expansion (3.2.2).

Since H(X,Y) = 1-ph(X,Y) it follows

H-'H = -ph + 0(u2?).
X X

The 0(u) terms in (3.2.12) and (3.2.13) are

at"m + (Agyq + 1/2)al ') + Ag,,ct V) /2 Fo,h (3.2.14)
T X X X

C(1)/2 + A021a(1) + (AOZZ + 1/2)C(1)/2 Fozh ’ (3.2.15)
T X ' X X

where Agy41, Agi2,y Ao21, Ap22, Foy1 and Fo,, are the values of A,,,
Ay, Az,, A;,, F, and F, respectively, evaluated for ¥y = é§ and
k=ko. Expanding the dispersion relationship (3.1.5) in a Taylor

series about u=0 gives at 0(u)

k(1) = No[al!) = ¢t /2] - ¢t 1) /2, (3.2.16)
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vhere N, = -{8R + (ko)2R/8}/{8 + 8/R + (ko)2R/8} with

R=K2(6)/K1(6).

From (3.2.14) and (3.2.15) it follows that

at’ + pjat!'’ + prat’) = ph
TT XT XX XX
ct? + pct?) 4+ pyoet?) = 200,
TT XT XX XX
where
Py = Aoy t Apzz *+ 1

Pz = (Boz2 + 1/2)(Ag1y + 1/2) = RAg12R02.
vy = (Agzz * 1/2)Fo, = Ag12Fo2
v, = (Royy + 1/2)Fo2 - Ap21F04.

The solutions to (3.2.17) and (3.2.18) subject to

conditions

at"(x,y,0) = 0, a‘"(X,Y,0) = Fo,h
T X

c¢"(X,Y,0) =0, c‘1(X,Y,0) = 2F,,h
T X

are given by

(3.2.17)

(3.2.18)

the initial

(3.2.19a)

(3.2.19b)
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at"(x,Y,T)

A h(X,Y) + Ah(X-0,T,Y) + A;h(X-0,T,Y), (3.2.20)

ctV(X,Y,T) Ah(X,Y) + Ash(X-0,T,Y) + Agh(X-0,T,Y), (3.2.21)

where the coefficients are defined as

Ay = vylo,0,)!

A, = (Fo;a, - vy)lo,(0; = 04)]?
Az = (vy; = Foqi0z)[0,(0, - 0,)]1"
Ay = 2v;(040;)""

As = 2(F02&, - vy)[lo0,(0, - 01)];{
Ne = 2(v, = Foa0z)[02(0, = 04)1°1,

and where the characteristic speeds ¢, and o, are given by
oy = {py - [(py)? - 4p,])"7%}/2
o, = {py + [(py)?% - 4p,1"'"2}/2,

The 1initial conditions on a‘'’ and c‘'’ (see (3.2.19)) are
T T

obtained by evaluating (3.2.14) and (3.2.15) at T=0,

respectively. The solution for «¢''(X,Y,T) is determined by
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(3.2.16), (3.2.20) and (3.2.21) yielding

k1" (X,¥Y,T) = A;h(X,¥Y) + Agh(X-0,T,Y) + Agh(X-0,T,Y), (3.2.22)

with A;, X and A given by

Ay = No(x1 - xn/Z) - XQ/Z

Ag = No(Xp = Ag/2) = A5/2

As = No(X; = Ag/2) - Ag/2.

3.2.2 Discussion Of The Small-Amplitude Topographic Solution

The slowly varying modon will be described (to leading order) by

(3.1.3) and (3.1.4) with a, ¢ and k given by

a =1+ wa' " (X,Y,T) . (3.2.23)
c =1+ puc'V2(X,Y,T) (3.2.24)
K = kol1+ uxt ' (X,¥Y,T)], (3.2.25)

where a‘'’, c¢!'’ and ‘'’ are given by (3.2.20), (3.2.21) and
(3.2.22) respectively, evaluated at the modon center X at time
T. The position of the modon center as a function of time |is

obtained from the characteristic equation
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dx/4T = c(X,0,T), (3.2.26)

written in slow variables. (Note that the modon center to 1lead
order occurs on Y=0; see (3.1.3) and (3.1.4).) In general,
(3.2.26) is not separable so X(T) is defined implicitly and must
be obtained numerically. Formally, the solution of (3.2.26) 1is

written
T _
X(T) = efo + {_c[X(T),O,T]dT (3.2.27)

where X(0)=¢t{, (see Subsection 3.1.1).
However if attention is restricted to T<<1 (i.e., t<<e-')

then

c(X,0,T) =c(ety,0,0) + c (€to,0,0)T + 0(T2).
T

Consequently, (3.2.27) and (3.2.15) implies that the modon

center will be approximately given by

X = €tog + T + puFoo,h (€§,,0)T2 + 0(T3). (3.2.28)
X

Using (3.2.28) the space variable X can be eliminated from the
solutions (3.2.23), (3.2.24) and (3.2.25) to obtain analytic
asymptotic (i.e., T<<1) solutions in the single slow time

variable T,
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As a typical calculation of the solution parameters let
6=1.0, hence: k0=3.9226 (from 3.1.5), Ny=-0.9636, p;=-7.39, p,=-
39.44, v»4=2.00, »,=-9.20, 04=-10.98, 0;=3.59, F4,=4.04 and Fy,=-
0.63 grom which it follows A,;=-0.05, A,=0.29, A;=-0.24, A,=0.46,
As=-0.20, Ag=-0.26, A;=0.04, Ag=-0.28 and Ag=0.24. Other values
of & give qualitatively similar results (except near the
singular value 6=5.776). The initial-value solution therefore
takes the form of eastward and westward-travelling hyperbolic
waves and a stationary component proportional to the topography.
Note that in conseqguence of the initial conditions (3.2.19), the

parameters satisfy

)\1 + XZ + ka = 0 (3.2.293)
Ao + As + Ag = O (3.2.29b)
A; + Ag + Ag = 0. (3.2.29¢)

These relations are clearly required if h = constant 1is to
result in only the trivial solution (i.e., a¢'’, c¢¢' and ‘"’
are all zero). |
Consider the solution for a‘'’(X,Y,T) given by (3.2.20).

Since A;3<0, the radius-perturbation associated with the
eastward-travelling wave ( i.e., h(X-0,T,Y)) acts to decrease
the modon radius. Since A2>0, the radius-perturbation
associated with the westward-travelling wave (i.e., h(X-¢,T,Y))
acts to increase the radius. Since A;<0, the radius-
perturbation associated with the stationary component (i.e.,

h(X,Y)) acts to decrease the modon radius. These results have
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implicitly assumed a positive topography (i.e., h(X,Y)20). 1f
"one considers a topographic depression (i.e., h(X,Y)<0), the
results are simply reversed.

Similar reasoning applies to the translation speed c(X,Y,T)
solution (3.2.21). Since A;<0 and Ag<0, the speed-perturbations
associated with the westward-travelling wave and eastward-
-travelling wave act to decrease the translation speed. Since
A;>0, the speed-perturbation associated with the stationary
component of the solution acts to increase the translation
speed. As before, if one considers a topographic depression
these results are reversed. |

The qualitative behaviour of the wavenumber-perturbations
associated with the individual solution components in (3.2.22)
is opposite to that of the radius-perturbations. Since A,>0 and
Xs>0, the wavenumber-perturbations associated. with "the
stationary and eastward-travelling wave components act to
increase the modon wavenumber. Since Ag<0 the wavenumber-
perturbation associated with the westward-travelling wave acts
to increase the modon wavenumber. As before, if one considers a
topographic depression these results are reversed. .

When the topography satisfies h(X,¥Y)—>A*(Y) and A~ (Y) for
X—~>+® and X—>-o respectively; it is meaningful to speak of a
'local’ (i.e., in a neighbourhood of X=0) steady-state solution
(i.e., T—>=) for a(X,Y,T), c(X,Y,T) and «(X,Y,T). Note that if
one defines h(X,¥)=A-(Y)+h'(X,Y), the terms containing A-(Y) in
(3.2.20), (3.2.21) and (3.2.22) sum to zero due to (3.2.29).

Thus with no loss of generality we set A-=0 and assume h(X,Y) is
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relative to the upstream topography (which may depend on Y but
is asymptotically constant in X). Under these conditions
(3.2.20), (3.2.21) and (3.2.22) will imply local steady-state

solutions of the form

a =1+ p{X,[A* - h(X,Y)] - A;h(X,¥)} (3.2.30)
c =1 + pu{As[A* - h(X,Y)] - Agh(X,¥)} (3.2.31)
K = ko + ko{Ng[A* - h(X,Y)] - Agh(X,Y)} (3.2.32)

(in a neighbourhood of X=0 for sufficiently large time).

Two cases are of interest. Consider the structure of the
approximate local steady-staﬁe solutions for isolated (or
compact) topography (i.e., A‘=0). Then (3.2.30), (3.2.31) and

(3.2.32) further reduce to

a =1 + u\,h(X,Y) (3.2.33)
c =1 + uA\,;h(X,¥) (3.2.34)
K = Ko *+ uKkoA;h(X,Y) (3.2.35)

where (3.2.29) has been used. Since A,<0, (3.2.33) implies that
a<1, Therefore the radius of the modon decreases as it travels
over isolated positive topography (ignoring the transient waves

since T>>1 1is assumed). If the modon were travelling over an
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isolated depressiqn, say a trench, its radius would increase
(i.e., a21) since h(X,Y)<0.

From (3.2.34), c¢>1 over positive isolated topography and
c<1 over isolated depressions since A,>0. Modon particle speeds
‘are on the same order as the translation speed so the 'fluid
accelerates over isolated positive topography and deaccelerates
over isoléted depressions, in line with intuitive continuity
arguments.

The modon wavenumbér adjusts to isolated topography in just
the reverse manner as the modon radius (as might be expected
since a wavenumber is dimensionally the inverse of a length).
From (3.2.35), the modon wavenumber will satisfy k>k, over
positive isclated topography and satisfies «k<k, over isolated
depressioné since A;>0.

In summary, the following qualitative structure develops as
the modon travels over 1isolated slowly varying topography
(ignoring the transient waves). If the topography is pésitive,
the modon translation speed increases and hence the particle
speeds increase, the radius decreases and the wavenumber
increases. The modon therefore contracts and accelerates over
positive topography. Over 1isolated depressions the reverse
happens. The modon dilates and deaccelerates. Subsection 3.2.3
illustrates the evolution of the modon over positive isolated
topography by considering a meridional ridge modelled with a
gaussian in the x-coordinate direction as an example.

When A*(Y) is not zero the approximate solutions (3.2.30),

(3.2.31) and (3.2.32) depend on the far field (i.e., ZX>>1)
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topographic structure. The terms with A* represent the
transmission of this far field information 1into the  X=0
neighbourhood by way of the westward-travelling hyperbolic wave.

In general, of course, the analysis will be different for
each assumed form for A*(¥Y). To illustrate the differences and
similarities between isolated and nonisolated topography
consider A* as a nonzero constant. Allowing a meridional
d;pendence does not complicate the essential ideas as the
. solutions depend only parametrically on Y.

Consider the case 0<h<A*<= (henceforth <called increasing
topography). It follows from (3.2.30) that a>1 for all X since
A.>0 and A;<0. As X increases, h—>A* so a->1-ul;A*21, As X
decreases, h->0 so a->1+u),A*21. However, since |A |>]A;| it
follows that there will be a relative decrease. in the modon
radius from X<<0 to X>>0 for sufficiently large T.

From (3.2.31), c¢>1 for X>0 since Ag<0, and c<1 for X<0
since As<0. Because |Ag|>|As| the increase in the translation
speed for X>0 is lafger than the decrease in the translation
speed for X<0. The particle speeds will also have this
property.

The behaviour of the modon wavenumber is again reversed to
that of the modon radius. There is a global decrease in the

wavenumber since all terms in (3.2.32) are negative. However,

similar reasoning to that given for the modon radius shows there
is a relative increase in the modon wavenumber from X<0 to X>0

since |Ag|<|Ag|. In Subsection 3.2.4 the solutions for a

topographic escarpment modelled as a hyperbolic tangent in the
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x-coordinate direction are presented as an exampie of a
topographic configuration displaying the above properties.

The behaviour of the solutions for a decreasing topographic
configuration (-=<A*<h<0, i.e., a topographic depression) gives
the opposite results to those stated above. The modon radius
decreases for all X with a relative increase from X<0 to X>0.
The translation speed will satisfy c>1 for X<0 and c<t for X>0
with the decrease in ¢ for X<0 larger than the increase in é for
X>0. The particle speeds will also have this property. The
modon wavenumber will increase for all X with a relative
decrease from X<0 to X>0.

The leading order solution ¢‘°’(¢,y:X,Y,T) is not expected
to be uniformly valid as (—>%»., It is easily seen that Ay‘°’ is
‘a homogeneous solution to the O(e).problem (3.2.4) and that
certain terms in the RHS's of (3.2.4) and (3.2.6) are
proportional to Ay‘°’., Thus resonance will in general occur and
the expansion (3.2.2) is not expected to be valid for all ¢.

In one dimensional solitary waves this nonuniformity
manifests itself as a 'shelf' ahead and behind of the solitary
wave (e.g., Ko and Kuelh; 1978 and Grimshaw;b1979a,b and Kodama
and Ablowitz; 1980). The shelf appears as a consequence of
Yy¢1'—>B* and B~ as f—>+= and -« respectively, where B* and B-
are constants. In general, it is assumed that ahead of the
solitary wave the fluid (to leading order) is undisturbed, thus
B*=0 (e.qg., Grimshaw, 197%9a,b). The shelf region behind_ the
wave 1is removed by the introduction of an outer expansion valid

for £ = 0(e-") (the power n is determined in the problem) (e.g.,



78

Grimshaw; 197%a,b and Kodama and Ablowtiz, 1980). However,
since it 1is the term Vy!')’ that determines part of the 0(e)
velocity field, this constant does not contribute to
(ut¢?v,vt1), consequently a nonuniformity of this type does not

seem to be relevant here.

3.2.3 Gaussian-ridge Topography

In this Subsection the solution for modon propagation over a

slowly varying ridge is described. The topography is given by
H(X,Y) = 1 - upexp(-X2), (3.2.36)

hence h(X,Y) = exp(-X%). Since h—>0 as |X|->= the qualitative
behaviour of the solutions for a, ¢ and k will follow the
analysis given in Subsection 3.2.3 for the case A*=0,

Figures 7, 8 and 9 illustrate the spatial structure of the
modon translation speed c=1+uc‘'’, modon radius a=1+wa‘'’ and
modon wavenumber k=k, + pkok''’ respectively, with u=0.2 for the
sequence of slow times T=0.0, 0.2, 0.6, 1.4 and 4.0. These
figures represent space-like slices (i.e., T held constant) of
the modon parameters in space-time. The particplar value of a,
¢ and k that a particular modon experiences at a given time is,
of course, determined by the characteristic in space-time the
modon 1is propagating on, This characteristic is the unique
solution of (3.2.26), which 1is approximately (3.2.28) (for
T<<1), with the given h(X) in (3.2.36).

Figure 7a shows the initial condition on the translation
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speed (i.e., c(X,0,0)=1). Figure 7b shows the spatial structure
of ¢ at T=0.2. The westward-travelling and eastward-travelling
wave transients are just becoming distinguishable from the
stationary component in (3.2.21). 1In Figure 7c the separation
is more apparént. The westward-travelling wave 1is further
removed from X=0 than 1is the eastward-travelling wave since
|oy|>]o2]. The amplitude of the eastward-travelling wave is
larger than the westward-travelling wave since |[Xg]|>]|A5]. By
the time T=1.4 (Figure 7d) the westward-travelling wave has left
the displayed space domain (i.e., -10<X<10). The more slowly
moving eastward-travelling wave has completely separated from
the stationary component. Figure 7e shows the stationary
component of the solution (3.2.21). This is the 1local steady-
state solution for c(X,Y,T) described last Section for isolated
topography.

Figures 8a, 8b, 8c, 8d and 8e show the space-like structure
in the modon radius. Since the translation speeds for the
westward-travelling and eastward-travelling transient waves in
. (3.2.20) aré the same as in the solutions for c¢‘'? (see
(3.2.21)), the separation behaviour in the transients is the
same as that given above. The eastward-travelling wave (see
Figures Bc and 8d) acts to decrease the modon wavenumber (if the
modon had an initial positive X position) since A;<0. The
westward-travelling transient (see Figures 8b and 8c) acts to
increase the modon radius since A,>0. The stationary component
of the modon radius solution (see Figure 8e) acts to reduce the

modon radius over the topography since A,<0.
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Figures Sa, 9b, 9¢c, 94 and 9e show the space?like structure
of the modon wavenumber. The 1initial condition is shown in
Figure 11a. The separation behaviour is the same as in the
above comments since the translation speeds are the same. The
westward-travelling transient (see Figures 9b and 9¢c) acts to
decrease the wavenumber since Ag<0. The eastward-travelling
transient (see Figures 9c and 9d) acts to increase the modon
wavenumber since Ag>0. The stationary component (see Figure 9e)
acts to increase the modon wavenumber over the topography.

In summary, consider the following gualitative behaviour of
the modon 1if its initial position is, say, €to=-10. The modon
will initially propagate eastward unaffected by the topography
(see Figures 7b, 8b and 9b). When the characteristic associated
with the westward-travelling transient intersects the modon
charac;eristic, the modon translation speed 1is reduced, its
radius 1s increased and 1its wavenumber decreases. The modon
continues to propagate eastward since c¢>0 (see Figure 7)
throughout this initial interaction. After sufficient time the
westward-travelling wave propagates completely through the modon
characteristic and subsequently dbes not contribute to the
solution.

Some time later the modon characteristic intersects the
space-time region containing the characteristics associated with
the stationary component of the solution. The modon translation
- speed 1increases, the radius decreases and the wavenumber
increases (see Figures 7e, 8e and 9e)l Subsequent to this

interaction there is no further interaction with the topography



81

or the transient waves. The eastward-travelling transient
propagates with speed 0,=3.59 which is greater than the modon
translation speed (see Figure 7) and thus the two
characteristics (i.e., of the modon and the eastward-travelling
wave) never intersect for T>0 if §,<0.

This analysis has assumed that h(X)>0. 1If the 'ridge' was
a depreséibn (i.e., h(X)<0) the above results would be reversed.
If £020 (say e£(,=10), the gualitative analysis is similar to the
above except that the‘veffects of the eastward-travelling
transient must taken into account. Clearly in this scenario the
westward-travelling wave does not affect the modon since for
spatial coordinates greater than the current location of the
modon center the topography 1is identically =zero. Hence
characteristics orginating from spatial coordinates positive of
the modon center at any given time have zero amplitude and

therefore do not affect the modon.
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Figure 7a. Sequence of space-like slices showing the space-time
evolution of the modon translation speed for modon propagation
over a slowly varying gaussian ridge centered at X=0. This plot
shows the initial condition (i.e. at T=0.0) on the translation
speed (i.e. c(X,Y,0)=1).
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Figure 7b. Space-like structure of the modon translation speed
induced by a gaussian ridge at T=0.2.
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Figure 7c. Space-like structure of the modon translation speed
induced by a gaussian ridge at T=0.6.
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Figure 7d. Space-like structure of the modon translation speed
induced by a gaussian ridge at T=1.4.
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Figure 7e. Space-like structure of the modon translation speed
induced by a gaussian ridge at T=4.0.
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Figure Ba. Sequence of space-like slices showing the space-time
evolution of the modon radius for modon propagation over a
slowly varying gaussian ridge centered at X=0. This plot shows
-the initial condition (i.e. at T=0.0) on the radius (i.e.
a(x,Y,0)=1).
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Figure 8b. Space-like structure of the modon radius induced by
a gaussian ridge at T=0.2.
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Figure Bc. Space-like structure of the modon radius induced by
a gaussian ridge at T=0.6.
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Figure 8d. Space-like structure of the modon radius induced by
a gaussian ridge at T=1.4.
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Figure B8e. Space-like structure of the modon radius induced by
a gaussian ridge at T=4.0.
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Figure 9a. Sequence of space-like slices showing the space-time
evolution of the modon wavenumber for modon propagation over a
slowly varying gaussian ridge centered at X=0. This plot shows
the initial condition (i.e. at T=0.0) on the wavenumber (i.e.
K(X,Y,0)=Ko).
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Figure 9b. Space-like structure of the modon wavenumber induced
by a gaussian ridge at T=0.2.
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Figure 9c. Space-like structure of the modon wavenumber induced
by a gaussian ridge at T=0.6.
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Figure 9d. Space-like structure of the modon wavenumber induced
by a gaussian ridge at T=1.4.
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Figure 9e. Space-like structure of the modon wavenumber induced
by a gaussian ridge at T=4.0.
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3.2.4 Tanh-escarpment Topography

In this Subsection the solution for modon propagation over a
slowly varying escarpment is described. The topography is given

by
H(X,Y) = 1 - uf{1 + tanh(X)}/2, (3.2.37)

hence h(X,Y) = {1 + tanh(X)}/2. Since h->0 and h->1 as X->-o
and X—>w respectively, the qualitative behaviour of the
solutions will follow the analysis given in Subsection 3.2.3 for
the case 0<h<A*<>, Figures 10, 11 and 12 illustrate the spatial
structure of the modon translation speed c=1+uc‘'’, modon radius
a=1fua“’ and modon  wavenumber k=ko+ukok‘'’ respectively, with
u=0.2 for the sequence of slow times T=0.d, 0.2, 0.6, 1.4 and
4.0.

These figures represent space-like slices (i.e., T held
constant) in space-time of the solutions for the modon
translation speed, modon radius and modon wavenumnber. As
stated 1in Subsection 3.2.3 the particular values of a, ¢ and «
that the modon experiences at a given time are determined by the
interSection of the characteristic on which the modon |is
propagating and the characteristics defining the individual
solution components in (3.2.20), (3.2.21) and (3.2.22). The
modon characteristic is defined by (3.2.26) or (3.2.27) or
asymptotically (i.e., T<<1) by (3.2.28) with h(X) given in
(3.2.37).
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The qualitative analysis of the interaction between the
escarpment topography in this Subsection follows that of the
description given last Subsection. Thus we only briefly comment
on the similar aspects and highlight the differences. Figure 10
shows space-like slices 1in space-time of the slowly varying
modon translation speed. As in Subsection (3.2.3) the westward-
travelling transient acts to reduce the modon translation speed
(see Figure 10a) for X<0 and the eastward-travelling transient
acts to increase the translation speed for X>0. Similarly, the
modon radius (wavenumber) 1is increased (decreased) by the
westward-travelling transient and decreased (increased) by the
eastward=travelling transient.

However the fact that h(X)->1 as ZX->+= 1is of crucial
importance here. The escarpment forces a permanent deformation
in the modon once initial iﬁteractibn begins. .The westward-
travelling and eastward-travelling transients have the role of
transmitting information = of the eastward and westward
topographic configurations. If a modon has - initial position
eto,<0, after sufficient time the modon characteristic will
intersect the characteristics containing the X>0 topographic
information. However since the upstream topography does not
eventually approach =zero all subsegquent westward-travelling
characteristics will carry a nonzero signal. Therefore the
spatial structure of the modon parameters 1is continuously
deformed.

This spatial deformation is shown in Figures 10, 11 and 12,

The westward-travelling transient results in a continued
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reduction in the modon translation speed for X<0 and a continued
increase in the modon translation speed for X>0 (see Figures
10b, 10c and 104 for the transient behaviour and Figure 104 for
the local steady-state structure).

The modon radius 1is increased for the entire domain
upstream of the leading edge of the westward-travelling
transient. There is relative decrease in the radius across X=0
since the coefficient of the stationary component of the
solution is negative (see Subsection 3.2.3). Figures 11b, 1ic
and 114 1illustrate the transient behaviour and Figure 1ile the
local steady-state structure.

-The modon wavenumber is decreased for the entire domain
upstream of the leading edge of the westward-travelling
transient. There is a relative increase in the modon wavenumber
across X=0 since the amplitude of the stationary component is
positive (see Subsection 3.2.3). Figures 12b, 12c and 12d
illustrate the transient structure and Figure 12e the local
steady-state solution.

As an example of the qualitative behaviour of the slow
evolution of the modon as it goes up and over a escarpment of
the form (3.2.39) suppose initially that the modon center is at
€to=-10. The modon initially propagates eastward unaffected by
the upstream topography. Eventually after sufficient time the
modon characteristic intersects the characteristics carrying the
nonzero upstream topographic information. The modon translation
speed decreases, its radius increases and its wavenumber

decreases. Since the upstream topography remains nonzero as X
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increases and the westward-travelling transient carries this
information, the modon characteristic continues to intersect
nontrivial westward-travelling transient characteristics.  Thus
the translation speed remains reduced, the radius remains
increased and the wavenumber remains decreased. After
sufficient further time the modon propagates up over the
escarpment and the translation speed increases, the radius
decreases and the wavenumber increases since the modon
characteristic is intersecting the characteristics associated
with the stationary part of the perturbation solutions.

This qualitative analysis assumed that the escarpment
increased .from X<0 to X>0. 1If the reverse had'been assumed, the
above behaviour would be reversed. 1If the initial position of
the modon is poéitive (e.g., €to>0), the modon wiil initiaily be
unaffected by the topography. If ef(, is large (e.g., 10), the
characteristics associated with . the westward-travelling
transient and the stationary component carry constant
information (i.e., h(X)=1 for X>10). However as the modon
characteristic begins to intersect characteristics associated
with the topographic structure for X<0, the modon translation
speed will 1increase, the ‘modon radius will increase and the

modon wavenumber will decrease.
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Figure 10a. Sequence of space-like slices showing the space-
time evolution of the modon translation speed for modon
propagation over a slowly varying hyperbolic-tangent escarpment
centered at X=0. This plot shows the initial condition (i.e.
at T=0.0) on the translation speed (i.e. c¢(X,Y,0)=1).
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Figure 10b. Space-like structure of the modon translation speed
induced by a hyperbolic-tangent escarpment at T=0.2.
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Figure 10c. Space-like structure of the modon translation speed
induced by a hyperbolic-tangent escarpment at T=0.6.
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Figure 104. Space-like structure of the modon translation speed
induced by a hyperbolic-tangent escarpment at T=1.4.
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Figure 10e. Space-like structure of the modon translation speed
induced by a hyperbolic-tangent escarpment at T=4.0.
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Figure 11a. Sequence of space-like slices showing the space-
time evolution of the modon radius for modon propagation over
slowly varying hyperbolic-tangent escarpment centered at X=0.
This plot shows the initial condition (i.e. at T=0.0) on the
radius (i.e. a(X,Y,0)=1).
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Figure 11b. Space-like structure of the modon radius induced by
a hyperbolic-tangent escarpment at T=0.2.
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Figure 1tc. Space-like structure of the modon radius induced by
a hyperbolic-tangent escarpment at T=0.6.
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Figure 11d. Space-like structure of the modon radius induced by
a hyperbolic-tangent escarpment at T=1.4.
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Figure 11e. Space-like structure of the modon radius induced by
a hyperbolic-tangent escarpment at T=4.0.
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Figure 12, Sequence of space-like slices showing the space-time
evolution of the modon wavenumber for modon propagation over a
slowly varying hyperbolic-tangent escarpment centered at X=0.
This plot shows the initial condition (i.e. at T=0.0) on the
wavenumber (i.e. «k(X,Y,0)=k¢).
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Figure 12b. Space-like structure of the modon wavenumber
induced by a hyperbolic-tangent escarpment at T=0.2.
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Figure 12c. Space-like structure of the modon wavenumber
induced by a hyperbolic-tangent escarpment at T=0.6.
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Figure 12d. Space-like structure of the modon wavenumber
induced by a hyperbolic-tangent escarpment at T=1.4.
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Figure 12e. Space-like structure of the modon wavenumber
induced by a hyperbolic-tangent escarpment at T=4.0.
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IV. CONCLUSIONS

This thesis has examined two aspects of the theory of barotropic
modons., The first aspect was examined in Chapter II in which a
sufficient neutral stability condition (in the form of an
integral constraint) for barotropic modons was obtained.
Eastward-travelling modons are neutrally stable to perturbations
solely composed with wavenumber magnitudes (|n|) satisfying
|n|<x where « is the modon wavenumber. Westward-travelling
modons are neutrally stable to perturbations composed solely of
spectral components satisfying |#n|>x (or else the modon is
stable).

The eastward-travelling modon neutral stability condition
implies that when x/|n|>1 the slope of the neutral stability
curve proposed by McWilliams et al.(1981) should begin to
increase as |n| decreases. A similar trend in the neutral
stability curve has been numerically determined for
.topographically-forced planetary eddies (Malanotte-
Rizzoli, 1982).

As an atmosphericlapplication, the stability condition was
calculated based on the 300, 500 and 700 mb eddy kinetic energy
spectrum described by Tomatsu(1979), Saltzman and Fleisher(1962)
and Eliasen and Machenhauer(1965). Eastward-travelling modons
satisfy the stébility condition and thus we conclude that for
typical mid-latitude 700 mb to 300 mb atmosphere energetics
eastward-travelling modons are neutrally stable. A similar

. calculation for westward-travelling modons fails to satisfy the
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stability condition and thus the stability or instability for
westward-travelling modons cannot be determined.

Simple scaling arguments suggested that only eastward-
travelling barotropic modons would have realistic translation
and particle speeds in the ocean. The stability integral was
tested with the Fu(1983) mesoscale wavenumber eddy energy
spectrum. ﬁ The stability of oceanic modons could not be
inferred. However due to the short period over which the data
for the Fu(1983) spectrum was collected (24 days) arguments were
presented to suggest that the Fu(1983) spectrum may not be
representative of either the total eddy energy or its wavenumber
distribution. Therefore the oceanic calculation using the
Fu(1983) spectrum should only be considered a very preliminary
. estimate of modon stability in the oceans.

The 'second aspect of this Athesis is contained in
Chapter III. A leading order perturbation theory was developed
to describe the propagation of a.barotropic modon in a slowly
varying medium. The perturbation method developed here
represents an extension to a two-dimensional solitary wave of
various calculations made of slowly varying one dimensional
solitary waves (e.g., Luke(1966), Grimshaw(1970, 1971, 1977,
1978, 1979a,b, 1981), Zakharov and Rubenchik(1974) and Kodama
and Ablowitz(1980,1981), among others).

Two problem were posed and solved. In Section 3.1 a
perturbation solution for the propagation of an eastward
travelling modon with a bottom boundary layer was obtained. The

geostrophic pressure has been expanded in  the damping
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coefficient € = E'2/(2r,) = 10-' with E the vertical Ekman
number and r, the Rossby number.

The modon radius (a), translation speed (c) and wavenumber
(k) are allowed to be functions of the slow time T = et. The
0(e) equations require a necessary compatibility condition on
the 0(1) solutions (taken to be an eastward-travelling modon)
resulting in nonlinear 1initial-value problems for the modon
parameters.

The sélutions a = exp(-T), c = exp(-2T) and k = koexp(T)
leave the modon diépersion relationship invariant during the
decay. The amplitude of the modon streamfunction and vortiéity
decays like exp(-3T) and exp(-T), respectively. The maximum
distance over which -~ the modon travels before complete
dissipation is about 5 modon (initial) radii. Based on a
comparison wi£h a numerical solution (McWilliams et al., 1981)
for the frictional dissipation of an eastward-travelling modon
the asymptotic solution obtained here describes the decay over a
100 day time scale for oceanic parameters and a 10 day time
scale for atmospheric parameters. |

In Section 3.2 a 1leading order perturbation theory is
developed to describe modon propagation over slowly varying
topography. ' As in previous work on the effects of variable
topography on barotropic planetary waves (e.g., Veronis(1966),
Rhines(1969a,b), Clarke(1971) and LeBlond and Mysak(1978), among
others) the theory is developed in the context of the rigid-lid
shallow water equations on the B—plahe.

Nonlinear hyperbolic eqguations are derived for the slow
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evolution of the leading order modon radius, translation speed
and wavenumber. These equations are valid for arbitrary slowly
varying finite-amplitude topography. In general they must be
solved numerically. It 1is shown that to leading order the
evolution of the modon 1is independent of the meridional
topographic structure. This result is interpreted using simple
vorticity arguments. |

Analytical perturbation solutions for the modon radius,
translation speed and wavenumber are obtained for small-
amplitude topography (which is the case in many atmospheric and
oceanic applications). The solutions take the form of eastward
and westward-travelling hyperbolic transients and a stationary
component' proportional to the topography. The general
properties of the solution are described in Subsection -3.2.2.
Subsections 3.2.3 and 3.2.4 desqribe the slowly varying modon
for the specific examples of a topographic ridge and escarpment,

respectively.
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APPENDIX A - CALCULATION OF SOLVABILITY INTEGRALS IN TOPOGRAPHIC
PROBLEM

This appendix describes the calculations of the compatibility
conditions (3.2.7) and (3.2.9). The exterior computations
(i.e., (3.2.7)) are presented first and the interior
computations (i.e., (3.2.9)) follow.

Exterior Calculations

The compatibility condition (3.2.7) involves 18 integrals.
The terms are described in the order of their appearance in
(3.2.6) and are denoted I, through to I,,.
Recall that for r>a
Y% = -caK,(8c-'/2r)sin(6)/K,(dac-172)
AY(°) = -§2aK,(86c" '’ 2r)sin(6)/K,(dac-1/2)

i.e., AP0 = (82/c)ylo),

It will be convenient to let

R(r) = -caK,(8c-'"2r)/K,(6ac-1/2),
so that ¢‘°’ = R(r)sin(8), and define the operators D = a/dr and
DoF[(+)] = @F[(-)]}/d(-) (i.e., differentation with respect to r
and arguments, respectively). Recall r? = ((-f,)% + y? and

tan(6)=y/(t-£t,), hence

(0, 93, 08 )r = -cos(8)(d, 3 , 9 )&
T X Y T X Y

(3, 9, 2 )8 =r-'sin(@)(2 , @ , @ )&o.
T X Y T X Y

And-finally it is helpful to recall that by definition

D?R + DR/r - (r-%2 + 82/c)R = 0.
The integral calculations for r>a are as follows;
v >

11 = (52/c)H"g J' I\IJ(O)‘I/(O) rdrdé
Y -7 a 4
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Note that y¢‘°’ = (DR - R/r)sin(6)cos(8). Therefore the

3
trigonometric part of the integral contains cos(6)sin?(6) which
integrates to zero due to the periodicity in 6. Thus I; = 0.

I,:
T &
I, == f J ¢'224a¢°) rdrdé
-7 a T .
Note that
Ay¢°) = { a~'a =~ [DoK,(6ac-'""2)/K,(8ac-'"2)]6ac-'"%2[a"'a -
T T T
(zc)-‘lc ]}A‘p(O) + c1’2(rc-1/2) A\l’(O) -
T _ T r
(62/c)cos(8)sin(6)t, DR + (6%/c)r-'sin(6)cos(6)t, R.
T T

The trigonometric component of the integral associated with the
last two terms (i.e., the terms containing ¢, ) is sin?(6)cos(9)

and thus integrates to zero. The remaining calculation gives

I, = -16%ca*Qlaa"'a - (A, - 1)(2c)"'c ]
T T
where
A, = yK,(y) /K, () - (2Q)-'- 1 (a1a)
2 2 2
Q = ‘[7K1(7) - 2Ko(y)K  (v) - 7Ko(7))/(27K1(7)], (A1b)

recalling y? = §%a?/c.

I,:

T oo
I, =2c f [ ¢'2yt%) rdrde
-7 a EEX

We require

Y(° = sin(6)cos?(6)(D? -.2DR/r - 2R/r?) +
££X X

sin®(6)(DR/r - R/r?) +
X
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r-'t, (cos?®(@)sin(6) - 2sin3(8)cos(6)(D?R ~ 2DR/r - 2R/r?) -
X

to cos®(8)sin(6)D(D%2 - 2DR/r - 2R/r?) +
X

3r- ', sin®*(6)cos(6)(DR/r - R/r?) -
X X

to cos(0)sin®(6)D(DR/r - R/r?).
X

The trigonometric component of the integrals containing £, have

X
cos?®(6)sin?(68) or sin®(f)cos(6) both of which integrate to zero.
The remaining integration gives

1, = (1/2)n6%c?atQlaa"'a - (A, - 1)(2c) 'c ].
X X

1r‘co
I, = =82 [ [ yt@yto rdrdé
-7 a X

The calculation of I, is essentially the same as I, (modulo the
8%2/c factor associated with AY‘°’ compared to ¢‘°’ and the X-
derivative rather than the T-derivative). The result is

I, = -862nc?a®Q[a,a-'a - (A, - 1)(2¢)"'¢ +c 'c ].
X X X

T <
I, = (8%/c) S f ptoygtorytor rdrdg
X -7 a Yy

We note that
Ylorytoryor = (1/3)[sin6D + r-'cos(6)d/36)R3sin3(6)
y
which gives

15 = -(8%27nc?at/2)(2¢c)"'¢c .
X
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T ™
Ig = =2 [ [ ¢'O23(yt0, <) rdrdé

-7 a £EX
We require
(r-'9¢®’) = (cos?(6) - sin?(6)(DR/r - R/r?) -
tE6 X X
2r-'sin?(6)cos(8)t, (DR/r - R/r?) -
X
cos(6) (cos2(8) - sin?(8)¢, D(DR/r - R/r?)
X
and
(v¢©) = cos(6)sin(6)(D?*R - DR/r + R/r?) -
tr X X
r-'sin(6)(cos?(6) - sin?(6))t, (D?R - DR/r + R/r?) -
X
cos®(6)sin(6)t, D(D?R - DR/r + R/r?).
X
Note that

J(w(o), w(O)) = w(o)(r-lw(O)) - r-lw(O)(w(O))
£X r £ X 6 tr X
The trigonometric component of the terms containing &, is

sin®(8)cos(6) or sin?(6)cos?(6), both of which integrate to
zero. The remaining integration gives

I¢ = -ma2c3vK,(v) (2K, (7)) "[(2c)-'c + B(a-'a - (2c)-'c )]
X X X

where

B = v[K,(v)/Ky(v) = Ry{y) /K2 () - 3/7)]. (a2)
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T &
I, =c(H"'H ) f [ ¢'2y¢t% rdrde
X -7ma 133

We require

Y% = sin(6)cos?(8)(D?R - 2DR/r + 2R/r?) +
£t

sin3(6)(DR/r - R/r?)

which results in

I, = (1/4)6%7a®c2QH"'H .
X

T o
Ig = -82(H"'H ) [ f ¢'°yf°) rdrdes
X -7 a

Straightforward calculation results in

Ig = -82a%27QH-'H .
X

T &
I ==(H"'H ) f [ ¢O2I(ygt0, yt°)) rdarde

X -7 a £
We require
Y% = (cos?(#) - sin?(6))(DR - R/r)
ko
Y% = cos(6)sin(6)(D?*R - DR/r + R/r?),
Er
which gives
Ig = -ﬂazc37K2(‘7)(4K1(‘7))'1H'1H .

X

I,0:
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T o
Ijo = -(H"'H ) [ f ¢'9[(re)-"' + 82y]yt©) rdrdeé
X -7 a Yy

We require

¥(% = sin2(@)DR + cos?(6)R/r.
y

The trigonometric components of the integral with the Rossby
number as a coefficient are sin?®(6) or cos?(8)sin(6) both of
which integrate to zero. The remaining integration gives
I,0 = (3/8)8%wa"c?H-'H + (1/2)8%ma‘c?QH 'H .
X X

I,

T
I,y = —(282/c)(H"'H ) [ [ ¢tOyt®Iyt®) rdrds
X -ma y

The evaluation of I,;, is similar to I; the result is

111 =“(1/2)52ﬂa“C2H'1H .
X

T ™
112 = 2C I f w(O)w(O) rdrde
-7 a EyY

We require

Y% = cos(9)sin?(6)(D?R - 2DR/r + 2R/r?) +
EyY | ¥

cos3(6)(DR/r - R/r2) +
Y

r-'(cos?(0)sin?(9) - sin®*(6))¢t, (D?R - DR/r + 2R/r?) -
v ,

cos?(6)sin?(0)¢, D(D?R - 2DR/r + 2R/r?) -
Y

3r-'cos?(6#)sin?(6)¢, (DR/r - R/r?) - cos®*(8)¢, D(DR/r - R/r?).
Y Y
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The trigonometric part of these terms is integrated against
sin(6) (belonging to y‘°’), It is easy to see that each term
integrates to zero due to the periodicity in 6, consequently
I1z=0.

I,3:¢

T
1,5 = -(8%/c) f [ ptorygtorytor rdrde -
Y -7 a £

We require
¥'° = cos(6)sin(8)(DR - R/r).

§

When this term is integrated against the sin?(6) trigonometric
component of (y‘°’)? the resulting integral vanishes,
conseguently I,3;=0.

I.4:

T ™
Iig = -2 J [ ¢'223(y'°), ¢t2)) rdrdé
-T a yY

We require

(r-'Wt®’) = 2sin(@)cos(8)(DR/r - R/r?) +
yé Y Y

2r-'(cos?(6)sin(6) - sin®(0))t, (DR/r - R/r?) -
: Y

2sin?(6)cos(0)¢, D(DR/r - R/r?).
Y
(¢©’) = sin?(0)(D2R) + cos?(6)(D%R - R/r?) -
yr Y Y Y

sin?(6)cos(8)t, (D?R - 2D%R/r) -
Y -

2r-'sin?(6)cos(6)t, (D?R - R/r?) - cos?®(6)t, D(D?R - R/r?).
’ Y Y
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The first term is multiplied by (DR)Rsin?(6) which integrates to
zero due to the trigonometric integration. The second term is
multiplied by R%?sin(6)cos(8) which integrates to zero due to the
trigonometric integration. Therefore I,,=0.

I,5:

T ™
I,5 =c(H"'H ) [ f ¢t ¢t% rdrdeé
Y -7 a ty

We require

Y° = cos(6)sin?(6)(D?R - 2DR/r + 2R/r?) +
£y

cos®(6)(DR/r - R/r?)
which when integrated against Rsin(#) is zero due to the
trigonometric integration. Therefore I,=0.

I,6¢

T ™ :
I,g = -(H'H ) f [ ¢'2J(t®, ¢t°) rdrdé

Y -7 a y
We require .
Y% = sin?(6)D2?R + cos?(6)[DR/r - R/r?),
yr
¢<;> = 2r-'sin(8)cos(6) (DR/r - R/r?).
y

The first term is integrated against R?sin(6)cos(6) and the
second term is integrated against (DR)Rsin?(6#) which integrate
to zero due to the trigonometric integration. Therefore I,¢=0.

117:

T @
I, = (HH ) [ [ ¢2[(ro)-" + 82y1ly*° rdrdes
' Y -7 a ¢

The integrand is

((ro)-' + 82rsin(6))Rsin?(6)cos(6)(DR - R/r)
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which integrates to zero due to the trigonometric integration.
Therefore 1,5=0.

118:

T &
I, = 2(82/c)(H"TH ) [ [ ¢{O1yt® (o) rdrds.
Y -7 a £

This integral is trigonometrically indentical to I,;. Therefore
I1g=0.

The compatibility condition (3.2.7) is therefore

18
¥(% (RHS[3.2.6]) rdrdé = £ I ,

T
0= f
- n=1 n

e~ g

which after a little algebra results in (3.2.10) where A, is
given by (A1) and

A, = 2 + Q/2 - Ro(y)Q[2vyK,(y)]-"(B-1) (A3)
A; = Ky(v)Q[29K;(y)]-'B (ag)
E, = 1/4 + Q/8 + Ky (v)Q[29K,(4) ] (a5)

with B is given by (A2).

Interior Calculations

The interior compatibility condition (3.2.9) contains 19
integrals denoted I, through I,,. Recall that for r<a

Yi%) = §2¢-233,(kr)sin(0)/J,(ka) - (6% + k?c)k ?rsin(6)
AY'®) = -§2aJ,(kr)sin(8)/J,(ka)
i.e., ‘ AYi®) = —g2yf%) - (§2 + ck?)rsin(6).

As in the previous calculation it will be convenient to let
R(r) = 62k 2aJd,(kr)/J,(ka) - (8% + k?c)k °r

so that ¢‘°’ = R(r)sin(6), and define the operators D = d/dr and
DoF[(+)] = aF[(-)1/a(:) (i.e., differentation with respect to r
and arquments, respectively). Recall r? = (f{-f(,)? + y* and
tan(6)=y/(¢t-£t,), hence



135

(0, 9, 2 )r = -cos(8)(d , 2, 3 )&
T X Y T X Y

(0, 9, 02 )6 =r-'sin(8)(d , 82 , 3 )to.
T X Y T X Y

And finally it is helpful to recall that by definition
D2R + DR/r - (r-2 - x?)R = 0.
The integrals are given as follows.

I,:

' T a
I, =-k2H 'g [ [ ¢'©2y'°) rdrde
Y -7 © ¢

This integral is'trigonometrically identical to I, in the
exterior calculations. Therefore I,=0.

Iz:
T a .
I, == [ [ yt®Apt©) rdrde
-7 © T
Note that AY'® = { a-'a - [DoJd,(ka)/J.(ka)lkala-'a +
T T T
k-Vk 13}A¢C°) + k- '(kr) AyL°) -
T T r
- cos(8)t, AY'°) + r-'sin(6)t, AY‘°),
T r T 6

The trigonometric component of the terms with {, is

. T
sin?(@)cos(6) which integrates to zero due to the periodicity in
6. The remaining calculation gives

I, =Ga'a + Lla~'a + « 'k ]
T T — T

where

G = C,[D, - (1 + k?3/4%2)3,(k)[kTI, (k)] (A6)

L = Cz['sz/Jj(k) + (kJo(k)/J (k) + 2)(1 + k2y-2)-
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T, kI, (k)11 = 1/2 = (k/7)?] (A7)
Cz = §%a%wK-? (a8)
D, = (1/2)[J:(k) - 23,(k)J, (K)k=1 + J?(k)]/Jj(k) (A9)

recalling k=«ka.

I,:
T a
I, =2c [ f ¢t22yt% rdrds
- [o] EEX
We require
y¢° = sin(6)cos?(6#)(D? - 2DR/r - 2R/r?) +
EEX X
sin®(6)(DR/r - R/r?) +

X

r-'¢, (cos?(6)sin(6) - 2sin3(6)cos(6)(D?R - 2DR/r - 2R/r?) -
X )

to cos?(8)sin(6)D(D? - 2DR/r - 2R/r?) +
X

3r-'t, sin3®(8)cos(8)(DR/r - R/r?) -
X X

(o cos(0)sin2(8)D(DR/r - R/r?).
X

The trigonometric component of the integrals containing £, have

X
cos3(6)sin?(8) or sin®(6)cos(6) both of which integrate to zero.
The remaining integration gives

1, = -(c/2)Ga"'a - (c/2)L(a"'a + k 'k ).
X X X

T a
I, = k%c f [ ¢'°2¢'® rdrdé
-7 © X
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Note that
Vi) = { a~'a =~ [DoJ,(ka)/J,(ka)lkala-'a +
X T X
k- 'k JIYCOY 4+ k-t (kr) Y'O -
X X r
cos(0)t, ¥'° + r-'sin(9)t, ¢'°’.
X r X 6

The trigonometric component of the terms with §, is

X
sin?(6)cos(8) which integrates to zero due to the periodicity in
6. The remaining calculation gives

I, =cGa-'a + cLl[a"'a + k" 'k ] - 2cGk™ 'k +
X X X X

cC,[-J,(k)/(kJ,(k)) + (1 + (k/y)2)/4].

(k2a-16-'{(62%2 + ck?)ak~?} .
X

B T a
Is = -(k2) [ [ ¢'®yto gyt rdrdp
' X -7 ° y
We note ;hat
YOI Yo ytor = (1/3)[sinfD + r-'cos(6)3/36)R3sin3(6)
Y
‘which gives

I1; = cC(k/vy)% 'k /2.
X

T a '
I¢ = -2 [ f ¢yt J(yt©, y'°)) rdrde
- 0 Ex

We require
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(r-'ygt©) = (cos?(8) - sin?(8)(DR/r - R/r?) -
(6 X X

2r-'sin?(68)cos(6)t, (DR/r - R/r?) -
X

cos(8)(cos?(6) - sin?(6)t, D(DR/r - R/r?)
X
and

(yt9) = cos(0)sin(6)(D2R - DR/r + R/r?) -
tr X X

r-1sin(6)(cos?(8) - sin2(8))t, (D?R - DR/r + R/r?) -
X

cos?(6)sin(68) ¢, D(D2R - DR/r + R/r?).
X
Note that
J(PEO), o)) = Yto)(p=14t0)) — p=15(0) (y(0))
X r £E6 X 6 (tr X
The trigonometric component of the terms containing.zo' is

sin®(6)cos(8) or sin2(@)cos®(8), both of which integrate to
zero. The remaining integration gives

I¢ = cJ,(k)C,k(2T,(k)y2) " '"[-k-'k + By(a-'a + k 'k )]
X X X
where

B, = k[J,(k)/J,(k) + J,(k)/J,(k)-3/k].

T a
I, =c(H-"'H) [ [ ¢t92yt9 rdrde
X -n° £t
We require

V(% = gin(6)cos?(8)(D?*R - 2DR/r + 2R/r?) +
£t
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sin?(6)(DR/r - R/r?)
which results in

I, = -CCZ(G/4)H-1H .
X

T a
Ig = k?c(H-"H ) [ [ ¢t2yt9) rdrdeé
X -wx°

Straightforward calculation results in

Ig = cC.[D, = 2(1 + (k/4)2)J,(k)/(kJ,(k)) +
(1 + (k/y)2)2/4]H"'H .
4
I
T a ’
I =-(H"'H ) [ [ y¢t®23(yt®), ¢(®)) rdrdeé
X -n° 13
We require
Y% = (cos?(8) - sin?(6))(DR - R/r)
L6
y(® = cos(6)sin(8) (DR - DR/r + R/r?),
tr

which gives

—
w
I

= CCzk(472)-1(J2(k)/J1(k))H-ln o
X

Ii0¢

7T a
I,0 = (H'H ) [ [y 29[ (ro)-' - k2cyly*®’ rdrdé
X -7n° Y
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We reguire
¥'°) = sin?(6)DR + cos?(6)R/r.
Y

The trigonometric components of the integral with the Rossby
number as a coefficient are sin3®(6) or cos?(6)sin(6) both of
which integrate to zero. The remaining integration gives
I,0 = cC,[(3/8)(k/y)* - Dp/2 +
(1 + (k/¥)2)J3.(k)/(kJ,(k)) - (1/8)(1 + (k/y)%)2]H 'H .
X

111:

T a
I,y = 2k2(H 'H ) [ [ ¢tOytoyt0) rdrde
X -n° y
The evaluation of I,, is similar to Iy, the result is
I,, = =-(1/2)cC,(k/y)*H"'H .
X

112:

1,, = 2¢ J f Yeoryto) rdarded
-7 tyy

This 1ntegral is trigonometrically indentical to I,z in the
exterior calculations. Therefore I,,=0.

I,38

T a
113 = (KZ) J’ J‘ W(O)w(O)‘p(O) rdrde
Y -7 © £

.

This 1ntegra1 is trigonometrically identical to the I,3 integral
in the exterior calculation. Therefore I,,=0.

114:



141

T a .
I,a = [ [ ¢¥'°[rsin(8)(82 + k2c)] ¢'©°’ rdrde
-7

(=

Y ¢
We require |
[rsin(6) (82 + k2c)] = -cos(8)sin(0)t, (82 + k2c) +
Y Y
cos(f)sin(8)E, (62 + k3c) +
Y
sin(6)[r(62 + k2c)] ,
Y
and ¢‘°> = (DR - R/r)sin(6)cos(6). The trigoﬁometric component

of the integral is therefore sin3®(6)cos?(8) or sin?(6)cos(9),
both of which integrate to zero due to the periodicity in 6.

The integrals I,5; through I,;, are trigononmetrically
indentical to the exterior integrals I,, through I,,,
respectively. Therefore all the remaining integrals are zero.

115:
: T a
115 = -2 f I w(O)J(w(O)’ w(O)) rdrde
-.”O YY
115:
T a
I,6 =c(H"'H ) [ [ ¢t9¢t% rdrde
Y -n° ty
Iy,
T a
I, =-(H'H ) f [ ¢'O0(y'%, ¢'°)) rdrde
Y -n° y
I,

T a
I, =(H'H) [ [ ¢ [(ro)-" - k2cyly‘®’ rdrdé
' Y -n° ¢
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I,9:2
T a
I, = =2k2(H"'H ) [ [ ¢t@yt02yto) rdrds.
Y -7 °© £

The compatibility condition (3.2.9) is therefore

T a 19
0= ([ Y'°°(RHS[3.2.8]) rdrdg¢ = = 1I . (A10).
-7 © n=1 n

In order to obtain (3.2.11) the terms k~'x and «x 'k in (A10)
T X
are eliminated in favour of a-‘'a , (2¢)"'c , a-'a and (2c) 'c
' T T X X
by differentiating the dispersion relation (3.1.5) to obtain

k'k = N[a-'la = (2c)-'¢c ] - (2¢c)"'c
T T T T
k“'k = N[a-'a - (2¢)-'¢ ] - (2¢)-'¢c
X X .X X ' . X
where N = -{yR + k2R/y}/{4 + /R + k?R/y} and R=K,(7)/K,(v).

After a little alegbra, (3.2.11) is obtained from (A10)
where B,, B,, B; and E, are given by the following hierarchy of
definitions;

M

L/G + 1,
E = [-J,(k)/(kJ,(k)) + (1 + (k/y)?)/41/G,
B, = NM + M - N, (A11)

B, = 2(1 + N) + E(N + 2 + 2(k/y)2) + (k/9)%(2G)-'(N - 1) +

. kJ,(k)[2vy%23,(k)G])-*(1 - B4yN - B, + N), (a12)
B, = -2N + E(1 - N + (k/9)?) + k°N(2y%G) "' +
k(2y23,(k)G)-'J,(k)[B,N + B, - N], (A13)

E, = 1/4 + E/2 - k*(87%G)-" + kJ,(k)[4y23,(k)G]-". (A14)



