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ABSTRACT 

In various questions of Harmonic analysis we encounter the 

problem of deriving a norm inequality between a pair of functions when 

we know a (point wise) inequality between the transforms of these functions. 

Such problems are known as majorant problems. In t h i s thesis we consider 

two related problems. F i r s t , i n Chapter two, we extend the known results 

on the upper majorant property on compact abelian groups to noncompact 

l o c a l l y compact abelian groups. We show, using various test spaces and 

two notions of majorant, that a Lebesgue space has the upper majorant 

property exactly when i t s index i s an even integer or i n f i n i t y . Further

more, i f a Lebesgue space has the lower majorant property, then the 

Lebesgue space with conjugate index has the upper majorant property. 

In the f i n a l chapter we consider the second problem. Here-, we 

are concerned with deriving global i n t e g r a b i l i t y conditions from l o c a l 

i n t e g r a b i l i t y conditions for functions which have nonnegative transforms. 

Such a property holds only i n Lebesgue spaces whose index i s an even 

integer or i n f i n i t y . For Lebesgue spaces whose index i s not an even 

integer or i n f i n i t y the proof of the f a i l u r e of th i s property i s based 

on the f a i l u r e of the majorant property i n these spaces. 
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CHAPTER 1 

INTRODUCTION 

The f i r s t section of t h i s chapter i s devoted to providing 

background for the problems we treat i n t h i s thesis. The remaining 

sections are devoted to notations and various preliminaries. 

(1.1) Background 

Throughout t h i s section G i s an i n f i n i t e compact abelian 

group whose Haar measure has t o t a l mass one. The spaces ^p(^) a r e 

formed with respect to t h i s measure. 

(1.1.1) D e f i n i t i o n : If f.,g e ̂ (Q) and |f | < g we say that 

g majorizes f (or g i s a majorant of f ) . 

Let 1 < p < 0 0 . We say Lp(G) has the upper majorant property 

i f there i s a positive constant D such that i f f,g e !• (G) and g 

majorizes f then | | f | | p < D | | g | | . 

We say L p(G) has the lower majorant property i f there i s a 

positive constant C such that every f e L p(G) has a majorant 

g e L (G) for which | | g|| < C||f | | . 

These properties w i l l be abbreviated to UMP and LMP 

respectively. 

(1.1.2) The majorant problem i s to determine for which p the space 

Lp(G) has the UMP or the LMP. This problem was i n i t i a t e d by Hardy 

and Littlewood [11] and from there evolved through C i v i n [5], Boas [3], 

and recently Bachelis [1] and Fournier [7]. The l a t t e r two authors 

extend the results of Hardy and Littlewood and of Boas for the c i r c l e 

group to a l l i n f i n i t e compact abelian groups. Bachelis completed the 
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the results for the c i r c l e . We now summarize thei r results as follows: 

(a) I f p i s an even integer or 0 0 , then L^(G) has 

the UMP with constant 1 . 

(b) I f p i s not an even integer or 0 0
 t then ^(G) does 

not have the UMP. 
i 

(c) For 1 < p < co and — 4 — = 1 , the space L (G) has ' P I P 
the UMP i f and only i f L q(G) has the LMP, with the 

same constant. 

(d) I^CG) has the LMP with constant 1. 

(e) Consequently, ^(G) has the LMP i f and only i f 

P = 1>2, 2" »•••» 2k—l" '****' ̂  ^ ̂  " 

We can add a further statement i f we note that a continuous 

function on G which does not belong to A(G) (see (1.3) of t h i s 

thesis) has no majorant i n L^CG) • To prove t h i s use [13, (37.4) and 

(31.42)]. Hence we obtain 

(f) Lro(G) does not have the LMP. 

These s i x statements can be summarized i n the following way. If G i s 

an i n f i n i t e , compact abelian group, then: 

(A) Lp(G) has the UMP i f and only i f p i s an even integer 

or 0 0 ; and when L (G) has the UMP the constant i s 1 ; 
P 

(B) If 1 < p < °° and - + - = 1 , then L (G) has the 
- - P q P 

UMP i f and only i f L q(G) has the LMP with the same 

constant. 

The statements of (B) could be called "duality theorems". 

That L p(G) has the UMP implies L
q ( G ) has the LMP was proved, for the 

c i r c l e group, by Hardy and Littlewood and t i d i e d up byBachelis [1]. 

This i s the more d i f f i c u l t of the two assertions. The other statement 
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i n (B) i s due to Boas [3]. 

Possible generalizations to noncompact l o c a l l y compact abelian 

groups are given by Ci v i n [5] and Boas [3]. Civ i n proved dual versions 

of the results of Hardy and Littlewood, while Boas extended Civin's work 

and considered various interpretations of the expression < g" i - n 

the d e f i n i t i o n of majorant. Recently Fournier [8, proof of theorem 3, 

p. 272] used the fact that L
2 k ( G ) , k e N and G noncompact, has the 

UMP (see chapter 2). 

In t h i s thesis we w i l l be concerned with analogues of these 

results for noncompact l o c a l l y compact abelian groups. We obtain analogues 

of (A) and half of (B). Even for the integer group and the r e a l l i n e , 

these results are new. 

(1.1.3) In t h i s section we are concerned only with the c i r c l e group T . 

A problem related to that of (1.1.2) was i n i t i a t e d by N. Wiener 

and taken up recently by S. Wainger [20] and H. Shapiro [18]. These 

results concern the derivation of global "good" behaviour from l o c a l 

"good" behaviour for functions belonging to L^(T) which have non-

negative Fourier c o e f f i c i e n t s . By "good" behaviour, we mean that the 

function belongs to L ^ ( - 6 , 6 ) for some p , 1 < p < °° , and for some 

6 > 0 . 

A f i r s t step i n th i s d i r e c t i o n i s the well known result that 

a positive d e f i n i t e function which i s continuous i n a neighbourhood of 

the identity i s continuous everywhere (see [13, (32.1) and (32.4)]). 

Furthermore, i f f i s continuous then f i s positive d e f i n i t e i f and 

only i f f > 0 (see [13, (34.12)]). Now consider general f belonging 

to L n(T) with f > 0 . A c l a s s i c a l r e s u l t , which may be found i n 
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[6, p. 144], states that If f i s also essen t i a l l y bounded i n a neigh

bourhood of the i d e n t i t y , then f belongs to ^ ( T ) with no increase 

i n norm. Boas [4, p. 242, Theorem 12.6.12] credits Wiener with an 

analogue of t h i s result which uses L„ instead of L . From Wiener's 
2 «> 

result i t i s not d i f f i c u l t to derive the obvious analogue for L when 
P 

p i s an even integer. Indeed, suppose that p i s an even integer or 
0 0 and that 6 > 0 . Then there i s a positive constant C , dependent 

on at most 6 and p , such that i f f e L 1(T) , f > 0 and f e L (-6,6) 
1 p 

then f e L (T) and | | f | | < C | | f | | L (_ } . 

p P 

I t i s natural to ask what happens when p i s f i n i t e and not 

an even integer. I t has been shown by Wainger [20] and Shapiro [18] that 

the analogous statements f a i l i n these cases. The f i r s t examples were 

provided by Wainger and were phrased i n terms of theory. Thus, i f 

0 < p < 2 and i f 0 < 6 < TT , then there i s a power series 
00 

F(z) = £ a^ z 1 1 , analytic i n the open unit disc with a_ > 0 (n=l,2,...) n=l 

such that 

sup 
^ -6 

-••fl P 
|F(re 1 0) | d0 < oo , 

while sup 
r<l 

|F(re 1 6)| Pd0 
- T T 

I t was remarked by Shapiro [18, p. 10J that Wainger's results 

for 1 < p < 2. can be recast i n terms of two-sided trigonometric series, 
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as follows: there i s a trigonometric series with nonnegative coef f i c i e n t s 

which i s not the Fourier series of any function of L (T) , yet (in the 

sense of dis t r i b u t i o n s ) coincides with an L^-function i n the neighbourhood 
[ —T7 + 6 , TV — S ] of the id e n t i t y . 

For f i n i t e p > 2 which are not even integers Shapiro proved 

the following (see [18, p. 16]): i f 6 > 0 , then there exists g 

belonging to L^(T) which has nonnegative c o e f f i c i e n t s and which s a t i s f i e s 

( i ) g e L (-6,6> ; 

and ( i i ) g \ L p(T) . 

In Chapter 3, we s h a l l obtain generalizations of these results 
on any i n f i n i t e compact abelian group. 

(1.2) Notations 

We denote the group of r e a l numbers by R , the c i r c l e group 

by T , and the integer group by Z . The pos i t i v e integers w i l l be 

denoted by N . The c y c l i c group of order r , r > 1 , i s denoted by 

Z(r) and w i l l l a t e r be realized i n two possible forms: either as the 

rt h roots of unity, a subgroup of T , or as {0,1,..., r-1} with 
CO* 

addition mod r . Z(r) i s the direct sum of countably many copies of 
ZCr). . 

If X i s any set, V a subset of X , and f any function 
on X , then f|^ denotes the r e s t r i c t i o n of f to V and 1^ denotes 
the c h a r a c t e r i s t i c function of V . 

Denote by sgn the signum function given by 

' z 1 n 

sgnCz) = 
. 0 z. = 0 
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If 1 < p < °° , then q denotes the conjugate index given by 

(1.3) Groups: functions and measures thereon 

General references for the following preliminaries are [12], 

[13], and {15]. 

Throughout t h i s thesis, G w i l l denote a l o c a l l y compact 

abelian group (abbreviated LCAG) whose dual group we denote by G , the 

group of a l l continuous homomorphisms of G into T . If H i s a sub

group of G then the annihilator of H , denoted H"1, , i s 

{YEG|Y(X) = 1 , for a l l x e H} . 

When H i s a closed subgroup of G , we have (G/H) = H 

and H = G/H"1 . See [15, p. 96]. 

G carries a special measure, known as Haar measure, which i s 

translation invariant ^ l s o inversion invariant when G i s abelian) and i s 

uniqueue up to a positive multiple. A l l integrals are taken with respect 

to Haar measure. For G compact, the Haar measure i s usually assumed to 

have t o t a l mass 1; for G discrete, Haar measure i s generally counting 

measure. One exception, however, i s the case where H i s an open sub

group of a compact group G . In th i s case, the t o t a l mass of H i s 

IG:HJ - 1 , where [G:HJ i s the index of H i n G . 

We use Haar measure to construct ^ CG) (l<p<°°) , the Banach 

space of functions whose absolute value i s pth power integrable, and 

L^CG) , the space of ess e n t i a l l y bounded measurable functions. For 

f e L CG) (1<P<°°) , we denote i t s norm by | |f | | = {/ |f(x)| Pdx} ^ , P p G " 

where dx denotes Haar measure on G . For L CG) (l<p<<=°) , functions 

are i d e n t i f i e d i f they are equal a.e. with respect to Haar measure; 
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functions i n ^(G) are i d e n t i f i e d when they are equal l o c a l l y a.e. with 

respect to Haar measure. 

For f e L^(G) we define Fourier and inverse Fourier transforms 

of f by the formulae 

f(Y) = 

f V ( Y ) = 

f(x) y(x) dx 
G 

f(x) y(x) dx 
G 

r e s p e c t i v e l y , where y e G . For WC L ^ G ) , l e t w" = {f l|* feW} . 

We s h a l l use several other spaces of functions (and measures). 

CQ(G) denotes the Banach space of continuous functions vanishing at 0 0 . 

The dual space of CQ(G) i s denoted by M(G) and i s to be r e a l i z e d as a 

space of complex regular measures on G (see [12, section 14]). 

The space of continuous, p o s i t i v e d e f i n i t e functions on G 

i s denoted by P(G) (see [13, (132.1)]) and A(G) denotes the range of the 

Fourier transform; thus 

A(G) = J L ^ G ) ] = {f | fel^CG)} 

It i s well known that A ( G ) C T C Q ( G ) • The compactly supported members of 

A(G) form a space denoted A (G) . A clas s of functions we s h a l l use often 
c 

i s L ( G ) O A ( G ) , which for b r e v i t y we denote by S(G) . 

I f , for i = 1,2 , G^ i s an LCAG, then so i s G^ x G^ and 

i t s dual group i s G^ x G^ . The product of Haar measures on G^ and G^ 
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gives a Haar measure on G i x G 2 • I f » f o r 1 = x > 2 » ^ i s a function 

on G; , we define a function f- ® f„ on G x G_ by 

f x ® f 2 (x,y) = f ^ x ) f 2 ( y ) 

for each (x,y) e G^ x G^ 

It i s easy to see that i f 1 < p < °° and f ^ e L p ( G
i ) (1=1>2) , 

then f 1 ® f 2 e x and 

f n ® f || = | | f . | | | If 1 2 p 1 p p 1'^2' 'p 

If f± e \(.G ) (1=1,2) , then 

f l 9 F 2 ( Y 1 ' V - f l ( V F 2 ^ 2 > * f l 0 F 2 ( V V 

for each C Y 1 » Y 2 ) e G I X G 2 ^ S E E ^ 1 3 ' ( 3 1 . 7 ) ( b ) ] ) . Consequently i f 

f ± e S(G i) , i = 1,2 , then f± ® f 2 e S(G ; L x G 2) . 

(1.4) Preliminaries r e l a t i n g to subgroups and quotient groups 

In t h i s section we l e t H be a closed subgroup of G , although 

i n most cases we s h a l l only be concerned with a compact and open subgroup. 

We are concerned with two s i t u a t i o n s : f i r s t l y , functions which are supported 

by H , and secondly functions constant on the cosets of H . These two 

notions are dual i n the sense of the following r e s u l t . 

(1.4.1) Lemma. Let u e M(G) . Then u i s supported by H if- and only 

i f u i s constant on the cosets of H . 
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For a proof, see [15, p. 118]. 

(1.4.2) I f TT i s the canonical projection of G onto G/H , then the 

map <f> |—> <j> o TT i s a p o s i t i v i t y preserving one - one correspondence 

between functions on G/H and functions on G which are constant on the 

cosets of H . 

(1.4.3) Suppose that H i s an open subgroup of G and l e t f e L..(H) rl X 

be continuous. If we extend f to a function f on G by l e t t i n g 
n 

f(x) = 0 i f x £ H , then f e L^(.G) i s continuous and f i s supported 

by H . Thus f i s constant on the cosets of H and so we can i d e n t i f y 

f with a function on G7H X = H . As i n [15, p. 122] we i d e n t i f y f 

with, f 

H 

(1.4.4) At the root of (1.4.5) and a l a t e r calculation i s a specialized 

version of Weil's formula (see [15, p. 70]) which says that i f H i s a 

closed subgroup of G , then 
I f f(acy)dy V d i 

>Gfal JH J 
f(x)dx 

G 

for £ E L^(G). ; here dy , dx , dx: denote Haar measure on H , G/H , and 

G respectively. 

We want In par t i c u l a r the special case where G i s compact 

and H. i s open, rf f i s constant on the cosets of H , l e t F be the 

function on Gyl'H for which F o TT = f . Then Weil's formula unveiled i s 

F(x)dx = [G:HJ 
G/H 

f (x)dx 
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(1.4.5) By combining (1.4.4) with 115, p. 118], we obtain, for compact 
open H , 

A(H) = ACG) | R = {£ | R | feA(G)} . 

(1.5) Some properties of S(G) 

In t h i s section we l i s t the properties of S(G) = L^(G)O A(G) 

which we w i l l use l a t e r . Unless otherwise stated, a l l proofs of these 

statements can be found i n [10, chapter 3]. 

(1;". 5.1) S(G) can be made into a Banach space v i a the norm 

l l f l l s - l l f l l x * l l f l l i • 

Then the Fourier transform maps S(G) isometrically onto S(G) . 

S(G) i s an ideal i n M(G) and thus also i s an ideal i n L^(G) 
S(G) i s dense i n L

p(G) , 1 < p < 0 0 . 

(1.5.2) The Banach space dual of S(G) , denoted by S (G) , may be 

regarded as a space of di s t r i b t u i o n s on G. If 1 <' p < » , L (G) 
- P 

* 
can Be embedded i n S (G) , since i f f e L (G) the formula 

<f,u> = f(x) u(x)dx , u e S(G) , 

defines a continuous linear functional, denoted by L f , on S(G) 

Note that for 1 < r < » we have ||u|| < ||u|L when u e S(G) 

Similarly one embeds M(G) i n S*(G) by setting, for u e M(G) , 

<y,u> = u(x)dy(x) , u e S(G) 
G 
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(1.5.3) The Fourier transform for members of S (G) i s defined i n the 

usual dual manner. If L e S (G) we define L e S (G) by 

<L,u> = <L,u> , u E S(G) . 

A similar formula defines inverse transforms. 

We now have two ways of defining f when f e ̂ p^) a n <* 

1 < p < 2 ; one v i a the Hausdorff-Young theorem (see [13, (31.21)J) and 

the second v i a d i s t r i b u t i o n s . For f e ̂ CG) a n a 1 1 P f 2 , these 

two d e f i n i t i o n s agree i n the sense that *L"̂ * = L~ . For p > 2 we have, 

i n the noncompact case, only the d e f i n i t i o n as a d i s t r i b u t i o n . In t h i s 

case, by combining [10, 3.10] and [9, Chapter 6, Theorem 6.6], we see 

that there i s an f e L (G) for which f (that i s 1^) i s not defined 
P f 

by a measure. 

Xl.5.4) We need to know that S(G) contains functions with nonnegative 

transforms. This fact i s contained i n the following result (for a proof, 

see 113, C33.12)]). 

Lemma. L^(G) contains an approximate id e n t i t y {u^|iel} , each member 

of which belongs to S(G) , and s a t i s f i e s the following: 

(a) each u^ belongs to S(G)0 P(G) and i s nonnegative; 

(b) for each i e I , u. (x)dx = 1 ; 
G 1 

(c) each u^ i s nonnegative and belongs to k^(G)(l'P(G) ; 

Cd) lim u^ = 1 pointwise and uniformly on compact sets. 

I t follows from [13, (32.33) Cb) and (32.4.8) (a)] that 
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Ce) for 1 < p < o> We have lim I|u.*f - f i l = 0 for 
i 1 1 i 1 'P 

f e LpCG) , and i f f e CQ(G) we have 

lim u.*f - f =0 
l 

Cl.5.5) If f e SCG) , we have f e P(G) i f and only i f f > 0 

This i s simply [13, (33.3) and (33.10)]. 
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CHAPTER 2 

THE MAJORANT PROBLEM 

In t h i s chapter we present the main result of the thesis, along 

with some related topics. The main theorem i s stated i n section 1 and 

proved ,in the succeeding sections. Throughout t h i s chapter, unless 

otherwise stated, G w i l l be a noncompact LCAG. We are grateful to 

J. Fournier and M. Cowling for conversations regarding S(G). 

(2.1) Definitions and examples. 

Since we are dealing with noncompact groups we have problems 

regarding the Fourier transform on ^(G) when p > 2 7 S p e c i f i c a l l y , 

we want to interpret the inequality 

| f | < a 

when f , g e Lp(G) , p > 2 . As noted i n (1.5.3), f need not be a 

measure and so not a function. 

The d e f i n i t i o n s (1.1.1) were used by Boas and Bachelis, and i n 

[7], Fournier uses a d e f i n i t i o n involving only trigonometric polynomials. 

We state t h i s now. 

(2.1.1) D e f i n i t i o n . Suppose that G i s compact. We say ^(G) n a s 

the UMPT i f there i s a positive constant D such that whenever f , g 

are trigonometric polynomials ( f i n i t e l i n e a r combinations of characters) 

and g majorizes f , we have ||f||p<o||g||^ . 

We say ^ (G) has the LMPT i f there i s a positive constant C 

such that every trigonometric polynomial f has a trigonometric polynomial 



14. 

majorant g for which ||g|| p < C||f||^ . 

We show that t h i s d e f i n i t i o n i s equivalent to that given i n 

(1.1.1) . 

(2.2.2) Lemma. Let G be compact. 

a) I f 1 < p < 0 0 , the UMPT as defined i n (2.1.1) i s equivalent 

to the UMP as defined i n (1.1.1). The constants are the same. 

b) I f 1 < p < oo , the LMPT as defined i n (2.1.1) i s equivalent 

to the LMP as defined i n (1.1.1). 

Proof 

a) I t i s obvious that the d e f i n i t i o n of (1.1.1) implies that 

of (2.1.1). Conversely, i f 1 < p < » a n d f , g e L p(G) are such that 

|f| < g , l e t (u^) be an approximate i d e n t i t y as i n (1.5.4). Then for 

every a , we have 

u * f < u *g ;• 

and thus 

| |u * f | | < D| | U *g| | , 
I I a i i p _ II a . O l |p 

where D i s the constant of the d e f i n i t i o n . Taking l i m i t s we obtain 

l l * l l p < D | . | 8 | | p • 

b) Let Cu ) be as i n (1.5.4) and l e t f e L (G) . Then 
a P 

u^ * f i s a trigonometric polynomial. Let g^ be a trigonometric 
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polynomial majorizing * f and s a t i s f y i n g 

i < C u•*f < C f =a 1 1 p = 1 1 a M p = 1 1 M p 

Here we use the fact that u L = 1 . 
1 1 a 1 11 

Then the net ^S a^ 1 S norm-boundediinttherBahach space 

L (G) and so has a weak * convergent subnet, {g } say, with weak * P p 
l i m i t g i n L^(G) . Then 

< lim g J < C f , lp = _ I l&gl i p = P 

and by weak * convergence we have 

g(y) = lim i (Y) > lim |u ( y ) f C Y ) I = | f ( Y > | 
3 P B 

for every y e G . Hence L^(G) has the LMP i n the sense of (1.1.1). 

Conversely, i f f i s a trigonometric polynomial, then there 

i s g belonging to kp(CI) which majorizes f and s a t i s f i e s 

||g||p = G l | f | l p • ^ e s n o w that g can be replaced by a trigonometric 

polynomial which changes only s l i g h t l y the constant for the LMP. For 

any e > 0 we can (according to [13, (31.37)] find an h e L^CG) with 

the properties 

( i ) 0 < h < 1 ; 

( i i ) h Is compactly supported and 1I(Y) = 1 for a l l Y 

such that I(Y) 4 0 '> 

( i i i ) ||h|\± < 1 + e . 
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Then h * g i s a trigonometric polynomial majorizing f . Moreover, 

we have 

I |h*g| l p < I |h|\1 | |g| | p < U+O I |g| | p < d+e)C | |f | | p . 

This proves the lemma. 

It i s clear that the LMP implies the LMPT for L^G) as w e l l . 

For the moment, we can not give a direct proof, as i n (2.1.2)(a), for 

the converse of t h i s statement. However, that the converse i s true follows 

from the fact that the LMP and the LMPT hold for L^G) . The LMP i s 

easy to prove d i r e c t l y , and the LMPT for L^(G) may be derived from the 

LMP for L i(G) . 

Lemma (2.1.2) suggests that, when G i s not compact, we could 

use a suitable test space rather than a l l of L p ( G ) i - n o u r d e f i n i t i o n s of 

majorant and majorant properties. When G i s compact, the space of 

trigonometric polynomials coincides with [A c(G)] . We could use t h i s 

test space i n our d e f i n i t i o n s for noncompact G , but we prefer to use 

S(G) and return to the consideration of other spaces i n Section 6. 

Roughly speaking, any test space contained i n L^(G) and dense i n Lp(G) 

(p f i n i t e ) w i l l do. 

(2.1.3) D e f i n i t i o n . I f f , g e S(G) and | f | < g , we s h a l l say that 

g majorizes f or that g i s a majorant of f . 

We say L^(G) has the upper majorant property i f there i s a 

positive constant D such that whenever f , g e S(G) and g majorizes 
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f , we have | | f | | p < D||g||p . 

Due to the frequent appearence of t h i s phrase, upper majorant 

property w i l l be abbreviated to UMP from now on. 

(2.1.4) Proposition. I f p i s an even integer or 0 3 then L p(G) has 

the UMP with constant 1. 

Proof: 

F i r s t suppose p = 2 ; then the res u l t i s obvious by the 

Parseval formula, since i f f , g E S(G) and |f| < g w e h a v e 

i i f i i 2 - i i f i i 2 < i i i n 2 = i i g i i 2 . 

If p = 2k (keN) then h k e L £(G) for every h e L 2 k(G) 

If f , g e SCG) and |f| < g , then f k , g k e SCG) and 

|f I = |f* * f | < g* *g = g K 

There are k f's i n the f i r s t product and k g's i n the second. From 

the case we have 

2k , 2 . 2 2k 
11*11. " M f k H < Mg kM = ||g|| . 2k 2 2 2k 

that i s 

2k 2k 
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If p = °° , we have S(G) C L (G) 
l<p<oo P 

and the r e l a t i o n 

h = lim h 
I I I 00 I I I I 

k-x» 2k 

holds for at least every h E ^ . The result follows from the 

L_, results, 2k 

Our main result i s , e s s e n t i a l l y , that the converse of (2.1.4) 

i s also true. We now state t h i s theorem. 

(2.1.5) Main Theorem. Suppose that G i s a noncompact LCAG and 

1 < p < » . I f p i s not an even integer, then L (G) does not have 

the UMP. 

To prove t h i s theorem we must show that for every p o s i t i v e 

constant D , there exist f , g e S(G) such that 

a) | f | < g 
and b) | | f | | p > D||g||p . 

This w i l l be accomplished i n the next four sections. 

(2.2) Some Reductions. 

Our proof of the main theorem i s based on the structure theorem 

for LCAG's, and i n t h i s section we show that i t suffices to prove the 

theorem for certain classes of groups. 

'(2.2.1), Theorem. Suppose that Ĝ  and Ĝ  are LCAG's, and suppose 

that L (G,) or L (G 0) does not have the UMP. Then L (Gn x G„) does p 1 P 2 • p 1 2 
not have the UMP. 
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Proof. 

For definiteness we assume that L (G.,) does not have the UMP. 
P 1 

Hence, for any positive constant D there exist , g 1 e S(G^) which 
s a t i s f y 

a) f1 < g 1 on G1 

and b) \\f1\\v > D||g1||p . 

Suppose that h e S(G 2) i s any n o n t r i v i a l function with 

h > 0 . 

Set F = f, ® h , G = g. ® h ; then F., G e S(G1 x G„) and 
1 1 A 1 Z 

we have 

|F| = l ^ s h l = \f±\ ® h < g 1 ® h = G . 

Furthermore, 

H ' l l p - I M , I N I , * " ! ! * ! ! ! , I N I , - » l l 6 | | , • 

Thus L (G.. x G.) does not have the UMP. 
p i L 

We now r e c a l l the structure theorem for LCAG's (see[12, (.24.30)]). 

This theorem states that any LCAG i s of the form R n x GQ , where n 

i s a nonnegative integer and G^ i s an LCAG containing a compact open 

subgroup. We apply Theorem (2.2.1) to the structure theorem to determine 

the groups we must consider. 
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If R n x GQ i s i n f i n i t e , then one of the following statements 

i s true: 

(a) n > 0 ; 

(b) n = 0 and GQ has an i n f i n i t e compact open subgroup; 

(c) n = 0 and GQ i s an i n f i n i t e discrete group. 

It therefore suffices to consider only the group R for case (a); i n 

case (b) we w i l l be able to construct examples from those known for the 

i n f i n i t e , compact open subgroup of GQ (see. ( 2 . 3 ) ) . 

In case (c) the discrete group GQ may have an element of 

i n f i n i t e order, i n which case i t contains a copy of Z . Otherwise GQ 

i s a torsion group. In a torsion group, either we have elements of 

a r b i t r a r i l y large order or there i s a bound on the orders of a l l elements. 
CO* 

In t h i s l a t t e r case, we know that GQ contains a copy of Z(r) , the 

direct sum of countably many copies of Z(r) , and r > 2 (see [12, 

p. 4 4 9 ] ) . 

We now give a further reduction for the discrete case. 

(.2.2.2) Proposition. Let G be an i n f i n i t e discrete abelian group 

containing a subgroup isomorphic to a discrete group H for which -£p(H) 

does not have the UMP. Then I (G) does not have the UMP. 

Proof. 

We note that S(G) = -^(G) when G i s discrete. Let $: H •+ G 

be an embedding of H i n G . For any positive constant D there exist 

f , get-(H) which s a t i s f y |f| < g and | | f | | > D||g|| . 

For any function h on H , we define h'' on G by 
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, 1 , v v i f x e cf>(H) , 

otherwise . 

I t i s clear that i f h e £ (H) , then h"' E I (G) and | |h'| | = | |h| 

for any r > 1 . Defining f' and g' s i m i l a r l y we immediately 

obtain 

| f " " l l > D||g''"ll 

We need only show that |^| < "g^ . If h s ^ ( H ) , then h'L E l^G) 

i s supported by <f> (H) and so & i s constant on the cosets of tj)(H) 

We can i d e n t i f y h"' with a function on G/<j>(H) = <i> (H) = H . By (.1.4.3) 

we may i d e n t i f y h""1 with h . Hence we have 

1^1 - I f I < ? - - ? . 

and t h i s produces the required example. 

I t thus suffices i n dealing with discrete groups that have 

elements of i n f i n i t e order, to consider only the group Z ; likewise for 

i n f i n i t e discrete groups i n which there i s a bound on the orders of the 

elements, i t i s enough to consider only the groups Z(r) , for r>2 . 

We now use t h i s r e s u l t to summarize the groups or classes of 

groups for which we must prove the main theorem. They are: 

a) R ; 

b) Z ; 

c) Z(r) , for r > 2 ; 
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d) G a nondiscrete, noncompact LCAG with a compact open 

subgroup; 

e) G a discrete abelian torsion group with elements of 

a r b i t r a r i l y large order. 

We s h a l l see that c) and d) may be derived from the compact 

case. The integer group Z i s treated separately, and the f i n a l two 

cases may be derived from the case of the integers. 

(2.3) Examples derived from the compact case 

In t h i s section we prove the main theorem for LCAG's that 
CO* 

have an i n f i n i t e compact open subgroup or those of the form Z(r) 

for some integer r > 2 . 
'(2.3.1) Theorem. Let G be a nondiscrete noncompact LCAG containing a 

compact open subgroup. I f p i s f i n i t e and not an even integer, then 

L (G) does not have the UMP. P 
Proof. 

We r e c a l l that we must show that for any positive constant 

D there are f , g e S(G) which s a t i s f y |f| < g and ||f||p > D l | g | | 

Let GQ be an ( i n f i n i t e ) compact open subgroup of G . Haar 

oneasure on G can be chosen to assign mass 1 to G Q j since GQ i s 

open, i t s Haar measure i s the r e s t r i c t i o n to GQ of the Haar measure 

on G . 

Let D be any pos i t i v e constant./ From the compact case 

(see 17.]) , there are trigonometric polynomials f^ , g^ s a t i s f y i n g 

, | f 1 l i . g 1 on GQ and | | f 1 | | p > D||g1|| . In pa r t i c u l a r ^ and 

g n Belong to A(Gn). . 
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By (1.4.5), i f h^ e A(GQ) there i s an h e A(G) whose 

r e s t r i c t i o n to G i s h . Since G A i s compact and open, 1 
U 1 U GQ 

belongs to A(G) (see [13, (31.7(1)).]) and so we can extend h^ to G 

by defining i t to be zero off Ĝ  . In p a r t i c u l a r , we can extend a 

function Mi^in S(G^) to a function i n S(G) by l e t t i n g i t s extension h be zero off G_. ; moreover, i t i s clear that h n = h 0 1 p 'P 
Let f and g be such extensions to G of f^ and g^ 

respectively. Then i t i s immediate that | | f | | p > D||g||p and so we 

need only show that |f| < g on G . 

Since f and g are supported by G^ , so their transforms 

are constant on the cosets of G^* and hence can be i d e n t i f i e d with 

functions on G/GQ = G^ . But by (1.4.3) these l a t t e r functions are 

just f^ and g^ respectively. Thus we have 

f = f t 0 TT < g 1 O T T = g 

where TT denot es the canonical projection of G on G.. . This 

concludes the proof. 

We now turn our attention to the groups G = Z(r) , r > 2 . 

In t h i s case we w i l l be able to derive our examples from those of the 

compact group X = Z ( r ) W , the direct product of countably many copies 

of Z(r)_ . We note that for each, positive integer N , each of X and 

G contains a subgroup isomorphic to Z ( r ) ^ which are denoted by X^ 

and G^ respectively. Thus, 
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2L. = { (x.) e -X I -x. = 0 i f j > N+l} N 3 1 3 -

G N = {(y ) e G | y - 0 i f j > N+l} 

These groups are self-dual. 

CO* 

(2.3.2) Theorem. If G = Z(r) (r>2) and p i s f i n i t e and not an even 

integer, then L^(G) does not have the UMP. 

Proof. 

Let D be a positive constant. From the known results for X 

we can find trigonometric polynomials f , g on X which s a t i s f y 

|f| < g on G and | | f | | p
> D | | g | | . As f and g are f i n i t e l y 

supported, there i s a positive integer N for which 

supp (f) (J supp (g) C G N , 

where supp(f) = {yeG | f(y) =f 0} . Thus the transforms of f and g , 

and hence also their r e f l e c t i o n s f and g respectively, must be constant 

on the cosets of Ĝ " i n X . We can now i d e n t i f y f and g with functions 
JL 

on X/Gjj = G N = G N ' I t ''"S t^1^s Pa:*-r °f functions on G^ (that i s on 
G,, but supported by G ) that w i l l provide our example. 

J. IN 

Before proceeding, we should summarize the main i d e n t i f i c a t i o n s 

used above. We start with a pair of functions f , g on X , constant 

on the cosets of Gj^ . This gives r i s e to a pair of functions F , G 

on X/Ĝ j = G^ . F i n a l l y , v i a a (topological) isomorphism, we obtain a 
1 1 ''i \ pair F"' , G'' on G^ . I t i s F' , G" which w i l l provide our example, 

and so we w i l l need to check that the following two conditions are s a t i s f i e d : 
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a) on X , 

and b) llF'Mp > D||G'||P . 

Since G^ i s compact, F' , G' belong to Z^(G) = S(G) . To 

obtain a), note f i r s t that the f i n a l paragraph of the proof of (2.3.1) 

shows that |F| < G since |f| < g . Passing to F' and G' involves 

a p o s i t i v i t y preserving linear map and so we also have |1F̂ | < 'G** . Hence 

a) holds. 

To show that b) holds, we trace the behaviour of the L
p 0 0 

norm of a function h on X which- i s constant on the cosets of G^-. 
N 

In the f i r s t stag§ we obtain an H on X/G^" for which h = H o ir , TT 

being the canonical projection of X on X/G^" . From (1«4.4) we have 

h(x)dx = r N H(x)dx , 

since [ X : G^J = r N . But we also have |h-IP = [ H I | P O TT ; thus I f . h- e L P C X ) 

we have H £ L P ( X / G * ) with 

I M I p - r~P ||H||p . CD 

In the second stage, Ĥ ' i s obtained from H. v i a a topological 

isomorphism of the underlying groups. As the image of a Haar measure 

under such, a map i s also a Haar measure, i t follows that there i s a 

posi t i v e constant c for which-

[ H l l | | p C 1 / P | | t t | | p , C2) 
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for every H e L (G.T) . 
p N 

Using (1) and (2) we now see that b) holds: 

||F'||P - c||F|| P 

P P 

= c r N | | f | | P 

P 

> c r V | | g | | P = DP||G'||P . 
P P 

Henee D||G'|| < ||F'| | p and th i s completes the proof. 

(2.4) The case of the integers 

As i n the previous cases, our goal i s to show i f p i s not an 

even integer or 0 0 , then for any positive D there are functions f , 

g belonging to ^ ( Z ) which s a t i s f y |f| < g on T and D||g||p < ||f 

Our method, though different i n d e t a i l , i s ess e n t i a l l y the same 

as that used by Bachelis [1] and Fournier [ 7 ] . For a discussion of the 

origins of t h i s method see Shapiro [ 1 8 ] . F i r s t note that the constant D 

in our de f i n i t i o n s of the UMP (see (1.1.1) and (2.1.3)) must be at least 

1, since S(G) contains n o n t r i v i a l functions with nonnegative transforms 

For the group T , Bachelis proves (1.1.2)(b) by using a suggestion of 

Y. Katznelson to show, by an i t e r a t i o n method, that i f the UMP f a i l s to 

hold with D = 1 , then i t f a i l s to hold at a l l (see [1, p.121]). 

We now give the i t e r a t i o n method; i t i s the dualized version 

of a special case of Fejer's Lemma (see [1, p.121], and [21, p.49]). 
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C2.4.1) Proposition. Let 1 < p < 0 0 and suppose a i s a f i n i t e l y 

supported sequence on Z . For a p o s i t i v e integer n we define a by 

1° 

i f m e nZ 

otherwise. 

Then for large n we have 

i n I i i i 2 a*a = a i n i i p p 

and i n part i c u l a r . 

2 
lim IIa*a„11= II a I I ^ II £ i l l p II l i p 

Proof. Note that a e c (Z) and thus a*a e c (Z) . We use induction n c n c 
on the number of elements £ i n the support of a . For £ g 1 , the 

2 
result i s obvious. Suppose now that £ > 2 and that ||e*0n|| = [|0|| 

for large n whenever 0 e C
CCZ) and the support of 6 has t-1 members. 

Write 6 for l r i • Then (6 ) =6 for every n , z e Z . z {z} z n nz 

Eet a e c (Z) have £ elements i n i t s support and write c 

£ 
a = ) a. &, 

J=l J J 

£-1 
If 6 = Y a.6, , then we have 
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a % = (6 + *l \ > * <Bn + al 6nk £> 

since 6 * 6 = 6 , whenever z , u e z . z u z+u 
The supports of these four terms are pairwise d i s j o i n t when 

n i s s u f f i c i e n t l y large, and so 

since 6 = 1 for every z . z p 3 

Now 

£ - 1 £-i 
kl n j = l J k £ n k j j = l J n k j + k £ 

since a l l the nk.. + k£(l<j<£-l) are d i s t i n c t , we have 

£ - 1 
P = V L IP „ I I 31 IP 

l i p I K *M| P= I |«.| 
£ p j = l J 

(2) 
S i m i l a r l y , 1 ^ * 3 1 | P = ||3|| P . 

Combining ( 1 ) and (2) we obtain 

l«*%llp- He*eJ|P + 2|c.^ ||6||P+ C | « £ | P ) 2 , for large n 

2 

l « M ? -



Taking pth roots we obtain the r e s u l t . 

(2.4.2) Corollary. Let 1 < p < °° be an exponent for which there i s a 

pair of f i n i t e l y supported functions f , g on Z sa t i s f y i n g |f| < g 

and ||g|| p < ll fllp • T h e n £ pt z) f a i l s to have the UMP. 

Proof. 

Since | | g | I ^ < | | f | | n > there i s a constant C > 1 for which 

Form f and g as defined i n the statement of (2.4.1). We note that n n 
f (x) = f(nx) since n 

I (x) = If (m) e - i m X = J f ( £ ) e - ± n £ x = f(nx) . 
m-L. n £=-«> 

Simi l a r l y for g R . Since |f| < g , we have 

| f S f n G O | 1 | f ( x ) | | f n ( x ) | 

= | f ( x ) | |f(nx)| 

< g(x) g(nx) 

= g^g^Cx) . 

Thus g*g n majorizes f * f when g majorizes f , for a l l p o sitive 

integers n . Applying (2.4.1) to each sequence g*g and f * f , 
n n 

2 2 2 
and noting that C ||g|1^ < | | f | | ^ , i t follows that there i s an n for 
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which 

C 2| |g*g | | < |.|f*f | | . 

For any positive constant D , there i s a positive integer £ 
I 

for which D < C . Iteration of the above procedure shows that there i s 

a pair of f i n i t e l y supported functions d , e on Z with e majorizing 

d and C^||e|| < ||d)| . Hence D||e|| < l|d|| and thus £ (Z) 

does not have the UMP . 

To complete the proof of the main theorem for the integer group, 

we must, for a given f i n i t e p which i s not an even integer, f i n d a pair 

of f i n i t e l y supported functions on Z which s a t i s f y the hypotheses of 

Corollary (2.4>.2). We require some preliminaries about the functions 

which operate on P^CZ), the real-valued members of P(Z) . 

Recall that i f A i s a subset of the complex plane C and 

F : A C , then we say F operates on P(Z) i f F o <j> e P(Z) whenever 

((>. e P(Z) and rangeUl<b(T~ A . If A = (=1,1) and F i s real-valued, then 

Rudin [16] has shown that F must be of the form 

OO 
F(x) = I c x n , for |x| < 1 

n=0 n 

and c > 0 for n = 0, 1, 2 
n = 

A fore-runner of t h i s r e s u l t can be found i n Schoenberg 

Our next res u l t i s stated and proved only for 

hand. I t w i l l be clear that a more general formulation 

[17]. 

the case at 

i s possible. Its 
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proof requires an elementary application of the convergence theorem for 

sequences of positive d e f i n i t e functions (see [2, p. 17]). 

(2.4.3) Lemma. Let F : (-1,1) •> R be continuous and have the property 

that F o e P r(Z) whenever t|> i s a f i n i t e l y supported member of 

P r(Z) with range W.i>(T^ (-1,1) • Then F operates on P r(Z) . 

Proof. 

Let i|> e P r(Z) have range ( ^ ) > ( T ^ (-1,1) and l e t (B^) be 

the Fejer kernel i n L^T) . It i s well known that belongs to P r(Z) 

and i s f i n i t e l y supported for every N . Moreover, we have 0 < < 1 

and so range(1^4(3 (-1,1) i f range($M L T (-1,1) • Thus F o (K̂ |>) 

belongs to P r(Z) . Since the (K^) are an approximate i d e n t i t y for 
L i ( T ) , (1.5.4) shows that ip = lim K^i> pointwise and so F o ip = lim 

N N 
F o (K^) belongs to P r(Z) . Thus F operates on P r(Z) . 

(2.4.4) Proposition. If p i s not an even integer or °° f there exists 

a function (J> belonging to P r(Z) which i s f i n i t e l y supported and for 

which |<I>|P does not belong to P(Z) . 

Proof. 

Let H : (-1,1) •*• R be defined by H(x) = |x| P . Then i t i s 

easy to see that H i s not of the form (3) (unless p i s an even integer) 

and so H does not operate on P r(Z) . A s H i s continuous, we can apply 

(2.4.3) to conclude that there i s a f i n i t e l y supported $ e P r(Z) for 

which rangeQ>W<T~~ (-1,1) and H o <j> J: P(Z) ; that i s , |<j>|P \. P(Z) . 

We can now present the necessary examples. The germ of th i s 

method i s to be found, i n a disguised form, i n [7, p. 163]. 
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(2.4.5) Theorem. Suppose that p > 1 i s not an even integer or 0 0 . 

Then £ (Z) does not have the UMP with constant 1 . P 
Proof. 

We want to find f i n i t e l y supported functions f , g on Z 

which s a t i s f y 

a) |f| < g 

and b) ||g|| p < | | f | | p . 

Let <f> be as i n (2.4.4). Positive d e f i n i t e functions are 

self-adjoint and the r e a l ones are symmetric (<(>(-n) = <t> (n) for every 

n E Z) .• This implies that |<j)|P i s self-adjoint and so has a r e a l -

valued Fourier transform. As |<f>|P £ P r(Z) , there i s an x £ T for 

which (|<J>|p) (x) < 0 , that i s , 

I \HD\V e " i £ x < 0 
£=-oo 

(see (1.5.5)). 

Define 

a r e a l parameter 

f t = (1+ty) <f> , 

where 1 stands for the constant function with value..1. Note that 

each f f c i s f i n i t e l y supported and f^ £ P(Z) i f t > 0 . I t i s clear 

that i f t i s nonnegative, we have 

Y £ Z by Y C O = e , for every I e Z . Then for 

t we define functions f on Z by 



I t thus suffices to find a positive t n for which 

i g i p < n s i i p 

In other words, for positive t we set f = f , g = f and show 

that b) holds for some positive t ^ ; 

To t h i s end we define a function F on R by 

Ht) - | | f t | . | J 

= I |i+t Yc-e)| p . 

Notice that, for every £ , the function t h | l + t y C £ ) | P 

i s d i f f e r e n t i a b l e at 0 . Since <)> i s compactly supported, the sum 

defining F(t) i s r e a l l y f i n i t e ; hence we have: 

F ' ; CO) = I " f F i | + c e ) | p | i + t Y c £ M p ] t : = 0 

£=-oo 

- P I \*U)\*izL\i-*yM\\m0 

£=-°o 

= P I Uce> | p R e c T i m 
£=-oo 

= P R e ^ I |<f>(£)|P
 Y C £ ) ^ 

= p (*) . 

Thus F"' CO) •> 0 , and thus there must be a positive t ^ for which. 
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F ( t Q ) < FC-t Q) . 

Taking pth roots we obtain 

and b) follows. This completes the proof. 

(2.4.6) In t h i s section we sketch an alternative proof of (2.4.5) for 

p a r a t i o n a l number but not an even integer. This method, except for a 

minor modification due to Z not being compact, i s d i r e c t l y analogous 

to the example f i r s t produced by Hardy and Littlewood for ^ ( T ) (see 

{11, p. 305] and [3, p. 255]). 

Suppose that 1 < p < 0 0 and that p i s not an even integer. 

For each positive integer n , l e t c n be the binomial c o e f f i c i e n t 

f Cf - 1) (f - n+1) 
. Let k be the least positive integer n 

n! 
for which c < 0 . We need a function <fe i n I-(Z) with the following n • x 

properties: 
^ 00 

(a) (j> = g , for some n o n t r i v i a l , nonnegative C function g 
on T ; 

(b) for an integer L , to be specified l a t e r , the functions 

{cf> |l<£<L} are mutually orthogonal i n t^(l) . Note that these products 

are defined by pointwise m u l t i p l i c a t i o n . 

To obtain such a function <f> we need a n o n t r i v i a l , nonnegative 
oo *t n 

C function g on T for which the convolution powers g (1<-£.<L) 



are mutually orthogonal i n T,^(T) •• Since these convolution powers are 

nonnegative they are orthogonal i f and only i f t h e i r supports are d i s 

j o i n t . Suppose g i s supported by a small i n t e r v a l [a,b] with 

0 < a < b < 2TT . Then the convolution powers g (1<-£<L) w i l l have 

d i s j o i n t supports provided that b i s s u f f i c i e n t l y small and a i s 

s u f f i c i e n t l y close to t^.c. 
2 
p °° Now l e t i|> = <J> . Since <J> i s the Fourier transform of a C 

function, the same i s true of ip ; i n p a r t i c u l a r , ip belongs to £^(Z) . 

Let A be a re a l number with |A| < 1 and l e t t be a positive 

parameter. We define a function f by 
A 

f x = \i>(i + t$ + xt\k) 

where 1 i s the constant function whose sole value i s 1 . Then f 
A 

belongs to -L^(Z) . 

We f i r s t examine the t (Z)-norm of f, . We have 
p X 

| | f ^ | |p = | | f p ^ 2 | 12 and, i t t i s small enough, we can apply the 
k k p/2 

binomial theorem to ( 1 + t<|> + At <|> ) . When we do t h i s we obtain 

an absolutely convergent double series ( in Z^(Z)) and thus 
f p / 2 = * P / 2 ( 1 + t * + A t V ) p / 2 

= * I Mt<j>r , 
1=0 *-

where 3^ = for 0 < I < k - 1 and 6 k = Ĉ A + Cfc . If we write 
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2k 
f J / 2 - * { I e W + o ( t 2 k + 1 ) } , 
• 1=0 L 

then using (b), with L = 2k+l , we obtain 

I M S " H'J'2H2= I l ^ l 2 I l / V 
P • 2 1=0 L 2 

Our choice of k shows that 

1*1 I | P < f l * • i M P i i i i p I I _ i i i p 

i f t i s s u f f i c i e n t l y small. This takes care of the norm inequality. 

We would l i k e to know i f f^ majorizes . This would 

cer t a i n l y be the case i f ip were positive d e f i n i t e . For general p 

the author has had no luck i n determining i f we can assume that ip = <j>2^P 

i s p o s i t i v e d e f i n i t e i n addition to conditions (a) and Xb) . However, 

i t i s quite easily done when p i s r a t i o n a l . For suppose that p = ; 

then — = — . I f we l e t ip = g and <j> = g , then ip = <j> , ip i s 

p o s i t i v e d e f i n i t e , and ip belongs to t^(Z) . Hence f^ i s a majorant 

of f_^ . The only change required for the norm computation i s to replace 

L by mL i n condition (b). 

(2.5) Examples derived from the integer group 

This section gives the proof of the main theorem for the re

maining two classes of groups, namely R and discrete torsion groups 

with elements of a r b i t r a r i l y large orders. In both cases we derive these 
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results from the corresponding results for the integers. 

We f i r s t deal with R . A s l i g h t l y modified form of a device 

due to de Leeuw (see [14, p. 375]) i s required. The proof i s the same 

as his and so i s omitted. Before stating t h i s lemma, we remark that 

f i n i t e l y supported functions on Z can be i d e n t i f i e d with f i n i t e sums 

of point masses on R v i a E 2 a £ ^ , where 6 £ i s the 

unit point mass at Z on R . 

(2.5.1) Lemma. Let 1 < p < «> . Let <j> e A £(R) have the following 

properties: 

(1) <{> > 0 ; 

(2) * > 0 ; 

(3) / <j>p(x)dx = 1 ; 

(4) supp(<j>) = {xeR|<f>(x) ̂  °} C [a, a+1] for some r e a l number 

a . 

Then for any f i n i t e l y supported a on Z ( i d e n t i f i e d with the corres

ponding discrete measure on R) , we have a * <j> e S(R) and 

l l * * * l l p " l | a | | p • 

Since any i n t e r v a l of length one w i l l work i n (4), ant example 

of such a cj) i s , except for the normalizing factor required for (3), 

<J>(x) = [ l - 2|x| |x| < 1/2 

|x| > 1/2 . 
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(2.5.2) Theorem. Suppose that p > 1 i s not an even integer or 0 0 

Then L (R) does not have the UMP. P 
Proof. 

Let D be any positive constant. In the proof of (2.4.5) we 

found f i n i t e l y supported X , y on Z which s a t i s f y 

(a) |X| < y on T , hence on R 

and '(b) D| |y I I < I Ixl I . 
I I i i p I I i i p 

Let <f> be as i n (2.5.1) and set f = X*$ , g = y*<f) . Then f and g 

belong to S(R) since S(R) i s an id e a l i n M(R) (see (1.5.1)). By (a) 

we obtain 

| f | = \x\l < y$ = I , 

and from (2.5.1) and (b) we have 

l l f l l p = l.|X**|| p = I M I p > D | M l p - D||y**||p - D||g||p . 

This completes the proof. 

(2.5.3) Theorem. Let G be a discrete abelian group containing elements 

of a r b i t r a r i l y large order. Suppose that p > 1 i s not an even integer 

or » . Then I (G) does not have the UMP. P 
Proof. 

Let D denote an arb i t r a r y positive constant. We know that 

there are f i n i t e l y supported functions f and g' on Z which s a t i s f y 

| f * | <1> on T and D||g'||p < | | f ' | | p . 
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For a positive integer n , l e t S r = {-n, -n+l,..., -1,0,1,..., 

n-1, n} . Then there i s a positive integer n for which 

supp(f')U supp(g')C S n . 

has 2n + 1 members and by hypothesis G contains a c y c l i c 

group H with at least 2n+l members. Suppose that H has r elements, 
2 r-1 

r > 2n+l , and i d e n t i f y H with the subgroup {1, 5o> £ } of T , 
where £ = exp (r~) • 

Define a map p: Z -> G by p(k) = £ ; then p i s a continuous 

homomorphism with image contained i n H . I t i s easy to see that p| 
n 

i s i n f e c t i v e . We define functions on G as follows: 

set f(x) = f f ' ( j ) i f x = p(j) where -"jeS 
n 

- C i f x £ p(S n) ; 

define s i m i l a r l y g i n terms of g' . 

As f , g are f i n i t e l y supported, they belong to S(G); since 

pi S i s m i e c t i v e we have 
1 SQ n 

I I f ' I I = I IfI I and I I g ' I I 
I I l i p I I I I p I 1 6 I | p 

Thus D||g||p < | | f | | p . 

Since f , g are supported by H , we can i d e n t i f y f and g 

with functions on G/H = H = H regarded as a subgroup of T . As i n 

prevxous cases, we are r e a l l y i d e n t i f y i n g f with f \U , since i f y £ H 
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and y corresponds to £ (0<k<r-l) , then 

f ( Y ) = I f(x) Y ( x ) = I f'(j)exp(-2Tri^) 
xep(S ) . . I r 

A similar r e l a t i o n holds for g and ^ , so we have 

If I • l^|'H| < ^ f H - i 

This completes the proof. 

We note now that by combining (2.3.1), (2.3.2), (2.4.5), 

(2.5.2) and (2.5.3), we obtain the main theorem (2.1.5). 

(2.6) Miscellany 

As mentioned i n (2.1), other dense subspaces of L p ( G ) 

(p f i n i t e ) have equal claims to consideration i n the d e f i n i t i o n of the 

UMP. Obvious candidates are 1^(G) O ^ ( G ) , L±(G) f\ ^(G) , A £(G) , 

and [A c(G)j = {feL^(G)/f has compact support-}- . The l a t t e r space w i l l 

be denoted by S c(G) . 

Our f i r s t aim i s to show that neither the positive results (2.1.4) 

nor the negative results (2.1.5) are affected by using any of the above 

four test spaces instead of S(G) i n the d e f i n i t i o n of the UMP. Before 

doing t h i s , we should note that L̂ /*̂  L m cannot give us anything new. 

For i f f , g e I ^ f l with |f{ < g , we have g > 0 and so g z I^CG), 
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by [13, (31.42)]. Hence also f belongs to L^(G) . The Inversion 

theorem now says that f and g are equal a.e. to functions i n S(G). 

(2.6.1) Lemma. Let 1 < p < °° and suppose that L p(G) has the UMP 

as defined i n (2.1.3). Then L (G) also has the UMP when either 
P 

S (G) , A (G) , L 1 H L or L.O L i s used instead of S(G) i n the c c 1 <» 1 p 

d e f i n i t i o n of the UMP. 

Proof. 
This i s obvious for S (G) and A (G) , since each i s contained 

c c 
in S(G) . Suppose that L p(G) has the UMP as defined i n (2.1.3) and l e t 

f , g E ̂ A l p • Let (u*a) be an approximate ide n t i t y for L^(G) as 

i n (1.5.4). Then u * f , u * g e S(G) for every a and we have 
a a 

I u f [ = u I f I < u g ; 1 a 1 a 1 1 = a 

thus 

I |u * f I I < D||U *g|I 
1 1 a

 M p = 1 1 a 0 1 'p 

D being the constant of the d e f i n i t i o n . Taking l i m i t s , we obtain 

H f | l p 5 D | | g | | p . 

When p < 0 0 a similar argument shows that we can also replace 

SCG) by L x n • 
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(2.6.2) Lemma: Suppose that 1 < p < 0 0 and that L p(G) f a i l s to have 

the UMP as defined i n (2.1.3). Then i t also f a i l s to have the UMP when 

S(G) i s replaced by either L^ , L - ] A L
p , A c(G) , or S £(G) i n 

the d e f i n i t i o n . 

Proof. 

Since L, f\ L and L^f\ L contain S(G) , the statement for 
1' oo 1 p 

these two cases follows immediately from (2.1.5). In the other two cases 

i t i s enough to show that our examples can always be assumed either to be 

compactly supported or to have compactly supported transforms. 

We f i r s t deal with S (G) . Let (ii' ) be an approximate 

iden t i t y for L^(G) as i n (1.5.4). Each u^ i s compactly supported. 

Now suppose that D i s an arbitrary positive constant and l e t f , g e S(G) 

s a t i s f y | f | < g and D||g|| < | | f | | . We obviously have |u'f| < u g 
*"*' P p 0(r Ct 

for every a and there i s an index B for which D||u^*g|| < ||u^*f|| , 
by (1.5.4)(e). Replacing f and g by uB * f and uB * g proves the 

B 3 
lemma for S (G) . 

c 

We now consider the case of ^ ( G ) . As i s to be expected, we 

simply dualize the argument just given for ^ c(G) . Let (v^) be an 

approximate i d e n t i t y for L^(G) , with the properties l i s t e d i n (1.5.4). 

Now v_̂  1 uniformly on compact sets so that | |v J i - h| | •> 0 (l<p<°°) 

for every h e L p(G) . In pa r t i c u l a r we have | |v^h| | \ |h| | . Now 

l e t D be an a r b i t r a r y positive constant and l e t f , g E S(G) s a t i s f y 

|f | < g and D||g|| p < ||f||p • Then there i s an index j for which 

D l l v - g | I < IIv.fII ] "P J P 
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We also have 

l e v a r i = | V j * f | < v. * i n < V j * i = (Vjg)' 

Thus i f we replace f and g by v^.f and y.g , respectively, we have 

examples a r i s i n g from A £(G) . This completes the proof. 

00 

(2.6.3) Remark. When G = R , we can use G
C ( R ) » t n e space of compactly 

supported i n f i n i t e l y d i f f e r e n t i a b l e functions on R , as a test space i n 

our d e f i n i t i o n of the UMP. F i r s t , note that L^(R) has a bounded 
oo 

approximate identity of nonnegative functions belonging to C^QR) with 
00 

nonnegative transforms. For l e t <J> e ̂ ( R ) be nonnegative and s a t i s f y 
CO —]_ 2£ 

f <f>(x)dx = 1 . I f , for n > 0 , we set ^ ( x ) ~ n ^ ̂  ' t n e n 

i s an approximate identity for L^(R) (see [18, p. 10]). Let ip = (f^* Oj)̂ ) , 

where h (x) = h(-x) . Then i - s a n approximate i d e n t i t y for L^(R) 

consisting of nonnegative functions i n C c(R) and 0 < < 1 f° r every 

n . The proof now follows those of (2.6.1) and (2.6.2). 
mrr>. proof now follows those of (2.6.1) and (2.6.2). 

I t i s possible to give a d e f i n i t i o n of majorant which i s v a l i d 

for every pair of functions belonging to L p ( G ) • T o do t h i s we require 

the notion of d i s t r i b u t i o n as described i n (1.5). 
* (2.6.4) D e f i n i t i o n . Let G be any LCAG and l e t L,M e S (G) . By 

J_ 

| L | < M we mean |<L,u>| < <M,u> for every u e S +(G) , the set of 

nonnegative real-valued members of S(G) . 
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If L v denotes the inverse transform of an L e S*(G) , we say 

that M v majorizes L v when | L | < M 

Note from the d e f i n i t i o n that M must be a positive linear 

functional on S(G) , that i s , <M,u> > 0 for every u e S +(G) . This 

leads to an extension of a result from the Schwartz theory which was 

pointed out to the author by M. Cowling. Although t h i s result must be 

well known, we could find no reference, so a proof i s included here. 
A 

(2.6.5) Lemma. Let M e S (G) be positive. Then M i s a measure 

(though not necessarily a bounded measure when G i s noncompact). 
Proof. 

By the density of A £(G) i n C Q(G) (see [13, (33.13)]), i t 

suffices to prove that the r e s t r i c t i o n of M to A(G) frj C (G;K) i s 

continuous on C(G;K) , where C(G;K) denotes the space of compactly 

supported members of G^(G) whose support i s contained i n the compact 

set K . We have to fi n d a positive constant B , which may be K-

dependent, such that |<M,u>| < B | | u. | | ̂  for every u e A(G)f\C(G;K) . 

Let u E A(G )Ac(G;K) and l e t v E A (G) be such that 
c 

v(K) = {1} and v ( G ) C [0,1] . Such functions are guaranteed by 

[13, (31.37)]. If u i s real-valued we have 

- W M L ± u „ < " v l l u l loo > 

and fey. the p o s i t i v i t y of M we obtain 

|<M,u>| < <M,v> ||u|1^ . 
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It i s easy.to show now that, i f u i s complex-valued and belongs to 

C(G;K) , then |<M,u>| < <M,v> J |u[|^ (use the method of [12, proof of 

(11.5)]). Hence M i s a measure. 

If G i s not compact, then Haar measure i s an unbounded 

measure which defines a positive member of S*(G) . 

In the compact case i t was quite clear how to produce a majorant 

for a trigonometric polynomial. For examples of majorants i n the non-

compact case, see [8, pp. 272, 273]. We now give an example to show that 

elements of S*(G) need not have any majorant at a l l . 

(2.6.6) Example. We w i l l show how to regard the Hilbert transform as a 

member of S*(R) and then show that i t ' s inverse transform has no majorant 

i n S*(R). A l l that we use here concerning the Hilbert transform may be 

found i n [19, chapter 6]. In what follows, S(R) denotes L 1 ( R ) O A ( R ) 
CO 

and i s not to be confused with the Schwartz class of C functions which, 

along with a l l t h e i r derivatives, are of rapid decrease. 
For u e S(R) we define a linear functional H on S(R) by 

<H,u> = lim 
e+0 

x 
X 

We now show that for u e S(R) t h i s expression i s sensible. 

Let u denote the usual Hilbert transform. By the L 2 theory 
of t h i s transform, we have 

C u V (5) = - i sgn(£) u ( 0 , 
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since u e L 2 (R) . But u e L^R) f\L (R) and so we also have 

(u) e L ^ ( R ) O l 2 ^ R ^ • B y t n e inversion formula, we may regard u as a 
continuous function on R for which 

u(x) = - i sgn(S) u(?) e 1 5 x dC 

and i n p a r t i c u l a r , 

u(0) = [- i s g n C O J u ( ? ) d? . (1) 

R 

But u(0) i s just <H,u> . From (1) we obtain 

|<H,u>| < ||u|\ 1 < ||u s , 

and so H e S (R) . Furthermore, H i s the Fourier transform of the L 

function H v(?) = - i sgn(£) . 

We now show that H has no majorant i n S*(R) . By (2.6.5) i t 

i s enough to show that there i s no positive measure u sa t i s f y i n g 

<H,u>| < <u,u> 

for every u e S (R) . 
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Let u (x) = n nx 

1 
-nx+n+1 

0 < x < -- - n 

— < x < 1 n -

^0 

1 < x < 1 + -- - n 

otherwise . 

Then each u i s a trapezoidal function and i t i s well known that n 
u n e S +(R) . Since I l u

nl !„, = ^ f° r e v e r v n and the support of 

every u i s contained i n [0,2] i t follows that {u } i s a bounded n n 
subset of C(R; [0,2]) . If p ±s anytpositiive meisureiwe then have 

sup <y,u > < y([0,2]) < °° . n = n 

However, simple computations show that 

<H,un> = log n + (n+l) l o g ( l + |) , 

and t h i s sequence i s unbounded. Thus H has no majorant i n S*(R) . 

We consider next a d e f i n i t i o n of upper majorant property based 

on (2.6.4). 

(2.6.7) D e f i n i t i o n . We say that L p ( G ) has the UMPD i f there i s a positive 

constant D such that whenever f, g e Lp(G) and |f| < g i n the 

d i s t r i b u t i o n a l sense of (2.6.4), then l l f l l p S D l | g | l p • 
It i s immediate that i f L (G) has the UMPD, then L (G) 

P P 
has the UMP, since for f f g e S(G) , |f| < g pointwiseeimplies |f| < g 
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d i s t r i b u t i o n a l l y . Hence L
p(G) can have the UMPU only..when..p i s an even 

integer or 0 0 . We now prove the converse i s also true. 

(2.6.8) Lemma. If f, g e L^(G) s a t i s f y |<f,u>| < <g,u> for every 

u e S +(G) , then |f| < g pointwise. If f, g e S(G) s a t i s f y 

|<f,u>| < <g,u> for every u e S +(G) with u l y i n g i n some sphere i n 

Lq( G) » then [f| < g pointwise. 

Proof. 

We prove the f i r s t statement only, since the proof of the 

second i s es s e n t i a l l y the same. It i s easy to see that g > 0 pointwise. 

Suppose that the conclusion i s false and l e t y^ e G be such that 

|f(YQ)I > S^YQ) • We f i r s t consider the case where f i s real-valued. 
~ ^ ~ ^ 

Then either *(YQ) > B(YQ) o r f(YQ) < _ §(YQ) • Suppose, for definiteness, 

that the f i r s t case occurs. By continuity there i s an open neighbourhood 

V of YQ such that g(Y) < f ( Y ) f° r every y e V and by [13, (31.34)] 

there exists w e S (G) such that 0 < w < 1 and the support of w i s 
c = = /\ z\ 

contained i n V . In p a r t i c u l a r , w e S +(G) . Then 

<g,w> = g(Y)w(Y)dy < f(Y)w(y)dy = <f,w> , 
V 

and <g,w> < |<f,w>| , which i s a contradiction. 

Suppose that f i s complex-valued and j f CYQ) I > S^YQ) ' ^ • * T E R 

m u l t i p l i c a t i o n by a complex number of absolute value one we can assume that 

Re f (YQ) > &(YQ) ' Now Re f i s the transform of an L^-function, and 

I<Re f,u>| < <g,u> for a l l u i n S +(G) . By the previous analysis 
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Re f(YQ) < g ( Y Q ) • This contradiction completes the proof of the lemma. 

(2.6.9) Proposition. Let l<p<«> . If L (G) has the UMP (as defined _ p 
in (2.1.3)) then L (G) has the UMPD with at most the same constant. 

P 
Proof. 

Let f, g e L p ( G ) s a t i s f y | f | < g d i s t r i b u t i o n a l l y and l e t 

D be the constant of the d e f i n i t i o n of the UMP. Let (u ) , (v ) be 
n m 

sequences i n S(G) such that u -»• f and v -> g i n L (G) . Then 
n m ° p 

we also have |<un,u>| -> |<f,u>| and <vm,u> -> <g,u> for every u e S(G) . 
We can assume that v i s real-valued, and thus that <v ,u> i s r e a l -

m m 
valued for every u e S,(G) . For i f the v are not real-valued, 

+ m 1 ~ * ^ replace v by w = TT(V + v ) . As <g,u> > 0 when u E S,(G) i t m m z m m = + 
i s easy to show that <(g)",u> = <g,u> whenever u belongs to S +(G) . 

Hence <wm,u> -*• <g,u> for every u e S +(G) . Furthermore, 
I I w

m I Ip **" I |^(g +g) Mp 5. I |g| Ip • We now assume that the are r e a l -
valued . 

Let 6 > 0 and, for r > 0 , l e t S r = (ueS +(G) | ||u|| < r} 

Then there i s a positive integer m̂  such that for every m > m̂  , we 

have |<f,u>| < -r^T <v ,u> for a l l u e S and I lv I I < i I g(| .1 + 6 . 1 1 = 1-6 m r 1 1 m1'p 1 1 0 1 ' p 
Si m i l a r l y , there i s a positive integer n^ such that for every n > ng , 

feu ,u>| < X ' T H F ) < V ,U> for a l l u e S and | | f | | - 6 < I lu I I . 1 no 1 = 1-6 m ' r 1 1 1 'p 1 1 n1'p 

i ~ i 1+6 In p a r t i c u l a r , we have <u ,u> < (-—r) <v ,u> for every u e S . By ' n = mQ r 
Lsnsa (2.6.8), | < C 

Lemma (-27678) ̂  |u n | < Oj^r) v
m pointwise; since Lp.(G) has the UMP, 

we also have | |û | | p < (g|) D| | V | | p . Hence | |f | | - 6 < (g|) n i l . . II 11.11 . . /1+6S 

P 
(inequality continues over) 
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D U | g | L ' + 5 ] and, as 6 > 0 i s a r b i t r a r y , | | f | | <D||g|| . This P p p 
completes the proof. 

(2.7) The Lower Majorant Property 

In t h i s section we discuss analogues for noncompact LCAG's of 

the LMP for the compact case. 

(2.7.1) Proposition. Let 1 < p < °° and consider the following state

ments: 

(1) There i s a positive constant C^ such that i f f e S(G) , 

there exists g e S(G) such that |f| < g pointwise and l | g | | p 5 C i l | f | l p 

(2) There i s a positive constant such that i f f e S(G) , 

there exists g e L (G) such that |f| < g d i s t r i b u t i o n a l l y and 

(3) There i s a positive constant C„ such that i f f e L (G) , 
3 P 

there exists g§e'L'I(G.) sa t i s f y i n g |f| < g d i s t r i b u t i o n a l l y and 

llsllp£ c3ll fllp P- P 

Then (1) implies (2), and i f 1 < p < » , (2) implies (3) . 

Proof. 

(1) => (2) i s obvious, since SCG)ClL CG) and since 

| f | _ g pointwise implies | f | < g d i s t r i b u t i o n a l l y . The constant 

i s at most C- . (2) => C3). Let f e L CG) and l e t (u ) be a 1 p n 
sequence i n S(G) such, that u^ -»• f i n LpCG) . By hypothesis, for 

each n , there exists g e L (G) such, that |u I 5" g d i s t r i b u t i o n a l l y ' e n • p 1 n 1 = n * 
and IIg M < C _ l l u || . Thus {g } i s a norm-bounded subset of the 1 1 °n1 1 p = 2 1 1 n 1 ' p n 
ref l e x i v e Banach space LpCG) and so there i s a weak * convergent s 



51. 

subsequence, s t i l l denoted by (g^) , with weak l i m i t g , say, i n 

L (G) . Then P 

and by weak convergence (and (1.5.3)), i f u e S +(G) , 

]<f,u>| = lim |<u ,u>| < lim ̂ g ,u> = <g,u> . 
n n 

Hence (3) follows, with being at most C^ • 

Note that each of statements (1), (2), and (3) i n t h i s 

proposition makes sense for 1 < p < 0 0 . 

(2.7.2) D e f i n i t i o n . Let 1 < p < °° . We s h a l l say that L p(G) has the 

LMP(j) (j=l,2,3) i f statement (j) of (2.71.1) holds for L p(G) . 

The content of (2.7.1) i s that i f 1 < p < °° and L p(G) has 

LMP(l), then i t has LMP(2); s i m i l a r l y , i f L p(G) has LMP(2), then 

i t has LMP(3) when 1 < p < ~ . 

Note that i n statements (1) and (2) of (2.7.1), the condition 

"f £ S(G)" could equally be replaced by "f e S (G)" or "f e A (G)" 
c c 

and the conclusions would s t i l l hold. This leads to a new d e f i n i t i o n of 
LMPtj) when j = 1,2. 
(2.7.3) Lemma. (a) . L (G) has LMP(3), with constant 1. 

(b) L 2(G) has LMP(2), with constant 1. 
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Proof. (a) By Lemma (2.6.7), i f f, g e L^G) , then | f | < g 

d i s t r i b u t i o n a l l y i f and only i f |f| < g pointwise. We proceed exactly 

as i n Hardy and Littlewood [11, p. 305]. For f e L^(G) , write 

f = f .j f „ , where f. e L 0 (G) and l l f . l L = I I f I I •, , for i = 1,2 . 1 2 l 2 1 1 i 1 12 1 1 "1 
Let g± e L 2(G) be such that g ^ = | r ^ | , i = l , 2 . If g = g ^ , 

then g e L^(G) and |f| < g pointwise, since 

|f| = IV^I - 1 !l' * ^ = % * 8 2
 = & 

([13, (31.29)]). 

Furthermore, 

\1<- w 
, 2 

, 2 

' 2 

,2 

• i 

This proves (a) . 

(b) If f e S(G) , l e t g e L 2(G) be such that g = |f| 

a.e. Then |f| < g d i s t r i b u t i o n a l l y and | | g j | ̂  = | | dff | 1 ̂  ' H e n c e 00 

follows. 

(2.7.4) Remark. There are other senses, not covered by (2.7.2), i n which 

L^(G) and L 2(G) have a LMP. Two examples are: 

( i ) L^(G) has the LMP i n the sense that there i s a positive 

constant Ĉ  such that i f f e ^(G) , there exists g e S^(G) for 

which |f| < g pointwise and ||g|11 < | |f | | . 
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( i i ) (G) has the LMP i n the sense that there i s a positive 

constant C,_ such that i f f e L^iG) , there exists g e sat i s f y i n g 

|f| < g a.e. and ||g|| 2 < C,. | |f | | 2 . 

Each i s easy to prove; statement ( i i ) i s essentially (2.7.3)(b) 

and ( i ) can be derived from (2.7.1)(a) by using the method of (2.1.2)(b). 

We come now to the duality theorem. In the compact case, one 

proves that a space L
p ( G ) n a s t n e LMP by using the KHardy-Littlewood 

2k 

duality theorem (see (1.1)). For p = 2]n-i » a direct proof that 

L p(G) has the LMP i s not known, even for the c i r c l e group. Unfortunately, 

we have found neither a generalization of the Hardy-Littlewood duality 
theorem nor a direct proof that L p(G) has LMP(j) , for some j , when 

2kk 
p = 2k-± (KeN) . However, i t i s an easy matter to generalize the Boas 

duality theorem (see (1.1)), and from t h i s we can at least conclude that 

L p(G) can only have LMP(j) for some j (j = 1,2, or 3) i f p i s 1, 
2k 

2, or of the form 2k~l k e N . 
(2.7.5) Lemma. Suppose that L^ M e S*(G) and |L| < M . If <J> , ip e S(G) 

sa t i s f y |<J>| < ip pointwise, then |<L,<j>>| < 2<M,ip> . 
Proof. 

F i r s t suppose that L i s re a l - l i n e a r and that c|> i s real-valued. 

Then we have - ip < <j> < ip , so that 0 < <J> + i/> and 0 < ̂  — cp . Since 

]L| < M , we have | <L,<j>-hJj> | < <M,<$>+ip> and |<L,ip-<j>>| < <M,ip7<()> . This 

i s equivalent to 

- <M,ip> - <M,<}>> < - <L,<()> - <L,\p> < <M,<j)> + <M,\p> 

and - <M,ip> + <M,<f>> < - <L,(j>> + <L,ip> < <M,ip> -f <M,<|)> . 
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Adding, we obtain 

-2<M,)JJ> < -2 <L,<f>> < 2<M,ip> , 

hence |<L,<j>>| < <M,ip> . 

Suppose now that L i s general and cf) i s real-valued. Then 

<L,<j>> = <L̂<J<J>> - i<L^, icj)> where i s a r e a l - l i n e a r functional on 

S(G) . If a i s a complex number of absolute value one such that 

a<L,<j>> = |<L,c|>>| , then 

|<L,4>>| = <L,acf>> = <L15a(f)> 

But i t i s easy to check that < M and |a<f>| < ̂  , so that 

|<L1, a<j>>| < <M,ip> . Thus |<L,<f>>| < <M,IJJ> i n t h i s case. 

For general L and complex-valued <f> , we have, writing 

4> = <j)̂  + i(f>2 with <J>̂  and cf>2 real-valued, 

\<L,q»\ = |<L,<J>1+i<j)2>| < |<L,(j)1>| + |<L,<j>2>| < 2<M,ip> . 

(2.7.6) Theorem. Let 1 < p < <=° . (a) Suppose that L (G) has 
_ _ p 

LMP(j) (j = 2 or 3) with constant C . Then L (G) has the UMP with 
q 

constant at most 2C . 

Cb) If L (G) has LMP(1) with constant C , then L (G) has P q 
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the UMP with constant at most C 

Proof. 

See Boas [O, p. 256]. 

4a) The case j = 2 i s similar to the case j = 3 , so we 

prove only the l a t t e r . Let f, F e S(G) s a t i s f y | f | < F pointwise. 
I f g e L

p ( G ) > there exists h e L p(G) sa t i s f y i n g ||| < h d i s t r i b u t i o n a l l y 

and ||h|| p<c||g||. From (1.5.3) we have 

f(x) g(-x)dx| = |<g,f> 

< 2 <h,F> (by (2.7.5)) 

= 2 h(x) F(-x)dx 

< 2||h||p ||F||q < (2C||F||q) ||g|| p 

Thus the map g - f(x) g(-x)dx defines a continuous linear 

functional on L (G) , with norm at most 2C||F|I . However, th i s p 1 1 1 1 q 
functional i s defined by the L (G) - function f and so has norm 

q 
| | f | | q . Consequently we have | | f | | q < 2 C | | F | | , and t h i s proves (a), 

(b) F i r s t suppose 1 < p < 0 0 . We proceed as i n (a) , using 

the Parseval formula instead of (2.7.5), and using the density of S(G) 

in Lp( G) . When p = 0 0 , we again proceed as i n (a) to obtain 

|J f(x) g(-x)dx| < I | F | | x I|g| 
G 

(1) 
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It i s an easy exercise to show that S(G) i s weak-*-dense i n L (G) , 

and consequently 

M f l ^ - sup{| J f(x)g(x)dxf |geS(G) and M g M ^ 1 } 
G 

Combined with (1), t h i s shows that ||f||-j_ < C | | F j j . This completes 

the proof. 

AC 

(2.7.7) Corollary. Suppose p i s not 1, 2, or of the form 2k~T ^ o r 

some k e N . Then L p(G) does not have LMP(j) for j =1, 2, or 3 . 

Proof. If p i s not of the given form,-then q , the index conjugate 

to p , i s not an even integer or 0 0 and so L (G) does not have the 
q 

UMP (see (2.1.5)). The result follows from (2.7.6). 
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CHAPTER 3 

MAJORANTS AND FUNCTIONS WITH NONNEGATIVE TRANSFORMS 

This chapter i s concerned with obtaining generalizations of the 

results outlined i n (1.1.3) to a l l i n f i n i t e compact abelian groups. 

(3.1) Even integers again 

Throughout t h i s section, G i s a compact abelian group. We 
establish analogues of the positive r e s u l t s for the c i r c l e group described 
i n (1.1.3). 

(3.1.1) Theorem. Let A be a symmetric neighbourhood of the iden t i t y i n 

G . Suppose that f e L^(G) and f > 0 . If f e L 2(A) , then f e L 2(G) 

and there i s a positive constant C , dependent on A but independent of 

f , for which 

i f | lL 2CG) S C H f H L 2 ( A ) 

Proof. 

Let m be normalized Haar measure on G . Let K be a compact 

symmetric neighbourhood of the i d e n t i t y i n G with K + K C A . Set 

h = rc^jQ 1 R and define g = h * h , where h(x) = h(-x) . Then we have 

g = |h| 2 > 0 and £(0) = 1 . Moreover, |g| < 1 A , and so gf e L0'(G) , 

since l A f e L„(G) A 2 
= ffi(K) A ' B 2 

If 3 E G , we have 

gfCB) = g * f ( 6 ) = ^ £( Y) f ( 3 - y ) > g(0) f(0) = f ( 3 ) 
YEG 

Applying the Plancherel theorem, we obtain 
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H f i i L 2 ( G ) - H ' l i i ^ g ) s I I ^ H L 2 C G ) - I I ^ £ I I L 2( G ) S=W H £ H L 2(A ) . 

This proves the theorem, with C = ,\ T S . 
m(K) 

It i s now an easy matter to derive the corresponding r e s u l t for 

L p(G) when p i s an even integer or °» . 

(3.1.2) C o r o l l a r y . Let A be a symmetric neighbourhood of the i d e n t i t y , 

and suppose f e L^(G) with f > 0 . If p i s an even integer or 0 0 

and i f f e L p(A) , then f e Lp(G) . Moreover, there i s a p o s i t i v e 

constrant C , dependent on A and p but not on f , for which 

l f M L ( G ) < C||f|| L CA) • 
P P 

Proof. 

F i r s t suppose that p = 2£ , where £ i s a p o s i t i v e integer, 
£ ^ - -We have f e L 2(A) and f > 0 , since f" = f * f * * f > 0 

£ £ (there are £ r ' s h e r e ) . By (3.1.1), f e L.(G) and ||f |L 
^2 ' 

1 £ < W T r S I If I L ... , where K i s as i n the proof of (3.1.1). Thus = m(K) 1 1 1'L (A) 
f belongs to L p ( G ) and we have 

i f i i L (G, • t i i ^ n l 9 ( G ) i w s W W ] " 1 " M f ' l l i V -
p L I 

= i m w r ^ i i f i ^ ( A ) a) 
-l/£ p 

Hence, C = ft(K) • 
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Suppose now that p = °° and f e L^CA) . Then f e L^CA) 

for every positive integer L . Since 

lim ||h|| =1^11^ i f h e L for some r , 
p-*» ^ r 

i t follows from (1) that 

H ' N L . C G ) i H £ I I L J « • 
CO CO 

In p a r t i c u l a r , f E an& C = 1 i n t h i s case. 

(3.1.3) Remark. If f E L^CG) and f > 0 , then f e Z^(G) and thus i s 

equal a.e. to a function i n P(G) , the space of continuous positive 

d e f i n i t e functions of G (see [13, (34.12)] or use the UMP as i n [3, p. 

256]). The norm inequality of (3.1.2) t e l l s us nothing new, for i f 

we assume f e P(G) , we have 

f(0) = | | f | | L ( G ) < | | f | | L ( A ) < | | f | | L ( G ) = f(0) . 

However, when p = 0 0 , (3.1.2) i s an alternative proof of a 
c l a s s i c a l result (('see [6, p. 144]). 

(3.2) Failure of "good" behaviour when p i s not an even integer 

In t h i s section we present extensions of the results of Wainger 

120] and Shapiro [18]. Throughout, G w i l l be an i n f i n i t e compact 

abelian group. One chara c t e r i s t i c of the positive results i s that we 
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obtain an inequality of the form 

N f l l L (G) = c H f N L (A) • 
p P 

We refer to t h i s inequality as (W) . 

We s h a l l show that i f p > 1 i s f i n i t e and not an even integer, 

then no inequality of the form (W) can hold. Of course, we assume that 

f > 0 i n (W) . 

(3.2.1) Lemma. Let B a nonempty symmetric open subset of G . Then we 

can find u e A(G) with the following properties: 

(1) u and u are real-valued; 

(2) u i s supported i n B ; 

(3) u i s bounded away from zero on some symmetric open set 

contained i n B . 

Before proceeding with the proof, we need some more notation. 

For f e L 1(G) , we l e t f(x) = f(-x) ; for y E G , we l e t (^f)(x) = f(y4x). 
Note that ( x f ) ~ = -x(f) . 

x -xx 

Proof of (3.2.1). Let x^ e B and suppose that V i s a symmetric 

neighbourhood of x^ contained i n B . There i s a compact symmetric 

neighbourhood K of the i d e n t i t y such that K + K C - X Q + V . 

Set w = 1^ * 1„ . Then w i s supported by K + K , w e A(G) 

and w(0) = m(K) >' 0 . Thus there i s a 6 > 0 and a symmetric neighbour

hood Y of the i d e n t i t y such that Y C K + K and w(x) > 6 for every 

x i n Y . 
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Let u^ = w ; then supp(u^) = X Q + supp(w) CT V C B . 
xO , 

Since may not be real-valued, consider u = " j ^ i + ui) • Then both 
u and u are real-valued and u e A(G) . Furthermore, 

supp(u) C supp(u 1) U supp(u 1) 

= suppC^) U k- supp(u1>} CZ B . 

F i n a l l y , we note that u i s bounded away from zero on x^ + Y , since 
i f y e Y , 

uCxQ+y) = |(wC-x0+j£0+y) + w C x ^ - y ) ) , as (-xQW) ~ = x Q(w) 

= |(w(y) + w(-y)) 

> 6 

This completes the proof. 

Lemma (3.2.1) and the f a i l u r e of the UMP when p i s not an 

even integer provide the key to the next two theorems. Theorem (3.2.3) 

i s a direct generalization of Shapiro's result [18, p. 16], and the method 

i s the same. Theorem (3.2.3) i s a s l i g h t variant, the difference being 

that i n (3.2.3) we have p > 2 and we can conclude that our example 

belongs to L^tG) and hence also belongs to L^(G) . We can not do t h i s 

when 1 < p < 2 . 
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(3.2.2) Theorem Suppose p > 1 i s f i n i t e and not an even integer. Let 

A be a closed symmetric neighbourhood of the i d e n t i t y which i s not of 

f u l l measure. Then no inequality of the form (W) can hold. 

Proof. 

We know that the UMP f a i l s i n L p(G) for these p ; see (1.1.2)(b) 

Thus, for each positive integer n we can find trigonometric polynomials 

f , F with the following properties: F majorizes f , I I F I|P < 1 n n n n 1 1 n1'p = 
and ||f ||P > 2 n . 1 1 n M p = 

Apply Lemma (3.2.1) to the set B = A' , the complement of A , 

to obtain u belonging to A(G) , supported by A' , and bounded below by 

6 > 0 on a nonempty open set I contained i n A' . Let u* = E ^ | U ( Y ) | Y • 
yeG 

Then u* belongs to A(G) and u* majorizes u . 

We f i r s t show that (1) f can be assumed to have r e a l c o e f f i c i e n t s 
n 

and s t i l l be majorized by F , and (2) after a possible replacement of 
n 

f as i n (1), we can arrange that the sequence {||f I | P i s unbounded, n n L ( .1) 

P 
Let t denote the least number of translates of I required to 

& 
cover G , and suppose that G = V"̂  (y_. + I) . Then 

2° < 

where z i s that - y (Kj<£) for which | U f | | P , T , = m a X J I f I | P
 / T N , J 1 'z n

M L (I) l<j<x' '-y. n 1 'L (I) P - ~ J p 

Thus C2) w i l l s t i l l hold when we replace by ; note that z may 
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vary with n . We now show how to make the necessary adjustments for (1) 

and s t i l l preserve (2). 

I f h l " K fn + a n d h2 = ^ Z
f n ' <zfn>~> > t h e n b o t h 

h^ and h have real-valued Fourier transforms and at l e a s t one of h^ 
n—1 

and has the pth power of i t s L p(I)-norm > 2 It . We thus replace 
zf by whichever of h. and h„ has I Ih. l| P > 2 It . Hence we z n J 1 2 1 1 j 1 ' L (I) = 

P 
can assume (1) and (2) hold. Denote the replacement by f once again. 

We now show that (W) cannot hold. Let g = F u* + f u ; 
°n n n 

then g n > 0 since F^ majorizes f , u* majorizes u , and the 

c o e f f i c i e n t s of u and f are real-valued. Now sup I |g I | P , . s < 0 0 , 
n 1 1 n 1 1 L_ (A) P 

since 

g (x)| Pdx = "|F ( x ) | P |u*(x)| Pdx (u i s supported by A') 
A n 

< u* P F I l P 

= M u I l » I l ^ n l l L (G) 
P 

< l l u * | | P 

However, sup ||g || P , . = °° ; for i f t h i s sequence were bounded, the 

sequence {I If u l | P would also be bounded since f u = g - F u* . 
1 1 n 1'L (G) n °n n 

P 
But 

f n U H L (G) * [ l f n ( x ) ! P ! u ( X ) | P dx > 6 P 2n"1/£ 
P I 
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by (2). This completes the proof. 

We can be much more d i r e c t when p > 2 . 

(3.2.3) Theorem. Let p > 2 not be an even integer or 0 0 . Suppose 

that A i s a closed symmetric neighbourhood of the i d e n t i t y which i s not 

of f u l l measure. Then there e x i s t s g belonging to L^(G) with the 

following properties: 

Ca) g > 0 ; 

Cb) g E L p(A) ; 

Cc) g i L p(G) . 

Proof. 

By 17, p. 165], there i s a complex-valued function c on G 

with |c| E l L p ( G ) ] " " and c ^ l L p ( G ) ] " . Let F e L p(G) be such that 

F = |c| ; since p > 2 , we can f i n d f^ belonging to L^(G) such that 

= c . Note that f^ does not belong to L
p ( G ) • 

Let u be obtained from Lemma (3.2.1), using B = A' . Let 

I be a symmetric neighbourhood contained i n A' on which i u i s bounded 

below by a p o s i t i v e number, <5 say. 

Since f^ £ ^p^) a n d since only a f i n i t e number of translates 

of I are required to cover G , there must be a y e G for which 

v f ^ £ •kpCl) • Since I i s symmetric, (y^ i ^ does not belong to L p ( I ) , 

and so not both of = + ( y ^ ) ' ) a n d h
2
 = ~ | ^ y f i " ^ ' y f l ^ ^ c a n 

belong to L p ( I ) . As both h^ and have r e a l c o e f f i c i e n t s , we 

replace vf^ with whichever of h^ and does not belong to L p ( I ) . 

C a l l t h i s replacement f ; then f i s majorized by F . 
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Let u* = £ J U - ( Y ) | Y , and l e t g = Fu* + fu . Then g belongs 

to L (G) , and g > 0 . Furthermore, g e L (A) since u i s supported z. p 
by A' , and so 

'L p(A) |F(x)| P |u*(x)| P dx < ||u*|| P ||F||P . 
P 

However, g does not belong to L (G): for otherwise we would have 
P 

fu = g - Fu* e L p(G) , and yet 

| f ( x ) | P |u(x)| Pdx > 6 P j |f(x)| Pdx 
I 

This completes the proof. 

For the case 1 < p < 2 , we can give a modified version of 

(3.2.3) .- This result should be regarded as an extension of Wainger's 

result [20]. 

(3.2.4) Proposition. Suppose 1 < p < 2 and l e t A be a closed 

symmetric neighbourhood of the identity which i s not of f u l l measure. 

Then there i s a trigonometric series with nonnegative co e f f i c i e n t s which 

converges to a function i n L
p ( A ) , but whose coe f f i c i e n t s are not the 

Fourier c o e f f i c i e n t s of any function belonging to L p(G) . 

Proof. 

Since the UMP f a i l s i n L p(G) , for each positive integer n 

there exist trigonometric polynomials F^ , f^ with F^ majorizing f^ , 
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I|Fj | p < 2 n , and | | f j | > 2 n . As i n the proof of Theorem (3.2.3) 

we can assume that f has r e a l c o e f f i c i e n t s and that ||f |L > c 2 n 

n 1 1 n M L (I) = 
P 

for some positive constant c , where I i s as i n the proof of Theorem 

(3.2.3). Let u be obtained from Lemma (3.2.1) with B = A' , and l e t 

If g = F u* + f u , then g > 0 and g belongs to A(G) e n n n °n = 6 n 
00 

for every n . Let g = £ g Then g i s a trigonometric series 
n=l n 

with nonnegative c o e f f i c i e n t s . Note that g e L (A) and 
n p 

I ^ n I II (A) = 2 n I Iu* I loo ' Hence the series defining g converges i n 
P 

L (A) . Since the sequence {||g-|| . .}. i s unbounded, g cannot belong P n p ( , 
to L (G) . P 

(3.2.5) Remark. We should note that the series defining g can be 

assumed to converge a.e. (with respect to Haar measure) by using a 

subsequence i f necessary. For th i s subsequence, g s t i l l cannot belong 

to L n(G) (for the same reason as for the o r i g i n a l g) . 
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