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ABSTRACT 

A necessary and sufficient condition is established 
for the existence of an invertible mapping of a system of 
nonlinear differential equations to a system of linear 
differential equations based on a group analysis of differential 
equations. It is shown how to construct the mapping, when it 
exists, from the invariance group of the nonlinear system. 
It is demonstrated that the hodograph transformation, the 
Legendre transformation and Lie's transformation of the 
Monge-Ampere equation are obtained from this theorem. The 
equation (u -u =0 is studied and it is determined n K xJ xx yy 

for what values of p this equation is transformable to a 
linear equation by an invertible mapping. 

Many of the known non-invertible mappings of nonlinear 
equations to linear equations are shown to be related to 
invariance groups of equations associated with the given 
nonlinear equations. A number of such; examples are given, 
including Burgers' equation u +uu -u =0, a nonlinear 

XX X l _ 2 diffusion equation (u u ) -u =0, equations of wave propagation X X u 
{Vy-wx=0, vy-avw-bv-cw=0}, equations of a fluid flow {w^+vx=0, 
w -v~"'"wP=0} and the Liouville equation u =eu. x J H xy 

As another application of group analysis, it is shown 
how conservation laws associated with the Korteweg-deVries 
equation, the cubic Schrodinger equation, the sine-Gordon 
equation and Hamilton's field equation are related to the 



invariance groups of the respective equations. 
All relevant background information is in the 

thesis, including an appendix on the known algorithm for 
computing the invariance group of a given system of differential 
equations. 
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INTRODUCTION. 

A variety of transformations arises in the study of 
differential equations. Two important classes of transform-
ations are integral transformations, which include the 
Laplace and Fourier transformations, and geometrical trans--
formations, which include contact and point transformations. 
In this work we are concerned with transformations of the 
latter type. One of the important aspects of geometrical 
transformations is that their formulations generally do 
not depend on the linearity of differential equations 
while those of integral transformations .depend critically 
on it. For this particular reason, in connection with 
recent developments in nonlinear physics, there has arisen 
a revived interest in various geometrical theories of 
differential equations [l] . 

In this thesis we focus our attention on a group 
analysis of differential equations [2-9] and its. use for the 
study of relationships between differential equations. 
More specifically, we are interested in answering the question 
when a given system of nonlinear differential equations can 
be transformed into a system of linear differential equations. 
There is a good reason to believe that a group analysis of 
differential equations is helpful in answering this question. 



Before we elaborate the motivation, we need to review some 
basic ideas of geometrical transformations important for 
the study of differential equations. In order to keep 
the geometrical picture simple we only consider the case 
involving one dependent variable u and one independent 
variable x. 

Let w be a vector space with coordinates (x,z,z,z,...) 
1 2 

where xtR, z^R, ze.R and consider a mapping w+w: 
k 

x'=x'(x,z,z,...,z), z'=z' (x,z,z,...,z), z ' =z ' (x,z,z,...,z) 
1 P 1 q . k k 1 qfc. 

(0.1) 
where x', z' and z' are sufficiently differentiable functions 

k 
of their arguments and k=l,2,3,... . Let u(x) be a function 
R-*R, sufficiently differentiable in the domain of interest 
and u(x) = (d/dx) u(x). If we set 

k 

z = u, z = u, k=l,2,3,..., (0-2) k k 

then the set w [u] consisting of points 

(x,z,z z,...) = (x,u,u,u, . . .) , x R (0.3) 
1 2 1 2 

defines a curve (more generally a manifold) in w (Fig.l). 
Under the transfbrmation (0.1) the curve %[u]is mapped into 
(w tul) ' whose equation is obtained by introducing (0.2) 



into (0.1) 

x'=x'(x,u,u,...,u), z '=z' (x,u,u, . . . ,u), z' = z'(x,u,u,. . . ,u) . 
q k k ^k 

(0.4) 
Solving the first equation of 
(0.4) for x and introducing it 
into the rest of (0.4) we 
obtain z', z1 as functions of 

k 
x* : 

z 
1 

\ w[u|]: (x,u,u) 

Z ' =U ' (X ' ) , Z ' = V C k ; ) (x') . 2 
k Fig.l 

Obviously not all transformations (,0.1") have the property 

v ( k )(x') = (d/dx')k u'(x') = u'. 
k 

(0.5) 

When the equality (0.5) is satisfied for any choice of u(x), 
i.e., 

z' = u', z' = u', k=l,2,3,... , 
k k 

(0.6) 

we call transformation (0.1) a contact transformation. 
Namely, a contact transformation maps a curve w[u] defined 
by (0.3) into a curve w[u'] (Fig. 2) consisting of points 

(x, z , z , z ,...) = (xj u',u',u','...) , x'tR. 
1 2 1 2 

It is intuitively clear that in contact transformations 



z' is related to x' and z' 
k 
because z' must behave as 

k 
the krth derivative of z' 
with respect to x' when (0.3) 
is introduced. Obtaining an 
explicit form of z' in terms 

k 
of x' and z' from the condition 

z 1 w[u] : (x,u,u) 

w[u'] : (x'.u'ju') 

Fig, 2 

that (0.2) yields (0.6) is 
not only messy but also becomes • 
confusing for vector x and vector z. 

It is very convenient to replace lq.(0.2) and Eq.(0.6) 
by equivalent differential forms. Eq.(0.2) implies 

dz = udx, dz = udx, dz = udx, 
1 1 2 2 3 

(0.7) 

and if we use (0.2) it can be written as 

dz = zdx, dz = zdx, dz = zdx, 
1 1 2 2 3 (0.8) 

If we let z = u in the first equation of (0.8), we find 
z=u and if we let z=u in the second we find z=u and so on, 
1 1 1 1 2 2 
recovering (0.2). Thus, we may replace (0.2) by (0.8) which 
we represent collectively by {dz - z dx=0}. Similarly, 

k k+1 
we replace (0.6) by {dz' - z'dx'=0}. We redefine a • 

k k+1 
contact transformation as a transformation (0.1) which has 



the property that: 

if {dz - z dx=0}, then {dz' - z'dx'=0}. (0.9) 
k k+1 k k+1 

+ 
We call (0.8) a tangent (or contact) condition. 

The simplest contact transformation is a point 
ft 

transformation! 

x' = x'(x,z), z' = z'(x,z), z' = z'(x,z,z,. . . , z) , (0.10) 
k k l k 

and the next simplest one is Lie's contact transformation 

t The first equation of (0.8) written in the form of scalar 
product (dz , dx)-(l, - z) = 0 implies that the vector (dz,dx) 
is perpendicular to the vector (1,-z) which represents 
a normal vector toa curve' z-u=0 when z is replaced by u. 1 1 Consequently, the variation (dz,dx) must always be tangent to 
the curve z-u=0. In order to determine z' from z' and x' 
we introduce z',x' into dz'-z'dx'=0, i.e., 

1 
0=dz'-z'dx'=(z'dx+z'dz+z'dz+...) - z'(x'dx+x'dz+x'dz+...) , 1 v x z zi J i x z z T J , 

. . . . 1 1 1 where z'=8 z', x'=8 x', ... . We eliminate dz, dz, dz,... x x ' x x ' 1 2 
using (0.8), and obtain 

0=(z' + z'z + z'z + ...) - z'(x' + x'z + x'z + ...). 
x z1 z 2 l x Z! z 2 

Solving this for z', we obtain z!. Using this z in dz'-z'dx« = 0 
we find z', and so on. 

tf Usually a set consisting of the first two equations in 
(0.10) is called a point transformation. In the following 
we call (0.10) a point transformation. 



t 
x' = x'(x,z,z), z' = z'(x,z,z), z' = z ' (x, z,z,...,z) . (0.11) 

1 1 k k 1 k 

The most general contact transformation of the form (0.1) 
was considered by Backlund [26], 

A particularly important class of contact trans-
formations is that of infinitesimal contact transformations. 
Consider a transformation 

x' = x + e£(x,z,z,...,z) 
1 P 

z ' = z + e?(x,z,z,...,z) (0.12) 1 5 
z' = z + er(x,z,z,...,z ), k=l,2,3,... k k k 1 q v 

where and z are functions of their arguments and e is 
k 

a small parameter. We call (0.12) an infinitesimal contact 
transformation if it satisfies the condition (0.9) to order 
0(e). When (x,z), £=£(x,z) the transformation (0.12) is 
called an infinitesimal point transformation and when E,, £ 
and c are functions of x,z,z, the transformation is called 1 1 
Lie's infinitesimal contact transformation. All other cases 

t Usually the term contact transformation refers to Lie's 
contact transformation. Lie's contact transformation has 
the property of mapping two curves z=u(x) and z=v(x) which 
are tangent to each other at Xq into two curves z'=u'(x') 
and z'=v'(x') which are also tangent at the transformed point 
x̂ j. Under the definition (0.9), not all- contact trans-
formations have this property. 



will be called higher order infinitesimal contact trans-
formations . As in the case of finite contact transformations 
(0.1), once £ and £ are given the function | are determined 
from the condition (0.9) as described in the footnote on 
page five. 

A succession of infinitesimal transformations (0.12) 
leads to a finite transformation which is called a group 
transformation. Its geometrical picture is the following. 
Eq.(0.12) associates a variation vector (Ax, Az , Az , . . .) = e (£, t;, ̂ , . . .) 
with every point (x,z,z,...) and defines a flow in the space 
w (Fig.3). Let the 
equation of a flow 
curve originating at 
a point (x,z,z,...) be 

z 1 

V 

X 1 —X 1 (x j Z j Z j » • . jcl} 
z'=z'(x,z,z,...;a) (0.13) 
Z ' — z ' (x, z , z , . . . j 
k k ' '1 

, ... , z 

X Fig.3 

where a_- is a parameter of the curve. For simplicity, we 
denote co= (x, z , z , . . . ) and write (0.13) as 

1 

a)' = a)' (w; a) = T(a) w, (0.14) 

where T(a) is generally a nonlinear operator acting on to. 



The transformation (0.14) forms a one-parameter group 
of transformations. Namely, there exists a parametrization 
with parameter a such that 

<L' (u>f (oj;a) ;b) = u'(oa;a+b), (L' (oi; 0) = oj, (0.15) 

or equivalently, 

T(b)T(a) = T(a+b), T(0) = I, (0.16) 

where I represents the identity transformation. The explicit 
form of the operator T(a) is given by 

OO J| 
T(a) = e a £ = I * £n, (0.17) 

n=0 

where I is defined by 

£ = C8x + ?3Z + •+ C3Z + . . . , (0.18) 
1 1 2 2 

The operator I is called a generator of the group T(a). 
If (0.12) is an infinitesimal contact transformation, then 
its "integrated form" (0.13) is also a contact transformation 
which we call a group contact transformation. Depending on the 
type of infinitesimal contact transformations mentioned above 
we call the corresponding group contact transformations 
a point group transformation, Lie's group contact trans-
formation or a higher order group contact transformation. 



The first two group transformations were studied extensively 
by Lie [2,4]' in the last century while the higher order 
group contact transformations were introduced recently by 
Anderson, Kumei and Wulfman [9,10,11,12]. They are also 
called Lie-Backlund (L-B) group transformations [l3] . 

Up to now a picture of differential equations has been 
absent. To find the significance of contact transformations 
in the study of differential equations we consider an equation 

f(x,z,z,... ,z) = 0, (0.19) 
1 n 

where f is an analytic function Rn+^->R. Eq.(0.19) defines a 
hypersurface (or a manifold) in the space (x,z,z,...,z). 

I n 
We again consider (0.2). Let w'n^[u] be the set consisting 
of points 

(x,z,z,...,z) = (x,u,u,...,u), x£R. (0.20) 
I n I n 

The set [u] defines a curve (generally a manifold) in 
the Sp£LC6 (x j Z } Z , , , , , z) , Let us demand that the curve 
fn) 1 n 

w [u] be imbedded on the hypersurface f=0 (Fig. 4). 
This will be possible only if the function u happens 
to be a solution of the differential equation 

f(x,u,u,...,u) = 0. 
1 n 

(0.21) 



When u solves (0.21), we 
call w'-11-' [u] a solution 
curve (more generally a 
solution manifold). The 
projection of the curve 
onto the x-z plane defines 
a solution curve z=u in 
the usual sense (Fig.4). 
We now suppose that the Fie.4 z=u 

contact transformation (0.1) maps the hypersurface f=0 into 
a hypersurface 

f' ( x \ z \ z \ . 
1 

.,z') = 0, 
n 

(0.22) 

Since the transformation.is a contact transformation, 
the curve ŵ -11-' [u] is mapped into the curve [u'] (Fig.2) 
consisting of points 

(x,z,z,,..,z) 
1 n 

(x',u',u',. 
1 n 

(0.23) 

Obviously, if the curve w^n^[u] is on the surface f=0, then 
the curve ŵ -11-' Ju'] must be on the surface f'=0 (Fig. 5), namely, 
z 1 

f'(x',u',u',...,u') = 0 . (0.24) 
. 1 n 

In other words, a contact trans-
formation maps a solution of the 

Fig.5 



differential equation (0.21) into a solution of the differentia 
equation (0.24). When the contact transformation maps the 
hypersurface f=0 into itself, the transformation is called 
an invariance contact transformation of f=0. Obviously, such 
a transformation maps a solution of the differential equation 
(0.21) into another solution of the same equation (Fig.6). 
When a solution happens to 

z 
be mapped into itself under 
such a transformation, it is 
called an invariant solution 
of the transformation. Parti-
cularly important invariance 
contact transformations are 
those which form groups in the 

Fig. 6 

sense of (0.13)- (0.15). We call, them invariance group contact 
transformations, or invariance groups for short. 

Lie [2-6] studied invariance groups extensively and 
established the foundation of a group analysis of differential 
equations.^ More recently, Ovsjannikov [6,7] extended Lie's 
theory and applied it extensively to partial differential 

From a practical point of view it is important that Lie gave 
the algorithm for finding the invariance groups of any given 
differential - equation. • We give one explicit example of 
the computation of such an invariance group in Appendix 3.' . 



equations. Bluman and Cole [§]/ used invariance groups to 
construct solutions to certain types of boundary value 
problems. All these works just mentioned are concerned 
with either point groups or Lie's group contact transformations. 

It has been found that the Lie-Backlund group transformations 
are also useful, particularly for the study of nonlinear 
differential equations. It is shown [Appendices .5-7 

+ 
that the well known infinite number of conservation laws 
admitted by the Korteweg-deVries equation u +uu +u =0, 

XXX X L 2 the cubic Schroedinger equation u +u u*-iu =0 and the XX L 
sine-Gordon equation u.^-sinu=0 are all related to invariances 

4- 4* 

of the corresponding equations under L-B groups. More 
interestingly, soliton solutions admitted by these equations 
are shown to be invariant solutions of these invariance L-B 
groups [Appendix 6 ] . These findings, lead to a general theorem 
[Appendix 7 ] that with any conservation law, admitted by 
a Hamiltonian system, 

+ Appropriate references are given in the appendices. 
tt A group theoretical aspect of conservation laws of the 

Korteweg-deVries and sine-Gordon equations was also studied 
by Steudel using Noether's theorem D-4] . He called groups, 
leading to conservation laws, Noether transformations " [15,16] . 



3pn SH 
3t 

6H (0.25) . 

is associated an invariance L-B group, of the equation. 
Further studies of invariance L-B groups have been reported 
[17-24] , 

Now we return to the question posed at the beginning 
of this introduction. .Suppose that there exists ian invertible 
transformation mapping a given system of-nonlinear, differential 
equations to a system of linear differential equation's: We should 
expect that the invariance groups of the two systems have 
the same structure. Since it is well known that any linear 
system admits an invariance group related to the superposition 
principle, it is evident that the given nonlinear system 
must admit the corresponding invariance group. From such 
an observation, we establish a theorem which tells one 
definitively: ' 

1) when a given nonlinear system can be mapped into 
a linear system; 

2) how to construct the mapping when it exists. 

It should be emphasized that in applying this theorem one needs 
.only to calculate > a • . system' s invariance Vi'nf initesimal- v 
contact transformations (0.12) by a known algorithm. Moreover, 
the types of infinitesimal transformations to be considered 



are simple: in general one may assume £=0, £=g(x,z,z); for 
1 

a system, i.e., z is a vector, it turns out that c is at 
most linear in z (corresponding to a point group). 

1 

In the first chapter, we define and formulate 
mathematically those basic concepts which were illustrated 
above and lay out the basis for subsequent developments. 
In the second chapter we establish the theorem mentioned above. 
A number of examples are given. In the third chapter, we 
examine non-invertible mappings which connect nonlinear 
equations to linear equations. Appendices .5,6,7; consist 

- of already published works on L-B groups and conservation, 
laws. 



CHAPTER 1. 

CONTACT TRANSFORMATIONS. 

In this chapter we discuss various properties of 
transformations which will be considered in subsequent 
chapters. All transformations cprhs;idered:%n this work, are 
basically of "contact" type. The term "contact trans-
formation" will be used in a context more general than it 
is usually referred to. 

Throughout the work, we adopt the customary sum-
mation rule for repeated indices: Roman indices are summed 
from 1 to M and Greek indices from 1 to N. 

1.1 Contact transformations. 

Let w be an infinite dimensional vector space with 
coordinates 

CO = ( x , z , z , z , . . . , z , . . . ) 
1 2 n 

where x = (x^ ,X2 , • • • e z = > > • • • > e a n d 

Z..R™ consists , of- coordinates zV . . with v = 1,2,...,N 
1 2 n 

and i, = 1,2,...,M. For instance, 



r 1 1 N N. f 1 1 1 N . z i_z1,z2, . . . , z M_ 1, zmj , z L z -j. 1' z12 ' Z21' ' ' " ' ZMMJ • 

w'-11-' denotes the space with coordinates = (x , z,j , . . . ,z) , 
where = (x,z). Let y be a space o£ functions R, 
k = 1,2,3,..., analytic in a given domain D(w) of w. 

We consider a transformation T:w ->• w defined by 

x' = x ' (x, z , z , . . .) , z1 = z'(x, z , z , . . .) , 
1 1 (1 .1) 

k' = ^ ' ' z ' |' ' ° ° ' k = 1> 2 > 3 , . . . 

where x-' e y, z , v e y, z-'v- . ey. We write (1.1) as l i 1i 2...i k 

0)' = w' (co) = Tco, (1.2) 

and the first n+2 expressions of (1.1) as 

0) (n) = 60 ' ( n ) (co) . 

A set of equations 

dzv - zVdxi = 0 
j v v _ dz: . - z-
1 ̂  1 n t • ill 1 
1 2 k 

(1.3) 
1x 2...i kj d xj 1 y 3 y • • • 

is called a' contact condition. We express the set (1.3) 

simply by {dz - z-dx- = 0}. k k 1 1 



Definition 1. The transformation (1,1) is a contact trans-
formation only if it preserves the contact condition, i.e., 

{dz - z.dx. = 0} + {dz' - z!dx! = 0}, (1.4) 
k k 1 1 k k 1 1 

Let u(x) be a function + We consider a space 
w[u]Cw consisting of points 

03 = (x,U,U,U,,,,,U,,.,), X € R " 
1 2 k 

where, as z, u is a vector with components 
k k 

uV . . = 3 3 3 uv(x) , 
1112." ' ,:Lk x i i x i 2 ' ' ' x i k 

The transformation (1,1) maps the space w[u] into a new space 
which we denote by Tw[u], If T is a contact transformation, 
then Tw [u] = w[u'] for some function u'(x). Namely, for 
any function u(x) the transformed space Tw[u] consists of 
points expressed as w = (x ,u' ,u' ,u' , . . , ,u' , , . ,) for some 

1 2 . k 
function u'(x), 

1.2 Invertible contact transformations. 

We call the transformation oo' r11-* = aj'^Cw) the n-th 
extended transformation of o)'^^. = Given go'^, 
one can determine n>0, from the condition (1.4), 



A contact transformation is said to be invertible, or 
1-1,~ if there exists a- space-w^ in which the n-th 
extended transformation is a 1-1 mapping w^ , n=0,l,2,,,, . 
Under the present difinition (1,4),.not all contact 
transformations are 1-1. Actually only very limited classes 
of contact transformations are invertible. Two cases, 
z scalar and z vector, are considered separately. 

z scalar. Backlund [26] proved for scalar z that the 
most general 1-1 contact transformation is the extended Lie 
contact transformation. The following theorem by Meyer 
[27,28] characterizes Lie's contact transformation: 

Theorem [ Meyer] . A transformation w^^ , 

x' = x'(x,z,z), z' = z'(x,z,z), z' = z'(x,z,z), (1.5) 1 1 1 1 1 

x'rw^ 1^ R M, z'rw^ 1^ R, z'-.w^1^ R M, is a Lie contact 
1 

transformation, i.e. 

dz' - z|dx| = p(x,z,z)(dz - z^dx^) (1.6) 

if and only if 
1) xj, i=l,2,...,M, and z' are M+l independent functions 

of x,z,z and satisfy [x!,x'-] = 0, [z',x-']= 0, 1 i J i 
2) z!, i=l,2,...,M, are determined from 



3 z' + z- 3 z1 = z!(3 x» + z-3 x!) (1.7) 
'i x, i z 3 Z"J 

or from 
3 z' = z!3 i! (1.8) 

i J z ± J 
and p(x,z,z) from 

p = 3zz' - z!3zx! = z'], k=l,2,...,M, (1.9) 

where the Lagrange bracket, [ ,] , of two functions 
<j>(x,z,z) and ^(x,z,z) is defined by 

1 1 

= - ^x.^ + U - 1 0 ) 

The extensions of the transformation (1.5) to higher order 
coordinates z', n>l, are found from the contact condition (1.4). 

n 

Remark 1. In the literature, the term "contact transformation" 
usually refers to Lie's contact transformation. 

z vector. For a vector z e R^, N>1, the most general 1-1 
contact transformation is the extended point transformation 
[29] of 

x' = x'(x,z), z' = z'(x,z), (1.11) 

R^, R^. The transformations for z, n>0, 
n 

are determined from (.1.4). 



Remark 2. In the present context, a canonical transformation 
of classical mechanics 

f = t, q' = q'(p,q,t), p' = p'(p,q,t), (1.12) 

t time, q generalized coordinates, p generalized momenta, 
corresponds to a point transformation with t = x, 

. 1 2 n^ , n+1 n+2 2n. q = (z ,z ,...z ), p = (z ,z ,.. . ,z ) . 

We write the m-th extensions of (1.5) and (1.11) 
and their inverses as 

a)' ( m) = <I)'M(a)(m)) = To,(m), u)(m) = <L(m)(co' Cm) 
(1 13) 

and the infinite extensions as " J 

u' = aj'(w) = Too, to = co(co') = T_1co'. (1.14) 

1.3 Infinitesimal contact transformations. 

We consider a contact transformation which depends 
analytically on some parameter a and reduces to the 
identity transformation I at a=0: 

CO' = (L' (go ; a) , w = w' (co; 0) (1.15) 
or 

co' = T (a) oo, T(0) = 1. (1 .16) 



Expanding co' in a power series in a, we obtain 

n=0 

Defining an operator 

«> n 
= I • ( 1 - 1 7 ) 

£ = + CV9 v + 
'x. T ' u z v ' ,»i0zV + 
1 I 

with ^ = (3 x!) n, CV = (3 z'V) = (3 £.'V) 
^ a iJa = 0' s v a Ja = 0' v a l Ja = 0 , 

we write (1.17) as 

co' = (1 + a£)w + 0(a2) (1-18) 

2 2 where 0(a ) represents terms of order a . For (1.15) to be 
a contact transformation it is necessary that , , ... 
in £ satisfy the recursion relation 

*i...jk = V i . . . j - zi...jmDxk^m (1.19) 
where 

D x k = 9 x k + zkazV-+ zik3zV + ••• • 

Now instead of starting from a transformation of 
the form (1.15), we start with an operator 

A = + ? V9 zv + ?i9zV + ••• > CI - 20) 
i i 



where E,1, £Vey, and <;V , . , . . . are determined recursively from 
i 13 

(1.19). We consider a group transformation 

00 ft 
a£ r ct e w = 2, ^T U ) n! (1.21) 

Transformation (1.21) always satisfies the contact condition 
(1.4). It was previously shown [Appendix 5] that a trans-
formation of the type (1.15) can be represented as an infinite 
composition of group transformations of the form (1.21). 
Namely, (1.15) can be written as 

where are operators of the form (1.20). £ is called 
a generator of a group contact transformation (1.21). 
Depending on the forms of E, and <;, the one-parameter groups 
(1.21) are classified as 

a) Point groups: = £x(x,z), £V = £V(x,z) 

b) Lie contact transformation groups: z is scalar and 

(1.22) 

there exists a function R such that 

C 1 = 3Z.G, C i 
(1.23) 

c) Lie-Backlund groups: all other forms of E,1 and . 



The transformation (1.21) corresponding to the first two 
cases defines a mapping w 1̂1-' -»- w'-11-' for any n>0. For the 
third case, however, the transformation (1.21) must be 
considered in the infinite dimensional space as w+w. 
In all these cases, group transformations are 1-1 in the 
domain where e a^ exists. 

1.4 Properties of generators. 

The commutator of two generators I and ' is 
defined by 

i 

v b l . . . "J . .] zv 
J J 1... J 

(1.24) 

Let A be the space of all generators a. It is easy to 
show: 

Proposition 1. If £eX and 5,'eX, then [£,£'] eA. 

Thus, the form of the commutator is determined from the two 
leading terms using (1.19). From now on we represent the 
generators by two leading terms.as I = + £V3 v . X * z 1 



The following property is very useful [in Appendix 6]: 

Proposition 2. Generators of the formZ = C v3 zv commute with 
the total derivative operator D 

i 

Proof. Noting that D eX, we have 
1 

U,D ] = U"l)3 + (lzV - D x C V)3 z V - (D Cv- D x Cv)3zv= 0. • i i i i i 

We introduce into the space X an equivalence relation by: 

Definition 2. Two generators I and are equivalent if 
and only if (SL - & 1 ) g | q = 0 for any gey. The equivalence 
is represented by Z = 8,'. 

The symbol I g = g indicates the evaluation of the quantity for 
those values of w =(x,z,z,...) which satisfy the equations 

g = 0, D x g = 0, D D g = 0, ... . (1.25) 
i i j 

The equivalence class N  of OtX consists of generators 

A = C XD X , 5 l e Y-
i 

(1.26) 



Proposition 5. A generator £ = + £ v9 7v is equivalent 
to £ = U v - zV?1)3zV. 

Proof. Obviously, £ - £ = + zV^13 From (1.19) we 
find its full expression to be 

£ - £ = £X(3 + zYa V+ zV.3 + ...) = . • X- 1 Z 1 ZV J ^ X-
1 J 1 

As a result, elements of the quotient space XA. can be 
represented by generators of the form £ = 0 V ( w ) 3 z V , 
v ^ 6 ey. The generators X and £ satisfy the same commutation 
relation. Namely, 

/\ /N Proposition 4. = ^3 ^^ a n d o nly if 

Proof. From (1.24) we have 

[£1,£2] = (£152 " ( J ll C2 " A 2 ? 1 ) 3 Z v = V 

Therefore, = { ( l ^ - £2C^) - z ^ O ^ - £2^J)}3 

On, the other hand, we have 

z^ 

A /S 

j J 3 zV 



l l 

J J 

The converse is obvious. • 

1.5 Invariance contact transformations. 

A set ,Q,f K C. functions 

f V (to ) = fV(x,z,z, . . .z) , v = l,2,...,K, (1.27) 
I n 

are said to be functionally independent in the domain D(w) 
iff there exist K components of (z,z,...,z), denoted by 

1 2 n 1 2 K 1 2 K y ,y ,...,y , for which the Jacobian of (f ,f ,...,f ) is 

nonzero: 

' ' ' Q in D (w) . (1.28) 
D C y 1 ^ 2 , ... . ,yK) 

We denote by D(w;f=0) the set of points tô n-' satisfying the 
equations f^(to n̂-^)=0, v = l,2,...,K. K equations . ... ..••'.. 

fV(to(n)) = 0, v = 1, 2 , . ! . , K, K<N, (1.29) 



o 

are said to be independent iff the set of functions f v are 
functionally independent in D (w) ' aridD.(w; £=0) is nonempty. 

The implicit function theorem ensures that if 
{fV} is a set of functionally independent functions and 
D(w;f=0) is nonempty, then in every neighbourhood of a point 
toeD(w;f=0) there exists a unique set of K C^ functions 

^ V ( w ( n ) ) , v = l,2,...,K, independent of y^ ,y2 , . . . ,yK, with 
the property that the functions f V all vanish with the 
substitutions 

y 
V = ipV (to ) , v = l, 2 , . . . ,K. (1.30) 

The system (1.30) is called an explicit form of the system 
(1.29). The system (1.29) is said to be a linear system 
iff its explicit form is linear in z,z,...,z, namely, 

1 n 

y v = + 4>V (x) , v = l, 2 , . . . ,K, (1.31) 

where Av is a linear operator defined by y 

A?zv = (a^(x) - aix;i(x)DY +....+ a ^ Z - ^ f x J D , D y . . .D }zy, 
i 
n 

(1.32) 
tor. .matrix 

A = 1^1' w e sometimes write (1.31) in the form 

y = Az + cf> (x) (1. 33) 

y y y x. y x. x. x. 
i ii i 2 i n 

a^ J :R (xj+R, <j> :R (x).->-Rt Defining an operator. ,matrijc 



where y,z and (p are column vectors. 

We consider a system of equations 

f = 0, D f = 0, D D f = 0, ... (1.34) 
i i j 

where f=0 is the independent system (1.29)'. We use the 
same notation D(w;f=0) to represent the set consisting of 
points weD(w) satisfying the system (1.34). The set D(w;f=0) 
defines a manifold in w. 

A contact transformation w'=co'((jo) is called an 
invariance contact trans formation of the equation f = 0 
iff it transforms D(w;f=0) into itself, namely, 

fCS'CuO) l £ ( a ) ) = 0 - 0. (1.35) 

For a group contact transformation (1.21) to be an invariant 
transformation, it is necessary and sufficient that 

* f(w) l £ C a ) ) = 0 = CI-36) 

Eq . (1. 36)-.. is called the determining ̂ equation v. Because o.f the 
local nature of the generators of an invariance group, we have: 

Proposition 5. A system of independent equations {fv(w)=0} 
and its explicit form {yv=<j>v (co)} admit the same invariance 
group, generators. 



Lie gave' an algorithm [-6,7,23] to determine invariance 
group generators = + £V(co'-n-')3 v satisfying the 

x i z 

condition (1.36) for given m and n. 
Clearly we have 

Proposition 6. If and I is an invariance group generator 

of the system f~0, then is also an invariance group 
generator of f=0. 

Thus, recalling Propositions 3 and 4, we see that for the 
study of invariance groups, it is sufficient to consider 
generators of the form £ = 8 V (co ) 3 z V . Often generators of 
this form are easier to work with than generators of the 
form (1.20. ) and in the rest of this work we only deal with 
such generators. 

1.6 Invariance.-contact transformations of differential equations. 

In §1.1 we introduced the notation w[u] to represent 
a space consisting of co given by 

M M N co - (x ,u ,u ,u, . . . ) , x eR , u:R (x)-tR . 

When u is a solution of a system of differential equations, 



- id. -

£ (x ,u ,u ,u, . . . ,u) = 0, (1.37) 
1 2 n 

we call w[u] a solution surface o£ the differential equations 
(1.37). It is clear that for wCu) to be a solution surface 
it is necessary and sufficient that wLu] be imbedded in 
D(w;f=0). Now let T:w' =w' (to) be an invariance contact trans-
formation of f(co n̂-')=0. Then from the contact property of T we 
have, as mentioned in §1.1, 

Tw[ u ] = w [u'] , (1.38) 

and from the invariance property of T, we have for a 
solution surface wEu], 

Tw [u] <=. D(w;f=0) , (1.39) 

hence w[u'] must be a solution surface of the equations 
(1.37). Therefore, any invariance contact transformation 
of f(a)Cn))=o maps a solution surface of the differential 
equations (1.37) to another solution surface. 

1.7 Invariance groups of linear equations. 

Generators of invariance group contact trans-
formations of linear equations bear special properties. 



We consider two cases separately: 

i) SL = 0 V(x)3 z V, 0V:RM(x)+R 

ii) £ = e v ( w ^ ) 3 z V , e V:w^ n^R. 

To be consistent with notations to be used later.," capital letters 
X,Z,U,Q,... will be used in this section. We use the term 
"linear" in the sense defined in §1.5. 

i) The first case. It is known that any linear equation 
admits a generator of the form L=0V(X)3£V. Namely, 

Proposition 7. A system of linear equations ^Z^- $V(.X) = 0, 
v=l,2,...,K, K<N, $V:R 

(X)->-R, with linear operator A. 
defined by 

. j4 = {AV (X) • + AV:1.-(X)DV + . . . + AV1l12:,-Jin(x.).Dv Dv; • • • }Z;J y y - y x^ y A i n ' 
(1.40) 

Avi.••j:RM(x)^R, admits a generator L=Uy(X)3zy depending 
upon an arbitrary solution {Uv(X);v=l,2,...,N} of the system 
of linear differential equations ^Uy(X)=0, i.e., 

AV(X)Uy + Avi(X)uV + ... + A v il i2- •-^(X)^ . • = 0, y y 1 y 1 1 ii^2 • • ̂ n 
(1.41) 

v = 1, 2 , . . . , K. 



Here and in the following, U y • , = 9 3 ...3 Uy(X) . 
13 • • .K X-ĵ  Xj Xj, 

Let Z=(l+cL)Z, c constant and L=Uy (X) S^y def ined.-.above . 
It is easy to see that if 4 vZ y-$ v(X) =0, then the Z, a super-
position of cU(X)' with Z, satisfies the equation 4^zy-§v(X)=0. 

Definition 3. An operator L ^ ^ X ) ^ ^ is said to be a super-
position generator of the equation -(X)=0, v=l,2,...,K, 
if 4 vU y (X) = 0. 

U J 

It is clear from Proposition 5 that: 

Proposition 8. A linear system Fv(ft^)=0, v=l,2,...,K, K<N, 
admits a superposition generator L=Uy(X)32y of its explicit 
form 

Y v = A^ ZW + $V(X) . (1.42) 

ii) The second case. In this subsection, we restrict our-
selves to a linear system Fv(f2^n^)=0 whose explicit form 
is linear homogeneous, i.e. 4^Zy=0. In this case, two 
types of generators can arise: • "" . . 

a) 0 V is linear in Z,Z,...,Z, i.e., 0 V=B vZ y+Y V(X) 1 m y 
for some linear operator B . 

b) 0 V is nonlinear in Z,Z,...,Z. 
1 m 



The generators will be called linear generators and non-
linear generators respectively. For a linear system, 
we often assume its invariance group generators to be 
linear generators as the computation of generators becomes 
much simpler. Although this assumption has been found 
to be valid for most of linear systems, there exists 
no theorem stating the range of validity of this assumption.^ 
Indeed, there exist exceptions. For instance, the wave 
equation Z ^ - Zyy = 0 admits a nonlinear generator 
L-0(Z^+ZyjX+Y), 0 (•,•) being an arbitrary function. 
We now show the completeness of linear generators, namely, 
that if the system admits nonlinear generators, then they 
all can be found by examining linear generators admitted 
by the system. 

Theorem 1. A linear homogeneous system = 0, ^ defined 
by (1.40), admits a nonlinear generator ' 0 V (ft ) 3 iff 
the system admits a linear generator of the form 

L = {BV(X)Zy + BV1(X)ZV + u K J u v J l 
/ 

+ B 

(1.43) 

t) Only for a limited class of scalar linear equations 
has this assumption been shown to be valid [6,7]. 



where 

= {3ZV .0v^(m))>lz=u,z=u,...,z=u' t 1 - 4 4 ) 
1 • • • J 1.1 m m 

and U:R^(X)->-R^(Z) is an arbitrary solution.of a system of 
differential equations 4 vU y=0. 

y 

This is a new result and the proof is given in Appendix 1. 
According to this theorem, if a linear homogeneous system 
admits a nonlinear generator, then the system must admit 
a linear generator which depends on an arbitrary solution 
of the corresponding system of differential equations. 
By virtue of this result, in the study of a linear homo-
geneous system, we may restrict ourselves only to linear 
generators of the form 

L = (B^Zy + yV)8zv (1.45) 
where 

B* = B^(X) + B^1(X)D + ... + B^ 1l i2--- im ( X)D D ...D , 
y y y y Ai i Ai 

i X1 ±2 .J-m 
BV1. . • j : R M( X)+R, and ¥V:RM(X)-*R. 

To illustrate a use of the theorem we consider 
the following example. 

(1.46) 



Example. Consider the equation 

Z XX z YY 0 . (1.47) 

This equation admits a linear generator 

L ='{g(Ux+UY)-(Zx+ZY)}3z X Y (1.48) 

where g is an arbitrary function of U^+Uy, U being an 
arbitrary solution of the differential equation U x x-U Y Y=0. 
In this example, the equation is scalar, hence we drop all 
the Greek indices in the theorem. Comparing (1.43) and 
(1.48), we have 

B(X.,Y)' = 0, • B X (X ,'Y.)' = g(Ux+UY), BY(X,Y) = g(Ux+Uy). (1.49) 

Comparing (1.49) with (1.44), we look for a function 0 
satisfying 

Clearly, we have 0=G(Zx+Zy), G being an arbitrary function 
of Zx+Zy, and consequently Eq(1.47) admits a nonlinear 
generator L=G(ZY+ZY)37. 

0 Z ez = g(zx+zY). (1.50) 

We state a few basic properties of the linear generators. 
Their proofs are given in Appendix 2. 



Let B be an operator matrix B . 

Proposition 9. If L=(£^Zy)3zV, L=(B^Zy)3zv and £=(B^Zy)3zV 

satisfy the commutation relation [L,L]=l!, then [B, 

Proposition 10. If L=(B^Zy)9zvand L=(B^Zy)3zV are generators 
of invariance groups of a linear homogeneous system 4^Zy=0, 
then so is L= ( S V3 KZ y) 3 7v • 

Let A be an operator matrix A =\|. 

Proposition 11. L=(5^Zy)3zV is an invariance group*--
generator of a linear system ^Z = 0 iff [A,B~[Z =0 for 
any Z satisfying ^Z=0. 

Proposition 12. If L=(£VZy)37v is an invariance group 
y L 

generator of the system ^z = 0, and if U(X) is a solution 
of a system of differential equations a4U(X)=0, then 
(5) u(X) also solves the same differential equations, 
i.e. 4(B)kU(X)=0, k=l, 2 , 3,... . 

Invariance groups of linear equations have been 
studied extensively in recent years in connection with 
representation theories of groups [30,31] and with quantum 
physics 125] In these works, problems were formulated 
in terms of the linear differential operator :B instead of 



the operator L= (s VZ y)3 ? v. A systematic method of finding 
the operator B was first presented by Winternitz et a;l\[32 ,33] 
in their study of symmetries of Schroedinger equations. 
The relationship between the operators L and B was first 
established by Anderson, Kumei and Wulfman and Propositions 
10-12 have been known to them. Proposition 9 is a. new result. 

1.8 Contact transformations of the spaces y and X. 

Function's f and generators I were defined in 
space w. If the space w is mapped into a new space W by 
some transformation T, then f and £ undergo corresponding 
transformations. We assume the transformation T to be a 
1-1 contact transformation, analytic in D(w) and write it as 

ft = ftO) = Tto with Q = (X,Z,Z,Z, . . .) . (1.51) 
1 2 

The inverse is written as (jo = gj(£!)eT D(W) denotes the 
image of D(w) , and r the space of functions F:W^->-R, 
k=l,2,3,..., analytic in D(W). A represents the space of 
generators L of group contact transformations in W. 

The transformation T:y->T. The transformation of the 
function fe.y by T is written as Tf(oo'-n̂ ) and defined by 



T f O ^ ) = f(T"W n ; )). (1.52) 

The inverse transformation r̂ -y is defined by 

T_1F(ft(n;)) = F (Tco ) . (1.53) 

The transformation T:A->A. We write the transformation of 
_ i I by T as T£T . Regarding (1.51) as a change of variables 

one finds 

T£T _ 1 = (£Xi)9x_ + (£ZV)9ZV, (1-54) 

where X,Z are X,Z components of (1.51). Since the trans-
formation (1.51) is a contact transformation, if leX, then 
T£T In view of Poposition 3, we have 

T£T = (JtZV - zVj?,Xi)9zv. • (1.55) 1 • 
i x- i 

Similarly, 

T _ 1LT = (LzV - zVLxi)3zV. (1.56) 

We let £ = 6V(to(-m^) 9 v and L = v and consider two 
Z lu 

cases, z scalar and z vector, separately. 

z scalar. As mentioned in §1.2, the most general 1-1 contact 
transformation in this case is the extended Lie contact trans-



formation. It takes the form 

X- = X. (x , z,z) , Z = Z (x ,z,z) , Z. = Z. (x , z,z) , ... . 
x 1 1 i x x 1 

(1.57) 
Using (1.7)-(1.9) where we let x'=X, z'=Z, z'=Z,..., 
we obtain:from (1.55) and (1.56) the expressions 

T"1 ; ^rT- 1oC m)^rT" 1o( 1) 

and 

T0 (oo ^) 9 T = {etT^ft^^pfT"1^1-1^ } 9 7 , (1.58) 
Z Li 

T 10(fi(m;)) 9 7T = { e C T ^ ^ a ^ 1 ) ) }9 , (1.59) 

where 

p(T _ 1ft C 1 )) = p(w ( 1 )) l u = - ( n ) and a((.(1)) = { p ( W ( 1 ) ) } _ 1 

(1.60) 
with pfw^1^) = 9 Z - Z-9 X.. 

v J z 1 z 1 

z vector. In this case the most general 1-1 contact trans-
formation is the extended point transformation: 

= Xi(x,z) , Z v = Z v (x, z) , . . . , (1.61) 

yielding 

TeV((0(m))9 V T - 1 = {6 y(T" 1n ( m })p V(T- 1ft ( 1))}9 7 V, (1.62) 
Z ji Lt 

where 

= {9 zpZ V - (1.63) 



and 

T - V ( ^ m ) ) 8 z V T = {© y(Ta) ( m ))a^ ( 1 ))}^v> U-64) 

where 
y V ^ - - ZV 

a ^ h = {3zyzv - z ^ y V l ^ ^ (1.6S) 

From these results follows that: 

Proposition 13. An operator L = 0 V (fl ̂  ) 9 z V is an invariance 
group generator of the equation F(fl^n))=0 iff T~ 1F=f (w ̂ ) =0 
admits the generator (1.59) (z scalar) or the generator 
(1.64) (z vector) . 



- 41 " 

CHAPTER 2. 

- INVERTIBLE MAPPINGS OF NONLINEAR SYSTEMS TO LINEAR SYSTEMS 

In this chapter, we study transformations mapping 
nonlinear differential equations to linear differential 
equations in a 1-1 manner. Based upon the group analysis 
of differential equations, we obtain necessary and 
sufficient conditions for the existence of such trans-
formations. The established theorems not only allow us 
to determine the existence of the transformations but 
also enable us to actually construct these transformations 
from invariance groups of the nonlinear equations. 

In the following analysis, two types of trans-
formations are considered: 

1) The invariance group transformations of differential 
equations; and 

2) The mappings which transform nonlinear differential 
equations to linear differential equations. 

Theorems will be proved based upon the following observations. 
Clearly if there exists a 1-1 mapping between any two 
differential equations it must inject properties of one 
equation into the other, including their invariance 



+ ) 
properties. For this reason the often ignored fact, 
mentioned in §1.7, that any linear differential equation 
admits a superposition generator becomes significant.. 
As we have seen, this particular generator depends upon an 
arbitrary solution of the linear equation. It follows then 
that any nonlinear equation transformable to a linear 
equation by a 1-1 mapping must admit a generator which depends 
upon an arbitrary solution of some linear differential 
equation. 

2.1 Theorems on the existence of 1-1 mappings. 

We consider two cases, z scalar and z vector, 
separately since each admits a different type of 1-1 contact 
transformation. First we consider the case z scalar. 
In the following theorem, the Lie contact transformation 
discussed in §1.2 will be used with new notations 
X=x', Z = z ' , Z = z' , ... 

1 1 

t) The idea of comparing invariance groups of differential 
equations in the search of mappings connecting the equations 
was first used by Bluman in his study of Burgers' equation 
['34 1 and it was applied to the study of mappings of one 
dimemsional linear parabolic equations to the heat equation [35]. 
ft) The results in this chapter and a part of the results in 
the next chapter have been reported as Technical Report 
81-3 of the Institute of Applied Mathematics and Statistics, 
University of British Columbia. 



Theorem 2. A scalar n-th order nonlinear equation 

- f (x , z , z , z , . . . , z) = 0, xeRM, zeR, (2.1) 1 2 n 

is transformable by a 1-1 contact transformation to a 
linear equation if and only if the equation f=0 admits 
a generator £ of the form 

£ = . { a ( w ( 1 ) ) U ( X ( J 1 } ) ) } 9 z , (2.2) 

where 
M 1) U(X') :R.->R is an arbitrary solution of some n-th 

order linear differential equation 

I4U-- = '"{A (X') ' + A 1 (X) D V + ... + A1-1 • • •LN(.X).I)V ..P Y }U = . 0 , 
xi • Xi1-'- x i n 

and (2.3) 

2) X(O)(1')) iw^+R1^ is a component of a Lie contact 
transformation 

X = X(EO ( 1)), Z = Z(U) ( I ; )), Z = Z ^ 1 ) ) (2.4) 

and 
a(u>C1)) = {p(a)(1))}"1 = (BzZ - Z i9 zX i)' 1. (2.5) 

The transformation (2.4) maps Eq.(2.1) to a linear equation 
which has an explicit form j4Z-$(X)=0 with A defined by (2.3). 



Proof. Suppose that Eq.(2.1) is transformable to a linear 
equation by an extended Lie contact transformation.w+fl. By 
Proposition 8, this linear equation admits the superposition 
generator L=U(X)8Z of the equation 4Z-$(X)=0. Hence, 
according to Proposition 13, Eq.(2.1) must admit (2.2). 

Conversely, suppose that Eq.(2.1) admit a generator 
of the form (2.2) with the properties 1) and 2). The 
transformed equation of Eq.(2.1) by (2.4) is written as 
Tf=F(X,Z,Z,...,Z)=0. In view of Proposition 13, F=0 admits 1 n 
the generator L=U(X)9Z. Thus, by the invariance condition 
(1.36), we have 

LF = F U + F z - U i + ... + F z _ Ui i i ?...i = 0 (2.6) 
i 1i 12'"" xn 1 2 n 

for any satis fying F(fi(n^)=0 and for any U(X) satisfying 
the differential equation (2.3). It is easy to show that 
(2.3) and (2.6) involve the same set of We 
assume without a loss of generality that both contain U. 
Eliminating U between the two equations, we get 

0 = (AF - A 1F z)U i + (AF - A1^F„)U.. + ... . (2.7) 
i i j J 

Since U represents an arbitrary solution of Eq.(2.3), at 
any point X an arbitrary set of values may be assigned to 
U-.U-...... and thus all the coefficients in (2.7) must 
i I j v J-

vanish. This is possible only if F has the form G(4Z,X), 



G(«,*) being an arbitrary function. Therefore, the extended 
transformation of (2.4) maps Eq.(2.1) to an equation 
G(^Z,X)=0, which is solvable in the explicit form 
AZ-$(X)=0. • 

In this theorem, z , z ...... Z , Z-,... are coordinates 
' ' 1' ' ' I ' 

of the spaces w, W. Because of the contact condition (1.4) 
imposed upon T this theorem implies: 

Corollary 1. A scalar nonlinear differential equation 

is transformable to a linear differential equation by a 
1-1 mapping if and only if the equation f(x,z,z,...,z)=0 

1 n 
admits a generator of the form (2.2). The mapping is given 
by the extension of (2.4) and it transforms Eq.(2.8) into 
a differential equation which is solvable in an explicit 
form 

f(x,u,u,...,u) = 0, x e R , u:R (x)+R 
1 n 

,M M (2 .8) 

4U - . $(X) = 0. (2.9) 

We now turn to a system of nonlinear equations. 
We have: 



Theorem 5. A system of K independent n-th order nonlinear 
equations 

fV(>(n)) = fV(x,z,z,z,...,z) = 0, v=l,2,...,K, K<N, 
1 2 n (2.10) 

xeRM, zeR^, is transformable by a 1-1 contact transformation 
to a linear system if and only if the system (2.10) 
admits a generator of the form 

I = {Uy (X(x,z))crV(x,z,z)}3 , y — zv 
where 

1) UV(X), v=l,2,...,N, is an arbitrary solution of 
some system of n-th order linear differential equations 

(2.11) 

LJP = {AV (-'X) -+ A V 1(X)D Y + .... + A V l 1 - • •1n(X)DY . . . D Y . • }UU .= 0, 
11 11 * • y M i X... 1 -n (2.12) 

v=l,2,...,K, and 

2) X(x, z) : i s a component of a point trans-
formation 

X = X(x,z), Z = Z(x,z) (2.13) 

with inverse transformation x=x(X,Z), z=z(X,Z) and 

v <J*(x,z,z) = O z y Z V - z V 3 z y x i > X=X,Z=Z. 
(2.14) 



The extended point transformation of (2.13) maps Eq.(2.10) 
to a linear system with an explicit form 

A vZ y - 3>V(X) = 0, v = l, 2 , . . . ,K. (2.15) 

Proof. We recall that the most general 1-1 contact trans-
formation involving vector z is the point transformation. 
Suppose that there exists a point transformation 

X = X (x, z) , Z = Z(x,z), Z = Z(x,z,z), ... (2.16) 
1 1 1 

mapping Eq.(2:,l,0) to a linear system (2.15). By Proposition 8 

this linear system admits the superposition generator 
L = U V ( X ) 8 7 V . In view of Proposition 13 the system (2.10) 

Li 

must admit the generator (2.11) with properties 1) and 2). 
Conversely, suppose that Eq.(2.10) admit the 

generator (2.11). Under transformation (2.13), the 
generator (2.11) is transformed into 

L = Uv(X)9zv (2.17) 

and Eq.(2.10) into, say, Fv(X,Z,Z,...,Z)=0, v=l,2,...,K. 
1 n 

The system {Fv=0} is solvable in explicit forms for 
K components of the Z,,Z., . . . ,Z.. Without loss of generality, 

1 2 n 



for these we can choose Z^, v=l,2,...,K, and write the 
explicit forms as 

Z^ + <j)V(X,Z,Z, . . . ,Z) = 0, v = l, 2 , . . . , K, (2.18) 1 I n 

where cj>v are independent of Z y, y = l, 2,...,K. According to 
Proposition 13, the system {F — 0} admits the generator 
(2.17), and hence so does the system (2.18). Thus, 

+ + *zyui + ••• + ^zv . u? .i = °> (2.19) i 1 - . . . . 1 I n v J 
1 n 

where v=l,2,...,K and cj> ̂ y= ̂  ̂l-1 ̂ V ' e t C - - This holds for 
any U(X) satisfying the differential equations (2.12). 
It is easy to show that Eq.(2.19) can involve only those 
Uy,UV,... appearing in Eq.(2.12). Eq.(2.12) is solvable 
for uV, y=l,2,...,K. This is seen as follows. Suppose 
this be not the case, i.e. rank |A^|<K, y,v<K, .We fix X at 
X=X° and assign to UV(X°), U^(X°), U ^ (X°) , ., . a set of 
values consistent with Eq.(2.12). Here, the indices on 
U^(X°) are restricted either to i>l or to {i=l,y>K}. . 
For this set of values, there exist non-unique values 
of U^(X^), v<K, satisfying Eq.(2.12) because of the above 
rank condition. On the other hand, the introduction 
of the same set of values into Eq.(2.19) uniquely determines 
the values of U^(X^). This contradicts the condition that 



Eq.(2.19) holds for any solution of Eq.(2.12). Thus, 
Eq.(2.12) is solvable as 

U^ + a V + A^uV + ... + A ^ l - ' - W = 0, v = l,2, . . . ,K. 

(2.20) 
I ^ /A. U U • ^ ... T /V "U • 
l y y i y .. . 

Eliminating U^ from (2.19) and (2.20), we have 

I n 
(2.21) 

The equality (2.21) is possible only if 

(J)V = A VZ y + AvizV + ... + A^l-^nzV . + (X) y y i y xi•••xn 

/s 1 
where A^ =0 for y<K, and consequently the explicit form 
(2.18)of the transformed system {Fv=0} is linear. It is 
also clear that Eq.(2.18) is equivalent to Eq.(2.15). D 

As in the case of scalar z, from this theorem follows: 

Corollary 2. A system of K independent nonlinear differential 
equations 

fv(x,u,u,...,u) = 0, v=l,2,...,K, K<N, (2.22) 1 n 



- so. 

x 6R M, u:RM(x)-*RN, is transformable by a 1-1 mapping to 
a system of linear differential equations if and only if 
the system fv(x,z,z,...,z)=0 admits a generator of the 

1 n 
form (2.11). The mapping is given by (2.13) and it trans-
forms Eq.(2.22) to a system solvable in explicit form as 

AVU y - $V(X) = 0, v=l,2,...,K. (2.23) 

2.2 Remarks on the use of theorems. 

These results just obtained ensure that if a given 
system-of nonlinear equations • is transformable 'to a system 
of linear equations•by,a 1-1 mapping,.one can always, find 
the mapping by examining the nature of the invariance group 
of the nonlinear equations. The type of groups to be considered 
depends on the dimension of the space z. . 

For a scalar equation we need only to consider a 
generator £ of the form 

I = 6(x,z,z)8 . (2.24) 
1 z 

If the equation is transformable to a linear equation, then 
it admits a generator of the form (2.2). It should be 
emphasized that the function X(oo'-"̂ ), the factor a(o)^"^) 
and the linear differential equation (2.3) can all be 
found by examining the generators admitted by Eq.(2.1). 



Once X is obtained, the function Z(a)^)) is determined from 
the condition [Z,X^]=0 which represents a system of first 
order partial differential equations for Z. At this point, 
Z still admits functional arbitrariness. From Z and X we 

determine Z • using conditions (1.7) or (1.8).- "Next-we. use 
^ -1 (2.5) for the Known p=a to limit the arbitrariness m Z. 

The resulting transformation X=X, Z=Z, Z=Z maps the non-
linear equation to an equation with an explicit form 
AZ - $(X) = 0. The form of $(X) depends upon the remaining 
arbitrariness: in Z. 

For a system of equations, in view of (2.11) and 
(2.14), we need to consider generators of the form 

£ = U V(x,z) - z^ i(x,z)}8 z V. (2 

By Proposition 3, (2.25) is equivalent to a generator of 
a point group 

£ - 5^x^)3 + CV(x,z)3 v . 
i z 

If there exists a mapping to a linear system, we can find 
the functions X(x,z), av(x,z,z) by comparing the resulting 

^ 1 
invariance group generators (2.25) with (2.11). The functi 
ZV(x,z) are to be determined from these functions using 
equations (2.14). Eq.(2.12) is found on determining the 
invariance group. 



Remark 1. It is possible for differential equations to admit 
generators whose forms are more general than those of 
(2.2) or (2.11) with the forms (2.2) or (2.11) as special 
cases. The Monge-AmpSre equations of a special type are 
such examples as we see in the following examples. A system 
of ordinary differential equations also admits s.uch generators. 

2.3 Examples. 

some well known equations transformable to linear equations. 
Since the linearization of differential equations 
£v('X,u,u, . . . ,u)=0 is equivalent•• to^that:;of. the equations 1 ri 
fv(x,z,z...,z)=0 by a contact transformation, we only deal 1 n 
with the latter. In the following examples we let x^=x, 
x?=y and, where convenient, adopt the customary notations 

To illustrate the use of our theorems, we consider 

z =p, z =q, z =r, z =s, z =t. x ^' yi xx ' xy ' yy 

2 
A. The equation z + h{z ) z y o. 

We consider the equation t 

f z 
y 

o. (2.26) 

t This is an integrated form of Burgers' equation 
z +zz -z =0 which will be discussed in 3.1. xx x y 



The generator (2.24) is now i=Q(x,y,z,z^,z )3z. Applying 
Lie's algorithm, we find that Eq.(2.26) admits 

2 2 = (y z + yxz + %x +y) 3 , = (yz + Jgxz )3 , 1 y 7 x 3 J z' 2 w y • x' z' 

JU = z 3 , = z 3 , £ = 3 , (2.27) 3 y z ' 4 x z ' 5 z' ^ ^ 

- (yzx + x)3z, ij = U(x,y)e_JsZ3z, 

where,:.in , U(x,y) is an arbitrary solution of the heat 
equation U ^ ••• IP =. 0 . This indicates that Eq.(2.26) is 
equivalent to a linear equation. To find the mapping, we 

- 3"Z 
compare with (2.2) to get X=x, Y=y and a=e 2 . From 
the conditions [X,Zj = [Y,Z]=0, we obtain Z = Z(x,y,z). Thus, the mapping is a point transformation. From (2.5) and 

v 
p=(a) =e2 , we find that 3 zZ=e 2 . The mapping is then 

X = x, Y = y, Z = 2e + h(x,y), (2.28) 

where h(x,y) is an arbitrary function of x and y. It is 
easy to check that the extended point transformation of 
(2.28) maps Eq.(2.26) to the linear equation 

AZ - $(X,Y) = Z x x - Z y - (h x x - h y) =0. (2.29) 

Setting h=0, from Corollary 1 we see that the transformation 



X = x, Y = y, U = 2ehu (2.30) 
2 

maps the differential equation u ^ + h(u^) - u^ = 0 to 
the heat equation ,4U=U-^-Uy=0 , and moreover the inverse 
of (2.30), 

x = X, y = Y, u = 2£n(%U) (2.31) 

defines an implicit solution u(x,y) of this nonlinear 
differential equation for any solution U(X,Y). In this case 
the explicit form is 

u = 2£n{%U(x ,y) } . (2.32) 

B. Hodograph transformations. 

1 2 
In this example we let z =w, z =v and consider 

a system of quasilinear equations 

= alx(w,v)wx+ aiy(w,v)wy+ blx(w,v)vx+ biy(w,v)v^= 0, i=l,2, 
(2.33) 

where the coefficients a's and b's are functions of w and v. 
For the invariance group of this equation we have: 

Proposition 14. Provided J = w x vy~ vx wy^®, the system (2.33) 
admits a generator of the form 



I = -{U1(w,v)wx+ U2(w,v)wy}3^ - {U1(w,v)vx+ U2(w,v)v^}3v 

1 2 
where {U (w,v),U (w,v)} is an arbitrary solution of the 
system of linear differential equations 

fi.r t r T _V\ fu lrlll 4- n ^ ̂  \j j kj — \j — 

(2. 

biy(w,v)U^ - aly(w,v)U^ - blx(w,v)U2 + aix(w,v)U2 = 0, i = l,2 

where UX=3 U 1, U 1 = 3 U 1. w w ' V V 

Proof. Since D fx=D f 1 =0, we find that x y ' 

- Af x = w U 1fa 1 Xw + a i y w ) + v U 2(b 1 Xv + b l y v ) x w ̂  x y y v v x yJ 

+ w U 2(a l xw + a l y w ) + v U 1(b l xv + b i y v ) y w v x yJ x v v x yJ 

+ v U1(blxw. + b i y w ) + w U 2(a l xv + a i y v ) x w^ x yJ y v x yJ 

+ v U 2(b 1 Xw + b i y w ) + w U^(alxv + a l y v ) y w^ x yJ X' v v x yJ 

Using Eq.(2.33) in the first two rows of this expression, 
we find that 

„ ri i T r,iyTtl iyT,l ,ixTT2 , ixTT2. if .c r n = J-(b - a 7U - b U + a U ) I£^=£2=0 v W V w VJ 

which vanishes by the condition (2.35). • 

To construct the mapping to a linear system, 



we compare (2.34) with (2.11) which in the present case 
takes the form 

I = {U1(X,Y)aJ + U2(X,Y)a2>3w + {U1(X,Y)a2 + U2 (X, Y) a2 }.3 . 

Clearly X=w, Y=v, af=-w,;, ai=-w , a 2 = -v , a 2 = -v . The 3 ' 1- x' 2 y 1 x' 2 y 
definition of a v leads to 9ljrx=l, 9,,x=0, 9,^=0, 9„y=l. Thus y W ' ¥ ' m3 ' V' 
we have a solution x=W, y=V. Combining these together, we 
find the hodograph transformation [ 36 ] 

x = W, .y = V, w = X, v = Y (2.36) 

which maps Eq. (2.33) to a- linear system 

/ Z y = biy(X,Y)Wx - aly(X,Y)WY - blx(X,Y)Vx + alx(X,Y)VY.,= 0, 

(2.37) 
where Z 1 =W, Z2=V and i=l,2. 

C. The Legendre transformation. 

We consider a second order quasilinear equation 

f = a (p , q) r + 2b(p,q)s + c(p,q)t = 0, (2.38) 

where p,q,r,s and t denote the variables defined at the 



beginning of this section and a,b and c are functions 
of p and q. We have 

Proposition 15. Eq.(2.38) admits a generator &=U"(p,q)9 
depending on an arbitrary solution U(p,q) of the linear 
differential equation 

U = a(p,q)Uqq - 2b(p,q)Upq + c(p,q)Upp = 0, (2.39) 

where U =(9 ) 2U, U =9 9 U, U =(9 )2U. 
pp p pq p q qq q 

Proof. Introducing w=p, v=q, , v =t, w^=vx=s, we write 
Eq.(2.38) as a system 

a(w,v)wx + b(w,v)(w + v x) + c(w,v)vy = 0 (2.40) 

w - v = 0. (2.41) 
y x K J 

According to Proposition 14, this system admits the generator 
1 2 

of the form (2.34) where {U ,U } is an arbitrary solution 
of the linear differential equations 

c(w,v)U^ - b(w,v)(U^ + U 2) + a (w,v)U2 = 0 (2.42) 

" U w = (2-43) 

Eq.(_2.43) allows us to introduce a function U(w,v) with 



a property 

U 1 = 8 U E U , U 2 = 3 U E U , (2.44) 
iir T»r  7 "\t "\r ' v J 

and then Eq.(2.42) takes the form 

aU - 2bU + cU =0. (2.45) 
VV WV WW J 

Introducing (2.44) into (2.34) and using (2.41), we find 
that i = (DxU)8w + (DyU)3v. Recalling that w=p=zx and 
v=q=Zy, we see that this is the first extended part of the 
operator I = U(p,q)3 , and hence follows the assertion. • 

In order to construct a mapping of Eq.(2.38) to a 
linear equation we compare the generator &=-U(p,q)3z with 
(2.2). Clearly, X=p, Y=q and a=l. To find Z, we use 
[Z,Xj = [Z,Y]=0, i.e., 

Z + pZ = 0, Z + qZ = 0. x r z ' y n z 

The solution is Z=Z(p,q,a), a=-z+px+qy. From (1.8), we get 

Z + xZ = P, Z + yZ = Q p a ' q 7 a x 

with P=ZX and Q=Zy Now from (2.5) with a=l, we get Z =1, 
and consequently Z=-z+px+qy+h(p,q) for ah arbitrary.function h. 
Setting h=0, we get the Legendre transformation [3.6] : 



X, Q = y. 

(2.46) 

0 (2.47) 

The Monge-Ampfere equation takes the form 

f = A(rt - s 2) + Br + Cs + Dt + E = 0, (2.48) 

where the coefficients A,B,C,D and E are functions 
of x,y,z,p and q. In studying this equation, the concept 
of intermediate integrals plays an important role [-37= ]-
An equation 

I(a(a)(1)),3(^(1))) = 0, (2.49) 

I(.,«) an arbitrary function R2->-R, is 
said to be a general intermediate integral of Eq.(2.48) if 
a and 3 satisfy the equality 

(Dxa)(Dy3) - (D a)(Dx3) = f. (2.50) 

X = p, Y = q, Z = -z + px + q'y, P 

This transformation maps Eq.(2.38) to 

AZ E a(X,Y)T - 2b(X,Y)S + c(X,Y)R = 

where T = ZyY> ^ = a n <^ 

D. Lie's Theorem on the Monge-Ampere equation, 



Lie [ 38,37] proved a theorem which in our notation reads as 

Theorem[Lie] . A Monge-Ampere equation admitting two 
1 1 1 2 2 2 general intermediate integrals I (a ,3 )=0 and I (a ,3 ) =0 

is transformable to the equation Z^-y^ ^y a Lie contact 
transformation = fi (to ̂ ^) whose four components are 
given by 

X = a 1, • ' Y = a 2, P = 3 1, Q = 32. (2.51) 

Two intermediate integrals in this theorem are 
related to an invariance group of the corresponding 
Monge-Ampere equation: 

Proposition 16. A Monge-Amp&re equation possessing two 
general intermediate integrals I1(a1,31)=0, i=l,2, admits 
two invariance group generators 

= a(co(:i))I1(a1,31)3z, i = l,2, (2.52) 

where a ^ = p = = [a2,3^]-

Proof. It is easy to check that the equation Z^Y^ admits 
1 2 generators (X,P)9Z and L£ = I (Y,Q)9Z with arbitrary 

1 2 
functions I and I . On the other hand, according to Lie's 
theorem above, there exists a Lie contact transformation 



mapping the Monge-Amp&re equation in question to ZXy=0. 
In view of (2.51) and Proposition 13, the inverse of this 
transformation maps L^ and L^ to (2.52). D 

The generators (2.52) appear to have different-..forms', from 
the generator (2.2). However, they contain (2.2) as a 

1 1 1 
special case. To see this we choose special forms I -I (a ), 
I 2=I 2(a 2) and let i=Z1+l2. Then from (2.52) we obtain 

I = a{I1(a1) + I 2(a 2)}9 z = a-U(a1,a2)8 . (2.53) 

Observing that U(X,Y)=11(X)+12(Y) is the general solution of 
the equation UXy=0> w e s e e that indeed the Monge-Amp&re 
equation in question admits a generator of the form (2.2) 

1 fl~) - 2 fll with X=a (eov J ) and Y=a (to ̂  J). From this result it is 
clear that we can find Lie's linearization mapping of 
a Monge-Amp£re equation to Z X Y=0, when it exists, by examining 
the invariance group of the equation . 

E. The equation (z ) az - z =0. - A xx YL 

A special Monge-Ampere equation of the form 

g(z )z - z = 0 , g:R+R, (2.54) xJ xx yy ' s ' K J 

arises in a variety of physical problems such as nonlinear 



vibrations (g(z )>0) [39], and irrotational transonic flows 
(g(z )=l+az ) [40]. In the following, we consider a class 
of equations of the form 

f = (z ) az - z = 0, a real, (2.55) v x^ xx yy ' ' v J 

and apply the foregoing analysis to examine a possible 
mapping to a linear equation other than the Legendre 
transformation. The invariance group of Eq.(2.55) depends 
upon the value of a. Assuming a generator to be of the form 
(2.24), i.e. £=0(x,y,z,p,q)9z, we find that the following 
cases occur: 

(1) a f 0, -2, -4: 

Jl1 = {-(a+4)xpq + azq - 2(a + l)yq2 - 4y/ p a + 1dp}9 z 

= { (a + 4)xp + (3a + 4)yq - az}8z, (2.56) 

= (z + %ayq)9z, = y9z, £ 5 = U(p,q)3z. 

(2) a = -2: l^, ^3' £4> a s above and I 6 = (2.57) 

(3) a = -4: Ĵ  = (xp -yq)3z>. = U(P^) 9 Z' 

£3 = {pl1(p"1-q,(p"1-q)y+z)}9z, (2.58) 

= {pl2(p"1+q,(p"1+q)y-z))9z. 



(4) a = 0: £ = z3 I = h(x,y)9 
1 z z z (2.59) 

£ 3 = I1(x+y,p+q)3z, £ 4 = I2(x-y,p-q)3z. 

In all cases, the function U(p,q) represents an arbitrary 
solution of the differential equation 

U - (p)aU = 0 (2.60) 
pp qq v J 

and the corresponding generators are related to the Legendre 
transformation discussed above. The function h(x,y) in 
the last case is an arbitrary solution of the differential 
equation h x x - h = 0 and the corresponding generator 
is the superposition generator of the equation z^-z =0. 
1 2 
I and I in the last two cases are arbitrary:functions 

1 2 
of their arguments and the equations I =0 and I =0 are the 
general intermediate integrals of the corresponding equations. 

We examine the case a=-4 in some detail. The equation 
is 

(z )"4z - z = 0. (2.61) 
v x^ xx yy 

Comparing (2.52) and the generators and I^ of (2.58), 

and using (2.51), relations [X,Z] = [Y,Z]=0 and (1. 8) , (2 . 5) , • 
we find the Lie contact transformation mapping (2.61) 
to to be 



X = p"1 -q, Y = p"1 + q, Z = -2p_1(z - px -qy), 

(2.62) 
P = -(p - 1 -q)y -z, Q = (p _ 1 + q)y - z. 

The inverse transformation is 

x = %Z - % (X + Y) (P + Q) , y = -(X + Y) - 1(P - Q) 

z = -(X+Y)_1(YP+XQ), p = 2(X+Y)_1, q = %(-X+Y). 
(2.63) 

If we introduce the general solution of U X y = 0 , U=F(X)+G(Y), 
where F and G are arbitrary functions, into (2.63) by Z=U, 
P=U and Q=Uy, then we obtain a parametric representation 

X 1 
of the general solution of the differential equation 

(u ) u - u = 0. 
x^ xx yy 

(2.64) 

Explicitly this is 

, x = %{F(X)+G(Y)} - %(X+Y){F'(X)+G'(Y)} 

/ y = -(X+Y) {F'(X)-G' (Y) } 

u = -(X+Y)"1{YFt(X)+XG'(Y)}, 

(2.65) 

where F' and G' denote derivatives. 
We note in passing that Eq.(2.61) is also trans-



formable by the Legendre transformation (2.46) to 

ZXX " 00 " \ Y = ( 2 - 6 6 ) 

and in turn Eq.(2.66) can be mapped into by a 
composition of the transformations (2.46) and (2.62). 
Explicitly, the transformation 

x = 2(X+Y)_1, y = %(-X+Y), z = (X+Y)"1Z 

- 4 
maps the equation - (x) z ^ = 0 to the equation 

Remark 2. Let Eq.(2.55) be written as 

D (z ) a + 1 - D (a+1)z = 0. (2.67) 
x\ xJ y y 

r\j 
If we introduce a potential z by 

( z x ) a + 1 = z y, (a+1)Zy = z x, (2.68) 

z satisfies the equation 

(z f z -z = 0, 3=-a(a+l)_1. (2.69) K yJ yy xx ' K  J  K J 

The * transformation (2.68) may be viewed as a Backlund 



+ ) 
transformation between Eq.(2.67) and Eq.(2.69). 
For a=-2, the transformation (2.68) becomes an auto-Backlund 
transformation: 

(z )"2Z - z = 0 , ( 2 - 6 8 ) , (2 ) ~ 2z = 0 . (2.70) 
v x^ xx yy K yJ yy xx K J 

For a=-4, Eq. (2.69)takes the form 

z - z = 0 (2.71) 
v Y yy xx K J 

and the transformation (2.68) together with the general 
solution (2.65) yields a general solution for Eq.(2.71). 
Seymour and Varley [41] obtained the general solution of 
Eq.(2.54) when g(z ) satisfies the equation 

X 

d 5 7 g = yg""" + vgT , y,v constants. 
X 

The case y=0 yields Eq.(2.61) and the case v=0 leads to Eq.(2.71) 

t) Consider a system (g =0}. If this 
k £ 

has the property that for any solution of a system 
{Fy(x,z,...,z)=0} the corresponding z,z,z,... satisfying m 1 2 
{g =0}solve a system (x,z,...,z)=0}, then the system 
v •• n u 

{g =0} is called a Backlund transformation between 
{F =0} 

and =0}. In particular, if F=F, then it is called 
an auto-Backlund transformation. For the discussion of 
Backlund transformations, see the article by Lamb in Ref.l. 



CHAPTER 3. 

NON-INVERTIBLE MAPPINGS 
OF NONLINEAR SYSTEMS TO LINEAR SYSTEMS. 

In the preceding chapter we have considered 
mappings which transform a system of nonlinear equations 
to a system of linear equations in a 1-1 manner. If we 
require only that a mapping transform a solution of some 
linear system to a solution of a given nonlinear system, 
the class of mappings widens and includes non-invertible 
(non 1-1) mappings. In the following we investigate 
these types of mappings and show that such mappings are 
frequently related to invariance groups. 

3.1 Examples of non-invertible mappings. 

We first consider Burgers' equation 

f = z + z z - z = 0. (3.1) 
xx x y v J 

This equation admits a five parameter point Lie group [42]. 
However, none of the generators is of the form (2.2), and 
hence by Theorem 2 there exists no 1-1 mapping to a linear 
equation. It is known that the Hopf-Cole transformation [43,44] 



~ ' -2'Zy 
x = X, v - Y, z = , (3.2) 

relates Eq.(3.1) to the heat equation Z^-Zy-O. Introducing 
the transformation C3.2) into Eq.(3.1), we find that 

- 2 
f ~~ 2Z ^^^XXX ~ X̂̂ X̂ X ^ ^ Y ^ ^ ^̂  

which factorizes as 

f = 2Z"2(ZDX - Z X)(Z X X - Z y) = 0. (3.4) 

It follows from (3.4) that the transformation (3.2) maps 
a solution of the heat equation to a solution of Burgers' 
equation. It is incorrect to say that the Hopf-Cole trans-
formation maps Burgers' equation to the heat equation. 
It is also clear that (3.2) is not a 1-1 mapping. Although 
this type of mapping is out of the scope of the discussion 
in the preceding chapter, this particular transformation 
is found to be related to a Lie group. One standard 
argument [ 45] to rationalize the Hopf-Cole transformation 
is to introduce z through z=z and, after integrating once, 

A 

one considers the equation 

Zxx + - z = 0. (3.5) 

One then sa-ys'"by inspection" that the transformation 



x = X, y = Y, z = 2£n(cZ), c constant, (3.6) 

maps Eq.(3.5) to the heat equation Z^-Z y=0 and from this 
follows the transformation (3.2). Eq.(3.5) corresponds to 
Example A in the previous chapter where we found the trans-
formation (3.6) with c=% by applying Theorem 2. 

The second example is a nonlinear diffusion equation 

f = D (z~2z ) - z =0. (3.7) 

This equation admits a four parameter point Lie group [ 6] 
with no generator of the form (2.2). As in the above 
we let z=z and instead of Eq.(3.7) we consider an 

X 
integrated form 

f = (z )~2z - z = 0. (3.8) 
v x^ xx y ^ J 

This equation admits [ 23] seven generators of point trans-
formations including the generator 

S. = U(z,y)zx9z, (3.9) 

involving an arbitrary solution of U z z-U =0. Comparing 
(3.9) with (2.2), we find a point transformation 



X = z , Y = y, Z = .x (3.10) 

which maps Eq.(3.8) to the heat equation AZ = Z^-Zy = 0 
From (3.10) it follows that z=z =(ZV) ^ and one can 

X A 
verify that the transformation 

x = Z, y = Y, z = (Z x) - 1 (3.11) 

transforms Eq.(3.7) to 

f = Zx 3C ZX DX " Z X X ) C Z X X " Z Y ) = (3.12) 

Hence the transformation (3.11) maps a solution of the 
heat equation to a solution of Eq.(3.7). 

3.2 A use of potential functions. 

The equations we have just considered are of the 
form 

D x g ( z x _ x , . . . ,zx,z) - D yz = 0. (3.13) 

For such an equation we can always introduce a potential 
z by 

2 = z x, g = z . (3.14) 

The equation governing z is 



^ zx...xx"--' zxx' z^ - Zy = C 3 - 1 5 ) 

As the examples in §3.1 show, Eq.(3.15) can admit a larger 
invariance group than the original equation ( .3.13). Although 
this is not always the case, it is well worth keeping in mind. 
The possibility of introducing a potential,.of course, is 
not limited only to equations of the form (3.13). To 
illustrate the importance of considering such a potential 
in more general circumstances, we take two examples. 

A. A nonlinear wave equation. We consider a system 

v - w = 0 
7 X (3.16) 

v = avw + bv + cw, 
y 

where a,b and c are constants. Equations of this form arise 
in physical problems. For instance an equation governing 
a fluid flow through a reacting medium I 46,45] 

w + v + c w = 0 
y y x (3.17) 

Vy = k^(a - w)v - k2w(b - v) 

and an equation describing a two wave interaction [47-49], 

v + C-.V = -avw - bv - cw y i x 
w + c„w = avw + bv + cw y 2 x 

(3.18) 



t) 
can be put in the form (3.16) by simple changes of variables. 
Rescaling the variables in (3-16) as 

r . v, cv v bw. , 7 (x,y,v,w) v- (-' {-' — ) , (3.19) F a a 
we obtain 

v - w = 0 (3.20a) 
y x ^ • J 

v y = v w + v + w . (3.20b) 

This equation admits only a trivial invariance point group 
generated by 

A- = 3 , £ 0 = 3 , £ _ = x3 -y3 - (v+l)3 + (w+1)3 . (3.21) 1 x' 2 y' 3 x 7 y K v ^ ^ w ^ J 

However, if we introduce a potential z by 

v = z , w = z , (3.22) x' y' y. J 

then the corresponding equation for z, i.e. 

z - z z - z - z = 0 (3.23) xy x y x y v J 

admits a larger point group with generators 

t) For Eq.(3.17), x+cx, y->x+y and for Eq.(3.18), x-^^x-c^y, 
y-*x - y. 



= 3 , £ 0 = 3 , 2, = x3 - yd - (x-y) 3 , 1 x' 2 y' 3 x J y v- 1J z ' 
(3.24) 

3 4 = 3 z > = U(x,y)eZ3z, 

where U(x,y) is an arbitrary solution of the differential 
equation 

uxy - U x - U y = 0. (3.25) 

Now applying Theorem 2 to we find a transformation 

X = x, Y = y , ^ Z = e"Z, (3.26) 

+ ) 
which maps Eq.(3.23) to J 

ZXY " Z x - Z y = 0. (3.27) 

The transformation connecting Eq.(3.27) to Eq.(3.20) is then 

Z z x = X, y = Y, v = - -JL t w = - I. (3.28) 

It is known that Eq.(3.17) and Eq.(3.18) admit trans-
formations of the form (3.28) [ 45 ,4.6 ,48 ,49 ] . 

t) When bc=0, the equation corresponding to Eq.(3.23) admits 
an additional generator and the equation can be mapped into 
zXY=o. 



To gain some insight as to why the introduction of 
the potential, (3.22), enlarges the invariance group let us 
express the generators (3.24) in terms of variables x,y,v 
and w. The generators and a r e unchanged. The first 
extension of takes the form 

*3 = X 3 x ' y 3 y " Cx-y)3? - + t V 1 ) 3 z y - C 3 ' 2 9 ) 

Clearly, this corresponds to (3.21). The first 
extension of Z^ is 

£4 = 3 Z + 0-9z + O O z , (3.30) 
x y 

and hence = 0 in the (x,y,v,w,) system. For the generator 
we have 

lr = UeZ3 + (U +Uz )eZ3 + (U +Uz )ez3 . (3.31) D z x x z x y y Zy 

Because of the appearance of z in the coefficients of 
3 S3 and 3 =3 , the first extended part of (3.31) can 

V Z-y W 
not be expressed in terms of 3c,y,v,w alone and consequently 

is not a point group generator in the (x,y,v,w) system 
as we should expect. Now suppose that we consider z,v and w 
as; functions of x and y and express z by a line integral as 

z = / zxdx + Zydy =. / vdx + wdy. (3.3 2) 



Then the first extended part of (3.31) can be written as 

i s = {(Ux+Uv)e x 
/vdx+wdy}3 + { ( u + U w ) e / v d x + w d y } 9 _ 

v y w (3.33) 

One can verify that Eq.(3.20) indeed admits the generator 
(3.33). We note that the generator (3.33) depends not only 
on x,y,v and w but also on the integral /vdx+wdy. 
In other words by introducing the potential, we have in effect 
introduced an "integral dependent" generator which is 
beyond the .framework . of the Lie-Backlund groups. The 
same can be said for the preceding two examples. For instance 
the generator £=U-(;x ,y).e 2 d • o t". I • q .(3.5) b e c o me s , via z = 
an integral dependent generator, 

of Burgers' equation (3.1). We will discuss some aspects 
of integral dependent generators in the following chapter. 

B. An equation of a fluid, flow. Sukharev [ 50] investigated 
the invariance point group of the equation 

£ = {(U -%Uz)e-is/2dx}9 
A z (3.34) 

a,3 real (3.35) 
w v aw' 6 = 0 X 

which describes a fluid flow through a long pipe-line. 



The system (3.35) was found to admit an extra generator when 
a =-1: 

w + v = 0 
y x -1 "3 n w - v w = 0 . 
X 

(3.36) 

The extra generator is 

A = gO,y)9 x + {w"33wg(w,y)}3v, (3.37) 

where g(w,y) is an arbitrary solution of a linear differential 
equation 

The property of the generator (3.37) was not studied. It is 
shown here that it is related with a linear equation 
associated with Eq.(3;36). > 

According to Proposition 3, we have 

I = (w g)3 + (v g - w 3 g)3 . (3.39) v x°J  w X s w6-^ V v J 

This, however, is not in the form of (2.11)"^ 'and consequently 

1 2 
f) With z =w, z =v, the operator (2.11) takes the form 
1=(U^cr^+U^u^)3w+(U^a^+U^a^)3y, where U1=U1(X(x,y),Y(x,y)), 
l^CX.Y) being an arbitrary solution of some linear system 
of differential equations. Clearly, (3.39)-is not of this form, 



there exists no 1-1 mapping of the system (3.36) to a 
linear system. Now, introducing a potential z by 

w = z x, v = -zy, (3.40) 

we write the second equation of (3.36), as 

(z ) 3z + (z ) _ 1 = 0 (3.41) v xJ  XX v Y 

The generator (3.39) can be written in terms of x,y and z as 

1 = ( D x U ) 8 w " ( D y U p V = ^ D x U ) 3 z x + ( D y U ) 9 z y ' ( 3 ' 4 2 ) 

where U=U(z ,y) is ••••def ined~ by 
X 

U(zx,y) = / * g(s,y)ds. (3.43) 

From (3.38) and (3.43), we obtain an equation for U: 

(zx)"'eOz ) 2U - 3 U = 0. (3.44) 
x y 

Noticing that (3.42) is the first extended part of the generator 

£ = U(zx,y)3z, (3.45) 

we expect that Eq.(3.41) admits the generator (3.45) subject 
to the _ condition (3.44). A direct calculation verifies 



this. We can now identify (3.45) with (2.2) obtaining 
X=z , Y=y. Going through the steps illustrated in the example 
of the Legendre transformation in the preceding chapter, 
we find a Lie contact transformation 

x - y - Y, z - Z -XZX, z x - X, z y Zy> 
(3.46) 

which transforms Eq; (3 . 41) * to a : linear equation • 

X ZXX " ZY = (3.47) 

Let U(X,Y) be a solution of the differential equation 

x;3Uxx - UY = 0. (3.48) 

Then, from the first three relations in (3.46), we obtain 
an implicit solution of Eq.(3.41): 

x = -UX(X,Y), y = Y, z = U(X,Y) - XUX(X,Y), (3.49) 

and the rest of (3.46) leads to 

w = X, v = -Uy(X,Y), (3.50) 

which together 
Eq. (3.36). To 

with (3.49) defines an implicit 
obtain an explicit solution, we 

solution of 
solve the 



first two equations of (3.49) with respect to X and Y, 
say, X=f(x,y) and Y=y, and introduce these into (3.50) 
to get 

w=f(x,y), v =-UY(f(x,y),y). (3.51) 

So far in this chapter, we only considered those 
equations which admit potential functions. The following 
equation does not admit a potential, but it is related 
to a linear equation. 

3.3 The Liouville equation. 

The Liouville equation is defined by 

z x y - e Z = 0. (3.52) 

One of the generators admitted by this equation is 

£ = {f(x)zx + g(y)zy + fx(x) + gy(y)}9Z, (3.53) 

where f(x) and g(y) are arbitrary functions and f and g 
x y 

are their derivatives. This is the only generator which 
depends on arbitrary functions. The generator (3.53) is not 



of the form (2.2) and hence there exists no 1-1 mapping 
of Eq.(3.52) to a linear equation. Let us consider the 
invariant solution z = u(x,y) associated with the -
generator (3.53). It is a solution of the system 

f(x)ux + g (y)Uy + fx(x) + gy(y) = 0 

u u - e = 0. 
xy 

(3.54) 

The solution is found to be 

u = £n 
2<j> il) 

O + M 
(3.55) 

-1 -1 where (J) (x) = Jf dx and ip (y) = Jg dy. This is the general 
solution of the Liouville equation [37]. Introducing. 
U=cp+ip, we write (3.55) as 

u = £nI2U U U 1 x y (3.56) 

Recognizing U as the general solution of the equation U x y=0, 
we conclude that the transformation 

z = ,£n|2Z Z Z 1 x y (3.57) 

maps a solution of Z =0 to a solution of z - e = 0. r xy xy 
One can also see this from the equality 



z - e Z = (Z_1D + Z _ 1 D - Z _ 2 Z - Z~2Z - 2Z_1)Z , xy v x x y y x xx y yy xy' 
(3.58) 

hence Z =0 z -e =0. 
xy xy 

3.4 A series of L-B generators and the linearization. 

Another sign which indicates a possible connection of 
a nonlinear equation to a linear equation is the admission 
of an infinite sequence of Lie-Backlund generators by the 
nonlinear equation. From Proposition 10 it is clear that 
a linear homogeneous system admitting a generator of the 
form L = (Z?vZy) 9 y V admits an infinite sequence of L-B !fl L 

generators. Consequently, if there exists a mapping connect-
ing this linear system to a given nonlinear system, then the 
mapping is likely to transform these generators into group 
generators of the nonlinear system. In Appendix 4, we 
investigate L-B generators of a nonlinear diffusion equation 
D { (zTz > - z. 

= 0 and it is _ shown that only for a=-2 
X X L 

the equation admits an infinite sequence of L-B generators. 
The analysis of these generators in turn leads to a trans-
formation similar to (3.11). The Hopf-Cole transformation 
of Burgers' equation can be obtained in a similar manner. 
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CHAPTER 4. 

A SUMMARY AND FUTURE PROBLEMS. 

4.1 A summary of the main reuslts. 

In the second chapter we proved that by examining 
the invariance group of a system of nonlinear differential 
equations one can determine definitively whether the system 
is transformable to a linear system by an invertible mapping. 
Moreover, the mapping can be constructed from a generator of 
the group. In all cases, we need only to consider group 
generators of the form (2.24) or (2.25) in which no higher 
coordinates than z appears , i . e.-. e v = 0 V (x , z , z) . 

In the third chapter we investigated the question 
of the existence of non-invertible mappings relating linear 
and nonlinear equations. It is a considerably more complex 
question than that of invertible mappings. The problem of 
finding such mappings is -equivalent to.finding a condition 
under which a given nonlinear equation admits a trans-
formation leading to a factorization such as (3.4), (3.12) 
and (3.58). No definitive condition has been found yet. 
However, as it has been demonstrated here, the group analysis 
supplemented by the introduction of a potential function 
and higher order Lie-Backlund generators are effective means 



to discover such non-invertible mappings. 

The examples investigated in this work 
cover all linearizable equations ̂ known to the 
author and two new equations, i.e,, Eq.C3.7) and ^ 
Eq.(3.36). With our method it should be particularly 
emphasized that even if one is unable to linearize given 
nonlinear differential equations, one is always left with 
their invariance groups. In turn these can be used for the 
construction of invariant solutions, conservation laws 
and other invariance properties of equations [6,7, 8]. 
Some such examples, are given in Appendices 5-7. 

4.2 A generalization of the concept of invariance. 

In the group analysis of differential equations, 
it is very important to find the largest invariance group 
associated with the equations. During the course of the 
present work a question concerning the possibility to enlarge 
an invariance grouphas arisen. Obviously, the meaning 
of "largest" changes according to the type of groups we 
consider. The group can be enlarged by considering 
higher order L-B groups or by introducing more general 
types of invariance. In the following we discuss some 
aspects of integral dependent invariance. We use notations 



u,ux,uxx,... in place of z » z x » z.xx » • • • • 

a. A hierarchic structure in L-B sequences. To present the 
basic idea clearly, we take a specific example, namely, 
Burgers' equation, 

u + uu - u = 0. (4.1) 
xx x t 

A generator of the L-B invariance group of Eq.(4.1), 

I = e(x,t,u,ux,...,ux>> x ) 3 u , (4.2) 

must satisfy the determining equation 

(Dx)2e + uDxe + uxe - Dte = o (4.3) 

for any u satisfying Eq.(4.1). Now we let u+u+ev, |e|«l, 
t) 

in Eq.(4.1). Then v satisfies- the linearized equation J 

v + uv + u v - v^ = 0. (4.4) 
xx x x t y. j 

In view of Eq.(4.3) and Eq.(4.4), it is clear that 0 is 

t) Here, the term "linearization" is used in a different 
sense than in the preceding chapters. 



a very special solution of the linearized equation (4.4): 
A solution expressed in.terms of a solution of the original 
equation (4.1). This observation leads us to examine the 
invariance group of - therlinearized equation (4.4) for.from 
such an invariance group we may be able to construct 
those particular solutions which satisfy Eq.(4.3). So, we 
consider the following problem: 

Find invariance groups of the differential equation 
v +uv + u v - v^ = 0 with unknown v and an arbitrary xx x x t 
solution u(x,t) of the equation u + uu - u = 0. 

XX X X 

Since Eq.(4.4) is linear in v, it is sufficient, according 
to Theorem 1, to consider a linear generator 

where B is some linear operator. Once B is found, we can 
find, using Proposition 12 in §1.7, an infinite sequence of 
solutions of Eq.(4.4) in the form 

i = (Bv)3 = 6 3 (4.5 

v ( n )(x,t) ( B) v (x , t) , n=l, 2 , 3 , . n (4.6 

where v(x,t) is any solution of Eq.(4.4). In particular, 
if we choose as v one of 0 satisfying- Eq.(4.3), we obtain 
a sequence of functions 



0 ( n ) (x,t,u,ux,uxx, . . .) = (B)n6(x,t,u,ux, . . .) , (4.7) 

which solve Eq.(4.4), and hence satisfy Eq.(4.3). In other . 
words, once we find a generator £ =(#v)3^ of the linearized 
equation, , we can construct a sequence of L-B generators 

£ = {(3)ne}.3u, n=l, 2,3,..., (4.8) 

for the original nonlinear equation from any known 
generator £=03^. Obviously, this statement holds for any 
system of nonlinear equations. We apply this result to 
analyze L-B invariance groups of Eq.(4.1). 

Some years ago I found that Burgers' equation admitted 
hierarchies of L-B generators. The question is whether these 
have the structure of the form (4.8). A simple calculation 
shows that the only point group generator, i.e. 

£ = (Sv)3v = {bX(x,t)vx + bt(x,t)vt + b(x,t)v}3y 

(4.9) 
admitted by Eq.(4.4) is £=v3v, i.e. 5=1. Thus, as long 
as £ is restricted to the form (4.9), there is no sequence of 
L-B generators of the form (4.8). Olver found in his study 
[18] of symmetries of time evolution equations that Burgers' 
equation admits an infinite sequence of L-B generators 
of the form 



£ = {(£)n u x}9 u, n=l, 2 , 3 , . . . 
with 

D = D + hu + hu D"1, 
X X X ' 

where D ^ denotes an integral operator with the property 
X 

D D - 1 = D - 1 D =1. Comparing (4.10) with (4.8), we let s =D 
X X X X 
and consider an operator corresponding to (4.5): 

69 - (5v)3 = (v + %uv + hu D _ 1v)9 . (4.12) v v 7 v v x x x ^ v 

It is easy to check that Eq.(4.4) indeed admits (4.12). 
The sequence (4.,10) is one of the- hierarchies- of generators 
I found previously. This suggests the existence of other 
linear operators B, An important aspect of the generator 
(4.12) is that e depends not only on x,t (through u), v 
and v but also on the integral D ^v. This leads us to 

X X 
consider a generalization of (4.9) by including a D term: 

£ = (Bv)9v= {bX(x,t)vx + bt(x,t)vt + b(x,t)v + b"x(x,t)Dx1v}9v 

(4.13) 
The ' b's are functions of x and t. For this type of 
integral dependent generator , we can adapt Lie's algorithm 
for finding generators. With a straightforward calculation 
we find that Eq.(4.4) admits, in addition to (4.12) and the 
trivial £=v9 , -: the generators with-following B's: 

(4.10) 

(4.11) 



Bf = D t + (%ux + %u2) + hutD x t X 
-1 

5" = tJ5' + %xD + %xu + %(u+xu )D _ 1 
X (4.14a-c) 

to • + '-iX + -2 D -1 
I 
X 

where in 5"', D is the operator (4.11). Using any o£ (4.14) 
we can produce sequences of L-B generators of the form (4.10). 
More generally, recalling Proposition 10, we see that 
operators of the form 

where f(•,•,•,•) is an arbitrary polynomial of its arguments 
are all invariance group generators of Burgers' equation 
for any 0 satisfying the determining equation (4.3), for 
example 0=u . They include all hierarchies mentioned.above. 

b. On integral dependent generators. The example we have 
just seen and the example in §3.2 lead us to generalize 
the concept of invariance by allowing generators to depend 
not only on derivatives but also on integrated quantities. 
A fundamental difficulty in considering integral dependent 
generators is that there are too many possibilities. 
Consider a time evolution equation 

u (4.15) 



G( U' U X' U X X'••'•' u x... x) " u t = 0 C4.16D 

with invariance group generator £=09^. We want to allow 
to depend on integrals such as 

D _ 1 u = / u dx, ( D _ 1 ) 2 U = // U dxdx, (4.17) 
X X 

A problem is that these are not the only possible integrals 
involving u. There is no a priori reason not to include 
integrals such as 

D x 1(u) 2, D x 1(u x(D x 1u)), etc. . (4.18) 

One way to get around this problem is again to study the 
linearized equation of Eq.(4.16): 

G v + G v: + . . . + G v - v = 0. (4.19) u u x u x...x t J 
X X • • • X 

Let be an invariance group generator of (4.19). 
The merit of considering Eq.(4.19) instead of Eq.(4.16) is 
that since Eq.(4.19) is a linear equation in v, we can 
expect that 0 of £ depends linearly on v, i.e. 0=£v, 
for some integro-differential linear operator B . The form 
of B, however, is still quite arbitrary. For instance, 
Bv could contain terms such as 



D^Cfv), D ^ g D ' V v ) ) , ... (4.20) 

where £ and g are functions of x,t. We can avoid considering 
such complex expressions if we observe that quantities such 
as (4.20) can be formally represented by a series of the form 

{ I b ( k ) ( D ) k + I b ( - k ) ( D " 1 ) k } v = 5V, (4.21) 
k=0 x k=l 

where b^-' and b̂ - are functions of x,t. For example, 
by repeated integration by parts, we have for the first 
expression of (4.20), 

D x 1(fv) = Jfvdx = fD^v - (Dxf)(Dx1)2v + ((Dx)2f) (D; 1)^ + .... 

(4.22) 
For the second expression of (4.20), we apply this procedure 
to each integration operator D ^. Thus, we should start with 
a generator t= (Bv)3v with Bv of the form (4.21) rather 
than quantities such as (4.20). Once such an operator B is 
found, we can obtain a sequence of invariance group generators 
for the original equation (4.16) using the formula (4.8). 
Although the approach described here is of great generality, 
it will be of little practical value unless a ̂ closed form 
of"the infinite sum in (4.21)-is found. Such a closed expression 
may be found by examining the first few terms in the sum. 

In applying this analysis to the KdV equation 
u + uu + u = 0, a variety of B'S of the form (4.21) 



has been found. The only B with a closed form is 

B = ( D x ) 2 + 1 u + 1 " A 1 - ( 4 - 2 3 ) 

This particular operator arose in the study of the inverse 
scattering method [51] to solve nonlinear time evolution 
equations. It was also obtained by Olver in connection 
with invariances of the KdV equation. We use (4.21) with 
(4.23) to obtain invariance group generators of the 
KdV equation. The equation admits point group generators 
£=03u with the following 9: 

(a) ' (b) _ (c) ' , „ (d) . 1 2 
u x > 9 = _ u t ' 0 = t u x " ' ; " t ut" 3 X Ux" 3 U' 

(4.24) 
Using these 0's in (4.21) we obtain sequences of invariance 
group generators. It turns out that there are only two 
sequences instead of four. With 0 = ( B ) n 0 ^ ^ and.notations 
u =un, u =u9,..., one sequence is: 
X -L X X Z 

d(0) Q (a) D(l) A Q(b) 
0V  J  _ .Q «., ./_ u J  = Uj + uu^ = 0V J , 

(3) 5 10 5 2 = u r + T u u 7 + -=- U..U- + u u , . . . . , 5 3 3 3 1 2 6 x 

and the other is 

e C ° ) = 0 ( c ) = t i a 1 - l , 0 ( 1 ) = t ( u 3 + u u 1 ) - | x U ; L - | u = 0 ( d ; ) , 



(4.26) 

1 1 

Since the first sequence involves no integral quantity, 
it corresponds to L-B invariance groups and was first 
found in connection with conservation laws associated with 
the KdV equation (Appendix 5). The second sequence is new and 
involves integrals.:- -.... ' 

of a nonlinear time evolution equation. The present analysis 
shows that D is related with a generalized invariance of the 
corresponding linearized equation. Clearly, our formulation 
is not restricted to time evolution equations and can lead 
to more general invariance groups than L-B groups. There 
should be further investigations of these generalized 
symmetries and their uses. 

Olver was interested in the operator D with the 
property that £=(Z?n^6)9 is an L-B invariance group generator u 
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APPENDIX 1,.. PROOF OF THEOREM 3.. , 

Proof. For brevity we write 0V(X,Z,Z,...,Z) = 0V(X,Z). 1 m 
Suppose the system ^ vZ y= 0\admits L = '0V(X,Z)9 v . 1'hcn, . 

y z, 
since the system is linear homogeneous, L = 0 V ( X , e Z + U ) i s 
also a generator for an arbitrary solution of 
We write its power series expansion in e as 

0v(X,eZ+U)3zV = h v ( 0 ; ) 9 z v + e h v ^ h z V + e 2 h v ( 2 ) 9 z V + ... . 
(Al) 

Since e is arbitrary, each term must be a generator of an 
invariance group. In particular, the 0(e) term has the 
form (1.43). 

Conversely, suppose that the system admit-
(1.43). The function 0v(X,Z) yielding (1.44) is not unique, 
but if we restrict to 0V(X,Z) which depends on X and only 
on those Z's which appear in the coefficients of 9zv i-n 

(1.43), then 0 V is determined within an arbitrary additive 
function <}>V(X). We let Z->-eZ in such 0V(X,Z) and expand 
0V(X,eZ) in the series in 

©V(X,eZ) = h v( 0) - e h v ( 1 ) + e 2 h v ( 2 ) + ... , (A2) 

where h^^ = 0V(X,O) which is a function of X alone. We may 
set h v^^=0 since we have an arbitrary function cf>V(X) at 



our disposal. With such a choice of (|)V(X), the operator 
0V(X,Z)3zV becomes an invariance group generator. To see 
this we let U+Z in (1.43), then let Z+eZ. The resulting 
operator is still an invariance group generator of the same 
system. We write its power series expansion in e as 

L = e g v ( 1 ) 8 z V + £ 2 g V ( 2 ) 3 z v + ... . (A3) 

By the construction of 0v(X,Z) above, we have 
Since every i n (A3) is an invariance group 
generator of we see that the operator 

0V(X,Z)3 v = h v C 1 ) 3 v + h v ( 2 ; ) 3 v + ... 

is an invariance group generator of 4VZ^=0. 



APPENDIX 2. PROOFS OF PROPOSITIONS 9-12. 

1. Proof of Proposition 9. From Proposition 2, we have 
LBV=BVL and LBV=BVL. Then, 
y y y y 
[L,L] = (LB Z - LB Z )8 7 V = (B VLZ M-B VLZ M)8 7 V ' y y ^ Z v v y y ^ Z v 

(B VB KZ y-B VB KZ y)8 7 V = (CB,B]VZy)3vV. v K y K y ^ Z v y J ZV 

y 
we obtain [B,B]=-B. • 
By hypothesis, we have [L,L]=L=(S^ Z M)8 z V. Comparing these, 

2. Proof of Proposition 10. It is sufficient to prove 
for the explicit form 4vzy=0 of f =0. By Proposition 2 and 
the invariance condition (1.36), we have 

4 VZ y=0 - L^ VZ y = AVB KZy = 4 VZ' y = 0, y y k y y 

i4VZ1 y = 0 - LAVZ'y = LL4VZy = 0, y y y 

i.e., . 4 vZ y=0 + LL4vZy=0. • y y 



3. Proof of Proposition 11. As in the proof of Proposition 
10, we have L4 vZ y=4 vS yZ K=0. We also have B v4 yZ K=0 since y y K y K 
4yZK=0. From these two we obtain (4vSy - Bv^y)Zl< = 0 K y K y K 
provided AuZK=0, i.e. U,B]Z = 0 provided AZ=0. • 

K 

4. Proof of Proposition 1-2. .We have LAZ=4LZ=-4VSyZX = 0 
c - li K 

for any values of X,Z,Z,... satisfying the equation .̂Z = 0. 
Obviously, Z=U(X), Z=U(X), ..., satisfy this equation and 
consequently, 4vByUK(X)=0, i.e. 4BU(X)=0. Repeating the y K 
same argument, we find A(S)mU(X)=0. • 



APPENDIX 3. A DETERMINATION OF AN INVARIANCE GROUP OF 
THE EQUATION (z ) 2- 4z z = 0. 

^ ^ xyJ x y 

To illustrate the process of determining an invariance 
+ 

group of a differential equation, we consider the equation 

f = (zv ) 2 " 4z z = 0. (1) 
^ xy' x y 

To simplify notations in the following computation, we let 

ZX=P, zy=q, z x x = r ' z x y = s a n d zyy = t" T h e n > Eq-C1) becomes 

s 2 - 4pq = 0. (2) 

We consider a generator of the form 

1 = g(x,y,z,p,q)3z, (3) 

By operating its second extended form on (2), we get 

£(s2-4pq) = 2sD D g - 4(D g)q - 4p(D g) 
A y x y 

f This equation is' taken from Forsyth [373 page 198 , 



2 {§xy s + Sxz^5 + Sxp s 2 + §xq s t 

+g ZyP s + SzzP^5 +-SzpP s 2 + SzqPst + §z s 2 

2 +g rs + g qrs + g rs + g r s t + g s s Py &pz H 6pp &pq 5p x 2 2 3 2 +g s + g qs + g s +g s t + g ss qy &qz H qp qq q y 

- 2gyP - 2gzpq - 2gpps - 2gqpt 
- 2gxq - 2gzpq - 2gpqr - 2gaqs}. (4) 

The invariance condition (1.36) demands that (5) vanish 
under the condition (1.34) which^in.this ckse takes the form 

f = s 2 - 4pq = 0, 
D f = 2ss - 4rq - 4ps = 0, 
.X. -X 
D f = 2ss - 4sq - 4pt = 0, 
y y 

We only need the first three equations since (4) involves 
coordinates only upto:-the third order. " We use these three 
equations to eliminate the coordinates s,sx,sy from (4). 
The resulting quantity must vanish irrespective of values 
of x,y,z,p5Jq,r and t: rearranging terms, 

0 = rtg + r(g +g q + 2g p 2q 2) + t(g +g p + 2'g p 2q 2) PR PY pzH ppF M sqx 5qz F &qq F M 

+ 2 g x y p 2 q 2 + 2gxzq(pq)2 + 4gxppq 

+ ZgzyPtpq)*2 + 2g z z (pq)̂ 2" + 4g z pp 2q 

2 3 

+ 4g q yP cl + 4g q zP (l + 8Sqp(^Pcl^ " 2§yP " 2gx q' ^ 



We note that r and t appear only in the first three terms 
of (5). Thus their coefficients must vanish: 

1, 
g = 0, g + g a + 2g (pa)2 = 0, 

% g + g p + 2g (pq) = 0 . 

It is easy to find that the most general solution to these 
equations is 

g = a(x)p + b(y)q + e(x,y,z), (6) 

where a,b and e are arbitrary functions of their arguments, 
Introducting (6) into the rest of (5), we get 

V  V-0 = eXyCpq)2 + e x zq(pq) 2 + 2axpq 

3 
^ J + e y zp(pq) 2 + ezz(pq) + 2bypq 

(byq + ey)p - (axp + ex)q. 

Since a,b and e do not involve p and q, coefficients of 
different powers of p^q11 must vanish. The resulting 
equations yield 

e = az + g, a, £3 arbitrary constants. 



Therefore, 

g = a(x)p + b(y)q + az + 6. 

The final form of the generator is 

I = {a (x)p + b(y)q + az + 3)9Z, (7) 

where a(x) and b(y) are arbitrary functions and a and 3 
are arbitrary constants. We note the resemblance between 
the generator (7) and the generator (3.35) of the Liouville 
equation. As in the case of the Liouville equation, the 
invariant solution associated with (7) will lead to 
the general solution of Eq.(l). 



On the remarkable nonlinear diffusion equation 
(d/dx)[a(u  + b) 2(du/dx)]  - (du/dt)  = 0 
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We study the invariance properties (in the sense of  Lie-Backlund groups) of  the nonlinear 
diffusion  equation (<?/dx)[C (u)(du  /dx)]  — (du/dt)  = 0. We show that an infinite  number of  one-
parameter Lie-Backlund groups are admitted ifand  only if  theconductivityC(u) = a(u  + b )'2. In 
this special case a one-to-one transformation  maps such an equation into the linear diffusion 
equation with constant conductivity, (d  2u/dx 1) — (du/dt)  = 0. We show some interesting 
properties of  this mapping for  the solution of  boundary value problems. 

1. INTRODUCTION 
In recent years nonlinear diffusion  processes described 

by the partial differential  equation (p.d.e) 

O ) du 
dt 

(1) J_ 
dx  I~  dx 

with a variable conductivity C(u), have appeared in prob-
lems related to plasma and solid state physics.1,2 Interest in 
such processes has long occurred in other fields  such as met-
allurgy and polymer science.3"5 

Some exact solutions are well known for  such equa-
tions.6 These can be shown to be included in the class of  all 
similarity solutions to such equations obtained from  invari-
ance under a Lie group of  point transformations. 7 8 

Recently, it has been shown that differential  equations 
can be invariant under continuous group transformations 
beyond point or contact transformation  Lie groups which 
act on a finite  dimensional space.' These new continuous 
group transformations  act on an infinite  dimensional space. 
Such infinite  dimensional contact transformations  have been 
called Noether transformations 10 or Lie-Backlund (LB) 
transformations' 1 (Noether mentioned the possibility of 
such transformations  in her celebrated paper on conserva-
tion laws'3). Well known nonlinear partial differential  equa-
tions admitting LB transformations  include the Korteweg-
deVries,13 u sine-Gordon,10 " cubic Schrodinger,14 and 
Burgers' equations.16 All of  these known examples admit an 
infinite  number of  one-parameter LB transformations. 
Moreover, many of  their important properties (existence of 
an infinite  number of  conservation laws,13 M existence of  so-
litons,14 and existence17 of  Backlund transformations 18) are 
related to their invariance under LB transformations. 

Any linear differential  equation which admits a nontri-
vial one-parameter point Lie group is invariant under an 
infinite  number of  one-parameter LB transformations 
through superposition. Moreover, every known nonlinear 
p.d.e., invariant under LB transformations,  can be associat-
ed with some corresponding linear p.d.e. 

With the above views in mind we study the invariance 
properties of  Eq. (1). Previously,7 1 9 it had been shown that 
Eq. (1) is invariant under 

a) a three-parameter point Lie group for  arbitrary C  (u), 
b) a four-parameter  point Lie group if 

C(u) = a-(u + A)v, 
c) a five-parameter  point Lie group if  v = — j. 

[It is well known that a six-parameter point Lie group leaves 
invariant Eq. (1) in the case C(u)  = const.20] 

In the present work, we show that Eq. (1)  is invariant 
under  LB transformations  ifand  only if  the conductivity  is of 
the form 

C( U ) = f l-(U + i )-2 , (2) 

i.e., if  Eg. (I)  is of  the form 

du 
dt 

= 0 . (3) 

Furthermore,  this  equation admits  an infinite  number of  LB 
transformations. 

In  this  special  case, there exists  a one-to-one transforma-
tion which mapsEq. (3) into  the linear  diffusion  equation with 
constant  conductivity,  namely,  the heat equation 

cFu 
dx-  ' 

** =0. 
dt 

(4) 

In the course of  this paper, we find  an operator connect-
ing two infinitesimal  LB transformations  leaving Eq. (3) in-
variant. We prove that this operator is a recursion operator 
which generates an infinite  sequence of  one-parameter in-
finitesimal  LB transformations  leaving Eq. (3) invariant. 
Moreover, we show that no other LB transformation  leaves 
Eq. (3) invariant. 

By examining the linearization of  Eq. (3), we are led to 
construct the transformation  mapping Eq. (3) into Eq. (4). It 
is shown that this transformation  maps the recursion opera-
tor of  Eq. (3) into the spatial translation operator of  Eq. (4), 
giving a simple interpretation of  the transformation  relating 
Eq. (3) to Eq. (4). We use this transformation  to connect 
boundary value problems of  Eq. (3) to those of  Eq. (4). 

We construct a new similarity solution of  Eq. (3) corre-
sponding to invariance under LB transformations. 

1019 J. Math. Phys. 21(5), May 1980 0022-2488/80/051019-05S01.00 (T 1980 American Institute of Physics 



2. DERIVATION OF THE CLASS OF NONLINEAR 
DIFFUSION EQUATIONS INVARIANT UNDER LB 
TRANSFORMATIONS 

LB transformations  include Lie groups of  point trans-
formations  and finite  dimensional contact transforma-
tions. 1 1 The algorithm for  calculating infinitesimal  LB trans-
formations  leaving differential  equations invariant is 
essentially the same as Lie's method8 for  calculating infini-
tesimal point groups. 

Consider the most general one-parameter infinitesimal 
LB transformation  that can leave invariant a time-evolution 
equation,21 namely; 

u* = u + eU(x,t,u,u,  a„) + 0(e*), 

lead to determining equations 
Cl/„.„= 0, 

t* = t, 

where u, = ffu/dx',  i = 1,2,-. Let du/dt  = u,, du,/dt 
= u„, au/du  = U 0, dU/du,  = {/„  d 2U/du,du t = U iJt 

C • = dC  /du,  and C " = d 2C /du 2. 
In the above notation Eq. (1) becomes 
u, =C'(u,y  + Cu 2. (6) 

Under Eqs. (5) the derivatives of  u appearing in Eq. (6) trans-
form  as follows: 

(«,)* = «, +eU , + 0(e2), 
(u,)'  = u, + eU'  + 0{  e2), 

(u 2)* = u2 + eU"  + 0(e 2), 

where 
au (7) 

(9) 

(10) "C'U„u,  = 2C X • 
;•= o 

Solving Eqs. (9) and (10) we find  that 
l/ = a ( C ) " / 2 , X + £(u,u„,..,u„_, ), (11) 

where f i s  undetermined, and a = arbitrary constant. 
The substitution of  Eq. (11) into the remaining terms of 

Eq. (8) leads to a polynomial form  in u„ whose coefficients  of 
(u„ Y and u„, respectively, lead to determining equations 
CE n _,.„_, = 0 , (12) 

(5) 

+ (1 - n)C'£„_, u, - —n(n  +3)C' (C) ,1/1 )"u2 
4 

at i 

U* = D,U=^+ ±UiUi +,, 
dx i E o 

rtt2 [To dx 

+ X + .">+! + S U'"<*2-
i.j=0 ( = 0 

/), and Z), are total derivative operators with respect to I and 
x, respectively. 

The transformation  (5) is said to leave Eq. (6) invariant 
if  and only if  for  every solution u = 6 (x,t)  of  Eq. (6) 

U ' = C " U ( u , y + 2C'tf*tt,  + C , t / u 2 + C£/". (8) 
The fact  that U  must satisfy  Eq. (8) for  any solution of  Eq. (6) 
imposes severe restrictions on V.  Using Eq. (6) the deriva-
tives of  u, with respect to /, i.e., u„, can be eliminated in Eq. 
(8). Since the invariance condition (8) must hold for  every 
solution of  Eq. (6), Eq. (8) becomes a polynomial form  in 
u„ + , and u„ + 2 . As a result the coefficients  of  each term in 
this form  must vanish. This leads us to the determining equa-
tions for  the infinitesimal  LB transformations  (S). 

If  in Eq. (5), n<2, we obtain the Lie group of  point 
transformations  leaving Eq. (6) invariant. Without loss of 
generality we assume n>3 in Eq. (5). It turns out that for 
n> 3, U  is independent ofx  and I. 

In our polynomial form,  the coefficient  of  u„ + 2 vanish-
es and (he coefficients  of  (i/„ 4 , )' and u„ t l , respectively, 

+ a [ j n 2 ( C ' ) 2 ( C ) n / 2 1 " - jn(n+2)C' (C)" / 2 >"](u , ) 2 = 0. 
(13) 

Solving Eqs. (12) and (13) we find  that 
U=a  [ ( C ) ( , / 2 ) X + ln(n  +3)C'  (C)" /2, n-' u,u„_, ] 

+ F(u)u„_,  +G(u,u  u „ _ 2 ) , (14) 

where Fand  G are undetermined and, more importantly, for 
a ^ 0 it is necessary that the conductivity C(u)  satisfy  the 
differential  equation 

2CC' = 3(C')2- (15) 
Hence, it is necessary that 

C (u) — a-(u + b ) -2 , (16) 
where a and b are arbitrary constants for  the invariance of 
Eq. (1) under LB transformations.  Without loss of  generality 
we can set a = 1, b = 0, i.e., from  now on we consider the 
equivalent p.d.e. 

= J-( u-'*!L) 
at  dx\  dx) 

(17) 

This particular equation has been considered as a model 
equation of  diffusion  in high-polymeric systems.4 5 

3. CONSTRUCTION OF A RECURSION OPERATOR; AN 
INFINITE SEQUENCE OF INVARIANT LB 
TRANSFORMATIONS OF EQ. (17) 

For n = 3 it is easy to solve the rest of  the determining 
equations and show that the only LB transformation  leaving 
Eq. (17) invariant is 

{/= U 1'' = u'*u3 ~9u~4u,u2 +12«'5(U|)\ (18) 
For n — 4 we obtain two linearly independent LB trans-

formations  U' 1' and 
V' 2' = u-*u< -14u-5u,u, -10u"5(u,)2 

+95u-6(«,)2u2-90u-7(u,)4. (19) 
The existence of  U  " ' and V' 2', combined with the work 

of  Olver,'6 motivates us to seek a linear recursion operator 
& leading to infinitesimal  LB transformations  C"k 1 defined 
as follows: 
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(3)kB=U {k\ k = 1,2,—. (20) 

The character of \B,U"\U' 2'\ leads one to consider for 3 
the form 

& pD, + q + KD x)\ (21) 
where D„ is a total derivative operator, (D X)-(D X)~'  is the 
identity operator, and J p,q,r]  are functions  of\u,u„u2\. 
Then one can show that 2B — U' 1' if  and only if 

p = u\ •*•" (22) 
and 
q[u 2u2 —2u"'(u ,)2] + ru"2u, 

= -3u-4uiU 2+6U- 5(U i)3. (23) • 
Furthermore, (3 )2B=U' 2' if  and only if 

q=  —2u"2u„ (24) 
and 

r = -u-2u2+2u-3(«,)2. (25) 
A more concise expression for  the operator is 

& =(Dxf.(u {).{DxyK  (26) 
We now show that the constructed operator 3 is in-

deed a recursion operator. Let the operator 

A = £ B,(DJ 
i = 0 

= u\Dx)2 -4u-3u, D, +6!/""(u,)2 -2u}u2 
= (D,)W 2, (27) 

where B, = (d/du,)B.  Olver's work16 shows that 3> is a re-
cursion operator for  Eq. (17) if  and only if  the commutator 

[A-D,,3] = 0, (28) 
for  any solution u = 0(x,t) of  Eq. (17). Moreover, if 3 is a 
recursion operator, then the sequence | U  '" ,£/ '2 ',••• j given by 
Eq. (20) is an infinite  sequence of  LB transformations  leav-
ing Eq. (17) invariant. It is straightforward  to show that A 
and 3 satisfy  Eq. (28). 

The nature of  U' 11 and the form  of  a general V  given by 
Eq. (11) show that for  n = / +2, there are at most &</ lin-
early independent LB transformations  leaving Eq. (17) in-
variant since U must depend uniquely on u, + ! . 

The proof  that 3 is a recursion operator demonstrates 
that k = 1 and hence we have found  all possible LB transfor-
mations leaving Eq. (17) invariant, namely, | V tl'), 
k= 1,2,-. 

4. A MAPPING TO THE LINEAR DIFFUSION EQUATION 

As far  as we know all p.d.e.'s invariant under LB trans-
formations  have a recursion operator and, moreover, can be 
related to linear, p.d.e.'s. This suggests the possibility of  seek-
ing a transformation  relating Eq. (17) to a linear equation. 
This leads us to consider the linearization of  Eq. (17), 
namely, 

(A  -<9/<?r)/=0, (29) 
where/4 is given by Eq.(27)foranysolutioni/  = 8 )ofEq. 
(17). Introducing a new variable u by 

/= f-(uS), 
dx 

we obtain from  Eq. (29) the equation 

l\  dx)  dx  dt] 
and if  we set 

d_ 
dx dx 

(31) 

(32) 
J_ 
dx' 

(33) 

3 d .3 
— = u u. 
dt  dt 

Eq. (31) becomes 
Hi =0 

dx 2 dT 
Since/= 0 is always a solution of  Eq. (29), the relation (30) 
suggests that we set uu — constant. This and Eqs. (32) lead 
us to the transformation 

dx  — u dx  + u"2u, dt, 
dt  = dt,  (34) 

relating solutions u = 8 (x,t)  of  Eq. (17) to solutions 
u = 6 (x,7)ofEq.  (33). Choosing a fixed  point (x 0,l0), we have 
the following  integrated form  of  Eqs. (34): 

(35) 

It is easy to check that Eqs. (35) indeed transform  Eq. 
(17) to Eq. (33), and define  a map relating the solutions of 
Eqs. (17) and (33). Moreover, if  u > 0 (u > 0), Eqs. (35) define 
a one-to-one map since dx  /dx  > 0 for  each fixed  t.22 

We now show that under the transformation  (34) the 
recursion operator 3 of  Eq. (17) is transformed  into the 
recursion operator 

3 — Ds, (36) 
leading to an infinite  sequence of  LB transformations  of  the 
heat equation (33). The proof  is as follows: 

An LB transformation  of  the form  (5) induces an LB 
transformation  on the variables \x,t,u\  through Eqs. (34), 
namely, 

x* =x + ei+0(  e2), 

r* = 7, (37) 
u* = u + etj  + O (r), 

where g and rj are defined  by 

d£  = s/  dx  + 33 dT, 

.</ = uV,  & =u;U+(u)\U*-2U), 
V  — ~(M?V. 

(38) 

It turns out that for  any solution u = §(x,T) of  Eq. (33), ,c/ 
and satisfy  the integrability condition D-sJ  = D, .-:'<, so 
that dg is an exact differential.  The integrated form  of;  is 



i= - {D,Y'[rj<u)-']+c,  (39) 
where c is an arbitrary constant. Since U" + "  = 3> U"\ 
where .£/' is given by Eq. (26), for  c —  0 we get a correspond-
ing infinite  sequence of  invariant infinitesimal  LB transfor-
mations j t/"1) for  Eq. (33), namely, 

Uin = f - u-,i', 
where 

V ' = - ( i 7 ) 2 U ° \ (40) 

and u7 = (d/dx  )'u. From Eqs. (40) it is simple to show that 
=DiU"\  (41) 

leading to Eq. (36). Moreover, 
U< n = D;(ug')  = (D iyu-2, ' = 1,2,-. (42) 

D, corrsponds to the obvious invariance of  Eq. (33) 
under translations in x. 

It is interesting to note that the recursion operator for 
the invariant LB transformations  of  Burgers' equation is also 
mapped into the space translation operator under the Hopf-
Cole transformation  relating Burgers' equation to the heat 
equation. Moreover, we can obtain the Hopf-Cole  transfor-
mation by examining the linearization equation (29) corre-
sponding to Burgers' equation. 

5. PROPERTIES OF SOLUTIONS OF EQ. (17) FROM THE 
MAPPING 

We now consider the use of  Eqs. (34) in constructing 
solutions to Eq. (17). It is easy to show that Eqs. (34) are 
equivalent to 

dx = u dx + u, dt, 
dt = d7,  (43) 

« = («)-•, 

with an integrated form 

:= J_  udx + (uT h., dt\ 
' = ' - h , (44) 

« = («)-', 
for  some fixed  point (x 0,t0). In the following,  we assume u > 0 
(u> 0). Without loss of  generality, we set = ?„ = 0. 

A. Explicit formula connecting solutions; examples 

First we consider the problem of  giving a more explicit 
formula  for  relating solutions of  Eq. (33) to those of  Eq. (17). 
Let a = 0(x,7)  be a solution of  Eq. (33) on the domain 7> 0, 
xe(x,^2). By Eqs. (43), 
x = X(x,7)  = pi*-,f) d?  + £ = o '.(45) 
This uniquely determines the function  A""1, x — X~'(x,t), 
where t = t. Now Eqs. (44) lead to the following  solution of 
Eq. (17): 

u = 0(x,r)= ̂ —-! , 
0(X'(x,t),t) 

on the domain Jt€(*,(/), x2(t)),  / > 0, where (46) 
xl(t)  = X(x„tU 1(.t)  = X(x 2,t). 

In a similar manner, Eqs. (35) map a solution u = 6 (x,t)  of 
Eq. (17) to 

u = 8(xj) = — _ , ' - -

on the domain JPe(Jc,(/ )Jc2(t)), t > 0 where 
x,(n = X(x„7), x2(7) = X(x,,7), 
x = X(x,t)  = f  0(x\t  )dx' 

Jo 
d 

1 (47) 

dx 
(0(x,!'))-'  df, (48) 

with the corresponding definition  of  the function 
X\x,7) = x. 

Example  1: The source solution of  Eq. (33), i.e., 
u = 6 (x,7)  — a(4ir7y' r2e ~ ' on the domain 
— oo <x < x ,t > 0, is mapped by Eqs. (45) and (46) into the 

following  separable solution of  Eq. (17): 
u = 0(x,t)  = a'(4rrt)' / 2e'\ 

on the domain — Ja <x < Ja, t > 0, where u(jc) is defined 
by (49) 

x = •r V7-
Note that l im^_ ± i a 0(x , t )  = + oo. 

Example  2. The dipole solution of  Eq. (33), i.e., 

u = 0(x,7)  = - —la(4v7y V 2e-ii:">T ,), 
dx 

on the domain 0 <x < oo, F> 0, is mapped by Eqs. (45) and 
(46) into the following  self-similar  solution of  Eq. (17): 

on the shrinking domain 0 <x <a(4-t  ) " 2 , t > 0. 
(50) 

B. Connection between Initial conditions; connection 
between boundary conditions 

The mapping formulas  (34) and (43) demonstrate a 
one-to-one correspondence (within translation of  at,;) be-
tween initial conditions for  Eq. (17) and those for  Eq. (33). 
As for  the connection between boundary conditions, from 
the same formula  it is easy to see that x = s(f)  is an insulating 
boundary ofEq.  (17), i.e., [dd(x,t)/dx] T ,.«{ , = 0, if  and 
only if  the corresponding boundary if = s(t ) is an insulating 
boundary of  Eq. (33), i.e., the corresponding solution 
u = 6(x,7)  satisfies [dS(x,7)/dx] i _ s,-> ='0. Moreover, 
s(t) = const if  and only ifi(()  = const, i.e., there is a one-to-
one correspondence between fixed  insulating boundaries of 
Eqs. (17) and (33). 

In general, a noninsulating boundary condition for  Eq. 
(17), on a fixed  boundary x = const = c, is mapped into a 



noninsulating boundary condition of  Eq. (33) with a corre-
sponding moving boundary x = ) # const with speed 

where, as previously mentioned, u = 6 (x,t)  > 0. 

6. CONCLUDING REMARKS 
(a) From invariance under the LB transformations 

\V' n],i= 1,2,—Ahere exist similarity solutions of  Eq. (17), 
i.e., u = 8(x,t\n),  whose similarity forms  satisfy 

U<"'+ c*C/ (" = 0, (52) 
A = I 

where |c,,c,,...,c„ ) are arbitrary constants, n = 1,2,—. 
For example, for  n = 1, Eq. (52) leads to the similarity form 

u = 0(x,f,i)  = + b(!)) 2 + c ( / ) ] " 2 , (53) 
where (o(r), b (t), c(r) | are arbitrary. Substituting Eq. (53) 
intoEq. (17) we find  that Eq. (53) solves Eq. (17) if  and only 
if  a = a, b = /3. and c = ye2°', where \aJ3,y\  are arbitrary' 
constants. This solution is not contained in the class of  simi-
larity solutions of  Eq. (17) obtained from  invariance under a 
four-parameter  point Lie group.7 8 

(b) The infinitesimal  transformations  (5) of  the four-
parameter point group of  Eq. (17) are given by 

V"  = u + xux, U b =xu, + 2tu,, 

U'  = u,, V  = B. (54) 
Under the mapping (34), these are transformed,  respective-
ly, to corresponding infinitesimals  of  invariant point group 
transformations  of  Eq. (33): 

U" = a, U h = xu-t + itUj, 
V'  = 0, U d = W=u }. (55) 

Conversely, the mapping (34) transforms  the six-parameter 
point Lie group of  Eq. (33) as follows:  The three-parameter 
subgroup of  infinitesimals  given by Eq. (55) transforms  to 
\U",V'\U d \ given by Eqs. (54) and U  = transforms  to 
U = 0; the remaining infinitesimal  point group transforma-
tions U'' = xu +2 Tu;  and U r=  + \7)u + xiu-t + Pu,-
are mapped, respectively, into infinitesimals  which depend 
on (;t,r.u.u|! and integrals of  u. 

(c) Generally speaking, the action of  a recursion opera-
tor 9 ' on any infinitesimal  invariance transformation  Uof 
the form  (5) (whether of  point group or LB type) yields a new 
infinitesimal  transformation  U'  = .9' Vif  'J  U  #0 . For Eq. 
(17). we can show that = 3 V = 3 V = 0. 

(d)The heat equation is a special limiting case of  Eq. (3) 
obtained by setting a — b: and then observing 
limh . r b ~(u  + b)'- = 1. As one might expect if  a = b 2, for 
the corresponding recursion operator 3 , limA . a £/' 
= d/dx.  and the mapping formulas  reduce to identity 

mappings, : ' 

(e) Since Eq. (1) admits an infinite  sequence of  LB 
transformations  if  and only if  C(u)  satisfies  Eq. (15) with 
associated mapping (34) whereas Eq. (4) admits an infinite 
sequence of  LB transformations,  there is no point transfor-
mation of  the form 

x = K(x,t,u), 
7=  L (x,t,u), 
u = M(x,t,u), 

relating solutions of  Eq. (1) and those of  Eq. (4). 
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We investigate a structure of  continuous invariance transformations  connected to the identity 
transformation.  The transformations  considered do not necessarily form  a group. We clarify  the 
relationship between the infinitesimal  invariance transformation  and the finite  invariance transformation  by 
showing explicitly how the infinitesimal  transformations  are woven into the finite  one. The analysis leads to 
a new method of  finding  generators of  the invariance group transformation.  The results are useful  in the 
study of  symmetry properties, or group theoretic structure, of  differential  equations. We use the results in 
studying the group properties of  the sine-Gordon equation ux t = sin u, and indicate that the equation is 
invariant under an infinite  number of  one-parameter groups; the groups obtained are of  a more general' 
type than that dealt with by Lie. These findings  are used to prove the group theoretic origin of  the well-
known conservation taws associated with the sine-Gordon equation. 

INTRODUCTION 
The discovery of  the puzzling behavior of  nonlinear 

wave "solitons" in various fields  of  applied science has 
triggered extensive study of  nonlinear dispersive 
waves . 1 One of  the basic properties of  the system which 
admits a soliton appears to be the possession of  an in-
finite  number of  conserved quantities. As has been 
shown by Lax, 2 the existence of  such conserved quanti-
ties is closely related to the soliton behavior of  the 
waves. In spite of  their importance in elucidating the 
nature of  nonlinear waves, it seems that no one as yet 
has obtained a clear understanding of  the origin of  such 
conserved quantities.3 

It is well known that both in classical and quantum 
mechanics the conservation law reflects  the existence 
of  symmetry in the system. In classical mechanics, 
Noether's theorem associates one conserved quantity 
with each invariance group of  the action integral. In 
quantum mechanics, we can associate one conserved 
quantity Q, which satisfies  the equation [y, H)  + icQ/dl 
= 0, with each invariance group of  the time-dependent 
Schroedinger equation.4 From these experiences, it i s 
natural to wonder whether there exists an invariance 
group associated with each conservation law of  nonlinear 
waves. 

In the present and in future  communications, we will 
investigate this question by applying Lie's infinitesimal 
analysis5 and its generalization5" to the differential 
equations governing the waves. In this paper, we ap-
proach the question by studying the group theoretic 
aspect of  continuous invariance transformations,  which 
has been proved useful  in systematically deriving a 
series of  conservation laws. 

In Sec. n, we analyze continuous invariance trans-
formations  (not necessarily a group transformation) 
connected to thf  identity transformation,  to clarify  the 
relationship between local and global invariance 
transformations.  The results will be used in Sec. Ill to 
elucidate the group theoretic aspect of  continuous invari-
ance transformations  of  differential  equations. In Sec. 
IV, we apply the generalization of  Lie's theory to find 
some invariance groups of  the sine-Gordon equation, 

u,, =sinu. In Sec. V, by using the result of  Sec. in, 
we develop a new method of  finding  generators of  an 
invariance group of  differential  equations. The method 
will be used, with the aid of  the Backlund transforma-
tion, to show that the sine-Gordon equation is invariant 
under an infinite  number of  one-parameter groups. In 
Sec. VI, we investigate a relation between these groups 
and a series of  conservation laws of  the sine-Gordon 
equation. 

I. PRELIMINARY 
We consider a partial differential  equation of  the form 

F(z',  u,ujt « , „ • • • ) = 0 , (1) 

where z'  = (z l,z2 z"), us = 0 , « , . . . , 5„«), etc. 
Let's suppose that there exists a solution u = u(z', a), 
which depends on a parameter a continuously. Assuming 
that it i s analytic near o = 0, we expand the solution in 
a Taylor series in a, 

u=££u>(z<),  «*={0o)M«- (2) 
Putting this solution into equation (1), we obtain a se-
quence of  partial differential  equations which will suc-
cessively determine a possible form  of  the u*. In parti-
cular , the first  term u° must be a solution of  equation 
(1). If  the equation is linear, all the u"s must also sat-
isfy  the same equation. In the case of  nonlinear differ-
ential equations, however, all the equations are differ-
ent. First, the differential  equation for  ul becomes 
homogeneous linear and involves the first  solution u°; 
we then obtain a nonhomogeneous linear equation for 
the u*, k > 1, which has the same homogeneous part as 
the u1; the nonhomogeneous term depends upon the u°, 
« ' , . . . , and their derivatives. By a deductive argu-
ment, we expect that if  only the nonhomogeneous solu-
tion is taken for  u2, u'..., u*~\ the nonhomogeneous 
solution for  a* will have a strong functional  dependence 
on the u°. We consider the sine—Gordon equation uIt 
- sinu = 0 as an example. The equation for  u°, u \ 
and u2 i s found  to be 
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uj, - stn«°=0, (4, - u'cosu"=0, 
ul, -u !cosu° = - (u'l'slnu0. 

It is surprising that we can find  many solutions for  u1 

and u2 which can be expressed as simple functions  of 
u" and its derivatives; a few  examples are 

u' = u° and u2 = u°,, 

= + and 
"2 = »L,,«+3K)2"°„I 

The existence of  such solutions is directly connected to 
the origin of  the infinite  number of  conservation laws, 
and the study of  the origin of  such solutions will provide 
a key in understanding the origin of  the conservation 
laws. We ask how a nonhomogeneous solution for  u* will 
depend on the u° if  we take only the nonhomogeneous 
solutions for  a 2 , . . . , u*"1; this problem requires a care-
ful  analysis of  invariance transformations. 

II. RELATION BETWEEN AN INFINITESIMAL AND 
A FINITE INVARIANCE TRANSFORMATION 

We have considered an example in which one solution 
u is continuously connected to another solution u° 
through a parameter a. This may be considered as a 
continuous transformation  of  to u; it is a special 
case of  the continuous invariance transformation  which 
is connected to the identity transformation. 

We consider a set of  transformations  of  the coordi-
nates of  the n-dimensional vector space R"(xl, ...,*") 
which analytically depends on the parameter a , and 
becomes the identity transformation  for  a = 0: 

x'-x'^X'ix'.a),  x' = X'(x',0). (4) 

We also consier an equation f(*')  = Fix 1, • • • ,x") = 0 
which is defined  in the subspace R"(xl,... ,*") of R". 
The equation F(x')  = 0 defines  a manifold  S, or hyper-
surface  in Rm. We define  the invariance transformation 
in the following  way; 

Transformation  (4) i s a continuous invariance trans-
formation  of  the equation F{x i) = 0, if  the condition 
F(X'(x',a)) = 0 i s satisfied  for  the continuous values 
of  a on the manifold  S defined  by F(x') = 0. 

Geometrically, this implies that an invariance trans-
formation  carries a point on S into another point on S. 
We first  investigate this invariance condition in detail, 
and will come back to the invariance transformation  of 
the differential  equation in the next section. 

Under the condition we have imposed on the trans-
formation,  we can expand X'ix 1, a) in a Taylor series in 
a by : 

x'=X'(x>,a)  = x' + t Ci = {0„m*', «)}„.„• 

Defining  the differential  operator U t by 

U^pt-'d,  , 
we can write (5) as 

(5) 

(6) 

(3a—d) 

We analyze the effect  of  this transformation  on an analy-
tic function fix')  defined  in R". Expanding fix')  in a 
Taylor series In a , we obtain 

Ax')= t ̂  <*>,(*'), *, = {(3.)*/(5')}»o = A,/(x'), 
where i 

•A„= 1 and 

where ps and q : are the integers satisfying  the 
conditions 

p p j q ^ k , for  »<; , 1 « q r 

Here, we apply the summation convention with respect 
to the indices rj. The choice of  the sets ipl ps) 
and (q lt... ,q,)  satisfying  the conditions is not unique, 
and the sum in (9) is to be taken with respect to each 
of  such sets. Using the differential  operator At, we 
can write the effect  of  the coordinate transformation 
on the function fix')  as 

/(*')= (l+t £A^/ix') = Tia)fix l). (10) 

We note that Tia)x l = x' + a£j + + • • • = recovers 
the definition  we started with. 

Now we suppose that the continuous transformation 
T(a) leaves the equation Fix')  = 0 defined  in Rm invari-
ant in the sense defined  above. Then, the following 
statement will be obvious: 

The transformation  T(a) is a continuous invari-
ance transformation  of  the equation Fix')  = 0, if  . . . 
and>only If A„F(x')  = 0 on the manifold  S defined 
by Fix>)  = 0. 

Although this provides the condition for  a transforma-
tion to be an invariance transformation,  it is very diffi-
cult to get any clear view of  the structure of  the trans-
formation  unless a considerable simplification  of  ex-
pression (9) is made; it is crucial to oberve that we can 
re-express (9) as 

rfc 07,)'. .(11) 
where we take the same rule of  summation as for  (9). 
The remarkable feature  of  this expression is the fact  that 
all the V k's are first-order  differential  operators. We 
write down the first  four  generators in this form: 

A,= U lt A2 = (£/1)2 +1^, A3=(C/ 1)3 + 3C/ 1i72 + r'3, 
At= (UJ*  +6(V,) 2'U 1 + 3(V 2)2 + + U t, ' (12a)—(12d) 

where 

T/l=C/l=?<a(, V,=  U,-SU{.,8, 
V,=  U, + {-3( +2{J ?;t(?1>tyl + 2{i?;5f,J3„ 



+35k;. +H k'Ai - .{i. i€f.» 
- 12?!«!?!. ,t!. „ - St k {«»,«»'. , • (13a)—(13d) 

The importance of  the decomposition into this form  will 
be recognized if  we remember the basic lemma used in 
the theory of  continuous group transformations: 

If  two first-order  differential  operators Vc = ^ d , 
and = ^ J5 j ̂  t = 1,2 n, satisfy  the conditions 
Ujfix')  = 0 , j = a,b, on the manifold  defined  by /(*') 
= 0, then we have U aU tf(x')  = 0 on the same manifold. 

Successive applications of  the lemma to the invariance 
condition (A), lead to the conclusion that all the opera-
tors Uk in the expression (11) must satisfy  the 
condition: 

U,F{x i) =0 on the manifold  S defined  by Fix')  = 0. (B) 

This allows us to draw the following  conclusion: 

All the A„'s are constructed from  first-order 
differential  operators Q, which satisfy  the condi- (C) 
tion yf(x')  = 0 on F(x')  = 0. 

In Lie's theory of  group transformations,  the operator 
which satisfies  condition (B) is called a generator of  the 
invariance group. We suppose that the largest invariance 
group of  the equation .F(x') = 0 is an r-parameter group 
with generators Q t. Then, all the operators which sat-
isfy  condition (B) can be written as 

Uk = t a ' t Q t . (14) i.l 
In particular, if  we let aj = 0 for  fcs  2, we obtain A, 
= (V1)* from  (11), and the operator r(ar) in (10) reduces 
to an exponential operator, 

r ( a ) = E £( [ / , )* = (15) fc>0 * ' 
Result (C) is significant  in studying the structure of  in-
variance transformations  because it clarifies  the con-
straints on and arbitrariness of  an invariance trans-
formation.  The vital fact  is that if  we have a complete 
set of  generators of  the invariance group of  the equation 
F(x')  = 0, then any continuous invariance transforma-
tion connected to the identity transformation  can be 
constructed from  these generators. 

Now, the problem is how to find  such generators for 
a given equation F(x')  = 0. The basic idea of  deriving 
the generators was established by Lie, and we will 
illustrate it briefly  after  the discussion of  differential 
equations. 

III. INVARIANCE TRANSFORMATIONS OF DIFFERENTIAL EQUATIONS 
We have considered a set of  coordinate transforma-

tions in R" which leave the equation F(x')  = 0 defined  in 
Rm invariant. We now introduce some functional  rela-
tions among the coordinates, which are compatible with 
the equation F(x')  = 0; such relations will restrict fur-
ther the domain of  manifold  S. 

We consider a function  u(x')  defined  in the {k  - 1 ) -

dimensional space ^'"'(x1 , . . .,«*"') with k<m, and 
assume the following: 

The coordinate x* 16 determined by the relation 
x* = u(x'), and the coordinates At**1 x" are 
determined as the derivatives of u(x') with re- . . 
spect to the coordinates x1, For in-
stance, x*" = Bsu, ... ,xu'l = dt.1u, *J'=3 151u, 
x^'^a .a ju , 

We suppose that R" is chosen in such a way that if  it con-
tains a coordinate corresponding to a jth derivative, then 
coordinates for  all the other jth derivatives also appear 
in R". The condition we have imposed are compatible 
With the equation F(x')  = 0 only if  the function u(x') i s 
a solution of  the equation F(x') = 0, interpreted as a 
partial differential  equation by considering x"s as de-
rivatives defined  by (16). Each solution will define  a 
submanifold  3 of  the manifold  S, called the solution 
surface. 

Now, we consider a continuous coordinate trans-
formation  (4) under which a manifold  satisfying  condi-
tion (16) is always mapped onto a manifold  which also 
satisfies  condition (16), with x* = u(x ' ,a ) . In analyzing 
such transformations,  it is convenient to introduce the 
following  definitions: 

Basic coordinates and jth order coordinates 

We call the coordinates x 1 , . . . basic coordinates; 
and the coordinates corresponding to the jth order 
derivatives, jth order coordinates. For instance, in 
(16), x**1 , . . . .x 2 ' " 1 are first-order,  and x a \ x 2 " 1 are 
second-order. 

Basic space and jth extended space 

We call the vector space ( * ' , . . . , x'), jth extended 
space if  it consists of  all and only the basic coordi-
nates and a complete set of  the first  through the jth 
order coordinates. In particular, we call the 0th 
extended space (x1 xk), the basic space. 

Basic transformation 

We call the transformation  of  a set of  basic coordi-
nates, the basic transformation. 

Basic operator and jth  extended operator 

We call the operator of  the transformation 
in the jth extended space the jth extended operator. The 
0th extended operator will be called the 
basic operator. 

It is clear that under condition (16), the transforma-
tion of  the basic coordinates will determine the trans-
formation  of  the rest of  the coordinates. In particular, 
If  a basic operator is given, we can determine all the 
extended operators. Now, we require that such trans-
formation  leaves the equation f (x^=0  invariant. The 
geometrical meaning of  the invariance transformation 
is more important; the invariance transformation 
maps one solution surface  S to another solution surface 
5' (or onto itself),  both of  which are on S. A discovery 
of  such a transformation  will lead to a new solution of 
the differential  equation. The transformation  studied 
most extensively Is the group transformation.  Lie con-
sidered an invariance group transformation  of  the form 



x'-x^e^x'-x'  + a('(x)  + •••, i = l,...,k, 
x = ( x * x*), (17) 

in which infinitesimal  terms of  the basic transformation 
depend only on the basic coordinates. It is important to 
note that, under such assumptions, a finite  transforma-
tion of  the coordinate x* does not involve any coordinate 
whose order is higher than the order of  xp. This guar-
antees that the jth extended space is closed under the 
transformation.  The existence of  such a closed space 
enables us to elegantly construct a finite  group trans-
formation,  via the method of  characteristics, from  a 
generator of  the group., 

Anderson, Kumei, and Wulfman,  however, found  that 
there exist invariance groups of  time-dependent 
Schrodinger equations which are not of  Lie's form." 
They generalized Lie's theory by allowing infinitesimal 
terms of  the basic coordinates to depend on the co-
ordinates of  higher order: 

x' — x' = e°°x'  =x'  + ' (x) + • • •, i = l,...  ,k, 
x=(x\...,x'),  ' (18) 

Here, the order of  the coordinates in is not re-
stricted, and coordinates of  any order may appear.6 

We note, however, that we no longer have any closed 
finite-dimensional  space under such a group trans-
formation. 7 Although this does not cause any problem 
in finding  generators of  invariance transformations,  we 
can no longer apply the method of  characteristics in 
finding  a finite  transformation.  This generalization, 
however, is absolutely necessary to uncover all the 
invariance groups inherent in the differential  equations.6 

Before  we show that the sine—Gordon equation admits 
such invariance groups, we answer the question raised 
at the end of  Sec. I. To put the problem into our present 
language, we rewrite (1) as 

F(x')-0  with x' = z', t = l 

x"-' = u, x"-2 = « , , - - - , (1') 

and (2) as 

x ' = x ' , t = l 

? " = * • " ( x ' , a ) = x " " + < 2 < ) 

From a transformational  viewpoint, the statement that 
ii is a solution of  equation (1) is equivalent to saying 
that transformation  (2') leaves equation (1') invariant. 
For such a transformation,  as we have found,  we can 
write (or u"=A tu" in the old notation). This 
leads to the conclusion, 

If  a differential  equation F(z',  u, ut, u,„ • • -) = 0 admits 
a solution u(z', a) =£^=0 )u* (z') which depends 
analytically on a near a = 0 , then u* is always 
written as u"(z')=A l lu0(z i), where h° is a solution 
of  the same equation and the operator Ak is con-
structed by (11) from  the generators Q of  invari- , . 
ance group transformations  of  F=0  by which the 
independent variables z1 are unchanged. In par-
ticular, uJ = Qu°. Furthermore, if  only the in-
homogeneous solution is taken for  every h* , k 
> 1, then «* = (Q)*«°, and a resulting solution is 
expressed as h(z') = e'̂u'U')• 

IV. SOME INVARIANCE GROUP TRANSFORMATIONS 
OF SINE-GORDON EQUATION 

We now go back to the analysis of  the solutions 
(3a)—(3d). According to result (D), these solutions clear-
ly indicate the existence of  invariance groups, or sym-
metries, of  the sine—Gordon equation. We will system-
atically determine generators of  the invariance group 
transformations  and will reveal new symmetries of  the 
equation. 

We first  specialize the general formulation  given 
above to a case in which we have three basic coordinates 
x1 , x2 , and x3 , and F(x')  is chosen as 

F(x\  x2 , x3 , x4 , x5 , x6 , x7 , x») = x 7 - sinx3. 

As stated in (16), we establish the following  constraints 
on the coordinates: 

x 3 = it(x',x2), X4 = M1, X s —u2, XS = H11, 

x7 = M 1 2 , X 8 = K 2 2 X 9 = H U 1 , X ' ° = I / U 2 , 

X " = « I 2 2 , X = W 2 2 2 , X = M I I I I , X — U1112, 

X 1 5 ~ "1122, X L 6 = « 1 2 2 2 , X 1 —U 2222, X  ~ I'm  11 , 

-19 — ,, V20 — „ V21 — u r22 — II 
X  ~ <'11112,  X  — "iu22, X — «11222, —"12222, 
X23 = « 2 2 2 2 2 , (19) 

where subscripts 1 and 2 indicate the derivatives with 
respect to x'  and x 2 . We now consider a transformation, 
of  the generalized form  (18), in which x' and x2 are un-
changed and the infinitesimal  transformation  of  .v3 de-
pends on x 3 and the first  through the third-order 
coordinates: 

x' = x', x2 = x2, 
x 3 = x 3 + o ? 3 ( x 3 , x 4 , x 5 , x ' , x 8 , x 9 , x ' 2 ) . (20) 

We note that the inclusion of  the coordinates x",  xu\ 
and x" is redundant because we can replace them by 
the coordinates in £3 after  we have introduced the condi-
tion F = 0. The infinitesimal  transformation,  induced by 
(20), of  the coordinate corresponding to the derivative 
(S1)m(d2)"u is calculated as 9 

x W + aO.Ha^^x' + a?'. (21) 
Here, the partial derivative should be interpreted as 

(a1r02)"53 = 01)"02)'' 
X «»(« (* ' , j r* ) ,^ 1 , * 2 ) « 2 2 2 (x' ,x 2 ) ) (22) 

For instance 

5
4 = 5

3 X 4 + ?
3 x « + ?|X7 + 53X9 + | 3 X " + ^ , 3 + ^ 2 X , s , (23) 

where is the derivative of  £3 with respect to the coor-
dinate x'  contained in | s , and should not be confused  with 
the same notation used in Sec. n. As in Sec. II, we 
write the infinitesimal  transformation  in the jth ex-
tended space as xi = (l + a4)x', with {'=̂  = 0. (24) 

i-i 
Now, we assume that the equation F  = 0 is invariant 
under the group transformation  whose infinitesimal 
form  is given by (20); the condition is 

4 i r = ? , - ? 3 c o s x 3 = 0 on x 7 - s i n x 3 = 0, (25) 



which is the partial differential  equation for  £3 . The 
equation QF = 0 will split into a set of  partial differen-
tial equation because some of  the coordinates which 
appear in the equation are independent from  the coor-
dinates in £3 (Appendix). By solving these equations, we 
find  four  independent solutions: 

t*=jr<, 5> = *» + *(*4)3, (26a) 

C = d = * , 2 + i<*5>3- (26b) 
Obviously, the test two solutions can be obtained from 
the first  two. by interchanging the roles of  x' and x2. 
The second extended operators associated with £3 and 
{{j are calculated from  (21)  and (24)  as 

Qa = .v<c3 + A-6c4 + x , c 5 + * 9 t 6 + j - ' 0 c 7 +j - n c e , (27a) 

Qt=ix°  + i(x")3}o3 + {x>3 + f  (x4)2x6}5< + {*» 

+ j ( . V ) y } s 5 + {x'e + 3jr-cV)z+4 (x 4 )V}a 6 

+ {a-" + 3,vVV + f  Cv4)V0}57 + {x20 + 3x4(x7)2 

+ i(A-4)V'}£8. (27b) 

We can easily check that they satisfy  condition (25): 
thus, the sine-Gordon equation is invariant under the 
group transformations  generated by these operators. 

This result explains the origin of  the solutions 
(3a)—(3d); they are obtained from  result (D): 

„ 2 = §a.v3 = .v< (28a) 

and 

h| = W„)V = A (28b) 

«> = §„ x' = x° + i(x<)2 (28c) 
and 

«l = (Q„)V = x24 + 3 (x4)2*'3 + |(x4)"x6 

+ 9.vVxB + 3(xe)3 . (28d) 

We note that we need the extended operators and Qb 
for  calculating the second term u2. As we stated in Sec. 
HI, this is the general character of  the generalized 
transformation  (18) and we need the Km - l)th extended 
operator to calculate the nth term u" if  the basic trans-
formation  contains the fc-th  order coordinate. 

V. GENERATING FUNCTION FOR GENERATORS 
We have obtained four  generators of  the invariance 

group of  the sine-Gordon equation by considering a 
generalized Lie transformation  (18). However, if  we had 
assumed a more general form  for  we might have 
been able to produce more generators. It is unfortunate 
that we have no theory which tells us which coordinates 
we need in of  (18) to obtain a complete set of  gener-
ators, hence we must make some assumptions on the 
form  of  £'. In practice, it is not possible to retain too 
many coordinates in because the determining equa-
tions for  become too huge to solve. Therefore,  it is 
highly desirable to have another method for  producing 
the generators, which does not require either such 
assumptions or the construction of  the solutions of 
determining equations. Here, we provide one such meth-

od although the completeness of  the set of  generators 
obtained is still not assured. 

Hie idea of  the method is to reverse the result in 
Sec. II. We found  that the operator Q which satisfies 
a condition QF  = 0 on F=0  is the building block of  any 
invariance transformation  connected to the identity 
transformation.  By reversing this, we argue that if  we 
have an invariance transformation  connected to the „ 
identity transformation,  then we can find  at least one. 
such operator. More precisely, we proceed in the fol-
lowing way. 

Suppose we have an invariance transformation  of  the 
equation F(x') = 0, 

J W + E^A/tW + Eit?!, ' = 1 <29> 
in which all the £ j are known. Using the result (11), we 
can write, 

(> =Asx< = , s<=As>  = {&>)' + U,}x<, 
l i=Aje> = {(t/,)3 + 3 U & + t'3}*<, • • •, 

where all the Vk are first-order  differential  operators. 
From the first  equation, we obtain 

• (30) 
Feeding this into the second, we get U 2x'= t,'2-(U 1)2x', 
which provides 

l / 2 = £ U M < & i > 2 * ' } ] ? ( • (31) 
tel 

Next we substitute these for  the Z\ and U2 in the third 
equation to determine U3. Continuing this process we 
can obtain a series of  operators Ut, all of  which satisfy 
the invariance condition "QF=0  on F—0."  We note 
that if  the starting transformation  (29) happens to form 
a group, then we only get Z\ and all the others are 
equivalently zero for  the reason discussed in Sec. n. 
We may consider the starting transformation  (29) as a 
generating function  for  generators of  an invariance 
group. The upshot of  the method is that only algebraic 
computations are involved in the process and a computer 
can be used, whereas the construction of  the solutions 
of  the determining equations by computer is very diffi-
cult. Obviously, this method can be used to find  gener-
ators of  an invariance group of  a differential  equation if 
the constraints (16) are taken into account. We apply the 
method to the sine-Gordon equation to find  additional 
generators. 

We start with the well-known Backlund transforma-
tion of  the sine-Gordon equation,1 

J4 - X 4 = 2a sin£(*3 + .r3), a (if 5 + x s) = 2 sinj(x3 - .v3), 
(32) 

with the convention established in (19). This transforma-
tion guarantees that if  x 3 is a solution of  the sine-Gordon 
equation then so is x 3 for  a continuous value of  a . A 
principal use of  the Backlund transformation  is to con-
struct a new solution x 3 from  a known solution A-3 by 
solving a set of  first-order  differential  equations (32). 
We assume that the new solution A3, is an analytic 



function  of  a in the neighborhood of  a = 0 , and so are its 
derivatives. Then, it is clear from  (32) that the trans-
formation  is connected to the Identity transformation; 
x 3 — x 3 as o — 0. The analyticity assumption allows us 
to expand the solution x 3 in the Taylor series in a 
near a = 0. Such an expansion is found  In the paper by 
Scott et at.,1 and we rewrite their result: 

= + (33) fc»l 
with: 

t,\ = Zx\ £ | = 4x', t» = 12*B + 2(x<)', 

53 = 48x1 3 + 48(x4)2x8 , 
4 3 = 240x18 + 360(x4)2x® + 600x4(x6)2 +18 (x4)5, = 1440X24 + 2880(x4)2x13 

+12 960x 4 xV + 3840(xV + 1440(x4)V 

{ 3 = 10080x31 + 176 400(x 8 )V +95 760x ,(x9)2 

+ 141 120x4x8x1 3 + 25 200(x4)2x18 (34a-g) 

+ 63000(x4)3(x5)2 +18900(x4)4x9 +450(x4)7 , • • 

where we have adopted the convention (19) and x 3 1 

= M iuuu- 'his specific  Backlund transformation, 
the coordinates x1 and x 2 are unchanged, i . e . , 

x ' = x l , if 2 = x 2 or = ^ = 0 for  i » l . (35) 

The transformations  (33) and (35) form  the basic trans-
formations,  and they provide all the necessary informa-
tion to follow  the above prescription to find  Vt. We list 
the results up to £/,: 

& 2 = & , = t/, = 0, £/1 = 2x43„ Z/s = {4x» + 2(x4)3}3s, 
&, = {48x l s + 120(x4 )V + 120x4(x8)2 + 18(x4)'}3a, 

U, = {1440X31 + 25 200(x")2xs +15 120x4(x")2 

+ 20 160x4x8x1 3 + 5040(x4)2x18 +12 600(x4)3(x')2 

+ 6300(x 4 )V+450(x 4 ) 7}3 3 . (36a-e) 

Here, we have given the operators in the basic form; 
the operators in the extended form  can be obtained from 
(21) and (24). By continuing this process, we will be 
able to find  an infinite  number of  operators which satisfy 
the Invariance condition (25). We can associate one in-
variance group transformation  of  the sine-Gordon equa-
tion with each of  these operators. 

VI. A SERIES OF CONSERVATION LAWS AND 
INVARIANCE GROUPS 

In this section, we use notation (16), hence x* repre-
sents a solution of  the differential  equation Fix 1) = 0. 

We consider an equation f(x')  = 0 which can be put 
Into a conservation form: 

S 3 , / ' = 0, / ' = / ' ( x ' x*" 1 ,x* , . . . ,x ' ) , (37) 

where the derivatives are to be taken by considering 
x* x' as functions  of  x 1 , . . . , x*"1. The vector f 
= ( / , / 2 , . . . ,/*"') establishes a divergent free  flux  in 
the space Ri~L(x l x*"1) for  each solution of  the 
equation. Now, we assume that the equation F(x')  = 0 

Is Invariant under an r-parameter group with the 
property: 

x' = r , (a )x '=x ' for  x = l , . . . , f c - l  with 

T , ( a ) = e x ( 3 8 ) 

We suppose that transformation  (38) exists If  la !<6. 
Here, 6 Is a positive number. Under such assumptions, 
x* represents a new solution of  the equation and a corre-
sponding flux,  f=  ( / , / 2 , . . . ,/""*) is written as 

/ ' = / ' ( x 1
) . . . , x * - I , x * x') 

= r t (a) / ' (x ' x*"',x* x'). (39) 

The Implication of  the new flux  Is the same as the old 
one, except that it is now for  the new solution, However, 
its power series expansion in a tells us something new 
about the starting solution x*; because we have assumed 
that the transformation  T t(a)  exists at least for  some 
range of  la I, It acts as a generating function  of  fluxes; 
each term of  the expansion of  (39) in a ' a ' also 
forms  a divergent free  flux.  We state this as follows: 

If  a differential  equation F(x')  = 0 admits an in-
variance group with property (38), and if  a flux 
f  of  the form  (37) exists, then, for  any polynomial (E) 
function  G(Q l Qrj  of  the generators of  the 
group, the vector Gf  forms  a divergent free  flux. 

Here, we see two basic patterns for  a series of  diver-
gent free  fluxes  to arise: one associated with a series 
Qjf,  i =  l r  and one associated with a series (Q,)"t, 
n = 1,2, •• • . It will be reasonable to say In general, that 
the former  is more fundamental  than the latter because 
the series of  the second type can be mechanically con-
structed If  Qt Is known, although the reverse is not 
possible. One, however, should not think that the fluxes 
of  the second type are tr ivial . 1 0 

We now apply this analysis to the sine-Gordon equa-
tion, J = x 7 - sinx3. The equation can be put into the 
conservation form  by multiplying by x ! ; 

3 l / ' + 3 2 / 2 = 0 wi'h f=(/',/ 2) = (i(x')2 , cosx3), 
and the generators (36b)—(36e) can be used to derive 
new fluxes.  We list a few  of  them, (using the notation 
t, = b,t)• 

f , : / {  = 2 x V , / f  = - 2x4slnx3 , 

f,  :/J = {4x14 + 6(x4)2xV. fl = ~ {4x8 + 2(x4)3} slnx3 , 

U -fi  = 24{2x2' + 10x 4 xV + 5(x4)2x1 4 + 5x7(x")2 

+ 1 0 * 4 x V ° + ^ ( x 4 ) V } x ! , 

/ ; = -24{2x 1 0 + 5(x4)2x» + 5x4(x8)2 + | (x 4 ) ! }s lnx 3 , 

• / i , = ( ^ ) V ' = ISlx5.*32 + 3(x4) W s + (x1 4)2 

+ {3(x4)Jx7 + 9 x 4 x V } x 1 4 + 6 x V x V 3 

+ {9x5(x6)2 + 9 x 4 x V + | ( x 4 ) V } x 1 0
 ( 4 0 a _ d ) 

+ 9 x V x V + 9 (x 4 ) 3 xVx 7 + |(x4)4(x7)2] . 
Here, we have listed only the first  component for 
f,,,.  Among these fluxes,  the first  flux, tl is trivial 
because It Is the derivative of  f  with respect to x ' . 1 2 

We analyze the known results from  our viewpoint. Our 



results are clearly different  from  the fluxes  given in 
the paper by Scott el al." Their results, however, can 
be obtained by taking a linear combination of  fluxes 
with the form  (£/,)"(!/,,)' • • • (U rYt.  In fact,  by using (11) 
and (36a)-(36e), we find  that A,t and AJ  recover their 
results. For instance, 

AJ 1 = {(T/,)3 + 37/,% + U,}/ 1 = 6 { 2 x V 4 + 4 x V ° + (x*)2xV} 

= 6{2u2«111j + iuL2ullz + (u1)3u2u12}, 
where we interpret TJl as a generator extended to a 
necessary order. Now, we ask which fluxes  are most 
basic among these. 

Although this question is very important in analyzing 
the nature of  conservation laws in general, the answer 
depends on the measure one uses. However, as we have 
indicated above, the hierarchy becomes quite clear 
within the framework  of  group theory, we classify  fluxes 
into two categories: 

(1) Basic fluxes:  f,  Q,f,  i = l 

and 

(2) Associated fluxes:  W^FifQ,  )"*• • • (Qif)"'t 

with it = 1 , . . . , r, and n, + + • • • + n, > 1, 

and we use the basic fluxes  to characterize the con-
servation law associated with a solution. The remark-
able feature  of  the sine-Gordon equation is that it 
possesses a series of  basic fluxes. 

SUMMARY 
To conclude this paper, we briefly  summarize the 

results obtained in the present study. In Sec. n , we 
studied a structural aspect of  continuous invariance 
transformations  connected to the identity transforma-
tion, and we stated the explicit relation between a con-
tinuous invariance transformation  and a continuous in-
variance group transformation  [(A), (11), (C)]. In Sec. 
HI, we used the result of  Sec. n to analyze invariance 
properties of  differential  equations and we uncovered 
the group theoretic structure, inherent in any solution 
which depends on a continuous parameter [(D)], In 
Sec. V, a new method was given for  obtaining generator 
of  an invariance group and it was used to find  a series 
of  new generators of  an invariance group of  the sine-
Gordon Eq. [(36b)—(36e)]. In Sec. VI, we gave a group 
theoretic criteria for  the existence of  a series of  con-
servation laws associated with solutions of  a differen-
tial equation [(E)], and this was used to provide a group 
theoretic explanation of  a series of  conservation laws 
of  the sine-Gordon equation. The results (40a)—(40d) 
explicitly indicate that there exist conservation laws 
whose existence is inexplicable within the Lie's frame-
work of  group theory, but still can be explained by 
group theory if  the generalized theory (Ref.  5d) is used. 
In the next papers, we will show that the conservation 
laws of  the Korleweg—deVries equation and the cubic 
Schroedinger equation are also related to invariance 
groups of  the generalized Lie type . 1 3 

Note  added  in proof:  The transformation  (10) with A„ 
defined  by (11), (12a—d) has been found  to be the power 
series expansion, in or, of  the expression 

T(a) = e"5' e<2!e"u' e""-1*4®* ... 
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APPENDIX: DETERMINING EQUATIONS OP 
GENERATORS 

Although our transformation  is more general than 
that of  Lie, the basic idea for  obtaining the differential 
equations (determining equations) for  is the same 
as Lie's, and for  a detailed discussion of  the Lie method 
we refer  the reader to the book by Ovsjannikov" or the 
book by Bluman and Cole . 5 c Us ing/ for  £3 , the deteter-
mining equations for  our problem are the following: 

/». V̂  +A +/., +/.. 1**° +/„. i 1̂ +/». i2*16=o, 
/s.o*5 +US +/,.»*a +/„,»*" = 0, 
A*7 +A*" + V +A*19 + fi, (A.+/„,,*7 +/5.+/.,,*10 +/,.,*12 

6, 8,12 

+/,.,*»)=o, 
with supplementary conditions: 

x 7 = sinx3 , x 1 0 = x 4 c o s x 3 , x" =** cos*3 , 

x 1 4 = x " coax3 - (x4)2 sinx3 , 

x " = x*cosx' - (x3)2 sinx3 , 

x " = x ° cosx3 - 3x4x f  sinx3 - (x4)3 cosx3 , 

x 2 2 = x " cosx3 - SxV  sinx3 - (x5)3 cosx3 , 

where f, = 3,f  and , = d fij. 

•This work was supported by a Research Cooperation Grant . 
'A .C . Scott, F . Y . F . Chu, a n d D . W . McLaughlin, P roc . IEEE 
61, 1444 (1973) (review ar t ic le) . 

l P . D. Lax, Comm. Pure Appl. Math. 21, 467 (1968). 
s I t has been suspected that some transformation  property of 
the differential  equation governing the wave motion is r e spon-
sible for  the existence of  a s e r i e s of  conservation laws. In 
fact,  the res t r i c t ed Backlund transformations  (R. B. T.) have 
provided a sys temat ic way of  deriving a s e r i e s of  conserva-
tion laws. However, the derivation involves a p rocess of 
power s e r i e s expansion of  a solution with r e spec t to some 
pa rame te r . Such a method only exemplifies  the existence of  a 
s e r i e s , but does not explain the origin  of  individual conse rva -
tion law. On the discussion of  R. B. T. in the theory of  so l i -
tons , we refer  to (a) G. L. Lamb, Rev. Mod. Phys. 43, 99 
(1971); (b) D. W. McLaughlin and A . C . Scott, J . Math. Phys. 
14, 1817 (1973); (c) H.D. Wahjquist and F . a Estabrook, 
Phys . Rev. Lett . 31, 1386 (1973). We  add in proof  the follow-ing papers on the Backlund transformations'.  G. L. Lamb, J r . , 
J . Math. Phys . 15, 2157 (1974); M. Wadati, H. Sanuki, 
and K. Konno, P r o g r . Theor . Phys . (Kyoto) 53, 419 (1975). 

' R . L . Anderson, S. Kumei, and C . E . Wulfman,  Rev. Mex. 
F is . 21, 1 ,35 (1972); J . Math. Phys . 14, 1527 (1973). 



*For L i e ' s work and its l a te r development, we refer  the 
r e a d e r to (a) S. Lie , Transformationgruppen  (Chelsea, 
New York, 1970), 3 Vols. , Reprints of  1888, 1890, and 
1893 eds. , S. Lie, Differentialgreichungev  (Chelsea, New 
York, 1967), repr in t of  1891 e d . , S. Lie , Continuierliche 
Gruppen (Chelsea, New York, 1967), repr in t of  1893 ed. 
(b) L . V . Ovsjannikov, Group theory of  differential  equa-
tions (Siberian Sec. Acad, of  Sc i . , Novosibirsk, USSR, 
1962). This book has been t ranslated into English by G.W. 
Bluman, Department of  Mathematics , University of  Brit ish 
Columbia (unpublished). L .V . Ovsjannikov. Some problems 
arising in group analysis of  differential  equations (Proceeding 
Conference  on Symmetry, Similari ty and Group Theoret ic 
Methods in Mechanics, edited by P . G. Glockner and M.C . 
Singh (University of  Calgary P r e s s , Canada, 1974). (c) G.W. 
Bluman and J . D . Cole, J . Math. Mech. 18, 1025 (1969). 
G.W. Bluman and J . D . Cole, Similarity  Methods  for  Differen-
tial  Equation  (Springer , New York, 1974). (d) R . L . Anderson, 
S. Kumei and C . E . Wulfman,  Phys . Rev. Lett. 28, 988 0972), 

®We note that the well-known contact t ransformations  of  o rd i -
nary differential  equations, which were extensively studied 
by Lie , a r e a real izat ion of  the derivative-dependent t r a n s -
formations  in which only the f i r s t -order  derivative appears , 

'if  the equation is an ordinary differential  equation, it is 
always possible to find  a closed space . 

8Several yea r s ago, Professor  G.M. Lamb kindly ra i sed the 
question of  the relat ion between this generalization and the 
Backlund t ransformation,  which depends on f i r s t -order  de -
r iva t ives . The basic difference  is the fact  that the Backlund 

transformation  is not a group transformation  in genera l , 
whereas our generalization allows us to construct a group 
transformation.  We should consider that a Lie type t r a n s -
formation  and the Backlund transformation  a re complemen-
tary in the sense that neither of  them subsumes the other . 
L ie ' s infinitesimal  approach, however, will be super ior in the 
s t ruc tura l analysis of  continuous invariance t ransformations. 

*The general formula  of  the expression of  the extended opera-
tor will be found  in the paper by R. L. Anderson and S. 
Davison, J . Math. Anal. Appl. 48, 301 (1974). 

1 0We define  " t r iv ia l" flux  in the following  way. We consider .a 
set S{ f , , f 2 , . . • ,fj}  which cons is t s of  divergence free  fluxes, ft,..., f| and their der ivat ives of  any o rde r . We note that the 
der ivat ives a re a lso divergence free.  Now, a flux  f  is said 
to be t r ivial with respect to the set S, if  f  can be expressed 
as a linear combination of  the members of  the set S.  In this 
s ense , the flux  <?*f  is , in general , nontrivial with respect to 
the set S{f,Q(,Q :tt... .Q^'f}.  For instance, the flux  f 3 | , of 
(40) is nontrivial with respec t to the set S{f,Ujf}. 

" E q . VI. B. 7 in Ref.  1. 
l 2 T h i s is due to the special charac te r of  the operator the 

operation of  Uj  on the variable x{,  i >2, is equivalent to the 
differentiation  of  the function  u with respec t to xA. For in-
s tance , l\xz-xi

t (C/|)2x3=ar6 and I/Jx5 = x" a re the t ransforma-
tions w — u , , u~u|i and t/2 — « 1 2 . Because of  this proper ty , 
the fluxes  obtained from  (i / jJ ' f  a re all t r iv ia l . 

1 3 S. Kumei, "Group theoret ic studies of  conservation laws 
of  nonlinear d ispers ive waves" (II, III, IV) (submitted for 
publication). 
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Group theoretic properties of nonlinear time evolution equations have been studied from the standpoint of 
a generalized Lie transformation. It has been found that with each constant of motion of the KdV  type 
equation + a(/)/,+/, = 0 and of the coupled nonlinear Schrodinger equation /„ + Q(J,g)+  if,  = 0, 
Su + a(&<f) — 'Si ~ 0 o n e invariance group of the equations is always associated. The well-known series of 
constants of motion of the K d V equation and the cubic Schrodinger equation will be recovered from the 
invariance groups of the equations. The doublet solution of the K d V equation will be characterized as the 
invariant solution of one of the groups. In a more general context, it will be shown that the well-known 
equation of quantum mechanics (d/dtX  U)  = <[iH, I/] + dt//9/> can be generalized to a class of 
nonlinear time evolution equations and that if V  is a generator of an invariance group of the equation then 
(d/dtK  C/> =0. The class includes equations such as the KdV, the cubic Schrodinger, and the Hirota 
equations. 

INTRODUCTION 
In this paper, we study group theoretic aspects of 

time evolution equations of  nonlinear waves, particular-
ly of  the Korteweg—de Vries (KdV) equationf,„+ff x+f, 
= 0 and of  the cubic Schrodinger equation f„+fj* + ¥t = 0. 

Some time ago, Anderson, Kumei, and Wulfman 
proposed a generalization1 of  the Lie-Ovsjannikov2"4 

theory of  invariance groups of  differential  equations, 
and applied it to a number of  quantum mechanical sys-
tems to systematically study dynamical groups.5 Re-
cently it has been shown by Ibragimov and Anderson6 

that this generalized transformation  is an infinite 
dimensional contact transformation. 

It has been shown in the preceding paper' that the 
sine-Gordon equation f xt - s in/ = 0 admits an infinite 
number of  one-parameter invariance groups of  this new 
type, with each of  which one can associate a series of 
conservation laws. Although the generalization appears 
to broaden the usefulness  of  group theoretic analysis 
of  differential  equations, particularly of  nonlinear ones, 
the physical implications of  the new type of  symmetry 
are still unclear in many respects. 

The aim of  the present paper i s to investigate some of 
the well studied equations of  nonlinear waves8 from  the 
standpoint of  the generalized theory, and to gain a clear-
er insight into the physical significance  of  the presence 
of  the new kind of  symmetry. It will be shown that some 
of  the fundamental  properties of  the KdV and the cubic 
Schrodinger equations are the direct results of  the 
existence of  new groups. 

In Sec. I, welbriefly  review a few  basic ideas of 
infinitesimal  invariance transformations  to fix  notations. 

In Sec. n , we investigate group theoretic properties 
of  the KdV equation and the related equations. The main 
results are: (1) With each constant of  motion of  the KdV 
type equation / „ , + a(f)f x + / , = 0, one invariance group 
i s associated, hence the KdV equation admits an infinite 

number of  invariance groups. (2) The doublet solution, 
as well as the singlet solution, of  the KdV equation is 
the invariant solution (or generalized similarity solu-
tion) of  one of  the groups. 

In Sec. Ill, we prove that with each conservation law 
of  the coupled nonlinear Schrodinger equation / „ + «(/, ir) 
+ if,  = 0, g„ + a(g, /) - ig,  = 0 one can associate one in-
variance group. The constants of  motion of  the cubic 
Schrodinger equation due to Zakharov and Shabat8 will 
be recovered from  the invariance group of  the equation. 

In Sec. IV, we investigate some general properties of 
generators of  invariance groups of  time evolution equa-
tions H(t,x',f,  ft, f ilt••')+/, = 0. It will be shown that 
(1) A generator U of  an invariance group of  H + / , = 0 
always satisfies  the relation [Hi  f ]  + iV/dt  = 0, where 
ff  is a Lie operator associated with H\  (2) For a class 
of  nonlinear time evolution equations, the equation 
(d/dt)(V)  = ([//,  I/] + ?U/ct>  can be generalized; in par-
ticular, if U  is a generator, then (d/dt)(V}  = 0. 
I. INFINITESIMAL INVARIANCE 
TRANSFORMATIONS 

We denote ?n-dimensional real and complex vector 
space by Rm and C", respectively and we consider the 
following  infinite  direct sum of  the spaces; by 
denoting c ' J " , 1 , > by C, 

v=R"s-cececec'e---ecec'e---.  (d 
0 0 1 1 It  k 

The prime is to distinguish two spaces of  the same 
dimensions. We denote the elements of  C and C' by u 
and v,  thus the elements of V  are * 
z = ix,u, «,K,  J),  ...,H,t), •••), x^R"'1. (2) 

The components of  «, v are written as «>t»j-«»,> 
where each index runs from  0 through N'°: 
u = {u), v=(v),  U = («„,«(,... ,U K), I) = (t'o, v„), 
y = («oo, u0/r,...,uin,u„i «„), 
V  = (WoO>  Vol  v0Jf  vJtO>  vNi>  " '  I

 vNK)I 
2 (3) 
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Now we consider an infinitesimal  transformation  in V 
z=z+(Z, Z = (0,7], C,n, [,...,!),{, •••), (4) 

1 1 > » 

where 

j) = i](z;c), £ = E(z;c), (5) 

and the components of TJ and £ are to be determined by 
the formula 

Vi-'.̂ 'iV"'."' ''.v-'r̂ v','' (6) 

where Dtl...m =D,D, •••Dm with 

D< = + M.  + v,8v) + (un dUj + v„d V j) + • • • 
+ («U—- S.j...m + + - -' • C) 

In this paper, the summation rule will be assumed for 
repeated indices. In (5), c denotes a collection of  all 
the real and complex numbers appearing in the expres-
sion of TJ or £. We write (4) compactly in the usual way 
as 

Z=(l + eC/)z, (8) 
with 

foa. + J3„) + + f,3„() + • • •+ (17,...,3  

+ + (9) 
The operator U  has the following  property (see Appendix 
A for  the proof): 

Lemma 1: If  a function  A(z)  is twice differentiable 
with respect to all the variables, then (D t U -  UD t)A(z) 
= 0 for  i = 0 ,1 A'. 

We consider a set of  differential  equations for  func-
tions /(*) and g(x), 

F'(z;c) = 0, i = l,2, (10a) 
«=/(*), v=g(x),  '<={(*), y=g(x),  ft  = 1,2, 

(10b) 
where fix)  and g(x)  are functions  of  the (N+  l)*-tuple k k 
f{x) = (/„, /, f„), g(x)=-(g 0,gl g„), 
1 1 
fix) =  (/oo fsn), g(x) = (gm, . . . ,gff.y), 
2 2 

(11) 

with/ , . . . / = 3,i••• 3,/fix),  # , . . . / = 3 , , - * ' 3 ^ W . C in 
(10a) represents a set of  parameters (real or complex) 
appearing in the differential  equation. Each solution of 
Eq. (10) defines  a manifold  in V  which we call a solu-
tion manifold. 

It is well known2"4 that a group transformation e°" 
maps a solution manifold  of  (10) into another (or the 
same) solution manifold  if  and only if 

. ~UF l
 (z;c) | j = 0, i = l , 2 , (12) 

vhere (• •) I j indicates to evaluate the quantity under 
he conditions 

F 1 — Of D,r.,tF<  = 0, i = 1,2, fe  = l,2 ». (13) 

The operator U is then a generator of  an invariance 
group. 

We define  ((-conjugation of  a quantity A(z;c) 
=A(x,u,v,...,u,v;c)  by 

A(z;c)*=A(x, v,u,... ,v,  u;c*), 

where the asterisk represents a complex conjugation. 
Ah important subclass of  Eq. (10) is 

F'(z;c) =  0 with F 2 = ( F l ) # , ' 
ri * « v. «=/(*), v =f(x)  , . 

For this equation, the generator U  takes the form 

(16) 

(18) 

In this paper, we consider the infinitesimal  transfor-
mations of  the type (4) which involves no transformation 
in x. This transformation,  however, i s not as special 
as it might look. Let us consider an infinitesimal  trans-
formation  of  a more general t y p e 2 - 6 

i=z+tz, z=(i,i,t,5,£,•••), e = I1,...,i-v), 1 1 
(17) 

where 

It can be proved11 that if  we know the transformations  of 
type (4), then we can also obtain the more general type 
(17): 

Lemma 2: If  (4) is an infinitesimal  invariance trans-
formation  of  (10), then for  an arbitrary choice of  f,  ij, 
and £ subjected to the conditions TJ — £ F = rj. i -V 1', = £> 
the transformation  (17) is also an invariance transfor-
mation of  Eq. (10). Conversely, if  (17) is an invariance 
transformation  of  (10), then so is (4) for TJ  = FJ  - L'U T, 

C = S-Vr,. 
In the following  sections, we write the operators (9) 

and (16) as 

C/ = I)3. + £3„, U  = TJ3„ + TJ*3V (19) 

They, however, must be always interpreted as their 
infinite  prolongation. Also, we use the following 
abbreviation: 

[A(z)]„̂ „, = [A(n,t>)]/f 
and 

/ [A(u, v)\,dx  = JA(u,  v)dx. 
II. A GROUP THEORETIC ANALYSIS OF THE KdV 
EQUATION • 

The equation of  our interest is f ut +ff t + / 0 = 0 . 1 2 - 1 6 

The equation is a particular case of  (10) for  which 
F 2 = 0, g=  0. In this section, we use t, x for x a n d 
write coordinates such as u t , » I 0 , • • • as u„ n I t , ' " . 
Similarly, we write RJ0, IJ10, •• • as TJ„ IJ,„ • • •. Thus, by 



definition  i), = D(t), r] l t =DIDtrj,  etc. Also, because the 
equation involves a single real function,  all the f's  in 
the first  section are to be ignored. 

A. A Lie algebra of  an Invariance group of  the 
KdV equation 

We write the equation as 

F = u„x + uux + u,= 0, 
u=f(x,t),  u^=_f x(x,l),  «,=/,(*,/),• 

(20) 

(21) 

We look lor an operator £/ = j)B„ which satisfies  condi-
tion (12) for  this equation. We assume the transfor-
mation to be a generalized Lie type1 with i) 
= i}ix, t, it, ux, u„, « „ , , i<xxxx, u x x x x x ) . T h e a b s e n c e in 7j of 
coordinates corresponding to t derivatives may be 
justified  for  time evolution type equations in which the 
only I derivative contained is / , . 

The application of  Lie's algorithm3'4 for  finding  gen-
erators leads to the following  results: 

lA = (tux- i)a„, 
V 2 - j {arw, - 3/(h„, + mi,) + 2ii] a„, 
£/3 = K,a„, I/4 = (*„, + ««,)a„, 
u5 = (i + «»*** + 2iv„ + W« x ) a„. 

The generators form  a nonsemisimple algebra (see 
Appendix B for  the definition  of  a commutator) 

[t/ 1, U2]  = iC/ 1, [U 1,t/ 3]  = 0, IV,U>]  = U\ 
[lfi,lfi]  = V\  [£/ 2,t/ 3]  = iU 3, [[/ 2,J/ 4]  = U\ 

(22) [U 2,lfi)  = \lfi,  [t/3,£/4] = 0, 
[v3,ifi}=a, [f1,t,5]=o. 

By making use of  Eq. (20), and by applying Lemma 2, 
one can cast the first  four  generators into "genuine" 
Lie generators: They are equivalent to 

T71 = - - a„, TT-=H- xi,- 3/a, + 2na„), 
T73 = - a„ I7J = a(. (23) 

ear equation 

H.if)  f  + H,(f)  0 , + • • •+#.<„,(/) 0("> + 0 , = 0, (24) 

where//„(/)  = (a,HL/> etc. and 0"" = (d,r<pix,  I). We 
note that tj(/) of  a generator of  an invariance group of 
the equation H(f)  + / , = 0 is a special realization of  0 , 
The effect  of  the transformation  on the constant of 
motion 1(f)  is 

/ ( / + £ 0 ) = / ( / ) + t ( r ( / ) , 0 ) , 

(r (/), <f>)  = 3, /(/ + £0) | ,.o. (25) 

The function  T(/) is a gradient of  the functional  1(f). ls 
For the constant of  motion of  integral type, i. e . , /( /) 
= fp(f)dx,  the gradient has a simple expression: As-
suming p(it)  =p{x,t,u  k"'), 
r(u) =P,-D,p, x + Dip^x +••• + (- (26) 

In this case, we have 

(T(f),<p)=  f  T(f)<t,dx. 
Lax observed 

(r( / ) , 0) is a constant of  the motion. 

(27) 

(28) 

+ a{f\f,  + f,  = 0 and B. Constants of motion of f KMX 
its groups 

Now we prove a theorem which establishes a relation-
ship between a constant of  motion of  the KdV type equa-
tion and its invariance group. We consider an equation 

h "if)fx  +/<  = (29) 

This set of  generators is well known. 1 4 , 1 7 The genera-
tor ifi,  however, is new and its properties will be 
analyzed later. 

Let us consider operators dU/BI  = (5,tj) 3u and 
/ / = ("„, +mi,) a„ = t/4. It is remarkable that all the U' 
of  (21) satisfy  the relation [H,  U'}  + dU i/dt  = 0. In Sec. 
IV, it will be shown that a generator of  an invariance 
group of  time evolution equations always satisfies  such 
a relation. 

It is well known13 that the KdV equation admits an in-
finite  number of  conservation laws. To study a possible 
connection between the present groups and the conser-
vation laws, we need to know effects  of  infinitesimal 
invariance transformations  on constants of  motion. 

In his analysis of  constants of  motion of  the time 
evolution equation H(x,  t, u,ti,, u „ , . . . , « ' " ' ) + « , = 0, 
«'"'=«Srt7T  , u=f(x,t),  Lax15 considered an infinitesimal 
transformation  of  a solution fix,  t) into a solution 
u =f(x,  t) + «t>ix,  t).  The function  0 must satisfy  the lin-

where aif)  is a function  of / .  We assume that an initial 
value problem for  this equation is well posed for  a 
periodic boundary condition fix,  t) =fix  + * 0 , /) or for  a 
condition/(- I) =/(°°, t) = 0. Let us suppose that the 
system has a constant of  motion of  integral type /( / ) 
= !pif)dx.  The limits of  the integration are either over 
the period or from  - « t o ® . We prove: 

Theorem  1. If  r(n) is the gradient of  a constant of 
motion 1(f)  = fp(f)dx  associated with the equation/,,, 
+ o ( / ) / , + / , = 0, then the operator 0 = r]?u which has 
r\(ii)  = Dxr(u)  is a generator of  an invariance group of 
the equation. 

Proof:  It is sufficient  if  we prove {£/(«„, +a(n)", + »,)}/ 
= 0. We consider a transformation  of  a solution/ to a 
solution/ + £0. Then, by (24), 0 „ , + o( / )0 , + a„(/)/ ,0 
+ 0 , = o. Thus, O = / r ( / ) ( 0 , „ + (j0, + oB f ,0  + 0,)djr. In-
tegrating this by parts and assuming null contribution 
from  the boundary terms, we obtain 0 = / { - D 3 r - Dx(aT) 
+ Tajt x-D,T} l^dx  + (d/dl)  IT  <j>dx.  The second term 
vanishes because of  (28). Because we can prescribe an 
arbitrary admissible function  for  0 at initial time t0 , 
this equation implies {D3r + Dx(aT)  - Tajt x + D,!"}, = 0. 
Differentiating  this with respect to x, and defining 
V=DJ~, we find  {£>3rj + r)aji x + (£> xtj) a + D,n}, = {f  (n„, + aux + «/,)}, = 0. 

This theorem establishes a relationship between con-
stants of  motion and invariance groups of  Eq. (29), 

l(f)  = f  p(f)dx  — r(u)—~{U=»)3.,  j)=i»,r}. (30) 
The process from  U to I involves an integration process 



and not all the generators are integrable to I. In Sec. 
IV, we provide another scheme to connect a group to a 
constant of  motion which can supplement such a non-
integrable case. 

The application of  the theorem to the generators (21) 
leads to (within constant factors), 

l'  = f(itu 1-xu)dx,  I^fi^dx, 

P = j&J-u\)dx,  (31) 

15 = j au'-3uul + l„l)dx. 
The generator l/1 is not integrable. The constants (31) 
coincide with members of  the set of  constants of  motion 
due to Miura, Gardner, and Kruskal. 13 The simplest 
constant / = !udx  is missing; the reason is that it gives 
r = l, hence U  = 0. In the last section, however, we 
show that one can associate this with the generator V 2. 
Thus, we write f  = I  udx. 

The fact  that there exist an infinite  number of  con-
stants of  motion for  the KdV equation means that the 
equation is invariant under an infinite  number of  groups; 
the situation is similar to the case of  the sine-Gordon 
equation / „ - s in/ = 0.' 

Now, we study properties of  the groups associated 
with constants of  motion of  the KdV equation. First we 
review a few  important properties of  the gradient found 
by Lax" and Gardner.16 

C. Properties of gradients (Lax and Gardner) 
Lax has proved that the gradients associated with the 

constants of  motion of  the KdV equation has the follow-
ing unique properties: 

(1) If r'(r<) is a gradient of  / ' = Jp'(f)dx,  2, then 
r'(u)D xr'(u)=J"  with J"  = polynomial in 
«> »*> "xx, • " • 

(2) Every solitary wave solution 

h = 3c sech^VtT (x-ct)  = s(x-ct)  (32) 

is an eigenfunction  of  the gradients 

r(s) = y(c)s, r(c) = eigenvalue. (33) 

In the study of  doublet solutions of  the KdV equation, 
Lax, as well as Kruskal and Zabusky,12 focused  his at-
tention on three constants I3 , i 4 , and T5. For these 
constants, the gradients are 

r3 = u, r* = u1 + 2uxx, 
r 5 = a3 + 3i4 + 6K«„ + f u„„, (34) 

and correspondingly, 

r3(s) = s, r4(s) = 2cs, ri(s) = f c ! s . (35) 

Another remarkable property of  r (u)  of  the KdV equa-
tion is due to Gardner, 

(3) If  we define  an operator W' associated with r'(u) 
off',  i> 2, by 

W = (15,1") 3„ + (Djr1) 3., + (Djr1) 3^, + • • •, (36) 

then [ W , W"] = 0. 

0. Properties of W  , i > 2 
We note the similarity between the generator U' 

= (DJ"') 3, and Gardner's operator W'. They, however, 
are different  in that the prolonged U* involves terms 
such as (•) 3, , (•) 3« i ( whereas W' does not. Neverthe-
less Gardners result implies that two generators U' 
and U' associated with l ' and I ' commute, 

[ l / ' , t / ' ] = 0, i,j> 2. (37) 

This is obviously the reflection  of  the fact  that the KdV 
equation is a completely integrable Hamiltonian 
sys tem. 1 8 > 1 9 

Incidentally, It is often  useful  to note that: If  1(f) 
= fpif)  dx  is a constant of  motion associated with the 
differential  equation Fix,  t, / , / , , / „ / „ , / , „ / , „ • • •) = 0, 
and If  V  Is a generator of  an Invariance group of  F  = 0, 
then the quantity /' = J {Up(u)},  dx  is also a constant of 
motion of  the same equation. The application of  this 
scheme to the KdV equation, however, fails  to generate 
a constant; indeed, by making use of  Eq. (26), Lax's 
result (1), and Lemma 1, we find 

/  vV </*  = /£  (DW)p>„ )dx= / E v'(-o x)V <tl dx 

= /n'v<dx=J  ipjr')r'dx=JD xj"dx  = o. 

(38) 

Although the method fails  to generate a string of  con-
stants of  motion, it has been found  that U' gives rise to 
the following  recursive relation: 

0 = / u l p i d x ^ c j t l " \ (39) 

This relation has been checked up to t = 4. 

E. Properties of e M ' 

If  u —fix,  t) is a solution of  the KdV equation, then, 
by construction, a function  v=fix,t\a)  = {e° v «}/ is also 
a solution provided a series ST.o {»*/&*Hi/')*}, exists. 
First, we show that this group transformation  does not 
alter the values of  the constants of  motion I 1, 

${?>(«)},dx=  $ {p>MY fdx,  (40) 
Proof:  First, by (38), I  {U'p'} fdx  = 0. This must hold 

at initial time for  it is a constant of  motion: 
/  {£/  V}» (,>  dx  = 0 for  any admissible initial condition 

fix,  0) = (i(*). It can be proved that this is possible 
only if  U'p 1 =Dth"M,  h" = polynomial in « ,< /„«„ , • • • . 
Then, by using Lemma 1, ( t / ' )V = ( V ' ^ D . h " 
= Thus, !{p'b<ix=l{p l +D,Zl t(a'/ 
t!)(  U') k-1h"},dx  = !{p'} idx. 
This result reminds us of  quantum mechanics where 
group operations e'° A, e'bB do not alter the values of 
observables (A) and (B) provided [A,B]  = 0. Here 
operators V and observables / ' are related by (30) 
and in fact  the U"s commute by (37). 

The relation (40) indicates that both solutions fix,  /) 
and/(x, f;  a) will break up into the same set of  solitons. 
To prove this we start from  Lax's result (2). We sup-
pose r to be a linear combination of  r ' associated with 



the constants of  motion / ' of  integral type. Differentiat-
ing Eq. (33) by x and using the relationship between T 
and 11, we obtain 

{ t /nj^ytcjs , , s = s(x-ct).  ' (41) 

This and Lemma 1 give rise to 

{(!/)"«}, = (y3,rs={(ro,r«},. (42) 
This relation implies that: For the solitary wave solu-
tion (32), we hav^ the operator identity V  = yDx, Conse-
quently, the group' operation e'v has the effect  of  trans-
lation in x when it is operated on the solitary wave 
solution, 

fe'M.i.-c  = s(x-  Cl  + ay(c)).  (43) 
Now let us assume that the solution/Or, f)  splits into N 
well separated solitons as 1 — <*>, 

fix,  / ) ~ E s,(x-c,t  + 6,) a s / - " . 

For such a wave profile,  interactions between solitons 
are small, hence at least for  small a we may assume 

{^""l/b,. {e° t '"}, l<«,.«,) as (45) 

In view of  (43), we can write this as 
.v 

{eo t ,t(}/iT,i)~E s,(t - c , / + 6,-t-ay(c,)) a s / - « > . (46) 

Thus, two solutions fix,  t) and/(x, t;a) = {e°"u} nx<„ of 
the KdV equation have the same asymptotic profile  as 
I — <*> except that the phase of  each soliton is shifted  by 
the amount ay(c,). 

F. Invariant solutions of the KdV equation 
One curious question would be whether there exists a 

solution which is mapped onto itself  under the trans-
formation  e°". Speaking in a more general context, a 
solution, of  a differential  equation F  = 0, which is 
mapped onto itself  by the invariance group of  the equa-
tion is called an invariant solution (or generalized sim-
ilarity solution).1 The necessary and sufficient  condi-
tion for  f  to be the invariant solution of  eaU  is obviously 

{Vu} f  = 0. (47) 

One of  the best known invariant solutions will be the 
Green's function  of  the heat equation / „ - / , = 0, 
/ = (417/)-1'2 exp( -* j /4 / ) . Here the group involved is the 
dilation group generated by U  = (xii,  + 2tu, +11) 3„ (or 
equivalents U'  = -xd x-2td,+u3 v). 

It is well known that the singlet solution of  the KdV 
equation (32) is the invariant solution for  11 = U*  - c"'t/3 

(= 3, +c"'5,). The simplest generalization of  this is to 
consider a group generated by V  = + fiU*  + qU 3, p, q 
constants. Then the condition (47) yields 

iU . +ff xxx t" 2/„/„  + iff x + P(f m +//,)  + qf x = 0. 

An integration of  this equation with respect to x, assum-
ing/(± «>, 1) = 0, leads to the fourth  order equation ob-
tained by Kruskal and Zabusky,12 and Lax. 1 5 The nature 
of  the solution was carefully  studied by Lax, and the 
solution was shown to be the doublet solution. From a 

group theoretic viewpoint, therefore,  the doublet  solu-
tion of  the KdV  equation is the invariant  solution  of  the 
group 

The idea here is precisely parallel to Lax's; Lax 
uses a condition T(f)  = 0 to characterize the doublet 
solution whereas we use {Uu},  = 0; but they are related 
by (30). 

III. INVARIANCE GROUPS AND CONSERVATION ' 
LAWS OF NONLINEAR SCHRODINGER EQUATIONS 

The cubic Schrodinger equation - if„  - if 1/*  + / , = 0 
i s another well studied nonlinear equation. It i s known 
to share many common properties with the KdV equa-
tion. 8 , 1 8 , 1 9 In this section we study group theoretic 
aspects of  conservation laws associated with a class of 
nonlinear Schrodinger equations. 

(44) A. Conservation laws of nonlinear Schrodinger equations 

We consider a coupled nonlinear Schrodinger equation 

u„ + a(u, v;c) + iu, = 0, vxx + a(u,  ti;c)* - iv, - 0, 

u=f{x,t),  u,=f,(x,t),  « , = / , ( * , / ) , • • • , (48 

v=g(x,  t), vx =gx(x,  t), v,=g,(x,  <),•••, 

where a function  a is subject to the condition 

"„(/,«•;£) = k ( / , £ - ; c ) ] # , o„=e„o. (49) 
(See (14) for  the notation #. ] Condition (50) amounts to 
requiring that the equation can be written as a 
Hamiltonian system, 

f  = - «r„ f f  = * „ (so) 
where bH/bg  and 6 $ / 6 / are Frechet derivatives of 
ft  - ! E(f,  g) dx,  £ = energy density. Equation (48) re-
duces to the cubic Schrodinger equation for  the special 
case of  a = u2v and g=f*. 

We assume that an initial value problem is well posed 
either for  a periodic condition/(x, t)=f(x  + x0, t), g(x,  t) 
=g(x  + xj, t) or for  a boundary condition f(± ",t) = 0, 
g(±  t) = 0. Let us suppose that the system described 
by (48) has a constant of  motion I(f,g)  = Ip(f,g)dx 
where the integration is over the period or from  — * to 
+ The following  theorem establishes the relationship 
between the I  and an invariance group of  the equation. 
In the following,  quantities 61/6u  and 6l/6v  represent 
{ « / ¥ } , . * , . „ and {6f/6*}, 

Theorem  2: If  bl/bf  and 6I/6g  are Frechet derivatives 
of  a constant of  motion Hf,g)  = Ip(f,g)dx  associated 
with Eq. (48), then the operator V  = iifil/bv)  ?„ - iifil/ 
5h) 3„ is a generator of  an invariance group of  the 
equation. 

Proof-.  We consider infinitesimal  transformations  of 
solutions f,g  into solutions f+up,  g+op. <f>  and d  must 
satisfy  the equations A = +a,(.f,g;  c)0 + av(f,g-,  c)i; 
+ 10, = 0, B = + n,{g,f;  c*)4 + av(g,f;c*)4>-id,=  0. 
The effect  of  this transformation  on I can be found 
easily; by integration by parts, we arrive at 

Hf+t<t>,g+«l')  = l(f,g)+tf  0 + ~ 4') dx 

el(f,g)  + e61. 



Thus, d/dtbl  = 0. Next obviously, 

On integrating by parts this yields 0 = I(P<t>  + <?#) dx  . 
+. (d/dt)  5/ where 

P = - Mi>„  + a(u,  v,c)* - iw,]} /> f 

+ 'laj/,g;c)-a u(g,/;c*)]j f, 

Q = - {t/[« = + "(«,  v;c) + iti,h,c 

Because (d/dt)  61=0, we obtain 

f  (P<j>  + Qii)d:r  = 0. (*) 
One can prescribe arbitrary admissible functions  for 
<t> and i at an initial time. Thus, the Eq. (») implies 
that P  and Q are identically zero. Furthermore, the 
second terms of  P and Q are zero because of  condition 
(49), hence, P = 0 and <? = 0 yield the equations to be 
proved. 

This theorem enables us to find  constants of  motion 
if  we know the invariance groups of  Eq. (48); the pro-
c e s s involves a straightforward  integration process 
(61/Sf,  il/6g)—l.  However, we note that there may be 
a generator which i s not integrable to a constant of 
motion. This theorem can be extended to a general 
Hamiltonian s y s t e m . ' 0 

B. Invariance groups of the cubic Schrodinger equation 
and its conservation laws 

We look for  the operator of  the form  (16) which satis-
fies  the invariance condition (12) for  F l =f xx+f 2f 
+ if,  = 0 and F 2 = (F 1)* = 0. Assuming the transforma-
tion to be the generalized type with i] 
= T[(x,  t, u, v, ux, «am, vxxxxx), and carrying out 
Lie's algorithm, we arrive at the following  eight gen-
erators [writing only the first  term of  (16)]: 

(/,  = (-  jixu + tux) a„, 

l/j = (iti<„  + itu 2v + ixux + in) 3„, U 3 = iud u, 

U,  = uxd„  V i = i(u xx + u2v)d„ 
(51) 

V e = (« xxx + Ztivti x)d u, 
U 1 = i(u xxxx + u2v„ + 4ww/„ + 2uuxvx + 3 vu2

x + | u V ) 3,, 

V e = hxxxxx + 5(uvu xyx + imxvxx + 2vuxuxx 

+ uvj^n  + u2v x) + f  «Vw„] 3.. 
The first  five  generators can be cast into "genuine" 
Lie type operators by Lemma 2: 

T7 i = -ld x-$ixud„  V 2 = - xd x — 2/3, + u3„, 

TP  = iud„  V*  = id M,  V s = -d t. 
The effects  of  the group transformation  e""', a real, on 
& solution /Or, /) can be found  easily for  i < 6, 

/ = exp[- i(ax  + a>t/2)/2]f(x  + at, t), 

f  = af(ax,  <ft),  f  = exp(ia)f(x,  t), (52) 

/=/(*  + a,t), f  =f(x,  t + a). 

The remaining three generators are of  the generalized 
type, and there exists, at present, no analytic method 
of  finding  corresponding global transformations. 

The constants of  motion associated with the generators 
(51) can be found  by the simple integration process; they 
are / ' = J p' dx  where 

pi=mv-it(u xv-tmx), p2 = vv, p' = iti,v, 

Ps = i(" xi' x - s w V ) , pe = i(u xxxv + h'U Iv1), 

p7 = u„v„ + j u V - 2(«,i> + uvx)2 - 3tt}v xuv, 

p" = "xxxx,"  + 5 (ui'mV  + wixvxx + 2r,x„xxv + ,m„vx + u2vx) 

The operator U 2 i s not integrable. These constants of 
motion, except the first  one, agree with the ones ob-
tained by Zakharov and Shabat.9 The phase shift  opera-
tor U 3, the x translation operator t'4, and the t transla-
tion operator ifi  have given rise to the probability den-
sity p3 , the momentum density p', and the energy den-
sity p5 . The first  constant / ' also has a simple meaning 
if  we consider the cubic Schrodinger equation as the 
Schrodinger equation for  a particle with negative mass 
- The / ' represents the initial position of  the particle, 
<*o) = 0r-/V> = jf = V  = velocity. 

Let us define  the Lie Hamiltonian by 

^'if) 3»" (!'S) e" = C/5' W = energy = /5. (54) 
Then, we find  that the operator V' of  (51) satisfies  the 
relation [H, V'] + 3t/ ' / i t = 0 with 

SU 
St 

We note that the second generator U2 which is not re-
lated to a constant of  motion also satisfies  the relation. 
A general analysis of  this property of  the generators 
will be given in the next section. Some of  the other com-
mutation relations among U l are [u', U y ] = 0 for 
3 

IV. GENERAL PROPERTIES OF GENERATORS OF 
INVARIANCE GROUPS OF TIME EVOLUTION 
EQUATIONS 

Let us assume that Eq. (15) is a time evolution type: 
x° = time coordinate, 

F 1(z;c)  = H(z;c)+u a = 0, 

F 2(z;c)  ~ [H(z;c)]^  + v0 = 0. 
(55) 

To carry out a consistent analysis, we must take into 
account the relation (13), 

+«o> = °, k = \,2 «. (56) 

We define  two operators associated with H121 and U by 

H=H9,  + H*d„  (57) 

dV 

dP 
(58) 
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As was mentioned in the first  section, they must be 
interpreted as their infinite  prolongation. 

By the definition  of  a time evolution equation, H  is not 
a function  of  the coordinates corresponding to ^-der iva-
tives such as i<ol, v v o . In such a case, we can always 
express any coordinate of  V-derivatives in terms of 
other coordinates by making use of  the relations (55) 
and (56). Thus, we assume, without a loss of  generality, 
that 17 is free  of  these coordinates. 

A key in the present analysis is to write Eq. (55) as 

W  + D„)v =  0. (59) 

We first  prove: 

Lemma 3: If U  is a generator of  an invariance group 
of  the equation H + u0 = O, then under condition (56) we 
have [U,H]  + BV/Bx"  = 0. 
Proof:  We have [C/,//] + dU/ix <> = aiv + a*Bv  with a 

= UH  -HJ)  + 3 oT). It i s sufficient  if  we prove that a van-
ishes under (56). Indeed, 0 = UiH  +1<0) = UH  + £>0 n = VH 
+ + "on- + "el. + • •- = VH  + 3 0tj - Hi u - H*3,, - • • • = un-rS^-Hn. 

Now, we define  the following  quantity: 

{V)  = Re f ivUu)^ ftx) dx' dx2 • • • dx",  Re = real part, 

(60) 
where the integration should be taken over the whole 
space of  interest. Obviously \U) is a function  of  only. 
The following  lemma describes how it develops in time 
for  a class of  nonlinear systems: 

Lemma 4: It H  of  the equation H  + tt0 = 0 satisfies  the 
equation 

if* + vH.  + uiHJ*  - C,[t>WB| + h(H„()#] + • • • 
+ (-[ttf . +•'(«„ )#] = 0 (61) 

and if  all the boundary integrals 

an V./*tl) 
and 

.,]..,<,, v'dn 
s " * !./*(*> 

vanish for  v = ( v t , — , v") = normal vector on the boundary 
surface,  then 

d 
d? 00 =([£/,//]-3 U 

Y7, 
(62) 

Proof:  For brevity, we write (60) as (l/) = ReJ vUudx. 
Then, we have d/dx°(U)  = Re !(v0Uu + vD t Uu)dx 
= Re/[-W*ri + «(3l / /3x 0- / / ty)«)dx. Here, we have used 
the relations (5S) and (56). On the other hand, we have 
<U//) = Re Jt)t//jWx = R e / w j ( . d x . Applying 
Green's theorem repeatedly, and using the hypotheses, 
we find  (t///) = Re /(-#*!))<fx.  Putting these two together, 
we obtain id/dx"){V)  = <[£/,//]  + BU/Bx"). 

The combination of  Lemma 3 and 4 leads to a method 

to associate a conserved quantity with an invariance 
group of  the equation: 

Theorem  3: If  the operator V  defined  by (16) is a gen-
erator of  an invariance group of  the equation H  + « 0 = 0, 
and if  H satisfies  all the conditions in Lemma 4, then 
the quantity (£/) defined  by (60) is a constant of  motion, 
i. e., d/dx"(V)  = 0. 

We note that in proving this we did not assume the r 
quantity / fix) fix) dx' •••dx1" to be independent of  time. 

Lemma 3 can be generalized to a set of  nonlinear 
time evolution equations of  the form 

H ' + ul = 0, ff'=  #<(*•,u,u,u, ...,u), ( = 1 , 2 , . . . , M t 

(63) 

where u = (u 1,u',.. ,,ti"),  u = ( u ' j u 2 , . . . ,u") 
n fc k * 

and u' = / ' (*) , etc. In this case we have 
Lemma 3': If V  = is a generator of  an invariance 

group of  Eq. (63), then we have [u,H] + BU/Bx°  = 0 
where H  = H i2„t and dV/dx°  = i?x<,v')  3„i. 

For Hamilton's equations of  a field  [t/1 = P=pix), i/3 = Q = ?(*)] 
| + P 0 = O, -g +« o = 0. 

we obtain the familiar  expression 

with j c a . 
The theorem above can be specialized to a real dif-

ferential  equation: If Hix.  u,u.u...., u). in the equation 
1 2 r 

H + wo = 0, satisfies  an equation 

H + uH„-D,(uH Ui) + --- +(- ) = 0 
(64) 

and if  all the surface  integrals /s["t7,...»W|,j ...Jiu/ii) dn 
vanish for  S = boundary, then the quantity ( t j 
= ittiUi(]„,, dx1 • ••dx*  is a constant of  motion. Here, 
v  — the whole space inside S. 

The following  equations which have been attracting 
considerable attention in the study of  propagation of 
nonlinear waves satisfy  the condition (61) or (64): 

generalized Korteweg—de Vries equation 

(K) 2"if+f"B,f+S,f=0, 
cubic Schrodinger equation in « dimensions 

- t [ E ( ? , , ) V + / ' / * ] + » . / = 0. 

Hirota equation8 

a(3,)'/+ib(Bx)\f + cff'BJ  + idf*f'  + 3 , / = 0. 

However, the heat e q u a t i o n / „ - / , = 0 and Burgers 
equation/„ +ff x-f,  = 0, both of  which represent a dis-
sipative system, do not satisfy  Eq. (64). 

The application of  TTieorem 3 to the KdV equation 
and to the cubic Schrodinger equation has turned out to 



produce only a few  constants of  motion, 

KdV equation: 

m = -f«dx,  <U 2) = fi« 2dx, 
{Ui) = 0, f o r i > 2 . 

cubic Schrodinger equation: 

(V 2) = fi mi* dx,  <t/<) = 0 for  f  > 2. 

V. CONCLUDING REMARKS 

We have shown that provided one considers the 
group transformation  which is more general than the 
one considered by Lie, one can associate one invariance 
group with each constant of  motion of  a class of  physical 
systems. Thus for  such a system one can derive the 
constants of  motion by finding  the invariance groups of 
the equation. One of  the best known methods of  finding 
conservation laws is to use Noether's theorem. The 
difference  between the two is that the groups in the pres-
ent approach leave the differential  equation invariant 
whereas the groups in Noether's theorem leave an 
action integral invariant. 

In the following  communication, a generalization of 
Theorems 1 and 2 will be discussed. 
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APPENDIX A: PROOF OF LEMMA 1 

It is sufficient  if  we prove D0UA  = UD 0A. To avoid 
complex indices, we represent a set of  indices i •• • k 
appearing in the expressions (7) and (9) of D0 and U  by 
a circle " or by a dot • , and write D0 and V  as 

0̂ = 3,0+? ("ô  + fo'V-

where the sign indicates a summation over all the 
parenthesized quantities in (7) and (9). Then, by the 
definitions  of D0 and U, 

=£ bDaA^+ZD^) +E[U>01o) A„o + (DoS.Mj. 
Using D0rja = j]0o = Uu 0o, D0£0 = [Oo = Uv 0o, 

D0UA=E  (tJoÂ+E.-DoAJ +E[(t/«0„)A.o+(I/t>0„)AvJ. 

(») 

The first  term is 

+?M„ S + v^A^)} 
+ EoU0„o +E + 
=Zb, A 
+ £oA«.J+?t'o•EhA-.'e+ZA-.J  ) 
= UA 0 +Lu„ UA^  UA V m. 

Hence, (») gives Dt UA  = t/[>l0 ("0oi4„o + u0oA„o)] 
= UD aA. 

APPENDIX B: A COMMUTATOR OF GENERALIZED 
LIE TYPE OPERATORS 

We consider two operators of  the form  (19), 

l/1=T)Ie. + £13„, U 2=^d, + (%. 
We must interpret these as simplified  representations 
of  (9). The commutator of  the two is defined  as 

[l/», U 2] = [(£/y) - (t/V)] 3„ + [(t/>£2) - (£/'£>)] 3„+ • • • 
+[(t̂rii...,) - (t/!i!...,)] 

We write this as 

V  = [t/1, U 2] = t)3. + £3V + • • • + T,,..., 3„(ii>t 

We prove that this satisfies  the condition imposed on 
(9), i . e . , the condition (6). In fact,  by applying 
Lemma 1, 

T),..., = U 2
V\... t = I/'B(...,r,! - U 2D r,' 

= D,...t(UW  -t/V)=.D (...»1-
Similarly £ , .„ , = D, . . . ,£ . Therefore,  the operator ob-
tained from  the commutator of  two operators of  the 
form  (9) also assumes the same form. 
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It is shown'that whenever fields governed by the equations 3/dlp0 = — 5H/5q a. d/dtq B = SH/bp a 

allow a conservation law of the form flp/fl;+divj = 0. there exists a corresponding Lie-Biicklund 
infinitesimal contact transformation which leaves the Hamiltonian equations invariant. A condition thai an 
invariant Lie-Backlund infiniiesimal contact transformation gives rise to a conservation law is established. 
Each such transformation, which may involve derivatives of arbitrary order, yields a one-parameter local 
Lie group of invariance transformations. The results are established with the aid of a Lie bracket formalism 
for Hamiltonian fields. They account for a number of recently discovered conservation laws associated with 
nonlinear time evolution equations. 

INTRODUCTION 

In p r e v i o u s p a p e r s , 1 , 2 we have s tud ied i n v a r i a n c e 
p r o p e r t i e s of  v a r i o u s n o n l i n e a r t i m e evolut ion equa t ions 
by app ly ing the t h e o r y of  g r o u p s of  L ie—Backlund t a n -
gent t r a n s f o r m a t i o n s 3 (not to be confused  with the B a c k -
lund t r a n s f o r m a t i o n s  of  r e c e n t l i te ra ture" 1 ) and we have 
shown tha t e ach of  the we l l -known s e r i e s of  c o n s e r v a t i o n 
l a w s a s s o i c a t e d with the s i n e - G o r d o n equa t ion , the 
Kor teweg—de V r i e s equa t i on , and the n o n l i n e a r S c h r o -
d i n g e r equa t ion i s r e l a t e d to a different  o n e - p a r a m e t e r 
g r o u p which l e a v e s the c o r r e s p o n d i n g different ial  e q u a -
t ion i n v a r i a n t . 

T h e - g r o u p g e n e r a t o r s ob ta ined in t h e s e p a p e r s depend 
upon d e r i v a t i v e s of  a r b i t r a r y o r d e r , so tha t they a r e 
not of  the type c o n s i d e r e d in L i e ' s g e n e r a l t h e o r y of 
con t inuous g r o u p s of  t r a n s f o r m a t i o n s .  The q u e s t i o n 
n a t u r a l l y a r i s e s : T o what ex ten t can the p r e v i o u s r e s u l t s 
be g e n e r a l i z e d ? 

In the p r e s e n t p a p e r , we s tudy i n v a r i a n c e p r o p e r t i e s 
of  H a m i l t o n ' s equa t ions gove rn ing the t i m e evolut ion of 
m u l t i c o m p o n e n t f ields  p„i\), qa(x), 

p a = - 6 H ' & , u , « 0 = 6//.'6/>0, a = l, 2, ... ,A\ (1) 

w h e r e x = (v", .v ' , .v2 , .v3) and />„ = ?,o/>„, q a = ? / / / „ • We 
a s s u m e that an e n e r g y dens i t y H a s s o c i a t e d with H can 
depend on c o o r d i n a t e s .v ( including .vn), pa, and qQ, and 
t h e i r s p a t i a l d e r i v a t i v e s of  a r b i t r a r y o r d e r . 5 T h e ma in 
i n t e r e s t of  the s tudy i s : to e x a m i n e the r e l a t i o n s h i p 
be tween i n v a r i a n c e g r o u p s a d m i t t e d by Eq . (1) and 
c o n s e r v a t i o n l aws obeyed by the f ie lds .  We wi l l p r o v e 
that: Tltc  existence  of  A' independent  conservation  laws 
associated  with  Ihc  fields  of  Eq. (1)  necessarily 
requires the exislcnce  of  A" one-parameter  groups 
which leave Eq. (1)  invariant.  T h e p r e c i s e r e s u l t will 
be s t a t e d h e r e a s a t h e o r e m . T h e no ta t ions in the 
t h e o r e m a r e th^ following:  A and J ' a r e q u a n t i t i e s 
a s s o c i a t e d with the f ields  and a r e funct ions  of  x , pa, 
and q a , and of  t h e i r s p a t i a l d e r i v a t i v e s of  a r b i t r a r y 

a ) T h i s work has been supported by a Research Corporation 
grant . 

" P r e s e n t address: 151U-G9 Sekido, Tama-shi , Tokyo 192-02, 
Japan. 

o r d e r ; £>, r e p r e s e n t s a d i f ferent ia t ion  with r e s p e c t to 
x ' , and the quant i ty bA/if  (f=q„  o r pa) i s defined  by 

with 

Theorem:  If,  when pa and qa a r e s o l u t i o n s of  t h e 
Hami l ton ian equa t i ons (1), t he funct ions  AU,p a,q0,"r) 
and J ' ( . v , p a , q a , " ' ) obey the c o n s e r v a t i o n law D„A 
+ = 0 , then the p ro longa t i on of  t h e o p e r a t o r 
A = (6A/6p a)d tl -(6A/6q l>)ct i s a g e n e r a t o r of  an in -
v a r i a n c e g r o u p of  the Hamil fonian  e q u a t i o n s . C o n -
v e r s e l y , for  any o p e r a t o r of  the form  A' = (6A'/6p a) ?flo 

- (M',< w h o s e p ro longa t i on b e c o m e s a g e n e r a t o r , 
of  an i n v a r i a n c e g r o u p of  the Hami l ton i an e q u a t i o n s , 
t h e r e e x i s t s a flux  _?' which t o g e t h e r with a dens i ty 
A' f o r m s  a c o n s e r v a t i o n law D^A  J ' = 0 . 

T h e c o r r e s p o n d i n g r e s u l t for  Hami l ton ian s y s t e m s 
with finite  d e g r e e s of  f r e e d o m  gove rned by the equa t i ons 

— dH/?p a, pa = - cH/cq a h a s been ob ta ined by 
P e t e r s o n . 6 

We will p r o v e the t h e o r e m by u s i n g a L i e b r a c k e t 
f o r m a l i s m ,  i n s t e a d of  a P o i s s o n b r a c k e t f o r m a l i s m ,  for 
E q . (1). To e s t a b l i s h the L ie b r a c k e t f o r m u l a t i o n ,  one 
n e e d s to a s s o c i a t e a p p r o p r i a t e o p e r a t o r s with p h y s i c a l 
q u a n t i t i e s of  the s y s t e m . Such a f o r m a l i s m  is known for 
Hami l ton ian s y s t e m s with finite  d e g r e e s of  f r e e d o m . 7 

In the following  we wil l deve lop a s i m i l a r f o r m a l i s m  for 
the field  e q u a t i o n s (1) by app ly ing the t h e o r y of  L i e -
Backlund tangen t t r a n s f o r m a t i o n s .  T h e f o r m a l i s m  t u r n s 
out to be v e r y a p p r o p r i a t e in s tudy ing the connec t ion of 
i n v a r i a n c e g r o u p s of  Eq . (1) to c o n s e r v a t i o n l a w s . In 
t h i s a p p r o a c h no r e f e r e n c e  is m a d e to i n v a r i a n c e p r o p -
e r t i e s of  an ac t ion i n t e g r a l ]L tlx: We dea l d i r ec t l y with 
i n v a r i a n c e p r o p e r t i e s of  d i f ferent ia l  e q u a t i o n s . 

All the r e s u l t s in the following  s e c t i o n s r e m a i n va l id 
for  a g e n e r a l c a s e of  n s p a t i a l v a r i a b l e s . 



I. LIE BRACKET FORMALISM 

We consider groups of  Lie-Backlund tangent trans-
formations  generated by the operators® 

U  = - c.a,. + U),F m)amaii - iD.c.te,.., 

_ { ( - D ( ) . . . ( - D y ) G a } + 

where represents a total derivative operator 

(2) 

= aTij 
(3) 

/><,,i..., i 9<,,i...i represent coordinates associated 
with derivatives ?xi • • • pa(x), •'" ®a(.v). 
Throughout the paper we adopt a summation convention 
for  repeated indices: a greek index runs from  1 to AT 
and a Roman from  0 to 3. In contrast to conventional 
contact transformations,  we allow F  and G to be func-
tions of  .v and palx), q a(x), and any of  their derivatives 
of arbitrary  order. In the study of  Eq. (1) which is a 
time evolution type we can assume without a loss of 
generality that the F a and Ca are not functions  of  time 
derivatives of pa(x) and q a(x). This will be assumed in 
the following  for  all the operators of  the form  (2). To 
avoid a complex expression we write the operator (2), 
which we call a Lie—Backlund operator, as 

U  = FJ  - G „ ? . (4) 
a 9ft  a Pa' 

We must always consider this to be the infinite  series 
given by (2). We denote a set of  operators of  the form 
(2) by A. It is known that the U  have the properties 

(a) If  U\  U'eA,  then U3 = [U\  t / 2 ]e A with F' a = U 1F\ 
- U*Fl  and Ca = U'G* a - U'G' a. 2-s 

(b) If  V1, V , [ ) ! € A , the Jacobi identity holds9: 
[[U1, W],U3]+[[U2,£/3], £/']+[[t/s.f/1],̂]̂. 

(c) Members of  A commute with the total derivative 
operator Dr. [U,  D i ] = 0 . 2 - 9 ' 1 0 

This last property will be used frequently  in the follow-
ing without comment. We define  the time derivative of 
the U, which we denote by U^, by 

<5> 
A g a i n , t h i s i s a s i m p l i f i e d  e x p r e s s i o n ; t h e full  e x p r e s -
s i o n i s o b t a i n e d by r e p l a c i n g F a a n d G a in (2) by S r 0 F a 

a n d a ^ G , , . 

Now, let us consider a variational problem of  a 
functional 

J\p,<!,x°)  = jj(x,p,q)dx',  dx' = dx1dx2dx3. (6) 
The density $(x,p,q)  depends on x and pa, q a and their 
derivatives of  arbitrary order except 
ones involving time derivatives. For the variation paix) 
- />„(*)+ £!>.(*) we have 

- 6J  = e / c iha dx'  + surface  integral 

w i t h 

(7) 

(8) 

Similarly, for  a variation q a(x) — <7„(.v) + e0„(.v), we have 

¥-=9  -D.Q ,+DMj 
+ ( _ D ( ) . . . ( - D J ) < ( ? a a i . ..., + ••• . (9) 

We adopt (8) and (9) as the defining  equations of 6J/6p a 
and 6,7/bqa. We call ty a density of  J. With the functional 
J  we associate an operator J which is obtained from  (2) 
by substituting 6J/6p a and bj/bq a for  F a and G„: In 
simplified  notation 

M S (10) 

We designate the operators of  this particular form  by 
boldface  letters. Then, with the energy functional  H, 
the following  Lie—Backlund Hamiltonian operator will 
be associated: 

(«/>„) C</ft)?'°' 
perator corresponding b 
nd to be equivalent to 

• ' - M S K - M S K 

an 
The operator corresponding to a functional 
is found  to be equivalent to 

(12) 

Let us denote the set of  all the operators of  the form 
(10) by SJ. We can prove that n closes under the com-
mutation operation defined  in (a) above: 

Proposition-.  If  two operators A and B belong to f2, 
the commutator C = [B,A] also belongs to n , and its 
density C is given by any one of  the following: 

C2 = B/4, C3 = -aS. (13) 

The proof  will be given in the Appendix. Following the 
usual definition  of  a Poisson bracket for  fields,  we 
have C = J(Tidx'  = {£,A}. Thus, we might state this as: 
The commutator of  the operators associated with the 
functionals A and B is equal to the operator assoicated 
with the functional [A,B\. We note that the canonical 
commutation relations among pa and q a are not carried 
over to the operator formalism:  The operators cor-
responding to pa and q a are P a = dq  and Q a — - Sp and 
they all commute. 

II. INVARIANCE GROUPS OF HAMILTON'S EQUATIONS 
AND CONSERVATION LAWS 

We now turn our attention to the theorem stated 
earlier. The well-known equation which describes the 
time evolution of  a functional  A = IA dx'  is 

^A = {H,A}  + fB xo/ldx'. (14) 

We associate an operator K = [H,A] +A 0 with the quan-
tity on the right-hand side. In view of  (12) and (13), it 
is obvious that: 

The density K  corresponding to the operator K=[H,A] 
+ A o is any of  the following: 

^fMHfm^ 



or (*») 

In the following,  we prove the theorem by showing 
basically the following  equivalences: 

A is a generator of  an invariance group of  Eq. (1). 

A satisfies  [H,A]+A^,= 0 

A satisfies  DJ\  + £XDiJ< = 0. (•i 
According to the theory of  groups of  differential 

equations," the operator V of  (2) becomes a generator 
of  an invariance group of  Eqs. (1) if  and only if  U 
satisfies  the equations 

Here, the symbol (•• •)!,, means: Evaluate the quantities 
under conditions (1) and the conditions implied by them. 
We note that there exist generators which do not take 
the special form  given by (10). We start from  the fol-
lowing properties of  a generator of  an invariance group 
of  Eq. (1): 

Lemma 1: The Lie-Backlund operator V  defined  by 
(2) satisf ies  the equations 

([H, U]  + U :f i)pa | „ = 0 , ([H, U]  + U xo)qa | w = 0 , (16) 

if  and only if  U  is a generator of  an invariance group 
of  Hamilton's equation (1). 

Proof:  In view of  the definition  of  H, under the con-
dition (• • • )l w we have an identity D0= 3,0 + H. Using 
this relation, we obtain ([H, £/] + Uxo)pa\ w = { -HG„ 
+ £7(6/7/6q„)- 3,0G J l „ = {l / (6fl /6 9 < 1) - D 0 G „ } | r = V(6H/tq, 
+ pa)\w. Similarly, ([H,C/]+ V^)q a]w=U(-6H/6p a 
+ q a ) l „,. These relations obviously prove the statement. 

In the following  analysis, it is often  helpful  to con-
sider an initial value problem of  Eq. (1). We say that 
functions  /„(*•') and ga(x'),  x'  = (*', x2, x 3 ) , are admis-
sible if  the initial value problem pa I =/„,  qa I =ga 
has a solution. A set of  all such admissible functions 
will be denoted by I. The following  lemma states that 
Eq. (16) holds without the condition I v . 

Lemma 2: If  V  is a generator of  an invariance group 
of  Hamilton's equations (1), the operator [H,£/] + U,o 
vanishes identically for  arbitrary functions  /„(*') and 
ga(x')  which belong to I. 

Proof  .'We  have, by definition,  [H, U]  + f  = 
-N aBt, where MJx,p,q)  = H F a - U(bH/bp a) + 3xoF a, 
N a(x;p,q)  = -RGa-V(t,H/bq 0L) + B^G.  By L e m m a 1, if 
Pa' 9<x a r e solutions of  Hamilton's equation, then M a 
= N a = Q. We let x°-1 = initial t ime. At t, both M 0 and 
N a are well defined  (note that F a and Ca do not depend 
on any x° derivatives of  pa and qa), hence, M m=N a = 0 
at t. Suppose that inital conditions were />„=/„(*'), 
?„=«„(* ' ) . Then, MJx,f,g)  = NJx,f,g)  = 0 with 
x = (t,  i 1 , x2, x3). Because I  i s a parameter of  arbitrary 
value, we may replace x by (x°, x2, x 3 ) to obtain the 
desired result. 

Remark:  If  / „ , ga or any of  their derivatives were 
not defined  at some point, the function  M a and N a , hence 
the operator [H, V]  + U to, would not be defined  at the 
point. We note that the relation [H, U] + U^eO holds 

even pointwise: For any given values of  x, pa, qa, 
Pa it  la i>**"> the operator vanishes. This should be 
true as long as there exis ts a solution which takes the 
designated values at the given point x. It is also clear 
that we can allow f a and ga to be functions  of  x instead 
of  x'  because x", if  it appears in f a and ga, acts simply 
as a parameter and has no consequence for  the proof 
given here. 

Now, we combine the results obtained above to prove 
the theorem stated at the beginning: 

Proof  of  theorem-.  In the following,  we assume, that 
the index i runs from  1 to 3. First we show DrjA + Dj' 
= 0 —A is a generator. Under condition (1), we have 
tlA + BjtA^DcA, hence, by the hypothesis 

H / + = (T) 
Because we may assume that neither A nor J ' contains 
time derivatives of  pa and qa, this relation must hold at 
initial time x° = f  where arbitrary initial values may be 
imposed on pa and qa. Consequently, the equation (f) 
holds not only for  solutions pa and qa but also for  arbi-
trary functions  f a(x')  and ga{x').  Thus, noticing that the 
left-hand  side of  the equation Of)  i s the /C2 of  (*»), we 
have K,  = -D{J'.  This implies that 6K/6p a and 6K/6q a 
vanish identically, and, as a result, [H,A] +A^>s0 by 
(»*). In view of  Lemmas 1 and 2, we see that this is 
the necessary and sufficient  condition for  A to be a 
generator of  an invariance group of  Eq. (1). Conversely, 
if  A i s a generator of  an invariance group, in view of 
Lemma 1 we obtain two equations 6K/6p a = 0 
and 6K/6q a = 0. According to Lemma 2, these vanish 
identically. This implies that the density K  in (**) must 
have a divergent form;  for  instance, K 2 — (H + d ^ A 
= -Dj'  with J ' = 3'(x,p,q).  Now if  we let />„ and qa 
be solutions of  Eq. (1), the quantity in the middle of 
this equation becomes equal to D^A, and the equation 
leads to the desired result DqA + D , J ' = 0. 

III. INTEGRABILITY OF GENERATORS TO 
CONSERVED DENSITIES 

We have proved that with every conservation law 
obeyed by the Hamiltonian fields  one invariance group 
i s always associated. In the present formulation,  the 
converse of  this i s true only if  the coefficients  of  the 
generator V  take the special form  F a = bA/5p a, C a 
= 6A/6q a. Because there exists a systematic algorithm 
for  finding  generators of  invariance groups, it is 
Important to know whether the generators found  are 
lntegrable to conserved densities. For simplicity, we 
adopt the following  notation: 

/.(*)  = ?«(*).  f.J*)=P*M  with 01 = 1 , 2 , . . . , A ' , 
(17) 

s„(A)=f„ UA)=c. 
In this notation, our problem i s to tell whether a given 
set of  S„ have the property S„ = iA/6f a for  some func-
tional A [ / J = SA(x,f y)dx'.  As a general property of  a 
functional,  we have 

where £ = ( f u t 2 , • • • ,£a„). If  S„ has the desired property, 



(18) 
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then, because of  the definition  {(r//rfe„)/»[/,  + t,01J},.„ 
= 6 ( y fixed),  this relation is written (or 
fixed  a and j as, 

This is the integrability condition of  the set S„ to a con-
served density A. It is not difficult  to obtain from  this 
a condition which does not involve integration: Using 
the fact  that the functions  <pa and 6 S are arbitrary, we 
can reduce (18)to 

£ d : . ( 6 ? , S.) = S<!> ? , S„. (19) 

0(.v) — arbitrary function 

where ZT = ( -D, ) • • • ( - = ?,«••• ®(v), 
and the notation y,. , a. . = a + a. + n, + • • •. All the 

^ u > I***; i ij 
Roman indices run from  1 to 3. Because 6 is arbitrary, 
the coefficients  of  each A,, . . . , on both sides of  (20) must 
match. 

Example.  sine-Gordon equation 
To illustrate the results obtained above, we study the 

sine-Gordon equation, using / = .v°, .v — .v1, 

h „ - « „ + sin» = 0. (20) 

A canonical form  qt-6H/  6/j, pt-= - bH'bq  for  this equa-
tion is obtained by letting q = », H  = \p2 + j®2 - cosq: 

<7i=/>, /> , - -9„+s in< / . (21) 
In the previous paper,1 we have shown the equation ux t 
= sin» admits an infinite  number of  invariance groups, 
and it is straightforward  to adapt these results to Eq. 
(21); four  of  the generators of  invariance groups of 
Eq. (21) are 

v i = u 2 = M , -<-<7„ + si-V/)?,. 
v i = l 4 » n , " Sfl.cos?  + + h j > 2 ) \ ~ ( - 4/>„, 

+ 1px cos® - f ® ^  - - 3qxqxJ>V e, 
v4 = (4/>„  " />  cos9 + \q2J>  + - (-  4qxxx 

+ 5®xx cos® - §q\sin® - sin® cosq 

ip'sinq-ZqJ>J>-\p 2qxx)*t-

Using a theorem given in the previous paper,8 we see 
that C<'i and V2 are equivalent to the space and time 
translation operators ? and c t . To find  conserved den-
sities from  these operators we must check condition 
(19). All of  them satisfy  the equation, and the conserved 
density A associated with each of  the generators is 
found  to be: 

A i = p q x = momentum density, 

A 2 = jp2 + - cos® = energy density, 

j -A, = 4pqxxx - 3pqxcosq + iq\p + iqj,\ 

A,= -1 p\- 2 q\x - ip2 cos q + \q2J> 2 

+ ip" ~11\cosq + i cos2® + iq*. 

by Lamb,'2 and their group theoretic aspects have been 
studied by the author1 and by Steudel.13 

In the previous paper,2 we also have shown that a 
series of  conservation laws admitted by the nonlinear 
Shrodinger equation are related to invariance groups of 
the equation, where we have made use of  a special prop-
erty of  the equation. The present results provide a uni-
fied  view to the previous results. 

CONCLUSION 

In this paper, we have developed a new group theoretic 
way of  looking at conservation laws associated with 
field  equations in Hamilton's canonical form,  and we 
have proved that the existence of  -V independent con-
servation laws necessarily implies the existence of  at 
least ,V local one-parameter Lie groups which leave the 
field  equations invariant. The condition that a given 
invariance group is integrable to a conserved density 
also has been given. Because there exists a well 
established algorithm for  finding  generators of  invari-
ance groups of  differential  equations, and because many 
Euler —Lagrange equations can be put into Hamilton's 
canonical form,  the present results should be useful 
in finding  conservation laws for  a variety of  systems. 1 4 

Clearly, the present approach to conservation laws 
via a Lie bracket formalism  is quite different  from  con-
ventional approachs which make use of  Noether's 
theorem: Noether's theorem as originally derived is too 
restrictive to give rise to conservation laws such as 
those dealt with here. However, as this work was being 
completed, the author learned in a personal communica-
tion from  N. H. Ibragimov that he has been able to 
generalized Noether's theorem and with the aid of  L i e -
Backlund contact transformations  he has obtained re-
sults similar in part to those obtained here . 1 0 
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APPENDIX: PROOF OF THE PROPOSITION 

To simplify  expressions, we use notations D.... 
= and ( - D 1 ) - " ( - D / ) = I>:.j; and 

= <7oi-j * We represent a sum of  the form/+/( 
+ / l t + • • • by one term f lmJ.  For instance, Eq. (2) and 
Eq. (8) become [/ = ( D . ^ F J ? , ^ - (Bj.jG.)? and 
&J/6p a We first  probe the following 
relations: 

(Al) 

(A2) 

These conserved densities are related to those obtained This relationship is entirely independent from  Eq. (1). 



We prove the f i r s t  re la t ion: the s e c o n d fo l lows  s i m i l a r l y . 
To prove ( A l ) , w e a s s u m e that functions  p a and g a 

decay suff iciently  fast  a s [ (*') ' + ( x 2 ) 2 + ( x * ) 2 ] " 2 s o 
that all the sur face  i n t e g r a l s which appear in the p r o -
c e s s vanish . Let u s c o n s i d e r an integra l Jv(x')l/(6M/6<i s) 
dx'  where v i s s o m e a r b i t r a r y function  except that it 
does not d i v e r g e at inf inity .  If  w e w r i t e 3,i • • ' 3 , / f  = f ( - J I 

then integrat ing o v e r the w h o l e s p a c e 

= JvUD-^/H^dx-  = JvD' imlV/n, ti j dx' 

=!v<. lvK<-t dx' 

- Gav,.,d tl l.P~r.i<Mp„f.,.)dx' 

(us ing [Z)„ < v A „ J = °> 

Now, w e have the right hand quantity of  Eq. ( A l ) in the 
last integrand. Both in the s t a r t i n g and in this f inal  form 
of  the integra l the function  v a p p e a r s a s a factor . 
B e c a u s e v i s a r b i t r a r y , th i s equation n e c e s s a r i l y 
i m p l i e s ( A l ) . Nex t , by def init ion,  [B , A ] = C « ° 3 , o 

- C ' « 3 , with 

In v iew of  the e q u a l i t i e s (A2), w e obtain 

+(4) ~ fer) fc)»., J 

= D ' -> [© (S)_ ©] 

S i m i l a r l y , w e obtain C ' s D J . ^ C , ] , . T h u s , w e have 
proved the a s s e r t i o n for  C T o provs" It for  C,  and C„ 
w e s i m p l y note that they a r e r e l a t e d to C :t>yC,=C,  + Df 
and C,=Ci  + D^  w h e r e / ' and g*  a r e functions  of x, 

pu, q a , and of  the ir d e r i v a t i v e s and the index i runs 
from  1 to 3 . The fact  that functional  d e r i v a t i v e s of  the 
functional  / d i v h ( x , p , q ) d x '  a l w a y s van i sh l e a d s to the 
d e s i r e d r e s u l t s . 

' S . Kumei, J . Math, Phys . 16, 2461 0975) . 
*S. Kumei, J . Math. Phys . 18, 256 0977) . 
' N . H . Ibragimov and R . L . Anderson, Soviet Math. Dokl. 17, 
437 0 976); N . H . Ibragimov and R . L . Anderson, "Lie— 
Backlund Tangent Trans fo rmat ions , "  to appear Id J . Math. 
Anal. Appl. As these authors have c lear ly shown, the t r a n s -
formations  which have been considered to previous pape r s 
LR .L. Anderson, S. Kumei, and C . E . Wulfman,  Phys . Rev. 
Le t t . 28, 988 0972) , and Ref.  1 and 2 above) form  groups of 
infinite  o r d e r contact t ransformations;  for  instance. If  we 
take our p r e sen t problem as an example, the opera tor U  de -
fined  by Eq. (2) Is a tangent vec tor and genera tes a t r ans for -
mation which is a local one -pa rame te r group of  contact 
t ransformat ions  defined  in a vector space of  Infinite  d imen-
sion with coordinates ( p a , q a , p „ , i , g a , i , p a , n , 1 ^ i i • ' " 1 1 1 

th is space , no finite  dimensional subspace exis ts which c loses 
under the t ransformation  except for  special ca ses where 
the t ransformation  becomes an ord inary point transformation 
o r a f i rs t  o rde r contact t ransformation.  The bas ic Idea of  the 
method of  calculating group genera tors i s the same a s the one 
due to Lie; for  instance, see G.W. Bluman and J . D. Cole, 
Similarity  Methods  for  Differential  Equations  (Springer, New 
York, 1974). 

*For Instance, see R . M . Miura , Ed. t Backlund  Transforma-
tions, The  Inverse  Scattering  Methods,  Solutions,  and  Their 
Applications  (Springer, New York, 1976). 

*A method of  cas t ing Euler— Lagrange equations into Hami l -
t on ' s canonical form  Is well known for  the case where 
Lagranglan densi t ies involve no der ivat ives of  fields  whose 
o r d e r s a r e higher than one. The case where Lagrangian den -
s i t ies depend on higher der iva t ives has been studied by T . S. 
Chang; P r o c . Cambridge PhUos. Soc. 42, 132 0 945); 44, 76 
0948) . 

•D.R. P e t e r s o n , M.S . t he s i s . Univers i ty of  the Pacific,  1976 
(unpublished). 

' R . Abraham Bad J . E . Marsden , Foundations  of  Mechanics 
(Benjamin, New York, 1967). 

•These o p e r a t o r s , a s they appear , do not genera te t ransfor -
mat ions In Independent var iab les x . However, such t r ans fo r -
mations a re contained in them in dtsgutse as s tated in the 
previous paper (Lemma 2 in Ref.  2 above], and we a re not 
excluding any of  such t ransformat ions .  See the example in 
Sec . Ill for  instance. 

*H.H. Johnson, P roc . Am. Math. Soc. 15, 433, 675 0964) . 
" N . H . Ibragimov, Dokl. Akad. Nauk SSSR 230, 26 0 976). 
u F o r Instance, s e e L . V . Ovsjanlkov, "Group proper t i es of 

differential  equa t ions , " Ozdat. S ib i rsk . Otdel. Akad. Nauk 
SSSR, Novostvlrsk, 1962 (In Russian) . 

" G . W . Lamb, J r . , Phys . Let t . A S2 , 251 0970) . 
" H . Steudel, Ann. d e r Phys . 32, 205 0975) . 
uNote  added  in proof:  Recently, It has been shown that many 

of  the t ime evolution equations which a r e solvable by an In-
v e r s e sca t te r ing method a r e wri t ten In Hamil ton 's canonical 
form;  Y. Kodama, P r o g . Theor . Phys . 54, 669 0 975); H. 
Flaschka and A . C , Newell , In Dynamical Systems:  Theory 
and  Applications,  edited by J . M o s e r S p r i n g e r , New York, 
1975). 
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