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ABSTRACT

A necessary and sufficient condition is established
for the existence of an invertible mapping of a system of
nonlinear differential equations to a system ofllinear
differential equations based on a group analysis of differential
requations. - It is shown how to .construct the mapping, when it
exists, from the invariance group of the nonlinear system.

It is demonstrated that fhe hodograph transformation, the
Legendre transformation and Lie's transformation of the
Monge-Ampere equation are obtained from this theorem. The
equation (ux)pux%-uyy=0 is studied and it is determined
for what values of p this equation is transformable to a
linear equation by an invertible mapping.

Many of the known non-invertible mappings of nonlinear
equations to linear equations are shown to be related to
invariance groups of equations associated with the given
nonlinear equations. A number of such examples are given,
including Burgers' equation u

+uu, -u =0, a nonlinear

XX t

diffusion equation (u‘zux)x-ut=0, equations of wave pfopagation
{vy-wx=0, Vy—avw-bv—cw=0}, equations -of a fluid flow'{wy+vx=0,
wX-vflwp=0} and the Liouville equation Uyy=e

As another application of group analysis, it is shown

u

how conservation laws associated with the Korteweg-deVries
equation, the cubic Schrodinger equation, the sine-Gordon

equation and Hamilton's field equation are related to the
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invariance groups of the respective equations.

All relevant background information is in the
thesis, including an appendix on the known algorithm for
computing the invariance group of a given system of differential

equations.
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INTRODUCTION.

A variety of transformations arises in the study of
differential equations. Two important classes of transform-
ations are’integral transformations, which include the
Laplace and Fourier transformations, and geometrical:itrans--
formations, which include contact and point transformations.
In this work we are concerned with transformations of the
latter type. One of the important aspects of geometrical
transformations is that théir formulations generally do
not depend on the linearity of'differential equations
while those of integral transformations,deﬁgﬁd critically
on it. For this parficﬁlar reason, in connection with
recent developments in nonlinear physics, there has arisen
a revived interest in various geometrical theories of

differential equations [1].

In this thesis we focus our attention on a group
analysis of differential equations [2-9] and its .use for the
study of relationships between differential equations.

More specifically, we are interested in answering the question

when a given system of nonlinear differential equations:can

be transformed into a system of linear differential equations.

There is a good reason to believe that a group analysis of

differential equations is helpful in answering this question.



Before we elaborate the motivation, we need to review some
basic iaeas of geometrical transformations important for
the study of differential equations. 1In order to keep

the geometrical picture simple we only consider the case
involving one dependent variable u and one independent

variable x.

Let w be a vector space with coordinates (x,z,z,z,...)
' ‘1 2

where x¢R, zeR, zeR and consider a mapping w-w:

ZyeaayZ)
1 Qy.
(0.1)

where x', z' and z' are sufficiently differentiable functions

'(x,z,

of their arguments and k=1,2,3,... . Let u(x) be a function
R2R, sufficiently differentiable in the domain of interest

and E(x)=(d/dx)ku(x). If we set
z = u, z = u, k=1,2,3,..., (0.2)
k &k )
then the set wlu] consisting of points

R I x & R (0.3)

(X:Z,i’%,'°°) = (X,u, ’

u,u
12
defines a curve tmore generally a manifold) in w (Fig.1l).

Under the transformation (0.1) the curve ‘wlul is mapped into

(wlul)' whose equation is obtained by introducing (0.2)



into (0.1):
X'=X'(X,U,U, ,U), Z'=Z’(X,U,U, ,U), z'=i‘(x,u,u, .,U)
1 ) 1 q k k 1 Qg
(0.4)
Solving the first equation of %

(0.4) for x and introducing it

into the rest of (0.4) we

obtain z', as functions of

2! A
k

1. ’
X' . Z

wlul: (x,u ﬂf)

v () (x1y. X

z'=u'(x'), z'
k Fig.1

Obviously not all transformations (0, 1)have.the property

v (xy = azaxn)¥ urxn

. 0.5
¥ | (0.5)

When the equality (0.5) is satisfied for any choice of u(x),

i.e.,

z' = u', z' = u', k=1,2,3,... , (0.6)

we call transformation (0.1) a contact transformation.

Namely, a contact transformation maps a curve w[u] defined

by (0.3) into a curve w[u'] (Fig.2) condisting of points
(x,z,2,2,...) = (xj u',u',u',...), x'€R.

It is intuitively clear that in contact transformations



z' is related to x' and z'
k

because z' must behave as
k
the k-th derivative of z!'

N

with respect to .x' when (0.3)

is introduced. Obtaining an.

explicit form of z' in terms
k .
of x' and z' from the condition

that (0.2) yields (0.6) is

X . )
not only messy but also becomes : ° Cge s T

confusing for vector x and vector z.
It is very convenient to replace Eq.(0.2) and Eq.(0.6)

by equivalent differential forms. Eq.(0.2) implies

dz = udx, dz = udx, dz = udx, ...., (0.7)
1 1 2 2 3

and if we use (0.2) it can be written as
dz = zdx, dz = zdx, dz = zdx, ... . (0.8)

If we let z = u in the first equation of (0.8), we find

z=u and if we let z=u in the second we find z=u and so on,
11 11 2 2
recovering (0.2). Thus, we may replace (0.2) by (0.8) which -

we represent collectively by {dz - =z dx=0}. Similarly,
o k  k+1
we replace (0.6) by {dz' - =z'dx'=0}. We redefine.a-
k k+1

contact transformation as a transformation (0.1) which has



the property that:

if {dz - z dx=0}, then {dz' - z'dx'=0}. (0.9)
k k+1 k k+1

We call (0.8) a tangent (or contact) conditionT

The simplest contact transformation is a point

tt

transformation:

x' = x'(x,z), z' =z2'(x,z), i' =

and the next simplest one is Lie's contact transformation

+ The first equation of (0.8) written in the form of scalar
product (dz,dx)«(1, -z)= -implies that the vector (dz,dx)

is perpendlcular to the vector (1, —z) which represents
a normal vecfor to-a cufve z-u=0 when z is replaced by u.
Consequently, the variation (dz,dx) must always be tangent :to

the. curve z-u=0. In order to determlne %' from z' and x'
we introduce z',x' into dz'-z'dx'=0, i.e.,
1
=d 11 dx'=(1 o1 > 1 - 1! < ! < !
0=dz % dx (zxdx+zzdz+zzd%+...) % (xxdx+xzdz+xzd%+...),
7= Z 1 <= | L

where Zy axz s Xy axx , «+. . We eliminate dz, di’ d%,
‘using (0.8), and obtain

=(71 71 7z - X X

0 (zx + Zzi + z%% + ...) %'(x% +,x£% + %% + ...

Solving this for z', we obtain %' Using this z in dz'—%'dx'—
1

we find é" and so on.

t++ Usually a set consisting of the first two equations in
(0.10) is called a point transformation. In the following
we call (0.10) a point transformation.



The most general contact transformation of the form (0.1)

was considered by Bdcklund [2€].

A particularly important class of contact trans-
formations is that of infinitesimal contact transformations.

Consider a transformation

X' = X + e8(X,2,2,...,2)
1 P ‘

z' =z + eg(x,z,2,...,2) (0.12)
1 q

i' =z + EiFX;Z’%"°"a£)’ k=1,2,3,...

where £,z and ﬁ are functions of their arguments and e is

a small parameter. We call (0.12) an infinitesimal contact

transformation if it satisfies the condition (0.9) to order

0(e). When &=£(x,z), z=t¢t(x,z). the transformation (0.12) is

called an infinitesimal point transformation and when £,z

and % are functions of x,z,%, the transformation is called

Lie's infinitesimal contact transformation. All other cases

t Usually the term contact transformation refers to Lie's
contact transformation. Lie's contact transformation has
the property of mapping two curves z=u(x) and z=v(x) which
are tangent to each other at x, into two curves z'=u'(x')
and z'=v'(x') which are also tangent at the transformed point
xb. Under the definition (0.9), not all contact trans-

formations have this property.



will be called higher order infinitesimal contact trans-

formations.

As in the case of finite contact transformations

(0.1), once £ and ¢ are given the function i are determined

from the cohdition (0.9) as described in the footnote on

page five.

A succession of infinitesimal transformations (0.12)

leads to a finite transformation which is called a group

transformation.

Its geometrical picture is the following.

Eq.(0.12) associates a variation vector (AX,AZ,A%,...)=é(€,§,§,...

with every point (x,z,%,...) and defines a flow in the space

w (Fig.3).

Let the

equation of a flow

curve originating at

a point (x,z,%,...) be

x'=x'(x,z,z
1
z'=z'(x,z,z,
1
z'=z2'(x,z,z,
k k 1

where a is a parameter of the curve.

denote w=(x,z,z,...) and write (0.13) as
1

where T(a) is generally a nonlinear operator acting on w.

.;a)
.;a) (0.13)

.;a),

?

N

For simplicity, we

(0.14)



The transformation (0.14) forms a one-parameter group
of transformations. Namely, there exists a parametrization

- with parameter a such that

o' (@' (w;a);b) = &' (w;a+b), @'(w;0) =w, (0.15)
or equivalently,
T(b)T(a) = T(a+b), T(0) = I, (0.16)

where I represents the identity transformation. The explicit

form of the operator T(a) is given by

© 7
T(a) = L ) ET Qn, (0.17)
L nt
n=0
where 2 is defined by
L = gax + ;az + %az.+ %az + ..., (0.18)
1 2

The operator 2 is called a generator of the group T(a).
If (0.12) is an infinitesimal contact transformation, then
its "integrated form" (0.13) is also a contact transformation

which we call .a group contact transformation. Depending on the

type of infinitesimal contact transformations mentioned above

we call the corresponding group contact transformations

a point group transformation, Lie's group contact trans-

formation or a higher order group contact transformation.




The first two group transformations were studied extensively
by Lie [2,4] in the last century while the higher order
group confact transformations weré intfoduced recently by
Anderson, Kumei and Wulfman [9,10,11,12]. They are also

called Lie-Backlund (L-B) group transformations 13 .

Up to now a picture of differential equations has been
absent. To find the significance of contact transformations

in the study of differential equations we consider an equation

f(x,z,z2,...,2) = 0, (0.19)
1 n
where f is an analytic’ function Rn+2-+R. Eq.(0.19) defines a
hypersurface (or a manifold) in the space (x,z,%,{..,z).
. : n
We again consider (0.2). Let w(n)[Q] be the set consisting

of points

(x,2,2,...,2) = (x,u,u,...,u), xeR. (0.20)
1 n n

The set w(n)[u] defines a curve (generally a manifold) in

the space (x,z,z,...,2). Let us demand that the curve
n
w(n)lp] be imbedded on the hypersurface f=0 (Fig.4).

" This will be possible only if the function u happens

to be a solution of the differential equation

f(x,u,u,...,u) = 0. (0.21)
1 n .



When u solves (0.21), we
call w(n)[d] a solution
curve (more generally a
solution manifold). The

projection of the curve

onto the x-z plane defines

a solution curve z=u in - ' !

the usual sense (Fig.4). V/’7§
Z=u

We now suppose that the

contact transformation (0.1) maps the hypersurface f=0 into

a hypersurface

fr(x',z',z',...,z'") = 0. . (0.22)

Since the transformation is a contact transformation,
the curve w(n)[d] is mapped into the curve w(n)[uq (Fig.2)

consisting of points

(x,2,2,...,2) = (x',u',u',...,u"), x'eR. (0.23)
1 n 1 n

Obviously, if the curve w(n)[u] is on the surface f=0, then

the curve w(n)[pﬂ must be on the surface f£'=0 (Fig.5), namely,

wlul o o

> ) R ‘f'(x'.-‘,u',;u',...,u') = ,0' (0.24)
wlu]
<:::?Z:;§’O v In other words, a contact trans-

formation maps a solution of the

A
1




differential equation (0.21) into a solution of the differential
equation (0.24). When the contact transformation maps the
hypersurface f=0 .into itself, the transformation is called

an invariance contact transformation of f£=0. Obviously, such

a transformation maps a solution of the differential equation
(0.21) into another solution of the same equation (Fig.6).
When a solution happens to

be mapped into itself under o1

such a transformation, it is

wul

called an invariant solution -

of the transformation. 'Parti- wlu

/k/f=f'=0

cularly important invariance

contact transformations are .
Fig.6

those which form groups in the

sense of (0.13)-(0.15). We call them invariance group contact

transformations, or invariance groups for short.

Lie [2-@ studied invariance groups extensively and
established the foundation of a group analysis of differential
equations.+ More recently, Ovsjannikov @,7] extended Lie's

theory and‘applié& itwextenéiVéiyuto partial differential

+ From a practical point of view it is important that Lie gave
the algorithm for finding the invariance groups of any given
differential- equation. - W€ give:one explicit example of

- the computation of such &n invariance group in-Appendix3. . .



- equations. Bluman and Cole ES}' used invariance groups to
construct solutions to certain types of boundary value
problems. All these works just mentioned are concerned

with either point groups or Lie's group contact transformations.

It has been found that the Lie-Backlund group transformations
are also useful, particularly for the study of nonlinear

differential equations. It is shown [Appendices 5-7. ]

. t
that the well known infinite number of conservation laws
=0,

admitted by the Korteweg-deVries equation U tuu, +u

t

the cubic Schroedinger equation'uxx+u2u*—iut=0 and the

XX

sine-Gordon equation uxt—sinu=0 are all related to invariances
of the corresponding equations under L-B grousz.r+ More
interestingly,;soliﬁx}-solutions admitted by these equations -
are shown to be invariant solutions of these invariance L-B
groups [Appendix6]>: These findings.lead to a general theoren
[Appendix7lvrthat with“éh§TCOn§eivation 1aw,‘admitted by

a Hamiltonian system,

t Appropriate. references are given'in the appendices.

t+ A group theoretical aspect of conservation laws of the
Korteweg-deVries and sine-Gordon equations was also studied
by Steudel using Noether's theorem 4l . He called groups,
leading to conservation laws, Noether transformations [15,16] .



= 2= (0.25).

is associated an invariance L-B group. of the equation.
Further studies of invariance L-B groups have been reported

17-24],

Now we return to the question posed at the beginning
of this introduction. .Suppose that there exists an invertible
transformation mapping a given system of ‘nonlinear. differential
- equations to a system of linear differential equationsz Weé should
expect that the invariance groups ‘of the two systems have
the same structure. Since it is well known that any linear
system admits an invariance group related to the superposition
principle, it is evident that the .given nonlinear system
must admit the Corrésponding ‘invariance group. From such
an observation, we establish a “theorem .which teils-one

definitively:

1) when a given nonlinear system can be mapped into
a linear system;

2) how to construct the mapping when it exists.

It should be emphasized that in applying this theorem one needs

~

. only ~te calculate .a .system!s invariance infinitesimal--.
contact transformations (0.12) by a known algorithm. Moreover,

the types of infinitesimal transformations to be considered



are simple: in general one may assume £=0, z=¢(x,z,z); for
1
a system, i.e., z is a vector, it turns out that 7 is at

most linear in z (corresponding to a point group).

In the firstvchaptér,.we define and formulate
mathematically those basic concepts which were illustrated
above and lay out the basis for subsequent developments.

In the second chapter we establish the theorem mentioned above.
A number of examples are given. In the third chapter, we
examine non-invertible mappings which connect nonlinear
equations to linear equations. Appendices 5,6,7 consist

of already published works on L-B groups and conservation:

laws.
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CHAPTER 1.

CONTACT TRANSFORMATIONS.

In this chapter we discuss various properties of

transformations which will be considered in subsequent

chapters. All transformations considered.in this work are

basically of '"contact" type. The term '"contact trans-
formation'" will be used in a context more general than it

is usually referred to.

Throughout the work, we adopt the customary sum-
mation rule for repeated indices: Roman indices are summed

from 1 to M and Greek indices from 1 to N.

1.1  <Contact transformations.

Let w be an infinite dimensional vector space with

coordinates

where x = (xl,xz,...,xM)e RM, z = (zl,zz,...,zN)e RN and
M2 o . v . _

ze. R .consists .of. coordinates z. . . with v = 1,2,

i ipig...iy

and ik =1,2,...,M. For instance,



_16_

_ 1 1 N N _ 1 1 1 N
% = (zl,zz, ""ZM—l’ZM)’ % = (211’212’221""’ZMM)-
w(n) denotes the space with coordinates w(n) = (x,z,%,...,é),
where w(o) = (x,z). Let y be a space of functions w(k)+ R,
k=1,2,3,..., analytic in a given domain D(w) of w.
We consider a transformation T:w - w defined by
X' = X'"(X,2,2,...), z' = 2'(X,2,Z,...),
1 (1.1)
z' = %'(x,z,:zi, ), k=1,2,3,
where x! ¢ v, z'Ve v, z!V. . ey. We write (1.1) as
i ii,...1 ‘
172 k
w' = 0w (w) = Tw, (1.2)

and the first n+2 expressions of (1.1) as

w' (M) = Gr(n) ()
A set of equations
dzV¥ - z\i)dx1 =0
(1.3)
azVv . .- z\.) . . .dx. = 0, -k=1,2,3,...
PR PRERE Y ijiye. 1y 377

is called avcontact condition. We express the set (1.3)

simply by'{dﬁ - ﬁidxi = 0}.
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..

Definition 1, The transformation (1,1) is a contact trans-

formation only if it preserves the contact condition, i.e.,

r{di - iidxi = 0} ~ {di' —'iidxi = 0}, (1.4)

Let u(x) be a function RM-+RN. We consider a space

w[u]cw consisting of points

where, as z, u is a vector with components
KX _ _

u: - . =09 ) 9 u’ (x) .
11tz 2k Xip Xi, v P o :

The transformation (1,1) maps the space w[u] into a new épace
which we denote blew[u]. If T is a contact transformation,
then Tw[u] = wlu'] for some function u'(x)., Namely, for

any function u(x) the transformed space Tw[u] :consists-of
points expressed as w = (x,u',?',g',...,u',...) for some

function u'(x),

1.2 Invertible contact transformations,

We call the transformation m,gn) = &'(n)(w) the n-th

‘(D'(O) = (I)'(O). “"(O)’

extended transformation of Given g

‘v(n)’

one can determine w n>0, from the condition (1.4),
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A contact transformation is said to be invertible, or
. (1)

1-1,>if thete exists a:space:w- ‘' in which the n-th

W), (n)

extended transformation is a 1-1 mapping w n=0,1,2,,,. .

b
Under the present difinition (1.,4), .not all contact
transformations are 1-1. Actually only very limited classes

of contact transformations are invertible. Two cases,

z scalar and z vector, are considered separately.

z scalar. Backlund [26] proved for scalar z that the
most general 1-1 contact transformation is the extended Lie
contact transformation. The following theorem by Meyer

[27,28]1 characterizes Lie's contact transformation:

Theorem [Meyer] . A transformation T:w(1)+ w(l),
x'" = x'"(x,z,z), z' = z!' X,z z), z' =2'(x,2,2), 1.5
( 1) ( ,1) z z (x, 1) (1.5)

ow)s RM, AR A

, 2w (1S RM, is a Lie contact
1 T
transformation, i.e.
dz' - zidxi = p(x,z,i)(dz - Zidxi) (1.6)
if and only if
1) ii, i=1,2,...,M, and z' are M+1 independent functions
of x,z,z and satisfy [x!,x!] =0, [z',x!]l= 0,
1 . 1 J 1

2) ii, i=1,2,...,M, are determined from



_i = 1 - <!
9. z' + z.9_z z! (9 xj + ziazxj) (1.7)

b, 2" = 213, X! (1.8)

and p(x,z,%) from

p=3,2' - 213 X! (1.9)

Z z71 k?

1]
~—
~
N

Bt -
e
-
=

]
Ju
g
-
=
-

where the Lagrange bracket, [ ,] , of two functions

¢(x,z,%) and w(x,z,%) is defined by

8201 = (2, 0) (3 b+ 2;3,9) - (3, VI3, ¢ *+ 258,0).  (1.10)

The extensions of the transformation (1.5) to higher order

coordinates 'z', n>1, are found from the contact condition (1.4).
n

Remark 1. In the literature, the term 'contact transformation"

usually refers to Lie's contact transformation.

z vector. For a vector z e RN, N>1, the most general 1-1
contact transformation-is the extended point transformation
[29] of

x' = x'"(x,z2), z' = z2'(x,2), (1.11)

i':w(0)+ RM, E':w(o)+ RN. The transformations for z, n>0,
n

ére determined from (1.4).
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Remark 2. In the present context, a canonical transformation

of classical mechanics

t''=t, q'=q'(p,9,t), p' =p'(p,q,t), (1.12)

t time, q generélized coordinates, p generalized momenta,

corresponds-to a point transformation with t = x,

2 n+l n+2 2n
zZ z ).

1
q = (Z »Z "'°Zn)’ p = ( ’ LIRS )

We write the m-th extensions of (1.5) and (1.11)

and theilir inverses as

wv(m) = &)v(m) (w(m)) = Tw(m), w(m) — J)(m) (w'(m))ET—lm'(m)

and the infinite extensions as (1.13)

W' = H'(w) = Tw, w=oe') = T tur, (1.14)

L]

1.3 Infinitesimal contact transformations.

We consider a contact transformation which depends
analytically on some parameter o and reduces to the

identity transformation I at a=0:

w' = w'(w;a), w w' (w;0) (1.15)

or

T(a)w, T(0)

1
—
.

(1.16)
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Expanding w' in a power series in o, we obtain

n .
a n_ '.
St M (1.17)

g

Il
lhe~1 8
O

Defining an operator

L= glax * C\)az" * Eiazv *
1

i
. . i _ - \) _ - \) _ ——
with g1 = (0 kD) oyt = (0,2 Lgs 8) = (B, EV) g L
we write (1.17) as
| w' = (1 + af)w + Q(dz) (1.18)

where 0(a2) represents terms of order uz. For (1.15) to be

a contact transformation it 1s necessary that c;, C;j’

in & satisfy the recursion relation

D, & (1.19)

where

Now instead of starting from a transformation of

the form (1.15), we start with an operator

v W oV
L= g aX + T az\)'+ Ela (1.20)

+
. 7V e e e
1 1



where El, gvey, and Q;,cgj,... are determined recursively from
(1.19). We consider a group transformation
oL T o n
w' = e Tn = ZO T (L) w. (1.21)
n:

Transformation (1.21) always satisfies the contact condition
(1.4). 1t was previously shown [Appendix 5] that a trans-
formation of the type (1.15) can be represented as an infinite
composition of group transformations of the form (1.21).
Némely, (1.15) cah be written as

2 3

o o
7T Y2 3T %
e

w' = (eagl e 3 coeJu = T(a)w, (1.22)

where Qi are operators of the form (1.20). & is called
a generator of a group contact transformation (1.21).
Depending on the forms of £ and g, the one-parameter groups

(1.21) are classified as

a) Point groups: gi = gl(x,z), gv==;v(x,z)

b) Lie contact transformation groups: z is scalar and
there exists a function G:w(1)+-R such that

i
i _ ) 1.23
£ 3, G, ¢ =23 G- G. (_' )

c) Lie-Backlund groups: all other forms of &i and V.
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The transformation (1.21) corresponding to the first two
cases defines a mapping w(n) - w(n) for any n>0. For the
third case, however, the transformation (1.21) must be
considered in the infinite dimensional space as w->w.

In all these cases, group transformations are 1-1 1in the

. ol .
domain where e exists.

1.4 Properties of generators.

The commutator of two generators % and L' is

defined by

(2,27 = (2&'1 - wvelya o+ (agY - w'zVya ¢+
1
(1.24)

F gl

V
S SO D T

-J

Let A be the space of all generators %. It is easy to

show:

Proposition 1. If f2eX and 2'er, then [2,2'leA.

Thus, the form of the commutator is determined from the two
leading terms using (1.19). From now on we represent the

generators by two leading terms.as & = glax + c“azv.
i



The following property is very useful [in Appendix 61]:

Proposition 2. Generators of the form ¢ = QVBZV commute with

the total derivative operator DX
i

Proof. Noting that Dx.ex, we have
: i

- . v \) = Vo_ vV =
[Q,DX.] (2-1)a, + (fz; - D23, (D, ¢¥- Dy z¥)3,v= 0. O

1 1 1 1 1

We introduce into the space ) an equivalence relation R by:

Definition 2. Two generators & and &' are equivalent 1if

and only if (2 - 2')g|g=0 = 0 for any ge¢y. The equivalence

is represented by & = &',

The symbol |g=0 indicates the evaluation of the quantity for

those values of w=(x,z,i,...) which satisfy the equations

g=0, D_g=20, D_D g = 0, ... . (1.25)

g = £, tleq. (1.26)



Proposition 3. A generator { = glax + gVaZv 1s equivalent
1

N i
to 8 = (z¥- zgg )3,y

Proof. Obviously, & - & = glax_ + zﬁglazv. From (1.19) we
i

find its full expression to be

- A = i . Vv v =
L 2 £ (ax.+ ziazv+ Zijazv+ c.l) £°D. . O

i j i

As a result, elements of the’quotient space‘X@,can be
represented by generators of the form l:=6v(m(m))azv,
evey._ The generatorét&and ) satisfy the same commutation
relation. Namely,

~

Proposition 4. [21,22] = 23 if and only if [21,12]= L-

Proof. From (1.24) we have

- i i v \V _
[2,0,0 = (2485 ngl)axi+ (g2 - %y87)3,v = 2.

~

_ _ vy _ .V 1 i
Therefore, &, = {(Qlcz 22;1) zi(zlgz ngl)}azv.

On. the other hand, we have

AR - {0 »V _ vy g1 i v o .jov
[opagh = Tty - 238y - 85Dy (Bg - E325)

) A \)A i i
a1 *zihaR1 ¢ &P

AV
x. (Bz = E325018,,
1



~ i v A i v

v iV e i
z; (2 E1ij)52+ z; (%, g2ij)51}azv

v \Y v i i _q
thyey = 250y - 25 (0185 - 4581038, 45,

The converse is obvious. U

1.5 Invariance contact transformations.

A set of K C; functions w(n)-+R,

™y - fv(x,z,i,...z), v=1,2,...,K, (1.27)
n

are said to be functiona

iff there exist K components of (%,%,...,z),.denoted by
1 n
yl,yz,...,yK, for which the Jacobian_of_(fl,fz,..,,fK) is
nonzero: |
1 g2 - - K
DUt f ) 2 0 in D(w). (1.28)

We denote by D(w;f=0) the set of points w(n) satisfying the

equations fy(w(n))=0, v=1,2,...,K. K equations .. .-

V™Y =0, v=1,2,...,K, KeN, (1.29)



are said to be independent iff the set of functions f¥ are

functionally independent in D(W)'and;D(wj£=O) is nonempty.
The implicit function theorem ensures that 1f

{£f¥} is a setrof functionally independent functions and

D(w;f=0) is nonempty, then in every neighbourhood of a point

weD(w;f=0) there exists a unique set of K C1 functions

wv(w(n)), v=1,2,...,K, independent of yl,yz,...,yK, with

the property that the functions £¥ all vanish with the

substitutions .
W V@Y, v=1,2,... K. (1.30)

The system (1.30) 1s called an explicit form of the system

(1.29). The system (1.29) is said to be a linear system

iff its explicit form is linear in z,i,...,z, namely,
n

yV = Aﬁzu + oV (x), v=1,2,...,K, (r.31)

where A: is a linear operator defined by

VU _ \ vi Viqig...ip . u

AUZ {au(x) v a (X)Dx.+"“+ a, (x)DX. DX‘...DX.}Z ,
1 13 1s 1
n
. 1.32)
e M s .. ‘ . . (

aﬁl J.r (x)-R, ¢V:RM(XI+R, Defining -an -operator matrix
A= IAEI, we sometimes write (1.31) in the form

y = Az + ¢(x) (1.33)



where y,z and ¢ are column vectors.

We consider a system of equations

f=0, D _f=0, D D f=0, ... (1.34)

where f=0 is the independent system (1.29). We use the

same notation D(w;f=0) to represent the set consisting of
points weD(w) satisfying the system (1.34). The set D(w;f=0)
defines a manifold in w.

" A contact transformation w'=®'(w) is called an

“invariance.contact transformation of the equation f = 0

iff it transforms D(w;f=0) into itself, namely,

£(@' () g (yy=0 = 0 (1.35)

For a group contact transformation (1.21) to be an invariant

transformation, it is necessary and sufficient that

LEW) g yy=p = O (1.36)

local nature of the generators of an invariance group, we have:

Proposition 5. A system of independent equations {fv(w)=0}

and its explicit form'{yv=¢v(w)} admit the same invarilance

group. generators.



Lie gave an algorithm [6,7,23] to determine invariance

group generators 2=£1(w(m))ax_+;V(w(n))azv satisfying the
i

condition (1.36) for given m and n.

Clearly we have

Proposition 6, If 2=%' and % is an invariance group generator

of the system f=0, then %' 1s also an invariance group

generator of f£=0.

Thus, recalling Propositions 3 and 4, we see that for the
study of invariance groups, it is sufficient to consider
generators of the form z=ev(w(m))azv., Often generators of
this form are easier to work with than generators of the
form (1.200) and in the rest of this work we only deal with

such generators.

1.6 Invariance.contact transformations of differential equations.

In §1.1 we introduced the notation w[u] to represent
a space consisting of w given by

M N

w = (x,uy, ,%,...), xeR, u:RM(X)iR .

u
1

When u is a solution of a system of differential equations



f(x,u,u,u,...,u) = 0, | (1.37)
12 n

we call w[u] a solution surface of the differential equations

(1.37). It is clear that for wlul to be a solution surface

it is necessary and sufficient that wlul be imbedded in

D(w;f=0). Now let T:w'=w'(w) be an invariance contact trans-

formation of f(w(n))ﬁo..’Then from the contact property of T we

have, as mentioned in §1.1,

Twlul] = wlu'l, (1.38)

and from the invariance property of T, we have for a

solution surface wlul,

Tw[u] < D(w;f=0), (1.39)

hence wl[u'l must be a solution surface of the equations
(1.37). Therefore, any invariance contact transformation
of f(w(n))=0 maps a solution surface of the differential

equations (1.37) to another solution surface.

1.7 Invariance groups of linear equations.

Generators of invariance group contact trans-

formations of linear equations bear special properties.
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We consider two cases separately:

i) 2 = BV:RM(X)+R

I
D
~

~
o
Q

ev:w(n)+R.

|
[@p]
<
~
L€
~
=
—
—
Q

ii) o =

To be consistent with notations to be used later, capital letters
X,Z2,U,0,... will be used in this section. We use the term
"linear" in the sense defined in §1.5.

1) The first case. It is known that any linear equation

admits a generator of the form L=@v(X)azv. Namely,

" Proposition 7. A system of linear équations.AﬁZ“— V(X) = 0,
v=1,2,...,K, K<N, @ViRM(X)+R, with linear operator Az
defined by
Vol _ Vo \)1 . C L _\)_iliz...in u
VATZ AT{X)+ A= (X)Dy + .0+ A STl X}3D, Dy—-...D 3z
b= AL OO AR Dy e A (aDy Dy, .- Dy, 370
(1.40)

A:l"'J:RM(X)+R, admits a generator L=UU(X)BZU depending
upon an arbitrary solution {U“(X);v=1,2,...,N} of the system
of linear differential equations AﬁU”(X)=O, i.e.,

Ax(X)U“ + Azl(X)Ug oL A:1112"'1n(X)UP L 3.=0,

1,2,...,K.

<
]



: : u - u
Here and in the following, Uij...k Bxiaxj...BXkU (X).

Let Z=(l+cL)Z, c constant and L=UU(X)BZufdefinéd;above.
It is easy to see that if A:Zu—Qv(X)=O, then the Z, a super-

position of cU(X) with Z, satisfies the equation AﬁZH-QV(X)=O.

Definition 3. An operator L=UU(X)BZU i1s said to be a super-

position generator of the equation szu—®v(X)=0, v=1,2,...,K,

if AﬁUU(X)= 0.
It is clear from Proposition 5 that:

Proposition 8. A linear system FV(Q(H))=O, v=1,2,...,K, KsN,

admits a superposition generator L=U“(X)azu of 1ts explicit
form

YV = Aﬁz“‘+ 2V (X). (1.42)

11) The second case. In this subsection, we restrict our-

selves to a linear system Fv(Q(n))=0 whose explicit form

is linear homogeneous, i.e. AzZU=O. In this case, two

types of generators can arise:

a) 0¥ is linear in 2250052, i.e., Ov=BXZU+WV(X)
m
for some linear operator B

'b) oY is nonlinear in Z,%,...,Z.
m



The generators will be called linear generators and non-

linear generators respectively. For a linear system,

we often assume its invariance group generators to be

linear generators as the computation of generators becomes
much simpler. Although this assumption has been found

to be valid for most of linear systems, there exists

no theorem stating the range of validity of this assumption.T)
Indeed, there exist exceptions. For instance, the wave
equation Zyyx = Lyy = 0 admits a nonlinear generator
L=®(ZX+ZY,X+Y)BZ, ©(*,+) being an arbitrary function.

We now show the completeness of linear generators, namely,
that if the system admits nonlinear generators, then they

all can be found by examining linear generators admitted

by the system.

Theorem 1. A linear homogeneous system A:'Zu =0, Aﬁ defined
by (1.40), admits a nonlinear generator‘@v(ﬂ(m))azv iff
the system admits a linear generator of the form

L RVeyaoH L Vi out, L avigig..iizou
{Bu(X)Z + Bu (X2 + ..+ BU 1°2 m(X)Zi112-°'i 1o v

(1.43)

+) Only for a limited class of scalar linear equations

has this assumption been shown to be valid [6;7].
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where

Bvi...j(x) = {3

(1
H Zy..

V@™,

,2=U, .. .,
.J 11

Z=U"
m m
and U:RM(X)+RN(Z) is an arBifrary solution.of a system of

differential equations AKU“=O.

This is a new result and the proof is given in Appendix 1.
According to this theorem, if a linear homogeneous system
admits a nonlinear generator, then the system must admit
a linear generator which depends on an arbitrary solution
of the corresponding system of differential equations.

By viftue of this result, in the study of a linear homo-
geneous system, we may restrict oﬁrselves only to linear

generators of the form

.44)

L= (872" + ¥V)a v (1.45)
U
- where
'BV = V(X)) + BVi XD + ..+ Bviliz"'im X)by, D, ...D
y T B0+ BIOODy . COPx; x5 X3
(1.46)

Bxl"'J:RM(X)+R, and vY:rRM(X)-R.
To illustrate a use of the theorem we consider

the following example.



Example. Consider the equation

Zyx - Zyy = 0. (1.47)

This equation admits a linear generator

L ='{g(UX+UY)-(zX+zY)}aZ (1.48)

where g is an arbitrary function of UX+UY, U being an
arbitrary solution of the differential equation Uyx ~Uyy=0.
In this example, the equation is scalar, hence we drop all

the Greek indices in the theorem. Comparing (1.43) and

(1.48), we have

BOX,Y) = 0,-BX 0, = g(Ug+Uy),  BYOGY) = g(UyeUy) . (1.49)

Comparing (1.49) with (1.44), we look for a function ©

satisfying

6, = 0, @Zx = g(Zy*Zy), eZY ='g(zx+zY). ~ (1.50)

Clearly, we have O=G(ZX+ZY), G being an arbitrary function
of ZX+ZY, and consequently Eq(1.47) admits a nonlinear

generator L=G(ZX+ZY)SZ.

We state a few basic properties of the linear generators.

Their proofs are given in Appendix 2.
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Let B be an operator matrix B =|BE|.

. RS VERT] = =V U Vv_ AV
Proposition 9. If L_(BUZ )azv, L_(BUZ )azv and L—(QUZ )azv

satisfy the commutation relation [L,L]=L, then [B,3]=-7%.

., _ Vol = _ 3V, U
Proposition 10. If L.(BUZ )azvand L (BUZ )azv are generators

of invariance groups of a linear homogeneous system A:Z“=0,

ce 1o VKU
then so is L (BkBpZ )azv.
Let 4 be an operator matrix.A=|AXl.

Proposition 11. L=(Bzzu)3zv is an invariance group*

generator of a linear system 4z=0 iff [4,B]Z =0 for

any Z satisfying AZ=0.

Proposition 12. If L=(B:ZH)SZV is an invarilance group

generator of the system 4Z=0, and if U(X) is a solution
of a system of differential equations 4U(X)=0, then
(B)kU(X) also solves the same differential equations,

ie. A(B)YSU(X)=0, k=1,2,3,...

Invariance groups of linear equations have been
studied extensively in recent years in connection with
representation theories of groups [30,31] and with quantum
physics 5] In these works, problems were formulated

in terms of the linear differential operator B instead of



the operator L= (Bﬁz“)azv. A systematic method of finding

the operator B was first presented by Winternitz.et.ali[SZ,SSJ
in their‘study of symmetries of Schroedinger equations.

The relationship between the operators L and B was first
established by Anderson, Kumei and Wulfman and Propositions

10-12 have been known to them. Proposition 9 is a. new result.

1.8 Contact transformations of the spaces Y and ).

Functions f and generators 2 were defined in
space w. If the space w is mapped into a new space W by
some transformation T, then f and 2 undergo corresponding
transformations. We assume- the transformation T to be a

1-1 contact transformation, analytic in D(w) and write it as

Q= Q(w) = Tw with Q = (x,z,z,%,...). (1.51)
The inverse is written as w=&(Q)ET_1Q. D(W) denotes the
image of D(w), and T the space of functions F:W(k)+R,
k=1,2,3,..., anaiytic in D(W). A represents the space of

generators L of group contact transformations in W.

The transformation T:y-»I'. The transformation of the

function fey by T 1s written as Tf(w(n)) and defined by



Tw™y = ger ln(™)y, (1.52)
The inverse transformation T»>y is defined by
T lr ™y = Frre ™)y, (1.53)

The transformation T:A>A. We write the transformation of

2 by T as TRT_l. Regarding (1.51) as a change of variables

w+ one finds

-1 _ . 5V
TLT * = (zxi)axi + (2ZV)%

7y (1.54)

where X,Z are X,Z components of (1.51). Since the trans-
formation (1.51) is a contact transformation, if feX, then

TAT YeA. TIn view of Poposition 3, we have

TLT

ASATY S 1.55
(22 22X,y | (1.55)

Similarly,

A%

T “LT = (Lz Z:Lii)azv. (1.56)

We let £=8v(w(m))azv and L = ev(n(m))azv and consider two

cases, z scalar and z vector, separately.

z scalar. As mentioned in §1.2, the most general 1-1 contact

transformation in this case 1s the extended Lie contact. trans-
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formation. It takes the form

Xl = Xi(xsz,i)’ Z = Z(Xazsi): Zl = Z.i(x,z:i),
(1.

Using (1.7)-(1.9) where we let x'=X, z'=Z, %'=%,...,
we obtain:from (1.55) and (1.56) the expressions

Te(w(m))aZT"l et teMyo(r 19(1))}3 (1.
and

_1 .

T e@™)ya,1 2 fo(re™)owMyra, (1.

where

o1 ey = @y and o(eM)) = oyt

w=w ()
(1.
with o)y = 0,1 - 10 %,
z vector. In this case the most general 1-1 contact trans-
formation is the extended point transformation:
X; = X.(x,2),  z¥ = 2V(x,2), ..., (1.
yleldlng
16V (0™ya_,17t 2 feM (1 Ty Y Moy 9(1))}azv, (1
where
MCaR IR BRI TR AN A T SR Iy (1.

57)

58)

59)

60)

61)

.62)

63)



and
1o @™o, 1 é'{e”(Tw(m))oﬁ(w(l))}aZv, (1.64)
where

ov(w(l)) =‘{Bzuiv - 2;8

. 2153  god () (1.65)

From these results follows that:

Proposition 13. An operator L=@v(9(m))azv is an invariance

Lp=f (0 ™y =0

group generator of the equation F(Q(n))=0 iff T
admits the generator (1.59) (z scalar) or the generator

(1.64) (z vector).



CHAPTER 2.

- INVERTIBLE MAPPINGS OF NONLINEAR SYSTEMS TO LINEAR SYSTEMS

In this chapter, we study transformations mapping
nonlinear differential equations to linear differential
equations in a 1-1 manner. Based upon the group analysis
of differential equations, we obtain necessary and
sufficient conditions for the existence of such trans-
formations. The established theorems not only allow us
to determine the existence of the transformations but
also enable us to actually construct these transformations

from invariance groups of the nonlinear equations.

In the following analysis, two types of trans-
formations are considered:
1) The-invariance group transformations of differential
equations; and
2) The mappings which transform nonlinear differential

equations to linear differential equations.

Theorems will be proved based upon the followling observations.
Clearly if there exists a 1-1 mapping between any two
differential equations it must inject properties of one

equation into the other, including their invariance
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)
properties. For this reason the often ignored fact,
mentioned in §1.7, that any linear differential equation
aamits a superposition generator becomes significant.
As we have seen, this particular generator depends upon an
arbitrary solution of the linear equation. It follows then
that any nonlinear equation transformable to a linear
equation by a 1-1 mapping must admit a generator which depends
upon an arbitrary solution of some linear differential

1)
equation.

2.1 Theorems on the existence of 1-1 mappings.

We consider two cases, z scalar and z vector,
sepérately since each admits a different type of 1-1 contact
transformation. First we consider the case z scalar.

In the following theorem, the Lie contact transformation
discussed in §1.2 will be used with new notations

X=x', Z=z', Z=z"',
11

t) The idea of comparing invariance groups of differential
equations 1n the search of mappings connecting the equations
was first used by Bluman in his study of Burgers' equation
[34 1and it was applied to the study of mappings of one
dimemsional linear parabolic equations to the heat equation [35].

++) The results in this chapter and a part of the results in
the next chapter have been reported as Technical Report
81-3 of the Institute of Applied Mathematics and Statistics,
University of British Columbia.
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Theorem 2. A scalar n-th order nonlinear equation

f0™y = £(x,2,2,2,...,2) = 0, xR, zeR, (2.1)
12 n
is “transformable by a 1-1 contact transformation to a
linear equation if and only if the equation f=0 admits
a generator & of the form

) =,{o(w(1))UIX“¢(1)j)}aZ, | (2.2)

where

1) U(X);RM+R is an arbitrary solution of some n-th

order linear differential equation

AUz A F AT (OB, + ...+ ALy <L ..Dy . JU =10,
X; o0 RS G TR ¢
1 117 Tin

and (2.3)
2) X(m(l)):w(1)+RM is a component of a Lie contact
transformation
x =k, 2=z, z-20M) (2.4)
and |

= s -1

O(w(l)) - {p(w(l))}_l = (322 - Z2.9._X.) (2.5)

The transformation (2.4) maps Eq.(2.1) to a linear equation

which has an explicit form 4Z-96(X)=0 with 4 defined by (2.3).
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Proof. Suppose that Eq.(2.1) is transformable to a linear
equation by an extended Lie contact transformation.w>Q. By
Proposition 8, this linear equation admits the superposition
generator L=U(X)8Z of the equation AZ-¢(X)=0. Hence,
according to Proposition 13, Eq.(2.1) must admit (2.2).

Conversely, suppose that Eq.(2.1) admit a generator
of the form (2.2) with the propefties 1) and 2). The
trénsformedvequation of Eq.(2.1) by (2.4) is written. as
Tf=P(X,Z,%,...,%)=0. In view of Proposition 13, F=0 admits
the genefator L=U(X)BZ. Thus, by the invariance condition
(1.36), we have

LF = F,U + F Uy v ...+ Fy U . =0 (2.6)

7 7 .. A T P |
1 1112...1 172 n

n

for any Q(n) satisfying F(Q(n))=0 and for any U(X) satisfying
the differential equation (2.3). It is easy to show that
(2.3) and (2.6) 1involve the same set of U’Ui""' . We
assume without alloss of generality that both contain U.

Eliminating U between the two equations, we get

) i i
0 (AFZi ATF U + (AFZij AYEU (2.7)

Since U represents an arbitrary solution of Eq.(2.3), at
any point X an arbitrary set of values-may be assigned to

Ui’Ui ., and thus all the coefficients in (2.7) must

j , LI )
vanish. This is possible only if F has the form G(4Z,X),
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G(*,+) being an arbitrary function. Therefore, the extended
transformation of (2.4) maps Eq.(2.1) to an equation
GMAZ,X)=0, which is solvable in the explicit form

Az-9(X)=0. O

In this theorem, z,zi,...,Z,Z.,... are coordinates

i
of the spaces w, W. Because of the contact condition (1.4)

imposed upon T this theorem implies:

Corollary 1. A scalar nonlinear differential equation

f(x,u,T,...,u) =0, X € RM, u:RM(x)+R (2.8)

is transformable to a linear differential equation by a

1-1 mapping if and only if the equation f(x,z,%,...,ﬁ)=0
admits a generator of the form (2.2). The mapping is given
by the extension of (2.4) and it transforms Eq.(2.8) iﬁto

a differential equation which is solvable in an explicit

form

AU - o(X) = 0. | (2.9)

We now turn to a system of nonlinear equations.

We have:
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Theorem 3. A systém of K independent n-th order nonlinear

equations

Vw™y - fv(x,z,i,g,...,ﬁ) =0, v=1,2,...,K, K<N,

(2.10)
XERM, zeRN, is transformable by a 1-1 contact transformation
to a linear system if and only if the system (2.10)

admits a generator of the form

= M \Y
2 = {U (X(x,z)lou(x,z,i)}azv (2.11)
where
1) UV(X), v=1,2,...,N, is an arbitrary solution of

some system of n-th order linear differential equations

AV vy vi . _ vig...1 : M R
Ut = {AEX) -+ AST(X)D + ...+ A n({x)p i Mgt =0
S AR ATTOOD e v A (X)Dy, oDy 30 = 0,
(2.12)
v=1,2, ,K, and
% L (0) oM . .
2) X{(x,z):w +R" is a component of a point trans-
formation
X = X(x,z), 7 = 7(x,z2) (2.13)
with inverse transformation x=x(X,Z), z=z(X,Z) and
v =V v -
= {3,yz" - z: . : 2.14
7 (52,8 = g i%zu%i ! X=X,2=2. (214
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The extended point transformation of (2.13) maps Eq.(2.10)

to a linear system with an explicit form

Azz“ - o¥(X) = 0, v=1,2,...,K. (2.15)

Proof. We recall that the most general 1-1 contact trans-
formation involving vector z is the point transformation.
Suppose that there exists a point transformation
X = X(x,z), % = 7I(x,z), % = %(x,z, ), ... (2.16)
mapping Eq.(2.10) to a linear system (2.15). By Proposition 8
this linear system admits the superposition'generator
L=Uv(X)BZv. In view of Proposition 13 the system (2.10)
must admit the generator (2.11) with properties 1) and 2).
Conversely, suppose that Eq.(2.10) admit the

generator (2.11). Under transformation (2.13), the

~generator (2.11) is transformed into
L = UV(X)aZv (2.17)

and Eq.(2.10) into, say, Fv(X,Z,%,...,Z)=O, v=1,2,...,K.
n
The system‘{FV=O} is solvable in explicit forms for

K components of the Z,Z,...,Z. Without loss of generality,
e 12 n
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for these we can choose Z;, v=1,2,...,K, and write the

explicit forms as
ZX + oV (X,2,2,...,2) = 0, wv=1,2,...,K, (2.18)
1 n

where ¢v are independent of Zg, u=1,2,...,K. According to
Proposition 13, the system'{Fv=0} admits the generator

(2.17), and hence so does the system (2.18). Thus,

Vv

AY]
Up * 971

b, gV M v 1 ,
OF ol e T oy . U5 i 0, (2.19)

1---1 1°"""n
where v=1,2,...,K and ¢;u=azu¢v, etc.. This holds for
any U(X) satisfying the differential equations (2.12).
It is easy to show that Eq.(2.19) can involve only those
U“,UE,... appearing in Eq.(2.12). Eq.(2.12) is solvable
for Ug, u=1,2,...,K. This i1s seen as follows. Suppose
this be not the case, i.e. rank [A31|<K, u,vsK. We fix X at
x=x9 and assign to Uv(XQ), UX(XQ), U;j(XQ),.,i a set of
valﬁes consistent With Eq.(2.12). Here, the indices on
UE(XQ) are restricted either to i>1 or to’{i?1,§>K}.
For this set of values, there exist non-unique values
of UX(X?), v<K, satisfying Eq.(2.12) because of the above
rank condition. On the other hand, the introduction
of the same set of values into Eq.(2.19) uniquely determines

the values of UX(X?). This contradicts the condition that



Eq.(2.19) holds for any solution of Eq.(2.12). Thus,

Eq.(2.12) is solvable as

N Tviou TVit..oipoM S _
1 Y " Ui + ... 0+ Ap nUil...i= 0, v=1,2,...,K.

Eliminating UX from (2.19) and (2.20), we have

_ v vV V.. vl L v “vii...1
= (byu- AU)U“ + (¢Z§_ A )U? toL (¢z§ . -AVM nyuk. ..,
1 o e o

The equality (2.21) is possible only if

oV = AJz + AVTZE e e ALzl e eV (0
| el

where Axlzo for u<K, and consequently the explicit form
(2.18)of the transformed system {FY=0} is linear. It is
also clear that Eq.(2.18) is equivalent to Eq.(2.15). O

As in the case of scalar z, from this theorem follows:

Corollary 2. A system of K independent nonlinear differential

equations

fv(x,u,%,...,g) =0, v=1,2,...,K, K<N, (2.22)
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XGRM, u:RM(x)+RN, is transformable by a 1-1 mapping to

a system of linear differential equations if and only if
the system fv(x,z;i,...,z)=0 admits a generator of the

n
form (2.11). The mapping is given by (2.13) and it trans-

forms Eq.(2.22) to a system solvable in explicit form as

AXU“ S V(X)) = 0, v=1,2,...,K. (2.23)

2.2 Remarks on the use of theorems.

These results just obtained ensure that 1f a given
.system~ofjnbﬁIineaf equations -is transformable ‘to a system
of 1inear.equations«byaa_l-l mapping, one can always find. .
the mapping by examining the nature of the invariance group
of the nonlinear equations. The type of groups to be considered
depends on the dimension of.the.space. z..
| For a scalar equation we need only to consider a

generator 2 of the form
2 = 08(x,z,2)3_ . ' (2.24)
1°°2

If the equation is transformable to a linear equation, then
it admits a generator of the form (2.2). It should be
emphasized that the function X(w(l)), the factor c(w(l))
and the linear differential equation (2.3) can all be

found by examining the generators admitted by Eq.(2.1).
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Once X is obtained, the function Z(w(l)) is determined from
the condition [Z,Xi]=0 which represénts a system of first
order partial differential equations for Z. At this point,
Z still admits functional arbitrariness. From Z and X we
determine g.using'tpnditions‘(1;7) or (1.8).- "Next-we:use
(2.5) for the Known'p=o‘1 to limit the arbitrariness in Z.
The resulting transformation X=X, Z=Z, %=% maps the non-
linear equation to an equation with an eXplicit form

AZ - ®(X) = 0. The form of ¢(X) depends upon the remaining
arbitrariness:in Z.

For a system of equations, in view of (2.11) and

(2.14), we need to consider generators of the form
2 = {¥(x,2) - z?glﬂx,z)}azv. (2.25)

By Proposition 3, (2.25) is equivalent to a generator of

a point group

L = Ei(x,z)axi + gv(x,z)azv.
If there exists a mapping to a linear system, we can find
the functions X(x,z), OX(X’Z’i) by comparing the resulting
invariance group generators (2.25) with (2.11). The functions
Zv(x,z) are to be determined from these functions using
equations (2.14). Eq.(2.12) is found on determining the

invariance group.
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Remark 1. It is possible for differential equations to admit
generators whose forms are more general than those of

(2.2) or (2.11) with the forms (2.2) or (2.11) as special
cases. The Monge-Ampeére equations of a special type are
such examples as we see in the following examples. A system

of ordinary differential equations also admits such generators.

2.3 Examples.

To illustrate the use of our theorems, we consider
some well known equations transformable to linear equations.
Since the linearization of differential equations
fYCx,u,%,...,%)iOaiS equivalent-to..that:of. the equations
fv(x,z,%...,%)=0 by a contact transformation, we only deal

with the latter. In the following examples we let X1=X,

X,=y and, where convenient, adopt the customary notations

zX=p, zw=q, ZXX=r’ ny=s’ zyy=t.
" A. The equation Zox * %(ZX)Z - zy = 0.
We consider the equationJr
£=2__ +%z)% -2 =o0. (2.26)
XX X y

+ This is an integrated form of Burgers' equation

z +zz -z =0 which will be discussed in 3.1,
XX x “y



The generator (2.24) is now £=6(x,y,z,zx,zy)az. Applying

Lie's algorithm, we find that Eq.(2.26) admits

>
1

2 2
1 T Ofzy o yxz s BxT 4y)d 0 0y = (yzod xz, )0,

23 = Zyaz’ 24 = zxaz, 25 = az, (2.27)
=1 = —1/22
Q6 (yzx + x)az, 27 U(x,y)e az,

where, .in % U(x,y) 1s an arbitrary solution of the heat

7,

equation . U__ --UY

x o-=:0, This indicates that Eq.(2.26) is

y
equivalent to a linear equation. To find the mapping, we

Lz

compare &, with (2.2) to get X=x, Y=y and o=e From

7
the conditions [X,Z]=[Y,Z]=0, we obtain Z = Z(x,y,z). Thus,

the mapping is a point transformation. From (2.5) and

- 1 . = 1 . .
p=(0) l=eZZ, we find that BZZ=eZZ. The mapping is then

Lz

X = x, Y = vy, Z = 2e + h(x,y), (2.28)

where h(x,y) 1s an arbitrary function of x and y. It is
easy to check that the extended point transformation of

(2.28) maps Eq.(2.26) to the linear equation

42 - 9(X,Y) = Zyy - Zy - (hyy - hy) = 0. (2.29)

Setting h=0, from Corollary 1 we see that the transformation



Lu
X =x, Y=y, U= 2e (2.30)
. . . 2
. 1/ - =
maps the dlfferentlal equation u '+ 2(ux) uy 0 to
the heat equation AU=UXX—UY=O, and moreover the inverse
of (2.30),
x = X, y =Y, u = 28n(%U) (2.31)

defines an implicit solution u(x,y) of this nonlinear
differential equation for any solution U(X,Y). In this case

the explicit form is

u = 2en{sU(x,y)}. (2.32)

B. Hodograph transformations.

In this example we let zl=w, 2=v and consider

a system of quasilinear equations

£1 = alx(w,v)w + aly(w,v)w + blx(w,v)v + bly(w,v)v =0, 1i=1,2,
X y X y
(2.33)
where the coefficients a's and b's are functions of w and v.
For the invariance group of this equation we have:

Proposition 14. Provided J=wxvy-v wyiO, the system (2.33)

X

admits a generator of the form



g = -{Ul(w,v)wx+ Uz(w,v)wy}aw -'{Ul(w,v)vx+ Uz(w,v)vy}aV

(2.34)
where'{Ul(w,v),UZ(w,v)} 1s an arbitrary solution of the

system of linear differential equations

. wiy 1 iy 1 .ix 2 ix 2 _ c
b (w,v)Uw a (w,v)UV b (w,v)Uw-+a (w,V)UV 0, 1i=1,2,

o . (2.35)
where U'=3 Ul, Ul=3 U
woOw vV v

i

Proof. Since Dxfi=Dyf1=0, we find that

- Q,fl

Il
+
+

1, 1x iy 2..1X iy
wXUw(a w a wy) VyUV(b Ve * b Vy)

-+

W Uz(alxw + atlw ) + V,Ul(blxv + by )
Y W X y Xy X y

-+
+

v Ul(blxw. b w )+ W Uz(alxv + ay )
X W X y y v> X Y

2. 1x
Vwa(b W

-+
-+
+

iy 1, 1x iy
b wy) wXUV(a v, t @ Vy).

Using Eq.(ZiSS) in the first two rows of this expression,
we find that
1

o f = J. byl

_ 1 ix,2 ix,,2
f1=f2=0 w

iy
a UV b UW + a UV)

which vanishes by the condition (2.35). U

To construct the mapping to a linear system,



we compare (2.34) with (2.11) which in the present case

takes the form

S I | | el e on 2 L 2o oy 2
g = {U (X,Y)ol + U (X,Y)oz}aw + {U (X,Y)ol + U (X,Y)GZ}BV.

-= —= l:._ ; 1:— = - 2:_
Clearly X=w, Y V, 01T Wy, Oy wy, 0= Vys Oy Vy' The
. . . vV - - - -
definition of_ou leads to 8wx—1, BVX—O, awy—O, avy—l. Thus

we have a solution x=W, y=V. Combining these together, we

find the hodograph transformation [ 36 ]
x =W, 'y =1V, w = X, v =Y (2.36)

which maps Eq.(2.33) to a linear system

1,0 _ 1y % 41X 1x =
AUZ b= (X, Y)Wy - a™” (X, Y)Wy - b" 7 (X,Y)Vy + a (X,Y)Vy. 0,
(2.37)
where Zl=W, 7%=y and i=1,2.
C. The Legendre transformation.
We consider a second order quasilinear equation
f = a(p,q)r + 2b(p,q)s + c(p,q)t = 0, (2.38)

where p,q,r,s and t denote the variables defined at the



beginning of this section and a,b and ¢ are functions

of p and q. We have

Proposition 15. Eq.(2.38) admits a generator 2=U(p,q)az

depending on an arbitrary solution U(p,q)‘of the linear

differential equation

= - 2b =0 2.39
U a(p,q)qu (p,q)qu + C(p,q)Upp , ( )

where U__=(3 )%U, U_ =3 5 U, U__=(3_)°%U.
pp *°p pa “p°a -’ “aq” ‘‘q

Proof. Introducing w=p, v=q, W ST, vy=t, wy=vX=s, we write

Eq.(2.38) as a system

a(w,v)wx + b(_w,v)(wy + vx) + c(w,v)vy =0 (2.40)

wo-v_ = 0. ' (2.41)

According to Proposition 14, this system admits the generator
of the form (2.34) where {Ul,UZ} is an arbitrary solution

of the linear differential equations

c(w, VU, - b(w,v) (UL + UZ) + a(w,v)UZ = 0 (2.42)
1 .2
ul - ul - o, (2.43)

Eq.(2.43) allows us to introduce a function U(w,v) with
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a property
1 N 2 _ _
U =535 U=1U_, U =93 U=10_, (2.44)
w w v %
and then Eq.(2.42) takes the form
al - 2bU + cU = 0. (2.45)
vV wv WW

Introducing (2.44) into (2.34) and using (2.41), we find
that & = (DXU)aw + (DyU)aV. Recalling that w=p=z and
V=q=zy, we see that this i1s the first extended part of the

operator 2 = U(p,q)az, and hence follows the assertion. [

In order to construct a mapping of Eq.(2.38) to a
linear equation we compare‘the generator 2=-U(p,q)az with
(2.2). Clearly, X=p, Y=q and o=1. To find Z, we use

[2,%]=[Z,Y]=0, i.e.,

and Q=ZY. Now from (2.5) with o=1, we get Zu=1,

with P=ZX
and consequently Z=-z+px+qy+h(p,q) for an arbitrary function h.

Setting h=0, we get the Legendre transformation [36]:



X=P, Y:q’ Z=‘Z+PX+‘CD’,P=X, Q=y
(2.46)
This transformation maps Eq.(2.38) to
AZ = a(X,Y)T - 2b(X,Y)S + c(X,Y)R = 0 (2.47)
where T=ZYY’ S=ZXY and R=ZXX’
D. Lie's Theorem on the Monge-Ampére equation.
The Monge-Ampere equation takes the form
£ = A(rt - s°) + Br + Cs + Dt + E = 0, (2.48)

where the coefficients A,B,C;D and E are functions
of x,y,z,p and q. In studying this equation, the concept

of intermediate integrals plays an important role [37.].

An equation
Lo ey = o, (2.49)
u:w(-l)—rR, B:w(l)—»R, I(s,*) an arbitfary function R2->R, is

said to be a general intermediate integral of Eq.(2.48) if

o and B satisfy the equality

(Dya) (DyB) - (Dyoc)(ﬁDXB) = f. (2.50)



Lie [ 38,371 proved a theorem which in our notation reads as

" Theorem[Lie] . A Monge-Ampére equation admitting two

general intermediate integrals Il(a1,61)=0 and Iz(u2,82)=0

is transformable to the equation ZXY=0 by a Lie contact

transformation Q(l) =Q(1)(m(l)) whose four components are

given by

Two intermediate integrals in this theorem are

related to an invariance group of the corresponding

Monge-Amp&re equation:

Proposition 16. A Monge-Ampére equation possessing two

general intermediate integrals Il(a1,81)=0, i=1,2, admits

two invariance group generators

b= oMhrtet e, i-1,2,

where 0—1 = p = [ul,Bl] = [aZ,BZ].

(2.51)

(2.52)

" Proof. It is easy to check that the equation ZXY=0 admits

'generators Ll=Il(X,P)BZ and L2=IZ(Y,Q)3Z with arbitrary

1 2

functions 1

theorem above, there exists a Lie contact transformation

and I®. On the other hand, according to Lie's



mapping the Monge-Ampére equation in question to ZXY=O.
In view of (2.51) and Proposition 13, the inverse of this

transformation maps L1 and L2 to (2.52). O

The generators (2.52) appear to have differentnfgrms]from

the generator (2.2). However, they contain (2.2) as a

special case. To see this we choose special forms I1=Il(a1),
2

I ;IZ(GZ) and let £=21+22. Then from (2.52) we obtain

= oittel) « 17® e, = oruet,e®a, . (2.53)

Observing that U(X,Y)=11(X)+IZ(Y) is the general solution of
the equation UXY=O, we see that indeed the Monge-Ampére
equation in question admits a generator of the form (2.2)
with X=a1(w(1)) and Y=a2(w(1)). From this result it is
clear that we can find Lie's linearization mépping of

a Monge-Ampére equation to Z when it exists, by examining

xy=0>

the invariance group of the equation

E. The equation (zv)azXX - zyy = 0.

A special Monge-Ampére equation of the form

g(zx)zXX - zyy = 0, g:R+R, (2.54)

arises in a variety of physical problems such as nonlinear



vibrations (g(zx)>0)[39], and irrotational transonic flows
(g(zx)=1+azx)[40]. In the following, we consider a class

of equations of the form

f = (ZX)O‘ZXx - zyy = 0, o real, (2.55)
and apply the foregoing analysis to examine a possible

mapping to a linear equation other than the Legendre
transformation. The invariance group of Eq.(2.55) depends
upon the value of o. Assuming a generator to be of the form
(2.24), i.e. 2=9(x,y,z,p,q)8z, we find that the following

cases occur:

(1) o # 0, -2, -4:

=
1t

1 {-(a+4)xpq + azq - 2(a+1)yq2 - 4yf pa+1dp}az

=
1}

2 {(a+4)xp + (3a+d)yq -az}az, (2.56)

=
1}

1. = =
3 = (z *+ Bayq)s , &, =yd , 2 =U(p,a)3, .

(2) oo = -2: 21, QZ’ QS, 24, 25 as above and 26 = zpaz. (2.57)
(3) a = -4 84 = (xp -yq)3,, %, = U(p,a)3d,,
1..-1 -1
L7 = {pI"(p "-q,(p "-a)y+z)ls,, (2.58)

=
L1}

4 {pIZ(p'1+q,(p'1+q)y-z)}az.



(4) o = 0: &, = ZBZ, 22 = h(x,y)az,

(2.59)
R, = I'(x+y,p+q)d 2, = 1% (x-y,p-a)?
3 ? z’ 4 ? z°
In all cases, the function U(p,q) represents an arbitrary
solution of the differential equation
Uu_ - (Mm% =0 : (2.60)
PP qq :

and the corresponding generators are related to the Legendre
transformation discussed above. The function h(x,y) in

the last case is an arbitrary solution of the differential
equation hXX - hyy = 0 and the corresponding generator 2%

2

is the superposition generator of the equation z__- 0.

XX Zyy=
'Il and I2 in the last two cases are arbitrary: functions
of their arguments and the equations Il=O and IZ=0 are the
general intermediate integrals of the corresponding equations.
We examine the case a=-4 in some detail. The equation
is
-4

(zx) Zox ~ zyy = 0. : (2.61)

Comparing (2.52) and the generators %< and L4 of (2.58),
and using (2.51), relations [X,Z]=[Y¥,2]=0 and (1.8),(2.5),"
we find the Lie contact transformation mapping (2.61)

to Zyv=0 to be

XY



-1 -1 -1
X=0p -q, Y =p " +q, Z = -2p (z - px -qy),
(2.62)
_ -1 _ -1
P=-(p -qQ)y -z, Q=( "+ qy - z.
The inverse transformation 1s
X =% - 5(X + Y)(P +Q, y = -X + )" e - Q
(2.63)

20x+Y)"h, g = m(-XeY) .

N
1}

- x+Y) T rpexQ), p

If we introduce the general solution of UXY=0, U=F(X)+G(Y),
where F and G are arbitrary functions, into (2.63) by Z=U,
P=UX and Q=UY’ then we obtain a parametric representation
of the general solution of the differential equation

-4

(ux) Uy " uyy = 0. (2.64)

Explicitly this 1is

x = L{F(X)+G(Y)} - L(X+Y){F'(X)+G'(Y)}
y = -x+Y) "LE () -6 ()} (2.65)
u o= -+ T LYR (0 +x6 () ),

where F' and G' denote derivatives.

We note in passing that Eq.(2.61) is also trans-
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formable by the Legendre transformation (2.46) to

-4 _
Zey - (O "2y = 0, (2.66)

and in turn Eq.(2.66) can be mapped into Z,,=0 by a-

XY

composition of the transformations (2.46) and (2.62).

Explicitly, the transformation

x = 2X+Y) Y,y = 5(-x+Y), oz = (X+Y) 1z
. -4 _ ) _
maps the equation Zox (x) zyy = 0 to the equation ZXY—O.
Remark 2. Let Eq.(2.55) be written as
o+l -
DX(;X) - Dy(a+1)zy = 0. (2.67)
If we introduce a potential b1 by
a+l _ o Y
(zx) = Zy’ (a+1)zy = 2., (2.68)
7 satisfies the equation
N By 0 _ - -1
(Zy) zyy Zx 0, B=-a(a+l) . (2.69)

The -transformation (2.68) may be viewed as a Backlund



)
transformation between Eq.(2.67) and Eq.(2.69).

For a=-2, the transformation (2.68) becomes an auto-Backlund

transformation:
-2 ) _ (2.68) v y-2v o _
(zx) 2 x zyy 0 «+———"2» (zy) zyy Zox 0. (2.70)
For a=-4, Eq.(2.69)takes the form
AN VI n _
(zy) 3 zyy -z, =0 (2.71)

and the transformation (2.68) together with the general ..~
solution (2.65) yields a.general solution for Eq.(2.71).
Seymour and Varley [41] obtained the general solution of
Eq.(2.54) when g(zx) satisfies the equation

5 ' 7

é%&:g = ug®™ + vg¥ , u,v constants.

The case u=0 yields Eq.(2.61) and the case v=0 leads to Eq.(2.71).

+) Consider a system {gv(x,z,...,z,%,...,%)=0}. If this
‘ ' k 2
has the property that for any solution of a system
{F¥x,z,...,2)=0} the corresponding %,%,%,... satisfying
m

{gv=0}solve a system'{%u(x,%,...,%)=0}, then the system
{g¥=0} is called a Bicklund trans%ormation between {F"=0}
and {¥"=0}. 1In particular, if F=¥, then it is called

an auto-Biacklund transformation. For the discussion of

Backlund transformations, see the article by Lamb in Ref.1.



CHAPTER 3.

NON-INVERTIBLE MAPPINGS

OF NONLINEAR SYSTEMS TO LINEAR SYSTEMS.

In the preceding chapter we have considered
mappings which transform a system of nonlinear equations
to a system of linear equations in a 1-1 manner. If we
require only that a mapping transform a solution of some
linear system to a solution of a given nonlinear system,
the class of mappings widens and includes non-invertible
(non 1-1) mappings. In the following we investigate

these types of mappings and show that such mappings are

frequently related to invariance groups.

3.1 Examples of non—invertible mappings.

We first consider Burgers' equation
f =2 + Z2Z2 -z = 0. (3.1)

This equation admits a five parameter point Lie group [42].
However, none of the generators is of the form (2.2), and
hence by Theorem 2 there exists no 1-1 mapping to a linear

equation. It is known that the Hopf-Cole transformation .[43,44]
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relates Eq.(3.1) to the heat equation Zxx-ZYFO. Introducing

the transformation (3.2) into Eq.(3.1), we find that

~ -2 ) ) _
£ =227 oy - Iylyy - Zlxy * IxZy) = O (3.3)
which factorizes as
~ -2 ) ) ) _
£ = 2277(2Dy - Zy¢) (Zyx - Zy) = O. (3.4)

It follows from (3.4) that the transformation (3.2) maps

a solution of the heat equation to a solution of Burgers'
equation. It is incorrecﬁ to say that the Hopf-Cole trans-
formation maps Burgers' equation to the heat equation.

It is also clear that (3.2) is not a 1-1 mapping. Although
this type of mapping is out of the scope of the discussioﬁ
in the preceding chapter, this particular transformation

is found to be related to a Lie group. One standard |
argument [ 45] to rationalize the Hopf-Cole transformation

1s to introduce z through 2=zx and, after integrating once,

one considers the equation

2 _
Zox * %(zx) - ?Y*‘ 0. (3.5)

One then says''by inspection" that the transformation
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x = X, y =Y, z = 24n(cZ), c constant, (3.6)

Y:O and from this

follows the transformation (3.2). Eq.(3.5) corresponds to

maps Eq.(3.5) to the heat equation ZXX-Z

Example A in the previous chapter where we found the trans-

formation (3.6) with c=% by applying Theorem 2.
The second example is a nonlinear diffusion equation
f=D.(27°%.) -z =0. (3.7)

This equation admits a four parameter point Lie group [ 6]
with no generator. of the form (2.2). As in the above
we let 2=zx and instead of Eq.(3.7) we consider an

integrated form

- -2 . -
f = (zx) Zx Zy 0. (3.8)

This equation admits [ 23] seven generators of point trans-

formations including the generator
L = U(z,y)zxaz, (3.9)

involving an arbitrary solution of UZZ—Uy=O. Comparing

(3.9) with (2.2), we find a point transformation
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X = z, Y = vy, Z = X (3.10)

which maps Eq.(3.8) to the heat equation AZ=Z
1

Z\,=0.

XX 4y

From (3.10) it follows that 2=zX=(Z and one can

X)_

verify that the transformation

(3.11)

transforms Eq.(3.7) to

~

. . : _
£ = 23 (Z¢Dy - Zyy) (Zyy - Zy) = O. (3.12)

Hence the transformation (3.11) maps a solution of the

heat equation to a solution of Eq.(3.7).

3.2 A use of potential functions.

The equations we have just considered are of the

form

% ,%) - D% = 0. (3.13)

ng(zx...x""’ x’ y

For such an equation we can always introduce a potential

z by
g = z_. (3.14)

The equation governing z 1S



z.) - z_ = 0. (3.15)

As the examples in §3.1 show, Eq.(3.15) can admit a larger
invariance group than the original equation (3.13). Although
this is not always the case, it is well worth keeping in mind.
The possibility of introducing a potential, of course, is

not limited only to equations of the form (3.13). To
illustrate the importance of considering such a potential

in more general circumstances, we take two examples.

A. A nonlinear wave equation. We consider a system
v, - W, = 0
Y (3.16)
V. = avw + bv + cw,

where a,b and ¢ are constants. Equations of this form arise
- in physical problems. For instance an equation governing

a fluid flow through a reacting medium![ 46,451

Y Y X (3.17)

vy = kl(a - W)V - kzw(b - V)

and an equation describing a two wave interaction [47-49],

-avw - bv - cw

+ C
v 'l'VX

(3.18)
avw + bv + cw

=
]



A )
can be put in the form (3.16) by simple changes of variables.

Rescaling the variables in (3.16) as

, 5 . ¥ b
&P 5 5

(X,Y,V,W) —————i - 5 T 3 (3.19)

we obtain
vy - W, T 0 (3.20a)
vy = Vvw + vV + W. (3.20b)

This equation admits only a trivial invariance point group

generated by

L, = 3, £, = 3, 23 = xax—yay— (v+l)8v+ (w+1)8w. (3.21)

However, if we introduce a potential z by

Vo= oz, w = Zy’ (3.22)
then the corresponding equation for z, i.e
z -z z_*z_ - z_ =170 (3.23)

+) For Eq.(3.17), x»cx, y»x+y and for Eq.(3.18), X>C,yX-CqY,
y>X-y.



Q,l = BX’ 22 = ay’ 'Q‘S = Xax - yay - (,X—Y)azy
(3.24)
z
84 = BZ, 25 = U(x,y)e BZ,
where U(Xx,y) is an arbitrary solution of the differential
equation
UXy - Uy - Uy = 0. (3.25)
Now applying Theorem 2 to QS’ we find a transformation
X=x, Y=y, 7 = e Z, (3.26)
i o)
which maps Eq.(3.23) to
Z - Zy - Zy = 0. (3.27)

The transformation connecting Eq.(3.27) to Eq.(3.20) 1is then
x =X, y=1Y, v=-—ZX, W= - (3.28)

It is known that Eq.(3.17) and Eq.(3.18) admit trans-

formations of the form (3.28) [ 45,46,48,49 1.

+) When bc=0, the equation corresponding to Eq.(3.23) admits
an additional generator and the equation can be mapped into

ZXY=0.



To gain some insight as -to why-the -introduction of
the potential, (3.22), enlarges the invariance group let us

express the generators (3.24) in terms of variables x,y,v

and w. The generators 21 and 22 are unchanged. The first
extension of 23 takes the form
23 = xax - yay - (x—y)az - (zx+1)8ZX + (zy+l)82y. (3.29)

Clearly, this corresponds to 2, of (3.21). The first

3

extension of 14

24 =8, + 0.3+ 0%3, , (3.30)

and hence £4EO in the (x,y,v,w) system. For the generator 25

we have

2. = Ue?

z z '
S BZ + (UX+sz)e BZ + (Uy+Uzy)e Bzy. (3.31)

X
Because of the appearance of z in the coefficients of

3, =9 and 9_ =9_, the first extended part of (3.31) can
Zy OV Zy W _

not be expressed in terms of x,y,v,w alone and consequently
25 is not a point group generator in the (x,y,v,w) system
as we should expect. Now suppose that we consider z,v and w

as functions of x and y and express z by a line integral as

oz = z dx + zydy = [ vdx + wdy. (3.32)
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Then the first extended pért of (3.31) can be written as
_ [vdx+wdy,., . [vdx+wdy
Le {(UX+Uv)e }BV + {(Uy+Uw)e }Bw. (3.33)

One can verify that Eq.(3.20) indeed admits the generator
(3.33). We note that the generator (3.33) depends not only

on X,y,v .and w but also on the integral fvdx+wdy.

In other words by introducing the potential, we have in effect
introduced an "integral dependent' generator which is

beyond the 1fra&mbrk,, of the Lie-Backlund groups. The

same can be said for the preceding two examples. For instance

= ' - N
the generator 2=U{x,y)e ?Zai‘of:Eq;(S;S}-becOmes, via z=z

X’

an integral dependent generator,
L (%
e zfzdx}

35 (3.34)

of Burgers' equation (3.1). We will discuss some aspects

Qf',integral_dependent generators in the following chapter.

B. An equation of a fluid flow. Sukharev [ 50] investigated

the invariance point group of the equation

o,B real (3.35)

which describes a fluid flow through a long pipe-line.



The system (3.35) was found to admit an extra generator when

o =-1:

Y X (3.36)

The extra generator 1s

2= glw,y)a, + (uw P

0,8(w,y)}a , ' (3.37)
where g(w,y) is an arbitrary solution of a linear differential
equation
B =

aw(w ?wg)-ayg = 0. (3.38)
The property of the generator (3.37) was not studied. It 1s
shown here that it 1s related with a linear equation
associated with Eq.(3:36). .~ =

According to Proposition 3, we have

9 = (wxg)aw + (ng - w'Bawg)aV. (3.39)

)

This, however, is not in the form of (2.11) ‘and ‘consequently

+) With zl—w z2 v, the operator (2. 11) takes the form

L= (U101+U o )8 +(U 2+U 02)3 , where ut=ut (X(x,y),Y(x,y)),

U (X,Y) belng an arbitrary solution of some linear system

of differential equations. Clearly, (3.39)-is not of this form.



there exists no 1-1 mapping of the system (3.36) to a

linear system. Now, introducing a potential z by

W= Zo, v = —zy, (3.40)
we write the second equation of (3.36), as
B -1 _ .

(zX) Zox * (zy) =0 o (3.41)

The generator (3.39) can be written in terms of x,y and z as

v (DB, - (DU)D = (DXU)BZX + (DyU)aZy, (3.42)

where U=Usz,y)‘iSﬂdefined‘by
U(z,,y) = [ g(s,y)ds. (3.43)

From (3.38) and (3.43), we obtain an equation for U:

(zx)'B(aZ y2u - 2, U = 0. (3.44)
. X

Noticing that (3.42) is the first extended part of the generator
2 = U(zx,y)az, (3.45)

we expect that Eq.(3.41) admits the generator (3.45) subject

~to- the _: condition (3.44). A direct calculation verifies



this. We can now identify (3.45) with (2.2) obtaining
X=zx, Y=y. Going through the steps illustrated in the example
of the Legendre transformation in the preceding chapter,

we find a Lie contact transformation

y =Y, z = Z -XZ z_ =X, z_ =17

X’ X y Y’

X Bzoo -z, = 0. (3.47)

xPu.. - U, = 0. (3.48)

Then, from the first three relations in (3.46), we obtain

an implicit solution of Eq.(3.41):
x = -Uy(X,Y), y =Y, z=U(X,Y) - XUy(X,Y), (3.49)
and the rest of (3.46) 1leads to

W= X, v -Uy(X,Y), (3.50)

which together with (3.49) defines an implicit solution of

Eq.(3.36). To obtain an explicit solution, we solve the



first two equations of (3.49) with respect to X and Y,
say, X=f(x,y) and Y=y, and introduce these into (3.50)

to get
w = f(x,y), v ==Uy(f(x,y),y). (3.51)
So far in this chapter, we only considered those
equations which admit potential functions. The following

equation does not admit a potential, but it is related

to a linear equation.

3.3 The Liouville equation.

The Liouville equation is defined by
- e =0. - (3.52)
One of the generators admitted by this equation is

P EM)z v gz, ¢ £ () g, ()10, (3.53)

where f(x) and g(y) are arbitrary functions and fX and gy
are their derivatives. This is the only generator which

depends onrarbitrary functions. The generator (3.53) 1s not
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of the form (2.2) and hence there exists no 1-1 mapping
of Eq.(3.52) to a linear equation. Let us consider the
invariant solution z = u(x,y) associated with the

generator (3.53). It is a solution of the system

EXJuy, + glyu, + £,(x) + g, (y) =0

(3.54)
-e¥ =0
Xy
The solution is found to be
20V
u = 2n ———§—X—Z (3.55)
(¢ + ¥)

where ¢(x) = ff_ldx and y(y) = fg_ldy. This is the general
solution of the Liouville equation [37]. Introducingh

U=¢+y, we write (3.55) as

-2

u = &n|2U Uny|' (3.56)
Recognizing U as the general solution of the equation UXy=0,
we conclude that the transformation

z = gn|227%2_7_ | | (3.57)

Xy
maps a solution of Z_ =0 to a solution of z - e? = 0.
Xy Xy

One can also see this from the equality



hence Z =0 » z__-e"=0.
Xy

3.4 A series of L-B generators and the linearization.

Another sign which indicates a possible connection of
a nonlinear equation to a linear equation is the admission
of an infinite sequence of Lie-Backlund generators by the
nonlinear equation. From Proposition 10 it is clear that
a linear homogeneous éystem admitting a generator of the
form L = (B;Zu)azv admits an infinite sequence of L-B
generators. Consequently, if there exists a mapping connect-
ing this 1inearrsystem to a given nonlinear system, then the
mapping is likely to transform these generators into group
generators of the nonlinear system. In Appendix 4, we
investigate L-B generators of a nonlinear diffusion equation
DX'{(z)azX} -z = 0 and it isﬁ shown that only for o=-2
the equation admits an infinite -sequence of L-B generators.
The analysis of these generators in turn leads to a trans-

formation similar to (3.11). The Hopf-Cole transformation

of Burgers' equation can be obtained in a similar manner.



CHAPTER 4.

A" SUMMARY AND FUTURE PROBLEMS.

4.1 A summary of the main reuslts.

In the second chapter we proved that by examining
the invariance group of a system of nonlinear differential
equations one can determine definitively whether the system
is transformable to a linear system by an invertible mapping.
Moreover, the mapping can be constructed from a genefator of
the group. 1In all cases, we need only to consider group
generators of the form (2.24) or (2.25) in which no higher

coordinates than i appear$,i.e. 6V==ev(x,z,%).

In the third chapter we investigated the question
of the existence of non-invertible mappings relating linear
and nonlinear equations. It is a considerably more complex
question than that of invertible mappings. The problem of
finding such mappings is .equivalent - to.finding a condition
. under which a given nonlinear equation admits a trans-
formation leading to a factorization such as (3.4),(3.12)
and (3.58). No definitive condition has been found yet.
However, as 1t has been demonstrated here, the group analysis
supplemented by the introduction of a potential function

and higher order Lie-Backlund generators are effective means

- o e
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to discover such non-invertible mappings.

The examples investigated in this work
cover all linearizable equationé*known to the
author and two new eqdations,,i.e.; Eq.(3.7) and  _  _:
Eq.(3.36).. With,our method it should be particularly
emphasized that even if one i1s unable to linearize given
nonlinear differential equations, one is always left with
their invariance groups. In turn these can be used for the
construction of invariant solutions, conservatioﬁ laws

and other invariance properties of equations [6,7, 8].

Some such examples are given in Appendices 5-7.

4.2 A generalization of the concept of invariance.

In the group analysis of differential equations,
it is very important to find the largest invariance group
associated with the equations. During the course of the
present work a question’ concerning the possibility to enlarge
an invariance grouphhas'arisen. ObviQUsly,/the meaning
of "largest" changes according to the type of groups we
consider. The group can be enlarged by considering
higher order L-B groups or by introducing more general
types of invarianée; In the foliowing we discuss some

aspects of integral dependent invariance. We use notations



U Uy sU e e in place of 2,245

XX xx’°°

a. A hierarchic structure in L-B sequences. To present  the

basic idea clearly, we take a specific example, namely,

Burgers' equation,

u + uu_ - u, = 0. ' (4.

A generator of the L-B invariance group of Eq.(4.1),

2=0(x,t,u,u_,...,u
(x,t,u, x? ’UX...X7 U

must satisfy the determining equation

2 -

(D)6 + uD. & + u B - DB = 0 (4.
for any u satisfying Eq.(4.1). Now we let u-»u+ev, |e|l«1,
in Eq.(4.1). Then v .satisfies. the linearized equationT)

v +uv_ +uv - v, = 0. (4
XX X X t

In view of Eq.(4.3) and Eq.(4.4), it 1is clear that 6 is

t+) Here, the term "linearization" is used in a different
sense than in the preceding chapters.

)a ., (4.

1)

2)

3)

.4)
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a very special solution of the linearized equation (4.4):

A solution expressed in.terms of a solution of the original

equation (4.1). This observation leads us to examine the
invariance group of-the‘linearized equation (4.4) for.from
"such an invarilance group-we may be able to construct

those particular solutions which satisfy Eq.(4.3). So, we

consider the following problem:

Find invariance groups of the differential equation

v + uv +u v - v
X X

X = 0 with unknown v and an arbitrary

t

solution u(x,t) of the equation u +uau_ - u, = 0.
. XX X t
Since Eq.(4.4) is linear in v, it is sufficient, according

to Theorem 1, to consider a linear generator

S

2 = (Bv)a, = 63 (4.5)

V’
where B 1s some linear operator. Once B is found, we can
find, using Proposition 12 in §1.7, an infinite sequence of

solutions of Eq.(4.4) in the form
v x. 1) = (B0 (x,t), n=1,2,3,... , (4.6)

where v(x,t) is any solution of Eq.(4.4). In particular,
if we choose as v one of & satisfying Eq.(4.3), we obtain

a sequence of functions



(N
1

o™ x,t,u,u ,u (56 (x,t w0, (4.7)

e
which solve Eq.(4.4), and hence satisfy Eq.(4.3). In other
words, once we find a generator & =(Bv)aV of the linearized

equation, we can construct a sequence of L-B generators
: n .
2 = {(B) e}au, n=1,2,3,..., (4.8)

for the original nonlinear equation from any known
generator 2=63u. Obviously, this statement holds for any
system of nonlinear equations. We apply this result to
analyze L-B invariance groups of Eq.(4.1).

Some years ago I found that Burgers' equation admitted
hierarchies of L-B generators. The question 1is Whether these
have the structure of the fofm (4.8). A simple calculation

shows that the only point group generator, i.e.

2= (Bv)a, = {bF(x,t)v + bt(x,t)vt + b(x,t)via,

(4.9)
admitted by Eq.(4.4) is @=vav, i.e.B=1. Thus, as long
as 2 is restricted to the form (4.9), there is no sequence of
L-B generators of the form (4.8). Olver found in his study.
[18] of stmetriesvof time evolution equations that Burgers'

equation admits an infinite sequence of L-B generators

of the form
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L = {(D)nux}au, n=1,2,3,... (4.10)
with

D =D+ %u+ LupD ! (4.11)

X 2 UxTx :
where D;l denotes an integral operator with the property
_1—— _1 = 3 1 =

DxDx —DX D, 1. Comparing (4.10) with (4.8), we let B =p
and consider an operator corresponding to (4.5):

~ ‘1

eav = (D'v)av = (VX + Luv + l/quDX v)aV . (4.12)

It is easy to check that Eq.(4:4) indeed admits (4.12).
The sequence (4.10) is one of the- hierarchies of-generators
I found previously. This suggests the existence of other
linear operators B. An important aspect of the generator
(4.12) ié that g depends not only on x,t (through u), v

1

and v but also on the integral D; v. This leads us to

consider a generalization of (4.9) by including a D%lv term:

L= (Bv)a, = 6N,y ¢ bE(, v, ¢ b(x,t)v b_x(x,t)D;lv}av
(4.13)
The * b's are functions of x and t. For this type of
integral dependent generator , we can adapt Lie's algorithm
:EOr‘ﬁnﬁﬁng generators. With a straightforward calculation

we find that Eq.(4.4) admits, in addition to (4.12) and the

trivial . @=vav, - the generators with- following B's:



2 -1
B' = Dt + (%ux + Xu®) + l/z_utDX
B = tB' + uxD_ + Jxu + %(u+qu)D;1 (4.14a-c)
1 1'1

B"'= tp -+ Bx + %D
where in B'"', Dis the operator (4.11). Using any of (4.14)

we can produce sequences of L-B generators of the form (4.10).
More generally, recalling Proposition 10, we see that

operators of the form
vo= {f(p,8,8", 800, (4.15)

where f(*,*,,+) 1s an arbitrary polynomial of 1ts arguments
are all invariance group generators of Burgers' equation
for any 6 satisfying the determining equation (4.3), for

example 6=u,. They inélude all hierarchies mentioned above.

b. On integral dependent generators. The example we have

just seen and the example in §3.2 lead us to generalize
the concept of invariance by allowing generators to depend
not only on derivatives but also on integrated quantities.
A fundamental difficulty in considering integral dependent
generators is that there are too many possibilities.

Consider a time evolution equation



G(u,ux,u y e owsU ) - u, =0 (4.16)

XX XeooX

with invariance group generator 2=68u. We want to allow
& to depend on integrals such as
-1

D_"u = [u dx, (D;(1

2
x )

u = ffudxdx, .... . (4.17)
A problem is that'these are not the only possible integrals

involving u. There is no a priori reason not to include

integrals such as
-1 2 -1 -1
D, (W)", D, (uX(DX u)), etc. . (47;8)

One way to get around this problem is again to study the

linearized equation of Eq.(4.16):

Guv + Gu v, + ... + G Ve g T Ve = 0. (4.19)
Let @=§8V be an invariance group generator of (4.19).
The merit of considering Eq.(4.19) instead of Eq.(4.16) is
that since Eq.(4.19) is a linear equation in v, we can
expect that 6 of 2 depends linearly on v, i.e. 8=pv,
for some integro-differential linear opérator B. The form
of B,bhowever, is still quite arbitrary. For instance,

Bv could contain terms such as



-t (£v), D2 (g0t (EV)), .. (4.20)

where f and g are functions of x,t. We can avoid considering
such complex expressions if we observe that quantities such

as (4.20) can be formally represented by a series of the form

{ k

&)k,
. b (DX)

b(-k) (D;(l)

N~
o~ 8

}Yv = Bv, (4.21)

0 k=1

where b(k) and b(—k) are functions of x,t. For example,
by repeated integration by parts, we have. for the first

expression of (4.20),

1 3

D_N(fv) = [fvdx = £D71v - (D £) (D7) %V + (D) 2E) (DL 1)V ...

(4.22)
For the secqond expression of (4.20), we apply this procedure
to each integration operator Dil. Thus; we should start with
a generator {= (Bv)s, with Bv of the form (4.21).rather
than quantities such as (4.20). Once such an operator B is
found, we can obtain a sequence of invariance group generators
for the original.equation (4.16) using the formula (4f8).
Although the approach described here is of great generality,
it will be of little practical value unless a .closed form
of” the infinite.sum.in (4.21)-is found. Such a closed expression
may be found by examining the first few terms in the sum.

In applying this analysis to the KdV equation

Upyx T UL * U = 0, a variety of B's of the form (4.21)
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has been found. The only B with a closed form is

(4.23)

(MR
=
bl

This particular operator arose in the study of the inverse
scattering method [51] to solve nonlinear time evolution
equations. It was also obtaihed by Olver in connection
with invariances of the KdV equation. We use (4.21) with
(4.23) to obtain invariance group generators of the

KdV equation. The equation’admits point group generators

2=68u with the following 9:

(a) _ L) (€) _ v 4 a1 2
3] Uy s ) Uss 5] tuX 1, .WQ tut TXU, - ZU.
(4.24)

Using these 6's in (4.21) we obtain sequences of invariance
group generators. It turns out that there are only two
sequentes instead of four. With e(n)=(B)n6(O) and notations

u =u

..., one sequence 1is:
x 17 "xx 2 ? 4

00 2 6@y M) Ly = ()

1’ 3 )
(3) 5 10 5
8 Ug * 3 Ulg + == WU, + & Ul,, ;
and the other is
(0) - o(c) _ .. % (1) _ : 1 S22 a(d)
6 8 o=ty 1, © t(u3+uu1) XUy zu = 8 ,



(2) 1 11
0 tu. + =tuu, - =Xu, + =—tu,u, - =u
5 3 3 3773 3 172 372 (4.26)
2.2 1 22 2. -1
+ gtu u; - ozXuuy - gu - gule u,

Since the first sequence involves no integral quantity,
it corresponds to L-B invariance groups and was first
found in connection with conservation laws associated with

the KdV equation (Appendix 5). The second sequence is new and

involves integrals.: - .

Olver was interésted in the operator D with the
property that 2=(DH1Q)BU is .an L-B invariance group generator
of a nonlinear time evolution equation. The present analysis
shows that D is related with a generalized invariance of the
corresponding linearized equation. Clearly, our formulation
is not restricted to time evolution equations and can lead
to more general invariance groups than L-B groups. There
should be further investigations of these generalized

symmetries and their uses.
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APPENDIX 1., PROOF ‘OF THEOREM .I.. .,

Proof. For brevity we write ev(x,z,%,...,%) = oV (x,2).
Suppose the system AXZ”='Ofadmits L ='OV(X,Z)BZv. Then, :. .
since the system is linear homogeneous, L=@V(X,€Z+U)azv is
also a generator for an arbitrary solution of AXU“=O.

We write its power series expansion in € as

0¥ (X,ez+U)a,, = b (0o v en? Mo v 2V By s
(A1)

Since e 1s arbitrary, each term must be a generator of an
invariance group. In particular, the 0(e) term has the |
form (1.43).

Conversely, suppose that the system ASZ“=0 admit-
(1.43). The function 0Y(X,Z) yielding (1.44) is not unique,
but if we restrict to OV(X,Z) which depends on X and only
on those Z's which appear .in the coefficients of azv in
(1.43), then 0V is determined within an arbitrary additive

function ¢V(X). We let Z»eZ in such OV(X,Z) and expand

@V(X,QZ) in the series in €:
oV (X,ez) = RV(O) 4 pv (1) L 2pv(2) o (A2)

where BCO) = @v(X,O) which is a function of X alone. We may

set ﬁv(0)=0 since we have an arbitrary function ¢V(X) at
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our disposal. With such a choice of ¢V(X), the operator
@V(X,Z)azv becomes an invariance group generator. To see
this we let U+Z in (1.43), then let Z»eZ. The resulting
operator is still an invariance group generator of the same

system. . We write its power series expansion in € as

L = g (D) a0 + eog” (Payr L. (A3)

By the construction of @V(X,Z) above, we have gv(k)a ﬁv(k).

Since every gv(k)azv in (A3) is an invariance group

~generator of Aﬁz”=o, we see that the operator

<+

: ~v (1 v (2
0V (X,2)8,y = h ( Yo v + b ( Yo v

is an invariance group generator of A:Z“=0.



APPENDIX 2. PROOFS OF PROPOSITIONS 9-12.

1. Proof of Proposition 9. From Proposition 2, we have

LBY=B"L and LB =8 L. Then,
oo [SE.Y

ZVoU_ F VU _ 7V oM _VroU
(1,13 = (LB Z"- LB 2%)8,y = (B LZ-BiL2%)0,,

SV KWV Rk, _ (5 gVl
(B B 2" -B B ") o,y = (1B,81/2%)0,y.

By hypothesis, we have [L,£]=E=(§§z“)azv. Comparing these,

we obtain [B,Bl=-B. [

2. Proof of Proposition 10. It is sufficient to prove

for the explicit form A:Zu=0 of £f=0. By Proposition 2 and by

the invariance condition (1.36), we have
A¥7M=0 » 14¥z¥ = 2VB57H = 2Vz'V¥ = o,
H H K U
AYz'H=0 > La¥z'¥ = fLavzM = o,
H u H

ice., . 4¥zM=0 » LLaVZM=0. O
U U
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3. Proof of Proposition 11. As in the proof of Proposition

10, we have LAXZ“=A:BEZK=O. We also have BﬁAEZK=O since
AEZK=0. From these two we obtain (AXBE - BﬁAE)ZK=O

provided AEZK=0, i.e. [4,B12=0 provided AZ=0. 0O

4. Proof offPrdposition 2. We h&ve»LAZ?ALZ=AzBEZK=O
for any values of X,Z,%,... satisfying the equation A4Z=0.
Obviously, Z=U(X), %=g(X), ..., satisfy this equation and

consequently, AEBEUK(X)=O, i.e. ABU(X)=0. Repeating the

same argument, we find A(B)mU(X)=O. a
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APPENDIX 3. A DETERMINATION OF AN INVARIANCE GROUP OF

THE EQUATION (z. )2%- 4z z = 0.
xy x“y

To illustrate the process of determining an invariance

group of a differential equation, we consider the equation+

£= (2, )% - 42,2 =0 (1)

Xy X"y )
To simplify notations- in‘the following computation, we let
Z,.=P, zy=q, zxx=r,lzxy=s and Zyy=t' Then, Eq.(l) becomes
2 -

s” - 4pq = 0. (2)

We consider a generator of the form
= g(x,y,2,p,q) BZ* (3)

By operating:its second extended form on (2), we get

2
*(s”-4pq) = 2sD,D g - 4(D,g)q - 4p(D g)

+ This equation . is' taken from Forsyth [Sﬂl page 198 ,
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2
= 21gyyS * 84,05 * 8xpS * BygSt

2 2
*8,yPS * 8,,PqS *.g, PS” * g, pSt + g;s

Zp zq!
2 ,

+gpyrs + gpzqrs + gpprs + gpqrst + gpssX

2 2 3 2
+ + + t
Eqys T 8qz95 T BqpS T8qqS T T 8453y
- 20p - 2 -2 - 2¢ pt

g,P g,pq g,Ps gqP

- 28,4 - 2g,pa - Zgpar - 2g.qst. (4)

The invariance condition (1.36) demands that (5) vanish

under the condition (1.34) which_in. this case takes the form

£ =s" - 4pq = 0,
Dxf = ZssX - 4rq - 4ps = 0,
Dyf = 2ss_ - 4sq - 4pt = 0,

ooooooooooooooooooooooooo

We only need the first three equations since (4) involves
coordinates-only-upto:the-thitd order.. -We use these three

equations to eliminate the coordinates s,sx,sy from (4).

The resulting quantity must vanish irrespective of values

of x,y,z,p,q,r and t: rearranging terms,

1 1
% %

L 1
0 = rtg 85,0+28,,P 4 CI)

+ r(g D

+ + t + +2
Pq pYy ) (8qx*8q2P*28qq

] 1oL 1
+*2gxyp2q2f+ 28, ,a(pa) ™+ 4gxppq

1 3. 2
+ 2g,,p(pa)” + 2g,,(pa)7 + 4g, D q
3

2
+ 4gqypq + 4ngpq + 8gqp(pq)Z - Zgyp - 2g.q. (5)
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We note that r and t appear only in the first three terms
of (5). Thus their coefficients must vanish:

1
=0 + + 2 =0
g , g g..q gpp(pq) ,

by pz

1
+ 2 =0
€ix * 84,P gqq(pq)

qx = ©°q

It is easy to find that the most general solution to these

equations is

g = a(x)p + b(y)q + e(x,y,z), (6)

where a,b and e are arbitrary functions of their arguments,

Introducting (6) into the rest of (5), we get

o
]

ey (PA) ™ *+ ey alpa) ™ + 2a,pq

3
5 7
eyzp(pq)z + e, (pa)” + Zbypq

+

(byq + ey)p - (ayp + e )a.
Since a,b and e do not involve p and q; coefficients of
different pdwefs of pmqn must vanish, The resulting

equations yield

e = az + B, a,B arbitrary constants,
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Therefore,

g = a(x)p + b(y)qg + az + B,

The final form of the generator is
g = {a(x)p + b(y)q + az + 8}3_, (7)

where a(x) and b(y) are arbitrary functions and o and B
are arbitrary constants, We note the resemblance between
the generatbf (7) and the generator (3.35) of the Liouville
equation. As in the case of the Liouville equation, the
invariant solution associated with (7) will lead to

the general solution of Eq.(1).
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On the remarkable nonlinear diffusion equation

(3/3x)[a(u + b)-33u/dx)] — (Bu/dt) = 0

George Bluman and Sukeyuki Kumei
Department of Mathematics and I

of Applied Math
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We study the invariance properties (in the sense of Lie—Backlund groups) of the nonlinear
diffusion equation (3/3x){C (u)(du/dx)] — (du/3dt) = 0. We show that an infinite number of ane-
parameter Lie-Bicklund groups are admitted if and only if the conductivity C (1) = a(u + b ). In
this special case a one-to-one transformation maps such an equation into the linear diffusion
equation with constant conductivity, (3 %i#/3x?) — (3ii/dt ) = 0. We show some interesting
properties of this mapping for the solution of boundary value problems.

1. INTRODUCTION
In recent years nonlinear diffusion processes described
by the partial differential equation (p.d.e)
J du du
—|Ccw)—|—- = =0, 1
ax[ (")ax] ar ®

with a variable conductivity C (), have appeared in prob-
lems related to plasma and solid state physics.'? Interest in
such processes has long occurred in other fields such as met-

allurgy and polymer science.>’

Some exact solutions are well known for such equa-
tions.® These can be shown to be included in the class of all
similarity solutions to such equations obtained from invari-
ance under a Lie group of point transformations.”®

Recently, it has been shown that differential equations
can be invariant under continuous group transformations
beyond point or contact transformation Lie groups which
act on a finite dimensional space.” These new continuous
group transformations act on an infinite dimensional space.
Such infinite dimensional contact transformations have been
called Noether transformations'® or Lie-Bicklund (LB)
transformations'' (Noether mentioned the possibility of
such transformations in her celebrated paper on conserva-
tion laws'?). Well known nonlinear partial differential equa-
tions admitting LB transformations include the Korteweg~
deVries, "> sine-Gordon, '** cubic Schrodinger,' and
Burgers’ equations.'® All of these known examples admit an
infinite number of one-parameter LB transformations.
Moreover, many of their important properties (existence of
an infinite number of conservation laws,'?** existence of so-
litons,'* and existence'” of Bicklund transformations'®) are
related to their invariance under LB transformations.

Any linear differential equation which admits a nontri-
vial one-parameter point Lie group is invariant under an
infinite number of one-parameter LB transformations
through superposition. Moreover, every known nonlinear
p.d.e, invariant under LB transformations, can be associat-
ed with some corresponding linear p.d.e.

With the above views in mind we study the invariance
properties of Eq. (1). Previously,”®'? it had been shown that

Eq. (1) is invariant under

1018 J. Math. Phys. 21(5), May 1980

0022-2488/80/051019-05$01.00

a) a three-parameter point Lie group for arbitrary C (),

b) a four-parameter point Lie group if
Cu)y=au+5)",

c) a five-parameter point Lie group if v= —4.

[1t is well known that a six-parameter point Lie group leaves
invariant Eq. (1) in the case C (u) = const.?)

In the present work, we show that Eq. (1) is invariant
under LB transformations if and only if the conductivity is of
the form

Cwy=a@+b)? @)

i.e., if Eq. (1) is of the form

i[a-(u+b)’2‘9—u] - % 3)
ax Ix

Furthermore, this equation admits an infinite number of LB
transformations.

In this special case, there exists a one-to-one transforma-
tion which maps Eq. (3) into the linear diffusion equation with
constant conductivity, namely, the heat equation

ga_ % _, @

ax° at

In the course of this paper, we find an operator connect-
ing two infinitesimal LB transformations leaving Eq. (3) in-
variant. We prove that this operator is a recursion operator
which generates an infinite sequence of one-parameter in-
finitesimal LB transformations leaving Eq. (3) invariant.
Moreover, we show that no other LB transformation leaves
Eq. (3) invariant.

By examining the linearization of Eq. (3), we are led to
construct the transformation mapping Eq. (3) into Eq. (4). It
is shown that this transformation maps the recursion opera-
tor of Eq. (3) into the spatial translation operator of Eq. (4),
giving a simple interpretation of the transformation relating
Eq. (3) to Eq. (4). We use this transformation to connect
boundary value problems of Eq. (3) to those of Eq. (4).

We construct a new similarity solution of Eq. (3) corre-
sponding to invariance under LB transformations.

+
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2. DERIVATION OF THE CLASS OF NONLINEAR
DIFFUSION EQUATIONS INVARIANT UNDER LB
TRANSFORMATIONS

LB transformations include Lie groups of point trans-
formations and finite dimensional contact transforma-
tions.'! The algorithm for calculating infinitesimal LB trans-
formations leaving differential equations invariant is
essentially the same as Lie’s method® for calculating infini-
tesimal point groups.

Consider the most general one-parameter infinitesimal
LB transformation that can leave invariant a time-evolution
equation,?' namely;

ut =u -+ eU(xLuu,,..u,) + 0,

x*=x, (&)

t*=1t,
where u; = du/dx', i = 1,2, Let du/dt = u,, du,/ot
=u,, U /0u = Uy, U /du, = U,, U /du,0u; = U,
C'=dC /du,and C" =d*C /du?.

In the above notation Eq. (1) becomes

u, = C'(u,)* + Cu,. (6)

Under Egs. (5) the derivatives of ¥ appearing in Eq. (6) trans-
form as follows:

‘W) =u, + €U+ 0@,
W) =u, +eU*+0(),
uy)* =, + U= + 0(€),

where
U'=D U= %*‘ Uyu, + i Uu,, Q]
=
aU i
U*=D U= —+ Uy,
* ox .Z’o Hivr
. aZU n aU'.
U*=D VU= —-+2 —_u;
( x) ax2 + “~o ax LIS
+ z Ui‘jui+luj+l + Z U, ,,.
ij=0 <o

D, and D, are total derivative operators with respect to f and
X, respectively.

The transformation (5) is said to leave Eq. (6) invariant
if and only if for every solution ¥ = 8 (/x,t ) of Eq. (6)

U'=C"U@,) +2C'U"u,+ C'Uuy+ CU*. (8)
The fact that U must satisfy Eq. (8) for any solution of Eq. (6)
imposes severe restrictions on U. Using Eq. (6) the deriva-
tives of u, with respect to ¢, i.e., u,,, can be eliminated in Eq.
(8). Sirice the invariance condition (8) must hold for every
solution of Eq. (6), Eq. (8) becomes a polynomial form in
u, ., and u, ,,. As a result the coefficients of each term in
this form must vanish. This leads us to the determining equa-
tions for the infinitesimal LB transformations (5).

If in Eq. (5), n<2, we obtain the Lie group of point
transformations leaving Eq. (6) invariant. Without loss of
generality we assume n>3 in Eq. (5). It turns out that for
n>3, Uis independent of x and .

In our polynomial form, the coefficient of u,, ,, vanish-
es and the coefficients of (u,, ,, )} and u,, ., , respectively,

102C J. Math. Phys., Vol. 21, No. 5, May 1880
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¢

lead to determining equations

CU,.,=0, ®
n—1 ’
nC'Uu=2C Y U u.,,. 10)
ie=0 N
Solving Egs. (9) and (10) we find that
U=a(C)'"u, + E(uu,ul, _, ), (1

where E is undetermined, and @ = arbitrary constant.

The substitution of Eq. (11) into the remaining terms of
Eq. (8) leads to a polynomial form in u,, whose coefficients of
(2,) and u,, respectively, lead to determining equations

CE,_in_1 =0, (12)
n—2
zc[iZo E,_ it ]

+(—n)C'E,_,u,— -‘:—n(n +3)C* (C )V,

+a unZ(C ’)Z(C )(l/2)n -1 __ 5"(" +2)C » (C )(I/Z)n](ul)z = 0

(13
Solving Eqgs. (12) and (13) we find that
U= a [(C)(I/Z)nu" + 1”(” +3)C' (C)(I/Z)ﬂ -1 UIU,, 4 ]
+ Fu,_, +Guuy..t, 3 ) 14)
where Fand G are undetermined and, more importantly, for

a#0 it is necessary that the conductivity C (u) satisfy the
differential equation

2CC" =3(C")%. 135)
Hence, it is necessary that
C)=a(u+b)?, (16)

where a and b are arbitrary constants for the invariance of
Eq. (1) under LB transformations. Without loss of generality
we can set g = 1, b =0, i.e., from now on we consider the
equivalent p.d.e.

du d ( ,0u )
a  ox (" ox an

This particular equation has been considered as 2 model
equation of diffusion in high-polymeric systems.*>

3. CONSTRUCTION OF A RECURSION OPERATOR; AN
INFINITE SEQUENCE OF INVARIANT LB
TRANSFORMATIONS OF EQ. (17)

For n = 3 it is easy to solve the rest of the determining
equations and show that the only LB transformation feaving
Eq. (17) invariant is

U=U'"" = uuy ~u uu, +12u,)>. (18)

For n = 4 we obtain two linearly independent LB trans-
formations U ‘'’ and

U = u*ug —14uuu, — 1007 (,)?

+95u(u,u; ~90u(u )", (19)

The existence of U ' and U ‘%', combined with the work

of Olver,'® motivates us to seek a linear recursion operator

' leading to infinitesimal LB transformations U *** defined
as follows:

Georae Bluman and Sukeyuki Kumei 1020




- 107 -
(ZYB=U®, k=12 (20)
The character of {B,U*",U ‘*’} leads one to consider for &
the form
2 =pD, +q+rD,)", @n
where D, is a total derivative operator, (D, )(D, )" is the

identity operator, and { p,g,r} are functions of {u,u,,u,}.
Then one can show that Z B = U'" if and only if

p=u', T @)
and

qluu; =26} + ruu,

= —3uuu, +6u(u,). 23) -
Furthermore, (Z )°8 = U'?’ if and only if

g= —2u, (24) -
and

r= —uu, +2u 3w, Q5)
A more concise expression for the operator is

D = D) WMD" (26)

We now show that the constructed operator 2 is in-
deed a recursion operator. Let the operator

2 .
4= Y B,y
i=0
=u¥(D,)? —4uu; D, +6u(u )} —2uu,
= (D,)"’-u’z, Q@7
‘where B, = (3/du;,)B. Olver’s work'® shows that & is a re-
cursion operator for Eq. (17) if and only if the commutator

[4-D,2]=0, @8)

for any solution u = 8 (x,r ) of Eq. (17). Moreover, if & isa
recursion operator, then the sequence { U, U ?',.--] givenby
Eq. (20) is an infinite sequence of LB transformations leav-
ing Eq. (17) invariant. It is straightforward to show that 4
and & satisfy Eq. (28).

The nature of U'"’ and the form of a general U given by
Eq. (11) show that for n = [ 42, there are at most k</ lin-
early independent LB transformations leaving Eq. (17) in-
variant since U must depend uniquely on u, _, .

The proof that & is a recursion operator demonstrates
that kK = ! and hence we have found all possible LB transfor-
mations leaving Eq. (17) invariant, namely, { U *“}],
k=12

4. A MAPPING TO THE LINEAR DIFFUSION EQUATION

As far as we know all p.d.e.’s invariant under LB trans-
formations have a recursion operator and, moreover, can be
related to linear p.d.e.’s. This suggests the possibility of seek-
ing a transformation relating Eq. (17) to a linear equation.
This leads us to consider the linearization of Eq. (17),
namely,

(4—93/31) =0, 29)
where 4 isgivenby Eq.(27)for any solutionz = 6 (x,1 )of Eq.
(17). Introducing a new variable i by
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s= 2 i, G30)
ax
we obtain from Eq. (29) the equation
“._a_)2 -3 i- i =0 31
[(u ax tu “'ax ot “ @D
and if we set
ad 4 d 4
— =u —_— T
ax Ix s
32)
d _d s d
—= — -, =,
ot at ax
Eq. (31) becomes
Fu  du
—_—— —— =0. 33
ax? at @3

Since f = 0 is always a solution of Eq. (29), the relation (30)
suggests that we set uiZ = constant. This and Egs. (32) lead
us to the transformation

dx = udx + u?u, d,
dr=dr,

a=u",

(349

relating solutions » = 6 (x,r) of Eq. (17) to solutions
i = 6 (x,r yof Eq. (33). Choosing a fixed point (xo.,), we have
the following integrated form of Eqgs. (34):

X ' a
dx' — (__ .1) dt’,
x“u X J; =4 .

xX=
r=t—1t, (35)
ag=u'

It is easy to check that Egs. (35) indeed transform Eq.
(17) to Eq. (33), and define a map relating the solutions of
Egs. (17)and (33). Moreover, if u > 0(i7 > 0), Egs. (35) define
a one-to-one map since dx/dx > 0 for each fixed £.7*

We now show that under the transformation (34) the
recursion operator & of Eq. (17) is transformed into the
recursion operator

Z =D,, (36
leading to an infinite sequence of LB transformations of the
heat equation (33). The proof'is as follows:

An LB transformation of the form (5) induces an LB
transformation on the variables {%,1,@] through Egs. (34),
namely,

D=5+ e+ 0@,
=1 a7
T =i + €7 + 0(6D),
where £ and 7 are defined by
dE = o dx + A di,
& =alU, B=aU+ @y U"-2U), (38)

= — (&)U
It turns out that for any solution & = 8 (%,1) of Eq. (33), v/

and 7 satisfy the integrability condition D;.o/ = D; 4, so
that d¢ is an exact differential. The integrated form of £ is
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f= — D' [7@)' ]+ 39)

where ¢ is an arbitrary constant. Since UY*? = Z U,
where & is given by Eq. (26), for ¢ = O we get a correspond-
ing infinite sequence of invariant infinitesimal LB transfor-
mations { U] for Eq. (33), namely,

UW = 77' _ '-i_l .
where
77: - _ (17 )2Um (40)

E'= — (D' 7@yl
and iI; = (3/9% )'ii. From Eqs. (40) it is simple to show that

Ju+n o D, 17(0, 41
leading to Eq. (36). Moreover,
U0 =D (@E") = (D,Yi;, i=12, @)

D, corrsponds to the obvious invariance of Eq. (33)
under translations in X.

It is interesting to note that the recursion operator for
the invariant LB transformations of Burgers’ equation is also
mapped into the space translation operator under the Hopf-
Cole transformation relating Burgers’ equation to the heat
equation. Moreover, we can obtain the Hopf-Cole transfor-
mation by examining the linearization equation (29) corre-
sponding to Burgers’ equation.

5. PROPERTIES OF SOLUTIONS OF EQ. (17) FROM THE
MAPPING

We now consider the use of Eqgs. (34) in constructing
solutions to Eq. (17). It is easy to show that Eqs. (34) are
equivalent to

dx = @ d% + ii; di, _
dr=di, @3)
u=(@ay"

with an integrated form

x=J‘ udx +J-(u ) dr,
r=1-1,
u=(@y'

for some fixed point (Z,,%). In the following, we assumeu >0
(i > 0).. Without loss of generality, we set x, = 1, = 0.

44)

A. Explicit formula connecting solutions; examples

First we consider the problem of giving a more explicit
formula for relating solutions of Eq. (33) to those of Eq. (17).
Let & = §(%,7 ) be a solution of Eq. (33) on the domain 7 > 0,
XESX.,XZ) By Egs. (43),

3 T s aB =
x=X&ED)= f G®.1)dT + f (‘9—‘9-("_;‘—)) di".(45)
o o Ix /z=o0
This uniquely determines the function X', £ = X “'(x,?),
where 7 = 1. Now Eqs. (44) lead to the following solution of
Eq. (17):
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1
B (xa)t)’
on the domain xe{x,(¢), x4(¢)), >0, where
x(t) = X (Xt )xo(t) = X (Xt ).
In a similar manner, Eqgs. (35) map a solution 1 = 6 (x,1 ) of

Eq.(17) 10

u=0(xt)=

(46)

= 1

= g_(i,f) = ===
G(X-'(x,t))
on the domain Xe(%,(1),%,(1)), £ > 0 where @7
O =X (x,0), ) =X(xu1),
=X(xt)= J’ 0(x'.1)dx
- f [Z6ean] 48)

with the corresponding definition of the function
Xz =x
Example 1: The source solution of Eq. (33), i.e.,
i =0(X,1) = a@m )" e ~ ¥ on the domain
— o <X < oe,t>0,is mapped by Egs. (45) and (46) into the
following separable solution of Eq. (17):
u=6(x1t)=a'(4mt) ",

on the domain — la <x < la, t >0, where v(x) is defined
by (49)

a e~ dy.
\/ T 0
Note that lim, _, ,,6(x,¢) = + .
Example 2. The dipole solution of Eq. (33), i.e.,

x =

7=0FH= - ;__ la(d4miy 2e = 140,
X

on the domain 0 <% < «, £ >0, is mapped by Egs. (45) and
(46) into the following self-similar solution of Eq. (17):

u=0(xzt)=x"'Qr)" [ln (4:;:)] -2

on the shrinking domain 0 < x <a(4wt)'%, 1> 0.

(50)

B. Connection between initial conditions; connection
between boundary conditions

The mapping formulas (34) and (43) demonstrate a
one-to-one correspondence (within translation of x,t) be-
tween initial conditions for Eq. (17) and those for Eq. (33).
As for the connection between boundary conditions, from
the same formula itis easy to see that x = s(¢ ) isan insulating
boundary of Eq. (17), i.e., [36 (x,t)/0x], _ «,, = 0, if and
only if the corresponding boundary x = f(t— ) is an insulating
boundary of Eq. (33), i.e., the correspondmg solution
7 = 6 (x,1) satisfies [ (%, r)/dx]x -an = “0. Moreover,
s(t) = const if and only if {1 ) = const, i.e., there is a one-to-
one correspondence between fixed insulating boundaries of
Eqgs. (17) and (33). )

In general, a noninsulating boundary condition for Eq.
(17), on a fixed boundary x = const = ¢, is mapped into a
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noninsulating boundary condition of Eq. (33) with a corre-
sponding moving boundary ¥ = §{t )# const with speed

&5 230(x1)
2 - [ww)] S K

§vhere, as previously mentioned, ¥ = 8 (x,t)> 0.

6. CONCLUDING REMARKS

(a) From invariance under the LB transformations ‘
{U ™, i = 1,2, Yhere exist similarity solutions of Eq. (17),
i.e., u = 6 (x,r;n), whose similarity forms satisfy

n-1
AR  U® =0, (52)
K=
where {¢,,¢,,....C, _; | are arbitrary constants, n = 1,2,
For example, for n = 1, Eq. (52) leads to the _similarity form
u=6(x,n1) =[a(t)-(x + b (1)) + (1)}, (53)
where {a(r), b (1), c(1)} are arbitrary. Substituting Eq. (53)
into Eq. (17) we find that Eq. (53) solves Eq. (17) if and only
ifa = a, b =B.and ¢ = ye*™, where {a,8,y] are arbitrary
constants. This solution is not contained in the class of simi-
larity solutions of Eq. (17) obtained from invariance under a
four-parameter point Lie group.”® ’
(b) The infinitesimal transformations (5) of the four-
parameter point group of Eq. (17) are given by

U=u+xu, U’=xu +2u,
Us=u, U‘=B. (54)

Under the mapping (34), these are transformed, respective-
ly, to corresponding infinitesimals of invariant point group
transformations of Eq. (33):

U=, U"=xiu + 2i;,

Uc=0, U'=F=a;. (55)
Conversely, the mapping (34) transforms the six-parameter
point Lie group of Eq. (33) as follows: The three-parameter
subgroup of infinitesimals given by Eq. (55) transforms to
{U«U" U given by Egs. (54) and U = ; transforms to
U = 0, the remaining infinitesimal point group transforma-
tions U" = %z +2 tii; and U/ = (4%° + V)i + Xid; + 1 °F;
are mapped, respectively, into infinitesimals which depend
on {x,ru.u,} and integrals of u.

(¢) Generally speaking, the action of a recursion opera-
tor 27" on any infinitesimal invariance transformation U of
the form (5) (whether of point group or LB type) yields a new
infinitesimal transformation U’ = & Uif &/ U #0. For Eq.
(17). wecanshow that Z U= 2 U= /U =0.

(d) Tre heat equation is a special limiting case of Eq. (3)
obtained by setting @ = b7 and then observing
lim, . 6°(u + 6)° = 1. As one might expect ifa = &2, for
the corresponding recursion operator &, lim, ., &

= 3/38x. and the mapping formulas reduce to identity
mappings.

1023 J. Math. Phys., Vol. 21, No. 5, May 1980

(¢) Since Eq. (1) admits an infinite sequence of LB
transformations if and only if C (1) satisfies Eq. (15) with
associated mapping (34) whereas Eq. (4) admits an infinite
sequence of LB transformations, there is no point transfor-
mation of the form

x =K (x,t,u),
t=L(x,0,u),
7 =M (x,1u), .
relating solutions of Eq. (1) and those of Eq. (4). -
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Invariance transformations, invariance group transformations,
and invariance groups of the sine-Gordon equations*
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We investigate a8 structure of continuous invariance transformations connected to the identity

transformation. The transformations idered do not ily form a group. We clarify the -
relationship between the infinitesima) invariance transformation and the finite invariance transformation by S
showing explicitly how the infini ] transfor are woven into the finite one. The analysis leads to

a new method of finding gencrators of the invariance group transformation. The results are useful in the
study of symmetry properties, or group theoretic structure, of differential equations. We use the results in

_ studying the group properties of the sine-Gordon equation u,, =sinu, and indicate that the equation is
invariant under an infinite number of one-parameter groups; the groups obtained are of a more general”
type than that dealt with by Lie. These findings are used to prové the group theoretic origin of the welil-
known conservation laws associated with the sine-Gordon equation.

INTRODUCTION

The discovery of the puzzling behavior of nonlinear
wave “solitons” in various fields of applied science has
triggered extensive study of nonlinear dispersive
waves.! One of the basic properties of the system which
admits a soliton appears to be the possession of an in-
finite number of conserved quantities. As has been
shown by Lax, ? the existence of such conserved quanti-
ties is closely related to the soliton behavior of the
waves. In spite of their importance in elucidating the
nature of nonlinear waves, it seems that no one as yet
has obtained a clear understanding of the origin of such
conserved quantities. 3

It is well known that both in classical and quantum
mechanics the conservation law reflects the existence
of symmetry in the system. In classical mechanics,
Noether’s theorem associates one conserved quantity
with each invariance group of the action integral, In
quantum mechanics, we can associate one conserved
guantity @, which satisfies the equation |, H] +i2Q/3!
=0, with each invariance group of the time-dependent
Schroedinger equation.* From these experiences, it is
natural to wonder whether there exists an invariance
group associated with each conservation law of nonlinear
waves.

In the present and in future communications, we will
investigate this question by applying Lie’s infinitesimal
analysis® and its generalization® to the differential
equations governing the waves. In this paper, we ap-
proach the question by studying the group theoretic
aspect of continuous invariance transformations, which
has been proved useful in systematically deriving a
series of conservation laws.

In Sec. II, we analyze continuous invariance trans-
formations (not necessarily a .group transformation)
connected to thg identity transformation, to clarify the
relationship between local and global invariance
transformations. The results will be used in Sec, BI to
elucidate the group theoretic aspect of continuous invari-
ance transformations of differential equations. In Sec.
IV, we apply the generalization of Lie’s theory to find
some invariance groups of the sine-Gordon equation,
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u,, =sinu. In Sec. V, by using the result of Sec. I,

we develop a new method of finding generators of an
invariance group of differential equations. The method
will be used, with the aid of the Bicklund transforma-
tion, to show that the sine-Gordon equation is invariant
under an infinite number of one-parameter groups. In
Sec. VI, we investigate a relation between these groups
and a series of conservation laws of the sine-Gordon
equation.

I. PRELIMINARY

We consider a partial differential equation of the form

F(z', uu;,u,, - - -) =0, 1
where z'=(z!,2%...,2"), u; = (3,u,...,2,u), etc.

Let’s suppose that there exists a solution u = u(z', ),
which depends on a parameter a continuously. Assuming
that it is analytic near a =0, we expand the solution in

a Taylor series in o,

= at
u=2 2 9@, v = {0 u}en- @)
Putting this solution into equation (1), we obtain a se-
quence of partial differential equations which will suc-
cessively determine a possible form of the u*, In parti-
cular, the first term #° must be a solution of equation
(1). If the equation is linear, all the #*’s must also sat-
isfy the same equation. In the case of nonlinear differ-
ential equations, however, all the equations are differ-
ent. First, the differential equation for «* becomes
homogeneous linear and involves the first solution u°;
we then obtain a nonhomogeneous linear equation for
the «*, 2 > 1, which has the same homogeneous part as
the u'; the nonhomogeneous term depends upon the #°,
W, ..., and their derivatives, By a deductive argu-
ment, we expect that if only the nonhomogeneous solu-
tion is taken for u?, u°. ..,u , the nonhomogeneous
solution for u* will have a strong functional dependence
on the «°, We consider the sine—Gordon equation u_,

- sinu =0 as an example. The equation for u°, ',

and u* is found to be
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uly - sinu®=0, u}, -u'cosu®=0,

u?, —u*cosu®= — (u')?sinu®,
It is surprising that we can find many solutions for u*
and »? which can be expressed as simple functions of °
u° and its derivatives; a few examples are

]
129

or (3a—d)

w'=ul and W=u

3,0
FlUyyy

+3u?)® and

+3(0)%u,

XXX

w
300, + Oual 30,

The existence of such solutions is directly connected to
the origin of the infinite number of conservation laws,
and the study of the origin of such solutions will provide
a key in understanding the origin of the conservation
laws. We ask how a nonhomogeneous solution for «* will
depend on the #° if we take only the nonhomogeneous
solutions for 2, ..., u*!; this problem requires a care-
ful analysis of invariance transformations.

2 __ 0
U= Uprcrxx

1l. RELATION BETWEEN AN INFINITESIMAL AND
A FINITE INVARIANCE TRANSFORMATION

We have considered an example in which one solution
u is continuously connected to another solution u°
through a parameter a, This may be considered as a
continuous transformation of u° to u; it is a special
case of the continuous invariance transformation which
is connected to the identity transformation.

We consider a set of transformations of the coordi-
nates of the n-dimensional vector space R"(x',...,x")
which analytically depends on the parameter a, and
becomes the identity transformation for a =0:

=P =X(x' a), =X (x!,0). 4)

We also consier an equation F(x')= F(x*,...,x™) =0
which is defined in the subspace R™(x!,...,x") of R",
The equation F(x')=0 defines a manifold S, or hyper-
surface in R™, We define the invariance transformation
in the following way:

Transformation (4) is a continuous invariance trans-
formation of the equation F(x*)=0, if the condition
F(X'(x!, a))=0 is satisfied for the continuous values
of o on the manifold S defined by F(x*)=0.

Geometrically, this implies that an invariance trans-

formation carries a point on § into another point on S.

We first investigate this invariance condition in detail,
and will come back to the invariance transformation of
the differential equation in the next section.

Under the condition we have imposed on the trans-
formation, we can expand X'(x’, a) in a Taylor series in
a by:

- A ’
F=Xiha)=stt I el = {00, ) e
- . 5)

Defining the differential qperator U, by

U=2k, : ®)
we can write (5) as
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® b
= a” i
% -(l+.§k!U,,)x. ™M
We analyze the effect of this transformation on an analy-

tic function f(x') defined in R". Expanding f(¥') in a
Taylor series in a, we obtain

2= F 5 060, 0= {0 o= 40160,
where 3

A,=1 and

3 a; M
A,=k!2{[ n ([(p,‘.)":'(q, !)]'lrfs;{)]x nn a,,}, ©)
' i=l 121 d J=11a1 7
where p; and q; are the integers satisfying the
conditions

Ii)p,q,:k, lsp,<p,<k for i<j, 1=gq,.
1

Here, we apply the summation convention with respect
to the indices r}. The choice of the sets (p,,...,p,)
and {(q,,...,q,) satisfying the conditions is not unique,
and the sum in (9) is to be taken with respect to each
of such sets. Using the differential operator A,, we
can write the effect of the coordinate transformation
on the function flx') as

£9= (14 £ g4 0 =Tl (10)
=l
We note that T(a)x'=x'+at!+3a%i+: =% recovers

the definition we started with,

Now we suppose that the continuous transformation
T(a) leaves the equation F(x‘)=0 defined in R™ invari-
ant in the sense defined above. Then, the following
statement will be obvious:

The transformation T(a) is a continuous invari-
ance transformation of the equation F(x!)=0, if
andeonly if A,F(x!) =0 on the manifold S defined
by F(x!)=0.

Although this provides the condition for a transforma-
tion to be an invariance transformation, it is very diffi-
cult to get any clear view of the structure of the trans-
formation unless a considerable simplification of ex-
pression (9) is made; it is crucial to oberve that we can
re-express (9) as
ml)“ “ase s (Ua)q" N
g, 1) ,1s(g, 1)
where we take the same rule of summation as for (9).
The remarkable feature of this expression is the fact that
all the U,’s are first-order differential operators. We
write down the first four generators in this form:
A, =_0n A= (vx)’ "'T]z’ A= mx)g + 3T/x[72 + '{73,
A =T +6(0,)T, + 30, +40,0,+7,,"  (12a)—(12d)
where

T,=U,=¢l3,, vz=Uz'E{Ef,ta:

Ty=Uy+(- 35584, , +2681, i8]0+ 261008 )2,

Uy= U+ (- 461 - Beed,  +0ciet, el +6eieled

(Aa)

.an

A,;klz(p
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+3g8, 1 +3ELETE] |, - BElEd (6, o]
-3tleied el
—12¢{ele 5 - SEletehel w)?,.  (132)-(13d)

The importance of the decomposition into this form will
be recognized if we remember the basic lemma used in
the theory of continuous group transformations:

If two first-order differential operators U,=¢!9,
and U,=¢£}9,,.i=1,2,....,n, satisfy the conditions
Ufix') =0, j=a,b, on the manifold defined by f(x*)
=0, then we have U,U, f(x')=0 on the same manifold.

Successive applications of the lemma to the invariance
condition (A), lead to the conclusion that all the opera-
tors T, in the expression (11) must satisfy the
condition:

T,F(x)=0 on the manifold S defined by F(x!) = 0. (B)
This allows us to draw the following conclusion:

All the A,’s are constructed from first-order
differential operators @, which satisfy the condi- (C)
tion QF(x*)=0 on F(x')=0.

In Lie’s theory of group transformations, the operator
which satisfies condition (B) is called a generator of the
invariance group. We suppose that the largest invariance
group of the equation F(x!)=0 is an r-parameter group
with generators @,. Then, all the operators which sat-
isfy condition (B) can be written as
T/,.: itxa:Q‘ . (14)
In particular, if we let g{=0 for k> 2, we obtain A,
=(DU,)* from (11), and the operator T(a) in (10) reduces
to an exponential operator,
- ok _
T(a)= 5 2 (0= P, (15)
o k!
Result (C) is significant in studying the structure of in-
variance transformations because it clarifies the con-
straints on and arbitrariness of an invariance trans-
formation., The vital fact is that if we have a complete
set of generators of the invariance group of the equation
F(x')=0, then any continuous invariance transforma-
tion connected to the identity transformation can be
constructed from these generators,

Now, the problem is how to find such generators for
a given equation F(x!)=0. The basic idea of deriving
the generators was established by Lie, and we will
illustrate it briefly after the discussion of differential
equations.

111. INVARIANCE TRANSFORMATIONS OF
DIFFERENTIAL EQUATIONS

We have congidered a set of coordinate transforma-
tions in R" which leave the equation F{x')=0 defined in
R™ invariant. We now introduce some functional rela-
tions among the coordinates, which are compatible with
the equation F(x‘)=0; such relations will restrict fur-
ther the domain of manifold S,

We consider a function u(x’) defined in the (¢ -1)-
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dimensional space R*(x},...,x*') with k<m, and
assume the following:

The coordinate x* {s determined by the relation

x*=u(x'), and the coordinates x**!,...,x" are

determined as the derivatives of u(x*) with re-

spect to the coordinates x*,...,x*"!, For in-

stance, 2*'=23,u, ... ,x*'=3,_ u, »**=3,3u,
[ antt T KVSETEIN

We suppose that R is chosen in such a way that if it con-
tains a coordinate corresponding to a jth derivative, then
coordinates for all the other jth derivatives also appear
in R". The condition we have imposed are compatible
with the equation F(x*) =0 only if the function u(x') is

a solution of the equation F(x')=0, interpreted as a
partial differential equation by considering x"’s as de-
rivatives defined by (16). Each solution will define a
submanifold 3 of the manifold S, called the solution
surface.

(16)

Now, we consider a continuous coordinate trans-
formation (4) under which a manifold satisfying condi-
tion (16) is always mapped onto a manifold which also
satisfies condition (18), with x*=u(x?, ). In analyzing
such transformations, it is convenient to introduce the
following definitions:

Basic coordinates and jth order coordinates

We call the coordinates x',...,x" basic coordinates;
and the coordinates corresponding to the jth order
derivatives, jth order coordinates. For instance, in
(16), x**!,...,x%* ! are first-order, and x*, x*! are
second-order,

Basic space and jth extended space

We call the vector space (x*,...,x'), jth extended
space if it consists of all and only the basic coordi-
nates and a complete set of the first through the jth
order coordinates. In particular, we call the Oth
extended space (x',...,x*), the basic space.

Basic transformation

We call the transformation of a set of basic coordi-
nates, the basic transformation.

Basic operator and jth extended operator

We call the operator b:zi,, £'2, of the transformation
in the jth extended space the jth extended operator. The
Oth extended operator Q=34 ,£%9,, will be called the
basic operator.

It is clear that under condition (16), the transforma-
tion of the basic coordinates will determine the trans-
formation of the rest of the coordinates. In particular,
if a basic operator is given, we can determine all the
extended operators. Now, we require that such trans-
formation leaves the equation F(x%) =0 invariant, The
geometrical meaning of the invariance transformation
is more important; the invariance transformation
maps one solution surface S to another solution surface
3 (or onto itself), both of which are on S. A discovery
of such a transformation will lead to a new solution of
the differential equation. The transformation studied
most extensively is the group transformation. Lie con-
sidered an invariance group transformation of the form
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2=zt Farix)+ ---, i=1,...,k,
x =t ..., xh), an

in which infinitesimal terms of the basic transformation
depend only on the basic coordinates. It is important to
note that, under such assumptions, a finite transforma-
tion of the coordinate x? does not involve any coordinate
whose order is higher than the order of x?. This guar-
antees that the jth extended space is closed under the
transformation. The existence of such a closed space
enables us to elegantly construct a finite group trans-
formation, via the method of characteristics, from a
generator of the group..

Anderson, Kumei, and Wulfman, however, found that
there exist invariance groups of time-dependent
Schrodinger equations which are not of Lie's form.*
They generalized Lie’s theory by allowing infinitesimal
terms £’ of the basic coordinates to depend on the co-
ordinates of higher order:

xi-xizeOxi=xitati(x)+ .-, i=1,...,k,

x={x...,x1), I=k (18)

Here, the order of the coordinates in ¢! is not re-
stricted, and coordinates of any order may appear.®
We note, however, that we no longer have any closed
finite-dimensional space under such a group trans-
formation.” Although this does not cause any problem
in finding generators of invariance transformations, we
can no longer apply the method of characteristics in
finding a finite transformation. This generalization,
however, is absolutely necessary to uncover all the
invariance groups inherent in the differential equations.
Before we show that the sine-Gordon equation admits
such invariance groups, we answer the question raised
at the end of Sec. I. To put the problem into our present
language, we rewrite (1) as

F(x")=0 with x'=2', i=1,...,n,

XMl=uy, x"i=uy, v, (1’)
and (2) as

¥=x', i=1,...,n,

Pl=X"rf, a)=xm + ot + Lo e, @)
From a transformational viewpoint, the statement that
it is a solution of equation (1) is equivalent to saying
that transformation {2') leaves equation (1’) invariant.
For such a transformation, as we have found, we can
write £ *'=A,x" {or u*=4," in the old notation). This
leads to the conclusion, '

If a differential equation F(z*,u,u,, u,,,++)=0 admits
a solution u(z!, @) =3y, (a*/ k1) (2z*) which depends
analytically on o near a =0, then «* is always
written as u*(z')=A,u%(2"), wheré «® is a solution
of the same equation and the operator A, is con-
structed by (11) from the generators @ of invari-
ance group transformations of #=0 by which the
independent variables z' are unchanged. In par-
ticular, u'=Qu°. Furthermore, if only the in-
homogeaeous solution is taken for every u*, k

>1, then «* = (Q)*«°, and a resulting solution is
expressed as u(z') = e*%0(z/). :

(D)
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IV. SOME INVARIANCE GROUP TRANSFORMATIONS
OF SINE-GORDON EQUATION

We now go back to the analysis of the solutions
(32)—(3d). According to result (D), these solutions clear-
ly indicate the existence of invariance groups, or sym-
metries, of the sine—~Gordon equation. We will system-
atically determine generators of the invariance group

_transformations and will reveal new symmetries of the

equation. R

- We first specialize the general formulation given
above to a case in which we have three basic coordinates
xt, x*, and x%, and F(x) is chosen as

Flx', 2, 3%, 2%, 2, %%, 27, 2%) = x7 = sinx®.

As stated in (16), we establish the following constraints
on the coordinates:

B=ulxt, %%, =y, L=u, F=u,,
Xz, Czuy =y, 1=y,
M=t Xm=“2zz; =uyyy, M=
=100, X0, X =, XMP=w000,

19 __ 20 _ 1_ 22
X =y K0T Uy X S Mg, XS Uy,

(19)

3
** =ty

where subscripts 1 and 2 indicate the derivatives with
respect to x' and x*. We now consider a transformation,
of the generalized form (18), in which x' and x* are un-
changed and the infinitesimal transformation of x* de-
pends on x? and the first through the third-order
coordinates:

Bex, P=s,

P=xd+ ord(x®, x4, x5, 1%, 0, 20, 4Y), (20)

We note that the inclusion of the coordinates x°, x'°,

and x'* is redundant because we can replace them by

the coordinates in ¢° after we have introduced the condi-
tion F=0. The infinitesimal transformation, induced by
(20), of the coordinate corresponding to the derivative
(3,)™(3,)"u is calculated as®

=t +a(d)"@ )t =x + ot (21)

Here, the partial derivative should be interpreted as
(@)@ = (3,)m(3.)"

' x 3 ulx®, x), 2, (x*, x%), oo oy uppp (X, B))  (22)
For instance

(23)
where £7 is the derivative of ¢* with respect to the coor-
dinate x! contained in ¢, and should not be confused with
the same notation used in Sec. II. As in Sec. II, we
write the infinitesimal transformation in the jth ex-
tended space as

= (1 +ad), é:i‘,g‘a‘ with £'=¢2=0,
inl

3 6
A R H R 3 R R T AR H AR NS

(24)

Now, we assume that the equation F=0 is invariant
under the group transformation whose infinitesimal
form is given by (20); the condition is

é)F:g’-g’cosx’:O on x7 - sinx®=0, (25)
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which is the partial differential equation for ¢°, The
equation éF:O will split into a set of partial differen-
tial equation because some of the coordinates which
appear in the equation are independent from the coor-
dinates in t® (Appendix). By solving these equations,. we
find four independent solutions:

e
gr=xt, gp=x0+ 300,

3_ .5 3_. 124 Lg 53
3=xt i=at?+ ().

(26a)
(26b)

Obviously, the kst two solutions can be obtained from
the first two, by interchanging the roles of x* and »°.
The second extended operators associated with ¢} and
¢f are calculated from (21) and (24) as

2
Q= X, T a0, +x"e, + % + 1'%, +atlE,, (27a)
2 : -
Q= "l.x‘g + %(,\”)3}03 + {xu +%(x')2x°}24 + {xu

+ %(’\.4)2",7}65 + {X“ + 3},1(1_6)2 +%(x4)2x9}as

+ {-"m + 3xtxyT + %(,\'4)23’10}5, + {xzo +3 (7)Y

+3 (a2, (27)

We can easily check that they satisfy condition (25):
thus, the sine-Gordon equation is invariant under the
group transformations generated by these operators.

This result explains the origin of the solutions
(3a)—(3d); they are obtained from result (D):

u= Qo)ax’ =x1 (28a)
and
W= (O =1, (28b)
uy= GOJ,,x’ =x° + 3(x*)? (28c)
and
= Q) = ¥ 4 3ot 4 Y
+9aix%x® + 3 (x%)%, (28d)

We note that we need the extended operators Q, and é»
for calculating the second term u®. As we stated in Sec.
I, this is the general character of the generalized
transformation (18) and we need the k(n - 1)th extended
operator to calculate the nth term «" if the basic trans-
formation contains the k-th order coordinate.

V. GENERATING FUNCTION FOR GENERATORS

We have obtained four generators of the invariance
group of the sine-Gordon equation by considering a
generalized Lie transformation (18). However, if we had
assumed a more general form for 3, we might have
been able to produce more generators. It is unfortunate
that we have no theory which tells us which coordinates
we need in ¢* of (18) to obtain a complete set of gener-
ators, hence we must make some assumptions on the
form of t7. In practice, it is not possible to retain too
many coordinates in £ because the determining equa-
tions for ¢ become too huge to solve, Therefore, it is
highly desirable to have another method for producing
the generators, which does not require either such
assumplions or the construction of the solutions of
determining equations. Here, we provide one such meth-
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od although the completeness of the set of generators
obtained is still not assured.

The idea of the method is to reverse the result in
Sec. II. We found that the operator @ which satisfies
a condition @F =0 on F=0 is the building block of any
invariance transformation connected to the identity
transformation. By reversing this, we argue that if we
have an invariance transformation connected to the
identity transformation, then we can find at least ong .-
such operator. More precisely, we proceed in the fol-
lowing way.

Suppose we have an invariance transformation of the
equation F(x!)=0,

1
o R

in which all the ¢} are known. Using the result {11), we
can write,

ti=Axi= Dlxi , Hi=Axi= {(Dl)z + 712}2'{’
Ei=Ax =T +30,0, + Tt -,

« & = .2
i‘:x‘+za—A;‘=x'+§%g:, i=1,...,n, (29)

where all the T, are first-order differential operators.
From the first equation, we obtain

D=L, . (30)
i=l
Feeding this into the second, we get U,x'=¢5-(T,)%",
which provides
U= 2[5~ (@0, @31)
i=l

Next we substitute these for the T, and T, in the third
equation to determine L_I,. Continuing this process we
can obtain a series of operators TJ,, all of which satisfy
the invariance condition “@F =0 on F=0.” We note

that if the stdrting transformation (29) happens to form
a group, then we only get Z’, and all the others are
equivalently zero for the reason discussed in Sec. II.
We may consider the starting transformation (29) as a
generating function for generators of an invariance
group. The upshot of the method is that only algebraic
computations are involved in the process and a computer
can be used, whereas the construction of the solutions
of the determining equations by computer is very diffi-
cult. Obviously, this method can be used to find gener-
ators of an invariance group of a differential equation if
the constraints (16) are taken into account. We apply the
method to the sine-Gordon equation to find additional
generators.

We start with the well -known Bicklund transforma-
tion of the sine-Gordon equation, *

Fox'=20sin3(¥2+1%), o +x%)=2sin3(x3 - x9),
: (32)

with the convention established in (19). This transforma-
tion guarantees that if x® is a solution of the sine-Gordon
equation then so is ¥* for a continuous value of a. A
principal use of the Bicklund transformation is to con-
struct a new solution ¥° from a known solution x* by
solving a set of first-order differential equations (32).
We assume that the new solution ¥*, is an analytic
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function of a in the neighborhood of @ =0, and s0 are its
derivatives. Then, it is clear from (32) that the trans-
formation is connected to the identity transformation;
#—x*as a—0. The analyticity assumption allows us
to expand the solution ¥* in the Taylor series in @
near a=0. Such an expansion is found in the paper by
Scott et al.,' and we rewrite their result:

a*

2’=x’+§k—!g.’, (33)
with:
£3=2xY, gl=4x8, gl=124° +2(x%),
£3=48x"% +48(x*)%%,
£3=240x"% + 360(x*’x* + 600x* (x°)F +18(x*)%,
£3=1440x* + 2880 (x*)*x*?
+12 960x*x%x® + 3840(x°)° + 1440 (x*)*x®
£3=10080x™ + 176 400(x*)*x® + 95 760x*(x°)
+141120x*x°x'* + 25 200(x*)*x*® (34a—¢g)

+63000(x*)*(x%)* + 18 900(x*)*x® + 450(x?)", - - -,

where we have adopted the convention (19) and x*
=uyy;111,- In this specific Bicklund transformation,
the coordinates x* and x* are unchanged, i.e.,

=x', #2=x or t{=ti=0foriz1. (35)

The transformations (33) and (35) form the basic trans-
formations, ahd they provide all the necessary informa-
tion to follow the above prescription to find _U,. We list
the results up to U,:

U,=0,=0,=0, U,=2x%,, U,={42®+2(x*)%2,,

U, ={48x'® +120(x*)*x® + 120x*(x°)? + 18(x*)*}2,,

T, ={1440x +25200(x*)*x® + 15 120x*(x°)*
+20160x*x"x3 + 5040(x*Px'® + 12 600 (x*)* (x°)*
+6300(x*)'x® +450(x*)"}3,. (36a—e)

Here, we have given the operators in the basic form;
the operators in the extended form can be obtained from
(21) and (24). By continuing this process, we will be
able to find an infinite number of operators which satisfy
the invariance condition (25). We can associate one in-
variance group transformation of the sine-Gordon equa-
tion with each of these operators.

VI. A SERIES OF CONSERVATION LAWS AND
INVARIANCE GROUPS

In this section, we use notation (16), hence x* repre-
sents a solution of the differential equation F(x')=0.

We consider an equation F(x')=0 which can be put
into a conservation form:

Sat=0, fiofie ), @)
Ginn :

where the derivatives are to be taken by considering
x*, ...,x" as functions of x*,...,x*?, The vector {
=(f,f%...,f*") establishes a divergent free flux in
the space R*!(x!,...,x*!) for each solution of the
equation. Now, we assume that the equation F(x!)=0
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is invariant under an r-parameter group with the
property:

#=TJla)x'=x" for i=1,...,k-1 with

Ta)= exp('ﬁla‘e‘). (38)

We suppose that transformation (38) exists if {ai<5.
Here, 8 is a positive number. Under such assumptions,
#* represents a new solution of the equation and a corre-
sponding flux, {=(F,7%,...,7%*") is written as

fi=fit, ... XL % ..., %)
=T a)f it ., 2 (39)

The implication of the new flux is the same as the old
one, except that it is now for the new solution, However.
its power series expansion in a tells us something new
about the starting solution x*; because we have assumed
that the transformation T (&) exists at least for some
range of {al, it acts as a generating function of fluxes;
each term of the expansion of (39) in a*,...,a" also
forms a divergent free flux. We state this as follows:

If a differential equation F(x*)=0 admits an in-
variance group with property (38), and if a flux

f of the form (37) exists, then, for any polynomial (E)
function G(@,, ..., Q,) of the generators of the

group, the vector Gf forms a divergent free flux.

Here, we see two basic patterns for a series of diver-
gent free fluxes to arise: one associated with a series
Qd, i=1,...,r and one associated with a series (Q,)",
n=1,2,--. ., It will be reasonable to say in general, that
the former is more fundamental than the latter because
the series of the second type can be mechanically con-
structed if @, is known, although the reverse is not
possible. One, however, should not think that the fluxes
of the second type are trivial, °

We now apply this analysis to the sine-Gordon equa-
tion, F=x" - sinx®, The equation can be put into the
conservation form by multiplying by x3;

3, +3,2=0 with {=(f' f3)=((*? cosx’),
and the generators (36b)—(36e) can be used to derive
new fluxes. We list a few of them, (using the notation
t,= b(f):

t,:fl=2x%%", fi=-2x'sina’,

ty:fi={dxM +80"x]x®, fi=- {42° +2(x")%} sins?,

1, f1=24{2x" +102%x"x® +5(x*Fx"* +5x7(x°)

+ loxixbxlﬂ +£‘E(xl)4x1}x5’

fo=-24{2x' +5(x*)*2® +5x4(x*)? + § (x*)*} sinx?,

4
131 fL 9= (TP = 16(x5x™ + 3(x*Pxdx'® + ()2
+ {3(x*)%x" +9x*x3x% ]t + 6xtxSx"x?
+{92%(x%)* +9x*x%x® +3(x*) )20 (40a—d)
+9x5x5x"x® +9(x*)3x5x0x" + %(x‘)‘(x’)z] .

Here, we have listed only the first component for

1, 5. Among these fluxes, the first flux, {, is trivial
because it is the derivative of f with respect to x*.*?

We analyze the known results from our viewpoint. Our
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results are clearly different from the fluxes given in
the paper by Scott ef al.! Their results, however, can
be obtained by taking a linear combination of fluxes
with the form (TU,)*(T,)* - -« (U, /1. In fact, by using (11)
and (36a)—(36e), we find that A and Af recover their
results. For instance,

A ={(T,)° +30,D, + T} = 6{25% + 424520 + (x)225")
= 6{2u5u,,,, + du 0y, + W, Prguo),

where we interpret U, as a generator extended to a
necessary order. Now, we ask which fluxes are most
basic among these.

Although this question is very important in analyzing
the nature of conservation laws in general, the answer
depends on the measure one uses. However, as we have
indicated above, the hierarchy becomes quite clear
within the framework of group theory; we classify fluxes
into two categories:

(1) Basic fluxes: f, Qf, i=1,...,7,

and
{2) Associated fluxes: (Q,,)(Q; )2 -+ Q)
with i,=1,...,7, and n, +n, +---+n,>1,

and we use the basic fluxes to characterize the con-
servation law associated with a solution. The remark-
able feature of the sine-Gordon equation is that it
possesses a series of basic fluxes.

SUMMARY

To conclude this paper, we briefly summarize the
results obtained in the present study. In Sec. O, we
studied a structural aspect of continuous invariance
transformations connected to the identity transforma-
tion, and we stated the explicit relation between a con-
tinuous invariance transformation and a continuous in-
variance group transformation [(A), (11), (C)]. In Sec.
I, we used the result of Sec. I to analyze invariance
properties of differential equations and we uncovered
the group theoretic structure, inherent in any solution
which depends on a continuous parameter [(D)]. In
Sec. V, a new method was given for obtaining generator
of an invariance group and it was used to find a series
of new generators of an invariance group of the sine-
Gordon Eq. [(36b)—(36e)]. In Sec. VI, we gave a group
theoretic criteria for the existence of a series of con-
servation laws associated with solutions of a differen-
tial equation [(E)], and this was used to provide a group
theoretic explanation of a series of conservation laws
of the sine-Gordon equation. The results (40a)—(40d)
explicitly indicate that there exist conservation laws
whose existence is inexplicable within the Lie’s frame-
work of group theory, but still can be explained by
group theory if the generalized theory (Ref. 5d) is used.
In the next papers, we will show that the conservation
laws of the Kodeweg-—deVries equation and the cubic
Schrdedinger equation are also related to invariance
groups of the generalized Lie type.’?

Note added in proof: The transformation (10) with A,

defined by (11), (12a—d) has been found to be the power
series expansion, in a, of the expression
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APPENDIX: DETERMINING EQUATIONS OF
GENERATORS

Although our transformation is more general than

« that of Lie, the basic idea for obtaining the differential
- equations (determining equations) for ¢! is the same

as Lie’s, and for a detailed discussion of the Lie method

- we refer the reader to the book by Ovsjannikov®® or the

book by Bluman and Cole. * Using f for ¢*, the deteter-
mining equations for our problem are the following:

fo, 12=0,

Js, 12" +fa, 12" +/5.12*” +fe,123’9 ”'/s,n’“ +fxz.1z’“=°;
S0 H o X7 [ 08 o, 0X"0 F fo,00'F +1, X1 =0,
ST HLHO AL g ot [+ fox™® [

+ 4, (fs, % + o, 187 +fs,6° +fo, X0+ fo, 2™
g a1z
+j,.‘x“)=0,

with supplementary conditions:
x"=sinxd, x=xtcosx’, x'=1x*cosx?,
M= cos® - ()2 sinx®,
M =x"cosx® - (x°)?sinx’,
=2 cosx® - 3x'x" sinx® - (x*)°cosx®,
222 =x'? cosx® - 3x%¢® ging® - (x*)3cosx’,
where f,=3,f and f, ,=3,3,f.

*Thig work was supported by a Research Cooperation Grant,
1A.C. Scott, F.Y.F. Chu, and D. W. McLaughlin, Proc. IEEE
61, 1444 (1973) (review article),

!p,D. Lax, Comm. Pure Appl. Math. 21, 467 (1968).

31t has been suspected that some transformation property of
the differential equation governing the wave motion is respon-
sible for the existence of a series of conservation laws. In
fact, the restricted Bicklund transformations (R. B, T.) have
provided a systematic way of deriving a series of conserva-
tion laws. However, the derivation involves a process of
power series expansion of a solution with respect to some
parameter. Such 2 method only exemplifies the existence of a
series, but does not explain the origin of individual conserva~
tion law. On the discussion of R. B. T. in the theory of soli-
tons, we refer to (a) G. L. Lamb, Rev, Mod. Phys. 43, 99
(1971); (b} D, W. McLaughlin and A.C. Scott, J. Math. Phys.
14, 1817 (1973); (c) H.D, Wahlquist and F, B, Estabrook,
Phys. Rev. Lett. 31, 1386 (1973). We add in proof the follow-
ing papers on the Biicklund transformations: G. L. Lamb, Jr.,
J. Math, Phys. 16, 2157 (1974); M. Wadati, H. Sanuki,

and K. Konno, Progr. Theor. Phys. (Kyoto} 53, 419 (1875},
‘R.L. Anderson, S. Kumei, and C.E., Wulfman, Rev. Mex,
Fis, 21, 1,35 (1972); J. Math., Phys. 14, 1527 (1973).
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SFor Lie's work and its later development, we refer the
reader to (a) S, Lie, Transformationgruppen (Chelsea,

New York, 1970), 3 Vols., Reprints of 1888, 1890, and

1893 eds., S. Lie, Differentialgreichungen (Chelsea, New
York, 1967}, reprint of 1891 ed,, S. Lie, Continuierliche
Gruppen (Chelsea, New York, 1967}, reprint of 1893 ed.

(b) L.V, Ovsjannikov, Group theory of diffevential equa-
tions (Siberian Sec, Acad. of Sci., Novosibirsk, USSR,
1962). This book has been translated into English by G. W.
Bluman, Department of Mathematics, University of British
Columbia lunpulglished). L.V, Ovsjannikov, Some problems
arising in group wnalysis of differential equations (Proceeding
Conference on Symmetry, Similarity and Group Theoretic
Methods in Mechanics, edited by P. G, Glockner and M.C.
Singh (University of Calgary Press, Canada, 1974). (¢} G. W.
Bluman and J.D. Cote, J. Math. Mech. 18, 1025 {1969).

G.W. Bluman and J.D. Cole, Similarity Methods for Differen-

tial Equation (Springer, New York, 1974}, (d} R. L. Anderson,
S. Kumei and C.E. Wulfman, Phys. Rev. Lett. 28, 988 (1972),
$We note that the well-known contact transformations of ordi-
nary differential equations, which were extensively studied

by Lie, are a realization of the derivative-dependent trans-
formations in which only the first-order derivative appears,
If the equation is an ordinary differential equation, it is
always possible to find a closed space.

83everal years ago, Professor G.M, Lamb kindly raised the
question of the relation between this generalization and the
Bicklund transformation, which depends on first-order de-
rivatives. The basic difference is the fact that the Bicklund
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transformation is not a group transformation in general,
whereas our generalization allows us to construct a group
transformation. We should consider that a Lie type trans-
formation and the Bickiund transformation are complemen-
tary in the sense that neither of them subsumes the other.
Lie’s infinitesimal approach, however, will be superior in the
structural analysis of continuous invariance transformations.
*The general formula of the expression of the extended opera-
tor will be found in the paper by R.L. Anderson and S.
Davison, J. Math, Anal. Appl. 48, 301 (1974). .

%e define “trivial” flux in the following way. We consider a
set §{f,,f;,....f;} which consists of divergence free fluxes,
fi,...,f; and their derivatives of any order. We note that the
derivatives are also divergence free. Now, a flux f is said
to be trivial with respect to the set S, if f can be expressed
as a linear combination of the members of the set S. In this
sense, the flux @ i{s, in general, nontrivial with respect to
the set §{f,Qf,Q%1,...,Q@™f}. For instance, the flux f,3 of
(40) is nontrivial with respect to the set S5{f, Uif}.

HEqQ. VI.B.7 in Ref, 1.

12This is due to the special character of the operator Ty; the
operation of U, on the variable x*, i >2, is equivalent to the
differentiation of the function v with respect to x!, For in-
stance, Upx®=x*, (U})%*=x® and Ujx*=x" are the transforma-
tions ¥ —~u,, ¥ uy and u; ~*u;;. Because of this property,
the fluxes obtained from (U )" are all trivial.

13g, Kumei, “Group theoretic studies of conservation laws
of nonlinear dispersive waves” (II, III, IV) (submitted for
publication).
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Group theoretic aspects of conservation laws of nonlinear
dispersive waves: KdV type equations and nonlinear
Schrodinger equations*

Sukeyuki Kumei '

Department of Physics, University of the Pacific, Stockton, California 95204
(Received 5 January 1976; revised ipt ived 3 September.1976) 4

.
Group theoretic properties of nonlinear time evolution equations have been studied from the standpoint of
a generalized Lie transformation. It has been found that with each constant of motion of the KdV type
equation f,,. + a(f)f, + f, =0 and of the coupled 1 Schridinger equation f,, + a(f.g)+if, =0,
8+ a(8.f) —ig, =0 onc invariance group of the equations is always associated. The well-known series of
constants of motion of the KdV equation and the cubic Schrodinger equation will be recovered from the
invariance groups of the equations. The doublet solution of the KAV equation will be characterized as the
invariant solution of one of the groups. In a more general context, it will be shown that the well-known
equation of quantum mechanics (d/d1X U) ={[iH, U] +3U/3t) can be generalized to a class of
nonlinear time evolution equations and that if U is a generator of an invariance group of the equation then
(d/di1X U> =0. The class includes equations such as the KdV, the cubic Schrodinger, and the Hirota
equations.

INTRODUCTION number of invariance groups. (2) The doublet solution,
as well as the singlet solution, of the KdV equation is

In this paper, we study group theoretic aspects of
paper, ¥ group P the invariant solution (or generalized similarity solu-

time evolution equations of nonlinear waves, particular- tion) of £ th
1y of the Korteweg—de Vries (KdV) equation f,,, +ff; +f, ion) of one ol the groups.

=0 and of the cubic Schridinger equation f,, + £ * In Sec. III, we p.rove that w1th each consgrvation law
+if, =0, of the coupled nonlinear Schrddinger equation f,, + a(f, g)
+if,=0, g, +alg, f)-ig,=0 one can associate one in-
Some time ago, Anderson, Kumei, and Wulfman variance group. The constants of motion of the cubic
proposed a generalization® of the Lie—Ovsjannikov?~* Schrbdinger equation due to Zakharov and Shabat® will
theory of invariance groups of differential equations, be recovered from the invariance group of the equation.

and applied it to a number of quantum mechanical sys-

In Sec. IV, we investigate some general properties of
tems to systematically study dynamical groups.5 Re-

generators of invariance groups of time evolution equa-

cently it has been shown by Ibragimov and Anderson® tions H(1, %', f, FosFipe* <) +f,=0. It will be shown that
that this generalized transformation is an infinite (1) A generator U of an invariance group of H +f,=0
dimensional contact transformation. always satisfies the relation [ #/; U] +2U/2t =0, where
It has been shown in the preceding paper’ that the Hisa ‘Lie opgrator assc_)ciated w?th H; (2) For a class
sine-Gordon equation f,; - sinf =0 admits an infinite of nonlinear time evolution equations, thg equa!:lon
number of one-parameter invariance groups of this new  @/dt)Uy={#, Ul +2U/2() can be generalized; in par-
type, with each of which one can associate a series of ticular, if U is a generator, then {d/dt}(U)=0.
conservation laws. Although the generalization appears 1. INFINITESIMAL INVARIANCE
to broaden the usefulness of group theoretic analysis TRANSFORMATIONS

of differential equations, particularly of nonlinear ones,
the physical implications of the new type of symmetry
are still unclear in many respects.

We denote m-dimensional real and complex vector
space by R™ and C™, respectively and we consider the
following injini.te direct sum of the spaces; by
The aim of the present paper is to investigate some of  denoting C*¥*¥" by €

bl
the well. studied equation§ of nonlinear waves® :from the V=RYaCa C'«?. CaCi G ECaC e -, M
standpoint of the generalized theory, and to gain a clear- o o 1 L
er insight into the physical significance of the presence The prime is to distinguish two spaces of the same
of the new kind of symmetry. It will be shown that some dimensions. We denote the elements of C and C’ by u
of the fundamental properties of the KdV and the cubic and v, thus the elements of V are '
Schridinger equations are the direct results of the z=(x,u, L U3 JRRRN U Uh ), x=RY, 2)

existence of new groups. .
group The components of 1O are written as Upypyoneny Upyppoess,

In Sec. I, weﬂbrieﬂy review a few basic ideas of

TN : i A A N N where each index runs from 0 through N9,
infinitesimal invariance transformations to fix notations.

u=(u), v=(v), u=(upuy,...,uy), v=(vg,vy...,0),
In Sec. II, we investigate group theoretic properties ! . i
of the KdV equation and the related equations. The main
results are: (1) With each constant of motion of the KdV
type equation f,, + a(f)f, +f, =0, one invariance group U= (Vg Vggy s+ s Vgl o v o 3 Ungs Uygy o« o 5 UNi)y
is associated, hence the KdV eguation admits an infinite : R I PR T L L LR TR (3)

¥=(u001u01y' sesUgps ey Uppy Upgy e oo Y Unns
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Now we consider an infinitesimal transformation in V

z=z+eZ, Z=(0,n,t,?,‘t,...,:},f,---), (4)
where .
n=n(z;c), t=t(z;c), (5)

and the components of n and t are to be determined by
the formula

Mooty =DpgpeeenTls oipeen, = Dpipiuens b5 (6)
where Dyy...p=D(D;*** D, with
Dl = a,( + ("iau+ viav) + (ul!au, + vl!av!) Foes

+ {1, jeam®
(Mijenemde,,,. .

+Vferem "1---.-.) dove, (1)

In this paper, the summation rule will be assumed for
repeated indices. In (5), ¢ denotes a collection of all
the real and complex numbers appearing in the expres-
sion of 17 or {. We write (4) compactly in the usual way
as

z=(1+el)z, 8)
with
=3, +¢3d,) + (n‘a,,‘ + zia,,‘) +eeet (n,.,,,a,b_..
F L vnnle,,, ) 9

Uieeok

The operator U has the following property (see Appendix
A for the proof):

Lemma 1: If a function A(z) is twice differentiable
with respect to all the variables, then (D, - UD)A(z2}
=0for i=0,1,...,N.

We cousider a set of differential equations for func-
tions f(x) and g(x),
Fl(z;0)=0, i=1,2, (10a)
u=f(x), v=glx), u ={(x), g=g(x), k=1,2,...,%,
* {100)
where f(x) and g{x) are functions of the (N+1)*-tuple
R [l

{(x)=(f0:fl: fee )fN): f(x)=(g0;g1» . ..,g,,,),

{(x)=(fO°!"-,fNN)’ lzg(x)=(goo»---y§rm), (11)

“ssssesssces s s

With froo ;=340 3 Flx), Bruee; =23, 8 4g(x). Cin
(10a) represents a set of parameters (real or complex)
appearing in the differential equation. Each solution of
Eq. {10) defines a manifold in V which we call a solu-
tion manifold.

It is well known?™ that a group transformation e®?
maps a solution manifold of (10) into another (or the
same) solution manifold if and only if

- UF'(z)|; =0, i=1,2, (12)

where (°°)] ; indicates to evaluate the quantity under
the conditions

Fi =0, D,‘...,‘F'=0, i=1,2, k=1,2,...,°. (13)
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The aperator U is then a generator of an invariance
group.

We define #-conjugation of a quantity A(z;¢)
=A(x,u,v,...,u,v;c) by
L3
A=Al v,u,.. 0,9, u%), (14)
where the asterisk represents a complex conjugation,
An important subclass of Eq. (10) is
F'(z;0)=0 with F2=(FY)F, !

u=fl), v=flx)*, . (13)
For this equation, the generator U takes the form
 U=na, +nka, nd,en b,
S T IR U i SRR (16)

In this paper, we consider the infinitesimal transfor-
mations of the type (4) which involves no transformation
in x. This transformation, however, is not as special
as it might look. Let us consider an infinitesimal trans-
formation of a more general type®=

;-=Z+EZ: Z=‘E;;lyiyf’yli:".)y E=(E0121”~-12Av);

amn
where
"9,---9, o Dﬁ,ﬁq-np,,, ll,l...,._l,D,.E",
i s (18)

. =D, by = Vg een, .
217" Py 1Py p,tp,-- py ™ Uty ,’_’,D,.ﬁ

It can be proved!! that if we know the transformations of
type (4), then we can also obtain the more general type
17

Lemma 2: 1f (4) is an infinitesimal invariance trans-
forniation of (10), then for an arbxtrary choice of £, 7,
and { subjected to the conditions § - £\, =n, £ ~E'r, =,
the transformation (17) is also an invariance transfor-
mation of Eq. (10). Conversely, if {17) is an invariance
transformation of (10), then so is (4) for n=f ~ By,

t=E-8ep.
In the following sections, we write the operators (9)
and (16) as
U=n3,+t3, U=na,+n*s,. (19)

They, however, must be always interpreted as their
infinite prolongation. Also, we use the following
abbreviation:

[4@)) ey =[Al, )],
vag (x}

and :
f [Alx, v)],', dx = fA(u, v)dx.

tt. A GROUP THEORETIC ANALYSIS OF THE KdV
EQUATION e

The equation of our interest is fyyq +ff; +fp=0. 11
The equation is a particular case of (10) for which

=0, g=0. In this section, we use t, x for x°, x*, and
write coordinates such as ug, 1y, ***as u,, t,,**".
Similarly, we write 1, 74q, *** @S 7, My, * **. Thus, by
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definition ,=Dm, n,,=D.Dn, etc. Also, because the
equation involves a single real function, all the v’s in
the first section are to be ignored.

A. A Lie algebra of an invariance group of the
KdV equation

We write the equation as
F=u, tuu, +u,=0,
u=flx,t), up=felx,1), u=filx,t),**.

We look for an operator U =799, which satisfies condi-
tion (12) for this equation. We assume the transfor-
mation to be a generalized Lie type1 with 7

=0(%, 1, U,y Uy Upsy Ugrry Uprs Useeny). The absence in n of
coordinates corresponding to f derivatives may be
justified for time evolution type equations in which the
only ¢ derivative contained is f,.

(20)

The application of Lie’s algorithm™* for finding gen-
erators leads to the following results:

Ul=(tu, - 1)3,,

U =4 {xu, ~ 31(u,,, +1a0,) + 21} 3,

7 =18, U= (e, + )2, @)

U= Uppey T Wlley + 200000 + 318000,) B0

The generators form a nonsemisimple algebra (see
Appendix B for the definition of a commutator)

[t1, v1=301, (1, ¥]=0, (U1, U4]=U3,

(v, )=, (12, V*)=303, (0%, 04)=17, 22)
(07, ¥)=415, (0%, 0*)=o0,
(3, t*l=0, [v¢,15]=0.

By making use of Eq. (20), and by applying Lemma 2,
one can cast the first four generators into “genuine”
Lie generators: They are equivalent to

T=-td,~2,, U =%(-x2,-30,+210,),

V=-3, U=a, @23

This set of generators is well known, ¥%7 The genera-

tor U°, however, is new and its properties will be
analyzed later.

Let us consider operators 9U/2t=(3m) 3, and
H = (g, + 11,) 3, = U*, It is remarkable that all the U’
of {21) satisfy the relation [ 4, U]+ 2L /3t =0. In Sec.
1V, it will be shown that a generator of an invariance
group of time evolution equations always satisfies such
a relation.

It is well known!® that the KdV equation admits an in-
finite number of conservation laws. To study a possible
connection between the present groups and the conser-
vation laws, we need to know effects of infinitesimal
invariance transformations on constants of motion,

In his analysis of constants of motion of the time
evolution equation H(x, f,u, ty, Uy, ..., u"™) +3,=0,
U™ =ugder , u=f(x,1), Lax® considered an infinitesimal
transformation of a solution f(x, ) into a solution
u=f(x, 1) +€ed(x,1). The function ¢ must satisfy the lin-
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ear equation .

H.(f)¢+H.‘(f)¢,+”'+H'(,|)(f)¢(")+¢‘=o, ‘24)
where H,(f)=(3,H),, etc. and ¢ =(3,\¢(x, 1), We
note that n(f) of a generator of an invariance group of
the equation H(f) +f,=0 is a special realization of ¢.
The effect of the transformation on the constant of
motion I(f) is

K +ep)=1(f) +e(T(), ¢), . - '
(C(), $) =0 I(f +ed) | ono- (25)

The function I'(f) is a gradient of the functional I(f). ¥
For the constant of motion of integral type, i.e., I(f)
= [p(f)dx, the gradient has a simple expression: As-
suming plu) =p(x, t,uy .., u™),

I"(u)=p,—D,p,x+D,’,p.&,+"‘ + (=D Yp,w (26)
In this case, we have

T, o)= [ T(f) pdx. @7
Lax observed

(T'(1), ¢) is a constant of the motion. (28}

B. Constants of motion of f,, . +alf)f, +f, = 0and
its groups

Now we prove a theorem which establishes a relation-
ship between a constant of motion of the KdV type equa-
tion and its invariance group. We consider an equation

Tt alf)fe+f =0, (29)

where a(f} is a function of f. We assume that an initial
value problem for this equation is well posed for a
periodic boundary condition f(x, f) =f(x + x,, 1) or for a
condition f(- %, 1) =f(<,{) =0, Let us suppose that the
system has a constant of motion of integral type J/{f}
=[p(f)dx. The limits of the integration are either over
the period or from — = to =, We prove:

Theorem 1. If T'(x) is the gradient of a constant of
motion I(f) = [ p(f) dx associated with the equation f,,,
+a{f)f,+f, =0, then the operator U=72, which has
1) =D,I'(x) is a generator of an invariance group of
the equation.

Proof: 1t is sufficient if we prove {Ult,, + a(u)u, +u,)},
=0, We consider a transformation of a solution f to a
solution f +€¢. Then, by (24), ¢, +a(feo, +a,(f)f,d
+¢,=0. Thus, 0= [T(f)(¢ey, +ad,+a,f.¢+b,)dx. In-
tegrating this by parts and assuming null contribution
from the boundary terms, we obtain 0= J{- D3I - D, (al')
+Tag ~ DT}, ¢dx+{(d/d) [T ¢ dx. The second term
vanishes because of (28). Because we can prescribe an
arbitrary admissible function for ¢ at initial time ?,,
this equation implies {DI + D (aT'} - Tau, + D,T},=0.
Differentiating this with respect to x, and defining
n=D.T, we find {Din +nau, +(Dn)a+Dm} ;= {Ult s
+au, +u,)},=0.

This theorem establishes a relationship between con-
stants of motion and invariance groups of Eq. (29),

XN = [ p(Ndx —T(u)—~{U=13,, n=D,T}. (30)

The process from U to I involves an integration process
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and not all the generators are integrable to I. In Sec.
IV, we provide another scheme to connect a group to a
constant of motion which can supplement such a non-
integrable case.

The application of the theorem to the generators (21)
leads to (within constant factors),

f= [0t -a)dy, P= [ }itdx,

P= G -ul)dx, (31)

P=] (qie - 3l + 3 1,) dx.

The generator U? is not integrable. The constants (31)
coincide with members of the set of constants of motion
due to Miura, Gardner, and Kruskal. ® The simplest
constant I'= [ udx is missing; the reason is that it gives
I'=1, hence U=0. In the last section, however, we
show that one can associate this with the generator U?,
Thus, we write I = [udx.

The fact that there exist an infinite number of con-
stants of motion for the KdV equation means that the
equation is invariant under an infinite number of groups;
the situation is similar to the case of the sine-Gordon
equation f,, - sinf=0.7

Now, we study properties of the groups associated
with constants of motion of the KdV equation. First we
review a few important properties of the gradient found
by Lax!'® and Gardner, 1

C. Properties of gradients (Lax and Gardner)

Lax has proved that the gradients associated with the
constants of motion of the KdV equation has the follow-
ing unique properties:

(1) If T¥(x) is a gradient of I* = [ p*(f) dx, ,j>2, then
T'() D, T (u) =J* with J'/ = polynomial in

Uy Uy Ugy,*®°,

(2} Every solitary wave solution

u=3c sech*3Ve (x - cf) = s(x— cf) (32)
.is an eigenfunction of the gradients
T(s)=7(c)s, v{c)=eigenvalue. (33)

In the study of doublet solutions of the KdV equation,
Lax, as well as Kruskal and Zabusky, ? focused his at-
tention on three constants I°, I, and F. For these
constants, the gradients are

=u, T=u*+ 2u,y,

T5 =% + 302 + 60, + -‘é Yprres (34)
and correspondingly,
T(s)=s, T4s)=2¢s, T(s)=4 c%s. (35)

Another remarkable property of I'(u) of the KdV equa-
tion is due to Gardner,

(3) If we define an operator W' associated with I''(u)
of #, i>2, by

W'=(D,I') 9, +(Dir) 3, +(DIT') a.;,+ e, (36)
then (W*, wi]=0.
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D. Properties of (¥, i > 2

We note the similarity between the generator U*
=(D,I"") 3, and Gardner’s operator W*. They, however,
are different in that the prolonged U* involves terms
such as (*) 3,,, (° )8. whereas W' does not. Neverthe-
less Gardner’s result implies that two generators U*
and U/ associated with I' and IY commute,

[ut,uil=0, i,j>2. . (37)

This is obviously the reflection of the fact that the KdV
equation is a completely integrable Hamiltonian
system, 1819

' Incidentally, it is often useful to note that: If I(f)

= [p(f) dx is a constant of motion associated with the
differential equation F(x, 1, f, fy, fes fexs fers f1e0 *° =0,
and if U is a generator of an invariance group of F=0,
then the quantity I’ = | {Up(x)},dx is also a constant of
motion of the same equation. The application of this
scheme to the KdV equation, however, fails to generate
a constant; indeed, by making use of Eq. (26), Lax’s
result (1), and Lemma 1, we find

f Ulp!dx= f@ (D:TI‘)D:(.) dx = IZ.; (- Dx).p:(.) dx
= [9'Mdx= [ 0T Mdx= [ D,J"dx=0.

(38)

Although the method fails to generate a string of con-
stants of motion, it has been found that U* gives rise to
the following recursive relation:

= ftrotde=c & tnt
0_/;Ip dr=c g I'*% (39)

This relation has been checked up to i =4.

E. Properties of e*

If u=f(x,?) is a solution of the KdV equation, then,
by construction, a function u—f(x,t a) = {e"”' u}, is also
a solution provided a series Zmo {a"/k‘)(U‘)"}, exists.
First, we show that this group transformation does not
alter the values of the constants of motion I,

[/l de= [ 'z, j>2. (40)

Proof: First, by (38), [{U'p’};dx=0. This must hold
at initial time for it is a constant of motion:
J{U %0}, (,ydx =0 for any admissible initial condition
f(x, 0)=p(x). It can be proved that this is possible
only if U'p! =D, k' (u), h' =polynomial in u,u,, 1., *"*.
Then, by using Lemma 1, (U*)*p! = (U*)*'D kK"
=D (U1K, Thus, I{p’}"dx I{o! +D, 35 @/
kl)(U‘)""h”},dx ! {p’},dx.

This result remmds us of quantum mechanics where
group operations e'*4, ¢*® do not alter the values of
observables (A) and (B) provided [A, B]Z 0. Here
operators U? and observables I' are related by (30)
and in fact the U'’s commute by (37).

The relation (40) indicates that both solutions f(x, ?)
andf(x, t; a) will break up into the same set of solitons.
To prove this we start from Lax’s result (2). We sup-
pose I to be a linear combination of I'! associated with
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the constants of motion I of integral type. Differentiat-
ing Eq. (33) by x and using the relationship between I'
and U, we obtain

{Un},=7(c)s,, s=slx-ct). © (4D
This and Lemma 1 give rise to
{(0ru}, = tra ) s ={rD,)u},. (42)

This relation implies that: For the solitary wave solu-~
tion (32), we havg the operator identity U=vD,. Conse-
quently, the group operation e® has the effect of trans-
lation in x when it is operated on the solitary wave
solution,

{e“uu},(,_") =slx —ct +ay(c)). (43)

Now let us assume that the solution f(x, 7) splits into N
well separated solitons as { =,

N
f(x,l)“?_; silx—cyt+6,) ast—w=, (44)
For such a wave profile, interactions between solitons
are small, hence at least for small 4 we may assume

X
{e"”u},(,,,,-;L:, {e*¥uly acpeupy 38 1. (45)

In view of (43), we can write this as
AY
{4} ™ -21; sily~c,t+6,+arlc,)) as t—=, (46)

Thus, two solutions f{x, ) and f (x, t; @) = {e*¥ul,(, , of
the KdV equation have the same asymptotic profile as
t — = except that the phase of each soliton is shifted by
the amount av(c,).

F. Invariant solutions of the KdV equation

QOne curious question would be whether there exists a
solution which is mapped onto itself under the trans-
formation e°Y, Speaking in a more general context, a
solution, of a differential equation F =0, which is
mapped onto itself by the invariance group of the equa-
tion is called an invariant solution (or generalized sim-
ilarity solution).! The necessary and sufficient condi-
tion for f to be the invariant solution of e®? is obviously

{un},=o0. 47

One of the best known invariant solutions will be the
Green’s function of the heat equation f,, - f, =0,

S =(4n1)""/ 2 exp(~ x*/41). Here the group involved is the
dilation group generated by U= (xu, + 2tu, +u) 8, (or
equivalently U’ = - x8, — 218, +:2,).

it is well known that the singlet solution of the KdV
equation (32) is the invariant solution for U=U*~ c-1U®
(=2, +¢-12,). The simplest generalization of this is to
consider a group generated by U=U5 +pUt +qU%, p,q
constants. Then the condition (47) yields

exxux T eex & 2faux ¥ 31 e+ DU 1) + @/, = 0.

An integration of this equation with respect to x, assum-
ing f{z =, 1) =0, leads to the fourth order equation ob-
tained by Kruskal and Zabusky, ¥ and Lax. ¥ The nature
of the solution was carefully studied by Lax, and the
solution was shown to be the doublet solution. From a
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group theoretic viewpoint, therefore, the doublet solu-
tion of the KdV eguation is the invariant solution of the
group P Uestheat®)

The idea here is precisely parallel to Lax’s; Lax
uses a condition I'(f) = 0 to characterize the doublet
solution whereas we use {Uu}, =0; but they are related
by (30).

111, INVARIANCE GROUPS AND CONSERVATION _ ~
LAWS OF NONLINEAR SCHRODINGER EQUATIONS
The cubic Schrddinger equation - if,, - f ¥ * +1,=0
is. another well studied nonlinear equation. It is known
to share many common properties with the KdV equa-

tion. 151 In this section we study group theoretic
aspects of conservation laws associated with a class of
nonlinear Schrédinger equations.

A. Conservation laws of nonlinear Schrodinger equations
We consider a coupled nonlinear Schrddinger eguation
U +a(u,v;c)+iu, =0, v, +alu, vie)? - iv,=0,
u=flx, 1), u=flx,1), u,=fx,8),**°,
v=glx, 1), v,=g(x1), v,=gdx,1), ",
where a function a is subject to the condition
a(f,g;c)=la(f,g:01, a,=0,a. (49)

[See (14) for the notation #, ] Condition (50) amounts to
requiring that the equation can be written as a
Hamiltonian system,

oH _ .. 8B _.
G_g. ==ify W =18y
where bﬁ/bg and 6A/5f are Frechet derivatives of
B ={E(f,g)dx, E=energy density, Equation (48) re-
duces to the cubic Schrddinger equation for the special
case of a=wu’yand g=f*.

(50)

We assume that an initial value problem is well posed
either for a periodic condition f(x, t) =f(x + x, 1), glx, 1)
=g{x +x,, 1} or for a boundary condition f(z =, {) =0,

g(x =, 1) =0. Let us suppose that the system described
by (48) has a constant of motion I(f, g) = [ p(f, g} dx
where the integration is over the period or from - = to
+=, The following theorem establishes the relationship
between the I and an invariance group of the eguation.

In the following, quantities 6//8x and 81/6v represent
{61/6f}luu.hv and {ol-lbg}hu,lw'

Theorem 2: 1f 81/5f and 61/6g are Frechet derivatives
of a constant of motion I{f, g) = [ p(f, g)dx associated
with Eq. (48), then the operator U=:(b1/bv)2,~ i{bl/
81) 9, is a generator of an invariance group of the
equation,

Proof: We consider infinitesimal transformations of
solutions f, g into solutions f+e¢, g+eyp. ¢ and ¢ must
satisfy the equations A =¢_, +a,(f, g )¢ +a {f, g ¢k
+id, =0, B=y, +a,lg,fic* ) +a,(e,fi e iy, =0.
The effect of this transformation on I can be found
easily; by integration by parts, we arrive at

8] [J4
1(f+<¢,g+€¢')-l(f,g)+e_/ (3} ¢ 5 a‘) dx
eI(f,g) +€dl.
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Thus, d/dt8I=0. Next obviously,

6, b1 )
f(&A—lﬁ_gB dx = 0.

On integrating by parts this yields 0= [(P¢ + Q¥)dx .
+(d/dt) 6] where

P=-{Ulv, +alu, v;c)* - vl
+ilalf, gic) - alg, £ic*)) 2—; ’

Q== {Ulty, +al, v;c) +in N}y, |
+ilalf, g;0) - a,lg, £;¢*)] % .

Because (d,/df) 8=0, we obtain
J(Po + Q@) ax=0. *)

One can prescribe arbitrary admissible functions for
¢ and ¢ at an initial time. Thus, the Eq. (») implies
that P and @ are identically zero. Furthermore, the
second terms of P and @ are zero because of condition
(49), hence, P=0 and @ =0 yield the equations to be
proved.

This theorem enables us to find constants of motion
if we know the invariance groups of Eq. (48); the pro-
cess involves a straightforward integration process
(61/5f,61/6g) ~1I, However, we note that there may be
a generator which is not integrable to a constant of
motion. This theorem can be extended to a general
Hamiltonian system. *°

B. Invariance groups of the cubic Schrodinger equation
and its conservation laws

We look for the operator of the form (16) which satis-
fies the invariance condition (12) for Fl=y, +7¥*
+if,=0 and F?*= (F1)*=0. Assuming the transforma-
tion to be the generalized type with n
=X, 4,1, Uy 2y Uygy o o oy Hogarey Uy, @Nd carrying out
Lie’s algorithm, we arrive at the following eight gen-
erators [writing only the first term of (16)]:

Uy = (= gixu + tu,) 3,,
Uy = (tuy + itstv + fxu, + ju) 8, Us=iud,,
Uy=ud,, Us=ilu,+utv)d,, 51)
51
Ug = (gyy + 3uvm,) 3,
Uy = ity + th 0, + duvu, + 2uu v, + 301 + 32°07) 3,
Ug = (e + S(uvttyy + v, v, + 200,
Fuva, +ultu) + £ty ]o,.
The first five generators can be cast into “genuine™
Lie type operators by Lemma 2:
Me=etd, - sixud,, P=-x3,-200,+ud,
V=iud,, Pi=id, =-3,
The effects of the group transformation e‘”‘, a real, on
4 solution f(x, t) can be found easily for i< 8,
1 = expl—ilax + a®t/2) /2] f(x + at, 1),
F=aflax,a’t), f*=explia)fix,?), (52)

j‘=ﬂ1+a,t), f6=f(x,l+a).
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The remaining three generators are of the generalized
type, and there exists, at present, no analytic method
of finding corresponding global transformations.

The constants of motion associated with the generators
(51) can be found by the simple integration process; they
are I' = [ p' dx where

pl=xuv ~ itlu,v - wv,), p*=uv, p'=iuv,

. 3
08 = 3y, — 31807), 0F =il v + 3 1w dt),
(53)
P! =, + 3100 = 20,0 + 0v,)? - w000,
8 _ B 2. 2
PP =w 0 (Ut v + 1, + 20,0 + 1u v+ 2l0,)

1
+3 uzu, 0.

The operator U? is not integrable. These constants of
motion, except the first one, agree with the ones ob-
tained by Zakharov and Shabat.® The phase shift opera-
tor U, the x translation operator U*, and the f transla-
tion operator U° have given rise to the probability den-
sity p®, the momentum density p*, and the energy den-
sity p®. The first constant I' also has a simple meaning
if we consider the cubic Schrodinger equation as the
Schrddinger equation for a particle with negative mass

~ 3: The I' represents the initial position of the particle,

(x0)=(x-IV‘/=ff"(x-f’—"o))fdx:l‘, V =velocity.
Let us define the Lie Hamiltonian by

(6H o N
H =(z &7) 9, - ( —57) 2,=U0% H=energy=1I%. (54)
Then, we find that the operator U* of (51) satisfies the
relation [#, U]+ 23U /3¢ =0 with

au .. 81ty ., oI

W =1 (3, El_‘) a,—l (e, 6—:— a,,.
We note that the second generator U? which is not re-
lated to a constant of motion also satisfies the relation.
A general analysis of this property of the generators
will be given in the next section. Some of the other com-

mutation relations among U’ are (U, U’]=0 for
3<i,j<8.

IV. GENERAL PROPERTIES OF GENERATORS OF
INVARIANCE GROUPS OF TIME EVOLUTION
EQUATIONS

Let us assume that Eq. (15) is a time evolution type:

x%=time coordinate,
" FMz;0) =H(z;c) +uy=0,
Fi(z;c) = [H(z;o) ]t + vy=0. (3%)

To carry out a consistent analysis, we must take into
account the relation (13),

Dypppeeep H +u)=0, k=1,2,...,. (56)

.

We define two operators associated with #*' and U by

H=Ha,+H",, (57)
au
3 = @ama+ @t (s8)
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As was mentioned in the first section, they must be
interpreted as their infinite prolongation.

By the definition of a time evolution equation, A is not
a function of the coordinates corresponding to x°-deriva-
tives such as wy, vy,. In such a case, we can always
express any coordinate of x’-derivatives in terms of
other coordinates by making use of the relations (55)
and (56). Thus, we assume, without a loss of generality,
thaty is free of these coordinates.

A key in the present analysis is to write Eq. (55) as

(H+Dyu=0. (59)

We first prove:

Lemma 3:1f U is a generator of an invariance group
of the equation H +1,=0, then under condition (56) we
have (U, #]+2U/8x%=0.

Proof: We have [U, 4]+ aU/ex"=ad, + a2, with a
=UH -#n+2_4m. 1t is sufficient if we prove that @ van-
ishes under (56). Indeed, 0= U(H +uo)=UH+Dyn=UH
+ DN ugl, + VT + 0ot =UH+2 on-He,~ H 2, =+
=UH + ax" - Hﬂ.

Now, we define the following quantity:

U)=Re [ (WUt) g,y dx'da®+++dx", Re=real part,

vef* (x)

(60)

where the integration should be taken over the whole
space of interest. Obviously (L) is a function of x° only.
The following lemma describes how it develops in time
for a class of nonlinear systems:

Lennna 4: If H of the equation H +uy=0 satisfies the
equation

HY+ vH, + u(H,)¥ = D‘[UH,“ +1((Hv‘)#] ERRE

+(=1)'D, ..., [eH vul, ., ¥l=0 (61)

Up eee
’1."

and if all the boundary integrals
fs["n,’---nH ]u:/(x) v dQ

Uijoeoy
vef* (x)
and

Jurinr Va0

vef* ()

fs[f"]ﬁ...H

Yffoenk

vanish for v= (!, ..., ¥¥) = normal vector on the boundary
surface, then

d% w =<[U,H] + ;f,/r> . (62)

Proof: For brevity, we write (60) as (U)=Re[ vUu dx.
Then, we have d/dx%U)= Re [(voUn + vDy Un) dx
=Re J[- B + v(8U/2x® = #U)u}dx. Here, we have used
the relations (55) and (56). On the other hand, we have
(UH) =Re [vUHudx=Re [vn;..., H,, . dx. Applying
Green’s theorem repeatedly, and using the hypotheses,
we find (U4) =Re /(- H'n)dx. Putting these two together,
we obtain (d/dx°) U= (U, 4]+ ali/2x%.

The'combination of Lemma 3 and 4 leads to a method
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to associate a conserved quantity with an invariance
group of the equation:

Theorem 3: If the operator U defined by (16) is a gen-
erator of an invariance group of the equation H +1;,=0,
and if 4 satisfies all the conditions in Lemma 4, then
the quantity (U) defined by (60) is a constant of motion,
i.e., d/dx"Uy=0.

We note that in proving this we did not assume the _
quantity [ f*(x)f(x)dx® *++dx* to be independent of time.

-Lemma 3 can be generalized to a set of nonlinear
time evolution equations of the form

H' +ul=0, H‘=H‘(x,u,=1,vz.x,...,l'x), i=1,2,...,M,
(63)
where u=(u!,¢%,...,u¥), u= @', %, ...,u¥)
» FRS x
and #! =f'(x), etc. In this case we have

Lemma 3': If U:n'au, is a generator of an invariance
group of Eq. (63), then we have {U, #]+3U/2x°=0
where 4/ =H'3 4 and 3U/2x°= (2 on*) 3,0.

For Hamilton’s equations of a field [#! = P=p(x),

1 =Q=q{x)]

64 60
50 PP=0 - 3p T Q=0
we obtain the familiar expression
U . ¢H eH
[U,H]+é—x—o=0, with /-y’:a—Q-c,- $C°'

The theorem above can be specialized to a real dif-
ferential equation: If H(x, u, ;4,;‘, .+, #), in the equation
r
H+uy=0, satisfies an equation

H+uH,-D(uH, )+ +(-1)'D, (1A, )=0

10" ‘pyseedy

(64)

and if all the surface integrals fs[tm;...p Hy,, .. Juurt ¥ 492

vanish for S=boundary, then the quantity (i:‘)
= [[uUu],., dxt -+ dx" is a constant of motion. Here,
v=the whole space inside S.

The following equations which have been attracting
considerable attention in the study of propagation of
nonlinear waves satisfy the condition (61) or (64):

generalized Korteweg-—~de Vries equation
@™ 40, + 2,/ =0,
cubic Schrédinger equation in n dimensions
- [:Z‘ (e,,,)?f+/’f']+ 2,f=0,
Hirota equation®
a(® ) +ib (2. f +eff*a,f+idf’f* +2,f=0.
However, the heat equation f,, - f, =0 and Burgers

equation f,, +ff, - f, =0, both of which represent a dis-
sipative system, do not satisfy Eq. (64).

The application of Theorem 3 to the KdV equation
and to the cubic Schrddinger equation has turned out to
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produce only a few constants of motion,
KdV equation:
(WhY== fudx, (U= [1tuldx,
{U'y=0, fori>2.
cubic Schrddinger equation:
(U= [$un*dx, (U'y=0 fori>2.

V. CONCLUDING REMARKS

We have shown that provided one considers the
group transformation which is more general than the
one considered by Lie, one can associate one invariance
group with each constant of motion of a class of physical
systems., Thus for such 2 system one can derive the
constants of motion by finding the invariance groups of
the equation. One of the best known methods of finding
conservation laws is to use Noether’s theorem. The
difference between the two is that the groups in the pres-
ent approach leave the differential equation invariant
whereas the groups in Noether’s theorem leave an
action integral invariant,

In the following communication, a generalization of
Theorems 1 and 2 will be discussed.
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APPENDIX A: PROOF OF LEMMA 1

1t is sufficient if we prove DyUA =UDyA. To avoid
complex indices, we represent a set of indices i***k
appearing in the expressions (7) and (9) of D, and U by
a circle ° or by a dot *, and write Dy and U as

Dy=2 ¢ +2) (g, + 623,y
U= 0100, +2.20)

< Vo

where the sign 3, indicates a summation over all the
parenthesized quantities in (7) and (9). Then, by the
definitions of Dy and U,

DyUA=D) 0 A, +L A,)
=2 01,DA,, +£,DA, ) L[ 4, + (DA, |-
Us{ng Dony =190 =Uttgy, DoLo="L0o="Ury,,

DUA=T @.DA, +tDA,) +Z(Uu) A, +(Uvg A, )

()

263 J. Math. Phys., Vol. 18, No. 2, February 1977

The first term is

LoDA, +t DA,)
=280 Mon, + 30 oo o, + Vo e,
+2 Mo, + D (oA, + oA, M
=01 Ao, +EAn,) + 5t 1A
AL Tl A T E AL
=UA, + 2. UA,, +2 0. UA,

Hence, (x) gives Dy UA = U[A,+2] (tgo Ayo + vgo4,0)]
<UD, A.

APPENDIX B: A COMMUTATOR OF GENERALIZED
LIE TYPE OPERATORS

We consider two operators of the form (19),
Ut=qle,+t%,, U'=n'a,+t%a,.

We must interpret these as simplified representations
of (9). The commutator of the two is defined as

[or, ] ={(in?) - Wwih)] 2, + (W) - (e e, ++ -+
+[(Unk...) = (UL.)]2

Yiesap

+ g - LN T
We write this as
U=[UL UP)=nd, + 83, + %t + My @

LITYere

4o,
+ §¢....?‘,im.

We prove that this satisfies the condition imposed on
(9), i.e., the condition (6). In fact, by applying
Lemma 1,

Nyeees = UMecon = Ul = U'Dy oy = UPDy o}
=D(-...(U1nz - Uzﬂ‘) =Dy

Similarly (..., = Dy..., . Therefore, the operator ob-
tained from the commutator of two operators of the
form (9) also assumes the same form.
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invariance groups of nonlinear field equations in Hamilton’s
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It is showrthat whenever fields governed by the equations 3/d1p,

= _8H/Bq,. 8/3rq, =bH/8p,

allow a conservation law of the form 8p/ar +divd =0. there exists a corresponding Lie-Bécklund

infinitesimal contact transformation which leaves the Hamiltonian equations invariant. A condition that an
imvariant Lie-Bicklund infinitesimal contact transformation gives rise to a conservation law is established.
Each such transformation, which may involve derivatives of arbitrary order, yields a one-parameter local
Lie group of invariance transformations. The results are established with the aid of a Lie bracket formalism
for Hamiltonian fields. They account for a number of recently discovered conservation laws associated with

nonlinear time evolution equations.

INTRODUCTION

In previous papers,*? we have studied invariance
properties of various nonlinear time evolution equations
by applving the theory of groups of Lie—Backlund tan-
gent transformations® (not to be confused with the Back-
lund transformations of recent literature*) and we have
shown that each of the well-known series of conservation
laws assoicated with the sine-Gordon equation, the
Korteweg—de Vries equation, and the nonlinear Schra-
dinger equation is related to a different one-parameter
group which leaves the corresponding differential equa-
tion invariant.

The-group generators obtained in these papers depend
upon derivatives of arbitrary order, so that they are
not of the type considered in Lie’s general theory of
continuous groups of transformations. The question
naturally arises: To what extent can the previous results
be generalized?

In the present paper, we study invariance properties
of Hamilton’s equations governing the time evolution of
multicomponent fields p_(x), ¢,(x),

Pa=-0H'8q,, do=0Hibp,, a=1,2,. .. N, (1)

where x = (x",x', 3%, ¥%) and f, = 2 0P gy U4=2,00,. We
assume that an energy density /#/ associated with & can
depend on coordinates x (including x%), p., and ¢,, and
their spatial derivatives of arbitrary order.® The main
interest of the study is: to examine the relationship
between invariance groups admitted by Eq. (1) and
conservation laws obeyed by the fields. We will prove
that: The existence of N independent conservation laws
associated wilth the fields of Eq. (1) necessarily
requires the existence of N one-parameler groups
which leare Eq. (1) invariant. The precise result will
be stated here as a theorem. The notations in the
theorem are th¢ following: 4 and 7' are quantities
associated with the fields and are functions of x, p,,
and ¢,, and of their spatial derivatives of arbitrary

®This work has been supported by a Research Corporation
grant, .

B present address: 1513-69 Sekido, Tama-shi, Tokyo 192-02,
Japan.
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order: D, represents a differentiation with respect to
x!, and the quantity 6A/8f (f=¢, or p,) is defined by

6A
g_f =’41 -D‘/i,.i +D«D:’41.u

+.e.+(-Di)e..(_D!)ﬂf.i"’-ye.. ,
with
A, =2

friy f.‘__,/? and f,. =000 70

Theorem: If, when p_ and ¢, are solutions of the
Hamiltonian equations (1), the functions A{xv,p,,qq,*~)
and 7Hx,p4,qq,°° <) Obey the conservation law D 4
+‘Z‘j_,Di}‘ =0, then the prolongation of the operator
A=(04/8p,)e, -{(0A/8q,)¢, is a generator of an in-
variance group of the Hamilfonian equations, Con-
versely, for any operator of the form A’ = (647/8p,) P oo
- (GA’/équ)?,a whose prolongation becomes a generator,
of an invariance group of the Hamiltonian equations,
there exists a flux 7' which together with a density
A’ forms a conservation law D4 +%3 D, 77 =0,

The corresponding result for Hamiltonian systems
with finite degrees of freedom governed by the equations
U,=2H/?p,, b, =~-2H/2y, has been obtained by
Peterson,®

We will prove the theorem by using a Lie bracket
formalism, instead of a Poisson bracket formalism, for
Eq. (1). To establish the Lie bracket formulation, one
needs to associate appropriate operators with physical
quantities of the system. Such a formalism is known for
Hamiltonian systems with finite degrees of freedom.”
In the following we will develop a similar formalism for
the field equations (1) by applying the theory of Lie—
Backlund tangent transformations. The formalism turns
out to be very appropriate in studying the connection of
invariance groups of Eq. (1) to conservation laws. In
this approach no reference is made to invariance prop-
erties of an action integral [/ dv: We deal directly with
invariance properties of differential equations.

All the results in the following sections remain valid
for a general case of n spatial variables.
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I. LIE BRACKET FORMALISM

We consider groups of Lie—Bdacklund tangent trans-
formations generated by the operators®

U=F,2, -G.2, +(DF)8, —(DG,)2
+eret{(=D,) e (= D)F}2
~{=D) - (-D)GCR,, ...,

where D; represents a total derivative operator

Pa,i

G, feesd

+oes, @

Di = axf +pu.iaa, +qa.laca
+Pn.uao,d+(la.uaqa.,+"'s (3

and p, i...sr @q,q...; TEPresent coordinates associated
with derivatives 2,i -+ <2 5p,(x}, 3, 24 q,(x).
Throughout the paper we adopt a summation convention
for repeated indices: a greek index runs from 1 to ¥
and a Roman from 0 to 3. In contrast to conventional
contact transformations, we allow F and G to be func-
tions of x and p_(v), ¢,(x), and any of their derivatives
of arbitrary order. In the study of Eq. (1) which is a
time evolution type we can assume without 2 loss of
generality that the F, and G, are not functions of time
derivatives of p_(x) and ¢,(x). This will be assumed in
the following for all the operators of the form (2). To
avoid a complex expression we write the operator (2),
which we call a Lie—Bdicklund operator, as

U=F,2,, -G.2, . (4)
We must always consider this to be the infinite series
given by (2). We denote a set of operators of the form
(2) by A. It is known that the U have the properties

(a) If U*, U%c A, then UP=[U",U?]e A with FS=U'F¢
- U*F, and G, = U'G2 - UGL.>°

() If U', U? U?c .\, the Jacobi identity holds®:
[[Ux’ W]rU3]+ [[Uzy US]: U‘]+ [[U:g, Ul]r U2]= 0.

{c) Members of A commute with the total derivative
operator D;: [U, D,]=0.2%1°

This last property will be used frequently in the follow-
ing without comment. We define the time derivative of
the U, which we denote by U, by

Uso=(3,0F,)3,, = (8,062, (5)

Again, this is a simplified expression; the full expres-
sion is obtained by replacing F, and G, in (2) by 3 F,
and 3,,G,.

Now, let us consider a variational problem of a
functional

Jp,q, 5= [ J(x,p,q)dx’, dx'=dx'ddx>. 6)

The density J(x,p,q) depends on x and p, ¢, and their
derivatives p, ...,y 94,;...; Of arbitrary order except
ones involving time derivatives. For the variation p(x)
= palx) +ev,(x) we have ’ :

. &J=¢f; (%%) o dx’ + surface integral ()]
with

8J
Bp, =¢g», 'Dly",.‘ +D1D:ya,,u

+(=D)eee(=D)F, . e 8 .
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Similarly, for a variation ¢,(x) —¢,(x)+¢0,(x), we have
5J
m =zgqa -Difgua’ + DiDIya,,,“

+(=D)+++(=D)F

We adopt (8) and (9) as the defining equations of 6J/6p,
and 6J/6q,. We call § a density of J. With the functional
J we associate an operator J which is obtained from (2)
by substituting 6J/8p, and 6J/6¢, for F, and G,: In

e, (9)

Gaivenj

. simplified notation

57 87
1= 552) e Gan) e a0

We designate the operators of this particular form by
boldface letters. Then, with the energy functional H,
the following Lie—Bdcklund Hamiltonian operator will
be associated:

BH\, _(BH),
=) @)

The operator corresponding to a functional fa,J dx!
is found to be equivalent to

L [ 6J OJ
B R R

Let us denote the set of all the operators of the form
(10) by 2. We can prove that 2 closes under the com-
mutation operation defined in (a) above:

Proposition: If two operators A and B belong to Q,
the commutator C=[B, A] also belongs to R, and its
density  is given by any one of the following:

=50 e) - @ @)
C,=BA, C,=-A8. (13)

The proof will be given in the Appendix. Following the
usual definition of a Poisson bracket for fields, we
have C = JC,dx' ={B,A}. Thus, we might state this as:
The commutator of the operators associated with the
functionals A and B is equal to the operator assoicated
with the functional {4, B}. We note that the canonical
commutation relations among p, and ¢, are not carried
over to the operator formalism: The operators cor-

-responding to p, and g, are P, =3, and Q,=-2, and

they all commute.

11. INVARIANCE GROUPS OF HAMILTON'S EQUATIONS
AND CONSERVATION LAWS

We now turn our attention to the theorem stated
earlier, The well-known equation which describes the
time evolution of a functional A= [Adx’ is

d ’

ToA={H,a}+ JaoA dx. , (14)
We associate an operator K=[H,A}+ A, with the quan-
tity on the right-hand side. In view of (12) and (13), it
is obvious that:

The density K corresponding to the operator K=[H, A]
+ Ao is any of the following:

k= oe) Gk G2) o)+ 22

Sukeyuki Kumei 196




=129-

or . **)
K2=H74 + 3,0/4, Ky= —AH"'G,W".

In the following, we prove the theorem by showing
basically the following equivalences:

A is a generator of an invariance group of Eq. (1),
A satisfies [H,A]+ A=0
A satisfies DA +‘21;D,.]' =0,

According to the theory of groups of differential
equations, ! the operator U of (2) becomes a generator
of an invariance group of Eqs. (1) if and only if U
satisfies the equations

ot )], =0 vleems0),

Here, the symbol {-++)|, means: Evaluate the Quantities
under conditions (1) and the conditions implied by them.
We note that there exist generators which do not take
the special form given by (10). We start from the fol-
lowing properties of a generator of an invariance group
of Eq. (1):

=0. (15)

Lemma 1: The Lie-Backlund operator U defined by
(2) satisfies the equations

([Hy U] + U,a)P,' l’=0: ([kvl]]'{" U,O)qalw=0:

if and only if U is a generator of an invariance group
of Hamilton’s equation (1).

(16)

Proof : In view of the definition of H, under the con-
dition (<--}!, we have an identity D =230+ H. Using
this relation, we obtain ((H,U]+U o)pa »v=1{-HG,
+ U(éH/bqa)- 0(;‘,}1,,_{U(u,r/zsl,h,) DG }1,,_U(5H/oq,
+pa) . Similarly, (H,U]+ U,slg, I,,—U( 3H/8p,
+ q,)l These relations obviously prove the statement.

In the following analysis, it is often helpful to con-
sider an initial value problem of Eq. (1). We say that
functions f,(x’) and g,(x*), x'=(x', x*, ¥*), are admis-
sible if the initial value problem p_| o,,=/fo, @ol00 =8¢
has a solution. A set of all such admissible functions
will be denoted by I. The following lemma states that
Eq. (16) holds without the condition |,,.

Lemma 2: H U is a generator of an'invariance group
of Hamilton’s equations (1), the operator [H,U]+ U,
vanishes identically for arbitrary functions f,(x’) and
£,(x") which belong to /.

Proof: We have, by definition, [H,U}+Uo=M,3,
- N,?,, where M,(x,p,q)=HF, = U(8H/bp,)+ 2,0F 4,
N (x,p,q)=HG_ - U(8H/6q,)+3,0G. By Lemma 1, if
bar 94 are solutions of Hamilton’s equation, then M,
=N,=0. We let x*—f=initial time. At ¢, both M_ and
N, are well defined (note that F, and G, do not depend
on any x° derivatives of p_ and ¢,), hence, M =N_=0
at 1. Suppose that inital conditions were p, =f,{x'),
Ga=84x"). Then, M_(x,f,g)=N,(x,f,g) =0 with
x=(t, x, x*, x*). Because { is a parameter of arbitrary
value, we may replace x by (x°, x!, x*, x°) to obtain the
desired result,

Remark: U f,, g, or any of their derivatives were
not defined at some point, the function M, and N, hence
the operator [H,U}+ U0, would not be defined at the
point. We note that the relation [H, U]+ U,=0 holds .
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even pointwise: For any given values of x, p,, g,,
Pa,i» 9a,i»***s the operator vanishes. This should be
true as long as there exists a solution which takes the
designated values at the given point x. It is also clear
that we can allow f,_, and g, to be functions of x instead
of x* because x°, if it appears in f, and g, acts simply

- as a parameter and has no consequence for the proof

given here.

Now, we combine the results obtained above to prove
the theorem stated at the beginning:

Proof of theorem: In the following, we assume, that
the index 7 runs from 1 to 3. First we show DA +D 7!
=0 - A is a generator. Under condition (1), we have
HA + 3,04 =D,A, hence, by the hypothesis

HA +3,.A4=-DJ. Q)

Because we may assume that neither A4 nor 7i contains
time derivatives of p, and g,, this relation must hold at
initia) time x°=¢ where arbitrary initial values may be
imposed on p, and q,. Consequently, the equation (t}
holds not only for solutions p, and ¢, but also for arbi-
trary functions f_(x’) and g,(x’). Thus, noticing that the
left-hand side of the equation (1) is the K of (¥+), we
have K,=-D,7¢. This implies that 6K/5p, and 6K/8q,,
vanish identically, and, as a result, [H,A]+ A0=0 by
(#x). In view of Lemmas 1 and 2, we see that this is
the necessary and sufficient condition for A to be a
generator of an invariance group of Eq. (1). Conversely,
if A is a generator of an invariance group, in view of
Lemma 1 we obtain two equations 6K/6p, =0

and 6K/8g, =0. According to Lemma 2, these vanish
identically. This implies that the density K in () must
have a divergent form; for instance, K= (H+ 3,004
=-D,F! with 7*=7%x,p,q). Now if we let p, and ¢,

be solutions of Eq. (1), the quantity in the middle of
this equation becomes equal to D4, and the equation
leads to the desired result D4 +D,7'=0

11, INTEGRABILITY OF GENERATORS TO
CONSERVED DENSITIES

We have proved that with every conservation law
obeyed by the Hamiltonian fields one invariance group
is always associated. In the present formulation, the

. converse of this is true only if the coefficients of the

generator U take the special form F,=6A4/6p,, G
=8A/ 6g,. Because there exists a systematic algorithm
for finding generators of invariance groups, it is
important to know whether the generators found are
integrable to conserved densities. For simplicity, we
adopt the following notation:

Soax)y=g (%), faudx)=p (x) with a=1,2,...,N,
S (f)=F,, S.u(f)=6C, with a=1,2,...,N.

In this notation, our problem is to tell whether a given
set of S, have the property S, = 64/8f, for some func-
-tional A[A] [AK,f)dx'. As a general property of a
functional, we have

amn

d d . (d d
i atran) = zr."“**‘x%]}..;
where e=(e,, €&, ... ,6,). I §, has the desired property,
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then, because of the definition {(d/de,)Alf, + €, ¢, a0
= f{6A767,)0,dx’ (v fixed), this relation is written for
fixed a and 3 as,

(d
{‘—if:-/éﬂ(fx+€l¢0d)ﬂdx’}uo
d

:{(Z— S (fy Head,)0, rI,\"}“n.
This is the integrability condition of the set S, to a con-
served density 4. It is not difficult to obtain from this
a condition which does not involve integration: Using
the fact that the functions ¢, and ¢; are arbitrary, we
can reduce (18) to

DL loF,

1
i Byi-e (19

=2 b, 7 Sy
.,-5“) &h )"""(’a.i"-isﬂ'

&(x)=arbitrary function
where D}

fernj = (=D))eer (-Dj)) Dy iees =ty ofx),
and the notation §;;, a,...,=a+a,+a,, + .. All the
Roman indices run from 1 to 3. Because ¢ is arbitrary,
the coefficients of each ¢ on both sides of (20) must
match.

Yiesef

Example: sine-Gordon equation

To illustrate the results obtained above, we study the
sine-Gordon equation, using =x", v=x!,

1y, ~u  +sinu=0. (20)
A canonical form ¢, =06H/6p, p,= - 6H/8q for this equa-
tion is obtained by letting ¢ =u, H =1p* + $¢* ~ cosg:

¢, =p, b/=-gq, +sing. (21}

In the previous paper,’ we have shown the equation [
=sinx admits an infinite number of invariance groups,
and it is straightforward to adapt these results to Eq.
(21): four of the generators of invariance groups of
Eq. (21) are
Ui=q2,+p2,, Uy=pd (g, +sing)d,.
Uy = (40, ~ 39,0050 + 343 + 30,713, - (= 4p,,,
+3p cosq - 342p, - 3p.0° - 39,4,.0)8,,
Uy=1{4p,, -~ pcosq +3g%p + 3pM3, ~ (- 4q,,
+ 5g,,c0sq ~ 3¢ sing - sing cosq
=343, * 207 sing - 3¢.p p - 3p%,09,.
Using a theorem given in the previous paper,® we see
that U, and U, are equivalent to the space and time
translation operators ¢, and ¢,. To find conserved den-
sities from these operators we must check condition
(19). All of them satisfy the equation, and the conserved

density A4 associated with each of the generators is
found to be:

Ay =pgq,= momentum density,
A, =1p*+ 4% - cosg = energy density,
« As=14pq,,, - 3pqg,cosq+ 3qlp + a.p%,
)4, = - 2pi - 2‘1: - %pz cosg + %qiba
+ 5p* - 3¢% cosq + F cos’q + 3¢,

These conserved densities are related to those obtained
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(18)

by Lamb,'? and their group theoretic aspects have been
studied by the author! and by Steudel.'

In the previous paper,? we also have shown that a
series of conservation laws admitted by the nonlinear
Shrédinger equation are related to invariance groups of
the equation, where we have made use of a special prop-
erty of the equation. The present results provide a uni-
fied view to the previous results.

CONCLUSION

)

" In this paper, we have developed 2 new group theoretic
way of looking at conservation laws associated with
field equations in Hamilton’s canonical form, and we
have proved that the existence of .V independent con-
servation laws necessarily implies the existence of at
least N local one-parameter Lie groups which leave the
field equations invariant. The condition that a given
invariance group is integrable to a conserved density
also has been given. Because there exists a well
established algorithm for finding generators of invari-
ance groups of differential equations, and because many
Euler —~Lagrange equations can be put into Hamilton's
canonical form, the present results should be useful
in finding conservation laws for a variety of systems, ™

Clearly, the present approach to conservation laws
via a Lie bracket formalism is quite different from con-
ventional approachs which make use of Noether’s
theorem: Noether’s theorem as originally derived is too
restrictive to give rise to conservation laws such as
those dealt with here. However, as this work was being
completed, the author learned in a personal communica-
tion from N.H. Ibragimov that he has been able to
generalized Noether’s theorem and with the aid of Lie~
Backlund contact transformations he has obtained re-
sults similar in part to those obtained here.'?
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APPENDIX: PROOF OF THE PROPOSITION

To simplify expressions, we use notations D, D,
=D, and (=D)) e (=D)=D7_ i p, i...; = Pai~ and
Gayieees =Qai-y- We represent a sum of the form f+;
+f, ++++byoneterm f,_,. For instance, Eq. (2) and
Eq. (8) become U= (D, F )3,  ~ (Di-;Ga)epM-, and
6J/6pu=D;_,y,M_,. We first prove the following
relations:

6.\ &M &M
u(E\ b [F (—) -¢ ( ) ] (a1
(B‘I:)= ‘-J[ *“\og, *\op, a8

9Bi-4
M
G, (6—%) ] (A2)

[ - 6M
o) [ G, -
s %a (e Biny

This relationship is entirely independent from Eq. (1).
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We prove the first relation: the second follows similarly.

To prove (Al), we assume that functions p, and ¢,

decay sufficiently fast as [(x'? + (1 + (*P]'/? - » 80
"that all the surface integrals which appear in the pro-
cess vanish Let us consider an integral fu(x’)U(6M/5g,)
dx' where v is some arbitrary function except that it
does not diverge at infinity. If we write 3,43 4v=v,,
then integrating over the whole space

Sl

= JoUD] Mogy_y 8% = JoDi e, d".'
_fv‘_,(//nm 9%
"f”«-:[w« 1F o y”m.lnat'-:"'w‘ I’G W‘M-l'a("l]dx
= ﬂF,D. g (v(-/mm -g9a1~g

= GoDiepOiMag,_ sy )1 0%’
-f(FuW-/ac,, PoeiMagieye

= GoViosdap PrepMoqr s dr’

(using [D,, Ut-laoa,;,]=°)

5M .
=_J’[Favl~lavu-l(%>- G"v""a'“"(—&:)]dx

= f vDy_; [F, (%)w . - .G., (-:;-y:)‘"-’]dx'.

Now, we have the right hand quantity of Eq. (Al) in the
last integrand. Both in the starting and in this final form
of the integral the function v appears as a factor.
Because v is arbitrary, this equation necessarily
implies (Al). Next, by definition, (B, A]=C%3d,,’

- (=3, with

on-s ) o).

In view of the equalities (A2}, we obtain

v ()., 6D )
@6, -, )

'cl-j
ot~y

Pay-y’

o [ - ) ]
=p;,[Ci}, -

aie) A

Similarly, we obtain C*a=D;_[C, . Thus, we have
proved the assertion for C;. o prové’ it for C, and C,,
we simply note that they are related to C,;by(,=C, +Dp
and C,_C,+D,g‘ where f! and g! are functxons of x,
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Par 9o, and of their derivatives and the index i runs
from 1 to 3. The fact that functional derivatives of the
functional [divh(x,p,q)dx’ always vanish leads to the
desired results.
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