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ABSTRACT 

An exploited single-species population model with a density 

dependent reproductive function i s constructed, i n which recruitment 

to the adult breeding population may occur i n one of several possible 

age classes. The parent i s assumed capable of giving b i r t h only once. 

I t i s also assumed that a l l density dependence i s concentrated i n the 

f i r s t year of l i f e . A l i n e a r i z e d s t a b i l i t y analysis of the multiply-

delayed difference equation model i s carried out and a s u f f i c i e n t 

condition f o r s t a b i l i t y i s derived f o r the general case, while 

necessary and s u f f i c i e n t conditions are found i n s p e c i f i c examples. 

Some indication of the complicated bifur c a t i o n structure of the model 

i s given by a series of computer simulation p l o t s . F i n a l l y , the 

method of Lagrange m u l t i p l i e r s i s used to f i n d the optimal equilibrium 

escapement l e v e l f o r the o r i g i n a l exploited population model. 

Colin W. Clark 

F. Y. M. Wan 
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CHAPTER I 

INTRODUCTION 

For many species of organisms, population growth i s discontinuous. 

The l i f e h i s t o r y of such organisms may be subject to strong seasonal 

or periodic influences. Also, f o r many species, recruitment to the 

breeding stock may only occur several months or years a f t e r b i r t h . There 

are species whose members reproduce only once i n t h e i r l i f e t i m e s and die 

before t h e i r descendents' l i v e s begin, f o r example, salmon or cicadas. 

To represent the population growth of such species, the only suitable 

model i s a difference, or difference-delay equation (Maynard Smith 1968, 

May 1973, Clark 1976a, Pielou 1977). 

Consider a b i o l o g i c a l population (P^ i n generation k) which has 

discrete and nonoverlapping generations. The population dynamics may 

be described by the f i r s t order difference equation 

P k + 1 = F ( P k ) , (1) 

which relates the population l e v e l P at time t = t k + ^ to the population 

l e v e l at a previous time t = t j , by means of some given stock-recruitment 

function, F(P). In most cases of i n t e r e s t , the function F(P) i s 

nonlinear and i s usually constructed to allow the population to grow 

rapid l y at low densities and l e v e l o f f or possibly decline at high densities. 

Many e x p l i c i t forms for the density dependent function.F(P) have 

been proposed i n the l i t e r a t u r e , and tables of s p e c i f i c forms used, with 
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references, can be found i n May, 1979 or May and Oster, 1976. One . 

iitportant example i s the Ricker model (Ricker 1954) i n which 

F(P) = P exp { r ( l - P/K)}. This Ricker model i s used extensively i n the 

management of the P a c i f i c salmon (Oncorhynchus species) populations 

(Clark 1976a). The dynamic behaviour of solutions of equation (1) fo r 

t h i s case i s s u r p r i s i n g l y complicated, but now seems to be w e l l 

understood, see Levin and Goodyear, 1980. 

C l e a r l y , equation (1), with F(P) as given above, always possesses 

a n o n - t r i v i a l equilibrium at P* = K. I t has been shown that t h i s 

equilibrium i s l o c a l l y stable provided that 0 < r 4 2; but i f r i s 

increased beyond the value 2, the equilibrium becomes unstable and a 

new stable l i m i t - c y c l e of period 2 bifurcates from the equilibrium. 

In f a c t , there i s an increasing sequence 2 = r-^ < 2.526 = < ••• 

such that when r increases past r n a new and stable cycle of period 2 n 

bifurcates from the equilibrium. However, the.sequence of b i f u r c a t i o n 

values f o r r are bounded above by a c r i t i c a l value r * = 2.692, beyond 

which cycles of a r b i t r a r y period appear along with solutions that 

never s e t t l e i n t o any f i n i t e cycle. The region beyond r * has been 

c a l l e d dynamic chaos since solutions are e f f e c t i v e l y indistinguishable 

from random fluctuations. 

The term "chaos" was introduced i n the mathematical paper by 

L i and Yorke, 1975. They show that i f equation (1) has a solution of 

period 3, then f o r those same parameter values, solutions of any 

integer period can be found, as w e l l as solutions that never s e t t l e 

i n t o a periodic cycle. For a review of the irathematical d e t a i l s of 
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the b i f u r c a t i o n structure of equations l i k e equation (1) see May, 1976 

or May and Oster, 1976. 

Many r e a l populations have several d i s t i n c t but overlapping age 

classes, or the density dependent mechanisms operate with an e x p l i c i t 

time delay, say n generations. In t h i s case, a difference-delay equation 

of the form 

p i 1 1 = P, F ( P , ) (2) k+1 k k-n' v ' 

may be appropriate. Examples of such models, where the population at 

k+1 depends l i n e a r l y on the previous population and nonlinearly on a 

single population at some time i n the past, can be found i n Maynard 

Smith, 1968; May, Conway, Hassell, and Southwood, 1974; Clark, 1976b; 

and Beddington, 1978. 

Clark, 1976b, studied the delay equation = + F ( P ] c _ n ) ' 

which has applications as a model of baleen whale population dynamics. 

Equilibrium s t a b i l i t y and optimal ex p l o i t a t i o n p o l i c i e s were discussed. 

Here, a i s the s u r v i v a l c o e f f i c i e n t and F(P. ) i s the recruitment to 
k-n 

the breeding population at time k which was produced by the breeding 

population at time k-n. The l o c a l s t a b i l i t y of an equilibrium, P*, 

fo r t h i s difference-delay equation was shown to depend seperately on 

the s u r v i v a l c o e f f i c i e n t , the slope of the recruitment function at the 

equilibrium, and the time delay i n the recruitment. Clark has shown 

that increased delay implies reduced s t a b i l i t y , i n the sense that 

increasing the delay reduces the region i n the parameter plane which 

possesses a stable equilibrium point. 
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Goh and Agnew, 1978, considered Clark's, 1976b, difference-delay 

model equation f o r a population i n which, recruitment to the breeding 

class takes place several generations a f t e r b i r t h . They employ a 

s p e c i f i c form for the recruitment function, F(P), namely, F(P) = 
2 

AP exp (-BP ), where A and B are pos i t i v e constants. I t i s shown that 

increasing the delay causes reduced s t a b i l i t y , while increasing the 

su r v i v a l c o e f f i c i e n t , when the delay between b i r t h and recruitment i s 

small, tends to s t a b i l i z e the population. However, when t h i s delay i s 

longer and the s u r v i v a l c o e f f i c i e n t i s not near one, then the s t a b i l i z i n g 

effects of the s u r v i v a l c o e f f i c i e n t are overshadowed by the d e s t a b i l i z i n g 

effects of the time delay. Harvesting of the modeled population i s 

studied and they conclude that, for populations that e x h i b i t a sharp 

peak i n t h e i r recruitment function, intermediate levels of constant 

e f f o r t harvesting can lead to d e s t a b i l i z a t i o n . 

In the paper by May e t a l . , 1974, conditions that give r i s e to 

s t a b i l i t y and o s c i l l a t i o n s i n a single species population in t e r a c t i n g 

with a maintained resource were studied. Considered f i r s t were 

discrete generation difference equation models with density dependent 

mortality and fecundity. I f the rate at which a population takes to 

return towards an equilibrium l e v e l i s c a l l e d the ch a r a c t e r i s t i c return 

time, t h i s paper contends "that i t i s the relationship of t h i s time 

to the time delays i n the system (e.g. the length of a generation) 

that determines whether the population approaches the equilibrium 

monotonically or 'overshoots' and o s c i l l a t e s about the equilibrium" 
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(May et a l . 1974: 747). They found that i n s t a b i l i t y follows from t h i s 

return time being too small compared with:.the\:time delays. 

Consideration i s then given to multiple age class models, and 

a model with two overlapping age classes i s studied i n d e t a i l . Of 

course, the s t a b i l i t y properties of these multiple age class populations 

i s more complicated, but they are shown to be s i m i l a r to those of m u l t i -

species systems. The l o c a l s t a b i l i t y of an equilibrium i s shown to be 

determined by the dominant eigenvalue of a matrix of parameters 

characterizing the slopes of the density dependent relationships 

between age classes. 

Diamond, 1976, presented techniques for estimating the s i z e and 

shape of regions of l o c a l s t a b i l i t y f o r difference equations. These 

techniques are based on a class of discrete Liapunov functions, and a 

" r e s t r i c t e d recipe" f o r finding these Liapunov functions along with an 

algorithm f o r c a l c u l a t i n g Liapunov contours i s given. The estimation 

methods are applied to a single species model with two age classes. 

Levin and May, 1976, gave s t a b i l i t y c r i t e r i a f o r the difference-

delay equation (2). They presented general a n a l y t i c formulas describing 

the boundary between monotonic damping and o s c i l l a t o r y damping toward 

a stable equilibrium point, P*, and f o r the boundary seperating the 

regions of s t a b i l i t y and i n s t a b i l i t y of P*. As was found also by 

Clark, 1976b, May et a l . , 1974, and Goh and Agnew, 1978, an..increase 

i n the e x p l i c i t time delay, n i n equation (2), leads the system to be 

more prone to o s c i l l a t i o n s and i n s t a b i l i t y . An adaptation of the 
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l i n e a r i z e d s t a b i l i t y a n a l y s i s presented by Levin and May, 1976, i s 

used i n t h i s t h e s i s . 

Extensions of the difference-delay model equation (2) to allow 

f o r m ultiple age spawning populations where density dependence i s 

expressed i n terms o f the population l e v e l s of both present and several 

preceding generations, i . e . , 

P, ,-, = P, F (P. , P. - , ... , P, ) , (3) k+1 k v k k-1' k-n ' 

have been considered by A l l e n and Basasibwaki, 1974, Ross, 1978, and 

Levin and Goodyear, 1980. 

A l l e n and Basasibwaki, 1974, studied a c l a s s of models incorporating 

mu l t i p l e age structure where recruitment to the population i s the 

product of fecundity and a s u r v i v a l r a t e . This f i r s t year s u r v i v a l r a t e 

was assumed to vary with the s i z e and structure of the population. 

The population a f t e r recruitment i s described by a l i f e t a ble with 

constant s u r v i v a l r a t e s . Necessary conditions f o r the s t a b i l i t y of 

an e q u i l i b r i u m and properties of o s c i l l a t i o n s about an unstable e q u i l i b r i u m 

were considered using a combination o f a n a l y t i c a l and simulation 

techniques. 

Ross, 1978, considered a s p e c i a l case of equation (3) of the 

form P, ,., = aP?" c . i n t h i s case, the model can be w r i t t e n as a k+1 k k-1 

l i n e a r second order recurrence r e l a t i o n i n the logarithm o f the 

population and e x p l i c i t s o l u t i o n s to t h i s recurrence r e l a t i o n were 

derived and c l a s s i f i e d according to various parameter values. 

In the paper by Levin and Goodyear, 1980, a m u l t i p l e age spawning 
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population model with Ricker type stock-recruitment relationship 

was examined. Their model assumed that a l l density dependent effects 

occur w i t h i n the f i r s t year of l i f e . A density dependent L e s l i e matrix 

was developed and l i n e a r i z a t i o n techniques applied to various 

s i m p l i f i e d models. Very complicated s t a b i l i t y properties were 

shown to be dependent on two opposing delays i n the system, the 

reproductive delay associated with deferring reproduction and the 

truncation delay associated with an eventual l e v e l i n g o f f of fecundity 

i n l a t e r age classes. The balance between these delays was shown to 

be at the root of the o v e r a l l dynamics of the system. Computer 

simulations found i n the paper of Levin and Goodyear, 1980, are 

very s i m i l a r to figures which may be found i n t h i s t h e s i s , and 

indicate some of the spectacular dynamics which can occur when an 

equilibrium i s i n a region of i n s t a b i l i t y . 

This thesis examines an exploited single-species population 

model with a density dependent reproductive function, i n which 

recruitment to the breeding population occurs i n one of m+1 (m = 0, 

1, 2, ...) possible ages. In t h i s model however, the adult breeder 

can give b i r t h only once, and then dies. Harvesting i s assumed to 

occur only among the breeder population. 

An example of a species whose chara c t e r i s t i c s c l o s e l y approximate 

these i s chum salmon (Qncorhynchus k e t a ) , whose spawning grounds are 

from Alaska to C a l i f o r n i a . The young chums quickly go to sea i n t h e i r 

f i r s t year of l i f e , ranging f a r i n t o the P a c i f i c Ocean. They mature 
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mainly a f t e r three, four, o r f i v e growing seasons i n the ocean, although 

a very small percentage w i l l reproduce i n t h e i r second o r s i x t h year 

of l i f e . A l so, t h e i r p e l a g i c annual n a t u r a l m o r t a l i t y rate seems 

to 'remain f a i r l y constant, that i s , a f t e r the f i r s t year of l i f e . 

Chum salmon return to c o a s t a l regions only as they are approaching 

maturity, so that there i s no harvesting o f chums i n l o c a l waters 

one o r more years before maturity (Ricker 1980). 

A model equation f o r the adult breeding population o f the form 

R = F CP. , p. ., ... , P. ) (i k v k-n' k-n-1 k-n-nv 

i s constructed f i r s t , where there are m+1 p o s s i b l e ages f o r breeding, 

n being the f i r s t p o s s i b l e age. Following t h i s i s an analysis of the 

l o c a l s t a b i l i t y of an e q u i l i b r i u m s o l u t i o n , P*. A s u f f i c i e n t 

c ondition f o r l o c a l s t a b i l i t y of P* i s derived f o r general n and m, 

while necessary and s u f f i c i e n t conditions are examined i n d e t a i l f o r 

the s p e c i a l case of m = 1. Note that the case m = 0 reduces to 

Clark's, 1976b, model with s u r v i v a l c o e f f i c i e n t equal to zero. 

Considered next are a few s p e c i f i c examples f o r the density dependent 

reproductive function. F i n a l l y , the problem o f economically optimal 

e x p l o i t a t i o n of a population modeled by an equation s i m i l a r t o (4) 

i s considered and a formula determining the optimal e q u i l i b r i u m 

escapement l e v e l , S*, i s derived. 
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CHAPTER I I 

THE MODEL 

A single-species population model with a density dependent 

reproductive function w i l l be constructed. Characteristics of the 

species to be modeled include recruitment to the mature adult (female) 

breeding population i n one, and only one, year of l i f e . Assume there 

are m+1 possible breeding ages, with n being the f i r s t possible age 

of reproduction. A member of t h i s species dies immediately a f t e r 

giving b i r t h . Assume also that the period of years from b i r t h to 

maturity i s spent w e l l away from the spawning area and only mature 

members are. subject to harvesting as they return. 

F i x n and n+m as the f i r s t and l a s t possible ages f o r reproduction. 

Let P^ represent the parental, or adult breeding, population i n year 

k, while Q. , represents the population of j-year-olds i n year k. 
1 / K 

I f i s the number of mature stock harvested i n year k, then the 

escapement w i l l be = P^ - H^. The model can be represented 

schematically as i n Figure 1. 

Let a.. (0 < a.. ̂  1) be the proportion of (n+j-1) -year-olds that 

reproduce, j = 1, 2, ... , m+1. Since n+m i s the l a s t possible 

breeding age, i t follows that = 1. Thus, i t i s possible to 

write: 
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•H k+1 'k+1 ^k+l 

Figure 1. A schematic representation of the model f o r the 
special case m = 1. 

k l^n,k 2 vn+l,k mrn+m-l,k vn+m,k 

Now, i f cjj i s the density independent natural s u r v i v a l rate from age 

j-1 to age j (0 < < 1, j = 1, 2, '... , n+m), then the following 

equations describe the age classes of the population: 

Ql,k+1 = o±f(Sk) (6) 

Qi,k+1 (7) 

Qn+j,k+1 = V j ( l - aj ) Qn+j-l,k' ^ = 1, 2, , m (8) 

where the term f ( S k ) i s the density dependent reproductive function. 

I t follows now from equations (5) and (8) that 



11 

Pk = alQn,k +
 a2 an +l ( 1- al ) Qn /k-l + a3an+2 ( 1 " a 2 } V l (1"al)Qn,k-2 +  

+ Vn+nhl(1-Vl )W2 (1-V2)"-Vl(1-al)Qn,k-rt +  

an+m(1-°m
)an+m-l(1-Vl)'' * Vl ( Hl ) Qn,k- m' 

or in more compact notation 
m J 

P k = a l Q n , k + . Z
1

{ a j + l Q n , k - j V I I
1 V i ( 1 " a J K (9) 

j = l J J i = l 

I t can also be e a s i l y seen that the population of n-year-olds s a t i s f i e s 

the following: 

Qn,k = ( a n V l a l ) f ( S k - n } - ( 1 0 ) 

For some s i m p l i c i t y of notation, define 

F(x) = ( a ^ ••• a n ) f ( x ) , (11) 

so that 

Qn,k +n = F< Sk>' ( 1 2 ) 

Thus i s obtained the difference-delay equation providing the population 

dynamics f o r the adult breeding population: 

m 
P.. = Z a.. 1F(S 1 • ) , (13) k+n j = 0 j+1 k-3" 

where 

a l = a l 
and 
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j - l 
n 
1=1 

a. = ct. U a n + i ( l - cu), j = 2, 3, ... , m+1. (14) 

What follows next i s a consideration of s t a b i l i t y c r i t e r i a for an 

equilibrium solution of equation (13) with no harvesting, i.e., 

k k 
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CHAPTER I I I 

STABILITY 

S t a b i l i t y properties of an e q u i l i b r i u m s o l u t i o n , P*, of the 

model equation with no harvesting 

m 
P k + n = \ W ^ V j J ( 1 5 ) 

3=0 

are analyzed i n t h i s section. Considered f i r s t w i l l be a s u f f i c i e n t 

c o n d i t i o n f o r the l o c a l s t a b i l i t y o f P* and a numerical scheme f o r 

d e f i n i n g the boundaries of the l o c a l s t a b i l i t y regions w i l l be sketched. 

A d e t a i l e d examination of l o c a l s t a b i l i t y w i l l be presented f o r the 

t r i v i a l case m = 0 and the not so t r i v i a l case of m = 1. 

Let P* be a n o n - t r i v i a l e q u i l i b r i u m f o r the delay equation (15). 

Then 

m 
P* = F(P*) 2 a. ,. (16) 

j=0. 3 + ± 

Now l i n e a r i z e about P* by w r i t i n g P^ = P* + x̂ ,, so that 

m 
P k + n " P * = \ ^ - K L ^ k - j ) " F < P * » 

3=0 
(17) 

and so 

m 
\ + n =

 j f o ( a j + 1 F ' ( P * ) x k _ j + 0 ( x ^ _ j ) ) , (18) 

where F'(P*) i s the d e r i v a t i v e of F evaluated a t P*. Define 
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A = a^F'(P*) (19) 

and 

Xj = *j+1Mr (20) 

Thus, the l i n e a r i z a t i o n i s obtained: 

m 

1=1 J 

(21) 

k 
Express as z x^ to obtain the c h a r a c t e r i s t i c equation 

m 
zn+m_ A ( z m + z x _ ^ n - 3 ) = Q > ( 2 2 ) 

j = l ^ 

I t i s e a s i l y seen that P* i s l o c a l l y stable i f and only i f a l l roots 

o f the c h a r a c t e r i s t i c equation (22) have modulus |z| < 1. 

F i r s t i t s h a l l be proven that the c o n d i t i o n 

|A| < V d + A 1 + X2 + ••• +\ m) (23) 

i s s u f f i c i e n t f o r l o c a l s t a b i l i t y of P*. 
, m 

Let g(z) = z n m and l e t h(z) = - A ( z m + E X.z^"3). Suppose that 
j = l 3 

| A | < 1/(1 + X 1 + X2 + '" + A ); then the following i s true: 

|h(z) | = | A | | z m + X^1 + + A j . So that |h(z) | < | A | (|z| m + 

A 1 | z | m - 1 + ••• + .\) , and so f o r |z| = 1: |h(z)| < | A | ( 1 + X± + ••• + A m) 

< 1 = |g(z) |. By Rouche's theorem, g(z) and g(z) + h(z) have the same 

number of zeros (namely n+m) i n the i n t e r i o r of the u n i t c i r c l e . Thus, 

the c o n d i t i o n (23) i s s u f f i c i e n t t o ensure the l o c a l s t a b i l i t y of P*. 
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1 z o 

Figure 2. The intersection of z n + m and A(z r a+X 1z m~ 1+—+A m) 
gives a r e a l root z n > 1, when A > 1/(1+A,+-•-+A). 

Now suppose that A > 1/(1 + A^ + *•• + A ), and consider the 
n+m m m-' graphs of z n m and A ( z m + Z A.zm_-') , where z e R (see Figure 2) . 

j= l J 

Clearly, the interse c t i o n of these graphs always gives a r e a l root ( > 1) 

of the c h a r a c t e r i s t i c equation (22). 

I t would seem appropriate here to introduce the notion of 'region 

of s t a b i l i t y 1 , but f i r s t more notation i s needed to f a c i l i t a t e ease 
m 

of presentation. Let A ^ = I A.., then i t i s possible to speak of the 

parameter plane (A^A). A (A^A) region of l o c a l s t a b i l i t y w i l l be 

the set of parameter values f o r which P* i s l o c a l l y stable. 

From the preceeding discussion i t i s possible to conclude that, 

for any n, the upper bound of the (Am,A) region of l o c a l s t a b i l i t y 

i s always A = 1/(1 + A^). By equation (23), the lower bound, A = A n ( A m ) , 
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must always s a t i s f y 

v v i - ^ + v- (24) 

A modified Schur-Cohn c r i t e r i o n (see Freeman, 1965) i s now presented, 

by which the l o c a l s t a b i l i t y of P*, f o r s p e c i f i c values of the parameters 

(A, A-p A2/ , A m ) , may be numerically determined from the c h a r a c t e r i s t i c 

equation (22). 

Let 

G(z) = c z q + c , z q - 1 + ••• + c,z + c_ (25) q q-1 1 0 

— I cr —1 
where c^ > 0. Define the inverse polynomial G (z) = z^G(z ), then 

G - 1(z) = c Q z q + c ^ - 1 + ••• + c - j Z + c . (26) 

The roots of G~"'"(z) are the inverses of the roots of G(z) with respect 

to the c i r c l e |z| = 1. In addition, ( G ^ C z ) ) " 1 = G(z). Let 

G~ 1(z)/G(z) = B Q + G^ 1(z)/G(z). (27) 

The remainder, G~ 1(z), w i l l be a polynomial of degree q-1 and the 

quotient term Bg = CQ/C^. Continue i n t h i s way: 

G^ 1(z)/G i(z) = 6 ± + GTj 1(z)/G i(z), 
(28) 

i = 0, 1, 2, ... , q-2 

where G^(z) = G(z). 

The necessary and s u f f i c i e n t condition that a l l roots of the 

equation G(z) = 0 l i e i n the i n t e r i o r of the u n i t c i r c l e i n the z-plane 
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i s that a l l of the following are s a t i s f i e d : 

(a) G(l) > 0 

(b x) G(-l) < 0 f o r q odd 

(h^) > 0 f o r q even 

(c) | B i | < 1, i = 0, 1, 2, ... , q-2. 

Application of t h i s method with G(z) replaced by the c h a r a c t e r i s t i c 

equation (22) i s straightforward when parameter values are known, 

however i t does not seem feasable to obtain closed form expressions 

for the s t a b i l i t y region with general n and m. One interesting 

r e s u l t can nevertheless be gleaned from condition (a). I f G(z) = 

zn+m _ A ( z m + ^ m-1 + ... + ^ ^ then condition (a) requires that 

A < 1/(1 + A^ + ••• + A ) = 1/(1 + A ), which i s merely the upper bound 

of the (A^A) region of s t a b i l i t y derived previously. This modified 

Schur-Cohn c r i t e r i o n w i l l also be made use of i n the detailed analysis 

of some s p e c i a l cases f o r m and n to follow. 

Special case: m = 0. 

In t h i s case the population being modeled i s one that has n age 

classes, but only the n age class reproduces. The adult breeding 

population is. described by 

P. = Q . = F (P, ) (29) k n,k k-n 

so that an equilibrium i s simply given by P* = F(P*). The c h a r a c t e r i s t i c 
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equation (22) becomes z n - F*(P*) = 0. Thus, i t i s c l e a r that P* i s 

l o c a l l y s t a b l e i f and only i f 

-1 < F'(P*) < 1. (30) 

Note that t h i s s p e c i a l case with m = 0 i s Clark's, 1976b, model with 

the s i m p l i f i c a t i o n of the s u r v i v a l c o e f f i c i e n t being zero. The next 

s p e c i a l case i s more i n t e r e s t i n g , r e q u i r i n g more rigorous a n a l y s i s . 

S p e c i a l case: m = 1. 

In t h i s case the population being modeled i s one that has n+1 

age cl a s s e s , and only members of the f i n a l two can reproduce. The 

adult breeding population i s described by 

P k + 1 = a l F < P k - n + l > + a2 F( Pk-n> ( 3 1 ) 

so that an e q u i l i b r i u m i s given by 

P* = ( a x + a 2 ) F ( P * ) . (32) 

The c h a r a c t e r i s t i c equation (22) i n t h i s case becomes 

z n + 1 - Az - A A = 0. (33) 

From general r e s u l t s already derived i t i s known that the upper bound 

of the (A-^A) region of l o c a l s t a b i l i t y f o r P* i s A = 1/(1 + A 1 ) , f o r 

a l l n; while the lower bound depends on n and s a t i s f i e s 

A n ( A 1 ) < -1/(1 + X±). (34) 



Now, closed form expressions f o r two of these lower bounds, A^(A^) and 
A 2 ^ i ^ ' w i l l ke derived using the modified Schur-Cohn c r i t e r i o n 

(Freeman 1 9 6 5 ) as presented e a r l i e r . 

In the case under consideration, G(z) = z - Az - A-̂ A. As 

already stated, condition (a) requires that A < 1 / ( 1 + A-^), which i s 

merely the upper bound derived previously. For n even, condition (b^) 

requires that A ( l - A-^) < 1 ; and f o r n odd, condition (b 2) requires 

that A ( A X - 1 ) < 1 . 

For n = 1 , a l l that condition (c) requires i s that [3Q| < 1 . 

Since G _ 1(z)/G(z) = + (-Az11 - A ^ z + ( 1 - A 2 A 2 ) ) / G ( z ) , i t follows 

that 3Q = -X-jA, and since they w i l l be needed shortly i t i s found that 

G^-(z) = -Az 1 1 - A x A 2 z + ( 1 - A 2A 2) so that G^z) = ( 1 - A 2 A 2 ) z n -

AjA z - A. Therefore, condition (c) requires that |A^A| < 1 . 

Combining t h i s with conditions (a) and (b 2) gives the (A^,A) region of 

Figure 3 . The (A^,A) region of l o c a l s t a b i l i t y (shaded area) 
for n = 1 and m = 1 . 
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l o c a l s t a b i l i t y f o r n = 1 (see Figure 3 ) . 

For n = 2, condition (c) requires that | g Q | < 1 and |B-J < 1. 

Since G~ 1(z)/G 1(z) = - A / ( l - * 2A 2) + ( z ) / G ^ z ) , where G"1^) = 

( - ^ A 3 / ( l - x j A 2 ) ) z n _ 1 - \±A2z + ( 1 - A 2 A 2 - A 2 / ( l - A 2A 2)) , i t follows 

that 3^ = - A / ( l - A-jA ). Combining t h i s with |A^A| < 1 and conditions 

(a) and (b^) gives the (A^,A) region of l o c a l s t a b i l i t y f o r n = 2: 

(1 - A + 4A 2' )/2A 2 < A < 1/(1 + A x ) (35) 

(see Figure 4 ) . 

In attempting to use t h i s c r i t e r i o n f o r n = 3 i t i s necessary 

to solve a cubic equation, f o r n = 4 a quartic, etc.; hence i t i s not 

feasable to make use of t h i s Schur-Cohn c r i t e r i o n f o r finding closed 

form expressions f o r A
n ( ^ ̂ o r n — However, i t i s useful to note 

here that the s t a b i l i t y region f o r any n must contain the region f o r 

A 

Figure 4. The (A^,A) region of l o c a l s t a b i l i t y (shaded area) 
fo r n = 2 and m = 1. 
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n+1. I f t h i s f a c t i s combined with the s u f f i c i e n c y condition (23), 

the progression of lower bounds, A
n ( A ^ ) , follows: 

A 1 ( A 1 ) « ••• < A n(A x) < T A ^ U ^ < . . . < -1/(1 + A ^ . (36) 

Further r e s u l t s f o r n >_ 2, employing another approach, are now derived. 

Following Levin and May, 1976, and Clark, 1976b, consider again 

the c h a r a c t e r i s t i c equation (33), z - Az - A^A = 0, with n ̂  2, 

ifl 
and express z as Re , R > 0. Note that f o r A = A (A^) > equation (33) 

ifl 

must have a root z - e , i . e . , with R = 1. Rewrite equation (33) i n 

the form 

1 = Az ~ n + Z \ l Z - { n ¥ l ) . (37) 

i 0 
Substitute z = e and equate r e a l and imaginary parts to obtain 

s i n ( n e ) + A-jSin{ (n+l)fl} = 0 (38) 

and 

Acos ( n e ) + AA-jCosf (n+1) 6} = 1. (39) 

Equation (38) has a unique root 9 = 9 n(X 1) such that ir/(n+l) < ^ ( X j ) 

< Tr/n, although of course, there are i n f i n i t e l y many other roots > 6 n ( ^ ) 

Given some A^ > 0, equation (38) can be solved f o r 9 n(^^) and 

thus A = A n(X^) can be found from equation (39). I t i s shown here that 

t h i s process determines the lower boundary of the s t a b i l i t y region. 

R e c a l l that f o r n >̂  2 i t has been demonstrated that t h i s lower boundary 



i s i n the region 0 > A
n(A-]_) > -1. So, by examining the d e r i v a t i v e o f 

R with respect to A-̂  i t i s shown that a t R = 1, dR/dA1 > 0; provided 

that 0 > A > -1. Thus, as A-̂  increases, R can only cross the boundary 

R = 1 from below, so that once a root leaves the s t a b i l i t y region i t 

cannot reenter. 
ifi 

Again, l e t z = Re , R > 0, and su b s t i t u t e i n t o equation (37). 

Seperate r e a l and imaginary parts to obtain 

R n + 1 = ARcos(ne) + AA1cos{(n+1)6} (40) 

0 = ARsin(nG) + AA^sin{(n+1)6}. (41) 

From these equations i t follows that 

R = -A l Sin{(n+1)0}/sin(n0) (42) 
and 

A n = ( - D ^ A s i ^ ^ e j s i n O J / s i n " 7 * " 1 ! (n+1) 6}. (43) 

D i f f e r e n t i a t e each side of equation (43) with respect to 6 and equate 

to obtain 

(n/A x)(dAj/dO) = n 2cot(n6) + cot(6) - (n+1)2cot{(n+1)6}. (44) 

Now d i f f e r e n t i a t e equation (42) with respect to 8, so 

(1/R) (dR/de) = (1/A^ (dAj/de) + (n+1)cot{ (n+1) 6} - n - c o t ( n 6 ) , (45) 

but dA,/d8 can be found from equation (44), so that 
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(iVR) (dR/de) = cot(9) - (n+l)cot{ (n+1)9}. (46) 

ifi 

Now f o r R = 1, put z = e into equation (33), seperate r e a l and 

imaginary parts, and obtain the following: 

cos{(n+l)0} = Acos(9) + AA-L (47) 

sin{(n+1)0} = Asin(9). (48) 

Considering equations (38) and (39), i t i s e a s i l y seen that 

cot{(n+l)9} = -{1 - Acos(n9)}/Asin(n0), (49) 

while from equations (47) and (48) obtain 

cot (e) = -{1 - Acos(nG) - A 2A 2}/Asin(n0). (50) 

Use the i d e n t i t i e s given by equations (49) and (50) to determine the 

following from equation (46): 

(n/R) (dR/d9)| x = (n{l - Acos(n9)} + A 2A 2)/Asin (n9), (51) 

and from equation (44): 

(n/Xx) (dA-j/dG) 1 ^ = ( n 2 + 2n{l - Acos(n0)} + A 2A 2)/Asin(n0). (52) 

So, 

2 2 
/ , /n-.x / j , - ,/-,, ,| n { l - Acos(n8)} +AnA / c o> (A,/R) (dR/dA,)l p_-| = -5— • -— 1 5-5— 1 O3) 

• n " + 2n{l - Acos(n9)} + ApT 
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but -1 < A < 0, so 1 - Acos(ne) > 0. Thus, i t follows from equation (53) 

that (Xj/R) (dR/dX-^ \^=1 > 0, but X1 > 0, so i t i s proven that 

(dR/dX^ 1 > 0 when 0 > A > -1. 

As a consequence of t h i s r e s u l t , the lower bound of the s t a b i l i t y 

region i n the (X-^A) plane can be found using equations (38) and (39). 

Although closed form expressions f o r A
n ( X ^ ) do not seem feasable f o r 

n ;> 3, graphs of the lower bound can e a s i l y be plotted f o r any n >: 2 

(see Figure 5). Note that IT/(n+1) < 9 n(X 1) < nyn, so n0 n(X 1) TT 

as n +°°. Thus as expected, f o r any X^ > 0, A

n ( ^ ) + - V ( 1 + ^j) as 

n -> +°°. Some s p e c i f i c examples of the density dependent reproductive 

function F(P) w i l l now be discussed, applying some of the resu l t s that 

have been derived. 

Example 1. 

As a f i r s t example, consider a quadratic, or l o g i s t i c type, 

reproductive function. Suppose that 

f (P) = r P ( l - P/K), (54) 

where r i s the average fecundity per adult and K i s the carrying 

capacity of the adult population. 

The equilibrium population, P*, of equation (16) i s given by 

P* = K ( l - B ^ n / r ) , (55) 

where 
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v V = Y r \ ( 1 + V - (56> 

Note that f o r P* > 0, i t i s required that r > B . R e c a l l that 
^ m,n 

A = a-jF' (P*) , so i t i s : e a s i l y seen tha t 

A = (2 - r/B ) / ( l + A ). (57) ' i r ^ n " nr 

The s u f f i c i e n t c o n d i t i o n f o r l o c a l s t a b i l i t y of P*, equation (23), i n 

t h i s example becomes 

B m < r < 3B m , (58) m,n m,n 

and f o r the s p e c i a l case of m = 1, i t follows from equation (36) that 

there e x i s t s a p o s i t i v e number e (B, ) such that P* i s stable i f and c n l , n 
only i f 

B < r < 3B, + e . (59) l , n l , n n 

a r e s u l t very s i m i l a r t o one derived by Clark, 1976b. 

Example 2. 

Consider i n t h i s example a reproductive function that i s of 

exponential, or Ricker, type, i . e . , 

f(P) = rP exp (-P/K). (60) 

Now, the e q u i l i b r i u m population, P*, of equation (16) i s given by 

P* = K log ( r / B ^ n ) , ^ (61) 
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where B i s as i n Example 1. Again,, f o r a f e a s i b l e e q u i l i b r i u m i t i s m,n 
required that r > B m,n* In t h i s example 

A = {1 + l o g ( B i n ^ / r ) } / ( l + A J , (62) 

so that the s u f f i c i e n t condition f o r l o c a l s t a b i l i t y of P* becomes 

K l o 9 ( r ) < 2 + l oS ( Bm,n>- (63) 

As i n the f i r s t example, equation (36) implies that there i s a p o s i t i v e 

number e (B, ) such that P* i s l o c a l l y s t a b l e i f and only i f 

This concludes the a n a l y s i s o f l o c a l s t a b i l i t y f o r the model equation 

(15). Following are several computer simulations of the model, where 

the density dependent reproduction function f (P.) was chosen from example 

1. Parameter values were chosen as l i k e l y estimates to give some 

i n d i c a t i o n of the very complicated dynamics a r i s i n g from the b i f u r c a t i o n 

structure. Very s i m i l a r f i g u r e s may be found i n the paper by Levin and 

Goodyear, 1980. 

Computer simulations. 

The simulations presented here employ the reproduction function 

f(Xj) = rXj(1 - Xj) of Example 1, where the ca r r y i n g capacity, K, has 

been scaled out, i . e . , P. = Kx.. The f i g u r e s a l l come i n p a i r s , the 

l p g ( B 1 ) < log(r) < 2 + I p g ^ ) + e n. (64) 

3 
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Figure 6a. Simulation of the modeled population f o r n = 1 and 
m = 1. Equilibrium i s x* = 0.695 and i s stable. 
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Figure 6b. Simulation of the model for n = 1 and m = 1, showing 
a p l o t of yearlings versus age class two. 
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f i r s t of each p a i r shows the dynamics o f the adult breeder population 

and the second shows one-year-olds p l o t t e d against two-year-olds. 

In the f i r s t simulation, shown i n Figures 6a and 6b, a simple case 

with m = 1 and n = 1 i s considered. Parameters chosen were: a-̂  = 0.7, 

a-̂  = 0.2, O2 = 0.4, and r = 20.0. Thus the e q u i l i b r i u m i s x* = 0.695, 

A = -0.589, A-ĵ  = 1.171, and •B1 = 6.098. The r value i s outside the 

s u f f i c i e n c y range of equation (58) but w i t h i n the s t a b i l i t y bounds 

as given i n Figure 3. C l e a r l y , the e q u i l i b r i u m i s stable, but the 

approach to i t i s o s c i l l a t o r y . 

Figures 7a and 7b show the dynamics f o r n = 1 and m = 4, where the 

parameters chosen were: = 0.05, = 0.3, = 0.6, = 0.9, 

= 0.2, a 2 = ••• = CT5 = 0.5, and r = 50.0. The e q u i l i b r i u m i n t h i s 

case i s x* = 0.691 while A = -0.192, A 4 = 5.493, and B 4 1 = 15.401. 

Again, the r value i s j u s t outside the s u f f i c i e n c y range of equation (58), 

but the e q u i l i b r i u m i s stable, though the approach to i t i s o s c i l l a t o r y . 

Figures 8a and 8b show the dynamics of a population exactly the 

same as f o r Figures 7a,b except f o r the r value, which i n t h i s case i s 

taken f u r t h e r outside the range o f equation (58), namely, r - 70.0-

Here x* = 0.779, A = -0.392, while A^ and B 4 are unchanged. There 

seems to be no p e r i o d t o the o s c i l l a t i o n s of Figure 8a, while i n 

Figure 8b some age structure i s evident i n the precession of points 

around the curve. 

Figures 9 through 13 i n d i c a t e the dynamics f o r a population with 

n = 2 and m = 4. For each, the parameters •a1 = 0.02, a 0 = 0.3, = 0.5, 
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Figure 7a. Simulation of the model for n = 1 and m = 4 showing 
parental population versus time. Equilibrium i s 
x* = 0.691 and i s stable. 
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Figure 7b. Simulation of the model f o r n = 1 and m = 4 showing 
a p l o t of yearlings versus age class two. 
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Figure 8a. Simulation of the model for n = 1 and m = 4 showing 
parental population versus time. Equilibrium i s 
x* = 0.779 and i s not stable. 
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Figure 8b. Simulation of the model for n = 1 and m = 4 showing 
a p l o t of yearlings versus age class two. 
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= 0.8, a-̂  = 0.2, and a 2 = * * * = o"g = 0.4 remain unchanged. The r 

value i s increasing though, through the values r = 100.0, 190.0, 200.0, 

225.0, and 240.0 i n succeeding figures. For Figures 9 and 10, r i s 

with i n the s t a b i l i t y region, while i t appears that i n Figure 11 there 

has been b i f u r c a t i o n to quasi-periodic o s c i l l a t i o n s of about seven years 

duration. In Figure l i b the c y c l i c nature of the age structure f o r one-

and two-year-olds i s evident. Figure' 12a indicates a period of 

approximately f i f t y years, while Figure 12b shows an increasing complexity 

i n age structure. F i n a l l y , Figures 13a and 13b r e f l e c t an r value 

deep i n t o the region of i n s t a b i l i t y . An analysis of the complicated 

b i f u r c a t i o n structure of the model i s beyond the scope of t h i s thesis, 

but i t i s hoped that these figures give some idea of t h i s complex 

behaviour. 



0' I 
T 
0 9*0 
N Q I l b Y l d Q d 3Nia33°eJg 

Figure 9a. Simulation of the model for n = 2 and m = 4 showing 
parental population versus time. Equilibrium i s 
x* = 0.410 and i s stable. 
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Figure 9b. Simulation of the model f o r n = 2 and m = 4 showing 
a p l o t of yearlings versus age class two. (r = 100.0) 
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Figure 10a. Siinulation of the model for n = 2 and m = 4 showing 
parental population versus time. Equilibrium i s 
x* = 0.689 and i s stable. 
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Figure 10b. Simulation of the model f o r n = 2 and m = 4 showing 
a p l o t of yearlings versus age class two. (r = 190-0) 
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Figure 11a. Simulation of the model for n = 2 and m = 4 showing 
parental population versus time. Equilibrium i s 
x* = 0.705 and i s not stable. 
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Figure l i b . Simulation of the model with n = 2 and m = 
a p l o t of yearlings versus age class two. 

4 showing 
(r = 200.0) 
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Figure 12a. Simulation of the model with n = 2 and m = 4 showing 
parental population versus time. Equilibrium i s 
x* = 0.738 and i s not stable. 
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Figure 12b. Simulation of the model with n = 2 and m = 4 showing 
a p l o t of yearlings versus age class two. (r = 225.0) 
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Figure 13b. Simulation of the model with n = 2 and m = 4 showing 
a p l o t of yearlings versus age class two. (r = 240.0) 
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CHAPTER IV 

OPTIMALITY 

In t h i s section, the problem of economically optimal ex p l o i t a t i o n 

of a population modeled by the difference-delay equation (13) i s 

discussed. The method of Lagrange m u l t i p l i e r s i s used to derive 

formally an optimal equilibrium condition. 

Suppose that the adult breeding population modeled by equation (13) 

i s subject to exploitation, where Ĥ . i s the number of animals harvested 

i n year k, so that 

m 

\ + 1 = a j + 1 F ( P k + 1 _ n _ j - H ^ ^ . ) , (65) 

1c — 0/ 1 ̂  2/ ••• * 
Clea r l y , must s a t i s f y the f e a s i b i l i t y conditions 

0 i \ = P k ' k = °/ !/ 2/ • • • • (66) 

Given a harvest p o l i c y (H Q, H-̂ , H 2, . . . ) , the future stock l e v e l s 

(P-^, P 2, •••) are determined by-equation (65) i f the h i s t o r i c a l escapement 
levels 

S_k = P_ k - H_k, k = 1, 2, ... , n+m-1 (67) 

and the i n i t i a l stock l e v e l , P Q, are known. Let TI = II(P,H) be the net 

economic revenue r e s u l t i n g from a harvest H taken from an adult population 
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of s i z e P. Following Clark, 1976a, assume that net economic revenue 
i n year k i s 

r Pk 
n ( P k , H k ) = J {p - C(P)}dP, (68) 

V H k 
where p = p r i c e and C(P) = un i t harvest cost when the population l e v e l 

i s P. In the usual fishery-production model (Clark 1976b), C(P) = c/P, 

where c i s a constant. I t i s assumed that the maximization of the 

discounted present value of net economic y i e l d 
00 

J = £ 6 kn(P,,H v) (69) 
k=0 k K 

i s the objective of ex p l o i t a t i o n . Here, 6 = 1/(1 + i ) i s the annual 

discount factor, where i = in t e r e s t rate. 

An optimal equilibrium condition i s now derived using the method 

of Lagrange m u l t i p l i e r s (Clark 1976a, 1976b). Consider the Lagrangean 

expression: 

°° k m 

L = Z (6 K n(P k,H k) - ^{P - Z a l F ( P k + 1 _ n - H k ) } ) . (70) 
k=0 j=0 j J 

Ignoring constraints, the necessary conditions are: 

3L/3P k =0 (k > 1) (71) 

and 

dL/dE^ =0 (k > 0). (72) 

/Assume there i s an equilibrium solution to these conditions with 
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m escapement l e v e l S, so that P = P = E a. F(S) and H, = P, - S. 
J _Q D+l K K 

I t follows from equations (71) and (72) then that 

k m 

6 n p + F ' ( S ) _ E o a j + l W l + j = ? k _ 1 (73) 

k_ m 

6 \ - F ' ( S ) _ E o a j + l W l + j = 0, (74) 

f o r k = 1, 2, ... . Thus, 

? k = 6 k + 1 ( n p + n R ) . (75) 

Hence, i t follows from equations (75) and (73) that 

m . 
i = {(n p + n H)/n H}F'(s) ^ 5 a j + 1 . (76) 

The optimal equilibrium escapement l e v e l may now be found from equation 

(76) when the functions H(P,H) and F(S) are chosen. 
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CHAPTER V 

• DISCUSSION 

In this section, the research will be examined in light of the 

results obtained herein and some conclussions wi l l be drawn. Extrapolations 

will be considered whereby this work might be extended or generalized. 

A model has been constructed which describes a species in which a 

member may reproduce in only one age class, the ages ranging from n to 

n+m. The natural survival rates from age j to j+1 were assumed to be 

density independent, in fact, a l l density dependence was assumed to be 

concentrated in the f i r s t year of l i f e . Thus, a difference-delay 

equation, with m delays, describing the adult breeding population was 

produced. A possible extension of this study would be a generalization 

to allow the survival rates to also be density dependent. 

Stability of the unexploited model was studied next and, for 

general n and m, a simple condition sufficient for stability of an 

equilibrium was derived. This condition was shown to provide the 

upper bound for the region of local stability in the (A^,A) parameter 

plane, where Am reflects the effect of the l i f e parameters of the 

species while A is a measure of the slope of the reproductive function 

at equilibrium. From this result, i t can be concluded that for fixed 

A positive, increasing A m reduces stability. The lower bound of this 

stability region, for arbitrary n and m, was seen to be more intractable. 

However, a numerical scheme was presented for determining stability, 
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when s p e c i f i c parameters are given. 

Two spec i a l cases for m were analyzed i n d e t a i l and some closed 

form expressions were derived f o r the lower bound. I t was c l e a r l y 

seen here that increasing the delay leads to reduced s t a b i l i t y and, 

except f o r the case n = 1, f o r f i x e d A, increasing always takes a 

point out of the stable region. For the case n = 1 and m = 1 however, 

there i s a range of values f o r A (-2 < A < -1) where increasing from 

zero takes a point from i n s t a b i l i t y to s t a b i l i t y and back to i n s t a b i l i t y . 

Two examples for the density dependent reproductive function employing 

commonly used functions were exhibited. A study of the global behaviour 

of the model and a detailed examination of the b i f u r c a t i o n structure i s 

beyond the scope of t h i s thesis, however, some inter e s t i n g computer 

simulation plots were given, showing the complicated dynamics possible 

with the model and indi c a t i n g that the bi f u r c a t i o n structure i s indeed 

complex. 

F i n a l l y , the exploited population model was considered again, and 

a condition derived, giving the optimal equilibrium escapement l e v e l 

f o r the general case. An examination of the optimal approach paths 

to t h i s escapement l e v e l would be int e r e s t i n g , but, unfortunately, i s 

also beyond the scope of t h i s thesis. 



BIBLIOGRAPHY 

A l l e n , R.L. and Basasibwaki. "Properties of age structure models for 
f i s h populations." Journal of the Fisheries Research Board of  
Canada, 31; 1119-1125, 1974. 

an der Heiden, U. "Delays i n physiological systems." Journal of  
Mathematical Biology, 8: 345-364, 1979. 

Beddington, J.R. "On the dynamics of Sei whales under exploitation." 
International Whaling Ggnroission, S c i e n t i f i c (Committee Report, 
28: 169-172, 1978. 

Bellman, Richard. Introduction to the mathematical theory of control  
processes, Volume I I . New York: Academic Press, 1971. 

Canon, M.D., CD. Galium, J r . , and E. Polak. Theory of optimal control  
and mathematical programming. New York: McGraw-Hill Book 
Company, 1970. 

Clark, CW. Mathematical bioeconomics. New York: John Wiley and 
Sons, 1976a. 

Clark, CW. "A delayed-recruitment model of population dynamics, with 
an application to baleen whale populations." Journal of  
Mathematical Biology, 3: 381-391, 1976b. 

Diamond, P. "Domains of s t a b i l i t y and r e s i l i e n c e f o r b i o l o g i c a l 
populations obeying difference equations." Journal of Theoretical  
Biology. 61: 287-306, 1976. 

Freeman, H. Discrete-time systems. New York: John Wiley and Sons, 
1965. 

Goh, B.S. and T.T. Agnew. " S t a b i l i t y i n a harvested population with 
delayed recruitment." Mathematical Biosciences, 42: 187-197, 
1978. 

Levin, S.A. and CP. Goodyear. "Analysis of an age-structured fishery 
model." Journal of Mathematical Biology, 9: 245-274, 1980. 

Levin, S.A. and R.M. May. "A note on difference-delay equations." 
Theoretical Population Biology, 9: 178-187, 1976. 

L i , T.-Y. and J.A. Yorke. "Period three implies chaos." American 
Mathematical Monthly, 82: 985-992, 1975. 



52 

May, R.M. S t a b i l i t y and complexity i n model ecosystems. Princeton: 
Princeton University Press, 1973. 

May, R.M. " B i o l o g i c a l populations with nonoverlapping generations: 
stable points, stable cycles, and chaos." Science, 186: 645-
647, 1974. 

May, R.M. "Simple mathematical models with very complicated dynamics." 
Nature, 261: 459-467, 1976. 

May, R.M. "Simple models for single populations: an annotated 
bibliography." F o r t s c h r i t t e der Zoologie, 25: 95-107, 1979. 

May, R.M., G.R. Conway, M.P. Hassell, and T.R.E. Southwood. "Time 
delays, density dependence, and single species o s c i l l a t i o n s . " 
Journal of Animal Ecology, 43: 747-770, 1974. 

May, R.M. and G.F.: Oster. "Bifurcations and dynamic complexity i n 
simple ecological models." American N a t u r a l i s t , 110: 573-
599, 1976. 

Maynard Smith, J . Mathematical ideas i n biology. London: Cambridge 
University Press, 1968. 

Pielou, E.C. Mathematical ecology. 2nd ed. New York: John Wiley and 
Sons, 1977. 

Ricker, W.E. "Stock and recruitment." Journal of the Fisheries  
Research Board of Canada, 11: 559-623, 1954. 

Ricker, W.E. "Ocean growth and mortality of pink and chum salmon." 
Journal of the Fisheries Research Board of Canada, 21(5): 
905-931, 1964. 

Ricker, W.E. "Changes i n the age and si z e of chum salmon (Oncorhynchus 
keta)." Canadian Technical Report of Fisheries and Aquatic  
Sciences, No. 930, 1980. 

Ross, G.G. "A note on dynamics of populations with history-dependent 
b i r t h rate." B u l l e t i n of Mathematical Biology, 40: 123-131, 
1978. 

Solomon, M.E. Population dynamics. London: Edward Arnold (Publishers) 
Limited, 1969. 

Williamson, M. The analysis of b i o l o g i c a l populations. London: 
Edward Arnold (Publishers) Limited, 1972. 


