# TANGENTIAL CO-ORDINATES by 

Ralph Duncan James

A Thesis submitted for the Degree of

MASTER OF ARTS

## in the Department of

MHTHDWRTCS

The University of British Columbia APRIL, 1930

## TABLE OF CONTEMTS

Section ..... Page

1. Introduction ..... I
2. Important Relations from Eariier Theses ..... 1
3. Foints of Contact ..... 44. The Condition that a Point Shall Iie on
a Conic ..... 5
4. Diameters. Gonjuabte Diametors ..... 6
5. The -xes of the Ceneral Conio ..... 8
6. Eroperties of Dianeters ..... 9
7. The Evolute of a Curve ..... 11
8. The Pamily of Curves $\lambda_{f_{1}}(x, y)+\mu f_{2}(x, y)=0$ ..... 12
9. 

Tnvelones of One-parameter Tumilies ofCurves. Loci of points15
11. Transformutions Detween loint and Iive
Co-ordinates ..... 18
12. Polar Reciprocaqs. ..... 22
13.Geometric Interpretation of Certain
Integrals in Jine so-ordinates ..... 23
14. qedal Curves ..... $2 \%$
15.The $\operatorname{Trwan} \operatorname{mation} \quad X=\frac{X}{X^{2}+y^{2}}, y=\frac{Z}{a^{2}+y^{2}}$.25

## TANGENTIAJ CO-ORDINATES.

1. Introduction. This paper outlines certain developments in the theory of Analytic Geometry, employing tangential or line co-ordinates. It supplements the work of Master's Theses written by Valgardsson of the University of Manitoba, and I. W. Heaslip of the University of British Columbia. In particular it treats of diameters of conics, evolutes, envelopes, loci of points, transformations between point and line co-ordinates, polar reciprocals of curves, and applications of the Calculus to line co-ordinate Geometry.
2. Important Relations From Earlier Theses. The relations listed below, (a) to(k) from Valgardsson's thesis, and (1) to $(n)$ from Heaslip's, are required in the development of this paper.
(a) The co-ordinates of a line in rectangular line coordinates are defined as the reciprocals of the intercepts of the line on a set of rectangular axes.
(b) A point, other than the origin, whose point co-ordinates are ( $X, Y$ ), has in line co-ordinates the equation,

$$
\begin{equation*}
X X+Y_{Z}-1=0 \tag{1}
\end{equation*}
$$

Note. Throughout this paper large letters are used to
dencte point co-ordinates, and small letters, line coordinates.
(c) The equation of the point of intersection of two lines, $\left(x_{1}, y_{1}\right)$ and ( $\left.x_{2}, y_{2}\right)$ is,

$$
\begin{equation*}
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{2}
\end{equation*}
$$

(d) The angle $\boldsymbol{\theta}$, between the negative extension of the $y$ - axis and the line joining the origin to a point $P$, is called the vectorial angle of the point $P$, and

$$
\begin{equation*}
\tan \theta=-\frac{X}{Y}=\frac{d y}{d X} \tag{3}
\end{equation*}
$$

(e) The equation of the midpoint of the line joining two points $P_{1}$ and $P_{2}$ whose equations are,
and

$$
\begin{aligned}
& X_{1} X+Y_{1} y-I=0 \\
& X_{2} X+Y_{2} y-I=0,
\end{aligned}
$$

respectively, is,

$$
\begin{equation*}
\left(X_{1} x+Y_{1} y-1\right)+\left(X_{2} x+Y_{x} y-1\right)=0 \tag{4}
\end{equation*}
$$

(f) Two lines ( $x_{1}, y_{1}$ ) and $\left(x_{2}, y_{2}\right)$ are
(i) parallel if $x_{1} y_{2}-x_{2} y_{1}=0$
(ii) perpendicular if $x_{1} x_{2}+y_{1} y_{2}=0$
(g) A curve may be considered as the envelope of a variable line, and its equation in line co-ordinates is called its line or tangential equation.
(h) The equation of the point of intersection of the tangents at the points where the line ( $x_{1}, y_{1}$ ) cuts the conic, $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
is

$$
\begin{equation*}
\left(a x_{1}+h y_{1}+g\right) x+\left(h x_{1}+b y_{1}+f\right) y+g x_{1}+f y_{1}+c=0 \tag{6}
\end{equation*}
$$

(i) The equation of the pole of the line ( $\mathrm{x}_{1}, \mathrm{y}_{\mathrm{i}}$ ) with respect to the circle
is

$$
\begin{align*}
& x^{2}+y^{2}-1=0 \\
& x_{1} x+y_{1} y-1=0 \tag{7}
\end{align*}
$$

(j) The general equation of the second degree represents a conic section. The nature of the conic is shown in the following table, where

$$
\Theta=\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & d
\end{array}\right|, \rho=c(a+b)-\left(f^{2}+g^{2}\right), \text { and } \Delta=h^{2}-a b
$$

| $\begin{aligned} & \Theta \neq 0 \\ & c \neq 0 \end{aligned}$ | Ellipse, if $\varsigma<0$ and $c$ and $\Theta$ agree in sign <br> Imaginary locus if $\xi>0$ and $c$ and (©) agree in sign Hyperbola, if $c$ and $\Theta$ differ in sign, while $\mathcal{f}$ has any value. |
| :---: | :---: |
| $\begin{aligned} & \Theta \neq 0 \\ & C=0 \end{aligned}$ | Parabola, $\mathcal{f}$ is always negative. |
| $\begin{aligned} & \Theta=0 \\ & c \neq 0 \end{aligned}$ | Two real points, if $\xi<0$. Iwo inaginary points if $\xi>0$. |
| $\begin{aligned} \Theta & =0 \\ C & =0 \\ \xi & \neq 0 \end{aligned}$ | Two distinct real points, one of which is infinitely distant, and the other is in a finite region of the plane. |
| $\begin{aligned} \Theta & =0 \\ c & =0 \\ \xi & =0 \end{aligned}$ | Two infinitely distant real points if $\boldsymbol{\Delta}>0$ Two coincident and infinitely distant points if $\Delta=0$ <br> Two imaginary points on the line at infinity if $\Delta<0$ |

(k) The equation of the centre of a central conic given by the general equation is,

$$
\begin{equation*}
g x+f y+c=0 \tag{8}
\end{equation*}
$$

(1) The co-ordinates of a line in polar line co-ordinates are $(\rho, \theta)$, where $\rho$ is the perpendicular distance from the
pole to the line, and $\boldsymbol{\theta}$ is the vectorial angle between the polar axis and this perpendicular.
(m) Any curve, whose equation in polar line co-ordinates is

$$
f(\rho, \theta)=0
$$

has as its first positive pedal the curve given by the same equation

$$
f(P, \Theta)=0
$$

in polar point co-ordinates.
(n) If the equation of a curve is given in rectangular line co-ordinates, the equation of its first positive pedal in point co-ordinates may be found by replacing

$$
x \text { by } \frac{X}{X^{2}+Y^{2}} \text {, and } y \text { by } \frac{Y}{X^{2}+Y^{2}} .
$$

Similady, if the equation of the curve is given in rectangular point co-ordinates, the equation of tts first negative pedal in line co-ordinates may be found by replacing

$$
X \text { by } \frac{x}{x^{2}+y^{2}} \text {, and } x \text { by } \frac{y}{x^{2}+y^{2}} .
$$

3. Points of Contact.


Let $\left(x_{1}, y_{1}\right)$ be the co-ordinates of the tangent touching the curve $y=f(x)$ at the point $P$. Let $\left(x_{1}+\Delta x_{1}, y_{1}+\Delta y_{1}\right)$ be a
neighboring tangent touching the curve at Q. The equation of the point of intersection $R$ of the lines $\left(x_{1}, y,\right)$ and $\left(x_{1}+\Delta x, y_{1}+\Delta y,\right)$, by equation (2), is,

$$
\frac{\bar{x}-\dot{y}_{1}}{X-X_{1}}=\frac{\Delta y_{1}}{\Delta X_{1}}
$$

As $Q$ approaches $P$ along the curve, $\Delta x$, and $\Delta y$, approach zero. In the limit $R$ and $Q$ coincide with $P$. Therefore

$$
\begin{equation*}
\frac{y-y_{1}}{x-x_{1}}=L_{\Delta x_{1} \rightarrow 0}\left(\frac{\Delta y_{1}}{\Delta x_{1}}\right)=\left(\frac{\partial y}{\partial x}\right)_{1} \tag{9}
\end{equation*}
$$

is the equation of the point of contact, $P$, of the tangent $\left(x_{1}, y_{1}\right)$ to the curve $y=f(x)$. The equation may also be written in the form

$$
\begin{equation*}
\frac{p_{1}}{p_{1} x_{1}-y_{1}}-\frac{1}{p_{1} x_{1}-y_{1}} \bar{y}-1=0 \tag{10}
\end{equation*}
$$

4. The Condition that a Point Shall Iie on a Conic. Let the equations of the point and conic be

$$
\begin{equation*}
X X+Y_{y}-1=0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \tag{12}
\end{equation*}
$$

respectively. Substituting for $y$ from (11) in (12), we
obtain $\left(a Y^{2}-2 h X Y+b X^{2}\right) X^{2}+2\left(h Y-b X+g Y^{2}-f X Y\right) x$

$$
\begin{equation*}
+\left(b+2 f Y+c Y^{2}\right)=0 \tag{13}
\end{equation*}
$$

The point lies on the conic if and only if (13) has equal roots. The condition for equal roots is the vanishing of the discriminant $\left(h Y-b X+g Y^{2}-f X Y\right)^{2}-\left(a Y^{2}-2 h X Y+b X^{2}\right)\left(b+2 f Y+c Y^{2}\right)$. Accordingly

$$
\begin{align*}
& \left(f^{2}-b c\right) X^{2}+2(c h-f g) X Y+\left(g^{2}-a c\right) Y^{2} \\
& +2(f h-b g) X+2(g h-a f) Y+h^{2}-a b=0 \tag{14}
\end{align*}
$$

is the condition that the point shall lie on the conic.
5. Diameters. Conjugate Diameters.
(i) The diameter of a central conic is defined as the line passing through the points of contact of parallel tangents to the conic.


Let $\left(x_{1}, y_{1}\right)$ and ( $\left.k x, k y_{1}\right)$ be parallel lines tangent to the conic $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
at the points $P$ and $Q$ respectively. The equations of $P$ and $Q$ are $\quad\left(a x_{1}+h y_{1}+g\right) x+\left(h x_{1}+b y_{1}+f\right) y+g x_{1}+f y+c=0$ and

$$
\left\{k\left(a x_{1}+h y_{1}\right)+g\right\} x+\left\{k\left(h x_{1}+b y_{1}\right)+f\right\} y+k\left(g x_{1}+f y_{1}\right)+c=0
$$ respectively. On solving, we obtain the coordinates of the diameter through $P$ and $Q$, viz.,

$$
\begin{align*}
& x^{\prime}=-\frac{\left|\begin{array}{ll}
g x_{1}+f y_{1}+c, & h x_{1}+b y_{1}+f \\
k\left(g x_{1}+f y_{1}\right)+c, & k\left(h x_{1}+b y_{1}\right)+f
\end{array}\right|}{\left|\begin{array}{ll}
a x_{1}+h y_{1}+g, & h x_{1}+b y_{2}+f \\
k\left(a x_{1}+h y_{1}\right)+g, & k\left(h x_{1}+b y_{1}\right)+f
\end{array}\right|}=\frac{(c h-f g) x_{1}+\left(b c-f^{2}\right) y_{0}}{(a f-g h) x_{1}+(f h-b g) y_{1}} \\
& y^{\prime}=-\frac{\left|\begin{array}{ll}
a x_{1}+h y_{1}+g, & g x_{1}+f y_{0}+c \\
k\left(a x_{1}+h y_{1}\right)+g, & k\left(g x_{1}+f y_{1}\right)+c
\end{array}\right|}{\left|\begin{array}{ll}
a x_{1}+h y_{1}+g, & h x_{1}+b y_{1}+f \\
x\left(a x_{1}+h y_{1}\right)+g, & k\left(h x_{1}+b y_{1}\right)+f
\end{array}\right|}=\frac{\left(g^{2}-a c\right) x_{1}+(f g-c h) y_{1}}{(a f-g h) x_{1}+(f h-b g) y_{1}} \tag{15}
\end{align*}
$$

On trial it is seen that

$$
g x^{\prime}+f y^{\prime}+c=0
$$

and thus, equation (8), every diameter passes through the centre.

The diameter passing through the points of contact of tangents parallel to ( $x^{\prime}, y^{\prime}$ ) is said to be conjugate to the diameter ( $x^{\prime}, y^{\prime}$ ).

Let the co-ordinates of the two tangents parallel to $\left(x^{\prime}, y^{\prime}\right)$ be ( $\left.k_{1} x^{\prime}, k, y^{\prime}\right)$ and ( $\left.k_{2} x^{\prime}, k_{2} y^{\prime}\right)$ respectively. Let the points of contact of the tangents be $R$ and $S$ respectively. The respective equations of these points are $\left\{k_{1}\left(a x^{\prime}+h y^{\prime}\right)+g\right\} x+\left\{k_{1}\left(h x^{\prime}+b y^{\prime}\right)+f\right\} y+k_{1}\left(g x^{\prime}+i y^{\prime}\right)+c=0$ and $\left\{k_{2}\left(a x^{\prime}+h y^{\prime}\right)+g\right\} x+\left\{k_{2}\left(h x^{\prime}+b y^{\prime}\right)+f\right\} y+k_{2}\left(g x^{\prime}+f y^{\prime}\right)+c=0$ Solving, we obtain the co-ordinates of the diameter conjugate to ( $x^{\prime}, y^{\prime}$ ), viz.,

$$
\begin{align*}
& x^{\prime \prime}=\frac{(c h-f g) x^{\prime}+\left(b c-f^{2}\right) y^{\prime}}{(a f-g h) x^{\prime}+(f h-b g) y^{\prime}} \\
& y^{\prime \prime}=\frac{\left(g^{2}-a c\right) x^{\prime}+(f g-c h) y^{\prime}}{(a f-g h) x^{\prime}+(f h-b g) y^{\prime}} \tag{16}
\end{align*}
$$

Substituting $x^{\prime}$ and $y^{\prime}$ from equation (15), these reduce to

$$
\begin{equation*}
x^{\prime \prime}=-\frac{c x_{1}}{g x_{1}+f y_{1}}, y^{\prime \prime}=-\frac{c y_{1}}{g x_{1}+f y_{1}} \tag{17}
\end{equation*}
$$

It is seen, equation (5 i), that the diameter ( $x^{\prime \prime}, y^{\prime \prime}$ ) is parallel to the tangent ( $\mathrm{x}_{1}, \mathrm{y}_{1}$ ), and by trial,

$$
g x^{\prime \prime}+f y^{\prime \prime}+c=0
$$

Dividing $x^{\prime \prime}$ by $y^{\prime \prime}$ in equati ns (16), we obtain
or

$$
\begin{align*}
& \frac{x^{\prime \prime}}{\bar{y} \prime \prime}=\frac{(c h-f g) x^{\prime}+\left(b c-f^{2}\right) y^{\prime}}{\left(g^{2}-a c\right) x^{\prime}+(f g-c h) y^{\prime}} \\
& \left(g^{2}-a c\right) x^{\prime} x^{\prime \prime}+(f g-c h)\left(x^{\prime} y^{\prime \prime}+x^{\prime \prime} y^{\prime}\right)+\left(f^{2}-b c\right) y^{\prime} y^{\prime \prime}=0 \tag{18}
\end{align*}
$$

which is the condition that two diameters shall be conjugate. In the case of the ellipse

$$
a^{2} x^{2}+b^{2} y^{2}-1=0
$$

this reduces to

$$
\frac{x^{\prime} x^{\prime \prime}}{y^{\prime} y^{\prime \prime}}=-\frac{b^{2}}{a^{2}}
$$

(ii) The parabola may be considered as the limiting case of a central conic, given by the general equation of the second degree, as the parameter © approaches zero. From this point of view, the diameter of the general parabola may be defined a-s the limiting position of the line passing through the points of contact of parallel tangents ( $x, y, y_{1}$ ) and ( $k x_{1}, k y_{1}$ ) to the general conic as $\subseteq$ and $\underline{k}$ simultaneously approach zero. hccordingly, by reference to the equations (15) obtained under (i) of this section, the co-ordinates of the diameter passing through the point of contact of a tangent $\left(x_{1}, y_{1}\right)$ to the general parabola are as follows,

$$
\begin{align*}
& x^{\prime}=-\frac{f\left(g x_{1}+f y_{1}\right)}{(a f-g h) x_{1}+f(h-b g) y_{1}}  \tag{19}\\
& y^{\prime}=\frac{g\left(g x_{1}+f y_{0}\right)}{(a f-g h) x_{1}+\left(f h-b g y_{1}\right.}
\end{align*}
$$

6. The Axes of the General Conic. Perpendicylar conjugate diameters are the axes of the conic. Let the co-ordinates 'of conjugate diameters be ( $x^{\prime}, y^{\prime}$ ) and ( $x^{\prime \prime}, y^{\prime \prime}$ ). For perpendicularity, equation (5ii), we have

$$
\left(\frac{x^{\prime}}{y^{\prime}}\right)\left(\frac{x^{\prime}}{y^{\prime}}\right)=-1
$$

Replacing $\frac{x^{\prime \prime}}{\bar{y} \prime \prime}$ by its value from equation (18), we obtain

$$
(f g-c h) x^{2}+\left(f^{2}-b c-g^{2}+a c\right) x^{\prime} y^{\prime}+(c h-f g) y^{\prime 2}=0
$$

Since a diameter passes through the centre of the conic, we have $g x^{\prime}+f y^{\prime}+c=0$

On solving these two equations we obtain the co-ordinates of the axes, viz.,

$$
\begin{align*}
& \bar{z}=\frac{\left.-z g(f g-c h)-f\left(f^{2}-g^{2}\right)-c f(a-b) \pm \pm \sqrt{\left.\left(f^{2}-g^{2}\right)+c(a-b)\right\}^{2}+4(f g-c h}\right)^{2}}{2\left\{h\left(f^{2}-g^{2}\right)+f g(a-b)\right\}} \\
& \bar{y}=\frac{\left.2 f(f g-c h)-g\left(f^{2}-g^{2}\right)-c g(a-b) \mp g \sqrt{\left(\left(f^{2}-g^{2}\right)+c(a-b)\right)^{2} 4(f g-c h}\right)^{2}}{2\left\{h\left(f^{2}\left(g^{2}\right)+f g(a-b)\right\}\right.} \tag{20}
\end{align*}
$$

7. Properties of Dimeters. Let the chord $\left(x_{2}, y_{2}\right)$ cut the coalc $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ at the point $P$ whose equation is

$$
\mathrm{Xx}+\mathrm{Y}_{\mathrm{y}}+1=0
$$

Since the point Plies on the conic and also on the line, we must have the relations, (equation (14)),

$$
\left(f^{2}-b c\right) X^{2}+2(c h-f g) X Y+\left(g^{2}-a c\right) Y^{2}+2(f h-b g X+2(\varepsilon h-a f) Y
$$

$$
\begin{equation*}
+h^{2}-a b=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
X x_{2}+y_{y_{2}}-1=0 \tag{22}
\end{equation*}
$$

Substituting for y from (22) in (21), we obtain

$$
\begin{align*}
& \left\{\left(g^{2}-a c\right) x_{2}^{2}-2(c h-f g) x_{2} y_{2}+\left(f^{2}-b c\right) y_{2}^{2}\right\} x^{2} \\
+ & 2\left\{(c h-f g) y_{2}-\left(g^{2}-a c\right) x_{2}+(f h-b g) y_{2}^{2}-(g h-a f) x_{2} y_{2}\right\} \\
+ & \left.\left\{\left(g^{2}-a c\right)+2(g h-a f) y_{2}+h^{2}-a b\right) y_{2}^{2}\right\}=0 \tag{25}
\end{align*}
$$

and similarly,

$$
\begin{align*}
& \left\{\left(g^{2}-a c\right) x_{2}^{2}-2(c h-f g) x_{2} y_{2}+\left(f^{2}-b c\right) y_{2}^{2}\right\} Y^{2} \\
+ & 2\left\{(c h-g) x_{2}-\left(f^{2}-b c\right) y_{2}-(f h-b g) x_{2} y_{2}+(\operatorname{ch}-a f) x_{2}^{2}\right\} Y \\
+ & \left\{\left(f^{2}-b c\right)+2(f h-b g) x_{2}+\left(h^{2}-a b\right) x_{2}^{2}\right\}=0 \tag{24}
\end{align*}
$$

Let the roots of equations (23) and (24) be $X_{1}, X_{2}$ and $Y_{1}, Y_{2}$ respectively. The equations of the points in which the line $\left(x_{2}, y_{2}\right)$ cuts the conic are therefore
and

$$
\begin{align*}
& Y_{1} x+Y_{y}-1=0  \tag{25}\\
& Y_{2}+Y_{2} y-1=0 \tag{26}
\end{align*}
$$

The equation of the midpoint of the line joining these two points, (equation (4) ), is

$$
\left(X_{1}+X_{2}\right) X+\left(Y_{1}+Y_{2}\right) Y-2=0
$$

which, because of equations (23) and (24), becomes

$$
\begin{aligned}
& \left\{(c h-f g) y_{2}-\left(g^{2}-a c\right) x_{2}+(f h-b g) y_{2}^{2}-(g h-a f) x_{2} y_{2}\right\} x \\
+ & \left\{(c h-f g) x_{2}-\left(f^{2}-b c\right) y_{2}-(f h-b g) x_{2} y_{2}+(g h-a f) x_{2}^{2}\right\} y \\
+ & \left\{\left(g^{2}-a c\right) x_{2}^{2}-2(c h-f g) x_{2} y_{2}+\left(f^{2}-b c\right) y_{2}^{2}\right\}=0
\end{aligned}
$$

Let tie line $\left(x_{2}, y_{2}\right)$ be perallel to $\left(x_{1}, y_{1}\right)$, in when coue $x_{2}=k x_{1}$ way $y_{2}=x_{1}$. Equation (2n) thus wecomes

$$
\begin{aligned}
& \left\{(c h-f g) y_{1}-(g-a c) x_{1}+(f h-b g) k y_{1}^{2}-(g h-a x) h x_{1} y_{1}\right\} x \\
+ & \left\{(c h-f g) x_{1}-\left(f^{2}-b c\right) y_{1}-(f h-b g) k x_{1} y_{1}+(g h-a f) k x_{1}^{2}\right\} y \\
+ & \left\{\left(g^{2}-a c\right) k x_{1}^{2}-2(c h-f g) k x_{1} y_{1}+\left(f^{2}-b c\right) k y_{1}^{2}\right\}=0
\end{aligned}
$$

By trial we see that the co-ordinates ( $x^{\prime}, y^{\prime \prime}$ ) of the diameter passing through the point of contact of the tancent ( $x, y_{1}$ ) satisfy this equation. Hence the diameter bisects all chords parallel to the tangent $\left(x_{1}, y,\right)^{\prime}$.

The equation of the point of intersection of the tangents to the conic at the extremjties of the chord (xx, ,y,), (which is parallel to $(x, y$,$) ), by eyuation (6), is$

$$
\left\{k\left(a x_{1}+h_{y_{1}}\right)+g\right\} x+\left\{k\left(h x_{1}+b y_{1}\right)+i\right\} y+k\left(g x_{1}+f_{y_{1}}+c=0\right.
$$

On trial it is seen that the co-ordinates of the diameter ( $x^{\prime}, y^{\prime}$ ) satisfy this equation. Therefore the tangents at the extremities of any chord parallel to a tangent ( $x_{1}, y_{1}$ ) intersect on the diameter passing through the point of contact of the tangent $\left(x_{1}, y_{1}\right)$.

The co-ordinates of the axes of the general parabola are obtained by putting $c=0$ in equations ( $=0$ ). They are

$$
\begin{array}{lc}
\bar{x}=0, & -\frac{f\left(f^{2}+g^{2}\right)}{h\left(f^{2}+g^{2}\right)+f(a-b)}  \tag{28}\\
\bar{y}=0, & \frac{g\left(f^{2}+g^{2}\right)}{h\left(f^{2}+g^{2}\right)+f g(a-b)}
\end{array}
$$

Comparing equations (19) and (28), we see that the diameters of a parabola are parallel to the axis.
8. The Evolute of a Curve. The evolute of a curve is defined a s the envelope of the normals to the curve. Let the equation of the curve be

$$
\begin{equation*}
y=f(x) \tag{29}
\end{equation*}
$$

Let $\left(x_{1}, y_{1}\right)$ be any tangent to the curve and $\left(x_{2}, y_{2}\right)$ the corresponding normal. Since the normal is perpendicular to the tangent and passes through its point of contact we have the relations
and

$$
\begin{aligned}
& X_{1} X_{2}+Y_{1} X_{2}=0 \\
& \frac{0}{1} X_{1}-X_{2} \\
& X_{1}-\frac{1}{P_{1} X_{1}-Y_{1}} Y_{2}-1=0
\end{aligned}
$$

Solving for $y_{2}$ and $\mathrm{T}_{2}$ and dropping the subscipts, we have

It follows that the equation of the evolute is obtained on eliminating $x_{1}$ and $y_{1}$ between equations (29) and (30). If the equation of the curve is given in the form

$$
I(X, Y)=0
$$

then $\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}$, and equations (30) may be written

$$
x=\frac{y_{1}\left(x_{1} f_{x_{1}}+y_{1} f_{y_{1}}\right)}{y_{1} f_{x_{1}}-x_{1} f_{y_{1}}}, y=-\frac{x_{1}\left(x_{1} f_{x_{1}}+y_{1} f_{y_{1}}\right)}{y_{1} f_{x_{1}}},(5 I)
$$

Example. To find the equation of the evolute of the ellipse

$$
\begin{aligned}
& a^{2} x^{2}+b^{2} y^{2}-1=0 \\
& f_{x_{1}}=2 a^{2} x_{1}, \quad f_{y_{1}}=2 b^{2} y_{1} .
\end{aligned}
$$

Therefore, equation (31),
and

$$
\begin{aligned}
& x=\frac{y_{1}\left(2 a_{1}^{2} x_{1}^{2}+2 b^{2} y_{1}^{2}\right)}{\left(2 a^{2} x_{1} y_{1}-2 b^{2} x_{1} y_{1}\right)}=\frac{1}{\left(a^{2}-b^{2}\right) x_{1}} \\
& y=-\frac{x_{1}\left(2 a^{2} x_{1}^{2}+2 b^{2} y_{0}^{2}\right)}{\left(2 a^{2} x_{1} y_{1}-2 b^{2} x_{1} y_{1}\right)}=-\frac{1}{\left(a^{2}-b^{2}\right) y_{1}}
\end{aligned}
$$

$$
\frac{a^{2}}{\left(a^{2}-b^{2}\right)^{2} x^{2}}+\frac{b^{2}}{\left(a^{2}-b^{2}\right)^{2} y^{2}}=\varepsilon_{1}^{2} x_{1}^{2}+b^{2} y_{1}^{2}=1
$$

The equation of the evolute is

$$
b^{2} x^{2}+a^{2} y^{2}=\left(a^{2}-b^{2}\right)^{2} x^{2} y^{2}
$$

9. The Family of Curves $\lambda f_{1}(X, y)+\mu f_{2}(x, y)=0$. Let

$$
\begin{align*}
& f_{1}(X, J)=0  \tag{32}\\
& f_{2}(X, J)=0 \tag{33}
\end{align*}
$$

be the tangential equations of two curves. Mhen

$$
\begin{equation*}
\lambda f_{1}(x, y)+\mu f_{2}(x, y)=0 \tag{34}
\end{equation*}
$$

is the equation of any curve touching the comm tangen s of the curves (32) and (33). This follows, since equation (34) is satisfied by the values of $x$ and $y$ for which both (32) and (33) vanish, and so is satisfied by the co-ordinates of the tangents, real or imaginary, which are common to the
curves (32) and (33).
10. Bnvelopes of One-parameter Families of Curves. Joci
of Points. The equation

$$
\begin{equation*}
f(x, y, \alpha)=0 \tag{35}
\end{equation*}
$$

defines a one-parameter family of curves or points. Consecutive curves or points of such a family are defined as curves which correspond to two consecutive values of the parameter.

The envelope of a family of curves given by equation (35) is defined as the envelope of the limiting position of common tangents to consecutive curves. Let $\alpha$ and $\alpha+\Delta \alpha$ be two consecutive values of the parameter. Then
and

$$
\begin{align*}
& f(X, y, \alpha)=0  \tag{36}\\
& f(x, y, \alpha+\Delta \alpha)=0 \tag{37}
\end{align*}
$$

are consecutive curves, and

$$
\frac{f(x, y, \alpha+\Delta \alpha)-f(x, y, \alpha)}{\Delta \alpha}=0
$$

is the equation of a curve touching the common tangents of the curves (36) and (37). fccordingly,


$$
\begin{equation*}
=f_{\alpha}(x, y, \alpha)=0 \tag{38}
\end{equation*}
$$

is an equation satisfied by the co-ordinates of the common tangent to (36) and (37) in its limiting position. It follows that the equation of the envelope is obtained on eliminating $\alpha$ between equations (35) and (38).

The equation of a point involves in general two parameters. A point, however, may be restricted in position, through being constrained to satisfy some geometric condition. In that case the totality of points satisfying the condition constitutes a locus. Any condition imposed upon the point may be expressed as a relation between the parameters. It is thus possible to eliminate one of the parameters from the equation of the point. The problem of finding the equation of the locus of a point, satisfying a certain geometric condition, therefore reduces to that of finding the equation of the locus of a point whose equation involves a single parameter. Such an equation is linear in $x$ and $y$ and has the form (35) above. Por a fixed value of $\alpha$,

$$
\begin{equation*}
f(x, y, \alpha)=0 \tag{39}
\end{equation*}
$$

and.

$$
f(x, y, \alpha+\Delta \alpha)=0
$$

are consecutive points, $P_{1}$ and $P_{2}$ of the locus. The equation

$$
\frac{f(x, y, \alpha+\Delta \alpha)-f(x, y, \alpha)}{\Delta \alpha}=0
$$

is the equation of a point on the line passing through $D_{1}$ and $P_{2}$. Accordingly

$$
\begin{align*}
\operatorname{Lu}_{\Delta \alpha \rightarrow 0} & \left\{\frac{f(x, y, \alpha+\Delta \alpha)-f(x, y, \alpha)}{\Delta \alpha}\right\} \\
& =f_{\alpha}(x, y, \alpha)=0 \tag{40}
\end{align*}
$$

is an equation which is satisfied by the coordinates of the limiting position of the line $P_{1} P_{2}$. The locus is clearly the envelope of these limiting lines determined by letting $\alpha$ vary. The co-ordinates of any such line satisfy both
(39) and (40), and so must satisfy the equation obtained on eliminating $\alpha$ between (39) and (40). This resultant equation is, accordingly, that of the locus. It is thus seen that the method of determining the locus of a point is identical with that of finding the envelope of a one-parameter family of curves.

A simpler treatment is possible when the equation of the point, for fixed values of $x$ and $y$, is algebraic in terms of the parameter $\alpha$.
(i) Consider the equation of a point

$$
\begin{equation*}
\alpha f_{1}(x, y)+f_{2}(x, y)=0 \tag{4I}
\end{equation*}
$$

where $\alpha^{\prime}$ is a variable parameter, and $f_{,}(x, y)=0$, $f_{2}(x, y)=0$ are linear in $x$ and $y$ and independent of $\alpha$. Equation (41) is satisfied by the co-ordinates of the line passing through the two points whose equations are

$$
\begin{aligned}
& f_{1}(x, y)=0 \\
& f_{2}(x, y)=0
\end{aligned}
$$

respectively. In other words, the locus of a point is a straight line when the equation of the point contains a single variable parameter which enters to the first degree only.
(ii) Consider the equation of a point

$$
\begin{equation*}
\alpha^{2} f_{1}(x, y)+\alpha f_{2}(x, y)+f_{3}(x, y)=0 \tag{42}
\end{equation*}
$$

where $\alpha, f_{1}, f_{2}, f_{3}$ have meanings as above. por a fixed line, ( $x_{1}, y_{1}$ ) there are two values of $\alpha$ for which (42) is satisfied. If $\left(x_{0}, y_{1}\right)$ is tangent to the locus of (42), the
two values become coincident. The values of $x$ and $y$ for which (42) has equal roots are given by equating the discriminant to zero. Thus

$$
\left\{f_{2}(x, y)\right\}^{2}-4\{f,(x, y)\}\left\{f_{3}(x, y)\right]=0
$$

is the equation satisfied by all values of $x$ and $y$ which are the co-ordinates of tangents to (42). It is therefore the equation of the locus, and since it is of the second degree, the locus must be a conic section.
(iii) Consider the equation of a point

$$
\begin{equation*}
f(x, y, \alpha)=\alpha^{n} f,(x, y)+\ldots \ldots+f_{n+1}(x, y)=0 \tag{43}
\end{equation*}
$$

The equation of the locus of (43) is obtained by equating to zero the discriminant of (43) considered as an equation in $\alpha$. This discriminant is found by eliminating $\alpha$ between (43) and $f_{\alpha}(x, y, \alpha)=0$, which is precisely the method given in a previous paragraph for finding the equation of an envelope.

Example 1. The locus of the point whose equation is

$$
\alpha^{2} x-\alpha y-1=0
$$

is clearly

$$
y^{2}=4 x
$$

Example 2. To find the locus of a point which moves so that its distance from a fixed point is always a constant times its distance from a fixed straight line.

Let the equation of the point $P$ be


$$
\begin{equation*}
X X+Y y-1=0 \tag{44}
\end{equation*}
$$

Take the fixed point at the origin, and let $A B,(-c, 0)$, be the fixed straight line. From

$$
\begin{align*}
& |O P|=e .|P M| \quad(e, \text { a constant), we have } \\
& X^{2}+Y^{2}=e^{2}(X+c)^{2} \\
& Y^{2}=\left(e^{2}-I \mid X+2 e^{2} c X+e^{2} c^{2}\right. \tag{45}
\end{align*}
$$

Substituting in equation (44), we obtair.

$$
\left\{\left(e^{2}-1\right) x^{2}+2 e^{2} c x+e^{2} c^{2}\right\} y^{2}=(1-X x)^{2}
$$

This equation cannot be put in the form of equation (42) where $f_{1}, f_{2}$ and $f_{3}$ are independent of $X$ and linear in $x$ and $y$, and thus we use the general method. Differentiating equation (45) with respect ot $X$, we have

$$
X=-\frac{y^{2} e^{2} c+x}{e^{2} x^{2}-x^{2}-y^{2}}
$$

Making this substitution, equation (45) reduces to

$$
\begin{equation*}
e^{2} c^{2}\left(x^{2}+y^{2}\right)+2 e^{2} c x-\left(1-e^{2}\right)=0 \tag{46}
\end{equation*}
$$

The method of obtaining this equation shows that every point on the locus lies on the curve. (46). We must now show that every point on the curve (46) is on the locus. Su pose that the point $P$ is on the curve (46), but not on the locus.

Thus we have
$X_{2}^{2}+Y_{2}^{2}=e^{2}\left(X_{2}+c\right)^{2}$
$\left|\mathrm{OP}_{2}\right| \neq e\left|\mathrm{P}_{2} M\right|$
and
From equation (47) it follows that

$$
\begin{gathered}
\pm \sqrt{X_{2}^{2}+Y_{2}^{2}}=e\left(X_{2}+c\right) \\
\left|O P_{2}\right|=-\left|P_{2} M_{1}\right|
\end{gathered}
$$

whence
in contradiction to our hypothesis. Accordingly, every point on the curve (46) is on the locus.
11. Transformations Between Point and Line Coordinates.


Let $\left(x_{1}, y_{1}\right)$ be the co-ordinates of the tangent $A B$ to the curve $y=f(x)$ at the point $P$. Let the point coordinates of $P$ be $\left(X_{1}, Y_{1}\right)$. The equation of $P$ is

$$
X_{1} x+Y_{1} y-I=0
$$

However, since $P$ is the point of contact of thetangent $\left(x_{1}, y_{1}\right)$ its equation is

$$
\frac{p_{1}}{p_{1} x_{1}-Y_{1}} x-\frac{1}{p_{1} X_{1}-Y_{1}} y-1=0
$$

where $p_{1}=\left(\frac{d y}{d x}\right)_{1}$.
Comparing these equations, it is seen that

$$
X=\frac{D_{1}}{p_{1} X_{1}-Y_{1}}, \quad Y=-\frac{1}{p_{1} X_{1}-Y_{1}}
$$

The equation of the line $A B$ in point co-ordinates is

$$
X_{1} X+Y_{1} Y-1=0
$$

Since $A B$ is tangent to the curve, its equation is

$$
Y-Y_{1}=P_{1}\left(X-X_{1}\right)
$$

where $P_{1}=\left(\frac{\partial Y}{\partial X}\right)_{1}$.
This may be written

$$
\frac{P_{1}}{P_{1} X_{1}-Y_{1}} X-\frac{1}{P_{1} X_{1}-Y_{1}} Y-1=0
$$

whence we have

$$
x=\frac{P_{1}}{P_{1} X_{1}-Y_{1}}, \quad y=-\frac{1}{P_{1} X_{1}-Y_{1}} .
$$

Hence, dropping primes, the equations

$$
\begin{array}{ll}
X=\frac{P}{p X-Y} & X=\frac{P}{P X-Y} \\
Y=-\frac{1}{p X-V} & \text { (48), } \\
y=-\frac{1}{P X-Y}
\end{array}
$$

give the transformations from point to line co-ordinates, and from line to point co-ordinates respectively.

Let the tangential equation of a curve be

$$
\begin{equation*}
y=f(x) \tag{50}
\end{equation*}
$$

The substitutions of equations (48) give
or

$$
-\frac{I}{P X-Y}=f\left(\frac{P}{P X-Y}\right)
$$

$$
\begin{equation*}
F(X, Y, P)=0 \tag{51}
\end{equation*}
$$

In general, $P$ appears in this equation to a degree higher than the first, and thus for any given $X$ and $Y, P$ will not be single-valued. However, to every tangent ( $x, y$ ) satisfying equation (50) there is a point of contact ( $X, Y$ ) and one and only one corresponding value of the slope $P$, such that $\mathbb{X}, Y$, and $P$ satisfy equation (51). Those values of $X$ and $Y$ for which equation (51) gives equal roots for $P$ are those satisfying the $P$-discriminant relation. This relation contains the singular solution of the differential equation (51). ${ }^{1}$ Thus we see that the 1

See D.A. Murray, Differential Equations, §33, page 42.
equation of the curve (50) in point co-ordinates is the singular solution of (51), that is, the envelope of the general solution of (51).

If (50) is an algebraic equation, than on clearing of fractions, equation (51) will be a polynomial in (PX-Y), with coefficients functions of $P$. Its solutions are of the form

$$
\begin{equation*}
P X-Y=I(P) \tag{52}
\end{equation*}
$$

This equation is a Clairaut equation, ${ }^{1}$ and has for solution

$$
\begin{equation*}
C X-Y=f(C) \tag{53}
\end{equation*}
$$

which represents a family of straight lines. The singular solution of equation (52) is the $C$ - discriminant relation of equation (53). That is, the required equation in point co-ordinates is the envelope of the family of straight lines (53).

Obviously the above argument and indicated procedure also applies, on a change of notation, when passing from point to line cu-ordinates.

Example 1. An ellipse, with centre at the origin, and axes coinciding with the co-ordinate axes, has in line co-ordinates the equation

$$
a^{2} x^{2}+b^{2} y^{2}=1
$$

where $a$ and $b$ are the semi-major and semi-minor axes respectively. ipplying the transformations of equations (49), we obtain $\quad\left(a^{2}-\mathbb{Z}\right) P^{2}+2 X Y P+\left(b^{2} Y\right)=0$

The $P$ - discriminant relation is
$\overline{1 \text { See: D. A. Hurray, Differential Eyuations, §33, page } 42}$
or

$$
\begin{aligned}
& X^{2} Y^{2}-\left(a^{2}-X\right)\left(b^{2}-Y\right)=0 \\
& \frac{X^{2}}{a^{2}}+\frac{Y^{2}}{D^{2}}=1
\end{aligned}
$$

which is the equation of the ellipse in point co-ordinates. Pxample 2. The equation of the astroid in point co-ordinates is

$$
X^{\frac{2}{3}}+Y^{\frac{2}{3}}=a^{\frac{2}{3}}
$$

Applying the transformations (48), we have

$$
\begin{equation*}
p^{\frac{2}{3}}+1=a^{\frac{2}{3}}(p x-y)^{\frac{2}{3}} . \tag{54}
\end{equation*}
$$

Differentiating with respect to $p$, we obtain
or

$$
\begin{aligned}
& p^{-\frac{1}{3}}=a^{\frac{2}{3}} x(p x-y)^{-\frac{1}{3}} \\
& a^{2} p x^{3}=p x-y
\end{aligned}
$$

Naking this substitution, equation (54) becomes

$$
\begin{equation*}
p^{\frac{2}{3}}=\frac{1}{a^{2} x^{2}-1} \tag{55}
\end{equation*}
$$

Eliminating $p$ between equations (54) and (55), we obtain

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} x^{2} y^{2} \tag{56}
\end{equation*}
$$

the tangential equation of the astroid.
The astroid may be defined as the envelope of a line, the sum of the squares of whose intercepts on the axes is a constant.
sccordingly, its tencential equation is
or

$$
\left(\frac{1}{x}\right)^{2}+\left(\frac{1}{y}\right)^{2}=a^{2}
$$

$$
x^{2}+y^{2}=a^{2} x^{2} y^{2}
$$

The transiomations (49) give

$$
\begin{equation*}
\left(P^{2}+1\right)(P X-Y)^{2}=a^{2} P^{2} \tag{57}
\end{equation*}
$$

Differentiating with respect to $P$, we have

$$
\begin{equation*}
2\left(P^{2}+1\right)(P-Y) Y+2 P(P-Y)^{2}=2 a^{2} P \tag{58}
\end{equation*}
$$

From equation (57) we obtain

$$
(P X-Y)^{2}=\frac{a^{2} P}{P^{2}+1}
$$

On making this substitution, equation (58) becomes

$$
\begin{equation*}
P^{2}+1=\frac{a^{\frac{2}{3}}}{x^{\frac{2}{3}}} \tag{50}
\end{equation*}
$$

Eliminating $P$ between equations (58) and (53), we have

$$
Y^{\frac{2}{3}}+Y^{\frac{2}{3}}=a^{\frac{2}{3}}
$$

the noint equation of the astroid.
12. Polar Reciprocals. Iet the point equation of a curve be

$$
\begin{equation*}
I(X, Y)=0 \tag{60}
\end{equation*}
$$

The question arises, what Iocus does

$$
\begin{equation*}
I(x, y)=0 \tag{61}
\end{equation*}
$$

represent in line co-ordinates? Evidently to every point $\left(X_{1}, Y_{1}\right)$ satisfying equation (60) there corresponds a tangent $\left(X_{1}=X_{1}, X_{1}=Y_{1}\right)$ satisfying equation (61). Since this tangent has intercepts $\frac{1}{X_{1}}=\frac{1}{X_{1}}$ and $\frac{1}{Y_{1}}=\frac{1}{Y_{1}}$, its point equation is

$$
X_{1} X+Y_{1} Y-I=0
$$

This is olearly the equation of the polar of the point $\left(X_{1}, Y_{1}\right)$ with respect to the circle

$$
X^{x}+Y^{2}-1=0
$$

Thus we see that the curve (61) is the envelope of the
polars of points on the curve (60). That is, it is the 1 polar reciprocal of (60). Therefore a curve in rectangular point co-ordinates and its poler reciprocal in rectangular line co-ordinates have identieal equations. By reference to the footnote it is easily seen that a curve in rectangular line co-ordinates and its polar reciprocal in point co-ordinates have identical equations. Hence the transformations (48) and (49) when applied to the equation of any curve give its polar reciprocal,. the equation of the curve and that of its nolar reciprocal being in the same system of co-ordinates.
13. Geometric Interpretation of Certain Integrals.
in interpretation can now be given for ony integral in line co-ordinctes. Tor, from the previous section, it is seen that the usual interpretation anglies to the polar reciprocal of the given curve and not to the curve itself. Thus $\int \sqrt{1+\left(\frac{d y}{d X}\right)^{2}} \cdot d X$ sives the length of arc of a curve in point co-ordinates, while $\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \cdot d x$ gives the

1 The polsr reciprocel of a curve, with respect to the circle $x^{2}+Y^{2}=1$, may be defined as the envelope of the polars of points on the curve, or, as the locus of the poles of tangents to the curve.
length of arc of the polar reciprocal of a curve whose equation is in line co-ordinstes. The integral $\int Y . d X$ gives the area under a curve in point co-ordinates, while $\int y \cdot d x$ gives the area under the polar reciprocal of a curve whose equation is in line co-ordinetes.

Again, $(\xi 2,(m))$, eny curve with equation $f(\rho, \theta)=0$ in polar line co-ordinates has as its first positive pedal the curve given by the same equation $f(P, \Theta)=0$ in polar point co-ordinates. Hence the interpretation of an integral in polar line co-ordinates is applied to the first positive pedal of the curve.
14. Pedal Curves. Let the tangential equation of a curve be $f(x, y)=0$. The equation of its poler reciprocel is found in point co-ordinates by replacing $x$ by $X$ and $y$ by Y. The equetion of its first positive pedal is found in point co-ordinates by replacing $X$ by $\frac{X}{X^{2}+Y^{2}}$ and $y$ by $\frac{Y}{X^{2}+Y^{2}}$ Thus we see that the equation of the first positive pedal of ans curve in point co-ordinates may be obtained from the equation of the polar reciprocal of the curre in the same system of co-ordinates by replacing $X$ by $\frac{X}{X^{2}+Y^{2}}$ and $Y$ by $\frac{Y}{X^{2}+Y x^{\prime}}$ Accordingly the first positive pedel of any curve is the inverse of the polar reciprocal of the curve. Sivilerly, the tancential equation of the polar reciprocal of any curve in point co-ordinates is obtained by replacine X by x and Y by y .

The equation of the first positive pedal of the polar , reciprocal is found by replacing $x$ by $\frac{X}{X^{2}+Y^{2}}$ and $y$ by $\frac{Y}{X^{2}+Y^{2}}$. Therefore, the first positive pedal of the polar reciprocal of any curve is the inverse of the curve.
15. The Transformation $x=\frac{x}{x^{2}+y^{2}}, y=\frac{y}{x^{2}+y^{2}}$.

By means of the transformation $X=\frac{X}{X^{2}+Y^{2}}, Y=\frac{Y}{X^{2}+Y^{2}}$, we may write the equation of the inverse of any curve. The question arises whether the transformation $x=\frac{x}{x^{2}+y^{2}}, y=\frac{y}{x^{2}+y^{2}}$ has a geometrical significance. as the figure shows, let $A B$ be a tangent $(X, y)$ to the curve $f(x, y)=0$. Let $A^{\prime} B^{\prime}$ be the line $\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$ and $O P=\rho$ and $O x^{\prime}=\rho^{\prime}$ be the perpendiculars from the origin on the lines $A B$ and in $B^{\prime}$ respectively.

$A B$ is parallel to $A^{\prime} B^{\prime}$ since $\frac{x}{y}=\frac{\frac{x}{x^{2}+y^{2}}}{\frac{y}{x^{2}+y^{2}}} \quad$. Whence we
have $\quad \frac{O A}{O}=\frac{O P}{}$ have

$$
\frac{O A}{O A^{\prime}}=\frac{O P}{O P^{\prime}}=\frac{\rho}{\rho^{\prime}}
$$

or
so that

$$
\begin{aligned}
\frac{\frac{1}{x}}{x^{2}+y^{2}} & =\frac{\rho}{\rho^{\prime}} \\
\rho \rho^{\prime} & =1
\end{aligned}
$$

Hence $P$ and $P$ ' are inverse points. Prom this it follows
that $A^{\prime} B^{\prime}$ is the polar of the point $P$. Therefore, the envelope of $A^{\prime} B^{\prime}$ is the polar reciprocal of the locus of $P$, that is, of the first positive pedal of the curve $f(x, y)=0$. Hence the transformations

$$
\begin{equation*}
x=\frac{x}{x^{2}+y^{2}}, \quad y=\frac{y}{x^{2}+y^{2}} \tag{62}
\end{equation*}
$$

when applied to the tangential eyuation of a curve, give the equation of the polar reciprocal of the first positive pedal of the curve.

$$
\begin{gather*}
\text { Applying (62) to the equation of a point } p \\
X X+Y y-I=0 \tag{63}
\end{gather*}
$$

we have

$$
\begin{equation*}
x^{2}+y^{2}-x x-Y y=0 \tag{64}
\end{equation*}
$$

Which, §2 (j), is the equation of a parabola. By means of equation (14), we see that the inverse point of $?$

$$
\frac{X}{X^{2}+Y^{2}} X+\frac{Y}{X^{2}+Y^{2}} y-1=0
$$

lies on the parabola, and also, equations (28), lies on the axis of the parabola. It is therefore the vertex. It follows that the equations (62) transform a point into a parabola whose vertex is the inverse point on the given point.

