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ABSTRACT

An exploited single-species population model with a density
dependent reproductive function is constructed, in which recruitment
to the adult breeding population may occur in one of several possible
age classes. The parent is assumed capable of giving birth only once.
It is also assumed that all density dependehoe is concentrated in the
first year of life. A linearized stability analysis of the multiply-
delayed difference equation model is carried out and a sufficient
condition for stability is derived for the general case, while
necessary and sufficient conditions are found in specific examples.
Some indication of the complicated bifurcation structure of the model
is given by a series of computer simulation plots. Finally, the
method of Lagrange multipliers is used to find the optimal equilibrium

escapement level for the original exploited population model.

Colin W. Clark

F. Y. M. Wan
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CHAPTER I

INTRODUCTION

For many species of organisms, population growth is discontinuous.
The life history of such organisms may be subject to strong seasonal
or periodic influences. Also, for many species, recruitment to the
breeding stock may only occur several months or years after birth. The'ré
are species whose members reproduce only once in their lifetimes and die
before their descendents' lives begin, for example, salmon or cicadas.
To represent the population growth of such species, the only suitable
model is a difference, or difference-delay equation (Maynard Smith 1968,
May 1973, Clark 1976a, Pielou 1977).

Consider a biological population (Pk in generation k) which has
discrete and nonoverlapping generations. The population dynamics may

be described by the first order difference equation

Py = FB (1)

which relates the population level P at time t. = tk +1 to the population

level at a previous time t = tk by means of some given stock-recruitment

function, F(P). In most cases of interest, the function F(P) is

nonlinear and is usually constructed to allow the population to grow

rapidly at low densities and level off or possibly decline at high densities.
Many explicit forms for the density dependent function:F (P) have

been proposed in the literature, and tables of specific forms used, with



references, can be found in May, 1979 or May and Oster, 1976. One .
important example is the Ricker model (Ricker 1954) in which
F(P) =P exp {r(l — P/K)}. This Ricker model is used extensively in the
management of the Pacific salmon (Oncorhynchus species) populations
(Clark 1976a). The dynamic behaviour of solutions of equation (1) for
this case is surprisingly complicated, but now seems to be well
understood, see Levin and Goodyear, 1980.

Clearly, equation (1), with F(P) as given above, always possesses
a non-trivial equilibrium at P* = K. It has been shown that this
equilibrium is locally stable provided that 0 < r < 2; but if r is
increased beyond the value 2, the equilibrium becomes unstable and a
new stable limit-cycle of period 2 bifurcates from the equilibrium.
In fact, there is an increasing sequence 2 = ry < 2.526 = I, < e
such f_hat when r increases past r, anew and stable cycle of period 2"
bifurcates from the equilibrium. However, the.sequence of bifurcation
values for r are bounded above by a critical value r* = 2.692, beyond
which cycles of arbitrary period appear along with solutions that
never settle into any finite cycle. The region beyond r* has been
called dynamic chaos since solutions are effectively indistinguishable
from random fluctuations.

The term "chaos" was introduced in the mathematical paper by
Li and Yorke, 1975. They show that if equation (1) has a solution of
period .3,' then for those same parameter values, solutions of any
integer period can be found, as well as solutions that never settle

into a periodic cycle. For a review of the mathematical details of



the bifurcation structure of equations like equation (1) see May, 1976
or May and Oster, 1976.

Many real populations have several distinct but overlapping age
classes, or the density dependent mechanisms operate with an explicit
time delay, say n generations. In this case, a difference-delay equation

of the form
P = BF B ) (2)

may be appropriate. Examples of such models, where the population at
k+1 depends linearly on the previous population and nonlinearly on a
single population at some time in the past, can be found in Maynard
Smith, 1968; May, Conway, Hassell, and Southwood, 1974; Clark, 1976b;
and Beddington, 1978.

Clark, 1976b, studied the delay equation Pk 1= aPk + F(Pk_n) ’
which has applications as a model of baleen whale population dynamics.
Equilibrium stability and optimal exploitation policies were discussed.
Here, a is the survival coefficient and F(P,_,) 1s the recruitment to
the breeding population at time k which was produced by the breeding
population at time k-n. The local stability of an equilibrium, P%,
for this difference-delay equation was shown to depend seperately on
the survival coefficient, the slope of the recruitment function at the
equilibrium, and the time delay in the recruitment. Clark has shown
that increased delay implies reduced stability, in the sense that
increasing the delay reduces the region in the parameter plane which

possesses a stable equilibrium point.



Goh and Agnew, 1978, considered Clark's, 1976b, difference-delay
model equation for a population in which recruitment to the breeding
class takes place several generations after birth. They employ a
specific form for the recruitment function, F(P), namely, F(P) =
AP exp (—BP2) , where A and B are positive constants. It is shown that
increasing the delay causes reduced stability, while increasing the
survival coefficient, when the delay between birth and recruitment is.
small, tends to stabilize the population. However, when this delay is
longer and the survival coefficient is not near one, then the stabilizing
effects of the survival coefficient are overshadowed by the destabilizing
effects of the time delay. Harvesting of the modeled population is
studied and they conclude that, for populations that exhibit a sharp
peak in their recruitment function, intermediate levels of constant
effort harvesting can lead to destabilization.

In the paper by May et al., 1974, conditions that give rise to
stability and oscillations in a single species population interacting
with a maintained resource were studied. Considered first were
discrete generation difference equation models with density dependent
mortality and fecundity. If the rate at which a population takes to
return towards an equilibrium level is called the characteristic return
time, this paper contends "that it is the relationship of this time
to the time delays in the system (e.g. the length of a generation)
that determines whether the population approaches the equilibrium

monotonically or ‘overshoots' and oscillates about the equilibrium”



(May et al. 1974: 747). They found that instability follows from this
return time being too small compared with.the :time delays.

Consideration is then given to multiple age class models, and
a model with two overlapping age classes is studied in detail. Of
course, the stability properties of these multiple age class populations °
is more complicated, but they are shown to be similar to those of multi-
species systems. The local stability of anHequilibrium is shown to be
determined by the dominant eigenvalue of a matrix of parameters
characterizing the slopes of the density dependent relationships
between age classes:

Diamoﬁd; 1976, presented techniques for estimating the size and
shape of regions of local stability for difference equations. These
techniques are based on a class of discrete Liapunov functions, and a
"restricted recipe" for finding these Liapunov functions along with an
algorithm for calculating Liapunov contours is given. The estimation
methods are applied to a single species model with two age classes.

Ievin and May, 1976, gave stability criteria for the difference—
delay equation (2). They presented general analytic formilas describing
the boundary between monotonic damping and oscillatory damping toward
a stable equilibrium point, P*, and for the boundary seperating the
regions of stability'and instability of P*. As was found also by
Clark, 1976b, May et al., 1974, and Goh and Agnew, 1978, an.increase
in the explicit time delay, n in equation (2), leads the system to be

more prone to oscillations and instability. An adaptation of the



linearized stability analysis presented by levin and May, 1976, is
used in this thesis.

Extensions of the difference-delay model equation (2) to allow
for miltiple age spawning populations where density dependence is
expréssed in terms of the population levels of both present and several

preceding generations, i.e.,

Pk+1 =P F (Pk, k=1’ *°° Pk—n) ’ (3)
have been considered by Allen and Basasibwaki, 1974, Ross, 1978, and
Levin and Goodyear, 1980.

Allen and Basasibwaki, 1974, studied a class of models incorporating
miltiple age structure where recruitment to the population is the
product of fecundity and a survival rate. This first year survival rate
was assumed to vary with the size and structure of the population.

The population after recruitment is described by a life table with
constant survival rates. Necessary conditions for the stability of

an equilibrium and properties of oscillations about an unstable equilibrium
were considered using a combination of analytical and simulation
techniques.

Ross, 1978, considered a special case of equation (3) of the
form Pk+1 = aPi_bP]_{Sl In this case, the model can be written as a
linear second order recurrence relation in the logarithm of the
population and explicit solutions to this recurrence relation were
derived and classified according to various parameter values.

In the paper by Levin and Goodyear, 1980, a multiple age spawning



population model with Ricker type stock-recruitment relationship

was examined. Their model assumed that all density dependent effects
occur within the first year of life. A density dependent Ieslie matrix
was developed and linearization techniques applied to various
simplified models. Very complicated stability properties were

shown to be dependent on two opposing delays in the system, the
reproductive delay associated with deferring reproduction and the
truncation delay associated with an eventual leveling off of fecundity
in later age classes. The balance between these delays was shown to
be at the root of the overall dynamics of the system. Computer
simulations found in the paper of Levin and Goodyear, 1980, are

very similar to figures which may be found in this thesis, and
indicate same of the spectacular dynamics which can occur when an
equilibrium is in a region of instability.

This thesis examines an exploited single-species population
model with a density dependent reproductive function, in which
recruitment to the breeding populatioﬁ occurs in one of mtl (m = 0,

1, 2, ...) possible ages. In this model however, the adult breeder
can give birth only once, and then dies. Harvesting is assumed to
occur only among the breedef population.

An example of a species whose characteristics closely approximate
these is chum salmon (Oncorhynchus keta ), whose spawning grounds are
from Alaska to California. The young chums quickly go to éea in their

first year of life, ranging far into the Pacific Ocean. They mature



mainly after three, four, or five growing seasons in the ocean, although
a very small percentage will reproduce in their second or sixth year

of life. Also, their pelagic annual natural mortality rate seems

to ‘remain fairly constant, that is, after the first year of life.

Chum salmon return to coastal regions only as they are approaching
maturity, so that there is no harvesting of chums in local waters

one or more years before maturity (Ricker 1980).

A model equation for the adult breeding population of the form

Pk=F(P

k-n’ Tk-n-1’ *°° 7 l:‘k—n—m) (4)
is constructed first, where there are mt+l possible ages for breeding,
n being the first possible age. Following this is an analysis of the
local stability of an equilibrium solution, P*. A sufficient
condition for local stability of P* is derived for general n and m,
while necessary and sufficient conditions are examined in detail for
the special case of m = 1. Note that the case m = 0 reduces to
Clark's, 1976b, model with survival coefficient equal to zero.
Considered next are a few specific examples for the density dependent
reproductive function. Finally, the problem of economically optimal
exploitation of a population modeled by an equation similar to (4)

is considered and a formula determining the optimal equilibrium

escapement level, S*, is derived.



CHAPTER II
THE MCDEL

A single-species population model with a density dependent
reproductive function will be constructed. Characteristics of the
species to be modeled include recruitment to the mature adult (female)
breeding population in one, and only one, year of life. Assume there
are m+l possible breeding ages, with n being the first possible age
of reproduction. A member of this species dies immediately after
giving birth. Assume also that the period of years from birth to
maturity is spent well away from the spawning area and only mature
menbers ‘are. subject to harvesting as they return.

Fix n and n+m as the first and last possible ages for reproduction.
Iet Pk represent the parental, or adult breeding, population in year
k, while Qj X represents the population of j-year-olds in year k.

I1f Hk is the number of mature stock harvested in year k, then the
escapement will be Sk = Pk - Hk' The model can be represented
schematically as in Figure 1.

Let dj (0 < o < 1) be the pmpdrtion of (n+j-1)-year-olds that
reproduce, j =1, 2, ... , ml. Since ntm is the last possiblé
breeding age, it follows that o = 1. Thus, it is possible to

m+l

write:
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M T~ ¥
R L Sk e Pre1 Skl
Qn,k+n Qn,k+n+l
Hk+n ' Pk+n Sk+n Sk+n+l
Figure 1. A schematic representation of the model for the
special case m = 1.
P (5)

kT %%kt %t T

+ dhg%rhn—l,k + C%rhn,k'

Now, if oj is the density independent natural survival rate from age

j-1 to age j (0 < Oj <1, 3=1, 2, ...

equations describe the age classes of the population:

Q1 x+1

Qs x+1

Q

n+

3,k+t1 = “n+j

= Glf(S

171-

k)

1, i
1 - a.
¢ J

, ntm), then the following

=2, 3, ...°

j-1,k’ J

=1, 2, «o. , M

(6)

(7)

(8)

where the term f(Sk) is the density dependent reproductive function.

It follows now from equations (5) and (8) that



Py = 090y + 0900, (1709 Qp g + 030, 5 (109 0y (120900 g o +
"ttt O (170 1) O (10 9) <+ 2Oy (1700 Q ey F

Orrtm (170m) Oy 1 (170} +* * Oy (17000 g

or in more compact notation
m
i N jzl{aj+lQn x5t Hl" 3= oy)hs )

It can also be easily seen that the population of n-year-olds satisfies

the following:

O x = (00,1 *°" oL _)- (10)

For some simplicity of notation, define

F(x) = see o) E(x), (11)

(0102

so that

Q

n,k+n =F(S

k). (12)

Thus is obtained the difference-delay equation providing the population

dynamics for the adult breeding population:

m

P = I a.

(13)
k+n =0 I

J+1 (Sk—j)’

where

and

11



- J1 ' .
aj = QLj igl 0n+i(l - ol.i), i=2,3, ... , ml.

What follows next is a consideration of stability criteria for an

equilibrium solution of equation (13) with no harvesting, i.e.,

(14)

12
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CHAPTER III

STABILITY

Stability properties of an equilibrium solution, P*, of the
model equation with no harvesting

m

P, = jEO as, F By _) (15)

are analyzed in this section. Considered first will be a sufficient
condition for the local stability of P* and a numerical scheme for
defining the boundaries of the local stability regions will be sketched.
A detailed examination of local stability will be presented for the |
trivial case m = 0 and the not so trivial case of m = 1.

Iet P* be a non-trivial equiiibrium for the delay equation (15).

Then
m
p* = F(P*)jio aj+l' (16)
Now linearize about P* by writing Pk = P* + X.r SO that
m .
Py, —P*= I aj+l(F(Pk_j) - F(P*)) (17)
J=0
and so
m 2
i T *
*ktn T jio(ajﬂF (P¥)2 5 * .O.(xk—j))’ (18)

where F'(P*) is the derivative of F évaluated at P*. Define
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>
I

alF'(P*) (19)

and

A. = aj+l/al’ (20)

Thus, the linearization is obtained:

Axk+ z Aj 5" (21)

Express xk as zkx0 to obtain the characteristic equation

zn+ - az™ + Z ij 3) (22)

j=1

It is easily seen that P* is locally stable if and only if all roots
of the characteristic equation (22) have modulus |z| < 1.

First it shall be proven that the condition

[A] < /(L + X + A, + = + A (23)

172

is sufficient for local stability of P*.
m .
Let g(z) = ™ and let h(z) = -A(Z" + z ijm_J). Suppose that
371
|a] < /(1 + 2y + Ay + 777 + A ); then the following is true:
n() ] = [al]Z%+ 242"+ o+l so that [ne) | < Al (2™ +

m1

AlzT T+ oo+ 0, and so for |z| = 1: [h(z)| < [A[(Q + Ay + =o0 )

1
< 1= |g(z)]. By Rouche's theorem, g(z) and g(z) + h(z) have the same
number of zeros (namely ntm) in the interior of the unit circle. Thus,

the condition (23). is sufficient to ensure the local stability of P*.
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m,., m1l
Az *+rqz Thece)

m-1

m o o o -
A(z 0+>\ 120 + _+>\m)
A(l+) l+ .. ~_+>\m) -

l-

n+Hn
V4

N = = e e ——

o

Figure 2. The intersection of Z"™ and A(zn_‘+>\lzm_l+~ . .«+>‘m)

~gives a real root z, > 1, when A > 1/ (LAAgte et ) .

Now suppose that A > 1/(1 + >‘l + e+ Am), and consider the

~graphs of 2" and A"+ ¢ ‘ A2 9) , where z € R (see Figure 2).
J=1

Clearly, the intersection of these graphs always giveé a real root ( > 1)
of the characteristic equation (22) .

It would seem appropriate here to introduce the notion of 'region
of stability', but first more notation is needed to facilitate ease
of presentation. ILet Am = ]Igl }‘j’ then it is possible to speak of the
parameter plane (Am,‘A). A (A,A) region of 1o§al stability will be
the set of parameter values for which P* is locally stable.

From the preceeding discussion it is possible to conclude that,
for any n, the upper bound of the .(Am,A) region of local stability

is always A = 1/(1 + Am) . By equation (23), the lower bound, A = An(Am),'
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must always satisfy
An(AHQ <-l/(1+ Am). (24)

A modified Schur-Cohn criterion (see Freeman, 1965) is now presented,
by which the local stability of P*, for specific values of the parameters
(a, A Agr eee s Ay, may be numerically determined from the characteristic

equation (22).

Let
) = o 23 -1, ...
G(z) cqz + cq_lz + + cyz + ¢ (25)
where cq > 0. Define the inverse polynomial G_l(z) = zqG(z—l), then
~ly - o 9 g1l . ...
G (z) = CozZ* + €42 + + Cq-12 + g (26)

The roots of G_l(z) are the inverses of the roots of G(z) with respect

to the circle |z| = 1. 1In addition, (G,_l(z))"l = G(z). ILet
-1 _ -1

The remainder, Gil(z), will be a polynomial of degree g-1 and the
quotient texn180 = co/cq. Continue in this way:
¢ Hz) /e, (2) = B, + G 1, (2)/G, (2)
i )i i i+l i
(28)
i=0,1, 2, ... , g2

where Go(z) = G(2).

The necessary and sufficient condition that all roots of the

equation G(z) =0 lie in the interior of the unit circle in the z-plane
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is that all of the following are satisfied:

(@) G(1) >0

(b G(-1) < 0 for g odd

1)
(b,) > 0 for g even

© |gl <1, i=0,1,2 ... , a2

Application of kthis‘ method with G(z) replaced by the characteristic
equation (22) is straightforward when parameter values are known,
however it does not seem feasable to obtain closed form expressions
for the stability region with general n and m. One interesting

result can nevertheless be gleaned from condition (a). If G(z) =

r+m 1

z - A(z" + )\lzm_. +oeee >‘m) , then condition (a) requires that

A<L/(A+ Xy + o0 + Am) =1/(1 + Am), which is merely the upper bound

1
of the v(%'A) ‘region of stability derived previously. This modified
Schur-Cohn ‘criterion will also be made use of in the detailed analysis

of some special cases for m and n to follow.

Special case: m = (.

In this case the population being modeled is one that has n age
classes, but only the nth age class reproduces. The adult breeding

-population is:described by

p, = (29)

x = Q,x = F(P

k—n)

so that an equilibrium is simply given by P* = F(P*). The characteristic



equation (22) becomes z% - F'(P*) = 0. Thus, it is clear that P* is

locally stable if and only if
=l < F'(P*) < 1. (30)

Note that this special case with m = 0 is Clark's, 1976b, model with
the simplification of the survival coefficient being zero, The next

special case is more. interesting, requiring more rigorous analysis.

Special case: m'= 1.

In this case the population being modeled is.one that has nt+l
age classes, and only members of the final two.can reproduce. The

adult breeding population is described by
Pre1 = 31F Ppopyq) + 3F (B ) (31)
so that an equilibrium is given by
P* = (a; + a,)F(P¥). (32)

The characteristic equation (22) in this case becomes

n+l

Z - Az - A\,A = 0. (33)

T

From general results already derived it is known that the upper bound
of thel(ll,A).region of local stability for P* is' A = 1/(1 + Xl), for

all n; while the lower bound depends on n and satisfies

A,0) £ -1/(L+ A (34)

1)-

18



Now, closed form expressions.for two of these lower bounds, Al()\l) and
A2 (Al) » will be derived using the modified Schur-Cohn criterion
(Freeman 1965) as presented earlier.

In the case under consideration, G(z) = zm-:L

- Az - )\lA. As
already stated, condition (a) requires that A < 1/(1 + }\l) ., which is
" merely the uppér bound derived previously. For n even, condition (bl)
requires that A(l - Al) < 1; and for n odd, condition (b2) requires
that A(\; - 1) < L. |
For n = 1, all that condition (c) requires is that IBOI < 1.

, -1 _ . ’
Since G. (z)/G(z) = )\l 1
that By = =A;A, and since they will be needed shortly it is found that

A+ (22" - 2 2%z + (1 - 2% /6(2), it follows
\

-1,y _ an . 2 12,2 v 42,2y.0 _
Gl (z) = ~-Az 4)‘1A z + (1 -AlA) so that Gl(z) = (1 ‘>‘1A )Z

2 n-1

AA%z" " - A, Therefore, condition (c) requires that |A,A| < 1.

Combining this with conditions (a) and (b,) gives the (A;,A) region of

2

A=1/04 - 1)

Figure 3. The (};,A) region of local stability (shaded area)
for n=1and m= 1.
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local stability for n'é 1 (see Figure 3).

For n = 2, condition (C)'requires that |BO| < land |Bl| < 1.
Since Gl (z)/G (z) = -/(1 - A A ) + G (z)/G (z), where G (z) =
n-1

(-A2%/(1 - A%a )) Az (1- xiAZ a%/(1 - A32%), it follows

that 8, = -3/(1 - AlAz). Combining this with.[AlAl < 1 and conditions

- A

(a) and (bl) gives the'(kl,A) region of local stability for n = 2:
“Ara?y % anc @y (35)
S B | -1

(see Figure 4).

In attempting to use this criterion for n = 3 it is necessary
to solve a cubic equation, for n = 4 a quartic, etc.; hence it is not
feasable to make use of this Schur-Cohn criterion for finding closed
form expressions for A (A;) for n 2 3. Howe&er, it is useful to note

here that the stability region for any n must contain the region for

Figure 4. The (A,,A) region of local stability (shaded area)
forn=2andm= 1.

20
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ntl. If this fact is combined with the sufficiency condition (23),

the progression of lower bounds, A (), follows:

A(A) £ <A () <A 0

() < 1) < eee < =1/(1 + Ay (36)

Further results for n > 2, employing another approach, are now derived.

Following Levin and May, 1976, and Clark, 1976b, consider again

nt+l

the characteristic equation (33), z -~ Az - llA =0, withn > 2,

and express z as Rele, R > 0. Note that for A = An(xl), equation (33)
must have a root z = ele, i.e., with R = 1. Rewrite equation (33) in
the form
1=nz"+ a2 M, (37)
Substitute z .= _ele and equate real and imaginary parts to obtain
sin(ng) f-klsin{(n+1)6} =0 (38)
and
Acos (nd) +_AAlcoS{(n+l)9} = 1. : (39)

Equation (38) has a unique root 6 = en(xl) such that w/(ntl) < en(xl)

< m/n, although of course, there are infinitely many other roots > en(xl).
Given some Al > 0, equation (38) can be solved for en(xl) and

thus A = An(Al) can be found from equation (39). It is shown here that

this process determines the lower boundary of the stability region.

Recall that for n > 2 it has been demonstrated that this lower boundary



N>
N2

is in the region 0 > An(xl) > -1. So, by eXaIni'ning the derivative of
R with respect to Ay it is shown that at R = 1, c'iR/dAl > 0; provided
that 0 > A > -1. Thus, as >‘l increases, R can only cross the boundary
R = 1 from below, so that once a root leaves the stability region it
cannot reenter.

Again, let z = Reie, R > 0, and substitute into equation (37).

Seperate real and imaginary parts to obtain

n+1

R" ™ = ARcos (nB) + Akjcos{ (n+1)6} (40)
0 = ARsin(ng) + Ak;sin{(n+1)6}. (41)
From these equations it follows that
R = ~)\;sin{ (n+1)6}/sin (nd) (42)
and
A8 = (<) "asin® (0) sin(0) /sin™ H{ (m+1) 03, (43)

Differentiate each side of equation (43) with respect to 6 and equate

to obtain
(n/A}) (@A,/30) = n°cot(ng) + cot(8) - (m+1)Zcot{ (nm+1)6}. (44)
Now differentiate equation (42) with respect to 6, so
(1/R) (@R/d8) = (1/A;) (d1,/8) + (ntl)cotl(n+1)6} - n-cot(nd),  (45)

but ‘dkl/d6 can be found from equation (44), so that



(n/R) (AR/dG) = cot(s) - (m+1)cot{ (n+1)6}. : (46)

S

Now for R = 1, put z = e’ into equation (33), seperate real and

imaginary parts, and obtain the following:

cos{ (mt1)e} = Acos(6) + Ax, (47)

sin{ (n+1)8} = Asin(0). (48)

Considering equations (38) and (39), it is easily seen.that

cot{ (ntl)6} = ~{1 - Acos(n6)}/Asin(nv), (49)
while from equations (47) and (48) obtain

cot(8) = ~{1 - Acos(nd) - AJa%}/Asin(ng). (50)

Use the identities given by equations (49) and (50) to determine the

following "from equation (46):
(n/R) (AR/d0) | o _; = (n{l - Acos(n8)} + A{a%)/Asin (n6), (51)

and from equation (44): .

(0/20) (4/30) | oy = (n” + 2n{1 ~ Acos(n6) } + A3A%) /Asin(n6). (52)
so,
(A./R) (AR/A\ )' o n{l fAcos(ne)} +AiA2 (53)
o U EL 124 2n{1 - Acos(ng)} + A%a2

I
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but -1 < A< 0, so 1 - Acos(nd) > 0. Thus, it follows from equation (53)
that'(kl/R)(dR/.d)\l)[R=l >0, but Ay > 0, s0 it is proven that
(AR/Ar{) |poq > O when 0 > A > -1.

As a consequence of this result, the lower bound of the stability
region in the_(kl,A) pléﬁe can be found using equations (38) and (39).
Although closed form expressions for Ah(xl) do not éeem feasable for
n > 3, graphs of the lower bound can easily be piotted for any n > 2
(see Figure 5). Note that m/(n+l) < en(xl) < m/n, so nen(Al) i
as n » +o. Thus as expected, for any‘Al > 0, Ah(xl) + -1/(1 + Al) as
n -+ +eo. Some specific examples of the density dependent reproductive
| function F(P) will now be discussed, applying some of the results that

have been derived.

Example 1.

As a first example, consider a quadratic, or logistic type,

reproductive function. Sﬁppose that
£(P) = rP(1 - P/K), (54)

where r is the average fecundity per adult and K is the carrying
capacity of the adult population.

- The equilibrium population, P*, of equation (16) is given by

P*=K(l-B_ /1), (55)
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Figure 5. A plot of An(-,Xl). form=1and n= 2, 3, 4, and 5.
Note that An()\l) 4 'fl/(l + >‘l) as n = +o,
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' l/Bm’n = alOl"'On(l + Am). (56)

Note that for P* > 0, it is required that r > Bm ne Recall that

’

A= alF'(P*), so it is:easily seen that
A= (2- r/Bm,n)/(l + Am). (57)

The sufficient condition for local stability of P*, equation (23), in

this example becomes’
B <r< 3B

m,n m,n’

and for the special case of m = 1, it follows from equation (36) that
there exists a positive mumber En(Bl n) such that P* is stable if and
. 4

only if
Bl,n <r< 3B1,n + e, (59)

a result very similar to one derived by Clark, 1976b.

Exanple 2.

Consider in this example a reproductive function that is of

exponential, or Ricker, type, i.e.,
£f(P) = rP exp (-P/K). (60)
Now, the equilibrium population, P*, of equation (16) is given by

P* =K log (/B ), ) (61)

(58)_
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where B pisasin Example 1. BAgain, for a feasible equilibrium it is
, :

required that r > B, ns this example

rts

A= {1+ l_og(Bm’n/r)}/(l + Am) p (62)
so that the sufficient condition for local stability of P* becomes
l_og(Bm'n), < log(r) < 2 + ng(Bm'n). (63)

As in the first example, equation .(36) implies that there is a positive

number en (Bl n) such that P* is locally stable if and only if
r’

l-og(Bl,n) < log(r) < 2 + ng(Bl’n) +e . (64)

This concludes the analysis of local stability for the model equation
(15). Following are several computer simulations of the model, where
the density dependent reproduction function f (P.) was chosen from example
' .1. Parameter values were chosen as likely estimates to give some
indication of the very complicated dynamics arising from the bifurcation
structure. Very similar figures may be found in the paper by Levin and

Goodyear, 1980.

Computer simulations.

The simulations presented here employ the reproduction function
f(xj) = rxj (1 - xj) of Example 1, where. the carrying capacity, K, has

been scaled out, i.e., Pj = Kxj. The figures all come in pairs, the
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Figure 6a. Simulation of the modeled population for n = 1 and
Equilibrium is x* = 0.695 and is stable.

m= 1.



29

1

.96

0

0.92

1
0.88

YEARLINGS

1
0.84

.12

r T T T T
v70 €0 2ZE'0 82 0 b2° 0
SO0 ¥534 OMl
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first of each pair shows the dynamics of the adult breeder population
and thelsécond'shows one-year-olds plotted against two-year-olds.
In the first simulation, shown in Figures 6a and 6b, a simple case

with m = 1 and n'= 1 is considered. Parameters chosen were: = 0.7,

%1
oy = 0.2, 0, = 0.4, and ¥ = 20.0. Thus the equilibrium is x* = 0.695,
A = -0.589, Al = 1.171, anc'l-BLl = 6.098. The r value is outside the
sufficiency range of equation (58) but within the stability bounds
as given in Figure 3. Clearly, the equilibrium is stable, but the
approach to it is oscillatory.

Figures 7a and 7b show the dynamics for n = 1 and m = 4, where the
parameters chosen were: dl = 0.05, 0, = 0.3, 03 = 0.6, d4 = 0.9,
0, = 0.2, Oy = %+ =0g = 0.5, and r= 50.0. The equilibrium in this
case is x* = 0.691 while A = ~0.192, A, = 5.493, and B, 1 = 15.401.
Again, the r value is just oufside the sufficiency range of equation (58),
but the equilibrium is stable, though the approach to it is oscillatory.
Figures 8a and 8b show the dynamics of a population exactly the
same as for Figures 7a,b except fér the r value, which in this case is
taken further outside the range of equation (58), némely, r = 70.0.
"Here x* = 0.779, A = -0.392, while A4 and B4’1 are unchanged. There
seems to be no period to the oscillations of Figure 8a, while in
Figure 8b some age structure is evident in the precession of points
around the.curve.

Figures 9 thrqugh 13 indicate the dynamics for a population with
= 0.02, a

n=2and m = 4. For each, the parameters o = 0.3, u3 = 0.5,

1 2
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Figure 7a. Simulation of the model for n =1 and m = 4 showing

parental population versus time. Equilibrium is
x* = 0.691 and is stable.
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Simulation of the model for n = 1 and m = 4 showing
parental population versus time. Equilibrium is
x* = 0.779 and is not stable.
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a4 = 0.8, oy = 0.2, and Oy = 0t = g = 0.4 remain unchanged. The r
value is increasing though} through the values r = 100.0, 190.0, 200.0,
225.0, and 240.0 in succeeding figures. For Figures 9 and 10, r is
within the stability ;egion, while it appears that in Figure 11 there
has been bifurcation to quasi-periodic oscillations of about seven years
duration. In Figure 1lb the cyclic nature of the age structure for one-
and two-year-olds is evident. . Figure l2a indicates a period of
approximately fifty years, while Figure 12b shows an increasing complexity
in age structure. Finally, Figures 13a and 13b reflect an r value

deep into the region of instability. An analysis of the complicated
bifurcation structure of the model is beyond the scope of this thesis,
but it is hoped that these figures give some idea of this complex

behaviour.
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Figure 9a. Simulation of the model for n = 2 and m = 4 showing
parental population versus time. Equilibrium is
x* = 0.410 and is stable.
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Figure 13a. Simulation of the model with n= 2 and m = 4 showing
parental population versus time. Equilibrium is
x* = 0.754 and is not stable.

o

0

0



-
-
-
[ I T T
0's 0'v g€ 0'¢ c'0
SO0 ¥Y34 OML
Figure 13b. Simulation of the model with n =2 and m = 4 showing

a plot of yearlings versus age class two.

(r = 240.0)

45

8.0 10.0 12.0 14.0

YEARLINGS

6.0



46

CHAPTER IV

OPTIMALITY

In this section, the problem of economically optimal exploitation
of a population modeled by the difference-delay equation (13) is
discussed. The method of Lagrange multipliers is used to derive
formally an optimal equilibrium condition.

Suppose that the adult breeding population modeled by equatipn (13)
is subject to exploitation, where Hk is the number of animals harvested
in year k, so that

m

P = ¥ a
k+1 3=0

k=o0,1, 2, ... .

5+1F Prt1-n-3 = Fer1-n-5) + (65)

Clearly, Hk must satisfy the feasibility conditions
0<H <P, k=0,1,2, ... . ~ (66)

Given a harvest policy (HO, Hl,‘H2, ...), the future stock levels

(Pl, P5, ...) are determined by .equation (65) if the historical escapement

levels
k=1, 2, ... , mtm1 (67)

and the initial stock level, P,, are known. ILet II = II(P,H) be the net

OI

' economic revenue resulting from a harvest H taken from an adult population
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of size P. Following Clark, 1976a, assume that net economic revenue
in year k is

P
e ) = [ 5 - o), (68)

Py

where p = price and C(P) = unit harvest cost when the population level
is P. In the usual fishery-production model (Clark 1976b), C(P) = c/P,
where Cc is a constant. It is assumed that the maximization of the
discounted present value of net economic yield

J= 35 &ue

H) (69)
k0 KK

is the objective of exploitation. Here, ¢ = 1/(1 + i) is the annual
discount factor, where i = interest rate.
An optimal equilibrium condition is now derived using the method

of Lagrange multipliers (Clark 1976a, 1976b). Consider the Lagrangean

expression:
%) k . m
L= 2SR - fiRy, - o 2 B - By ). (70)

Ignoring constraints, the necessary conditions are:

3L/8P = 0 (k 2 1) (71)

and

SL/BH, =0 (k20). (72)

Assume there is an equilibrium solution’ to these conditions with



escapement level S, so that P

k k

3=0
It follows from equations (71).and (72) then that

m

ST + F'(S)jzo.aj+1£k+n-l+j = &
SH%'fFWSGEQafiﬁﬁmﬁff=o’
for k=1, 2, ... . Thus,
g = <, + 1.

Hence, it follows from equations (75) and (73) that

: : | o j+n
1= {mp + M) /MmIE'(s) = &7""a

5=0 j+1°

m
=P = 'z aj+lF(S) and H =P

k

- S.

(73)

(74)

(75)

(76)

The optimal equilibrium escapement level may now be found from equation

(76) when the functions T(P,H) and F(S) are chosen.

48
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CHAPTER V .

DISCUSSION

In this section, the research will be examined in light of the
results obtained herein and scme conclussions will be drawn. Extrapolations
will be considered whereby this work might be extended or generalized.

A model ‘has been constructed which describes a species in which a -
menmber may reproduce 1n only one .ane class, the ages rang.i‘ng from n to
mtm. The natural suﬁiml rates from age j to j+1 were assumed to be
density independent, iﬁ fact, all density dependence was assumed to be
concentrated in the first year of life. Thus, a difference-delay
equation, with m delays, describing the adult breeding population was
produced. A possible extension of this study would be a generalization
to allow the survival rates to also be density dependent.

Stability of the unexploited model was studied next and, for
~general n and m, a simple condition sufficient for stability of an
equilibrium was derived. This condition was shown to provide the
upper bound for the region of local stability in the (Am,A) parameter
plane, where Am reflects the effect of the life parameters of the
species while A is a measure of the slope of the reproductive function
at equilibrium; From this result, it can be concluded that for fixed
A positive, increasing Am reduces stability. The lower bound of this
-stability region, for arbitrary n and m, was seen to be more intractable.

However, a numerical scheme was presented for determining stability,
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when specific parameters are given.

Two special cases for m were analyzed in detail and some closed
form expressions were derived fOrythe lower bound. - It was clearly
seen here that increasing the delay leads to reduced stability and,
except for the case n = 1, for fixed A, increasing Al always takes a
point out of the stable region. For the case n = 1 and m = 1 however,
there is a range of Vaiues for A (-2 < A < -1) where increasing A, from
zero takes a point from instability to stability and back to instability.

Two examples for the density dependent reproductive function employing
commonly ‘used functions were exhibited. A study of the global behaviour
of the model and a detailed examination of the bifurcation structure is
beyond the scope of this thesis, however, some interesting computer
simulation plots were given, shdwing the complicated dynamics possible
with the model and indicating that the bifurcation structure is indeed
complex.

Finally, the exploited‘population model was COnsidered_again, and
a condition derived, giving the optimal equilibrium escapement level
for the general case. An eXamination of the optimal approach paths
to this escapement lé&el would be interesting, but, unfortunately, is

also beyond the scope of this thesis.
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